
Actor-Critic Deep Reinforcement Learning and Its
Application in Wireless Communications

Data Science Seminar
April 8, 2022

Prof. Liang Dong

Outline

▶ Introduction to Reinforcement Learning

▶ Deep Reinforcement Learning Algorithm and Training

▶ Actor-Critic Deep Reinforcement Learning

▶ Deep Deterministic Policy Gradient Algorithm

▶ Application to Dynamic Spectrum Access and Sharing

▶ Conclusion and Future Work

Reinforcement Learning

▶ Reinforcement learning is a reward-driven interactive process
of trial-and-error with the environment.

▶ Reward/punishment received from the environment are used
to guide the learning process for future decisions.

▶ The agent learns to interact with the environment to achieve
rewarding outcomes.

Suitability of Reinforcement Learning

▶ When to use reinforcement learning methods?

▶ Reinforcement learning is suitable for tasks that are simple to
evaluate but hard to specify.

▶ Reinforcement learning systems are end-to-end systems in
which a complex task is usually not broken up into smaller
components.

▶ Task execution can be evaluated with a simple reward or
delayed rewards.

Reinforcement Learning and Markov Decision Process

Markov decision process: s0a0(r0)s1a1(r1) . . . stat(rt) . . . sN aN rN .

(ri) possibly absent or delayed rewards

Reinforcement Learning for Board Games

▶ Board games: The actions are the moves made by the player.
▶ The reward is +1, 0, or -1 (win, draw, or loss) received at the

end of the game.

Reinforcement Learning with States

▶ An agent uses the action to
interact with the
environment.

▶ The state of the
environment is updated and
observed.

▶ The environment gives the
agent rewards.

▶ The goal is to determine the
intrinsic values of actions in
different states, regardless of
the timing and stochasticity
of the reward.

Value Function: Q-Function

▶ Let’s look at an episode of the process represented by a
Markov decision process

s0 a0 r0 s1 a1 r1 . . . st at rt st+1 at+1 rt+1 . . .

▶ Define the cumulative discounted reward at time t

Rt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑

τ=t

γτ−trτ

where the discount factor 0 ≤ γ ≤ 1.

Value Function: Q-Function

▶ Q-function of state-action pair (st, at) is a measure of the
intrinsic value of performing action at in state st

Q(st, at) = max E[Rt | at]

Q-function represents the maximum reward over all
combination of future actions.

▶ The chosen action from Set A of all possible actions at time t
that maximize Q(st, at) is

a∗
t = arg max

at∈A
Q(st, at)

Value Function: Q-Function

▶ With the knowledge of the current reward rt, we get an
improved estimate of the Q-value using the Bellman
equation1.

Q(st, at) = rt + γ max
at+1

Q̂(st+1, at+1)

▶ Q̂ indicates that it is a predicted value.

“Looking ahead one step and predicting at state st+1.”

1Stochastic Dynamic Programming (Bellman 1957): Bellman Equation – It
writes the value of a decision problem at a certain point in time in terms of the
payoff and the value of the remaining decision problem. It breaks a dynamic
optimization problem into a sequence of simpler subproblems.

Q-Learning Algorithm

▶ Where does deep learning come into play?

▶ Deep neural network (DNN) is a function approximator:

F (Xt, W, a) = Q̂(st, a)

for each action a ∈ A.

where Xt is the feature input that is based on state st, W are
the neural network weights.

Q-Learning Algorithm

▶ How to train the DNN?

▶ We need to find the loss from the target and the DNN output:

Lt = (Q(st, a)− Q̂(st, a))2

▶ However, there is a problem. The target Q(st, a) is unknown.
▶ Solution: We use the one-step-ahead improved estimate of the

Q-value as the ground-truth target.

Q(st, a) = rt + γ max
a

Q̂(st+1, a) = rt + γ max
a

F (Xt+1, W, a)

Q-Learning Algorithm

▶ Therefore, the loss Lt of the DNN is

Lt =

rt + γ max
a

F (Xt+1, W, a)︸ ︷︷ ︸
treated as ground truth

−F (Xt, W, a)

2

▶ Backpropagation

W ←W+α
(
rt + γ max

a
F (Xt+1, W, a)− F (Xt, W, a)

) ∂F (Xt, W, a)
∂w

Modeling States and Policy Gradient Methods

▶ Modeling States: DNN to learn the value V (st) of a particular
state instead of the state-action pair.

▶ Policy Gradient Methods: DNN computes P (Xt, W, a), i.e.,
probability that action a should be performed.

Actor-Critic Deep Reinforcement Learning

▶ Value-based algorithm: e.g., Deep Q-learning

▶ Policy-based algorithm: e.g., REINFORCE

▶ Actor-critic algorithm: A hybrid of the value-based and
policy-based algorithms.

e.g., Deep Deterministic Policy Gradient (DDPG) algorithm,
Asynchronous Advantage Actor Critic (A3C) algorithm

Actor-Critic Deep Reinforcement Learning

▶ The actor-critic consists of
two components: an actor
to generate a policy and a
critic to assess the policy.

▶ A better solution is learned
through solving a
multi-objective optimization
problem and updating the
parameters of the actor and
the critic alternatively.

Actor-Critic DDPG Algorithm

▶ Practical Engineering Issues:

(1) Large state space → Deep Q-networks
(2) Large action space (continuous-valued actions) → Deep
Deterministic Policy Gradient (DDPG) algorithm

▶ The DDPG algorithm is an actor-critic algorithm that
integrates the deep Q-network with the deterministic policy
gradient algorithm.

▶ It can concurrently learn a Q-function and a policy in a
high-dimensional and continuous action space.

DDPG Algorithm: The Critic

▶ The critic estimates the action-value function, i.e., the
Q-function.

Qπ(ot, at) = Eπ[Rt | ot, at]
= E [r(ot, at) + γEπ[Qπ(ot+1, at+1)]]

Taking an action at on observation ot following policy π.

▶ The Q-function Qπ(ot, at) can be approximated by a
Q-network parameterized with θQ.

Q(ot, at | θQ) = Qπ(ot, at)

DDPG Algorithm: The Actor

▶ The actor updates the policy distribution in the direction
suggested by the critic with policy gradients.

▶ When the policy is deterministic, the actor directly maps
observation ot to action at. This can be approximated by a
policy network parameterized with θµ.

at = µ(ot | θµ)

▶ At training time, we add noise to the action to perform
exploration.

at = µ(ot | θµ) + w

Deep Deterministic Policy Gradient (DDPG) Algorithm

▶ The DDPG algorithm maintains:

(1) A Q-network (critic),
(2) A policy network (actor),
(3) A target Q-network (Q′),
(4) A target policy network (µ′).

The target networks (3) and (4) are the time-delayed copies
of the Q-network and the policy network, respectively.
The target Q-network is parameterized with θQ′ , and the
target policy network is parameterized with θµ′ .

Deep Deterministic Policy Gradient (DDPG) Algorithm

Figure: Actor-critic architecture of the algorithm that includes the four
networks, a Q-network, a policy network, a target Q-network, and a
target policy network.

Training the DDPG

▶ In the neural-network implementation, the updated Q-value
(Q̃) according to the Bellman equation is given by

Q̃t = r(ot, at) + γQ′(ot+1, µ′(ot+1 | θµ′) | θQ′).

▶ The Q-network (Q) is updated by minimizing the
temporal-difference (TD) loss as

min L =
∑[

Q(ot, at | θQ)− Q̃t

]2
where

∑
denotes the average sum over a mini-batch.

Training the DDPG
▶ With the actor’s policy function µ, the objective is to

maximize the expected return, i.e., the expected cumulative
discounted reward, as

max J = E
[
Q(ot, a)|a=µ(ot)

]
.

▶ The policy network (µ) is updated by using the sampled
policy gradient as

∇θµJ ≈
∑
∇aQ(ot, a | θQ)|a=µ(ot)∇θµµ(ot | θµ).

▶ The two target networks slowly track the learned parameters
of the Q-network and the policy network.

θQ′ ← ρθQ + (1− ρ)θQ′

θµ′ ← ρθµ + (1− ρ)θµ′

where ρ (0 < ρ≪ 1) controls the update rate to be slow to
improve the stability of learning.

Twin Delayed Deep Deterministic Policy Gradient (TD3)
Algorithm

Figure: Part of structure of Twin Delayed Deep Deterministic Policy
Gradient algorithm.

Wireless Communication Application: Dynamic Spectrum
Access and Sharing

Figure: Dynamic spectrum access is an efficient solution to
opportunistically allow secondary users to share licensed spectrum bands
when it is not in use by their respective owners (primary users).

Use Cases

Figure: Use Case 1: Device-to-device
(D2D) communication underlay
cellular network.

Figure: Use Case 2: Vehicular
network – vehicle-to-vehicle (V2V)
links and vehicle-to-infrastructure
(V2I) links.

Transmission Strategy of Secondary Users

▶ The state of channel usage: x = [x1, x2, . . . , xN]T .
▶ There are K secondary users of the spectrum who want to

transmit on the N frequency channels. The kth secondary
user transmits on the nth channel. Its receiver can measure
the received SINR on the nth channel as

SINRk,n = |hkk,n|2pk,n∑
l∈K\k |hkl,n|2pl,n + WN0

▶ Information rate in bits per second per hertz (bit/s/Hz) is

qk =
N∑

n=1
log2(1 + SINRk,n)

=
N∑

n=1
log2

(
1 + |hkk,n|2pk,n∑

l∈K\k |hkl,n|2pl,n + WN0

)
.

Transmission Strategy of Secondary Users

▶ If the kth secondary user transmits on the mth frequency
channel that conflicts with any primary user, the primary user
will issue a warning about the mth channel.

▶ After receiving the warning signal, the secondary user
invalidates the communication effort on the mth channel by
setting SINRk,m = 0 at the receiver.

▶ This effectively eliminates the contribution to the information
rate qk that is attributed to the transmission on the mth
channel.

Optimization Problem Formulation

The transmission problem of the kth secondary user can be
formulated as

maximize
{pk,n}n∈N

qk

subject to
∑

n∈N pk,n ≤ P
SINRk,m = 0, m ∈M

where M (M⊆ N) is the set of indexes of frequency channels
that are occupied by the primary users.

Dynamic Spectrum Access and Sharing through DRL
▶ State and Observation

ot = {x̂t−T0 , x̂t−T0+1, · · · , x̂t−1}
where x̂ is the observation of the state vector, whose elements
are ternary from {−1, 0, 1}.

▶ Action of the agent at time slot t is the transmission power as
at = {pn,t}n∈N

where pn,t is the transmission power on the nth frequency
channel.

▶ Reward

rt = qt − β
∑

m∈Mt

pm,t, Rt =
T∑

τ=t

γ(τ−t)rτ , 0 ≤ γ ≤ 1

where qt is the information rate. The second term is the
penalty due to conflict with the primary users.

Actor: Policy Network

Figure: Neural-network architecture of the policy network.

Critic: Q-Network

Figure: Neural-network architecture of the Q-network.

Experimental Methods

Figure: Experimental setup in the laboratory at Baylor BRIC.

Experimental Methods

Table: Parameters of the TD3 algorithm implemented by the secondary
user.

Discount rate γ of cumulative reward 0.5
Learning rate of actor 0.0001
Learning rate of critic 0.0003
Update parameter of target networks ρ 0.001
TD3 delayed update of actor 1 actor update for

10 critic updates
Experience replay buffer size 100, 000
Mini-batch size 128
State observation time span T0 32 time slots
Reward coefficient β 0.05 (bit/s/Hz) / mW
Exploration noise w added to the action, Start at σw = 10 mW
decreasing during training σw,t+1 = 0.99995σw,t

Results and Discussion

Figure: Secondary User 1 is active
alone. Top: The number of
frequency channels that conflict with
the primary users over time slots of
training iterations. Bottom: The
information rate of the secondary
user over time slots of training
iterations.

Figure: Secondary User 2 is active
alone. Top: The number of
frequency channels that conflict with
the primary users over time slots of
training iterations. Bottom: The
information rate of the secondary
user over time slots of training
iterations.

Results and Discussion

Figure: Secondary User 3 is active alone in the secondary user network. It
performs dynamic spectrum access and sharing using the TD3 algorithm.
Top: The number of frequency channels that conflict with the primary
users over time slots of training iterations. Bottom: The information rate
of the secondary user over time slots of training iterations.

Results and Discussion

Figure: Three secondary users
perform dynamic spectrum access
and sharing. The plot shows the
number of frequency channels that
conflict with the primary users over
time slots of training iterations.

Figure: Three secondary users
perform dynamic spectrum access
and sharing. The plot shows the
sum information rate of the
secondary users over time slots of
training iterations.

Conclusion and Future Work

▶ A framework of actor-critic deep deterministic policy gradient
algorithm is tailored for dynamic spectrum access and sharing,
and the deep neural networks are designed.

▶ Multiple secondary users implement multi-agent deep
reinforcement learning with various degrees of coordination
among the secondary users. The algorithms are effective,
enabling the secondary users to quickly establish transmission
policies that achieve good spectrum utilization.

▶ For future work, we plan to investigate the dynamic spectrum
access and sharing problem with more random channel usage
and switching patterns. Additionally, we plan to investigate
the robustness and convergence speed of the TD3 algorithm.

