
Deep Learning and Its Applications in Signal
Processing

Lesson 5: Attention-based Neural Networks for Signal
Processing

Liang Dong, ECE

Recurrent Neural Network Demo

Real-time music classification with RNN/LSTM

RNN/LSTM ← Click here


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=nOdz80J4_Rc


Recurrent Neural Network Limits
▶ The basic recurrent neural network (RNN) design struggles

with long sequences. In practice, it does not learn long-term
dependencies well.

▶ A special variant, long short-term memory (LSTM) network,
can work well with long sequences, achieving remarkable
results in voice recognition, translation, and image captioning.

▶ LSTM, like ResNet, can bypass units of RNN and remember
for longer time steps. It removes some of the vanishing
gradient problem of the RNN. “Selectively remember or
forget.”

Recurrent Neural Network Limits

However, RNN and LSTM have limits:

1. Long sequence problem. When sequences are long, the model
often forgets the content of distant positions. The probability
of keeping the context from a far-away word decreases
exponetially with the distance from it.

2. Parallelization problem. The sentence is processed word by
word sequentially which inhibits parallelization. Not fitting for
hardware acceleration.

3. Modeling problem. There is no explicit modeling of long and
short range dependencies.



Temporal Convolutional Network
▶ Temporal convolutional network (TCN) – A variation of CNN

architecture for modeling sequences.

▶ TCN uses causal convolution – It convolves only with the
elements from current and earlier timestamps in the previous
layer.

▶ Temporal convolutional networks (TCN) “outperform
canonical recurrent networks such as LSTMs across a diverse
range of tasks and datasets, while demonstrating longer
effective memory”.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun, “An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling,” arXiv, 2018.

Temporal Convolutional Network

▶ TCN uses 1-D fully-convolutional network, where each hidden
layer is the same length as the input layer (with zero
padding). The output sequence is of the same length as the
input sequence (like RNN).

▶ TCN uses causal convolution. No information leakage from
future to past.



Temporal Convolutional Network

▶ TCN uses dilated convolution. It can capture long-term
dependencies (long history).

(x⊗d f)(n) =
k−1∑
i=0

f(i)x(n− di)

where x is the input sequence, f is a filter of length k, and d
is the dilation factor.

Temporal Convolutional Network
Advantages of TCN:

▶ In both training and inference, a long input sequence can be
processed as a whole, because convolutions can be done in
parallel as the same filter is used in each layer.

▶ Convolution helps capture (temporally) local information.

▶ TCN can change its receptive field size easily, hence better
control of the model’s memory size.

▶ TCN filters are shared in a layer with back-propagation only
depending on the network depth. “Distance” in the order of
log(n).

C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional networks: A
unified approach to action segmentation,” European Conference on Computer Vision,
2016.

N. Kalchbrenner, et al., “Neural machine translation in linear time,” arXiv 2016.



WaveNet

▶ WaveNet for audio signal synthesis – WaveNet directly models
the raw waveform of the audio signal, one sample at a time.

▶ Sequence modeling – Autoregressive feedforward models
model the last n steps using dilated convolutions.

▶ At each step during inference time, a value is drawn from the
probability distribution computed by the network. This value
is then fed back to the input and a new prediction for the next
step is made.

Aaron van den Oord, et al., “WaveNet: A Generative Model for Raw Audio,” arXiv,
2016.

Attention-based Neural Network

▶ Attention-based models require less resources to train and run
than RNN/LSTM.

▶ Attention – Neural networks focus on a subset of the
information they are given.

▶ Attention can be an important component of neural network
to understand sequences.

▶ Attention mechanism parses spatio-temporal information.



Attention

Figure: Bear falls from the tree.

▶ Our brains implement
attention at many levels, in
order to select only the
important information to
process, and eliminate the
overwhelming amount of
background information.

▶ Human visual attention
allows us to focus on a
certain region with “high
resolution” while perceiving
the surrounding image in
“low resolution”, and then
adjust the focal point or do
the inference accordingly.

Attention

Notice
There no is exam final for this class!

▶ Similarly, we select the important information in a sentence to
process.

▶ We do not read sequentially. In fact, we interpret characters,
words, and sentences as a group.

▶ An attention-based or convolutional module perceives the
sequence and projects a representation in our mind.



Attention Model

▶ Reduce data to a focal set and pay attention to the set.
▶ Make attention differentiable so that it can be “learned”.

How?
Focus everywhere, just to different extents.

Attention Model

▶ The attention model gives a context vector c which is the
summary of the source x focusing on the information linked
to the focus s.

▶ The score is the relevance of each xi given the focus s.



Attention Model

▶ The score function can be
score(s, xi) = vT

a tanh (Wa[s; xi]) (s and xi linearly
combined)
score(s, xi) = sT xi (dot product indicating relevance)

Attention in Image Captioning

Figure: Attention-weight visualization: “A woman is throwing a frisbee in
a park.”

The image is first encoded by a CNN to extract features. Then a
LSTM decoder consumes the features to produce descriptive words
one by one, where the weights are learned through attention.
K. Xu, et al., “Show, attend and tell: Neural image caption generation with visual
attention,” ICML, 2015.



Attention in Neural Machine Translation

▶ The attention mechanism originally helps memorize long
source sentences in neural machine translation (NMT).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural Machine
Translation by Jointly Learning to Align and Translate,” ICLR, 2015.

Attention in Neural Machine Translation

▶ The context vector has access to the entire input sequence.
The alignment between the source and target is learned and
controlled by the context vector.



Attention in Neural Machine Translation

▶ The context vector ct is a sum of hidden states hi

(bidirectional RNN) of the input sequence, weighted by
alignment scores {αt,i}.

ct =
n∑

i=1
αt,ihi

Attention in Neural Machine Translation

▶ The alignment model assigns a score αt,i to the pair of input
at position i and output at position t, (yt, xi). That is, how
much of each source hidden state should be considered for
each output.

αt,i = softmaxi(score(st, hi))



Attention in Neural Machine Translation

▶ The alignment score α is parameterized by a feed-forward
network.

score(st, hi) = vT
a tanh (Wa[st; hi])

where va and Wa are weight matrices to be learned.

Different Attentions and Alignment Score Functions

Attention Name Alignment Score Function
score(st, hi)

General sT
t Wahi

Wa is a trainable weight matrix for attention.
Content-based cos(st, hi)
Additive vT

a tanh(Wa[st; hi])
Location-based softmax(Wast)

Alighment only depends on the target position.
Dot-product sT

t hi

Scaled dot-product sT
t hi/

√
n

n is the dimension of the source hidden states.

Thang Luong, Hieu Pham, Christopher D. Manning. “Effective Approaches to
Attention-based Neural Machine Translation,” EMNLP, 2015.

Ashish Vaswani, et al., “Attention Is All You Need,” NIPS, 2017.



Hierarchical Attention Network

Figure: The transformer has an encoding and a decoding component. For
machine translation, it takes a sentence and outputs its translation.

Hierarchical Attention Network
▶ Hierarchical: Deriving sentence meaning from the words and

then deriving the meaning of the document from these
sentences.

▶ Attention model is used so that a sentence vector has more
attention on “important” words.

▶ The attention model consists of bidirectional RNN and
attention network. It aggregates the representation of the
words to form a sentence vector. This weighted sum embodies
the whole sentence.

▶ The same procedure applies to sentence vectors so that the
final vector embodies the gist of the whole document.

Z. Yang, et al., “Hierarchical Attention Networks for Document Classification,”
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Jun. 2016.



Transformer
▶ Temporal convolutional network (TCN) does not do well with

dependencies.
▶ Attention-based RNN does not do well with parallelization.
▶ Transformer uses TCN together with attention models.

Figure: The transformer has an encoding and a decoding component. For
machine translation, it takes a sentence and outputs its translation.

Transformer

Figure: The encoding component is a stack of encoders (six encoders
used in the paper). The decoding component is a stack of decoders of
the same number.

Ashish Vaswani, et al., “Attention Is All You Need,” NIPS, 2017.



Transformer

▶ The encoder has a self-attention layer followed by a
feed-forward neural network.

▶ The self-attention layer helps the encoder look at other words
in the input sentence as it encodes a specific word.

▶ The same feed-forward network is applied to each position.

Transformer

▶ The decoder has these two layers, but between them is an
attention layer that helps the decoder focus on the relevant
parts of the input sentence.



Transformer – Encoder

▶ Word embedding: word → vector
▶ At the bottom encoder, each input word is embedded into a

vector of length 512.
▶ Other encoders take the output vectors from the encoder

below.

Transformer – Encoder

▶ The word dependencies are captured in the self-attention layer.
▶ The vectors are executed in parallel while flowing through

their own paths in the feed-forward layer.



Transformer – Self-Attention Layer

▶ A query vector q, a key vector k and a value vector v are
created from each input vector. These vectors are of length
64.

▶ e.g., q1 = x1WQ. The generating matrices W can be
trained.

Transformer – Self-Attention Layer

▶ Score is a dot product of
query and key vectors.

▶ Division by 8 for more
stable gradients. dk = 64
is the vector length.

▶ Sum is the weighted
value vectors. It is the
self-attention layer
output vector of
“Thinking”.

▶ Matrix calculation by
packing the embedding
vectors into matrix X.



Transformer – Multihead Attention

▶ Multihead attention – When translating a word, you may pay
different attention to each word based on the type of question
being asked.

Transformer – Multihead Attention

▶ Multihead attention – Split into 8 heads.
▶ Concatenate the resulting Zi matrices, i = 0, 1, . . . , 7, then

multiply with weight matrix WO to produce the output.



Transformer – Positional Encoding

▶ A positional encoding vector is added to each input embedding
to account for the order of the words in the input sequence.

▶ These vectors follow a specific pattern that the model learns.

▶ These added values to the embedding provide distance
information between the embedding vectors when they are
projected into Q/K/V vectors.

Transformer – Residuals

▶ There is a residual connection followed by a
layer-normalization step.



Transformer – Decoder

▶ The output of the top encoder is transformed into a set of
attention vectors K and V.

▶ These vectors are used by each decoder in the
“encoder-decoder attention” layer which helps the decoder
focus on appropriate places in the input sequence.

Transformer – Decoder

▶ The positional encoding (time signal) is added to the decoder
input to indicate the position of each word.

▶ Each step in the decoding phase outputs an element of the
sequence. The output of each step is fed to the bottom
decoder in the next time step. The model produces the
output words one at a time.



Transformer – Decoder

▶ The self-attention layer is only allowed to attend to earlier
positions in the output sequence. Mask future positions with
-inf.

▶ The “encoder-decoder attention” layer creates the Query
matrix from the layer below it and the Key and Value matrices
from the output of the encoder stack.

Transformer – Training
▶ The output layer is a fully-connected linear layer followed by a

softmax layer. The softmax makes the output logits vector
into a probability distribution. With one-hot encoding, the
largest probability corresponds to the word in the output
vocabulary.

▶ The loss function is the cross entropy between the true
distribution (one-hot encoding) and the model distribution.



Pervasive Attention

▶ An alternative method of neural machine translation that is
based on deep 2D CNN.

▶ Pervasive Attention – Attention-like properties are pervasive
throughout the network structure.

▶ The CNN is over a 2D grid of the positions in source and
target sequences.

▶ The convolutional filters are masked to prohibit accessing
information derived from future tokens in the target sequence.
(autoregressive model)

Maha Elbayad, Laurent Besacier, and Jakob Verbeek, “Pervasive Attention: 2D
Convolutional Neural Networks for Sequence-to-Sequence Prediction,” arXiv, 2018.

Pervasive Attention

Figure: Using masked 3× 3
convolutional filters. Blue ones are
the receptive fields (after one and
two layers), while grey ones are
masked.

▶ Attention-like capabilities by
construction:
Every layer of the CNN
computes features of the
source tokens, based on the
target sequence produced so
far. These features are used
to predict the next output
token.

▶ The method learns deep
feature hierarchies based on
a stack of 2D convolutional
layers, and it benefits from
parallel computation during
training.


	fd@rm@0: 


