
Deep Learning and Its Applications in Signal
Processing

Lesson 4: Convolutional Neural Networks for Signal Processing

Liang Dong, ECE

A Classic CNN Architecture – LeNet-5

▶ Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick
Haffner proposed a convolutional neural network (CNN)
architecture for handwritten and machine-printed character
recognition in 1998.

Figure: LeNet-5 Architecture

Website of LeNet-5 convolutional neural networks
Website of the MNIST database of handwritten digits

http://yann.lecun.com/exdb/lenet/index.html
http://yann.lecun.com/exdb/mnist/


A Classic CNN Architecture – LeNet-5

▶ The LeNet-5 architecture consists of two sets of convolutional
and average pooling layers, followed by a flattening
convolutional layer, then two fully-connected layers and finally
a softmax classifier.

Figure: Summary Table of LeNet-5 Architecture

Code Examples of LeNet-5

▶ TensorFlow and Keras code examples of LeNet-5 on the
MNIST and CIFAR-10 datasets.

Figure: MNIST dataset Figure: CIFAR-10 dataset

https://github.com/ProfessorDong/Deep-Learning-Course-Examples/tree/master/CNN_Examples
https://github.com/ProfessorDong/Deep-Learning-Course-Examples/tree/master/CNN_Examples


Common CNN Models
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
since 2010

Winners:

▶ 2012 AlexNet (error rate 15.3% ← the runner up 26.1%)

▶ 2014 VGGNet (error rate 7.32%), GoogLeNet (error rate
6.66%)

▶ 2015 ResNet – Deep Residual Network (error rate 3.57%)
The first time a machine surpassed humans in recognizing
ImageNet data!

is a dataset of over 15 millions labeled high-resolution images
with around 22,000 categories. ILSVRC uses a subset of ImageNet. Roughly 1.2
million training images, 50,000 validation images and 150,000 testing images.

AlexNet

Figure: AlexNet Architecture

http://www.image-net.org/challenges/LSVRC/


AlexNet

Figure: Summary Table of AlexNet Architecture

AlexNet
▶ ReLU is introduced in AlexNet. (Before Alexnet, Tanh was

used.) ReLU is six times faster than Tanh to reach 25%
training error rate.

▶ Local Response Normalization. (Nowadays, batch
normalization is used instead of local response normalization.)

▶ Overlapping Pooling. Pooling with stride smaller than the
kernel size.

▶ Two forms of data augmentation.
– Image translation and horizontal reflection (mirroring)
– Altering the intensity

▶ Dropout. Dropout with probability of 0.5 is used at the first
two fully-connected layers.

▶ Batch size: 128; Momentum v: 0.9; Weight Decay: 0.0005;
Learning rate: 0.01, reduced by 10 manually when validation
error rate stopped improving, and reduced 3 times.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet classification with
deep convolutional neural networks,” J Commun. ACM, Vol. 60, No 6, pp. 84–90,
2017.



VGGNet

▶ VGGNet was invented by VGG (Visual Geometry Group) from
University of Oxford.

▶ 1st runner-up of the classification task and the winner of the
localization task in ILSVRC 2014.

▶ There are many other models built on top of VGGNet or
based on the 3× 3 convolutional-layer idea of VGGNet.

Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv, 2014.

VGGNet

Figure: VGG-16 Architecture



VGGNet

Figure: Summary Table of VGG Architecture

VGGNet

▶ Multi-Scale Training. An image is scaled with smaller-size
equal to a range from 256 to 512, then cropped to 224× 224.
It is more accurate for test-image objects with different sizes.

▶ Multi-Scale Testing. By scaling the test image to different
sizes, it increases the chance of correct classification.

▶ Dense Testing (Convolutionalized Testing). During testing,
the first FC is replaced by 7× 7 conv. The second and third
FCs are replaced by 1× 1 conv.



GoogLeNet

▶ It is from Google and pays tribute to Prof. Yan LeCun’s LeNet.

▶ It contains 1× 1 conv at the middle of the network.

▶ Global average pooling is used at the end of the network
instead of fully connected layers.

▶ Inception Module. To have different sizes/types of
convolutions for the same input and stacking the outputs.
The name “Inception” comes from [2] and a famous Internet
meme: We need to go Deeper.

[1] Christian Szegedy, et al., “Going Deeper with
Convolutions,” arXiv, 2014.
[2] Min Lin, Qiang Chen, and Shuicheng Yan, “Network In
Network,” arXiv, 2013.

GoogLeNet

▶ Network in Network

Figure: GoogLeNet Architecture



GoogLeNet

▶ Inception Module

GoogLeNet

Figure: Summary Table of GoogLeNet Architecture



GoogLeNet

▶ 1× 1 convolution is used with ReLU. To introduce more
non-linearity and to reduce the dimension hence reducing the
computation.

Figure: The number of filters goes from 192 to 32.

GoogLeNet

▶ Inception Module. 1× 1 conv, 3× 3 conv, 5× 5 conv, and
3× 3 max pooling are performed simultaneously on the
previous input.

▶ Different kinds of features are extracted. All feature maps are
concatenated as the output.

▶ 1× 1 convolution is inserted into the inception module for
dimension reduction.



GoogLeNet

▶ Global Average Pooling. Global average pooling is used near
the end of the network by averaging each feature map from
7× 7 to 1× 1.

▶ Multi-Scale Testing

▶ Multi-Crop Testing

Deep Residual Network – ResNet

▶ The residual network (ResNet) can alleviate the problem of
training very deep neural networks.

▶ Skip Connection in residual networks

y = F (x, {Wi}) + Wsx

where Ws is a linear projection if F (x) and x have different
dimensions.

Kaiming He, et al., “Deep Residual Learning for Image Recognition,” arXiv, 2015.



Deep Residual Network – ResNet

▶ An ensemble of deep residual
networks achieved a 3.57% error
rate on ImageNet. Winner of the
ILSVRC 2015 classification
competition.

Deep Residual Network – ResNet

Figure: ResNet Architecture

34-layer ResNet compared with 34-layer plain network and VGG-19.



Deep Residual Network – ResNet

▶ Bottleneck Design to reduce complexity.
The 1× 1 conv layers are added to the start and the end of a
residual block. It reduces the number of parameters while not
degrading the performance too much.

▶ With the bottleneck design, 34-layer ResNet becomes 50-layer
ResNet.

Deep Residual Network – ResNet

▶ ResNet preserves the gradient through the identity mapping.

▶ It combats the vanishing gradient problem for very deep
neural networks.

Figure: The 34-Layer ResNet outperforms the 18-Layer ResNet by 2.8%.



Example: Super Resolution with ResNet

▶ Super-Resolution: Obtaining a high resolution (HR) image
from a low resolution (LR) image.

Example: Super Resolution Traditional Methods

▶ Using Interpolation – Bilinear, Bicubic, Splines
Results overly smoothed edges and ringing artifacts

▶ Using External Database – Lots of HR + LR patch pairs



Example: Super Resolution Traditional Methods

▶ Using Redundancy at different locations and across different
scales

▶ Using Predefined Dictionary. Sparse coding algorithm

Example: Super Resolution with ResNet

Figure: An interpolated low-resolution (ILR) image goes through layers
and transforms into a high-resolution (HR) image. The network predicts
a residual image and the addition of ILR and the residual gives the
desired output.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution Using Very Deep
Convolutional Networks,” IEEE Conf. on Computer Vision & Pattern Recognition
(CVPR), 2016.



Fully Convolutional Neural Net for Semantic Segmentation

▶ The fully convolutional networks take input of arbitrary size
and produce correspondingly-sized output with inference and
learning.

▶ The fully convolutional networks can be used for Semantic
Segmentation.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic
Segmentation,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 4, pp. 640–651, April 2017.

Fully Convolutional Neural Network

▶ The deconvolution or upsampling is accomplished by using
fractionally strided convolutions or transposed convolutions at
a fractional value, e.g., 0.5.

Figure: The blue pixels are the original 2× 2 pixels being expanded
to 5× 5 pixels. All white pixels are zeros.

Vincent Dumoulin and Francesco Visin, “A guide to convolution arithmetic for deep
learning,” arXiv, 2016.



Fully Convolutional Neural Network – U-Net

▶ U-Net is a fully convolutional neural network that was
developed for biomedical image segmentation.

▶ The output is of similar size as the input.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” arXiv, 2015.

Fully Convolutional Neural Network – 3D U-Net

Özgün Çiçek, et al., “3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation,” arXiv, 2016.



CNN for Object Detection

Figure: Classification versus Detection

CNN for Object Detection



Classification with Localization

Figure: Classification with localization – Label the object as a car and put
a bounding box around the position of the car in the image.

Classification with Localization

▶ A classification model (AlexNet, VGG, GoogLeNet) to predict
the class label.
Transfer learning to train the model for specific image dataset.

▶ Add fully-connected “regression output” to the network.



Classification with Localization

▶ Regression Output (x, y, w, h). x, y are the midpoint (or
top-left) coordinates and w, h are the width and height of the
bounding box.

▶ The Loss is a weighted sum of the softmax loss of the
classification problem and the L2 loss of the regression
problem.

Metrics – Intersection over Union (IoU)

▶ Intersection over Union (IoU) is defined for the extend of
overlap between two bounding boxes.

▶ It provides a score, between 0 and 1, representing the quality
of overlap between the two bounding boxes.



Object Detection – Region-based Object Detectors
▶ The method of Regions with CNN features (R-CNN) for

object detection uses region proposals.

▶ Region Proposals: Image regions that are likely to contain
objects.

▶ Use Selective Search for region proposals.

▶ Selective search applies hierarchical grouping algorithm to
merge most similar regions together based on similarity in
color, texture, size and fill.

Uijlings, van de Sande, Gevers, and Smeulders, “Selective Search for Object
Recognition,” International Journal of Computer Vision, vol. 104, no. 2, pp. 154–171,
Sept. 2013.

Selective Search

Figure: First row – bottom-up segmentation, merging regions at multiple
scales. Second row – Convert regions to boxes. Blue rectangles are
possible region proposals and green rectangles are the target objects that
we want to detect.



Regions with CNN features (R-CNN)

▶ Use a region-extraction algorithm to propose about 2,000
objects’ boundaries. (Selective search – high computation)

▶ Every region proposal is wrapped into a fixed-size 227× 227
RGB image. It is processed by a CNN to extract a
4096-dimensional feature.

▶ A support vector machine (SVM) is applied to identify the
object.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” arXiv, 2013.

Regions with CNN features (R-CNN)

Figure: R-CNN classifies objects and produces the corresponding
boundary box.



Regions with CNN features (R-CNN)

▶ At test time, we predict detection boxes using class-specific
SVMs.

▶ Non-maximum suppression is used to deal with a lot of
overlapping detection boxes at the time of testing.

Figure: Sort all detection boxes on the basis of their scores. The
detection box M with the maximum score is selected and all other
detection boxes with a significant overlap (using a pre-defined threshold)
with M are suppressed.

Fast R-CNN

Figure: Run a single CNN on the input image and then apply region
proposal crops on the features calculated by the CNN. Wrap region of
interests (RoIs) into spatial pyramid pooling (SPP) layers.



Fast R-CNN

Figure: Instead of generating a pyramid of layers, Fast R-CNN wraps RoIs
into one single layer using the RoI pooling. It is then fed into
fully-connected layers for classification. The bounding box is further
refined with linear regression.

Fast R-CNN

▶ The parameters including
those of the CNN are
trained together with a log
loss function from the class
classification and a L1 loss
function from the boundary
box linear regression.



Fast R-CNN

Ross B. Girshick, “Fast R-CNN,” arXiv, 2015.

Faster R-CNN

Figure: Faster R-CNN

▶ Can the network itself do
region proposals?

▶ A region proposal
network is trained that
takes the feature map as
input and outputs region
proposals. These
proposals are then fed
into the RoI pooling layer
in the Fast R-CNN.

S. Ren, K. He, and R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” arXiv, 2015.



Region Proposal Network

Figure: Anchors are fixed bounding boxes that are placed throughout the
image to be used for predicting object locations. The anchor centers are
evenly separated.

Region Proposal Network

▶ In Faster R-CNN, 9 anchor boxes are generated per anchor
center.

▶ The Region Proposal Network classifies which anchor boxes
have objects and regresses the offsets of the bounding boxes.

▶ Non-maximum suppression is used to reduce region proposals.



Object Detection – Single-shot Object Detectors

▶ Single Shot Detector (SSD) takes one single shot to detect
multiple objects within the image.

▶ c.f. Region-based detectors need two shots, one for generating
region proposals, one for detecting the object of each proposal.

W. Liu, et al. “SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer
Science, pp. 21–37, 2016.

Multibox Detector

▶ A 3× 3 conv is applied on the CNN feature layers. For
example, the 8× 8 and 4× 4 feature maps in the figure with p
channels each.

▶ There are k bounding boxes for each location. These k
bounding boxes have different sizes and aspect ratios. (e.g.,
k = 4 above.)

▶ For each bounding box prior (anchor box), c class scores are
computed with 4 offsets relative to the original default
bounding box shape.



Single Shot Detector (SSD)

▶ SSD uses layers already deep down in the convolutional neural
network to detect objects.

▶ For example, at Conv4 3 (size 38× 38× 512), 3× 3 conv is
applied. There are 4 bounding boxes and each has (Classes +
4) outputs.

▶ Different layers of CNN feature maps go through a small 3× 3
conv for multiple-object detection. Total 8732 bounding
boxes.

Single Shot Detector (SSD)

Figure: Accuracy and Inference
Time.

Two models:

SSD300: 300× 300 input image,
lower resolution, faster.

SSD512: 512× 512 input image,
higher resolution, more accurate.



You Only Look Once (YOLO)

▶ YOLO only looks the image once to detect multiple objects.
▶ Detection speed is in real-time.

J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ”You Only Look Once: Unified,
Real-Time Object Detection,” IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

You Only Look Once (YOLO)

▶ The input image is divided into an S × S grid (S = 7).
▶ Each grid cell predicts B = 2 bounding boxes and confidence

scores for those boxes. The confidence scores reflect how
confident the model is that the box contains an object.



You Only Look Once (YOLO)

▶ Each bounding box consists of 5 predictions: x, y, w, h,
confidence.

▶ Each grid cell also predicts conditional class probabilities
P (Class | Object). Total number of classes is 20.

▶ Therefore, the output size is 7× 7× (2× 5 + 20) = 1470.

You Only Look Once (YOLO)

▶ The model consists of 24 convolutional layers followed by 2
fully connected layers.

▶ Alternating 1× 1 convolutional layers reduce the features
space from preceding layers.

▶ Except for the final layer, all other layers use leaky ReLU as
activation function.



YOLO

▶ If a grid cell contains the center of the bounding box, this cell
is “responsible” for detecting the specific object.

YOLO

▶ Most bounding box predictions are filtered out if they are
below a confidence threshold.

▶ Non-max suppression is used to remove redundant
high-confidence predictions. It is performed on each class
separately.



YOLO v2

Incremental Improvements of YOLO version 2.

▶ For high resolution YOLOv2, 78.6% mean Average Precision
(mAP) is obtained at real-time speed.

Joseph Redmon and Ali Farhadi, “YOLO9000: Better, Faster, Stronger,” arXiv, 2016.

YOLO v2

Figure: Darknet-19 classification network is used in YOLOv2 for feature
extraction.



YOLO v2

Figure: WordTree is used to combine multiple datasets for classification
and detection. It is a hierarchical tree to relate the classes and subclasses
together.

YOLO v3

▶ Darknet-53 is used in YOLOv3,
i.e., much deeper with 53
convolutional layers.

▶ The architecture has residual
skip connections and
upsampling.

Joseph Redmon and Ali Farhadi, “YOLOv3: An Incremental Improvement,” arXiv,
2018.



YOLO v3

▶ YOLOv3 makes detection at three different scales. That helps
detect small objects. On a grid, three anchor boxes for each
scale.

YOLO Demo

YOLOv2 and YOLOv3 Demostration

YOLOv2 ← Click here YOLOv3 ← Click here


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=VOC3huqHrss
https://www.youtube.com/watch?v=MPU2HistivI


RetinaNet

Figure: One-stage detector has a foreground-background class imbalance
problem. No region proposal network to filter out many negative
background samples.

▶ RetinaNet is an one-stage detector that improves prediction
accuracy by using focal loss.

T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal Loss for Dense Object
Detection,” IEEE International Conference on Computer Vision (ICCV), 2017,
pp. 2999–3007.

RetinaNet – Focal Loss

▶ Binary Cross-Entropy (CE) Loss

CE = −
2∑

i=1
ti log(pi) = −t1 log(p1)− (1− t1) log(1− p1)

where ti and pi are the groundtruth class (one-hot) and model
predicted probability.

Class imbalance problem.
e.g., 100,000 easy
examples each with 0.1
loss and 100 hard
examples each with 2.3
loss. The sum loss of easy
examples is bigger.



RetinaNet – Focal Loss
▶ RetinaNet have ∼100,000 bounding boxes.

▶ By using focal loss, the total loss can be balanced adaptively
between easy examples and hard examples.

FL = −
2∑

i=1
(1−pi)γti log(pi) =

{
−(1− p1)γ log(p1) if t1 = 1
−pγ

1 log(1− p1) if t1 = 0

The focusing parameter γ ∈ [0, 5] smoothly adjusts the rate at
which easy examples are down-weighted.

▶ α-balanced variant of focal loss.

FL = −
2∑

i=1
αi(1− pi)γti log(pi)

The weighting factor α can be set by inverse class frequency
or treated as a hyperparameter.

RetinaNet

Figure: RetinaNet Architecture.

▶ RetinaNet uses ResNet and Feature Pyramid Network (FPN)
for feature extraction and two task-specific subnetworks for
classification and bounding box regression.

▶ FPN constructs a rich multi-scale feature pyramid from one
single resolution input image.



RetinaNet Demo

RetinaNet Demostration

ResNet50 RetinaNet ← Click
here

ResNet50 RetinaNet ← Click
here


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=lZxMklxzm2Q
https://www.youtube.com/watch?v=KYueHEMGRos

	fd@rm@3: 
	fd@rm@2: 
	fd@rm@1: 
	fd@rm@0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


