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A Classic CNN Architecture — LeNet-5

Yann LeCun, Leon Bottou, Yosuha Bengio and Patrick
Haffner proposed a convolutional neural network (CNN)

architecture for handwritten and machine-printed character
recognition in 1998.
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Figure: LeNet-5 Architecture

Website of LeNet-5 convolutional neural networks
Website of the MNIST database of handwritten digits


http://yann.lecun.com/exdb/lenet/index.html
http://yann.lecun.com/exdb/mnist/

A Classic CNN Architecture — LeNet-5

The LeNet-5 architecture consists of two sets of convolutional
and average pooling layers, followed by a flattening
convolutional layer, then two fully-connected layers and finally
a softmax classifier.

Feature Kernel

Layer Map Size Size Stride Activation
Input Image 1 32x32

1 Convolution 6 28x28 5x5 1 tanh

2 Average 6 14x14 2x2 2 tanh
Pooling

3 Convolution 16 10x10 5x5 1 tanh

4 Average 16 55 22 2 tanh
Pooling

5 Convolution 120 Ix1 5x5 1 tanh

6 FC - 84 - - tanh

Output FC - 10 - - softmax

Figure: Summary Table of LeNet-5 Architecture

Code Examples of LeNet-5

TensorFlow and Keras code examples of LeNet-5 on the
MNIST and CIFAR-10 datasets.
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Figure: MNIST dataset Figure: CIFAR-10 dataset


https://github.com/ProfessorDong/Deep-Learning-Course-Examples/tree/master/CNN_Examples
https://github.com/ProfessorDong/Deep-Learning-Course-Examples/tree/master/CNN_Examples

Common CNN Models

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
since 2010

Winners:

2012 AlexNet (error rate 15.3% < the runner up 26.1%)

2014 VGGNet (error rate 7.32%), GooglLeNet (error rate
6.66%)

2015 ResNet — Deep Residual Network (error rate 3.57%)

The first time a machine surpassed humans in recognizing
ImageNet data!

|M JEG E is a dataset of over 15 millions labeled high-resolution images
with around 22,000 categories. ILSVRC uses a subset of ImageNet. Roughly 1.2
million training images, 50,000 validation images and 150,000 testing images.
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Figure: AlexNet Architecture


http://www.image-net.org/challenges/LSVRC/

AlexNet

Feature

Layer Map Size Kernel Size Stride Activation
Input Image il 227x227x3
1 Convolution 96 55x55x96 11x11 4 relu
Max Pooling 96 27 x 27 x 96 3x3 2 relu
2 Convolution 256 27 x 27 x 256 5x5 1 relu
Max Pooling 256 13 x 13 x 256 3x3 2 relu
3 Convolution 384 13x13x384 3x3 1 relu
4 Convolution 384 13x13 x 384 3x3 1 relu
Convolution 256 13x 13 x 256 3x3 1 relu
Max Pooling 256 6x6x256 3x3 2 relu
6 FC - 9216 - - relu
7 FC - 4096 - - relu
8 FC - 4096 - - relu
Output FC - 1000 - - Softmax

Figure: Summary Table of AlexNet Architecture

AlexNet

ReLU is introduced in AlexNet. (Before Alexnet, Tanh was
used.) ReLU is six times faster than Tanh to reach 25%
training error rate.
Local Response Normalization. (Nowadays, batch
normalization is used instead of local response normalization.)
Overlapping Pooling. Pooling with stride smaller than the
kernel size.
Two forms of data augmentation.
— Image translation and horizontal reflection (mirroring)
— Altering the intensity
Dropout. Dropout with probability of 0.5 is used at the first
two fully-connected layers.
Batch size: 128; Momentum v: 0.9; Weight Decay: 0.0005;
Learning rate: 0.01, reduced by 10 manually when validation
error rate stopped improving, and reduced 3 times.

Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton, “ImageNet classification with

deep convolutional neural networks,” J Commun. ACM, Vol. 60, No 6, pp. 8490,
2017.



VGGNet

VGGNet was invented by VGG (Visual Geometry Group) from
University of Oxford.

1st runner-up of the classification task and the winner of the
localization task in ILSVRC 2014.

There are many other models built on top of VGGNet or
based on the 3 x 3 convolutional-layer idea of VGGNet.

Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv, 2014.

VGGNet
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Figure: VGG-16 Architecture



VGGNet
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Figure: Summary Table of VGG Architecture

VGGNet

Multi-Scale Training. An image is scaled with smaller-size
equal to a range from 256 to 512, then cropped to 224 x 224.
It is more accurate for test-image objects with different sizes.

Multi-Scale Testing. By scaling the test image to different
sizes, it increases the chance of correct classification.

Dense Testing (Convolutionalized Testing). During testing,
the first FC is replaced by 7 x 7 conv. The second and third

FCs are replaced by 1 x 1 conv.
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GoogleNet

It is from Google and pays tribute to Prof. Yan LeCun's LeNet.
It contains 1 x 1 conv at the middle of the network.

Global average pooling is used at the end of the network
instead of fully connected layers.

Inception Module. To have different sizes/types of
convolutions for the same input and stacking the outputs.
The name “Inception” comes from [2] and a famous Internet
meme: We need to go Deeper.

- WENERDTOG0

[1] Christian Szegedy, et al., “Going Deeper with
Convolutions,” arXiv, 2014.

[2] Min Lin, Qiang Chen, and Shuicheng Yan, “Network In
Network,” arXiv, 2013.

GoogleNet

\

Network in Network

FE T s W E T |
Miggglgglll
»ﬁ@ﬂ@@ﬂﬂggﬂégﬂﬁggiggxgﬁ T
BE EBH Gt @ faa H

Figure: GooglLeNet Architecture



GoogleNet

Inception Module

GoogleNet
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convolution 3x3/1 56 x56x192 2 64 192 112K | 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x256 2 64 96 128 16 32 32 159K 128M
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max pool 3x3/2 1414480 0

inception (4a) 14x14x512 2 192 96 208 6 48 64 364K M
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inception (5a) TXTx832 2 256 160 320 32 128 128 | 1072K | 54M
inception (5b) TxT7x1024 2 384 192 384 48 128 128 | 1388K | 7IM
avg pool Tx7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K M

softmax 1x1x1000 0

Figure

: Summary Table of GoogleNet Architecture




GoogleNet

1 x 1 convolution is used with ReLU. To introduce more
non-linearity and to reduce the dimension hence reducing the
computation.

ReLU

—

CONV1x1
32

28 X 28 X 32

28 X 28 X 192

Figure: The number of filters goes from 192 to 32.

GoogleNet

Inception Module. 1 x 1 conv, 3 x 3 conv, 5 X 5 conv, and

3 x 3 max pooling are performed simultaneously on the
previous input.

Different kinds of features are extracted. All feature maps are
concatenated as the output.

1 x 1 convolution is inserted into the inception module for
dimension reduction.
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GoogleNet

Global Average Pooling. Global average pooling is used near
the end of the network by averaging each feature map from
7TxT7tol x1.

Multi-Scale Testing

Multi-Crop Testing

Deep Residual Network — ResNet

The residual network (ResNet) can alleviate the problem of
training very deep neural networks.

Skip Connection in residual networks
X

A
weight layer

F(x) el

weight layer

y

X

identity

y = F(x,{W;}) + W x

where W is a linear projection if F'(x) and x have different
dimensions.

Kaiming He, et al., “"Deep Residual Learning for Image Recognition,” arXiv, 2015.
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Deep Residual Network — ResNet

Bottleneck Design to reduce complexity.

The 1 x 1 conv layers are added to the start and the end of a

residual block. It reduces the number of parameters while not
degrading the performance too much.

256-d

\ 1x1, 64 |
¢ relu

[ 3x3, 64 |
l relu

[ 1x1, 256

With the bottleneck design, 34-layer ResNet becomes 50-layer
ResNet.

Deep Residual Network — ResNet

ResNet preserves the gradient through the identity mapping.

It combats the vanishing gradient problem for very deep
neural networks.

60)

34-layer

ResNet-18

/\/\J‘/\—/\r\‘(\%/\/\j\/
—ResNet-34 34-layer
0 10 20 30 40 50 %

0 10 20 30 40 50
iter. (led) iter. (led)

Figure: The 34-Layer ResNet outperforms the 18-Layer ResNet by 2.8%.



Example: Super Resolution with ResNet

Super-Resolution: Obtaining a high resolution (HR) image
from a low resolution (LR) image.

LRimage Y

HR image X

Example: Super Resolution Traditional Methods

Using Interpolation — Bilinear, Bicubic, Splines
Results overly smoothed edges and ringing artifacts

i
| Tl el

Using External Database — Lots of HR + LR patch pairs




Example: Super Resolution Traditional Methods

Using Redundancy at different locations and across different
scales

(a) External SR
7/ \V‘\V AL
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Example: Super Resolution with ResNet

Figure: An interpolated low-resolution (ILR) image goes through layers
and transforms into a high-resolution (HR) image. The network predicts
a residual image and the addition of ILR and the residual gives the
desired output.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution Using Very Deep
Convolutional Networks,” IEEE Conf. on Computer Vision & Pattern Recognition
(CVPR), 2016.



Fully Convolutional Neural Net for Semantic Segmentation
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The fully convolutional networks take input of arbitrary size
and produce correspondingly-sized output with inference and

learning.

The fully convolutional networks can be used for Semantic

Segmentation.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic

]

Segmentation,’

vol. 39, no. 4, pp. 640-651, April 2017.

Fully Convolutional Neural Network

in IEEE Transactions on Pattern Analysis and Machine Intelligence,

The deconvolution or upsampling is accomplished by using
fractionally strided convolutions or transposed convolutions at
lue, e.g., 0.5.

a fractional va

Figure: The blue pixels are the original 2 x 2 pixels being expanded
to 5 x 5 pixels. All white pixels are zeros.

Vincent Dumoulin and Francesco Visin, “A guide to convolution arithmetic for deep

learning,” arXiv, 2016.



Fully Convolutional Neural Network — U-Net
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U-Net is a fully convolutional neural network that was
developed for biomedical image segmentation.

The output is of similar size as the input.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” arXiv, 2015.

Fully Convolutional Neural Network — 3D U-Net

apply trained 3D u-net

=p concat

P> convi+ BN) + Relu

§ maxpool
Up-conv

Ozgiin Cicek, et al., “3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation,” arXiv, 2016.



CNN for Object Detection

Figure: Classification versus Detection

CNN for Object Detection




Classification with Localization

Classification with
localization

Image classification Detection

ncaru ‘ ‘ ‘

One object Multiple objects

Figure: Classification with localization — Label the object as a car and put
a bounding box around the position of the car in the image.

Classification with Localization

Correct label:
Cat

Class Scores l
Fully Cat: 0.9 , Softmax

Connected: Dog: 0.05 Loss
409% Car: 0.01 l

== —>Loss

= V . Fm‘
Often pretrained on ImageNet ector Connected:

4096 4006104  Box
Coordinates —» L2 Loss
(x,y,w, h)

(Transfer learning)

Correct box:
<, ¥, W, )

A classification model (AlexNet, VGG, GooglLeNet) to predict
the class label.
Transfer learning to train the model for specific image dataset.

Add fully-connected “regression output” to the network.



Classification with Localization

Correct label:
Cat

Class Scores l
Fully Cat: 0.9 , Softmax

Connected: Dog: 0.05 Loss
409% Car: 0.01
s ===y = vyl l
b LAY, ) X
JiREI= =
— . Fm‘
Vector: Connected: T

Often pretrained on ImageNet
o g 4096 4095104  Box

(Transfer learning) Coordinates —» L2 Loss
(x,y,w, h)

== —>Loss

Correct box:
<, ¥, W, )

Regression Output (x,y,w, h). z,y are the midpoint (or
top-left) coordinates and w, h are the width and height of the

bounding box.
The Loss is a weighted sum of the softmax loss of the
classification problem and the Ly loss of the regression

problem.

Metrics — Intersection over Union (loU)

Area of Overlap

loU =
Area of Union

Intersection over Union (loU) is defined for the extend of
overlap between two bounding boxes.

It provides a score, between 0 and 1, representing the quality
of overlap between the two bounding boxes.



Object Detection — Region-based Object Detectors

The method of Regions with CNN features (R-CNN) for
object detection uses region proposals.

Region Proposals: Image regions that are likely to contain
objects.

Use Selective Search for region proposals.

Selective search applies hierarchical grouping algorithm to
merge most similar regions together based on similarity in
color, texture, size and fill.

Uijlings, van de Sande, Gevers, and Smeulders, “Selective Search for Object
Recognition,” International Journal of Computer Vision, vol. 104, no. 2, pp. 154-171,
Sept. 2013.

Selective Search

Figure: First row — bottom-up segmentation, merging regions at multiple
scales. Second row — Convert regions to boxes. Blue rectangles are
possible region proposals and green rectangles are the target objects that
we want to detect.



Regions with CNN features (R-CNN)

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Use a region-extraction algorithm to propose about 2,000
objects’ boundaries. (Selective search — high computation)

Every region proposal is wrapped into a fixed-size 227 x 227
RGB image. It is processed by a CNN to extract a
4096-dimensional feature.

A support vector machine (SVM) is applied to identify the
object.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” arXiv, 2013.

Regions with CNN features (R-CNN)

Apply bounding-box regressors

Bbox reg || SVMs Classify regions with SVMs
Bbox reg || SVMs

Bbox reg | | SVMs

Forward each region
ConvNet through ConvNet
ConvNet
ConvNet
y - 4 Warped image regions

Regions of Interest (Rol)
from a proposal method

Figure: R-CNN classifies objects and produces the corresponding
boundary box.



Regions with CNN features (R-CNN)

At test time, we predict detection boxes using class-specific
SVMs.

Non-maximum suppression is used to deal with a lot of
overlapping detection boxes at the time of testing.

Figure: Sort all detection boxes on the basis of their scores. The
detection box M with the maximum score is selected and all other

detection boxes with a significant overlap (using a pre-defined threshold)
with M are suppressed.

Fast R-CNN

Apply bounding-box regressors

Bbox reg | | SVMs Classify regions with SVMs

FCs Fully-connected layers

=7 &=y & Sspatial Pyramid Pooling (SPP) layer

Regions of ” o l “conv5” feature map of image

Interest (Rols)
from a proposal .
method Forward whole image through ConvNet

ConvNet

Figure: Run a single CNN on the input image and then apply region
proposal crops on the features calculated by the CNN. Wrap region of
interests (Rols) into spatial pyramid pooling (SPP) layers.



Fast R-CNN

Fully-connected layers

Regions of ’-’ v l “conv5” feature map of image

Interest (Rols)

from a proposal
method Forward whole image through ConvNet

o
S g Input image
~

'l,
0 —
ConvNet i

Figure: Instead of generating a pyramid of layers, Fast R-CNN wraps Rols
into one single layer using the Rol pooling. It is then fed into
fully-connected layers for classification. The bounding box is further
refined with linear regression.

Fast R-CNN

The parameters including
those of the CNN are
trained together with a log
loss function from the class
classification and a Ly loss
function from the boundary
ConvNet = box linear regression.

& \




Fast R-CNN

Outputs: b bOX

softmax regressor

Rol
pooling

7

Rol feature
vector

For each Rol

Ross B. Girshick, “Fast R-CNN,” arXiv, 2015.

Faster R-CNN

Object is a cat Refine BB position

Classification Bounding-box

- By @ reeressionloss Can the network itself do
Object or not object BB proposal = 3 region proposaIS?
% \‘ > I

)proposa\s j /; A region proposa|

network is trained that

Region Proposal Network 25
” 1 takes the feature map as
feature map Last conv layer

input and outputs region
T proposals. These
i y 4 proposals are then fed
——crr 7 . .
L— into the Rol pooling layer

Figure: Faster R-CNN in the Fast R-CNN.

S. Ren, K. He, and R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” arXiv, 2015.



Region Proposal Network

Figure: Anchors are fixed bounding boxes that are placed throughout the
image to be used for predicting object locations. The anchor centers are
evenly separated.

Region Proposal Network

In Faster R-CNN, 9 anchor boxes are generated per anchor
center.

The Region Proposal Network classifies which anchor boxes
have objects and regresses the offsets of the bounding boxes.

Non-maximum suppression is used to reduce region proposals.



Object Detection — Single-shot Object Detectors

Single Shot Detector (SSD) takes one single shot to detect
multiple objects within the image.

c.f. Region-based detectors need two shots, one for generating
region proposals, one for detecting the object of each proposal.

W. Liu, et al. “SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer
Science, pp. 21-37, 2016.

Multibox Detector
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A 3 x 3 conv is applied on the CNN feature layers. For
example, the 8 x 8 and 4 x 4 feature maps in the figure with p
channels each.

There are k bounding boxes for each location. These k

bounding boxes have different sizes and aspect ratios. (e.g.,
k = 4 above.)

For each bounding box prior (anchor box), ¢ class scores are
computed with 4 offsets relative to the original default
bounding box shape.



Single Shot Detector (SSD)

Extra Feature Layers
A

VGG-16 r

Classifier : Conv: 3x3x(4x(Classes+4))

Classifier : Conv: 3x3x(6x(Classes+4))

Conv: 3x3x(4x(Classes+4))

102 GConvi1_2
NS
256 256 (2= )

Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1

| Detections:8732 per Class ]

SSD uses layers already deep down in the convolutional neural
network to detect objects.

For example, at Conv4_3 (size 38 x 38 x 512), 3 X 3 conv is
applied. There are 4 bounding boxes and each has (Classes +
4) outputs.

Different layers of CNN feature maps go through a small 3 x 3
conv for multiple-object detection. Total 8732 bounding
boxes.

Single Shot Detector (SSD)

Method mAP | FPS | batch size | # Boxes | Input resolution
Faster R-CNN (VGG16) | 73.2 7 1 ~ 6000 | ~ 1000 x 600
Fast YOLO 527 | 155 1 98 448 x 448
YOLO (VGG16) 664 | 21 1 98 448 x 448
SSD300 743 | 46 1 8732 300 x 300
SSD512 768 | 19 1 24564 512 x 512
SSD300 743 | 59 8 8732 300 x 300
SSD512 768 | 22 8 24564 512 x 512

Figure: Accuracy and Inference
Time.

Two models:

SSD300: 300 x 300 input image,
lower resolution, faster.

SSD512: 512 x 512 input image,
higher resolution, more accurate.



You Only Look Once (YOLO)

Class probability map

YOLO only looks the image once to detect multiple objects.
Detection speed is in real-time.

J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified,
Real-Time Object Detection,” IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

You Only Look Once (YOLO)

Class probability map

The input image is divided into an S x S grid (S = 7).
Each grid cell predicts B = 2 bounding boxes and confidence

scores for those boxes. The confidence scores reflect how
confident the model is that the box contains an object.



You Only Look Once (YOLO)

5 S grid on input Final detections

Class probability map

Each bounding box consists of 5 predictions: z, y, w, h,
confidence.

Each grid cell also predicts conditional class probabilities
P(Class | Object). Total number of classes is 20.

Therefore, the output size is 7 x 7 x (2 x 5 4 20) = 1470.

You Only Look Once (YOLO)

448

12
3 q
3$ 56| 3&;
448 3 Q 28| 35
3 4l 7H) 7] 7
n2 56 28 3 a,g >< H ><
14
| | 7 7 7
3 192 256 512 1024 1024 1024 4098 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7x64-52 3x3x192 Tx1x128 1x1x256 x4 1x1x512 X 3x3x1024
Maxpeol Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-5-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2
Maxpool Layer  Maxpool Layer
2x2-5-2 2x2-5-2

The model consists of 24 convolutional layers followed by 2
fully connected layers.

Alternating 1 x 1 convolutional layers reduce the features
space from preceding layers.

Except for the final layer, all other layers use leaky Rel U as
activation function.



If a grid cell contains the center of the bounding box, this cell
is “responsible” for detecting the specific object.

Repeat with next highest confidence prediction until
no more boxes are being suppressed

For each class...

After filtering out low Select the bounding box Calculate the loU between  Remove any boxes which
confidence predictions, prediction with the the selected box and all have an loU score above
we may still be left with highest confidence remaining predictions some defined threshold
redundant detections

Most bounding box predictions are filtered out if they are
below a confidence threshold.

Non-max suppression is used to remove redundant
high-confidence predictions. It is performed on each class
separately.



YOLO v2

Incremental Improvements of YOLO version

YOLO

YOLOV2

batch norm?

hi-res classifier?
convolutional?
anchor boxes?

new network?
dimension priors?
location prediction?
passthrough?
multi-scale?

hi-res detector?
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For high resolution YOLOV2, 78.6% mean Average Precision
(mAP) is obtained at real-time speed.

Joseph Redmon and Ali Farhadi, “YOLQO9000: Better, Faster, Stronger,” arXiv, 2016.

YOLO v2

Figure: Darknet-19 classification network is

extraction.

Type Filters | Size/Stride Output
Convolutional 32 3 x 3 224 x 224
Maxpool 2x2/2 112 x 112
Convolutional 64 3 x3 112 x 112
Maxpool 2x2/2 56 x 56
Convolutional 128 3x3 56 x 56
Convolutional o4 1x1 56 x 56
Convolutional 128 3 x3 56 x 56
Maxpool 2x2/2 28 x 28
Convolutional 256 3x3 28 x 28
Convolutional 128 1x1 28 x 28
Convolutional 256 3x3 28 x 28
Maxpool x 2/2 14 x 14
Convolutional 512 3 x 3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x 3 14 x 14
Maxpool 2x2/2 TxT
Convolutional 1024 3 x 3 TxT
Convolutional 512 1x1 TxT
Convolutional 1024 3x3 TxT
Convolutional 512 1x1 TxT
Convolutional 1024 3x 3 TxT
Convolutional 1000 1x1 TxT
Avgpool Global 1000
Softmax

used in YOLOV2 for feature

100



YOLO v2

lemageNet

airplane apple backpackbanana bat  bear  bed bench bicycle bird 70  zebra Afghan  African  African African African African Airedale American Anerican American 22K  zucchini

hound ~chaneleon crocodile elephant — grey hunting dog alligatorblack bearchaneleon

physical object WordTree

animal natural object phenomenon

biplane  jet airbus  stealth golden  potato  felt sea  American
fighter  fern fern fern  lavender twinflower

Figure: WordTree is used to combine multiple datasets for classification
and detection. It is a hierarchical tree to relate the classes and subclasses
together.

YOLO v3

Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1 x1

1x| Convolutional 64 3x3

Residual 128 x 128

Convolutional 128 3x3/2 64 x64 Darknet-53 is used in YOLOV3,
Convolutional 64 1 x1 . .

2x| Convolutional 128 3 x 3 i.e., much deeper with 53
Residual 64 x 64 .
Convolutional 256 3x3/2 3232 convolutional layers.

Convolutional 128 1 x1
8x| Convolutional 256 3x3

Residual 32 x 32
Convolutional 512 3x3/2 16x16 The architecture has residual
Convolutional 256 1 x1
8x| Convolutional 512 3 x3 Sk|p connections and
Residual 16 x 16
Convolutional 1024 3x3/2 8x8 upsampling_

Convolutional 512 1 x1
4x| Convolutional 1024 3x 3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

Joseph Redmon and Ali Farhadi, “YOLOv3: An Incremental Improvement,” arXiv,
2018.



YOLO v3

Upsampling Layer

o Further Layers

YOLO v3 network Architecture

YOLOv3 makes detection at three different scales. That helps
detect small objects. On a grid, three anchor boxes for each
scale.

YOLO Demo

YOLOV2 and YOLOv3 Demostration

o

YOLOvV2 « Click here




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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https://www.youtube.com/watch?v=VOC3huqHrss
https://www.youtube.com/watch?v=MPU2HistivI

RetinaNet

Many negative
examples, no
useful signal

Few positive
= | examples, rich
information

Figure: One-stage detector has a foreground-background class imbalance
problem. No region proposal network to filter out many negative

background samples.

RetinaNet is an one-stage detector that improves prediction
accuracy by using focal loss.

T. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, “Focal Loss for Dense Object
Detection,” IEEE International Conference on Computer Vision (ICCV), 2017,

pp. 2999-3007.

RetinaNet — Focal Loss

Binary Cross-Entropy (CE) Loss

2
CE = — Zti log(pi) =—1 log(m) — (1 — tl) log(l — pl)
1=1

where t; and p; are the groundtruth class (one-hot) and model

predicted probability.

100000 easy : 100 hard examples

» 40x bigger loss from easy examples

Examples

[ = Croas Entropy

Loss = 2.3 well Classified

Loss

0.1

Class imbalance problem.
e.g., 100,000 easy
examples each with 0.1
loss and 100 hard
examples each with 2.3
loss. The sum loss of easy
examples is bigger.



RetinaNet — Focal Loss

RetinaNet have ~100,000 bounding boxes.

By using focal loss, the total loss can be balanced adaptively
between easy examples and hard examples.

2 .
—(1 — 7 lo ift1 =1

:_E: — 0\t N — ( p1)" log(p1) 1
FL (1 pz) 17 log(pz) { _pfly log(l —p1) it =0

=1

The focusing parameter v € [0, 5] smoothly adjusts the rate at
which easy examples are down-weighted.

a-balanced variant of focal loss.

2
FL = =) ai(1—pi)'t;log(p;)
1=1

The weighting factor a can be set by inverse class frequency
or treated as a hyperparameter.

RetinaNet

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Figure: RetinaNet Architecture.

RetinaNet uses ResNet and Feature Pyramid Network (FPN)
for feature extraction and two task-specific subnetworks for
classification and bounding box regression.

FPN constructs a rich multi-scale feature pyramid from one
single resolution input image.



RetinaNet Demo

RetinaNet Demostration

ResNet50 RetinaNet < Click ResNetb0 RetinaNet <+ Click
here here
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