
ELC 4438: Embedded System Design

Liang Dong

Electrical and Computer Engineering
Baylor University

Reference Model of Embedded Systems

• A reference model focuses on

 the timing properties and

 resource requirements of system components
and

 the way the operating system allocates the
available system resources among them.

Reference Model of Embedded Systems

• According to the reference model, a system
is characterized by:

• A workload model that describes the
applications supported by the system

• A resource model that describes the
system resources available to the
application

• Algorithms that define how the application
system uses the resources at all times.

Processors and Resources

• System resources: processors and resources

• Processors – active resources Pn
– Examples: CPUs, transmission lines, disks

• Resources – passive resources Rm
– Examples: memory, sequence number, database locks
– Examples: computation job shares data with other

computations, data guarded by semaphores;
communication ACK sequence number

• The elements of a system can be modeled as

processors or resources depending on the use of the
model.

Processors and Resources

• A resource is reusable – it is not consumed during
use.

• A reusable resource may have one or more units,
each unit is used in a mutually exclusive manner.

• A resource is plentiful if no job is ever prevented
from execution by the lack of this resource. e.g.
memory can be a plentiful resource.

• Omit the resources that are plentiful.

Temporal Parameters of Real-Time
Workload

• The workload on processors consists of jobs, each of
which is a unit of work to be allocated processor
time and other resources.

• The number of tasks is known a priori before the
system begins execution.

• Job Ji is characterized by its temporal parameters,
functional parameters, resource parameters, and
interconnection parameters.

• Assume that the temporal parameters of hard real-
time jobs/tasks are known.

Temporal Parameters

• Release time ri, absolute deadline di, relative
deadline Di, feasible interval of job Ji (ri, di]

• The range of ri is known but not the exact value.
Release time jitter in ri [ri

-, ri
+].

• Negligible jitter  fixed release time

• Sporadic jobs / aperiodic jobs are released at random

time instants in response to external events. Release
time of sporadic jobs are random variable. To
model, use A(x), the arrival time distribution (or
interarrival time distribution).

Temporal Parameters

• Execution time ei of job Ji. The amount of time
required to complete the execution of Ji when it
executes alone and has all the resources it requires.

• Execution time depends on complexity of the job and
the processor speed, not on scheduling.

• The min and max execution time of Ji are assumed
known of every hard real-time job [ei

-, ei
+]

• Execution time ei usually means max execution time.

Deterministic Approach

• We commonly use deterministic approach first,
because the hard real-time portion of the system is
often small.

• Reclaim the time and resources allocated but not
used by hard real-time jobs and make them available
to the rest soft real-time jobs and nonreal-time jobs.

Periodic Task Model

• The periodic task model is a deterministic
workload model.

• A periodic task, Ti, is computation or data
transmission that is executed repeatedly at
regular time intervals to provide a function on a
continuing basis.

• A periodic task is a sequence of jobs.

Parameters of Periodic Model

• Period pi of Ti is minimum length of time intervals
between release times.

• Execution time is the maximum execution time of
all jobs in Ti

• The accuracy of the periodic task model
decreases with increasing jitter in release times
and variation in execution times.

Parameters of Periodic Model

• The phase of Ti, i , is the release time ri,1 of
the first job Ji,1 in task Ti

• Tasks in phase

• Hyperperiod of the periodic tasks

• Utilization of the task Ti

Aperiodic and Sporadic Tasks

• Aperiodic and sporadic tasks model the
workload generated in response to
unexpected events.

• Each aperiodic or sporadic task is a stream of
aperiodic or sporadic jobs.

• The interarrival times in each task vary
drastically.

Aperiodic and Sporadic Tasks

• The jobs in each task model the work done by
the system in response to events of the same
type.

• The jobs in each aperiodic task have the same
statistical behavior and the same timing
requirement, A(x).

Aperiodic and Sporadic Tasks

• The execution times of jobs in each aperiodic
or sporadic task are identically distributed
random variables, B(x).

• With distributions A(x) and B(x), the system is
stationary.

Aperiodic vs. Sporadic Tasks

• An aperiodic task has jobs that have either
soft deadlines or no deadline.

• A sporadic task has jobs that are released at
random time instants and have hard
deadlines.

Precedence Constraints and Data
Dependency

• Data and control dependencies among jobs
may constrain the order in which they can
execute.

• Jobs have precedence constraints if they are
constrained to execute in some order.

• Jobs are independent if they can execute in
any order.

Precedence Constraints and Data
Dependency

• Ji < Jk, Ji is a predecessor of job jk, jk is a successor of
Ji.

• Immediate predecessor / immediate successor

• Ji and Jk are independent if neither Ji < Jk nor Jk < Ji

• A job with predecessors is ready for execution when
the time is at or after its release time and all of its
predecessors are completed.

Precedence Graph and Task Graph

• Precedence Graph represents the precedence
constraints among jobs in a set J.

• Each vertex represents a job in J.

• A directed edge from vertex Ji to Jk when the job Ji is
an immediate predecessor of Jk.

• A task graph is an extended precedence graph. A
task graph may contain different types of edges
representing different types of dependencies.

Data Dependency

• Data dependency can not be captured by a precedence
graph.

• In a task graph, data dependencies among jobs are
represented explicitly by data-dependency edges among
jobs.

• There is a data-dependency edge from Ji to Jk if the job Jk
consumes data generated by Ji or the job Ji sends
messages to Jk.

• Edge parameters: e.g. Volume of data from Ji to Jk.

Other Types of Dependencies

• Temporal dependency

• AND/OR precedence constraints

• Conditional branches

• Exclusive Access to Resources

• Pipeline relationship of periodic schedules

Functional Parameters

• Several functional parameters affect
scheduling and resource access-control
decisions:

• Preemptivity

• Criticality

• Optional Executions

• Laxity Type

Preemptivity of Jobs

• Preemption – scheduler suspends the execution of a
less urgent job and gives the processor to a more
urgent one. Afterwards, returns the processor to the
less urgent job to resume execution.

• A job is preemptive if its execution can be suspended
at any time, and later on can be resumed from the
point of suspension.

• A job is nonpreemptive if it must be executed from
start to completion without interruption.

Criticality of Jobs

• The criticality of a job indicates how important
the job is with respect to others.

• During an overload when it is not possible to
schedule all the jobs to meet their deadlines,
the less critical jobs are sacrificed so that the
more critical jobs can meet their deadlines.

Optional Executions and Laxity Type

• If an optional job completes late or is not executed at
all, the system still can function but the performance
may degrade.

• Laxity – lack of strictness

• The laxity type of a job indicates whether its timing
constraints are soft or hard.

• The laxity function is given by the usefulness function
of its tardiness.

Real-Time
Scheduling

Prelude: Maximal Parallelism

• Question: Given a precedence graph, how many
processors should be used to execute it?

• Example – Sequential program:
 a := x + y; /* Job J1 */

 b := z + 1; /* Job J2 */

 c := a - b; /* Job J3 */

 w := c + 1; /* Job J4 */

 d := a + e; /* Job J5 */

 w := w * d; /* Job J6 */

J1 J2 J3 J4 J5 J6

Maximal Parallelism

• Assign processors 1 and 2:
 P1:
 P2:

• Synchronize J1 with J3, and J4 with J6.
• Answer: “maximally parallel”
 – The maximum number of processors that can

be used efficiently is equal to the cardinality of
the largest set of nodes such that there is no
dependency between any two nodes in the set.

J1 J5 J6

J2 J3 J4

