
ELC 4438: Embedded System

Design

Real-Time Scheduling

Liang Dong

Electrical and Computer Engineering

Baylor University

Scheduler and Schedule

• Jobs are scheduled and allocated resources according to the

scheduling and resource access-control algorithms.

• A scheduler is a module that allocates processor and

resources to jobs and tasks. It is defined by the scheduling

and resource management algorithms it implements.

• Specifically, a job is scheduled in a time interval on a

processor.

• A schedule is an assignment of all the jobs in the system on

the available processors produced by the scheduler.

Scheduling Measures

• A valid schedule is a feasible schedule if every job

meets its timing constraints.

• A hard real-time scheduling algorithm is optimal if

using the algorithm the scheduler always produces a

feasible schedule if the given set of jobs have

feasible schedules.

• Minimizing maximum or average tardiness versus

minimizing average absolute lateness

Scheduling Measures

• All the jobs have the same release time and
deadline: The longest response time is the
makespan of the schedule

• Average response time – performance measure of
soft-deadline jobs

• In a system that has a mixture of jobs with hard and
soft deadlines, the objective of scheduling is
typically to minimize the average response time of
jobs with soft deadlines while ensuring that all jobs
with hard deadlines complete in time.

Scheduling Measures

• Miss rate and loss rate in soft real-time applications

• Miss rate gives the percentage of jobs that are
executed but completed late.

• Loss rate gives the percentage of jobs that are
discarded.

• Trade-off of miss and loss rate  invalid rate, which
is the sum of miss rate and loss rate.

Approaches to Real-Time Scheduling

• Three commonly used approaches to scheduling

real-time systems:

1. Clock – driven

2. (Weighted) Round – robin

3. Priority - driven

Clock-Driven Scheduling

• The job execution time intervals are made as a priori
decision.

• All the parameter of real-time jobs are known, and a
schedule of the jobs is computed off-line.

• Scheduling overhead during run-time can be
minimized.

• Using a hardware timer: A timer is set to expire
periodically without the intervention of the scheduler.

Round-Robin Scheduling

• Jobs join a FIFO queue. The job at the head of the queue

executes for at most one time slice.

• If the job does not complete by the end of the time slice, it is

preempted and placed at the end of the queue.

• Because the length of the slice is relatively short (typically

~10-3 – 10-2 sec), the execution of every job begins almost

immediately after it becomes ready.

• Each job get 1/n th share of the process – processor-sharing

algorithm

Weighted Round-Robin Scheduling

• Weighted round-robin algorithm: Rather than giving all the

ready jobs equal shares of the processor, different jobs may

be given different weights.

• The weight of a job refers to the fraction of processor time

allocated to the job. A job with wt get w time slices in every

round.

• (Weighted) round-robin scheduling is a reasonable approach

for a pipe, since a successor job may be able to incrementally

consume what is produced by a predecessor, and the two

jobs can execute concurrently.

Priority-Driven Scheduling

• Priority-driven algorithms are event-driven: Scheduling
decisions are made when events such as releases and
completions of jobs occur.

• Priority-driven algorithms are locally greedy: The algorithms
never leave any resource idle intentionally.

• Jobs ready for execution are placed in one or more queues
ordered by the priorities. The priority list and rules such as
whether preemption is allowed define the scheduling
algorithm.

• Usually, preemptive scheduling with the ability of job migration
among processors is better than non-preemptive scheduling.

Effective Release Times and Deadlines

• Assuming only one processor

• Effective Release Time: The effective release time

of a job without predecessors is equal to its given

release time. The effective release time of a job

with predecessors is equal to the maximum value

among its given release time and the effective

release times of all of its predecessors.

Effective Release Times and Deadlines

• Effective Deadline: The effective deadline of a job

without a successor is equal to its given deadline.

The effective deadline of a job with successors is

equal to the minimum value among its given

deadline and the effective deadlines of all its

successors.

• Calculation of effective release times and deadlines

does not take into account the execution times of

jobs.

Assigning Priority – EDF

• A way to assign priorities to jobs is on the basis of their

deadlines.

• The earlier the deadline, the higher the priority.

• The priority-driven scheduling algorithm based on this priority

assignment is called the Earliest-Deadline-First (EDF)

algorithm.

• EDF algorithm is optimal when used to schedule jobs on a

processor as long as preemption is allowed and jobs do not

contend for resources.

Assigning Priority – LST

• The Least-Slack-Time-First (LST) algorithm assigns priorities
to jobs based on their slacks: the smaller the slack, the higher
the priority.

• At any time t, the slack (or laxity) of a job with deadline at d is
equal to d-t minus the time required to complete the remaining
portion of the job.

• LST algorithm is also optimal for scheduling preemptive jobs
on one processor.

• Note: The EDF and the LST algorithms are optimal only when
preemption is allowed.

Advantages of Priority-Driven Scheduling

• Priority-driven scheduling is easy to implement. It

does not require the information on the release

times and execution times of the jobs a priori.

• The run-time overhead due to maintaining a priority

queue of ready jobs can be made small.

On-Line Scheduling

• The priority-driven algorithms are on-line scheduling algorithms.

• The scheduler of on-line scheduling makes each decision without
knowledge about the jobs that are released in the future.

• The parameters of each job become known to the on-line scheduler
only after the job is released.

• On-line scheduling is the only option in a system whose future
workload is unpredictable.

Disadvantages of Priority-Driven Scheduling

• However, the timing behavior of a priority-driven

system is nondeterministic.

• It is difficult to validate that all jobs scheduled in a

priority-driven manner meet their deadlines when

the job parameters vary.

Assumptions of Priority-Driven Scheduling

• Every job is ready for execution as soon as it is released, and
can be preempted at any time.

• Scheduling decisions are made immediately upon job
releases and completions.

• The context switch overhead is negligibly small compared
with execution times.

• The number of priority levels is unlimited.

Scheduling on Uniprocessor Systems

• In a static system, all the tasks are partitioned into subsystems.
Each subsystem is assigned to a processor, and tasks on each
processor are scheduled by themselves.

• In a dynamic system, jobs ready for execution are placed in one
common priority queue and dispatched to processors for execution
as the processors become available.

• Most hard real-time systems built and in use to date are static. In
the case when tasks in a static system are independent, we
consider scheduling jobs to a single processor.

Fixed versus Dynamic Priority Algorithms

• A fixed-priority algorithm assigns the same priority to all the
jobs in each task.

• A dynamic-priority algorithm assigns different priorities to the
individual jobs in each task. By dynamic, we mean task-level
dynamic and job level fixed.

• Most real-time scheduling algorithms of practical interests
assign job-level fixed priorities.

Fixed-Priority Algorithms

• Rate-monotonic (RM) algorithm: It assigns priorities to tasks
based on their periods: the shorter the period, the higher the
priority. Hence, the higher the rate, the higher the priority.

• Deadline-monotonic (DM) algorithm: It assigns priorities to
jobs according to their relative deadlines: the shorter the
relative deadline, the higher the priority.

DM versus RM Algorithms

• When the relative deadlines are arbitrary, the DM

algorithm performs better in the sense that it can

sometimes produce a feasible schedule when the

RM algorithm fails, while the RM algorithm always

fails when the DM algorithm fails.

Dynamic-Priority Algorithms

• Jobs are assigned different priority-level in different

tasks.

• Once a job is placed in the ready job queue

according to the priority assigned to it, its order with

respect to other jobs in the queue remains fixed.

EDF Algorithm

• Earliest-Deadline-First (EDF) algorithm assigns priorities to
individual jobs in the tasks according to their absolute deadlines.
The earlier the deadline, the higher the priority. It is a dynamic-
priority algorithm.

• This algorithm is optimal when used to schedule jobs on a processor
as long as preemption is allowed and jobs do not contend for
resources.

• Definition of “optimal”: can produce a feasible schedule of a set of
jobs with arbitrary release times and deadlines on a processor if a
feasible schedule exists.

LST Algorithm

• Least-Slack-Time-First (LST) algorithm, a.k.a. Minimum-Laxity-First
(MLF) algorithm, assigns priorities to jobs based on their slacks: the
smaller the slack, the higher the priority.

• At any time t, the slack (or laxity) of a job with deadline at d is equal
to d – t minus the time required to complete the remaining portion of
the job.

• EDF and LST algorithms are optimal only when preemption is
allowed.

Overloaded Systems

• The system is overloaded if the jobs offered to the scheduler cannot
be feasibly scheduled by any scheduler.

• During an overload, some jobs must be discarded in order to allow
other jobs to complete in time.

• EDF and LST algorithms are optimal under the condition that the
jobs are preemptive, there is only one processor, and the processor
is not overloaded.

• EDF and LST algorithms performance poorly when the system is
overloaded.

Maximum Schedulable Utilization

• A system of independent, preemptive tasks with relative
deadlines equal to their respective periods can be feasibly
scheduled on one processor if and only if its total utilization is
equal to or less than 1.

• A system of simply periodic, independent, preemptive tasks
whose relative deadlines are equal to or larger than their
periods is schedulable on one processor according to the RM
algorithm if and only if its total utilization is equal to or less
than 1.

Maximum Schedulable Utilization

• A system of independent, preemptive periodic tasks that are
in phase and have relative deadlines equal to or less than
their respective periods can be feasibly scheduled on one
processor according to the DM algorithm whenever it can be
feasibly scheduled according to any fixed-priority algorithm.

