
Real-Time Operating System

ELC 4438 – Spring 2016

Liang Dong
Baylor University

RTOS – Basic Kernel Services

Task Management

• Scheduling is the method by which threads,
processes or data flows are given access to
system resources (e.g. processor time,
communication bandwidth).

• The need for a scheduling algorithm arises from
the requirement for most modern systems to
perform multitasking (executing more than one
process at a time) and multiplexing (transmit
multiple data streams simultaneously across a
single physical channel).

Task Management

• Polled loops; Synchronized polled loops

• Cyclic Executives (round-robin)

• State-driven and co-routines

• Interrupt-driven systems

– Interrupt service routines

– Context switching

Interrupt-driven
Systems

void main(void)
{
 init();
 while(true);
}

void int1(void)
{
 save(context);
 task1();
 restore(context);
}

void int2(void)
{
 save(context);
 task2();
 restore(context);
}

Task scheduling

• Most RTOSs do their scheduling of tasks using a scheme called
"priority-based preemptive scheduling."

• Each task in a software application must be assigned a
priority, with higher priority values representing the need for
quicker responsiveness.

• Very quick responsiveness is made possible by the
"preemptive" nature of the task scheduling. "Preemptive"
means that the scheduler is allowed to stop any task at any
point in its execution, if it determines that another task needs
to run immediately.

Hybrid Systems

• A hybrid system is a combination of round-
robin and preemptive-priority systems.

– Tasks of higher priority can preempt those of

lower priority.

– If two or more tasks of the same priority are ready

to run simultaneously, they run in round-robin
fashion.

Thread Scheduling

ThreadPriority.Highest

ThreadPriority.AboveNormal

ThreadPriority.Normal

ThreadPriority.BelowNormal

ThreadPriority.Lowest

A B

C

D E F

Default priority is Normal.

Thread Scheduling

ThreadPriority.Highest

ThreadPriority.AboveNormal

ThreadPriority.Normal

ThreadPriority.BelowNormal

ThreadPriority.Lowest

A B

C

D E F

Threads A and B execute, each for a quantum, in round-robin fashion

until both threads complete.

Thread Scheduling

ThreadPriority.Highest

ThreadPriority.AboveNormal

ThreadPriority.Normal

ThreadPriority.BelowNormal

ThreadPriority.Lowest

A B

C

D E F

Then thread C runs to completion.

Thread Scheduling

ThreadPriority.Highest

ThreadPriority.AboveNormal

ThreadPriority.Normal

ThreadPriority.BelowNormal

ThreadPriority.Lowest

A B

C

D E F

Next threads D, E, F execute in round-robin fashion until they all

complete execution.

Thread Scheduling

ThreadPriority.Highest

ThreadPriority.AboveNormal

ThreadPriority.Normal

ThreadPriority.BelowNormal

ThreadPriority.Lowest

A B

C

D E F

“Starvation”

Foreground/Background Systems

• A set of interrupt-driven or real-time processes
called the foreground and a collection of
noninterrupt-driven processes called the
background.

• The foreground tasks run in round-robin, preemptive
priority, or hybrid fashion.

• The background task is fully preemptable by any
foreground task and, in a sense, represents the
lowest priority task in the system.

Foreground/Background Systems

• All real-time solutions are just special cases of the
foreground/background systems.

• The polled loop is simply a foreground/background
system with no foreground, and a polled loop as a
background.

• Interrupt-only systems are foreground/background
systems without background processing.

RTOSs vs. general-purpose operating systems

• Many non-real-time operating systems also provide similar
kernel services. The key difference between general-
computing operating systems and real-time operating systems
is the need for " deterministic " timing behavior in the real-
time operating systems.

• Formally, "deterministic" timing means that operating system
services consume only known and expected amounts of time.

• In theory, these service times could be expressed as
mathematical formulas. These formulas must be strictly
algebraic and not include any random timing components.

RTOSs vs. general-purpose operating systems

• General-computing non-real-time operating systems are often
quite non-deterministic. Their services can inject random
delays into application software and thus cause slow
responsiveness of an application at unexpected times.

• Deterministic timing behavior was simply not a design goal for
these general-computing operating systems, such as
Windows, Unix, Linux.

• On the other hand, real-time operating systems often go a
step beyond basic determinism. For most kernel services,
these operating systems offer constant load-independent
timing.

The horizontal solid green line shows the task switching time characteristic of a

real-time operating system. It is constant, independent of any load factor such

as the number of tasks in a software system.

Intertask Communication & Sync

• Previously, we assume that all tasks are independent
and that all tasks can be preempted at any point of
their execution.

• In practice, task interaction is needed.

• The main concern is how to minimize blocking that
may arise in a uniprocessor system when concurrent
tasks use shared resources.

Buffering Data

• To pass data between tasks in a multitasking
system, the simplest way is to use global
variables.

• One of the problems related to using global
variables is that tasks of higher- priority can
preempt lower-priority routines at
inopportune times, corrupting the global data.

• Data buffer

Time-Relative Buffering

Swap buffers with interrupts off

Fill here Empty here

Page Flipping via Pointer Switching

When a page flip occurs,

the pointer to the old back

buffer now points to the

primary surface and the

pointer to the old primary

surface now points to the

back buffer memory. This

sets you up automatically

for the next draw

operation.

Receiving and Processing Buffers

Data

Sampling

Data

Processing

Double-Buffering for Data Reception and Process

Back Buffer

Primary Buffer

Time-Relative Buffering

• Double-buffering uses a hardware or software
switch to alternate the buffers.

• Applications: disk controller, graphical
interfaces, navigation equipment, robot
controls, etc.

Circular Buffer

Tail: Fill here

Head: Empty here

Circular Buffering

Data

Sampling

Data

Processing

Circular-Buffering for Data Reception and Process

Primary Buffer

Writing Pointer

Processing Pointer

Writing_Pointer := mod (total_writing_count, buffer_size);

Processing_Pointer := mod(total_processing_count, buffer_size);

Circular Buffering (Cont.)

Data

Sampling

Data

Processing

Pointers’ Chases in Circular-Buffering

Primary Buffer

Writing Pointer

Processing Pointer

Mailboxes

• Mailboxes or message exchanges are an intertask
communication device available in many full-
featured operating systems.

• A mailbox is a mutually agreed upon memory
location that one or more tasks can use to pass data.

• The tasks rely on the kernel to allow them to write to
the location via a post operation or to read from it
via a pend operation.

void pend(int data, S);

void post(int data, S);

• The difference between the pend operation and
simply polling the mailbox is that the pending
task is suspended while waiting for data to
appear. Thus, no time is wasted continually
checking the mailbox.

Mailboxes

• The datum that is passed can be a flag used to
protect a critical resource (called a key).

• When the key is taken from the mailbox, the mailbox
is emptied. Thus, although several tasks can pend on
the same mailbox, only one task can receive the key.

• Since the key represents access to a critical resource,
simultaneous access is precluded.

Queues

• Some operating systems support a type of mailbox
that can queue multiple pend requests.

• The queue can be regarded as any array of
mailboxes.

• Queue should not be used to pass array data;
pointers should be used instead.

• Queues – control access to the “circular buffer”.

Critical Regions

• Multitasking systems are concerned with
resource sharing.

• In most cases, these resources can only be
used by one task at a time, and use of the
resource cannot be interrupted.

• Such resources are said to be serially reusable.

Critical Regions

• While the CPU protects itself against
simultaneous use, the code that interacts with
the other serially reusable resources cannot.

• Such code is called a critical region.

• If two tasks enter the same critical region
simultaneously, a catastrophic error occur.

Semaphores

• The most common methods for protecting
critical regions involves a special variable
called a semaphore.

• A semaphore S is a memory location that acts
as a lock to protect critical regions.

• Two operations: wait P(S), signal V(S)

Semaphores

• The wait operation suspends any program
calling until the semaphore S is FALSE,
whereas the signal operation sets the
semaphore S to FALSE.

• Code that enters a critical region is bracketed
by calls to wait and signal. This prevents more
than one process from entering the critical
region.

void P(int S)
{
 while (S == true);
 S = true;
}

void V(int S)
{
 S = false;
}

Semaphore is

initialized to

false.

Process_1
.
.
.
P(S)
critical region
V(S)
.
.
.

Process_2
.
.
.
P(S)
critical region
V(S)
.
.
.

Mailboxes and Semaphores

• Mailboxes can be used to implement
semaphores if semaphore primitives are not
provided by the operating system.

• In this case, there is the added advantage that
the pend instruction suspends the waiting
process rather than actually waiting for the
semaphore.

void P(int S)

{

 int key = 0;

 pend(key, S);

}

void V(int S)

{

 int key = 0;

 post(key, S);

}

Counting Semaphores

• The P and V semaphores are called binary
semaphores because they can take one of two
values.

• Alternatively, a counting semaphore can be
used to protect pools of resources, or to keep
track of the number of free resources.

void P(int S)
{
 S--;
 while(S < 0);
}

void V(int S)
{
 S++;
}

void MP(int R) /* multiple wait */
{
 P(S); /* lock counter */
 R--; /* request a resource */
 if (R < 0) /* none available? */
 {
 V(S); /* release counter */
 P(T); /* wait for free resource */
 }
 V(S); /* release counter */
}

void MV(int R) /* multiple signal */
{
 P(S); /* lock counter */
 R++; /* free resource */
 if (R <= 0)
 V(T);
 else
 V(S); /* release counter */
}

Counting Semaphores

• The integer R keeps track of the number of
free resources. Binary semaphore S protects
R, and binary semaphore T is used to protect
the pool of resources.

• The initial value of S is set to False, T to True,
and R to the number of available resources in
the kernel.

Other Synchronization Mechanisms

• Monitors are abstract data types that encapsulate
the implementation details of the serial reusable
resource and provides a public interface.

• Instances of the monitor type can only be executed
by one process at a time.

• Monitors can be used to implement any critical
region.

Other Synchronization Mechanisms

• Event-flag structures allow for the specification of an
event that causes the setting of some flag.

• A second process is designed to react to this flag.

• Event flags in essence represent simulated interrupts
created by the programmer.

Deadlock

• When tasks are competing for the same set of two or
more serially reusable resources, a deadlock
situation or deadly embrace may occur.

• Starvation differs from deadlock in that at least one
process is satisfying its requirements but one or
more are not.

• In deadlock, two or more processes cannot advance
due to mutual exclusion.

Deadlock

• When tasks are competing for the same set of two or
more serially reusable resources, a deadlock
situation or deadly embrace may occur.

• Starvation differs from deadlock in that at least one
process is satisfying its requirements but one or
more are not.

• In deadlock, two or more processes cannot advance
due to mutual exclusion.

Serious problem!!!

Life Cycle of a Thread

Unstarted

Life Cycle of a Thread

Unstarted

Started

Start

Life Cycle of a Thread

Unstarted

Started

Running

dispatch

(assign a processor)

quantum

expiration

Life Cycle of a Thread

Unstarted

Started

Running

Stopped

complete

or Abort

Life Cycle of a Thread

Unstarted

Started

Running

Stopped Blocked

issue I/O request,

Lock unavailable

I/O completion,

Lock available

Life Cycle of a Thread

Unstarted

Started

Running

Stopped Blocked WaitSleepJoin

Wait, Sleep, Join

Pulse

PulseAll

Interrupt

sleep interval expires

Life Cycle of a Thread

Unstarted

Started

Running

Suspended Stopped Blocked WaitSleepJoin

Suspended

Resume

Life Cycle of a Thread

Unstarted

Started

Running

Suspended Stopped Blocked WaitSleepJoin

Start

dispatch

(assign a processor)

quantum

expiration

Suspended
complete

or Abort

issue I/O request,

Lock unavailable

I/O completion,

Lock available

Resume

Wait, Sleep, Join

Pulse

PulseAll

Interrupt

sleep interval expires

Deadlock Prevention

• Mutual exclusion can be removed through the use of
programs that allow resources to appear to be
shareable by application (e.g. spoolers for printers).

• To prevent “hold and wait”, we allocate to a process
all potentially required resources at the same time.

• Finally, preemption can preclude deadlock. Again,
this will create starvation.

Deadlock Avoidance

• The best way to deal with deadlock is to avoid it
altogether.

• A lock refers to any semaphore used to protect a
critical region.

• For example, if the semaphores protecting critical
resources are implemented by mailboxes with time-
outs, deadlocking cannot occur, (but starvation of
one or more tasks is possible).

Deadlock Avoidance

1. Minimize the number of critical regions as well as
minimizing their size.

2. All processes must release any lock before returning to the
calling function.

3. Do not suspend any task while it controls a critical region.

4. All critical regions must be error free.

5. Do not lock devices in interrupt handlers.

6. Always perform validity checks on pointers used within
critical regions. (Pointer errors are common in C and can
lead to serious problems within the critical regions.)

Deadlock Avoidance:
The Banker’s Algorithm

• Analogy of a bank: depositors and cash reserve.

• The algorithm ensures that the number of resources
attached to all processes and potentially needed for
at least one to complete, can never exceed the
number of resources for the system.

• The program shall not enter “unsafe state” to avoid
deadlock.

Generalized Banker’s Algorithm

• Extended to two or more pools of resources.

• Consider a set of processes p1, …, pn and a set of
resources r1, …, rm.

• max[i,j] represents the max claim of resources type j
by process i.

• alloc[i,j] represents the number of units of resources
j held by process i.

Generalized Banker’s Algorithm

• cj : resources of type j

• avail[j] : the resulting number of available resources
of type j if the resource is granted.

Generalized Banker’s Algorithm

• cj : resources of type j

• avail[j] : the resulting number of available resources
of type j if the resource is granted.

Generalized Banker’s Algorithm

• cj : resources of tpye j

• avail[j] : the resulting number of available resources
of tpye j if the resource is granted.

Generalized Banker’s Algorithm

If no such pi exists, the state is unsafe.

• cj : resources of tpye j

• avail[j] : the resulting number of available resources
of tpye j if the resource is granted.

Priority Inversion

• When a low-priority task blocks a higher-
priority one, a priority inversion is said to
occur.

• The problem of priority inversion in real-time
systems has been studied intensively for both
fixed-priority and dynamic-priority scheduling.

Priority Inheritance Protocol

• The priority of tasks are dynamically changed
so that the priority of any task in a critical
region gets the priority of the highest task
pending on that same critical region.

• When a task blocks one or more higher-
priority tasks, it temporarily inherits the
highest priority of the blocked tasks.

Priority Inheritance Protocol

• A 1997 NASA incident of Mars
Pathfinder Space mission’s
Sojourner rover vehicle: A
meteorological data-gathering
task (low priority low frequency)
blocked a communications task
(high priority high frequency).
This infrequent scenario caused
the system to reset.

• The problem was diagnosed in ground-based testing and
remotely corrected by reenabling the priority inheritance
mechanism.

Priority Inheritance Protocol

• Priority Inheritance Protocol does not prevent
deadlock. In fact, PIP can cause deadlock or multiple
blocking.

• Priority Ceiling Protocol, which imposes a total
ordering on the semaphore access, can get around
these problems.

Priority Ceiling Protocol

• Each resource is assigned a priority (the
priority ceiling) equal to the priority of the
highest priority task can use it.

• A task, T, can be blocked from entering a
critical section if there exists any semaphore
currently held by some other task whose
priority ceiling is greater than or equal to the
priority of T.

Memory Management

• Dynamic memory allocation is important in both the use of
on-demand memory by applications and the requirements of
the operating system.

• Application tasks use memory explicitly through requests for
heap memory, and implicitly through the maintenance of the
run-time memory needed to support sophisticated high-order
languages.

• Operating system needs to perform extensive memory
management.

Process Stack Management

• In a multitasking system, context for each task needs
to be saved and restored in order to switch
processes.

• Run-time stacks work best for interrupt-only systems
and foreground/background systems.

• Task-control block model works best with full-
featured real-time operating systems.

Run-Time Stack

• A run-time stack is to be used to handle the run-time
saving and restoring of context.

• The save routine is called by an interrupt handler to
save the current context of the machine into a stack
area.

• To prevent disaster, save call should be made
immediately after interrupts have been disabled.

Run-Time Stack

• The restore routine is called by an interrupt
handler to restore the context of the main
machine from a stack area.

• The restore routine should be called just
before interrupts are enabled and before
returning from the interrupt handler.

Run-Time Stack

save (stack)

DPI
STORE R0, &stack, I
LOAD R0, &stack
ADD R0, 1
STORE R1, R0, I
ADD R0, 1
STORE R2, R0, I
ADD R0, 1
STORE R3, R0, I
ADD R0, 1
STORE PC, R0, I
ADD R0, 1
STORE R0, &stack
EPI

RETURE

restore (stack)

DPI
LOAD R0, &stack
SUB R0, 1
LOAD PC, R0, I
SUB R0, 1
LOAD R3, R0, 1
SUB R0, 1
LOAD R2, R0, I
SUB R0, 1
LOAD R1, R0, I
STORE R0, &stack
SUB R0, 1
LOAD R0, R0, I
EPI

RETURE

Run-Time Stack

void int_handler (void)

{

 save(mainstack);

 switch(interrupt)

 {

 case 1: int1();

 break;

 case 2: int2();

 break;

 }

 restore(mainstack);

}

void int1(void)

{

 save(stack);

 task1();

 restore(stack);

}

void int2(void)

{

 save(stack);

 task2();

 restore(stack);

}

Run-Time Stack

Task 3

Task 2

Task 1

Task 2

Task 3

Priority

High

Low

Context 3 Context 3 Context 3

Context 2

Time

Stack

Task-Control Block Model:
Fixed Case

• N task-control blocks are allocated at system
generation time, all in the dormant state.

• As tasks are created, the task-control block enters
the ready state.

• Prioritization or time slicing will move the task to the
execute state.

• If a task is to be deleted, its task-control block is
simply placed in the dormant state.

Task-Control Block Model:
Dynamic Case

• In the dynamic case, task-control blocks are added to a linked
list as tasks are created.

• The tasks are in the suspended state upon creation and enter
the ready state via an operating system call.

• The tasks enter the execute state owing to priority or time
slicing.

• When a task is deleted, its task-control block is removed from
the linked list, and its heap memory allocation is returned to
the unoccupied status.

Run-Time Ring Buffer

• A run-time stack cannot be used in a round-
robin system because of its FIFO nature of
scheduling.

• A circular queue can be used in a round-robin
system to save context.

• The context is saved to the tail of the list and
restored from the head of the list.

Maximum Stack Size

• The maximum amount of space needed for the run-
time stack needs to be known a priori.

• In general, stack size can be determined if recursion
is not used and heap data structures are avoided.

• Ideally, provision for at least one more task than
anticipated should be allocated to the stack to allow
for spurious interrupts.

Multiple-Stack Arrangement

• Often a single run-time stack is inadequate to
manage several processes, e.g. in a
foreground/background system.

• A multiple-stack scheme uses a single run-time stack
and several application stacks.

• The embedded real time system using multiple stacks
can be implemented by a language that supports
reentrancy and recursion, such as C.

Multiple-Stack Arrangement

Pointer to

application stack

Run-Time Stack

Process 1 Stack Process 2 Stack Process 3 Stack

Memory Management in the Task-Control-
Block Model

• When implementing the TCB model of real-
time multitasking, the chief memory
management issue is the maintenance of the
linked lists for the ready and suspended tasks.

Ready List

Suspended List

Executing Task

Memory Management in the Task-Control-
Block Model

• When implementing the TCB model of real-
time multitasking, the chief memory
management issue is the maintenance of the
linked lists for the ready and suspended tasks.

Ready List

Suspended List

Executing Task

Dynamic Memory Allocation

• Usually, memory fragmentation problem can
be solved by so-called "garbage collection"
(defragmentation) software.

Dynamic Memory Allocation

Used block Unused block Unmovable block

Dynamic Memory Allocation

• Usually, memory fragmentation problem can
be solved by so-called "garbage collection"
(defragmentation) software.

• Unfortunately, "garbage collection" algorithms
are often wildly non-deterministic – injecting
randomly-appearing random-duration delays
into heap services.

Dynamic Memory Allocation

• RTOSs offer non-fragmenting memory allocation
techniques instead of heaps.

• They do this by limiting the variety of memory chunk
sizes they make available to application software.

• While this approach is less flexible than the approach
taken by memory heaps, they do avoid external
memory fragmentation and avoid the need for
defragmentation.

Dynamic Memory Allocation

• Pools totally avoid external memory fragmentation,
by not permitting a buffer that is returned to the
pool to be broken into smaller buffers in the future.

Dynamic Memory Allocation

• Instead, when a buffer is returned the pool, it is put
onto a "free buffer list" of buffers of its own size that
are available for future re-use at their original buffer
size.

Dynamic Memory Allocation

• Memory is allocated and de-allocated from a pool
with deterministic, often constant, timing.

