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Task Management 

• Scheduling is the method by which threads, 
processes or data flows are given access to 
system resources (e.g. processor time, 
communication bandwidth). 
 

• The need for a scheduling algorithm arises from 
the requirement for most modern systems to 
perform multitasking (executing more than one 
process at a time) and multiplexing (transmit 
multiple data streams simultaneously across a 
single physical channel). 



Task Management 

• Polled loops; Synchronized polled loops 

• Cyclic Executives (round-robin)  

• State-driven and co-routines 

• Interrupt-driven systems 

– Interrupt service routines 

– Context switching 

 

 



Interrupt-driven 
Systems 

void main(void) 
{ 
 init(); 
 while(true); 
} 
 
void int1(void) 
{ 
 save(context); 
 task1(); 
 restore(context); 
} 
 
void int2(void) 
{ 
 save(context); 
 task2(); 
 restore(context); 
} 



Task scheduling 

• Most RTOSs do their scheduling of tasks using a scheme called 
"priority-based preemptive scheduling."  
 

• Each task in a software application must be assigned a 
priority, with higher priority values representing the need for 
quicker responsiveness.  
 

• Very quick responsiveness is made possible by the 
"preemptive" nature of the task scheduling. "Preemptive" 
means that the scheduler is allowed to stop any task at any 
point in its execution, if it determines that another task needs 
to run immediately. 
 
 



Hybrid Systems 

• A hybrid system is a combination of round-
robin and preemptive-priority systems. 

 
– Tasks of higher priority can preempt those of 

lower priority. 

 
– If two or more tasks of the same priority are ready 

to run simultaneously, they run in round-robin 
fashion. 



Thread Scheduling 
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Default priority is Normal. 



Thread Scheduling 
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Threads A and B execute, each for a quantum, in round-robin fashion 

until both threads complete. 



Thread Scheduling 
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Then thread C runs to completion. 



Thread Scheduling 
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Next threads D, E, F execute in round-robin fashion until they all 

complete execution. 



Thread Scheduling 
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“Starvation” 



Foreground/Background Systems 

• A set of interrupt-driven or real-time processes 
called the foreground and a collection of 
noninterrupt-driven processes called the 
background. 
 

• The foreground tasks run in round-robin, preemptive 
priority, or hybrid fashion. 
 

• The background task is fully preemptable by any 
foreground task and, in a sense, represents the 
lowest priority task in the system. 



Foreground/Background Systems 

• All real-time solutions are just special cases of the 
foreground/background systems. 

 

• The polled loop is simply a foreground/background 
system with no foreground, and a polled loop as a 
background. 

 

• Interrupt-only systems are foreground/background 
systems without background processing. 



RTOSs vs. general-purpose operating systems  

• Many non-real-time operating systems also provide similar 
kernel services. The key difference between general-
computing operating systems and real-time operating systems 
is the need for " deterministic " timing behavior in the real-
time operating systems.  
 

• Formally, "deterministic" timing means that operating system 
services consume only known and expected amounts of time.  
 

• In theory, these service times could be expressed as 
mathematical formulas. These formulas must be strictly 
algebraic and not include any random timing components.  



RTOSs vs. general-purpose operating systems  

• General-computing non-real-time operating systems are often 
quite non-deterministic. Their services can inject random 
delays into application software and thus cause slow 
responsiveness of an application at unexpected times.  
 

• Deterministic timing behavior was simply not a design goal for 
these general-computing operating systems, such as 
Windows, Unix, Linux. 
 

• On the other hand, real-time operating systems often go a 
step beyond basic determinism. For most kernel services, 
these operating systems offer constant load-independent 
timing. 



The horizontal solid green line shows the task switching time characteristic of a 

real-time operating system.  It is constant, independent of any load factor such 

as the number of tasks in a software system. 

 



Intertask Communication & Sync 

• Previously, we assume that all tasks are independent 
and that all tasks can be preempted at any point of 
their execution. 

 

• In practice, task interaction is needed. 

 

• The main concern is how to minimize blocking that 
may arise in a uniprocessor system when concurrent 
tasks use shared resources. 



Buffering Data 

• To pass data between tasks in a multitasking 
system, the simplest way is to use global 
variables. 
 

• One of the problems related to using global 
variables is that tasks of higher- priority can 
preempt lower-priority routines at 
inopportune times, corrupting the global data. 
 

• Data buffer 



Time-Relative Buffering 

Swap buffers with interrupts off 

Fill here Empty here 



Page Flipping via Pointer Switching 

When a page flip occurs, 

the pointer to the old back 

buffer now points to the 

primary surface and the 

pointer to the old primary 

surface now points to the 

back buffer memory. This 

sets you up automatically 

for the next draw 

operation.  



Receiving and Processing Buffers 
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Time-Relative Buffering 

• Double-buffering uses a hardware or software 
switch to alternate the buffers. 

 

• Applications: disk controller, graphical 
interfaces, navigation equipment, robot 
controls, etc. 



Circular Buffer 

Tail: Fill here 

Head: Empty here 



Circular Buffering 
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Processing Pointer 

Writing_Pointer := mod (total_writing_count, buffer_size); 

Processing_Pointer := mod(total_processing_count, buffer_size); 



Circular Buffering (Cont.) 
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Mailboxes 

• Mailboxes or message exchanges are an intertask 
communication device available in many full-
featured operating systems. 
 

• A mailbox is a mutually agreed upon memory 
location that one or more tasks can use to pass data. 
 

• The tasks rely on the kernel to allow them to write to 
the location via a post operation or to read from it 
via a pend operation. 



void pend(int data, S); 

 

void post(int data, S); 

 

• The difference between the pend operation and 
simply polling the mailbox is that the pending 
task is suspended while waiting for data to 
appear.  Thus, no time is wasted continually 
checking the mailbox. 

 



Mailboxes 

• The datum that is passed can be a flag used to 
protect a critical resource (called a key). 

 

• When the key is taken from the mailbox, the mailbox 
is emptied.  Thus, although several tasks can pend on 
the same mailbox, only one task can receive the key.   

 

• Since the key represents access to a critical resource, 
simultaneous access is precluded. 



Queues 

• Some operating systems support a type of mailbox 
that can queue multiple pend requests. 
 

• The queue can be regarded as any array of 
mailboxes. 
 

• Queue should not be used to pass array data; 
pointers should be used instead. 
 

• Queues – control access to the “circular buffer”. 



Critical Regions 

• Multitasking systems are concerned with 
resource sharing.   

 

• In most cases, these resources can only be 
used by one task at a time, and use of the 
resource cannot be interrupted.   

 

• Such resources are said to be serially reusable. 

 



Critical Regions 

• While the CPU protects itself against 
simultaneous use, the code that interacts with 
the other serially reusable resources cannot.   

 

• Such code is called a critical region.   

 

• If two tasks enter the same critical region 
simultaneously, a catastrophic error occur. 



Semaphores 

• The most common methods for protecting 
critical regions involves a special variable 
called a semaphore. 

 

• A semaphore S is a memory location that acts 
as a lock to protect critical regions. 

 

• Two operations: wait P(S), signal V(S) 



Semaphores 

• The wait operation suspends any program 
calling until the semaphore S is FALSE, 
whereas the signal operation sets the 
semaphore S to FALSE. 

 

• Code that enters a critical region is bracketed 
by calls to wait and signal.  This prevents more 
than one process from entering the critical 
region. 



void P(int S) 
{ 
 while (S == true); 
 S = true; 
} 
 
void V(int S) 
{ 
 S = false; 
} 
 
 

Semaphore is 

initialized to 

false. 
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Mailboxes and Semaphores 

• Mailboxes can be used to implement 
semaphores if semaphore primitives are not 
provided by the operating system. 

 

• In this case, there is the added advantage that 
the pend instruction suspends the waiting 
process rather than actually waiting for the 
semaphore. 



void P(int S) 

{ 

 int key = 0; 

 pend(key, S); 

} 

 

void V(int S) 

{ 

 int key = 0; 

 post(key, S); 

} 

 



Counting Semaphores 

• The P and V semaphores are called binary 
semaphores because they can take one of two 
values. 

 

• Alternatively, a counting semaphore can be 
used to protect pools of resources, or to keep 
track of the number of free resources. 



void P(int S) 
{ 
 S--; 
 while(S < 0); 
} 
 
void V(int S) 
{ 
 S++; 
} 
 



void MP(int R)  /* multiple wait */ 
{ 
 P(S);   /* lock counter */ 
 R--;   /* request a resource */ 
 if (R < 0)  /* none available? */ 
 { 
  V(S);  /* release counter */ 
  P(T);  /* wait for free resource */ 
 } 
 V(S);   /* release counter */ 
} 
 
void MV(int R)  /* multiple signal */ 
{ 
 P(S);   /* lock counter */ 
 R++;   /* free resource */ 
 if (R <= 0)   
  V(T); 
 else 
  V(S);  /* release counter */ 
} 
 



Counting Semaphores 

• The integer R keeps track of the number of 
free resources.  Binary semaphore S protects 
R, and binary semaphore T is used to protect 
the pool of resources. 

 

• The initial value of S is set to False, T to True, 
and R to the number of available resources in 
the kernel. 



Other Synchronization Mechanisms 

• Monitors are abstract data types that encapsulate 
the implementation details of the serial reusable 
resource and provides a public interface. 

 

• Instances of the monitor type can only be executed 
by one process at a time. 

 

• Monitors can be used to implement any critical 
region. 



Other Synchronization Mechanisms 

• Event-flag structures allow for the specification of an 
event that causes the setting of some flag. 

 

• A second process is designed to react to this flag. 

 

• Event flags in essence represent simulated interrupts 
created by the programmer. 



Deadlock 

• When tasks are competing for the same set of two or 
more serially reusable resources, a deadlock 
situation or deadly embrace may occur. 
 

• Starvation differs from deadlock in that at least one 
process is satisfying its requirements but one or 
more are not.   
 

• In deadlock, two or more processes cannot advance 
due to mutual exclusion. 



Deadlock 

• When tasks are competing for the same set of two or 
more serially reusable resources, a deadlock 
situation or deadly embrace may occur. 
 

• Starvation differs from deadlock in that at least one 
process is satisfying its requirements but one or 
more are not.   
 

• In deadlock, two or more processes cannot advance 
due to mutual exclusion. 

Serious problem!!! 
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Deadlock Prevention 

• Mutual exclusion can be removed through the use of 
programs that allow resources to appear to be 
shareable by application (e.g. spoolers for printers). 
 

• To prevent “hold and wait”, we allocate to a process 
all potentially required resources at the same time. 
 

• Finally, preemption can preclude deadlock.  Again, 
this will create starvation. 



Deadlock Avoidance 

• The best way to deal with deadlock is to avoid it 
altogether. 

 

• A lock refers to any semaphore used to protect a 
critical region. 

 

• For example, if the semaphores protecting critical 
resources are implemented by mailboxes with time-
outs, deadlocking cannot occur, (but starvation of 
one or more tasks is possible). 



Deadlock Avoidance 

1. Minimize the number of critical regions as well as 
minimizing their size. 

2. All processes must release any lock before returning to the 
calling function. 

3. Do not suspend any task while it controls a critical region. 

4. All critical regions must be error free. 

5. Do not lock devices in interrupt handlers. 

6. Always perform validity checks on pointers used within 
critical regions.  (Pointer errors are common in C and can 
lead to serious problems within the critical regions.) 



Deadlock Avoidance:  
The Banker’s Algorithm 

• Analogy of a bank: depositors and cash reserve. 

 

• The algorithm ensures that the number of resources 
attached to all processes and potentially needed for 
at least one to complete, can never exceed the 
number of resources for the system. 

 

• The program shall not enter “unsafe state” to avoid 
deadlock. 



Generalized Banker’s Algorithm 

• Extended to two or more pools of resources. 

 

• Consider a set of processes p1, …, pn and a set of 
resources r1, …, rm. 

 

• max[i,j] represents the max claim of resources type j 
by process i. 

 

• alloc[i,j] represents the number of units of resources 
j held by process i. 

 



Generalized Banker’s Algorithm 

• cj : resources of type j  

• avail[j] : the resulting number of available resources 
of type j if the resource is granted. 

 

 



Generalized Banker’s Algorithm 

• cj : resources of type j  

• avail[j] : the resulting number of available resources 
of type j if the resource is granted. 

 

 



Generalized Banker’s Algorithm 

• cj : resources of tpye j  

• avail[j] : the resulting number of available resources 
of tpye j if the resource is granted. 

 

 



Generalized Banker’s Algorithm 

If no such pi exists, the state is unsafe. 

• cj : resources of tpye j  

• avail[j] : the resulting number of available resources 
of tpye j if the resource is granted. 

 

 



Priority Inversion 

• When a low-priority task blocks a higher-
priority one, a priority inversion is said to 
occur. 

 

• The problem of priority inversion in real-time 
systems has been studied intensively for both 
fixed-priority and dynamic-priority scheduling. 



Priority Inheritance Protocol 

• The priority of tasks are dynamically changed 
so that the priority of any task in a critical 
region gets the priority of the highest task 
pending on that same critical region. 

 

• When a task blocks one or more higher-
priority tasks, it temporarily inherits the 
highest priority of the blocked tasks. 



Priority Inheritance Protocol 

• A 1997 NASA incident of Mars 
Pathfinder Space mission’s 
Sojourner rover vehicle: A 
meteorological data-gathering 
task (low priority low frequency) 
blocked a communications task 
(high priority high frequency).  
This infrequent scenario caused 
the system to reset. 

•  The problem was diagnosed in ground-based testing and 
remotely corrected by reenabling the priority inheritance 
mechanism. 

 



Priority Inheritance Protocol 

• Priority Inheritance Protocol does not prevent 
deadlock.  In fact, PIP can cause deadlock or multiple 
blocking. 

 

• Priority Ceiling Protocol, which imposes a total 
ordering on the semaphore access, can get around 
these problems. 



Priority Ceiling Protocol 

• Each resource is assigned a priority (the 
priority ceiling) equal to the priority of the 
highest priority task can use it. 

 

• A task, T, can be blocked from entering a 
critical section if there exists any semaphore 
currently held by some other task whose 
priority ceiling is greater than or equal to the 
priority of T. 



Memory Management 

• Dynamic memory allocation is important in both the use of 
on-demand memory by applications and the requirements of 
the operating system. 

 

• Application tasks use memory explicitly through requests for 
heap memory, and implicitly through the maintenance of the 
run-time memory needed to support sophisticated high-order 
languages. 

 

• Operating system needs to perform extensive memory 
management. 



Process Stack Management 

• In a multitasking system, context for each task needs 
to be saved and restored in order to switch 
processes. 

 

• Run-time stacks work best for interrupt-only systems 
and foreground/background systems. 

 

• Task-control block model works best with full-
featured real-time operating systems. 



Run-Time Stack 

• A run-time stack is to be used to handle the run-time 
saving and restoring of context. 

 

• The save routine is called by an interrupt handler to 
save the current context of the machine into a stack 
area.   

 

• To prevent disaster, save call should be made 
immediately after interrupts have been disabled. 



Run-Time Stack 

• The restore routine is called by an interrupt 
handler to restore the context of the main 
machine from a stack area.  

 

• The restore routine should be called just 
before interrupts are enabled and before 
returning from the interrupt handler. 



Run-Time Stack 

save (stack) 
 
DPI 
STORE  R0, &stack, I 
LOAD  R0, &stack 
ADD R0, 1 
STORE  R1, R0, I 
ADD R0, 1 
STORE  R2, R0, I 
ADD R0, 1 
STORE  R3, R0, I 
ADD R0, 1 
STORE  PC, R0, I 
ADD R0, 1 
STORE  R0, &stack 
EPI 
 
RETURE 
 

restore (stack) 
 
DPI 
LOAD  R0, &stack 
SUB  R0, 1 
LOAD PC, R0, I 
SUB  R0, 1 
LOAD R3, R0, 1 
SUB  R0, 1 
LOAD  R2, R0, I 
SUB  R0, 1 
LOAD  R1, R0, I 
STORE  R0, &stack 
SUB  R0, 1 
LOAD R0, R0, I 
EPI 
 
RETURE 
 



Run-Time Stack 

void int_handler (void) 

{ 

 save(mainstack); 

 switch(interrupt) 

 { 

  case 1: int1(); 

   break; 

  case 2: int2(); 

   break; 

 } 

 restore(mainstack); 

} 

void int1(void) 

{ 

 save(stack); 

 task1(); 

 restore(stack); 

} 

 

void int2(void) 

{ 

 save(stack); 

 task2(); 

 restore(stack); 

} 



Run-Time Stack 
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Task-Control Block Model:  
Fixed Case 

• N task-control blocks are allocated at system 
generation time, all in the dormant state. 
 

• As tasks are created, the task-control block enters 
the ready state. 
 

• Prioritization or time slicing will move the task to the 
execute state. 
 

• If a task is to be deleted, its task-control block is 
simply placed in the dormant state. 



Task-Control Block Model: 
Dynamic Case 

• In the dynamic case, task-control blocks are added to a linked 
list as tasks are created. 

 

• The tasks are in the suspended state upon creation and enter 
the ready state via an operating system call. 

 

• The tasks enter the execute state owing to priority or time 
slicing. 

 

• When a task is deleted, its task-control block is removed from 
the linked list, and its heap memory allocation is returned to 
the unoccupied status. 



Run-Time Ring Buffer 

• A run-time stack cannot be used in a round-
robin system because of its FIFO nature of 
scheduling. 

 

• A circular queue can be used in a round-robin 
system to save context. 

 

• The context is saved to the tail of the list and 
restored from the head of the list. 



Maximum Stack Size 

• The maximum amount of space needed for the run-
time stack needs to be known a priori. 

 

• In general, stack size can be determined if recursion 
is not used and heap data structures are avoided. 

 

• Ideally, provision for at least one more task than 
anticipated should be allocated to the stack to allow 
for spurious interrupts. 



Multiple-Stack Arrangement 

• Often a single run-time stack is inadequate to 
manage several processes, e.g. in a 
foreground/background system. 

 

• A multiple-stack scheme uses a single run-time stack 
and several application stacks. 

 

• The embedded real time system using multiple stacks 
can be implemented by a language that supports 
reentrancy and recursion, such as C. 



Multiple-Stack Arrangement 

Pointer to  

application stack 

Run-Time Stack 

Process 1 Stack Process 2 Stack Process 3 Stack 



Memory Management in the Task-Control-
Block Model 

• When implementing the TCB model of real-
time multitasking, the chief memory 
management issue is the maintenance of the 
linked lists for the ready and suspended tasks. 

Ready List 

Suspended List 

Executing Task 



Memory Management in the Task-Control-
Block Model 

• When implementing the TCB model of real-
time multitasking, the chief memory 
management issue is the maintenance of the 
linked lists for the ready and suspended tasks. 
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Suspended List 
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Dynamic Memory Allocation 

• Usually, memory fragmentation problem can 
be solved by so-called "garbage collection" 
(defragmentation) software.  



Dynamic Memory Allocation 

Used block Unused block Unmovable block 



Dynamic Memory Allocation 

• Usually, memory fragmentation problem can 
be solved by so-called "garbage collection" 
(defragmentation) software.  

 

• Unfortunately, "garbage collection" algorithms 
are often wildly non-deterministic – injecting 
randomly-appearing random-duration delays 
into heap services.  



Dynamic Memory Allocation 

• RTOSs offer non-fragmenting memory allocation 
techniques instead of heaps. 
 

• They do this by limiting the variety of memory chunk 
sizes they make available to application software.  
 

• While this approach is less flexible than the approach 
taken by memory heaps, they do avoid external 
memory fragmentation and avoid the need for 
defragmentation.  



Dynamic Memory Allocation 

• Pools totally avoid external memory fragmentation, 
by not permitting a buffer that is returned to the 
pool to be broken into smaller buffers in the future.  



Dynamic Memory Allocation 

• Instead, when a buffer is returned the pool, it is put 
onto a "free buffer list" of buffers of its own size that 
are available for future re-use at their original buffer 
size. 



Dynamic Memory Allocation 

• Memory is allocated and de-allocated from a pool 
with deterministic, often constant, timing.  
 


