

ELC 4438 Embedded Systems Design

Copyright © 2001 Randy Glasbergen. www.glasbergen.com

"I SPENT TEN MONTHS RE-PROGRAMMING THE SIMS SO THEY CAN TALK . . . AND THE FIRST THING THEY SAID WAS 'GET A LIFE'!"

Programmer in prison.

"What is more in *Embedded System Design* beyond boring programming?"

"Software (and working with the Internet) is a good starting point."

https://www.youtube.com/watch?v=ul1MINoh-z4

Engineers to create value

Front-end Development

Web front-end, Flash, html5, JavaScript, etc.

Back-end Development

Java, Python, PHP (Hypertext Preprocessor), .NET, C/C++/C#, VB, Delphi, Perl, Ruby, etc.

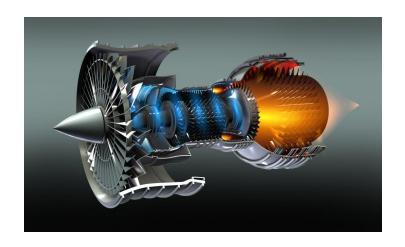
Mobile Development

Android, iOS, etc.

Hardware Development

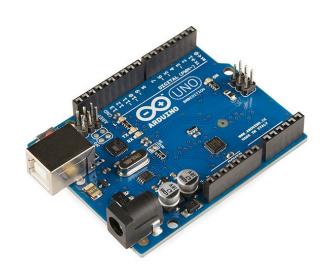
PCB, Driver development, System Integration, FPGA, DSP, ARM, RF, Automaton, etc.

Design

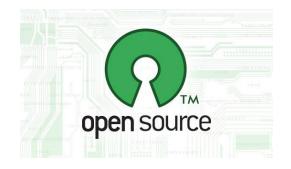

Try to avoid "low threshold" – Low barriers to entry.

Data Analysis

You are an engineer – You are the engine!



Questions that we engineers should ask ourselves in what we do:


- Value and contribution?
- What is needed? How to make it better?
- What is the root of the problem I try to solve?
- The Innovation. What aspects are original, unusual, novel, disruptive, or transformative compared to the current state of the art?
- What are the resources you expect will be needed to implement your approach?

Resource: Open-Source Software and Hardware

▶ Sharing creates enormous economic value [1] and can drive a high return on investment for investors [2].

^[1] Pearce, J.M. (2015) Quantifying the Value of Open Source Hardware Development. Modern Economy, 6, 1-11.

^[2] Joshua M. Pearce. (2015) Return on Investment for Open Source Hardware Development. Science and Public Policy.

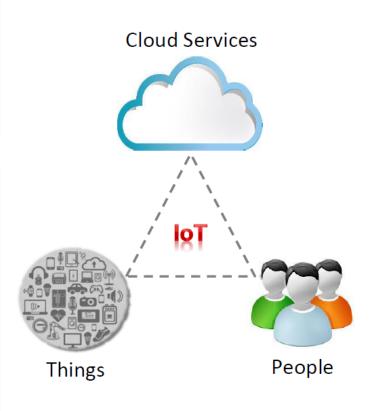
Industrie 4.0

Industry automation which draws together Cyber-Physical Systems, the Internet of Things, and the Internet of Services.

Internet of Things (IoT)

Experts estimate that the IoT will consist of almost 50 billion objects by 2020[1].

^[1] Dave Evans (April 2011). "The Internet of Things: How the Next Evolution of the Internet Is Changing Everything" (PDF). Cisco. Retrieved 4 September 2015.


IoT

What is the loT?

Things, people and cloud services getting connected via the Internet to enable new use cases and business models

How is IoT different than M2M?

- M2M focused on connecting machines – mainly proprietary closed systems
- IoT is about harmonizing the way humans and machines connect using common public services

IoT - Why now?

- More products are adding intelligence with MCUs to support more sophisticated control
- Adding connectivity is getting easier & cheaper
- Low-power semiconductors allow for more batterypowered applications
- Wi-Fi and internet access broadly available
- Tablets, PCs and Smartphones broadly available can be leveraged as a gateway
- Connectivity brings control, sensing & ability to update system software over the internet

IoT is an enabling technology

Wearables

- Entertainment
- Fitness
- Smart watch
- Location and tracking

Building & Home Automation

- Access control
- Light & temp control
- Energy optimization
- Predictive maintenance
- Connected appliances

Smart Cities

- Residential E-meters
- Smart street lights
- Pipeline leak detection
- Traffic control
- Surveillance cameras
- Centralized and integrated system control

Smart Manufacturing

- Flow optimization
- Real time inventory
- Asset tracking
- Employee safety
- Predictive maintenance
- Firmware updates

Health Care

- Remote monitoring
- Ambulance telemetry
- Drugs tracking
- Hospital asset tracking
- Access control
- Predictive maintenance

Automotive

- Infotainment
- Wire replacement
- Telemetry
- · Predictive maintenance
- C2C and C2I

IoT challenges

Sensing

Sensing technologies that address a wide variety of applications

Biosensing

Humidity

Position / motion

Chemical

Light

Pressure

Current / power

Material composition

Proximity

Occupancy

Temperature

Connectivity

- Fast 10Mbps++
- Direct Internet connection
- Home & enterprise apps

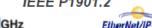
- Low power mesh network
- · Smart metering & lighting
- Moving into home automation

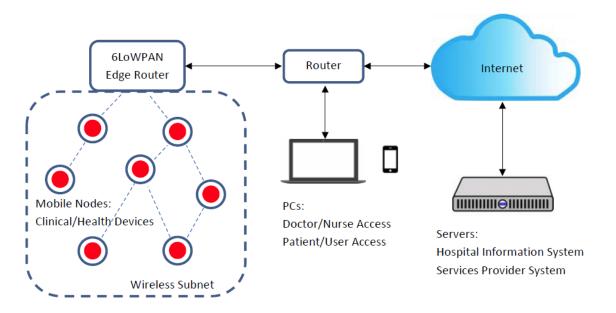
- Lowest power BLE
- Connect to tablet/phone
- Moving to industrial, automotive

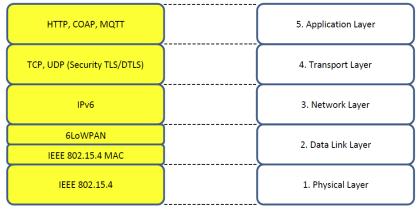
- Low power & long range
- Native IP-based network
- Home gateways and security

- Data over power lines (OFDM)
- Developed for smart grid
- Lighting, solar, appliances

- Fast, low latency Ethernet
- Real-time industrial control
- Information technology

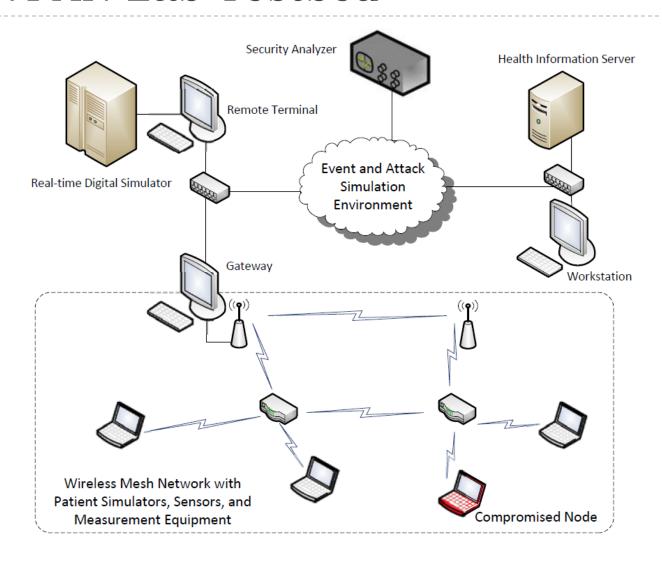




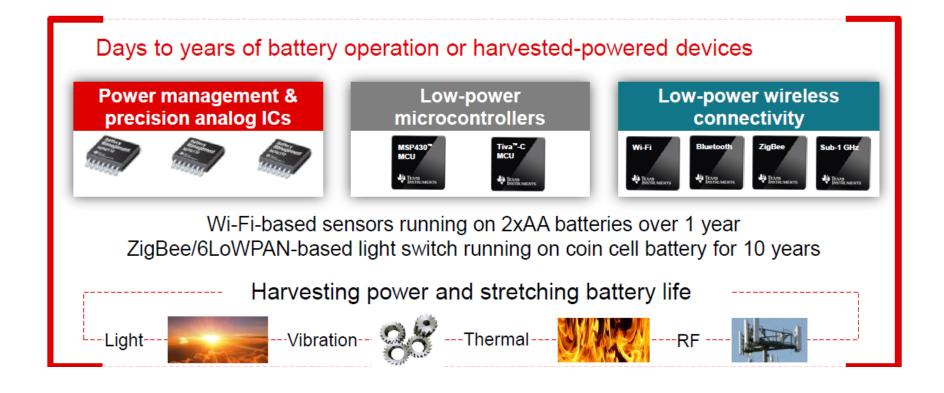


6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks)

IoT for ubiquitous healthcare


The 6LoWPAN stack and the corresponding OSI model

6LoWPAN Stack


Simplified OSI Model

6LoWPAN Lab Testbed

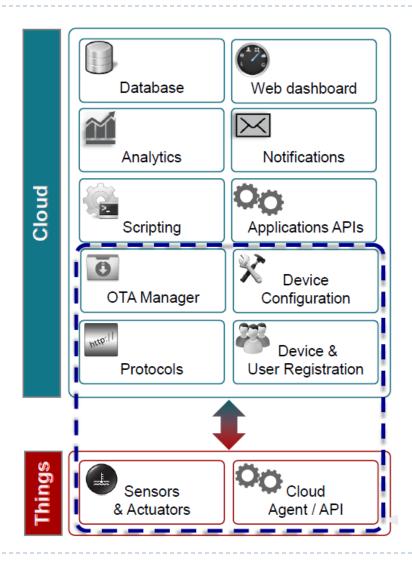
Low-power

Security

Security solutions to prevent, detect and respond to unintended or malicious behavior

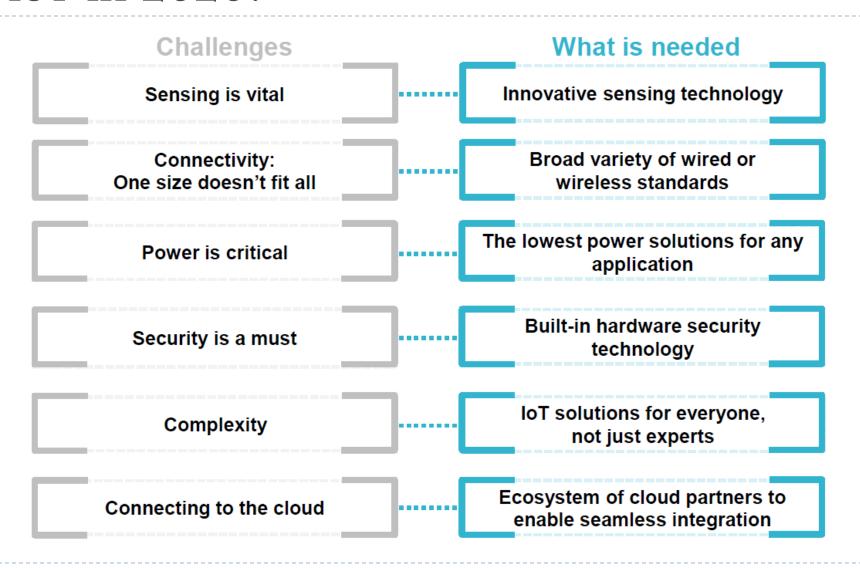
Protecting manufacturers' and consumers' devices, solutions and services

Connection to the Cloud



Faster time to market of new devices and services based on TI's IoT silicon solutions.

Meets individual needs of manufacturers.



Typical IoT cloud services

IoT in 2020?

We engineers need an entrepreneurial spirit

▶ Does it work? → Does it create value?

 System life-cycle, adaptation to the needs - Gradually modify you designs according to customer needs

Entrepreneurship is an experiment...that failure is acceptable and learning from failure is important.

"You only have to be right once!"

More questions that we engineers should ask ourselves:

- The Customer. The expected customer for your innovation. What customer needs or market pain points are you addressing?
- The Value Proposition. What are the benefits to the customer of your innovation? What is the key differentiator of your company or technology?
- The Innovation. What aspects are original, unusual, novel, disruptive, or transformative compared to the current state of the art?
- What are the market and addressable market for the innovation? What are the business economics and market drivers in the target industry?
- Market opportunity? Business model? Competition?
- What are the key risks in bringing your innovation to market?
- What is your commercialization approach? Potential economic benefits associated with your innovation?
- What are the resources you expect will be needed to implement your commercialization approach?

Resource

Crowdfunding?

Small Business Innovation Research (SBIR)

https://www.sbir.gov/

