

Liang Dong

Electrical and Computer Engineering

Baylor University

ELC4438: Embedded System Design
Finite State Machine for RISC SPM

Partitioned Sequential Machine

2

Datapath Logic

Datapath

Registers

Finite State Machine
Control signals

Clock

External

Control

Inputs

Datapaths

Clock

Status signals

Control Unit

Datapath Unit

Application-Driven Architecture

3

Application

Architecture Instruction Set

Control

Sequence

Control Unit FSM

Design Example – Binary Counter

• Synchronous 4-bit binary counter

• Incremented by a count of 1 at each active edge of the clock
– enable must be asserted for counting to occur

– rst overrides all activity and drives the count to a value of 0000.

• Wrap count to 0 when the count reaches 11112.

• Functional elements of the architecture of the datapath unit:
– 4-bit register to hold count,

– mux that steers either count or the sum of count and 1 to the input of
the register

– a 4-bit adder to increment count

4

Binary Counter Architecture

5

Mux

Count_Register

+

Control_Unit

Datapath_Unit_Arch

enable

clk

rst

count

1

Binary_Counter_Arch

Alternative Counter Design
- Explicit Finite State Machine

• Can this grow to larger counters?
6

0000 0001 0010 0011

0111 0110 0101 0100

1000 1001 1010 1011

1111 1110 1101 1100

e
n

a
b

le
enable enable

enableenableenable

enable enable enable

enableenableenable

rst

enable

Project Control

• Project is application oriented
– Datapath and functional units designed to meet needs of

instruction set

• Reduced complexity by splitting control / datapath.

• FSM allows for easy addition of operations

– Allows use of single functional unit for multiple operations

• Use counters with FSM to reduce number of states

– 1 Add state – use counter to determine when operation
done

7

RISC Stored Program Machine (SPM)

8

R0

R1

R2

R3

PC

0 1 2 3 4
Mux_1

IR

Add_R

Memory
ALU

Reg_Y

Reg_Z

0 1 2
Mux_2

Bus_2

Bus_1

Controller

Load_Add_Reg

Load_PC
Inc_PC

Sel_Bus_1_Mux

Sel_Bus_2_Mux

Load_R0

Load_R1

Load_R2

Load_R3

Load_Reg_Y

Load_Reg_Z

opcode

Load_IR

write

Processor

RISC_SPM

ad
dr
es
s

alu_zero_flag

Zflag zero

instruction

mem_word

Instruction Sequence

• Fetch instruction from memory
• Decode instruction and fetch operands
• Execute instruction

– ALU operations
– Update storage registers
– Update program counter (PC)
– Update the instruction register (IR)
– Update the address register (ADD_R)
– Update memory
– Control datapaths

9

Control Functions

• Functions of the control unit:

– Determine when to load registers

– Select the path of data through the multiplexers

– Determine when data should be written to
memory

– Control the three-state busses in the architecture.

10

Control Signals

Control Signal Action

Load_Add_Reg Loads the address register

Load _PC Loads Bus_2 to the program counter

Load_IR Loads Bus_2 to the instruction register

Inc_PC Increments the program counter

Sel_Bus_1_Mux Selects among the Program_Counter, R0, R1, R2, and R3
 to drive Bus_1

Sel_Bus_2_Mux Selects among Alu_out, Bus_1, and memory to drive Bus_2

Load_R0 Loads general purpose register R0

Load_R1 Loads general purpose register R1

Load_R2 Loads general purpose register R2

Load_R3 Loads general purpose register R3

Load_Reg_Y Loads Bus_2 to the register Reg_Y

Load Reg_Z Stores output of ALU in register Reg_Z

write Loads Bus_1 into the SRAM memory
11

R0

R1

R2

R3

PC

0 1 2 3 4
Mux_1

IR

Add_R

Memory
ALU

Reg_Y

Reg_Z

0 1 2
Mux_2

Bus_2

Bus_1

Controller

Load_Add_Reg

Load_PC
Inc_PC

Sel_Bus_1_Mux

Sel_Bus_2_Mux

Load_R0

Load_R1

Load_R2

Load_R3

Load_Reg_Y

Load_Reg_Z

opcode

Load_IR

write

Processor

RISC_SPM

ad
dr
es
s

alu_zero_flag

Zflag zero

instruction

mem_word

RISC SPM: Instruction Set [1]

• The design of the controller depends on the
processor's instruction set.

• RISC SPM has two types of instructions.

• Short Instruction – 8 bits (basic arithmetic)

• Long Instruction – 16 bits (accessing memory)

12

opcode source destination

0 0 1 0 0 1 1 0

opcode source destination

address

0 1 1 0 1 0
don't

care

don't

care

0 0 0 1 1 1 0 1

RISC SPM: Instruction Set [2]

13 * Requires a second word of data; ? denotes a don't care.

opcode

NOP

ADD

AND

NOT

SUB

RD*

WR*

BR*

BRZ*

Instr
Instruction Word

Action

none

dest <= src + dest

dest <= src && dest

dest <= ~src

dest <= dest - src

dest <= memory[Add_R]

PC <= memory[Add_R]

PC <= memory[Add_R]

memory[Add_R] <= src

src dest

0000 ?? ??

0001 src dest

0011 src dest

0100 src dest

0010 src dest

0101 ?? dest

0110 src ??

0111 ?? ??

1000 ?? ??

HALT Halts execution until reset1111 ?? ??

Controller Design

• Three phases of operation: fetch, decode, and
execute.

– Fetching: Retrieves an instruction from memory (2
clock cycles)

– Decoding: Decodes the instruction, manipulates
datapaths, and loads registers (1 cycle)

– Execution: Generates the results of the instruction
(0, 1, or 2 cycles)

14

Controller States [1]

S_idle State entered after reset is asserted. No action.

S_fet1 Load the Add_R with the contents of the PC

S_fet2 Load the IR with the word addressed by the Add_R,

 Increment the PC

S_dec Decode the IR

 Assert signals to control datapaths and register transfers.

S_ex1 Execute the ALU operation for a single-byte instruction,

 Conditionally assert the zero flag, Load the destination register

15

Controller States [2]

S_rd1 Load Add_R with the second byte of an RD instruction

 Increment the PC.

S_rd2 Load the destination register with memory[Add_R]

S_wr1 Load Add_R with the second byte of a WR instruction,

 Increment the PC.

S_wr2 Write memory[Add_R] with the source register

S_br1 Load Add_R with the second byte of a BR instruction

 Increment the PC.

S_br2 Load the PC with the memory[Add_R]

S_halt Default state to trap failure to decode a valid instruction

Which states are similar?

16

Controller ASM: NOP/ADD/SUB/AND

17

rst

NOP

0

ADD

Sel_R0

Sel_Bus_1

Load_Reg_Y1

0

1

1

Sel_R1

Sel_Bus_ 1

Load_Reg_Y

Sel_R2

Sel_Bus_1

Load_Reg_Y

src = R2

0

1

Sel_R3

Sel_Bus_ 1

Load_Reg_Y

0

Sel_R0

Sel_ALU

Load_R0

Load_Reg_Z

0

1

1

 Sel_R1

Sel_ALU

Load_R1

Load_Reg_Z

Sel_R2

Sel_ALU

Load_R2

Load_Reg_Z

0

Sel_R3

Sel_ALU

Load_R3

Load_Reg_Z

0

SUB

AND

1

0

1

0

1

0

...

src = R0

src = R1

dest = R0

dest = R1

dest = R2

1

S_idle

S_dec

S_ex1

0

3

4

 S_fet2 /

Sel_Mem, Load_IR,

Inc_PC2

 S_fet1 / Sel_PC

Sel_Bus_1,

Load_Add_R1

Instruction Fetch

ExecuteInstruction Decode

Controller ASM: NOT

18

rst

NOP

0

Sel_R0

Sel_Bus_11

0

1

1

Sel_R1

Sel_Bus_ 1

Sel_R2

Sel_Bus_1
src = R2

0

1

Sel_R3

Sel_Bus_ 1

0

Load_R0

Sel_ALU

Load_Reg_Z

0

1

1

Load_R1

Sel_ALU

Load_Reg_Z

Load_R2

Sel_ALU

Load_Reg_Z

0

Load_R3

Sel_ALU

Load_Reg_Z

0

NOT

0

1

...

src = R0

src = R1

dest = R0

dest = R1

dest = R2

1

S_idle

S_dec

0

3

...

 S_fet2 /

Sel_Mem, Load_IR,

Inc_PC2

 S_fet1 / Sel_PC

Sel_Bus_1,

Load_Add_R1

Instruction Decode

Instruction Fetch

Execute

Controller ASM: RD

19

rst

NOP

0

Sel_PC

Sel_Bus_1

Load_Add_R1

Sel_Mem

Load_R0

0

1

1

Sel_Mem

Load_R1

Sel_Mem

Load_R2

0

Sel_Mem

Load_R3

0

RD

0

1

0

...

dest = R0

dest = R1

dest = R2

1

S_idle

S_dec

S_rd1 / Sel_Mem

Load_Add_R

Inc_PC

0

3

5

...

S_rd2

6

 S_fet2 /

Sel_Mem, Load_IR,

Inc_PC2

 S_fet1 / Sel_PC

Sel_Bus_1,

Load_Add_R1

Instruction Fetch

Instruction Decode

Execute

Controller ASM: WR

20

S_wr1 / Sel_Mem

Load_Add_R

Inc_PC

rst

NOP

0

Sel_PC

Sel_Bus_1

Load_Add_R1

Sel_R0

write

0

1

1

Sel_R1

write

Sel_R2

write

0

Sel_R3

write

0

WR

0

1

0

...

src = R0

src= R1

src = R2

1

S_idle

S_dec

0

3

7

...

S_wr2

8

 S_fet2 /

Sel_Mem, Load_IR,

Inc_PC2

 S_fet1 / Sel_PC

Sel_Bus_1,

Load_Add_R1

Instruction Fetch

Instruction Decode

Execute

Controller ASM: BR/BRZ

21

rst

NOP

0

Sel_PC

Sel_Bus_1

Load_Add_R1

Sel_Mem

Load_PC

BR

0

1

0

S_idle

S_dec

0

3

9

...

S_br2

10

BRZ

1

0

zero

1

0
Inc_PC

S_halt

11

S_br1

 / Sel_Mem

Load_Add_R

 S_fet2 /

Sel_Mem, Load_IR,

Inc_PC2

 S_fet1 / Sel_PC

Sel_Bus_1,

Load_Add_R1

Instruction Fetch

Instruction Decode

Execute

Questions on RISC SPM

• Why not include memory as part of the
processing unit?

• How could the design be simplified?

22

Testing RISC SPM

• Clear the memory
• Load the memory with a simple program and

data
• Execute simple program

– Reads values from memory into registers
– Perform subtraction to decrement a loop counter
– Add register contents while executing the loop
– Branch to a halt when the loop index is 0

• Probe memory locations and control signals to
ensure correct execution

23

System on Chip (SoC)

24

System on Chip cores

Reusability

portability

flexibility

Predictability, performance, time to market

Soft

core

Firm

core

Hard

core

