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Application-Driven Architecture 
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Design Example – Binary Counter 

• Synchronous 4-bit binary counter  

• Incremented by a count of 1 at each active edge of the clock 
– enable must be asserted for counting to occur 

– rst overrides all activity and drives the count to a value of 0000. 

• Wrap count to 0 when the count reaches 11112. 

• Functional elements of the architecture of the datapath unit: 
– 4-bit register to hold count, 

– mux that steers either count or the sum of count and 1 to the input of 
the register 

– a 4-bit adder to increment count 
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Binary Counter Architecture 
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Alternative Counter Design 
- Explicit Finite State Machine 

• Can this grow to larger counters? 
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Project Control 

• Project is application oriented 
– Datapath and functional units designed to meet needs of 

instruction set 

 
• Reduced complexity by splitting control / datapath. 

 
• FSM allows for easy addition of operations 

– Allows use of single functional unit for multiple operations 

 
• Use counters with FSM to reduce number of states 

– 1 Add state – use counter to determine when operation 
done 
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RISC Stored Program Machine (SPM) 
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Instruction Sequence 

• Fetch instruction from memory 
• Decode instruction and fetch operands 
• Execute instruction 

– ALU operations 
– Update storage registers 
– Update program counter (PC) 
– Update the instruction register (IR) 
– Update the address register (ADD_R) 
– Update memory 
– Control datapaths 
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Control Functions 

• Functions of the control unit: 

– Determine when to load registers 

– Select the path of data through the multiplexers 

– Determine when data should be written to 
memory 

– Control the  three-state busses in the architecture. 
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Control Signals 

Control Signal Action 

Load_Add_Reg Loads the address register 

Load _PC  Loads Bus_2 to the program counter 

Load_IR  Loads Bus_2 to the instruction register 

Inc_PC  Increments the program counter  

Sel_Bus_1_Mux Selects among the Program_Counter, R0, R1, R2, and R3 
   to drive Bus_1 

Sel_Bus_2_Mux Selects among Alu_out, Bus_1, and memory to drive Bus_2 

Load_R0  Loads general purpose register R0 

Load_R1  Loads general purpose register R1 

Load_R2  Loads general purpose register R2 

Load_R3  Loads general purpose register R3 

Load_Reg_Y Loads Bus_2 to the register Reg_Y 

Load Reg_Z Stores output of ALU in register Reg_Z 

write  Loads Bus_1 into the SRAM memory 
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RISC SPM: Instruction Set [1] 

• The design of the controller depends on the 
processor's instruction set. 

• RISC SPM has two types of instructions. 

• Short Instruction – 8 bits (basic arithmetic) 

 
 

• Long Instruction – 16 bits (accessing memory) 
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opcode source destination
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RISC SPM: Instruction Set [2] 

 
 

13 * Requires a second word of data; ? denotes a don't care.

opcode

NOP

ADD

AND

NOT

SUB

RD*

WR*

BR*

BRZ*

Instr
Instruction Word

Action

none

dest <= src + dest

dest <= src && dest

dest <= ~src

dest <= dest - src

dest <= memory[Add_R]

PC <= memory[Add_R]

PC <= memory[Add_R]

memory[Add_R] <= src

src dest

0000 ?? ??

0001 src dest

0011 src dest

0100 src dest

0010 src dest

0101 ?? dest

0110 src ??

0111 ?? ??

1000 ?? ??

HALT Halts execution until reset1111 ?? ??



Controller Design 

• Three phases of operation: fetch, decode, and 
execute.  

– Fetching: Retrieves an instruction from memory (2 
clock cycles) 

– Decoding: Decodes the instruction, manipulates 
datapaths, and loads registers (1 cycle) 

– Execution: Generates the results of the instruction  
(0, 1, or 2 cycles) 
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Controller States [1] 

S_idle State entered after reset is asserted.  No action. 

S_fet1 Load the Add_R with the contents of the PC   

S_fet2 Load the IR with the word addressed by the Add_R, 

  Increment the PC 

S_dec Decode the IR 

  Assert signals to control datapaths and register transfers. 

S_ex1 Execute the ALU operation for a single-byte instruction,  

  Conditionally assert the zero flag, Load the destination register 
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Controller States [2] 

S_rd1 Load Add_R with the second byte of an RD instruction 

  Increment the PC. 

S_rd2 Load the destination register with memory[Add_R] 

S_wr1 Load Add_R with the second byte of a WR instruction,  

  Increment the PC. 

S_wr2 Write memory[Add_R] with the source register 

S_br1 Load Add_R with the second byte of a BR instruction  

  Increment the PC. 

S_br2 Load the PC with the memory[Add_R] 

S_halt Default state to trap failure to decode a valid instruction 

 

Which states are similar?  
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Controller ASM: NOP/ADD/SUB/AND 
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Controller ASM: NOT 
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Controller ASM: RD 
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Controller ASM: WR 
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Controller ASM: BR/BRZ 
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Questions on RISC SPM 

• Why not include memory as part of the 
processing unit?  

 

• How could the design be simplified? 

22 



Testing RISC SPM 

• Clear the memory 
• Load the memory with a simple program and 

data 
• Execute simple program 

– Reads values from memory into registers 
– Perform subtraction to decrement a loop counter 
– Add register contents while executing the loop 
– Branch to a halt when the loop index is 0 

• Probe memory locations and control signals to 
ensure correct execution 
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System on Chip (SoC) 
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