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Frequency-domain Analysis of LTl Systems

@ Inverse Systems and Deconvolution
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Inverse Systems and Deconvolution

@ In many practical applications we are given an output signal from a
system whose characteristics are unknown and we are asked to
determine the input signal.
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Inverse Systems and Deconvolution

@ In many practical applications we are given an output signal from a
system whose characteristics are unknown and we are asked to
determine the input signal.

@ Channel distortion and a need for a corrective system: Equalizer,
Inverse system

@ An inverse system — The corrective system has a frequency response
which is basically the reciprocal of the frequency response of the
system that caused the distortion.

@ Deconvolution — The inverse system operation that takes y(n) and
produces x(n).

@ System ldentification — In short, to find h(n) or H(w).
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Invertibility of Linear Time-Invariant Systems

A system is said to be invertible if there is a one-to-one correspondence
between its input and output signals.

An invertible system: T
The inverse system: 71

w(n) =T y(n)] =T H{TIx(n)]} = x(n)

Identity system

.10 IR TN S I A,
;' Direct Inverse :
: system system ;
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Invertibility of Linear Time-Invariant Systems

LTI system T has impulse response h(n); the inverse system 7! has
impulse response hy(n).

w(n) = h;(n) ® h(n) ® x(n) = x(n)
h(n) @ hy(n) = 6(n)

H(z)H(z) =1

Therefore,

Liang Dong (Baylor University) Frequency-domain Analysis of LTI Systems April 18, 2017 5/15



Invertibility of Linear Time-Invariant Systems

LTI system 7 has impulse response h(n); the inverse system 7 ! has
impulse response h;(n).

1
H =
&)= )
If H(z) has a rational system function
B(2)
H =
(2) A2)
then A2)
z
H
/(Z) B(Z)
@ The zeros of H(z) become the poles of the inverse system, and vice
versa.
e If H(z) is an FIR system, then H,(z) is an all-pole system, and vice
versa.

Liang Dong (Baylor University) Frequency-domain Analysis of LTI Systems April 18, 2017 6 /15



Invertibility of Linear Time-Invariant Systems

h(n) ® hy(n) = d4(n)

We assume that the system and its inverse are causal. Then this equation
simplifies to

Zh Yhi(n— k) =4(n)

For n =0, hy(0) = 1/h(0).
For n > 1, hy(n) can be obtained recursively
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Minimum-Phase, Maximum-Phase, and Mixed-Phase

Systems
e.g.,
1
Hi(z) = 1—1—52
Hy(z) = ~+z*
5
|[Hi(w)| = [|Ha(w)| = Z+cosw
sinw
éif{ = —_ t -1 -
1) Wt tan 0.5 + cosw
sinw
ZH. = — t -1_>*
h(w) w + tan P
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Minimum-Phase, Maximum-Phase, and Mixed-Phase

Systems
sinw
ZH = - tan !l ——
1(w) Wt 0.5 + cosw
sinw
ZH = - tan” ! ——
2(w) W 2 + cosw
8)(w) B(ew)
4 e

Minimum-phase: ZH(mw) — ZH(0) = 0; Maximum-phase:
ZH(m) — ZH(0) = 7.
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Minimum-Phase, Maximum-Phase, and Mixed-Phase

Systems

For an FIR system that has M zeros,

H(w) = bo(1 — z1€7°)(1 — e @) -+ - (1 — ziye™¥)

@ When all zeros are inside the unit circle, Minimum-phase:
ZH(m) — ZH(0) = 0;

@ When all zeros are outside the unit circle, Maximum-phase:
ZH(m) — ZH(0) = M.

If the FIR system with M zeros has some of its zeros inside the unit circle
and the remaining zeros outside the unit circle, it is called a mixed-phase
system or a nonminimum-phase system.
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Minimum-Phase, Maximum-Phase, and Mixed-Phase

Systems

Since the derivative of the phase characteristic of the system is a measure
of the time delay that signal frequency components undergo in passing
through the system,

@ a minimum-phase characteristic implies a minimum delay function;

@ a maximum-phase characteristic implies that the delay characteristic
is also maximum.

Because
|H(w)[> = H(2)H(z )| =i

if we replace a zero zj of the system by its inverse //z, the magnitude
characteristic of the system does not change.

Place zeros inside unit circle for minimum phase.
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Minimum-Phase, Maximum-Phase, and Mixed-Phase

Systems

Extend to IIR systems that have rational system functions

B(z)

1) =4)

It is minimum-phase, if all its poles and zeros are inside the unit circle.

For a stable and causal system, the system is maximum phase if all the
zeros are outside the unit circle.

@ A stable pole-zero system that is minimum phase has a stable inverse
which is also minimum phase. Why?

@ Maximum-phase systems and mixed-phase systems result in unstable
inverse systems.
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Decomposition of Nonminimum-phase Pole-zero Systems.

Any nonminimum-phase pole-zero system can be expressed as

H(z) = Humin(2)Hap(2)
H(z) is causal and stable.

) is
B(z) = B1(z)Ba(z), where B;(z) has all its roots inside the unit circle,
B>(z) has all its roots outside the unit circle.

Then,
) = BB
Hap(z) = Bf(zz(i)l)

Hap(z) is a stable, all-pass, maximum-phase system.
Group delay: 7g(w) = 7)7"(w) + 757 (w)
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System ldentification and Deconvolution

The system can be identified uniquely if it is known causal.
Alternatively, if the system is causal,

y(n) =Y " h(k)x(n—k), n>0
k=0

hence, recursively, we have

—y(0)
ho) = 7o)
W) = y(n) — Z;éh(k)X(n—k)7 n>1

x(0)
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System ldentification and Deconvolution

The crosscorrelation method is an effective and practical method for
system identification.

ryx(m) = Z h(k)rs(m — k) = h(m) & ry(m)

Syx(w) = H(w)Sw(w) = H(w)| X(w)|?
Therefore,

Su(@) | Splw)
A =3 (@)~ XW)P
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