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Frequency-domain Analysis of LTl Systems

@ Linear Time-Invariant Systems as Frequency-Selective Filters
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Linear Time-Invariant Systems as Frequency-Selective

Filters
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@ The nature of this filtering action is R
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Linear Time-Invariant Systems as Frequency-Selective

Filters
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@ By proper selection of the coefficients

ax's and by's, we can design % : %

frequency-selective filters. o e T
. : : R —
These filters pass signals with frequency 7 ' )
components in some bands while they o e
attenuate signals containing frequency
components in other frequency bands. ] ;mp
e e
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Ideal Filter Characteristics

A filter with frequency response

H(w) = Ce ™m0, w1 < w < wy
1 0, otherwise

where C and ng are constants.

Y(w) = X(w)H(w)= CX(w)e I«
y(n) = Cx(n—np)

@ The filter output is simply a delayed and amplitude-scaled version of
the input signal.

@ A pure delay is usually tolerable and is not considered a distortion of
the signal. Neither is amplitude scaling.

Therefore, ideal filters have a linear phase characteristic within their
passband, that is,
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Ideal Filter Characteristics

A filter with frequency response

H(w) = Ce ¥m w1 < w < wy
] 0, otherwise

where C and ng are constants.

Ideal filters have a linear phase characteristic within their passband, that is,

O(w) = —wng
Group delay of the filter
dO(w)
Tg((d) = - dw

Linear phase = group delay is constant. In this case, all frequency
components of the input signal undergo the same time delay.
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Ideal Filter Characteristics

“Ideal” filter:

@ Impulse response is a sinc function.
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Ideal Filter Characteristics

“Ideal” filter:
@ Impulse response is a sinc function.

@ This filter is not causal and it is not absolutely summable and
therefore unstable.
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Ideal Filter Characteristics

“Ideal” filter:
@ Impulse response is a sinc function.

@ This filter is not causal and it is not absolutely summable and
therefore unstable.

@ Design some simple digital filters by the placement of poles and zeros
in the z -plane.
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Ideal Filter Characteristics

“Ideal” filter:
@ Impulse response is a sinc function.

@ This filter is not causal and it is not absolutely summable and
therefore unstable.

@ Design some simple digital filters by the placement of poles and zeros
in the z -plane.

@ The location of poles and zeros affects the frequency response
characteristics of the system.
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The Pole-Zero Placement Method

The basic principle underlying the pole-zero placement method:

@ Locate poles near points of the unit circle corresponding to
frequencies to be emphasized, and
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The Pole-Zero Placement Method

The basic principle underlying the pole-zero placement method:

@ Locate poles near points of the unit circle corresponding to
frequencies to be emphasized, and

@ Locate zeros near the frequencies to be deemphasized.
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The Pole-Zero Placement Method

The basic principle underlying the pole-zero placement method:
@ Locate poles near points of the unit circle corresponding to
frequencies to be emphasized, and
@ Locate zeros near the frequencies to be deemphasized.
@ All poles should be placed inside the unit circle in order for the filter

to be stable.
However, zeros can be placed anywhere in the z -plane.
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The Pole-Zero Placement Method

The basic principle underlying the pole-zero placement method:
@ Locate poles near points of the unit circle corresponding to
frequencies to be emphasized, and
@ Locate zeros near the frequencies to be deemphasized.

@ All poles should be placed inside the unit circle in order for the filter
to be stable.
However, zeros can be placed anywhere in the z -plane.

@ All complex zeros and poles must occur in complex-conjugate pairs in
order for the filter coefficients to be real.
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The Pole-Zero Placement Method

The system function:

H(Z) Hk 1( — Zk 21)
Hk 1 (1= pez™?)

Usually, by is selected such that |H(wo)| = 1. wp in the passband of the
filter.

N> M.
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Lowpass, Highpass, and Bandpass Filters

@ Design of lowpass digital filters: the poles should be placed near the
unit circle at points corresponding to low frequencies (near w = 0)
and zeros should be placed near or on the unit circle at points
corresponding to high frequencies (near w = 7).

@ Design of highpass digital filters: The opposite.

D
NVANY,

Lowpass

Highpass
10 / 20
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A Simple Lowpass-to-Highpass Filter Transformation

Frequency translation of 7 rad:
Hhp(w) = Hip(w — )

Therefore, '
hup(n) = €™ hip(n) = (=1)"hyp(n)

e.g., Lowpass filter by difference eqn.

y(n) = Zaky(n—k)—i-Zbkx n—k

A highpass filter can be derived: (How?)

2

y(n) = Z —Dkay(n— k) + Z Y¥bix(n — k)
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Digital Resonator

@ A digital resonator is a special two-pole
bandpass filter with the pair of ‘h
complex- conjugate poles located near N, re)
the unit circle. w

@ The filter has a large magnitude ®
response (i.e., it resonates) in the 5
vicinity of the pole location. 3 o

@ The angular position of the pole Gl ot
determines the resonant frequency of oz R
the filter. .

o Digital resonators are useful in many % o i .
applications, including bandpass 4 s <

filtering and speech generation. =
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Digital Resonator

A resonant peak at or near w = wy,

p12 = reijwo, O0<r«l1

We can select up to two zeros —
One choice is to locate the zeros at the origin.
The other choice is to locate a zero at z =1 and a zero at z = —1. This

choice completely eliminates the response of the filter at frequencies w = 0
and w = 7.
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Digital Resonator

Digital resonator with zeros at the origin:

bo
(1 — refwoe—iw)(1 — re—jwoe—iw)

H(w) =

We select by so that |H(wo)| = 1.

bo
H(wo) = -- .
(o) = T reme Tm)(1 — rede 0]
(1 —=r)(1 — re~j2w0)
bo

H(wo)| = =1

[H(wo) (1 —r)\/1+ r2 — 2r cos 2wq

by = (1—r)\/1+r2—2rC052w0
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Digital Resonator

Digital resonator with zeros at the origin:

b
Hw) = 7z refwoe_jw)(i — re~je0e i)
bo

Hol = Gy @)

ZHw) = 2w—$1(w) — dPa(w)

Ui(w) = \/1 + r2 — 2r cos(wp — w)

Ur(w) = \/1 + r2 — 2rcos(wop + w)
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Digital Resonator

Ui(w) = \/1 + r2 — 2rcos(wg — w)

Ur(w) = \/1 + r2 — 2r cos(wo + w)

1 2
min Us (w) Uz (w) = w, = cos™* (;Lr coswo>
w r
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Digital Resonator

Digital resonator with zeros z =1 and z = —1:

(1—e @) (1+ev)
O(1 = refoe—iw)(1 — re—jwoe—Jw)

Hw) =

H(w)| = bO\/2(1 — cos 2w)

Ui (w) Uz (w)

The actual resonant frequency is altered.
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All-Pass Filters

Hw)|=1, 0<w<m

e.g.
@ a pure delay system H(z) = z7.
Q
N —N+k
Hz) — k=0 T g
> k=0 aKZ~
_ _nAEz™Y)
A(z2)

where A(z) = ZLV:O az k.

[HW)* = H(2)H(1/2)|;—ew =1
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All-Pass Filters

If zp is a pole of H(z), then 1/z is a zero of H(z).

The poles and zeros are reciprocals of one another.
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All-Pass Filters

All-pass filter with real coefficients:

Nep _ N _ _ X
Haplz) = [ 2t T e B = 50)
2P 1— gzt Pt (1—- Bz~ Y)(1 - Brz1)
where there are Ng real poles and zeros and N¢ complex-conjugate pairs
of poles and zeros.

k=1

For causal and stable systems, 1 < o, < 1 and |§]| < 1.

Q: What is all-pass filter for?

A: All-pass filters find application as phase equalizers. When placed in
cascade with a system that has an undesired phase response, a phase
equalizer is designed to compensate for the poor phase characteristics of
the system and therefore to produce an overall linear-phase response.
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