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Frequency-domain Analysis of LTI Systems

1 Linear Time-Invariant Systems as Frequency-Selective Filters
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Linear Time-Invariant Systems as Frequency-Selective
Filters

A LTI system performs a type of
discrimination or filtering among the
various frequency components at its
input.

The nature of this filtering action is
determined by the frequency response
characteristics H(ω).
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Linear Time-Invariant Systems as Frequency-Selective
Filters

By proper selection of the coefficients
ak ’s and bk ’s, we can design
frequency-selective filters.

These filters pass signals with frequency
components in some bands while they
attenuate signals containing frequency
components in other frequency bands.
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Ideal Filter Characteristics

A filter with frequency response

H(ω) =

{
Ce−jωn0 , ω1 < ω < ω2

0, otherwise

where C and n0 are constants.

Y (ω) = X (ω)H(ω) = CX (ω)e−jωn0

y(n) = Cx(n − n0)

The filter output is simply a delayed and amplitude-scaled version of
the input signal.

A pure delay is usually tolerable and is not considered a distortion of
the signal. Neither is amplitude scaling.

Therefore, ideal filters have a linear phase characteristic within their
passband, that is,
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Ideal Filter Characteristics

A filter with frequency response

H(ω) =

{
Ce−jωn0 , ω1 < ω < ω2

0, otherwise

where C and n0 are constants.

Ideal filters have a linear phase characteristic within their passband, that is,

Θ(ω) = −ωn0

Group delay of the filter

τg (ω) = −dΘ(ω)

dω

Linear phase = group delay is constant. In this case, all frequency
components of the input signal undergo the same time delay.
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Ideal Filter Characteristics

“Ideal” filter:

Impulse response is a sinc function.

This filter is not causal and it is not absolutely summable and
therefore unstable.

Design some simple digital filters by the placement of poles and zeros
in the z -plane.

The location of poles and zeros affects the frequency response
characteristics of the system.
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The Pole-Zero Placement Method

The basic principle underlying the pole-zero placement method:

Locate poles near points of the unit circle corresponding to
frequencies to be emphasized, and

Locate zeros near the frequencies to be deemphasized.

All poles should be placed inside the unit circle in order for the filter
to be stable.
However, zeros can be placed anywhere in the z -plane.

All complex zeros and poles must occur in complex-conjugate pairs in
order for the filter coefficients to be real.
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The Pole-Zero Placement Method

The system function:

H(z) = b0

∏M
k=1(1− zkz

−1)∏N
k=1(1− pkz−1)

Usually, b0 is selected such that |H(ω0)| = 1. ω0 in the passband of the
filter.
N ≥ M.
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Lowpass, Highpass, and Bandpass Filters

Design of lowpass digital filters: the poles should be placed near the
unit circle at points corresponding to low frequencies (near ω = 0)
and zeros should be placed near or on the unit circle at points
corresponding to high frequencies (near ω = π).
Design of highpass digital filters: The opposite.
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A Simple Lowpass-to-Highpass Filter Transformation

Frequency translation of π rad:

Hhp(ω) = Hlp(ω − π)

Therefore,
hhp(n) = e jπnhlp(n) = (−1)nhlp(n)

e.g., Lowpass filter by difference eqn.

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

A highpass filter can be derived: (How?)

y(n) = −
N∑

k=1

(−1)kaky(n − k) +
M∑
k=0

(−1)kbkx(n − k)
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Digital Resonator

A digital resonator is a special two-pole
bandpass filter with the pair of
complex- conjugate poles located near
the unit circle.

The filter has a large magnitude
response (i.e., it resonates) in the
vicinity of the pole location.

The angular position of the pole
determines the resonant frequency of
the filter.

Digital resonators are useful in many
applications, including bandpass
filtering and speech generation.
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Digital Resonator

A resonant peak at or near ω = ω0,

p1,2 = re±jω0 , 0 < r < 1

We can select up to two zeros –

One choice is to locate the zeros at the origin.

The other choice is to locate a zero at z = 1 and a zero at z = −1. This
choice completely eliminates the response of the filter at frequencies ω = 0
and ω = π.
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Digital Resonator

Digital resonator with zeros at the origin:

H(ω) =
b0

(1− re jω0e−jω)(1− re−jω0e−jω)

We select b0 so that |H(ω0)| = 1.

H(ω0) =
b0

(1− re jω0e−jω0)(1− re−jω0e−jω0)

=
b0

(1− r)(1− re−j2ω0)

|H(ω0)| =
b0

(1− r)
√

1 + r2 − 2r cos 2ω0

= 1

b0 = (1− r)
√

1 + r2 − 2r cos 2ω0
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Digital Resonator

Digital resonator with zeros at the origin:

H(ω) =
b0

(1− re jω0e−jω)(1− re−jω0e−jω)

|H(ω0)| =
b0

U1(ω)U2(ω)

∠H(ω) = 2ω − Φ1(ω)− Φ2(ω)

U1(ω) =
√

1 + r2 − 2r cos(ω0 − ω)

U2(ω) =
√

1 + r2 − 2r cos(ω0 + ω)
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Digital Resonator

U1(ω) =
√

1 + r2 − 2r cos(ω0 − ω)

U2(ω) =
√

1 + r2 − 2r cos(ω0 + ω)

min
ω

U1(ω)U2(ω) =⇒ ωr = cos−1

(
1 + r2

2r
cosω0

)
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Digital Resonator

Digital resonator with zeros z = 1 and z = −1:

H(ω) = b0
(1− e−jω)(1 + e−jω)

(1− re jω0e−jω)(1− re−jω0e−jω)

|H(ω)| = b0

√
2(1− cos 2ω)

U1(ω)U2(ω)

The actual resonant frequency is altered.
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All-Pass Filters

|H(ω)| = 1, 0 ≤ ω ≤ π

e.g.,

1 a pure delay system H(z) = z−k .

2

H(z) =

∑N
k=0 akz

−N+k∑N
k=0 akz

−k
, a0 = 1

= z−N A(z−1)

A(z)

where A(z) =
∑N

k=0 akz
−k .

|H(ω)|2 = H(z)H(1/z)|z=e jω = 1
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All-Pass Filters

If z0 is a pole of H(z), then 1/z0 is a zero of H(z).

The poles and zeros are reciprocals of one another.
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All-Pass Filters

All-pass filter with real coefficients:

Hap(z) =

NR∏
k=1

z−1 − αk

1− αkz−1

NC∏
k=1

(z−1 − βk)(z−1 − β∗k)

(1− βkz−1)(1− β∗kz−1)

where there are NR real poles and zeros and NC complex-conjugate pairs
of poles and zeros.

For causal and stable systems, 1 < αk < 1 and |β| < 1.

Q: What is all-pass filter for?
A: All-pass filters find application as phase equalizers. When placed in
cascade with a system that has an undesired phase response, a phase
equalizer is designed to compensate for the poor phase characteristics of
the system and therefore to produce an overall linear-phase response.
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