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The Fourier Series for Continuous-Time Periodic Signals

A linear combination of harmonics (harmonically related complex
exponentials):

Synthesis Equation

x(t) =
∞∑

k=−∞
cke

j2πkF0t

Analysis Equation

ck =
1

Tp

∫
Tp

x(t)e−j2πkF0tdt

where, the fundamental period is Tp = 1/F0.
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The Fourier Series for Continuous-Time Periodic Signals

A linear combination of cosine functions, if signal x(t) is real:

Synthesis Equation

x(t) = a0 +
∞∑
k=1

(akcos2πkF0t − bksin2πkF0t)

where

a0 = c0

ak = 2|ck |cosθk
bk = 2|ck |sinθk
ck = |ck |e jθk
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The Fourier Series for Continuous-Time Periodic Signals

The Dirichlet conditions guarantee that x(t) and its Fourier series
representation are equal at any value of t:

1 x(t) has a finite number of discontinuities in any period.

2 x(t) contains a finite number of maxima and minima during any
period.

3 x(t) is absolutely integrable in any period, i.e.
∫
Tp
|x(t)|dt <∞.
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Power Density Spectrum of Periodic Signals

A periodic signal has a finite average power

Px =
1

Tp

∫
Tp

|x(t)|2dt

=
1

Tp

∫
Tp

x(t)x∗(t)dt

=
1

Tp

∫
Tp

x(t)
∞∑

k=−∞
c∗k e
−j2πkF0tdt

=
∞∑

k=−∞
c∗k

[
1

Tp

∫
Tp

x(t)e−j2πkF0tdt

]

=
∞∑

k=−∞
|ck |2 (Parseval′sRelation)

Px = a2
0 +

1

2

∞∑
k=1

(a2
k + b2

k)
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The Fourier Transform for Continuous-Time Aperiodic
Signals

Going from periodic signal to aperiodic signal, we make the period
Tp →∞.

x(t) = lim
Tp→∞

xp(t)

xp(t) =
∞∑

k=−∞
cke

j2πkF0t , F0 = 1/Tp

ck =
1

Tp

∫ Tp/2

−Tp/2
x(t)e−j2πkF0tdt

=
1

Tp

∫ ∞
−∞

x(t)e−j2πkF0tdt︸ ︷︷ ︸
X (F )
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The Fourier Transform for Continuous-Time Aperiodic
Signals

We write F , kF0 = k/Tp and ∆F , F0 = 1/Tp.
As Tp →∞, ∆F = dF . Therefore

xp(t) =
1

Tp

∞∑
k=−∞

X (F )e j2πkF0t

=
∞∑

k=−∞
X (k∆F )e j2πkF0t∆F

x(t) = lim
Tp→∞

xp(t)

= lim
∆F→0

∞∑
k=−∞

X (k∆F )e j2πkF0t∆F

=

∫ ∞
−∞

X (F )e j2πFtdF
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The Fourier Transform for Continuous-Time Aperiodic
Signals

Synthesis Equation (Inverse Transform)

x(t) =

∫ ∞
−∞

X (F )e j2πFtdF

Analysis Equation (Direct Transform)

X (F ) =

∫ ∞
−∞

x(t)e−j2πFtdt
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Energy Density Spectrum of Aperiodic Signals

Signal Energy: Ex =
∫∞
−∞ |x(t)|2dt

Ex =

∫ ∞
−∞

x(t)x∗(t)dt

=

∫ ∞
−∞

x(t)dt

[∫ ∞
−∞

X ∗(F )e−j2πFtdF

]
=

∫ ∞
−∞

X ∗(F )dF

[∫ ∞
−∞

x(t)e−j2πFtdt

]
=

∫ ∞
−∞

X ∗(F )X (F )dF

=

∫ ∞
−∞
|X (F )|2dF
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Energy Density Spectrum of Aperiodic Signals

Parseval’s Relation

Ex =

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X (F )|2dF
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Energy Density Spectrum of Aperiodic Signals

Energy Density Spectrum:

Sxx(F ) , |X (F )|2

Therefore, Sxx(F ) ≥ 0, for all F .

If signal x(t) is real, |X (−F )| = |X (F )| and ∠X (−F ) = −∠X (F ). It
follows that

Sxx(−F ) = Sxx(F )
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The Fourier Series of Discrete-Time Periodic Signals

x(n) is periodic with period N. That is, x(n) = x(n + N) for all n.

A linear combination of N harmonically related exponents:

Synthesis Equation

x(n) =
N−1∑
k=0

cke
j2πkn/N

Analysis Equation

ck =
1

N

N−1∑
n=0

x(n)e−j2πkn/N
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The Fourier Series of Discrete-Time Periodic Signals

The Fourier series coefficients {ck} is a periodic sequence with
fundamental period N (when extended outside the range [0,N − 1]).

ck+N =
1

N

N−1∑
n=0

x(n)e−j2π(k+N)n/N

=
1

N

N−1∑
n=0

x(n)e−j2πkn/N

= ck

The spectrum of x(n) is a periodic sequence with period N.

Liang Dong (Baylor University) Frequency Analysis of Signals I March 16, 2017 14 / 25



The Fourier Series of Discrete-Time Periodic Signals

A linear combination of cousin functions, if signal x(n) is real:

Synthesis Equation

x(n) = a0 + 2
L∑

k=1

(ak cos(2πkn/N)− bk sin(2πkn/N))

where

a0 = c0

ak = 2|ck | cos θk

bk = 2|ck | sin θk

L =

{
N/2 if N is even

(N − 1)/2 if N is odd
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Power Density Spectrum of Periodic Signals

The average power of a discrete-time periodic signal with period N:

Px =
1

N

N−1∑
n=0

|x(n)|2

=
1

N

N−1∑
n=0

x(n)x∗(n)

=
1

N

N−1∑
n=0

x(n)

(
N−1∑
k=0

c∗k e
−j2πkn/N

)

=
N−1∑
k=0

c∗k

[
1

N

N−1∑
n=0

x(n)e−j2πkn/N

]

=
N−1∑
k=0

|ck |2
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Power Density Spectrum of Periodic Signals

Energy over a signal period:

EN =
N−1∑
n=0

|x(n)|2 = N
N−1∑
k=0

|ck |2

If x(n) is real, c∗k = c−k . Equivalently, |c−k | = |ck | and −∠c−k = ∠ck .
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The Fourier Transform of Discrete-Time Aperiodic Signals

Analysis Equation

X (ω) =
∞∑

n=−∞
x(n)e−jωn, ω ∈ [−π, π) or ω ∈ [0, 2π)

Synthesis Equation

x(n) =
1

2π

∫ π

−π
X (ω)e jωndω

X (ω) is periodic with period 2π:

X (ω + 2πk) =
∞∑

n=−∞
x(n)e−j(ω+2πk)n

=
∞∑

n=−∞
x(n)e−jωn = X (ω)
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Convergence of the Fourier Transform

XN(ω) =
N∑

n=−N
x(n)e−jωn

Uniform convergence:

lim
N→∞

{sup
ω
|X (ω)− XN(ω)|} = 0, for all ω

Uniform convergence is guaranteed if
∑∞

n=−∞ |x(n)| <∞.

Mean-square convergence:

lim
N→∞

∫ π

−π
|X (ω)− XN(ω)|2dω = 0, for all ω

Mean-square convergence is for finite-energy signals
∑∞

n=−∞ |x(n)|2 <∞.
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Energy Density Spectrum of Aperiodic Signals

The energy of a discrete-time signal x(n):

Ex =
∞∑

n=−∞
|x(n)|2

=
∞∑

n=−∞
x(n)x∗(n)

=
∞∑

n=−∞
x(n)

[
1

2π

∫ π

−π
X ∗(ω)e−jωndω

]

=
1

2π

∫ π

−π
X ∗(ω)

[ ∞∑
n=−∞

x(n)e−jωn

]
dω

=
1

2π

∫ π

−π
|X (ω)|2dω
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Energy Density Spectrum of Aperiodic Signals

Energy Density Spectrum:

Sxx(ω) , |X (ω)|2

If x(n) is real, X ∗(ω) = X (−ω). Equivalently, |X (−ω)| = |X (ω)| and
∠X (−ω) = −∠X (ω). It follows that

Sxx(−ω) = Sxx(ω)
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Relationship of the Fourier Transform to the z-Transform

z-Transform

X (z) =
∞∑

n=−∞
x(n)z−n; ROC: r2 < |z | < r1

z in polar form: z = re jω. We have

X (z) =
∞∑

n=−∞
[x(n)r−n]e−jωn

If X (z) converges for |z | = 1,

X (z) |z=e jω= X (ω) =
∞∑

n=−∞
x(n)e−jωn
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Relationship of the Fourier Transform to the z-Transform

X (z) |z=e jω= X (ω) =
∞∑

n=−∞
x(n)e−jωn

Fourier transform can be viewed as the z-transform of the sequence
evaluated on the unit circle.

If X (z) does not converge in the region |z | = 1, the Fourier transform
X (ω) does not exist.
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Frequency-Domain Classification of Signals: The Concept
of Bandwidth

Power (energy) density spectrum

concentration


low-frequency
high-frequency
bandpass

Bandwidth — a quantitative measure
Suppose a continuous-time signal has 90% of its power (energy) density
spectrum in range F1 < F < F2. The 90% bandwidth of the signal is
F2 − F1.
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Frequency-Domain Classification of Signals: The Concept
of Bandwidth

Narrowband: F2 − F1 � F1+F2
2 (median frequency)

Wideband: Otherwise

Bandlimited:
X (F ) = 0 for |F | > B
X (ω) = 0 for ω0 < |ω| < π

No signal can be time-limited and band-limited simultaneously.
(Reciprocal relationship)
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