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$395from
Mini-Circuits’ new programmable attenuators offer 
precise attenuation from 0 up to 120 dB, supporting 
even more applications and greater sensitivity level 
measurements! Now available in models with maximum 
attenuation of 30, 60, 90, 110, and 120 dB with 0.25 dB 
attenuation steps, they provide the widest range of level 
control in the industry with accurate, repeatable 
performance for a variety of applications including 
fading simulators, handover system evaluation, 
automated test equipment and more!  Our unique 
designs maintain linear attenuation change per dB over 

the entire range of attenuation settings, while USB, 
Ethernet and RS232 control options allow setup flexibility 
and easy remote test management. Supplied with 
user-friendly GUI control software, DLLs for 
programmers† and everything you need for immediate 
use right out of the box, Mini-Circuits programmable 
attenuators offer a wide range of solutions to meet 
your needs and fit your budget.  Visit minicircuits.com 
for detailed performance specs, great prices, and off 
the shelf availability.  Place your order today for delivery 
as soon as tomorrow!

0 –30, 60, 90, 110 &120 dB 0.25 dB Step 1 MHz to 6 GHz*

RoHS compliant

NEW

Models Attenuation Attenuation Step USB Ethernet RS232 Price
Range Accuracy Size Control Control Control Qty. 1-9

RUDAT-6000-30 0-30 dB ±0.4 dB 0.25 dB ✓ - ✓ $395
RCDAT-6000-30 0-30 dB ±0.4 dB 0.25 dB ✓ ✓ - $495
RUDAT-6000-60 0-60 dB ±0.3 dB 0.25 dB ✓ - ✓ $625
RCDAT-6000-60 0-60 dB ±0.3 dB 0.25 dB ✓ ✓ - $725
RUDAT-6000-90 0-90 dB ±0.4 dB 0.25 dB ✓ - ✓ $695
RCDAT-6000-90 0-90 dB ±0.4 dB 0.25 dB ✓ ✓ - $795
RUDAT-6000-110 0-110 dB ±0.45 dB 0.25 dB ✓ - ✓ $895
RCDAT-6000-110 0-110 dB ±0.45 dB 0.25 dB ✓ ✓ - $995
RUDAT-4000-120 0-120 dB ±0.5 dB 0.25 dB ✓ - ✓ $895
RCDAT-4000-120 0-120 dB ±0.5 dB 0.25 dB ✓ ✓ - $995

NEW

NEW

NEW

New Models
up to 120 dB! 

*120 dB models specified from 1-4000 MHz. 
†No drivers required.  DLL objects provided for 32/64-bit Windows® and Linux® environments using ActiveX® and .NET® frameworks.

Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com
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IEEE Member Digital Library is an exclusive subscription available only to active IEEE members.

With two great options designed to meet
the needs—and budget—of every member, 
the IEEE Member Digital Library provides
full-text access to any IEEE journal article
or conference paper in the IEEE Xplore®

digital library.

Simply choose the subscription that’s
right for you:

IEEE Member Digital Library
Designed for the power researcher who 
needs a more robust plan. Access all the 
IEEE content you need to explore ideas
and develop better technology. 

Get the latest technology research.

Try the IEEE Member Digital Library—FREE!
www.ieee.org/go/trymdl

2 Ways to Access the
IEEE Member Digital Library

Now...

IEEE Member Digital Library Basic
Created for members who want to stay
up-to-date with current research. Access IEEE 
content and rollover unused downloads for 
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[from the EDITOR]
Min Wu

Editor-in-Chief 
minwu@umd.edu

I
wrote this editorial on my way back 
from ICASSP 2015, which was held in 
Brisbane, Australia, 19–24 April. I, 
along with IEEE Signal Processing 
Magazine’s (SPM’s) area editors, pre-

sented to the magazine’s Editorial Board 
and the IEEE Signal Processing Society’s 
(SPS’s) Publication Board the progress our 
magazine has made and the plans being 
carried out in the first part of this year. We 
also discussed ideas on how we can bring 
SPM to the next level and best serve our 
broad community. 

One idea that we are working on is to ex-
pand ways to enhance the engagement and 
participation of our readers. Thanks to the 
efforts of Andres Kwasinski, our area editor 
for social media and outreach, SPM is now 
present on several major social media chan-
nels (including LinkedIn, Twitter, and Face-
book)—so please find us on your favorite 
social media platform, and bring along your 
friends and colleagues in cyberspace.

Inspired by Science’s efforts in recent 
years to bring young scientists’ voices to 
a wide audience, we are launching a pilot 
effort through social media platforms to 
invite you—our readers and members—to 
offer insight toward two questions about 
the career and essence of signal processing. 
See “Share Your Answers” for the questions 
and links to these discussions. Please con-
cisely explain your thoughts, and provide 
your contact information (anonymous an-
swers will not be considered). Our editorial 
team will select enlightening answers and 
publish excerpts in a future issue of SPM
or Inside Signal Processing e-Newsletter.
Whether you are a student, an educator, a 
researcher, or a practitioner, readers at all 
stages of their careers are welcome!

You may notice several summariz-
ing highlights in this issue of SPM as 
well as in previous issues. We are experi-
menting with these highlights to bring 
your attention to various initiatives and 
resources that the SPS boards and com-
mittees are working on, especially those 
in electronic forms. For example, in this 
issue, you will see highlights of informa-
tive resources from the first quarter of the 
monthly e-Newsletters—in case you may 
have missed them (page 7)—and docu-
ments other colleagues may be talking 
about on the newly opened SigPort reposi-
tory (page 16). We hope you will find these 
highlights and summaries helpful, as they 
point to more in-depth resources you will 
find in online venues.

You will also find a pictorial summary 
accompanying the guest editorial of this 
special issue (page 14). These representa-
tive graphics, selected with input from the 
guest editors, are assembled to give you an 
at-a-glance view of the 11 articles in this 
intriguing special issue where signal pro-
cessing meets art history. I’d like to extend 
my sincere thanks to the guest editors 
for their hard work to help bridge these 
two communities!

Speaking of art and engineering, I 
made a brief stop during my return trip 
transiting through Sydney, Australia, to 
visit one of the ultimate embodiments of 
art and engineering—the Opera House 
in Sydney Harbour. The elegance of this 
iconic landmark designed by the Danish 
architect Jørn Utzon is unparalleled—
whether viewed up close from land or 
from the ferries traveling on the water, the 
curves and shape of the Opera House are 
always inviting and refreshing. 

On a tour offered by the Opera House, 
I learned the dramatic story behind its vi-
sion and construction: the diverging ar-
chitectural assessments among even the 
best-known architects on this daring idea 
versus a “circus tent,” the skepticism and 
challenges on whether the curved roof 
could actually be built and how, the bud-
get concerns and delay toward comple-
tion, and the resignation of the architect…
yet ultimately, overcoming obstacles and 
controversy, the Opera House came to life 
from idea to icon, as a triumph of incred-
ible creativity, perseverance, and collective 
effort by many! 

As our signal processing community is 
exploring new ways to raise its visibility and 
strengthen its impact, we are surrounded 
by many ideas from devoted volunteers. 
Not all new ideas come easily accepted or 
are straightforward to implement. Perhaps 
the history behind the Sydney Opera House 
offers insights and encouragement for our 
community to embrace new ideas that help 
bring us closer and stronger, with a bright-
er future together!

[SP]
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SHARE YOUR ANSWERS 
1) With signal processing training, 

what do you consider a successful 
career?

2) What is the most unexpected 
example of signal processing in 
our daily lives? 

We want to hear from you! Visit: 
LinkedIn: http://linkd.in/1aEgGXd
Facebook: http://www.facebook.
com/ieeespm.
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PLIFIERS

*Low frequency cut-off determined by coupling cap.
For GVA-60+, GVA-62+, GVA-63+, and GVA-123+ low cut off at 10 MHz.
For GVA-91+, low cut off at 869 MHz.

NOTE: GVA-62+ may be used as a replacement for RFMD SBB-4089Z
GVA-63+ may be used as a replacement for RFMD SBB-5089Z
See model datasheets for details

US patent 6,943,629

GVA amplifiers now offer more options and more capabilities 
to support your needs. The new GVA-123+ provides ultra-
wideband performance with flat gain from 0.01 to 12 GHz, and 
new model GVA-91+ delivers output power up to 1W with power 
added efficiency up to 47%!  These new MMIC amplifiers are 
perfect solutions for many applications from cellular to satellite and 
more!  The GVA series now covers bands from DC to 12 GHz with 

various combinations of gain, P1dB, IP3, and noise figure to fit your 
application.  Based on high-performance InGaP HBT technology, 
these amplifiers are unconditionally stable and designed for a 
single 5V supply in tiny SOT-89 packages.  All models are in stock 
for immediate delivery!  Visit minicircuits.com for detailed specs, 
performance data, export info, free X-parameters, and everything 
you need to choose your GVA today!

http://www.modelithics.com/mvp/Mini-Circuits.asp

FREE X-Parameters-Based 
Non-Linear Simulation Models for ADS

  GVA-84+

  GVA-60+

  GVA-63+

  GVA-62+

2 NewModels!
GVA-83+

GVA-82+

ea. (qty.1000 )from94¢DC* to 12 GHz up to 1W Output Power          
NOW

GVA-123+  Ultra-Wideband, 

    0.01-12 GHz

GVA-91+   1W Power

458 rev P

Mini-Circuits®
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

SigPort: A Document Repository for Signal Processing

T
he Signal Processing Repos-
itory (SigPort) is an online 
repository of manuscripts, 
reports, technical white pa-
pers, theses, and supporting 

materials. Created and supported by the 
IEEE Signal Processing Society (SPS), 
SigPort collects technical material of 
interest to the broad signal and infor-
mation processing community, with 
categories covering each of the Society’s 
technical committees. SigPort docu-
ments can be accessed for free at http://
www.sigport.org. 

Some of our SPS members said that 
they wanted a mechanism to dissemi-
nate their research quickly while their 
IEEE journal submission was being re-
viewed. The popular arXiv.org Web site 
allows authors to upload e-prints in 
some areas within computer science, 
but it does not have an area for signal 
processing. Much like arXiv, SigPort 
hosts material to help individuals ob-
tain early and broad exposure to their 
work. SigPort provides a time stamp for 
each uploaded document; a unique URL 
is assigned to the document, designat-
ing it as part of the IEEE SPS SigPort 
as well as for easy referencing.

Also similar to arXiv, SigPort papers 
are not peer reviewed. Authors retain all 
the rights to their documents and can 
submit them later to journals, confer-
ences, books, etc., since submissions to 

the SigPort repository are not as restricted 
as formal publications. We expect a major-
ity of the e-prints to be submitted to one 
of the Society’s journals for publication, 
but some works may remain purely as e-
prints and will never be published in a 
peer-reviewed journal. SigPort documents 
are visible to citation and search engines 

such as Google Scholar, which will com-
bine citations to the e-print with citations 
to the final journal article. 

SigPort can also archive research 
drafts, white papers, posters, presenta-
tion slides, lecture notes, student pa-
pers, auxiliary materials, and more. 

Since SigPort was developed from 
scratch, we’ve built it with the latest Web 
technologies. SigPort documents can re-
ceive immediate private comments as 
feedback, public endorsement from col-
leagues who “like” your work, and poten-
tial highlights as recommended by an 
international editorial broad. SigPort’s 

“thumbs-up” capabilities can help readers 
identify relevant documents, much like 
star ratings and popularity ratings have 
been helping users choose products in to-
day’s e-commerce Web. SigPort also has 
images, animations, and the search and 
browsing capabilities we expect from 
modern Web sites.

Maintaining the service does incur 
some cost, but for now the SPS bears the 
expense. We’re exploring various mecha-
nisms, including modest author fees, to en-
sure its long-term financial sustainability. 

The SPS is always looking for new ways 
to deliver research, knowledge, and infor-
mation to its members. If you have any 
ideas about how to keep our Society at the 
forefront of providing content, please don’t 
hesitate to reach out to us. If you have ques-
tions or suggestions about SigPort, you can 
contact the team at sigportsps@gmail.com.

I hope that you’ll take the time to check 
out some of our SigPort highlighted docu-
ments on page 16 of this issue of IEEE Sig-
nal Processing Magazine and even submit 
one of your own—make sure to use coupon 
code SPM0915 to upload your document(s) 
to SigPort for free. Please note that this 
coupon will expire on 30 September 2015. 

Our Society and community is what we 
make it. Let’s keep learning and sharing 
together.

[SP]
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Inside Signal Processing eNewsletter

Highlights Winter & Spring 2015

A Kaggle contest on public
health is to predict West Nile virus 
outbreak in a major U.S. city. [May
2015 Contest News]

2015 IEEE Signal Processing 
Cup is a competition on heart rate
monitoring resilient to distortions
introduced by physical exercises. 
SP cup encourages undergraduate
students to work as a team to solve 
a challenging real-world problem
using signal-processing techniques. 
Stay tuned for more in-depth 
analysis in an upcoming issue of 
SPM.

A Kaggle contest on driver
safety considered using telematic 
data to measure a driver's behavior
qualitatively and quantitatively. 
Participants were asked to develop
a "telematic fingerprint" capable of 
distinguishing when a trip was 
driven by a given driver. Feature 
engineering from the raw GPS data
proved very important in this
contest. [February 2015 Contest
News]

2015 ISBI Challenges:  eight 
topics related biomedical imaging 
were selected. Each challenge

generally consists of a contest and
a workshop held during ISBI 2015.
[December 2014 Contest News]

2014 MLSP contest: 
organized as part of the IEEE SPS’
MLSP workshop, was on
schizophrenia classification. The 
contest was hosted in Kaggle and 
attracted 341 participants.  Feature
extraction and selection played an 
important role. [December 2014 TC 
News]

Find an interesting contest?
Please let the eNews team know to
share it with the community.

Recent years have seen a rapid increase in the contests related 
to signal and information processing.  These include those held at conferences and workshops
sponsored or co-sponsored by SPS as well as many held on the Kaggle data science platform.

Audio Coding (January 2015)
Infrared Imaging (February 2015)
Deep Learning (March 2015)
Wavelet Analysis (April 2015)
Gait Recognition  (May 2015)

New Patent Policy related to 
Standards by IEEE (March 2015)

eNewsletter editors scanned through recently
issued patents and organized those related to signal processing in
focused topic areas.

Deep learning is showing a strong
promise for a number of
applications. An important issue to 
address is the computational 
complexity in training a deep 
learning network. The big data lab 
at Impetus Inc. in India, led by Dr.
Vijay Srinivas Agneeswaran, has
built a prototype of a distributed
deep learning network over
Apache Spark, whereby the
training phase of the network has
been parallelized and consequently 
the training time reduced.  Learn
about this in the February 2015 
Trends section. 

Read eNewsletter for
monthly updates on a variety of 
topics. Enter keywords in the
search box or choose “Previous 
Issues” at the eNewsletter website.

welcomes community
inputs and provides monthly updates on society and technical committee
news; conference and publication opportunities, new patents, books, and
Ph.D. theses; research opportunities and activities in
industry consortia, local chapters, and government 
programs. Contact Area Editor for eNews Christian Debes
<cdebes AT agtinternational.com> for more information. 
Bookmark <www.signalprocessingsociety.org/newsletter/>. 
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Human–Machine Interfaces: Methods of Control

I
f you are worried that artifi-
cial intelligence enabled sys-
tems are well on their way 
toward assuming total com-
mand of the planet, you can 

take some heart in the fact that 
there is still a great deal of 
important research being done 
in human–machine interfaces 
(HMIs), much of it involving sig-
nal processing. Making certain 
that various types of systems do 
precisely what their human 
masters demand lies at the heart 
of most HMI research.

The current HMI field is very 
competitive, and academic, gov-
ernment, and commercial re-
searchers are working hard to create 
advanced technologies that are both useful 
and marketable. The major trends driving 
the sector include an ever-increasing de-
mand for enhanced user efficiency; rapid 
growth in information technology and 
telecom sectors; and a continuing expan-
sion of electronic, mobile, computer, and 
electromechanical applications.

COMMAND BY GESTURE
Smartphones have become increasingly 
affordable and more widely used over 
the past several years. Yet smartphones 
and their applications are difficult to 
control in situations where the user 
lacks direct access to the touchscreen, 
such as while driving a car, cooking a 
meal, or exercising. While voice recog-
nition technology promises a partial so-
lution to the problem, such systems are 
far from foolproof and particularly un-
reliable in noisy environments.

In an effort aimed at creating an al-
ternate “hands off” control technology, 
University of Washington researchers 
have created a new type of low-power 
wireless sensing technology that promis-
es to allow users to “train” their smart-
phones to recognize and respond to 
specific hand gestures (Figure 1). The 
new SideSwipe technology developed in 
the labs of Matt Reynolds and Shwetak 
Patel, both associate professors of elec-
trical engineering and of computer sci-
ence, uses the phone’s own wireless 
transmissions to sense and recognize 
nearby hand gestures.

“Current smartphones use a variety 
of different built-in sensors, such as ac-
celerometers and gyroscopes, that can 
track the motion of the phone itself,” 
Reynolds says. “We have created an en-
tirely new type of sensor that uses the re-
flection of the phone’s own wireless 
signal to detect nearby gestures, allow-
ing users to interact with their phones 
even when they are not holding the 
phone, looking at the display, or touch-
ing the screen.”

Whenever someone uses a 
smartphone for voice or data 
communication, the device 
transmits radio signals on a 2G, 
3G, or 4G cellular network to 
communicate with a nearby cel-
lular base station. SideSwipe 
takes advantage of the fact that 
when a user’s hand moves 
through space near the phone, 
the user’s body reflects some of 
the transmitted signal back to-
ward the device. SideSwipe uses 
multiple small antennas to cap-
ture changes in the reflected sig-
nal and classify the changes to 
detect the specific type of gesture 
performed. The result is that 

hovering, tapping, and sliding gestures can 
be associated with various phone com-
mands, such as silencing a ring, changing 
a song, or muting the speakerphone. 

“The GSM signal that we are working 
with was originally designed for communi-
cation, but we are analyzing the signal in a 
different way, from the perspective of pull-
ing out gestures,” Reynolds remarks. He 
adds that he and coresearcher Patel were 
inspired by radar technology. “In the case 
of radar, you have a controlled emitter of 
an electromagnetic wave that bounces off 
an aircraft or a ship or something like that 
and comes back,” he says. “We realized 
that the same thing is happening all the 
time to the cell phone transmission.”

Reynolds says that signal processing is 
essential to the technology. There are 
multiple phases of signal processing, 
ranging from very simple filtering to 
more sophisticated machine learning, he 
says. “We used signal smoothing, band-
pass filtering to extract the frequency 
band that has useful gesture information 
in it, which tends to be a very low-fre-
quency signal,” he explains. “Then we use 

[FIG1] University of Washington researchers have created a new 
type of low-power wireless sensing technology that promises 
to allow users to “train” their smartphones to recognize and 
respond to specific hand gestures made near the phone. (Photo 
courtesy of the University of Washington.)
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[FIG2] Jan Scheuermann (right) reaches out with the thought-
controlled robot arm to touch Jennifer Collinger’s hand. (Photo 
courtesy of the University of Pittsburgh Medical Center.)

a machine-learning technique 
called the support vector ma-
chine to do the classification of 
features into specific gestures.”

When developing their proto-
type, the researchers added a re-
ceiver with four directionally 
sensitive antenna elements to 
the smartphone’s case. “Then we 
looked at the signal waveforms 
that were coming from that re-
ceiver and figured out a way of 
ignoring the fact that the signal 
was originally designed for com-
munication and instead looked 
at its envelope to see changes in 
reflection,” Reynolds says.

SideSwipe leverages the unmodified 
GSM bursts that inherently exist when 
someone is using a smartphone. When 
the user performs a particular type of 
hand gesture, the antennas pick up the 
fluctuation in their respective propaga-
tion paths. By combining the signals 
from four antennas, the researchers were 
able to identify unique patterns for dif-
ferent gestures.

A group of ten study participants test-
ed SideSwipe with 14 different hand ges-
tures, such as tapping, hovering, and 
sliding, at various positions and distanc-
es from the smartphone. The smart-
phone was calibrated to its user’s hand 
movements prior to each test. The 
smartphone recognized gestures with 
about 87% accuracy, Reynolds says.

“We are interested in interaction in 
cases where you are not holding the 
phone,” Reynolds states. “If you think 
about the use of the phone during the 
day, most of the time people have the 
phone in their pocket or in a handbag or, 
let’s say, on a table.” Because the Side-
Swipe sensor is based on low-power re-
ceivers and relatively simple signal 
processing when compared with some-
thing like camera video, Reynolds ex-
pects that SideSwipe will have only a 
minimal impact on battery life.

Reynold feels that the technology is 
still at a preliminary stage. “We are facing 
a much longer series of research leading 
to even more efficient ways of extracting 
gesture information, whether that is dif-
ferent signal processing strategies or new 

machine-learning algorithms,” he says. 
“Currently, we are using extra receivers 
that are built into something like a snap-
on phone case, but it is likely that the 
hardware could eventually be built into 
the phone itself—that would require the 
cooperation of the phone manufacturer.”

DOING BY THINKING
Futurists and science fic-
tion writers have long pre-
dicted that people one day 
will be able to control var-
ious types of devices by 
thought alone. Such tech-
nology would allow indi-
viduals to operate remote 
vehicles, machinery locat-
ed inside mines and other 
dangerous places, and a 
variety of other simple 
and complex devices con-
veniently and across any 
distance. Even more im-
portantly, a thought-driv-
en  HMI  would  a l low 
people who have lost the 
use of their limbs to con-
trol robotic systems that 
provide mobility or the 
ability to grasp and ma-
nipulate various types of 
objects, ranging from eat-
ing utensils to doorknobs 
to light switches.

University of Pittsburgh 
researchers are investigat-
ing an HMI technology that 

promises to allow people to oper-
ate a robotic arm, capable of 
mimicking natural arm and hand 
movements, simply by thinking 
about whatever task that needs to 
be performed. Working with Jan 
Scheuermann, a 55-year-old 
Pittsburgh woman who has been 
paralyzed from the neck down 
since 2003 due to a neurodegen-
erative condition, the researchers 
have been able to increase the 
 robotic arm’s maneuverability 
from seven dimensions to ten 
 dimensions over the past three 
years (Figure 2).

The additional dimensions 
result from four hand movements—finger 
abduction, a scoop, thumb extension, and 
a pinch—allowing Scheuermann to pick 
up, grasp, and move a range of objects 
much more precisely. “She can now pinch 
the fingers, flex them all together, spread 
the fingers apart, and then move the 
thumb independently,” says Jennifer 

The application deadline for 2016-2017 
Fellowships is 15 January 2016.

For eligibility requirements and application information, go to 
www.ieeeusa.org/policy/govfel
or contact Erica Wissolik by emailing  

e.wissolik@ieee.org or by calling +1 202 530 8347.

Congressional Fellowships
Seeking U.S. IEEE members interested in 
spending a year working for a Member of 
Congress or congressional committee.

Engineering & Diplomacy Fellowship
Seeking U.S. IEEE members interested in 
spending a year serving as a technical adviser 
at the U.S. State Department.

USAID Fellowship
Seeking U.S. IEEE members who are interested 
in serving as advisors to the U.S. government 
as a USAID Engineering & International 
Development Fellow.

2016-2017
IEEE-USA Government 

Fellowships

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

___________

http://www.qmags.com/clickthrough.asp?url=www.ieeeusa.org/policy/govfel&id=19440&adid=P9A1
mailto:e.wissolik@ieee.org
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [10] JULY 2015 

[special REPORTS]continued

Collinger, an assistant professor 
in the University of Pittsburgh’s 
Department of Physical Medi-
cine and Rehabilitation, a proj-
ect lead investigator. “This 
greatly increased the amount of 
function in the hand.”

In 2012, Scheuermann un-
derwent surgery in the regions 
of her brain responsible for 
right arm and hand move-
ments. The operation fitted her 
with a pair of quarter-inch elec-
trode grids, each containing 96 
tiny contact points. After the 
electrode grids on Scheuer-
mann’s brain were linked to a computer, 
creating a brain–machine interface (BMI), 
their contact points could detect electrical 
pulses firing between the brain’s neurons.

“In terms of signal processing, I would 
say our system is maybe a little bit simple,” 
Collinger says. “It is more on the data anal-
ysis and computational side where it gets 
complex.” Signal filtering is used to re-
move as much noise as possible. “Then we 
use linear regression techniques to find a 
relationship between the firing rates and 
the movement parameters we are trying to 
decode,” Collinger explains.

Algorithms decode the firing signals 
and also identify the patterns associated 
with a particular arm movement, such as 
lifting the arm or twisting the wrist. 
“Our results show that individual motor 
cortical neurons encode many parame-
ters of movement, that object interaction 
is an important factor when extracting 
these signals, and that high-dimensional 
operation of prosthetic devices can be 
achieved with simple decoding algo-
rithms,” Collinger says.

When developing the algorithms, 
Collinger and her coresearchers followed a 
unique approach based on neurobiological 
principles. They first optimized a popula-
tion vector algorithm that encodes pros-
thetic movements on the basis of 
direction -dependent tuning of the motor 
cortex neuronal ensemble. The decoded 
movement was then sent to a shared con-
troller that integrated the user’s intent, po-
sition feedback, and various constraining 
task-dependent features to optimally guide 
the robotic arm movements.

In the lab, the robotic arm is set up next 
to Scheuermann on a stand. “We positioned 
it close enough to her to allow her to feed 
herself, to take a drink, those kinds of 
things,” Collinger says. “I certainly think 
that it could be mounted to her wheelchair.”

A cable connects the electrode grids 
on Scheuermann’s brain to the robotic 
arm. Yet many BMI researchers foresee 
the day when user commands are trans-
mitted wirelessly to robotic arms and oth-
er electromechanical systems. Steps are 
already being taken in that direction. Last 
December, Brown University researchers 
announced a new high data-rate, low-
power wireless brain sensor. The head-
mounted, 100-channel transmitter is only 
5 cm in its largest dimension and weighs 
just 46.1 g but can transmit data at up to 
200 megabits a second. The technology is 
currently designed to enable neurosci-
ence research that cannot be accom-
plished with existing sensors that tether 
subjects with cabled connections.

During the next research phase, 
Collinger and her colleagues plan to in-
vestigate additional ways of making that 
arm more controllable. “We plan, for in-
stance, to study whether the incorpora-
tion of sensory feedback, such as the 
touch and feel of an object, can improve 
neuroprosthetic control,” she says.

READING FACIAL EXPRESSIONS
HMIs are advancing to the point where 
they can function subliminally, potentially 
saving users from dangerous situations of 
which they may not even be aware. Show-
ing that HMIs are not only about system 

control, researchers in the Signal 
Processing 5 Laboratory (LTS5) of 
the Ecole Polytechnique Fédérale 
de Lausanne (EPFL) have created 
a technology that reads and iden-
tifies human facial expressions in-
dicating various moods, such as 
anger, disgust, fear, happiness, 
sadness, and surprise (Figure 3). 
Such a system could prove useful 
in several fields, including video 
game development, medicine, and 
marketing. The EPFL researchers, 
however, are most interested ap-
plying the technology driver safe-
ty systems.

“Certain emotional states of the driver, 
such as stress, rage, or strong euphoria, 
affect decision making and coordination 
skills and may cause discomfort and loss 
of concentration/attention and may give 
way to accidents,” says principal investiga-
tor Jean-Philippe Thiran, an EPFL profes-
sor. “In this project, we use computer 
vision and machine-learning methods to 
detect these emotional states from the 
drivers’ facial expressions.” The first stud-
ies involved the emotion of stress and the 
state of fatigue.

Thiran sees significant potential in 
the research, which is being sponsored 
by automaker PSA Peugeot Citroën and 
automotive equipment supplier Valéo. 
“Some potential applications are an alert 
system, for instance, in the case of de-
tecting fatigue, or a countermeasure for 
the certain emotions that may endanger 
driving quality, such as the activation of 
a ‘driver calming system’ using sounds, 
lights, or odors that are personalized for 
the driver.” 

Tests carried out with a prototype 
proved promising. “We hope that with ad-
ditional studies we will be able to define 
the emotional states that are dangerous 
for driving and also how to reduce them,” 
Thiran says. The researchers’ goals are a 
more comfortable driving experience and 
fewer accidents attributable to drivers’ 
emotional states. “What is commonly 
known as ‘road rage’ or ‘aggressive driv-
ing,’ for example, is a very common cause 
of car accidents and it is a state that we 
hope to detect and take measures 
against,” Thiran remarks.

[FIG3] Researchers in the LTS5 of the EPFL are investigating 
a technology that reads and identifies facial expressions 
indicating various moods, such as anger, disgust, fear, 
happiness, sadness, and surprise. (Photo courtesy of EPFL.)
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“Signal processing is at the core of 
research, as in all imaging systems,” Thi-
ran says. “[The system] includes robust 
face detection, feature extraction, and 
classification,” he says, noting that a 
couple of approaches are used to extract 
discriminative features and to uncover 
patterns of different facial expressions. 
“We investigate approaches based on ho-
listic affine warping and local descrip-
tors,” Thiran says.

Holistic affine warping normalizes face 
images using the coordinates of the left 
and right eyes. “The locations of the eye 
centers are derived from the tracked facial 
landmarks,” Thiran says. “After applying 
an affine transform, the eye centers are 
fixed in the canonical coordinates in the 
normalized image.” A second approach ex-
tracts local descriptors from around the 
tracked facial landmarks. “It preserves 
the geometrical information of the facial 
components and does not introduce ad-
ditional artifacts,” he explains.

“The techniques we are using are 
common to most facial analysis systems: 
a face-tracking system that locates the 
drivers face from the image captured by 
the in-car system, a head-pose normal-
ization algorithm that compensates for 
the angle of view, extraction of relevant 

appearance features from the tracked 
face, and classifiers to detect whether the 
expression we are interested in is pres-
ent,” Thiran states.

“Having in-car conditions involves 
many additional requirements compared 
to indoor systems or standard human–
computer interaction (HCI) systems in 
which you may restrict the user to face 

the camera at all times,” Thiran says. “As 
this it not a possibility during driving, we 
had to come up with a solution to com-
pensate for the up-tilted angle of face-
view, that results from the spe cial camera 
configuration in the car.” The system pro-
totype applied a head-pose correction that 
used a simple three-dimensional model to 
project the driver’s face image on a 

two-dimensional plane for classification. 
“We are now working on a facial recon-
struction from multicamera system that 
will enable emotion detection totally re-
gardless of where the driver is looking at,” 
Thiran says.

Vehicle interior lighting conditions, 
which change frequently during a jour-
ney, also posed a challenge for the re-
searchers. “To tackle that problem, we 
used near-infrared (NIR) cameras with a 
special lighting system and adequate fil-
tering so that ambient light effects are at 
minimum,” Thiran says. “We had to re-
build classifiers for expression using NIR 
images and also applied model adapta-
tion techniques so that we can make use 
of existing facial expression databases of 
color images, which are well annotated 
and validated.”

The researchers are now working on 
detecting other expressions on drivers’ 
faces, such as distraction and lip reading 
for use in vocal recognition. 

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona, area.

[SP]

HMIs ARE ADVANCING 
TO THE POINT WHERE 
THEY CAN FUNCTION 

SUBLIMINALLY, POTENTIALLY 
SAVING USERS FROM 

DANGEROUS SITUATIONS 
OF WHICH THEY MAY 
NOT EVEN BE AWARE.

Do you know?  IEEE Signal Processing Magazine goes social!
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New Society Officers for 2016 and Election 
of Directors-at-Large and Members-at-Large

T
he Board of Governors (BoG) 
of the IEEE Signal Process-
ing Society (SPS) elected two 
new officers who will start 
their terms on 1 January 

2016: Ali H. Sayed and Walter Keller-
mann. Ali H. Sayed [University of Cali-
fornia, Los Angeles (UCLA)] will serve as 
2016–2017 SPS president-elect. He suc-
ceeds Rabab K. Ward (University of Brit-
ish Columbia)  who has held the post of 
president-elect and will become president 
in 2016. Walter Kellermann (University of 
Erlangen-Nuremberg) will serve as 2016–
2018 SPS vice president-technical direc-
tions. He succeeds Charles A. Bouman
(Purdue University), who has held this po-
sition since January 2013.

NEW SOCIETY OFFICERS

2016–2017 SPS PRESIDENT-ELECT 

ALI H. SAYED
He is a professor and 
former chair of elec-
trical engineering at 
UCLA, where he 
directs the UCLA 
Adaptive Systems 
Laboratory (http://

www.ee.ucla.edu/asl). An author of more 
than 450 scholarly publications, six books, 
and five patents, his research involves sev-
eral areas including adaptation and learn-
ing, statistical signal processing, network 
science, information processing theories, 
and biologically inspired designs. His work 
has been recognized with several awards 
from various organizations including the 
2014 Athanasios Papoulis Award from the 

European Association for Signal 
Processing, the 2013 Meritorious Service 
Award and the 2012 Technica l 
Achievement Award from the IEEE SPS, 
the 2005 Terman Award from the 
American Society for Engineering 
Education, the 2005 Distinguished 
Lecturer from the IEEE SPS, the 2003 
Kuwait Prize, and the 1996 IEEE Donald 
G. Fink Prize. He has also been awarded 
several Best Paper Awards from the IEEE 
SPS (2002, 2005, 2012, and 2014) and is a 
Fellow of both the IEEE and the American 
Association for the Advancement of 
Science; the publisher of the journal 
Science. He is recognized as a highly cited 
researcher by Thomson Reuters. 

Prof. Sayed has been active in serving 
the IEEE SPS in various capacities 
across major boards and committees, 
which include: editor-in-chief, IEEE 
Transactions on Signal Processing
(2003–2005); general chair, ICASSP 
2008; vice president-publications (2009–
2011); member, Awards Board (2005), 
Publications Board (2003–2005, 2009–
2011), Conference Board (2007–2011), 
Technical Directions Board (2008–2009), 
BoG (2007–2011), Signal Processing 
Theory and Methods Technical Commit-
tee (2002–2006), Signal Processing for 
Communications Technical Committee 
(2002–2007), Sensor Array and Multi-
channel Technical Committee (2011–
present), Machine Learning for Signal 
Processing Technical Committee (2012–
present), and Big Data Special Interest 
Group (2015–present). He also served as 
chair and vice chair of the Signal Pro-
cessing Theory and Methods Technical 
Committee during 2007–2009. At the 
IEEE level, he served as a member of the 
Technical Activities Board Periodicals 
Review Committee (2007–2009) and the 

IEEE Committee on the Future of Edu-
cation in Engineering and Computing 
(2011). Concurrent with his services to 
the Society, Prof. Sayed was the chair of 
electrical engineering at UCLA (2005–
2010) and has led a large academic de-
partment with close to 45 faculty mem-
bers, more than 15 lecturers and 30 staff 
members, and close to 1,000 undergrad-
uate and graduate students. 

2016–2018 SPS VICE PRESIDENT-
TECHNICAL DIRECTIONS

WALTER KELLERMANN
He is a professor of 
multimedia commu-
nications and signal 
processing at the Uni-
versity of Erlangen-
Nuremberg, Germa-
ny, and heads the 

chair’s audio research group comprising 
more than a dozen researchers. He re-
ceived the Dipl.-Ing. degree in electrical 
engineering from the University of Erlan-
gen-Nuremberg in 1983 and the Dr.-Ing. 
degree from the Technical University 
Darmstadt, Germany, in 1988. From 1989 
to 1990, he was a postdoctoral member of 
technical staff at AT&T Bell Laboratories, 
Murray Hill, New Jersey. In 1990, he 
joined Philips Kommunikations Industrie, 
Nuremberg, Germany. From 1993 to 
1999, he was a professor, Fachhochschule 
Regensburg, where he also became the di-
rector of the Institute of Applied Research 
in 1997. In 1999, he cofounded DSP Solu-
tions, a consulting firm in digital signal 
processing, and joined the University Er-
langen-Nuremberg as a professor and 
head of the Audio Research Laboratory. 
From 2002 to 2006, he was the dean of 
studies, Faculty of Engineering, University 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

____

http://www.ee.ucla.edu/asl
http://www.ee.ucla.edu/asl
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [13] JULY 2015

Erlangen-Nuremberg, overseeing organi-
zation and quality management for more 
than 500 courses per semester. 

He also continuously consults at the 
industry level in his technical field, and 
he acts on various boards and as a consul-
tant to governmental institutions on the 
national and European level regarding re-
search and university politics. His current 
research interests include speech signal 
processing, array signal processing, adap-
tive filtering, and its applications to 
acoustic human/machine interfaces.

Prof. Kellermann has authored or co-
authored 15 book chapters and more 
than 200 refereed papers in journals and 
conference proceedings and more than 
50 granted patents.  He has served as a 
guest editor for various journals, as asso-
ciate editor (and guest editor), IEEE 
Transactions on Speech and Audio Pro-
cessing (2000–2004), EURASIP Journal 
on Applied Signal Processing and EURA-
SIP Journal on Signal Processing (2005–
2007); general chair, 2003 International 
Workshop on Microphone Arrays, 2005 
IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, 
and 2014 ITG Conference on Speech 
Communication; general cochair, 2008 
and 2011 International Workshop on 
Hands-Free Speech Communication and 
Microphone Arrays; cochair, Internation-
al Workshop on Acoustic Signal En-
hancement; SPS Distinguished Lecturer 
(2007–2008); chair, SPS Audio and 
Acoustic Signal Processing Technical 
Committee (2008–2010); member, IEEE 
SPS Overview Article Editorial Board 
(2010–present) and IEEE Flanagan Award 
Committee (2012–2014); and member-at-
large, SPS BoG (2013–2015). He is a Fel-
low of the IEEE and received the Julius 
von Haast Fellowship Award from the 
Royal Society of New Zealand in 2011 and 
will receive the EURASIP Technical 
Achievement Group Award in 2015. 

ELECTION OF DIRECTORS-AT-LARGE 
AND MEMBERS-AT-LARGE
Your vote is important! The election of 
directors-at-large for Regions 7 and 9 

and Region 10 (the term is 1 January 
2016–31 December 2017) and members-
at-large (the term is 1 January 2016–
31 December 2018) of the IEEE SPS 
BoG is now open. Ballots have been 
mailed to SPS members. The ballot 
includes a diverse slate of candidates for 
both elections, which were vetted by the 
SPS Nominations and Appointments 
Committee, as well as a space for write-
in candidates. 

This year’s election offers SPS mem-
bers the opportunity to cast their votes 
via the Web at https://eballot4.votenet.
com/IEEE for up to one regional direc-
tor-at-large for your corresponding Re-
gion: Regions 7 and 9 (Canada and Latin 
America) and Region 10 (Asia and Pacific 
Rim) and three member-at-large candi-
dates. The IEEE Technical Activities So-
ciety Services Department at the IEEE 
must receive all ballots no later than 31 
August 2015 to be counted. Members 
must meet the eligibility requirements 
at the time the ballot data is generated to 
be able to vote. To be eligible to vote in 
this year’s Society election, you must 
have been an active SPS member or affil-

iate (excluding student member) prior to 
1 June 2015. This is the date when the 
list of eligible Society voting members 
was compiled. The candidates for region-
al director-at-large are:

■ Regions 7 and 9: Paulo S. Diniz and 
Fabrice Labeau
■ Region 10: K.V.S. Hari and Hitoshi 
Kiya

The candidates for member-at-large are: 
■ Fulvio Gini
■ Robert W. Heath
■ Lina Karam
■ Anthony Kuh
■ Shoji Makino
■ Nasir Memon
■ Wan-Chi Siu
■ Paris Smaragdis
■ Min Wu.
The BoG is the governing body that 

oversees the activities of the SPS. The SPS 
BoG has the responsibility of establishing 
and implementing policy and receiving re-
ports from its standing boards and com-
mittees. The BoG comprises the following 
21 Society members: six officers of the So-
ciety who are elected by the BoG, nine 
members-at-large elected by the voting 
members of the Society, four regional di-
rectors-at-large elected locally by Society 
voting members of the corresponding re-
gion, as well as the Awards Board chair.  
The six officers are: the president, the 
president-elect, the vice president-mem-
bership, the vice president-conferences, 
the vice president-publications, and the 
vice president-technical directions. The 
executive director of the Society shall 
serve ex-officio, without vote.

Members-at-large represent the 
member view point in the Board deci-
sion making. They typically review, dis-
cuss, and act upon a wide range of items 
affecting the actions, activities, and 
health of the Society. 

Regional directors-at-large are SPS 
members who are elected locally by Soci-
ety voting members of the corresponding 
Region via the annual election, to serve on 
the Society’s BoG as nonvoting members 
and voting members of the Society’s Mem-
bership Board. [SP]

THIS YEAR’S ELECTION 
OFFERS SPS MEMBERS
THE OPPORTUNITY TO 

CAST THEIR VOTES
VIA THE WEB AT 

HTTPS://EBALLOT4.
VOTENET.COM/IEEE.
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Signal Processing for Art Investigation

hy should signal pro-
cessors care about 

problems in cultural 
heritage? What can 

signal processing offer to 
the world of art scholarship and preservation?

These complementary questions have 
motivated recent movement in our two 
communities—one composed of signal 
processors and art experts in the other—
to collaborate and try to focus the signal 
processing technologies on underresolved 
problems of art investigation.

At the start of this century, a plenary 
talk [1] delivered at the 2001 IEEE Inter-
national Conference on Image Process-
ing divided the subjects of a two-decade 
long cross-disciplinary effort between a 
Paris technical university (ENST) and 
the French national conservation labs 
(C2RMF) into two broad categories: 
1) archiving and consulting and 2) pic-
ture processing for the fine arts. The 
first category incorporates image acqui-
sition and database access. The second 
includes image enhancement and resto-
ration, crack network detection, multi-
source image fusion, color processing, 
and geometric analysis. Consider a dif-
ferent division of these topics into three 
groups: 1) image acquisition, 2) image 
manipulation, and 3) image feature min-
ing. The topics of research in the 1980s 
and 1990s described in [1] give more at-
tention to the first two of these groups 
than to the third.

IEEE Signal Processing Magazine 
(SPM) has recognized previously—with a 
special section “Recent Advances in Appli-
cations to Visual Cultural Heritage” in its 
July 2008 issue [2]—the growing 

interest at the start of this century in the 
nascent application of signal processing 
to art investigation. Following a vivid de-
scription of a wide range of tasks to be 
addressed in applying signal processing 
to the analysis of visual cultural heritage, 
six articles were grouped by the guest 
editors [3] into three themes: multispec-
tral imaging, artwork analysis, and 
three-dimensional (3-D) digitization and 
modeling. By our division, this special 
section exhibits a balanced emphasis on 

all three groupings of image acquisition, 
manipulation, and feature mining.

The March 2013 special issue of Signal 
Processing devoted to “Image Processing 
for Digital Art Work” divides [4] its seven 
papers into two categories: artwork resto-
ration tools (X-ray fluorescence, crack de-
tection) or art piece analysis procedures 
(canvas weave analysis, painting stylom-
etry analysis). Here the emphasis accord-
ing to our grouping has shifted to image 
feature mining.

Digital Object Identifier 10.1109/MSP.2015.2419311

Date of publication: 15 June 2015

W

SURFACE ANALYSIS FOR IDENTIFYING ARTISTIC STYLE AND ARTWORK ORIGIN  

Luster-Silk (6)

(a) (b) (c)

(d) (e)

[FIGS1] A number of articles in this special issue highlight the important role of
texture and surface analysis in art investigations. (a) Abry et al. employ multiscale 
anisotropic texture analysis to facilitate classification of historical photographic 
prints; (b) Johnson et al. examine chain-line features to hunt for moldmates among 
Rembrandt’s prints, which are papers made using the same mold; (c) van der Maaten 
et al. focus on thread-level canvas analysis from X-ray data of the canvas supports of 
grand master paintings such as those by Van Gogh, and thus facilitate dating and 
authentication; (d) van Noord et al. learn artists’ styles by applying deep neural 
network to detailed texture and other visual stylistic features from artworks; and
(e) Yang et al. discuss the advantages of two-dimensional synchrosqueezed 
transforms toward quantitative analysis of canvas weave.
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A recent plenary talk [5] delivered at 
the 2014 IEEE International Conference 
on Acoustics, Speech, and Signal Pro-
cessing describes three separate tasks in 
computational art history utilizing sig-
nal processing algorithms to match 
manufactured patterns in art supports. 
In another plenary addressing image pro-
cessing for art investigation delivered in 
2014, the majority of projects described 
also include tasks in the category of image 
feature mining [6]. All of these tasks fall 
in the category of image feature mining.

While early research in applying signal 
processing to art investigation empha-
sized image acquisition and image manip-
ulation, various manifestations of image 
feature mining have achieved more prom-
inence in the past decade as evidenced by 
the preceding citations providing succes-
sive indicators of the directions being 

taken in this growing field. The 11 articles 
in this special issue of SPM include stud-
ies of photographic paper classification, 
ancient coin classification, Mayan epigra-
phy analysis, 3-D color print graph signal 
processing, laid paper chain-line pattern 
matching, content-based image indexing, 
canvas weave analysis, crack detection for 
simulated in-painting, painting style 
characterization, and face recognition in 
portraits (see “Surface Analysis for Identi-
fying Artistic Style and Artwork Origin,” 
“Object Recognition for Managing Art 
Data,” and “Art Enhancement and Resto-
ration” for visual examples of these top-
ics). All of these articles engage, to a sub-
stantial degree, in image feature mining. 
There is an enormous need in art history 
and conservation to locate, classify, identi-
fy, and measure features in multispectral 
and multidirectional images of artworks.

One barrier of entry into this field is ac-
cess to images of sufficient quality and 
quantity of artworks. Therefore, for this 
special issue, the authors were requested 
to make the images they processed accessi-
ble to other researchers (when possible) to 
stimulate the exploration of new and im-
proved solutions, and most have complied. 
With that added bonus, we welcome you to 
the modest beginnings of an emerging 
field that promises to offer many satisfying 
challenges and will require specialization 
of and advances in the tools and tech-
niques of signal processing. To assist you in 
deciding which of the articles to use as 
your portal into this new domain full of 
ample, low-hanging fruit and many as yet 
undiscovered puzzles, we offer the summa-
ries available at http://sigport.org/189.

Authors were encouraged to have a rep-
resentative from the cultural heritage 

OBJECT RECOGNITION FOR MANAGING ART DATA ART ENHANCEMENT AND RESTORATION

(a) (b)

(c) (d)

(b)

(a)

[FIGS3] (a) Lozes et al. examine graph signal processing 
approaches to cultural heritage applications, such as 
facilitating colorization of historical art pieces; (b) Pizurica 
et al. discuss inpainting and other digital image processing 
for the restoration effort of The Ghent Altarpiece.

[FIGS2] (a) Anwar et al. review the classification of ancient 
coins by recognizing reverse motif on coins; (b) Hu et al. 
outline an integrated system to facilitate the study of Mayan 
writing, with glyph analysis and retrieval playing an important 
role; (c) Srinivasan et al. discuss challenges of face recognition 
from Renaissance portrait arts to facilitate art historians in 
identifying the subjects in these portraits; and (d) Picard et al. 
present challenges and solutions for content-based image 
indexing of cultural heritage collections including a wide 
variety of artifacts such as this tapestry which may be 
assigned such labels as “landscape,” “ornamentation,” “river,” 
“village,” “water mill,” and more.
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[from the GUEST EDITORS]continued

community on their team, which is the 
case for most of the articles in this issue. 
Such cross-disciplinary collaborations are 
difficult. The art expert needs to acquire an 
appreciation of the range and limitations of 
the signal processor’s tools so useful, via-
ble, novel tasks can be identified and ad-
dressed. The signal processing experts 
must learn to describe their skills without 
resorting to the language of deep mathe-
matics, and to appreciate the intellectual 
depth of the art expert achieved without di-
rectly resorting to computational tools. 
Both sides are facing new ways of thinking 
and conducting research. Of course, all of 
this makes the challenge that much more 
appealing to us. So it goes...

MEET THE GUEST EDITORS
Patrice Abry (patrice.abry@
ens-lyon.fr) is a senior 
researcher with the CNRS, 
France. He is developing a 
research program on the 

theoretical modeling, analysis, and applica-
tions of scale invariance. 

Andrew G. Klein (andy.klein@
wwu.edu) is an assistant pro-
fessor at Western Washington 
University, Bellingham. His 
research interests include sig-

nal and image processing, distributed 
communications, and STEM education.

William A. Sethares (sethares@
wisc.edu) is a professor in the 
Department of Electrical and 
Computer Engineering at the 
University of Wisconsin and a 

scientific researcher at the Rijksmuseum in 
Amsterdam, The Netherlands.

C. Richard Johnson, Jr.
(johnson@ece.cornell.edu) is 
the Geoffrey S.M. Hedrick 
Senior Professor of engineer-
ing at Cornell University, 

Ithaca, New York; a scientific researcher 
of the Rijksmuseum in Amsterdam, The 
Netherlands; and computational art histo-
ry advisor to The Netherlands Institute for 
Art History.
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T
exture characterization of photographic prints can 
provide scholars with valuable information regarding 
photographers’ aesthetic intentions and working 
practices. Currently, texture assessment is strictly 
based on the visual acuity of a range of scholars asso-

ciated with collecting institutions, such as museum curators and 

conservators. Natural interindividual discrepancies, intraindivid-
ual variability, and the large size of collections present a pressing 
need for computerized and automated solutions for the texture 
characterization and classification of photographic prints. In the 
this article, this challenging image processing task is addressed 
using an anisotropic multiscale representation of texture, the 
hyperbolic wavelet transform (HWT), from which robust multi-
scale features are constructed. Cepstral distances aimed at ensur-
ing balanced multiscale contributions are computed between pairs 
of images. The resulting large-size affinity matrix is then clustered 

[Patrice Abry, Stéphane G. Roux, Herwig Wendt, Paul Messier, Andrew G. Klein, Nicolas Tremblay, 

Pierre Borgnat, Stéphane Jaffard, Béatrice Vedel, Jim Coddington, and Lee Ann Daffner]

[Art scholarship meets image processing algorithms]

Multiscale Anisotropic 
Texture Analysis 

and Classification 
of Photographic Prints
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using spectral clustering, followed by a 
Ward linkage procedure. For proof of con-
cept, these procedures are first applied to 
a reference data set of historic photo-
graphic papers that combine several lev-
els of similarity and second to a large data 
set of culturally valuable photographic 
prints held by the Museum of Modern Art 
in New York. The characterization and 
clustering results are interpreted in col-
laboration with art scholars with an aim 
toward developing new modes of art his-
torical research and humanities-based 
collaboration. 

INTRODUCTION
Surface texture is a defining characteristic 
of a photographic print and has a signifi-
cant impact on the quality and perception 
of the image. Manufacturers of both tradi-
tional photographic paper and new-gener-
ation inkjet materials thus carefully 
engineer surfaces to meet a variety of 
functional and expressive requirements. 
Smoother surfaces typically produce 
images with greater optical saturation and tonal range. With 
good lighting, smooth, featureless surfaces can visually negate 
the picture plane. Reducing this perceptual barrier can trans-
form a two-dimensional (2-D) image into a more effective illu-
sion of objective reality. Rougher surfaces cause more scattering 
of incident light providing the viewer with a greater tactile sense 
of the print as a material object. A stronger physical presence 
can often convey heightened intrinsic value and expressive 
weight. Understanding how these qualities are manipulated pro-
vides scholars insight into artistic intent and practice. More 
practically, as an indelible physical attribute, print texture can 
help categorize preferred and anomalous papers within an art-
ist’s body of work or identify anomalies (including fakes). 
Encyclopedic reference collections of such textures, cataloged by 
manufacturer and date, are currently being assembled for both 
traditional [1] and inkjet [2] photographic materials. Likewise, 
the very beginning steps are underway to catalog surface tex-
tures used by prominent photographers such as Man Ray and 
Lewis Hine, among others [3]. While presently useful, such sur-
face texture collections are difficult to catalog and access, as 
tools for query and retrieval are only in early stages of develop-
ment. At present, experts visually and manually classify an 
unknown texture by comparing it with identified references. 
This is a tedious and challenging task due to the sheer size of 
available reference collections exposing a significant need for 
(semi)automated procedures to assist in texture assessment. 

Texture analysis and characterization are long-standing top-
ics of image processing and have been the subject of consider-
able research efforts over the past decades, cf., e.g., [4]–[8]. 
Texture characterization has relied on a variety of attributes 

(from textons or primitives, i.e., gray-level statistics or geomet-
rical features, to co-occurrence matrices or multiple spatial 
dependencies) and has proven effective for a wide range of dif-
ferent applications, e.g., in biomedical contexts [9], [10], in 
physics of surfaces and fractures [11], and in geophysics [12]. To 
a lesser extent, and only recently, texture analysis has been 
applied to art investigations (cf. [13]–[22] and the references 
therein). Among the many paradigms used for texture charac-
terization, fractal and multiscale methods have received grow-
ing attention. Fractal analysis has further been extended to 
multidimensional multifractal analysis, cf., e.g., [17] and [23]. 
However, in most formulations, (multi)fractal or multiscale 
analyses do not account for the potential anisotropy of textures. 
Recently, however, the HWT [24] has been shown to account for 
anisotropy in the multiscale analysis of textures [25]. 

DATA SETS

TEXTURE IMAGE ACQUISITION
Presently, the simplest means to catalog surface texture is through 
images made using magnification and raking light. This imaging 
system, referred to as the TextureScope, has been extensively 
described in [19] and is shown in Figure 1. It is noncontact and 
nondestructive and can therefore be easily adapted for use on 
photographic prints of high intrinsic value. The method is rela-
tively quick and requires minimal specialized handling so that 
large image sets can be produced rapidly. Created under repeatable 
and standardized conditions, the resulting images provide an 
important visual record and serve as a basis for computational 
analysis. The TextureScope depicts . .1 00 1 35#  cm2 of a paper 

Lens

Lens

Lens

Imager

Focusing Mount

LED Line Light

7 cm
LED Line Light

1 cm

TextureScope

25° 3 
cm

(a) (b)

[FIG1] The TextureScope. 
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surface. This scale is selected since it reveals some microscopic 
features, such as matting agents occasionally used by manufactur-
ers, but also depicts attributes recognizable to a human observer. 
Samples are digitized at 153.6 pixel/mm, resulting in 

, ,1 536 2 080#  images, with each pixel thus corresponding to 
. . .6 51 42 4 m2 2- n

PHOTOGRAPHIC PAPER TEXTURE DATA SETS
Data set 1 consists of 120 nonprinted photographic paper sam-
ples. Aside from the texture images, the data set includes man-
ufacturer-applied semantic descriptions of the samples 
(manufacturer, brand, texture, and reflectance) and an approx-
imate date of production. Three levels of similarity are built 
into the data set (cf. Figure 2): 1) samples from one same sheet 
(three subsets of ten samples each), 2) samples from sheets 
taken from one same package (three subsets of ten samples 
each), and 3) samples from papers made to the same manufac-
turer specifications over a period of time (three subsets of ten 
samples each). In addition, 30 sheets representing a fuller 
diversity of photographic paper textures are included. The data 
set and its documentation have been prepared by an expert 
familiar with the technical and aesthetic history of photo-
graphic paper to include both commonly used surfaces and 
some outliers. Data set 1, further described in [19], is publicly 
available within the framework of the Historic Photographic 

Paper Classification Challenge (http://papertextureid.org) 
developed by Paul Messier and C.R. Johnson. 

Data set 2 gathers 2,491 samples that fall into two subset 
categories. The first and largest subset (2,031 samples) consists 
of silver gelatin (traditional black and white paper) surface tex-
ture samples that were taken directly from manufacturer pack-
ages or sample books spanning the 20th century. These 
samples are representative of the full range of surface textures 
available to 20th century photographers and is carefully docu-
mented using the same manufacturer-applied metadata 
described for data set 1. The second subset in data set 2 con-
tains textures from finished photographic prints. Within this 
group, 346 samples derive from the Thomas Walther collection 
held by the Museum of Modern Art  in New York and contains 
work by leading modernist photographers primarily active in 
Central and Eastern Europe between World War I and World 
War II. This group is joined by a small but important collection 
of textures from 11 prints belonging to the Museum of Fine 
Arts, Houston. Each one of the 11 prints are by the same artist 
and depict the same image as 11 prints from the Walther col-
lection in the Museum of Modern Art. Comparing the textures 
of these twin prints offers the possibility of determining if they 
are made on exactly the same, similar, or completely different 
papers. Discovering a shared material history between the print 
pairs can have significant ramifications for art historical 

[FIG2] Data set 1 with nine groups of ten samples, each representing three levels of similarity (same sheet, same packet, same 
manufacturer) and 30 samples representing the diversity of art photographic papers.

“Diversity” Group

1) Same Sheet

2) Same
Package

3) Same
Manufacturer
Surface

Three “Similarity” Groups

Ten Images per Group × Three Sets = 120 Total Texture Images in the Data Set
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scholarship, especially if this link can be established remotely 
through data analysis versus often impractical side-by-side 
comparison. Data set 2 thus offers rich opportunities for cross-
referencing discovered affinities and anomalies across time 
periods, manufacturers, collections, and individual makers. 
Typical samples from data set 2 are represented in Figure 3, 
spanning a variety of photographic papers. 

METHODOLOGY
A texture-clustering procedure relies on the selection, design, 
and combination of three key ingredients: 1) features represen-
tative of the texture, 2) the distances between features provid-
ing relevant measurement of resemblance between pairs of 
paper surfaces, and 3) the classification procedure. 

FEATURES: HYPERBOLIC WAVELET TRANSFORM
We propose to extract surface features using the HWT [24]. 
HWT consists of one of the many variations in image multi-
scale analysis, that expands on the classical 2-D-discrete wave-
let transform (2-D-DWT). HWT explicitly accounts for the 
potential anisotropy of an image texture, as it relies on the use 
of two independent dilation factors a 2 j

1 = 1  and a 2 j
2 = 2

along the horizontal and vertical axes. In [25], HWT is favor-
ably compared against the 2-D-DWT, the former permitting to 
disentangle actual multiscale properties from the potential 
anisotropy of the analyzed texture, while the latter yields 

Glossy-Smooth (1) Glossy-Filigran (2) Glossy-Soft(3)

Matte-Fine Grained (4) Matte-Rough (5) Luster-Silk (6)

Luster-Canvas (7) Chamois-Velvet (8) Satin-None (9)

[FIG3] Photographic paper textures. Examples of raking light photographic paper samples spanning a variety of different reflectance-
texture characteristics.

j1

j 2

α =1

S ((j1, j2), q = 2)

1 3 5 7

1

3

5

7

α̂

(a) (b)

[FIG4] HWT-based features. (a) A surface sample with its (b) HWT-
based anisotropic multiscale representation  .( , , )S j j q 2X 1 2 =  The 
estimated anisotropy angle ,q0 2a =t  (solid line) indicates a 
departure from isotropy 1/a  (dashed line).
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strongly biased estimates of multiscale properties when 
textures are anisotropic. 

The HWT coefficients of an image ( , )X x x1 2  are obtained by 
comparing it, by means of inner product, against a collection of 

dilated [at scales ( , )]a 2 2j j= 1 2  and translated [at locations 
( , )]k k2 2j j

1 2
1 2  templates 

( , ) ( , )x x x k x k2 2 2, , ,
( )/

j j k k
j j j j

1 2
2

0 1 1 2 21 2 1 2
1 2 1 2} }= - -- + - - (1)

of a reference mother-wavelet ( , ),x x0 1 2} ( , ) :j j R1 2
26 ! +

( , , , ) ( , ), ( , ) .T j j k k X x x x x, , ,X j j k k1 2 1 2 1 2 1 21 2 1 2G H}= (2)

The mother-wavelet ( , )x x0 1 2}  is classically defined as a tensor-
product of one-dimensional (1-D)-multiresolution mother-wave-
lets (cf., e.g., [28]). A multiscale representation of ( , )X x x1 2  is 
further obtained by computing space averages (lq-norms) of the 

( , , , )T j j k kX 1 2 1 2  at fixed scale pairs ( , ),j j1 2 :q 02

( , , ) ( , , , ) ,S j j q n T j j k k1
,X

a
Xk k

q
1 2 1 2 1 2

1 2
= / (3)

where na  stands for the number of coefficients actually com-
puted and not degraded by image border effects. 

It was shown in [25] that the anisotropy of the texture can 
be quantified by an index [ , ]0 2!a ( 1a =  corresponding to 
isotropy) and that SX  often behaves as a power law, 

( , ( ), ) ,S j j q C2 2X q q
j

q
H

q
q-a a- at t t
t

 where ( , )argmax qqa c a= at  is 
an estimate for ,a ( , ) /H q qq c a=-t  is an estimate for the 
(anisotropy robust) self-similarity, or Hurst, or fractal, parame-
ter ,H  with ( , ) ( ( , ( ) , )) / .lim inf logq S j j q j2j X2c a a a= -  An 
example of ( , , )S j j q 2X 1 2 =  is shown in Figure 4. 

To ensure balanced contributions from all scales despite 
such power law behaviors, features are computed from 

( ( , , )),log S j j qX 1 2  after a normalization across scales that 
ensures that the features do not depend upon a change in the 
intensity of the raking light and exposure variables that influ-
ence overall image brightness 

( , , ) ( ( , , ) / ( , , )) .logS j j q S j j q S j j q
,X X Xj j1 2 1 2 1 2

1 2
= l l

l l
u / (4)

In this article, the selected analysis scales are ,j j1 71 2# #

and correspond to physical scales ranging from 13 mn
,a a2 2 830 mj j

1 2
1 2# # n= = .0 83/  mm (i.e., seven octaves) 

thus yielding a matrix of 7 7 49# =  multiscale features for 
texture characterization. 

A cepstral-type distance (i.e., a log-transformed normalized 
Lp  norm) between the multiscale representations ( , , )S j j qX 1 2

u

and ( , , )S j j qY 1 2
u  is used to quantify proximity between textures 

X  and Y  defined as (with ):p 02

.( , ) ( , , ) ( , , )X Y S j j q S j j qD
,

/
X Yj j

p p
1 2 1 2

1

1 2
= -u u` j/

In this article, q 2=  and p 1=  are used, without specific tun-
ing to obtain optimal results. The empirical distribution of the 
distances computed between all ( / )2491 2490 2#  pairs of sam-
ples in data set 2 is shown in Figure 5(a). The distances 
between some pairs among the samples in Figure 3 are super-
imposed to that distribution, and are also mapped into a 
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[FIG5] The distances between (a) photographic paper textures 
between all pairs of data set 2, to which are reported 
distances between some of the samples shown in Figure 3(a), 
and (b) a virtual 2-D space showing proximity between 
samples (see the “Methodology” section for more details).
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[FIG6] Data set 1: spectral clustering. The left plot in (a) shows
the sorted eigenvalues (energy) and successive differences 
(gain), while the right plot shows the intra- and intercluster 
median distances. (b) A dendrogram showing seven clusters, 
with a posteriori interpretations of their contents from the 
manufacturer-applied metadata: cluster # (cluster size): 
reflectance/texture, manufacturer/brand.
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virtual 2-D space [cf. Figure 5(b)] quantifying resemblance 
and dissemblance between samples (mapping obtained by a 
standard multidimensional scaling procedure based on a 
Kruskal’s normalized stress criterion). 

Clustering is achieved via the spectral clustering procedure 
(cf., e.g., [26], [27], and [29]), which can be regarded as a spe-
cific unsupervised learning technique that aims to ensure 
robustness of the classification by reducing the dimensionality 
of the space in which samples are represented. Starting from 
the N N#  cepstral distance matrix ,D  where N  is the num-
ber of photographic paper samples, the clustering procedure 
used here operates as follows. 

1) A nonlinear transformation is applied to distance matrix 
,D ( / )expA D e= -  (corresponding here to entry-wise 

exponentiation), yielding a (dis)similarity matrix, where e  is 
a constant assessing the typical closeness between images.
2) The eigenvalues and eigenvectors of the (random walk-type) 
Laplacian operator I DL A1= - -  associated to A  are com-
puted, where D  is the diagonal matrix ) .D (diag A

j ij= /
3) The eigenvectors corresponding with the K  smallest 
eigenvalues of L  are assembled in the K N#  matrix ,S
defining the set of robust K  coordinates (hence the reduc-
tion of dimensionality, )K N%  for the N  samples. 

4) Hierarchical ascendant clustering (with Ward linkage) is 
applied to the matrix .S
5) A set of thresholds is used to produce K K#l  hierarchical 
clusters. 

RESULTS 

DATA SET 1: TEST DATA SET
The analysis procedure described in the section “Methodology” 
yields the following results. Sorted eigenvalues of the Lapla-
cian (and successive differences) as shown in the left plot of 
Figure 6(a) lead to conclude that K N13 120%= =  eigenvec-
tors are sufficient to represent the distances within data set 1. 
The linkage procedure yields K 7=l  clusters that are robust 
to varying the linkage threshold, as shown on the dendrogram 
in Figure 6(b). The right plot of Figure 6(a) reports the intra- 
versus intercluster median distances, showing first the robust-
ness of the achieved clustering (black diagonal squares 
indicate low intra-cluster median distance) and second the 
proximity of some clusters (e.g., 1 and 2 or 3 and 4). Inspec-
tion of the obtained clusters and comparison with the docu-
mentation available for data set 1 leads to the following 
striking conclusions: 
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[FIG7] Data set 2: gross clustering. Achieved gross clusters are mostly driven first (a) by reflectance and second (b) by texture.
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■ All ten samples from a same sheet—and, similarly, all ten 
samples from a same package—always fall in a common clus-
ter. The median distances between the ten samples from the 
same sheet and the ten samples from different sheets of the 
same packet are found to be of the same order of magnitude, 
indicating a remarkable reproducibility of the manufacturing 
process [19], [20]. 
■ Samples from one given sheet or from one given packet 
correctly fall within the cluster containing different samples 
from the same manufacturer and produced to the same speci-
fications of texture and reflectance. 
■ From the semantic descriptions applied by the manufac-
turer, the attribute that mostly drives the clustering is reflec-
tance, e.g., luster, chamois, matte, semimatte, and glossy. For 
the same reflectance (clusters 1 and 2, 3 and 4, and 6 and 7), 
the clustering is further refined by the manufacturer-applied 
terms describing texture, e.g., smooth, grained.
■ The classification of the 30 samples representing the diver-
sity of photo papers is found to be clearly driven by both 
reflectance and texture.
The contents of K 7=l  clusters are summarized on the den-

drogram in Figure 6(b) (see also [19] and [20]).

DATA SET 2: LARGE DATA SET
Application of the procedure described in the section “Methodol-
ogy” to data set 2 leads to the following comments. Inspection of 
the sorted eigenvalues of the Laplacian and their successive differ-
ences shows that the use of ,K N62 2 491%= =  eigenvectors 
yields a robust representation of distances within data set 2. 

GROSS CLUSTERING
Using classical tools to assess robustness and relevance in select-
ing the threshold of the linkage procedure applied in this 
K 62=  dimensional space leads to an initial coarse classification 
into K 6=l  large-size clusters ( ) .143 702Cluster Size# #

Compared to the semantic terms applied by manufacturers to 
describe gloss and texture, the analysis of these clusters leads to 
conclusions, reinforcing and enriching those drawn from the 
analysis of data set 1: clustering is mostly driven by reflectance
and then texture, as illustrated in Figure 7. Clusters 4 and 5 cor-
respond to a glossy reflectance, cluster 3 corresponds to a Luster
reflectance, and clusters 1 and 2 correspond to matte and semi-
matte reflectances, with a rough or grained texture for the for-
mer and a velvet or smooth texture for the latter. Interestingly, 
cluster 6 gathers almost all of the unusually patterned 

[FIG8] A cluster gathering of Willi Ruge’s 1931 parachuting series. (Images courtesy of The Museum of Modern Art, New York).
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silk textures (reflectance was not documented for most of these 
samples). See Figure 3 for representative examples of such reflec-
tances and textures. 

REFINED CLUSTERING
By decreasing the threshold of the linkage procedure, an increas-
ing number of small-size clusters are extracted in a hierarchical 
manner, enabling a more detailed analysis of the data set. In some 
cases, these clusters have obvious interpretations for art scholars, 
including curators and conservators. For example, one of these 
clusters gathers 14 prints from a 1931 parachuting series by Willi 
Ruge (German, 1882–1961) from the Thomas Walther collection 
at the Museum of Modern Art (Figure 8). This series depicts 
groups of sequential exposures made to document several events. 
Grouping within a single cluster indicates the groups share a 
materials history and were likely made together. Other clusters 
suggest more surprising affinities and raise unexpected questions. 
Notably, a small cluster of three samples contains a platinum print 
by Alfred Stieglitz (American, 1864–1946) from 1915 and two pal-
ladium prints by Edward Weston (American, 1886–1958) from 
1924 (Figure 9). Weston met the influential Stieglitz for the first 
time in 1922 during a short trip to New York. Weston said of this 
meeting [30, p. 5]: “Stieglitz has not changed my direction, only 
intensified it—and I am grateful.” This small cluster possibly indi-
cates that Stieglitz’s influence was not simply a matter of artistic 
encouragement but perhaps also grounded in a deliberate use of 
the same materials. Given traditional modes of scholarships, the 
implied linkage between these prints would normally not receive 
scrutiny since these are different artists, using different imaging 
metals (platinum versus palladium), separated by a large geo-
graphical distance (California and New York) and a time period 
spanning nine years. However, clustering based on surface texture 
provokes new questions that might otherwise never be asked: Is 
the dating of the Stieglitz print secure (it is) or could it have been 
made later? Was Weston making a conscious effort to emulate 
Stieglitz even after the passage of nine years? Did manufacturers 
use essentially the same paper over long periods of time, even after 
the switch from platinum to palladium imaging metal after World 
War I? Are the overall warm image tones 
and especially the low contrast of the Stieg-
litz and the Weston cloud study attributes 
of a specific brand of paper? These and 
other related questions demonstrate how 
discovery of materials-based affinities can 
open the door to new modes of study. 

TWIN PRINTS
This promise is further illustrated by data 
set 2, where 11 pairs of prints, each pair 
attributed to the same artist and each 
showing the same or very similar image, 
are compared across two large museum col-
lections, the Museum of Fine Arts, Houston, 
and the Museum of Modern Art in New 
York. The purpose of this comparison is to 

determine whether or not the pairs in the different collections 
are made on the same paper and thus have a shared materials-
based history. For this comparison, four fundamental attributes 
can be compared, print thickness, highlight color, reflectance 
(or gloss), and texture, of which only the two last may have rela-
tions with the quantitative features used here to characterize 
photo paper surfaces. Figure 10 shows the overall empirical dis-
tribution of distances between all ( / )2491 2490 2#  pairs in data 
set 2 as a reference to compare the distances between the twin 
prints of the 11 pairs of interest here. For examples, the pairs by 
Franz Roh (German, 1890–1965), Theodore Roszak (American, 
1907–1981), and Marianne Breslauer (German, 1909–2001) 
show small distances (corresponding respectively to the 5, 6, 

[FIG9] A surprising cluster gathering: one platinum print by 
A. Stieglitz from 1915 (left, © 2015 Georgia O’Keeffe Museum/ 
Artists Rights Society, New York) and two palladium prints by 
E. Weston from 1924 (right) (images courtesy of The Museum 
of Modern Art, New York).

[FIG10] Distances between twin prints for the 11 pairs of interest, compared to the 
overall distribution of distances—the solid and dashed vertical lines denote, respectively, 
the 50% (or median distance) and 25% quantiles.
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and 10% quantiles). Interestingly, the examination of print 
thickness, highlight color, reflectance, and texture had led to 
the conclusion that prints of these pairs were similar. For prints 
approaching a distance close to the distribution median dis-
tance (the solid vertical line in Figure 10), the similarities are 
less clear. In all respects (texture, reflectance, highlight color, 
and print thickness), pairs in this range by Max Burchartz (Ger-
man, 1887–1961), John Gutmann (American, 1905–1998), and 
Jaromir Funke (Czech, 1896–1945) are classified as being on 
the same paper. However, pairs in this same range by Edmund 
Collein (German, 1906–1992), Helmar Lerski (Swiss, 1871–
1956), and another Gutmann print are categorized as being on 
different paper when gloss, highlight color, and paper thickness 
are taken into account. In particular, the prints by Paul Citroen 
(Dutch, 1896–1983), though they have low texture differences 
(31% quantile), are classified as being on different paper 
mainly due to significant difference in gloss and print thick-
ness. These results are not surprising given the common 
manufacturer practice of applying the same texture to different 
papers. These results suggest that an automated solution for 
discriminating material-based affinities across collections can-
not rely on a single criterion, such as texture or reflectance, for 
determining results especially for distances around the median 
of the distribution. 

Furthermore, such solutions should convey some level of 
confidence and context rather than returning a simple, binary 
determination of same or different. For distances significantly 
larger than the distribution median, the impact of color, thick-
ness, and particularly gloss is still not clear. A pair by Alexander 
Rodchenko (Russian, 1891–1956) has a very large texture classi-
fication distance (beyond the 84% quantile) but could not be 
classified for this study due to missing information on gloss, 
highlight color, and print thickness. An interesting next step 
for prints such as those with large texture distances would be 
to determine whether additional information on, e.g., gloss or 
highlight color, have any impact on the determination of same 
or different or if instead the very large texture differences in this 
range are solely determinative.

CONCLUSIONS AND PERSPECTIVES
This article has quantitatively and qualitatively illustrated the 
potential value of basing the surface characterization and classifi-
cation of photographic prints holding cultural value on aniso-
tropic multiscale representations (HWT), combined with cepstral 
type distances and spectral clustering. The test data set 1 assem-
bled in the framework of the Historic Photo Paper Classification 
Challenge demonstrates that the manufacturer-applied features of 
reflectance followed by texture are fundamental for the character-
ization of paper surfaces. Applied to data set 2, this methodology 
has promising results for art scholars, both by confirming existing 
conclusions and provoking new questions. 

On the methodological side, this work can be expanded along 
several directions. There is an obvious need to compare the 
achieved results against those obtained with features both com-
puted on other multiscale representations (e.g., [21]) or based on 

representations of very different natures (cf. [19] for a first 
attempt). Devising distances that better match the perceptual, 
artistic, aesthetic and manufactured nature of photographic paper 
is a clear next step and an emergent priority. Also, at the clustering 
stages, tools for developing more robust assessments of both the 
relevance of a given cluster (compared to the benefit of further 
splitting it) as well as the confidence with which a given paper can 
be assigned to a given cluster, would significantly complement this 
first work. Additional strong benefits would likely result from 
using tools aiming at assessing the relevant levels at which data 
sets should be clustered, in the spirit of multiscale community 
clustering developed in, e.g., [29]. 

On the application side, texture characterization, comparison, 
classification, and retrieval systems have great potential within the 
humanities, promoting new modes of scholarship for curators, 
collectors, and art conservators. Dating, authentication, stylistic 
development, artistic intention, and spheres of artistic influence 
are vital scholarly questions. Networked and deployed across 
museum, library, and archive collections, methods for texture 
query and retrieval can lead to new research opportunities where a 
print in one location can be meaningfully compared, based on 
physical attributes, to others held elsewhere. Such systems will 
provide the means to discover material-based (not simply image-
based) affinities across time and within and across artists’ oeuvres. 
Intrinsically valuable for enhanced scholarship in the humanities, 
such systems also would be effective for identifying anomalies, 
notably including fakes. 

A key future step lies in further developing tools permitting 
deeper and more meaningful interactions between signal and 
image processing experts and scholars working within a wide 
array of humanities-based disciplines. Besides simply making 
lists of clusters available to humanities-based experts, such tools 
must enable them to naturally apprehend the robustness of pro-
posed clustering (or its fragility), its hierarchical nature as well 
as its sensitivity to methodological choices. Developed further, 
such systems would optimally allow for qualitative input and 
the modeling of results based on other bodies of nonempirical 
knowledge. This work would present exciting opportunities 
where the fields of signal and image processing can adapt to the 
subtleties and specificities of humanities disciplines, thus 
broadening applications and cross-disciplinary relevance.
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E
arly paper manufacturing used sieve-like molds through 
which paper pulp was drained. Two pieces of paper are 
called moldmates if they were made using the same 
mold. When a large body of one artist’s work on paper 
exists, the identification of moldmates can help in estab-

lishing chronology, suggest paper preferences, and indicate periods 
of intense activity of the artist. Rembrandt is an especially good 
example. With several thousand prints in existence today, the study 
of Rembrandt’s prints has occupied scholars for over two centuries, 

and the study of his printing papers occupies a prominent place 
within this scholarship [1]. This article examines the feasibility of 
moldmate identification via chain-line pattern matching and con-
ducts a series of experiments that demonstrate how accurately the 
measurements can be made, how straight and parallel the lines 
may be, and provides a rule of thumb for the number of chain lines 
required for accurate moldmate identification using a simplified 
model. The problem of identifying moldmates among Rembrandt’s 
prints is presented as a pair of image/signal processing tasks; our 
strategy is to provide basic solutions to these tasks and to then 
reveal the shortcomings of these solutions in the hopes of encour-
aging future work in the signal processing community. With the 
support of the Morgan Library & Museum and the Metropolitan 

[C. Richard Johnson, Jr., William A. Sethares, Margaret Holben Ellis, and Saira Haqqi]

[Chain-line pattern matching]

Hunting for Paper 
Moldmates Among 
Rembrandt’s Prints
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Museum of Art, both of which are in New York, we have made 
high-resolution data available [2] to facilitate this quest. 

LAID LINES, CHAIN LINES, MOLDMATES, 
AND WATERMARKS
Before the introduction of the papermaking machine in the early 
19th century, handmade paper was created by dipping a mold—a 
porous screen surrounded by a removable wooden frame—into a 
vat of mascerated and suspended pulp. Prior to 1750, the screen 
was fabricated from fine, densely spaced horizontal rows of laid 
wires held into position by thicker, widely spaced vertical chain
wires. When the mold was plunged into the vat and lifted out, 
these wires acted as a sieve, retaining the paper pulp in thinner 
and thicker accumulations as the water drained away. A modern 
reenactment of this method of papermaking can be found online 
[3]. The grid-like configuration—called a laid and chain-line
pattern—formed by the interference of the wires, is replicated in 
the final sheet and is easily visible when the blank paper is viewed 
via transmitted light or imaged via radiography. For example, 
Figure 1 shows one of Rembrandt’s prints and a beta-radiograph of 
the same print in the region around the watermark. The chain 
lines are the whitish vertical features spaced slightly more than 
2 cm apart. The laid lines are the closely spaced (and barely per-
ceptible) horizontal lines. Each mold was made by hand and, while 
at first glance, two molds may appear to be identical, small 

variations exist between the exact intervals of chains from one 
mold to the next. Papers having identical laid and chain-line pat-
terns are commonly presumed only to occur if they have been 
formed on the same mold—hence, they are called moldmates.

A watermark designating the paper’s manufacturer, size, or 
function was often stitched onto the heavier chain lines using a 
wire bent into a simple shape, for example, a star, shield, or 
monogram. Just like the chain and laid lines, the watermark 
wire affected the rate and quantity of pulp as it drained through 
the mold and left behind a characteristic impression on the 
paper. Typically, images of watermarks are captured for art his-
torical research using beta-radiography or low-energy X-radiog-
raphy [1]. For example, the watermark in Figure 1 is known as a 
foolscap and depicts the head of a jester wearing a five-pointed 
ruff surmounting a cross emerging from three spheres. Twenty-
one variants of foolscap watermarks found on Rembrandt’s 
prints are cataloged in [1], one of which has nine subvariants, 
with one of these appearing in Figure 1. This particular subvari-
ant can be found in 16 different prints by Rembrandt according 
to [1]. Papers having identical watermarks may also be pre-
sumed to be moldmates. 

Watermarks have received considerable attention in print, 
drawing, book, and manuscript connoisseurship, with scholars 
carefully recording watermarks in the works of Shakespeare, 
Beethoven, Jane Austin, Dürer, and other artists and writers. To 

[FIG1] Rembrandt’s etching Medea, or the Marriage of Jason and Creusa, (Bartsch 112iv) is shown in (a) visible light and as rendered, 
in a detail, by (b) beta-radiograph. The area near the watermark is shown in the beta-radiograph where the chain lines are the vertical 
features that are spaced a little less than 1 in apart (see the top ruler). Thanks are extended to Reba Snyder for providing the beta-
radiograph of B112. (Etching photo credit: The Morgan Library & Museum, New York. RvR 178. Photography by Graham S. Haber, 2014.)

(a) (b)
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date, moldmates have been identified primarily by comparing 
watermarks. However, extracting and comparing watermarks 
using computer-generated algorithms is a challenging propos-
ition, as they have complicated shapes (as shown by the foolscap) 
and can assume many forms and have many variations. Another 
drawback to the use of watermarks for moldmate identification is 
that not all prints under consideration have watermarks. Indeed, 
only approximately one-third of the extant impressions of Rem-
brandt’s etchings include a full watermark or even a fragment [1]. 
Accordingly, the use of the chain-line pattern has been suggested 
as way to identify papers made on the same mold [4], [5]. The dif-
ficulty in manually pursuing moldmate identification via chain-
line pattern matching has prompted the consideration of its 
automation [6]–[8], though no automated scheme has yet been 
universally adopted. 

CHAIN LINE PATTERN MATCHING
AND SIGNAL PROCESSING
The approach taken here is to characterize the problem of identi-
fying moldmates among Rembrandt’s prints—and, by extension, 
any handmade laid and chain-line patterned papers such as those 
found in manuscripts, printed books, archives, and collections of 
prints and drawings—as a basic pair of image processing tasks. 
(While considerable progress has been made in the application of 
signal processing to the technical analysis of canvas supports for 
paintings [9]–[13], there has been much less focus on the applica-
tion of signal processing to handmade laid paper.) The first task is 
to locate the chain lines in images such as Figure 1; the second is 
to use the chain-line patterns to identify potential moldmates. Our 
strategy is to provide basic solutions to these two tasks that are 
sufficient to convince the user community to collaborate in a 
future imaging campaign providing full sheet images to maximize 
the extent of the chain-line pattern associated with each piece of 
paper. To help encourage members of the signal processing com-
munity to contribute to this topic of paper moldmate identifica-
tion, we point out here some of the limitations of our basic 

solutions and note that, with the support of the Morgan Library & 
Museum and the Metropolitan Museum of Art, we have made 
high-resolution images available [2], which will be needed for 
developing improvements. 

Our algorithmic approach to this computational art history 
task is similar to the strategy in [7], which uses image processing 
tools (in particular Fourier and Radon transforms) to extract 
from a suitable image the average chain-line separation distance, 
chain-line orientation, number of chain lines, and the sequence 
of chain-line separation distances. As stated in [7]: “All these fea-
tures are detected under the assumption that the lines are 
straight and equidistant with respect to each other.” (Here equi-
distant means parallel.) In [7], the average chain spacing and the 
chain-space sequence are combined with the laid line density in a 
similarity measure. Our approach in this article differs in that we 
drop the extraction and use of laid line density, as most of our 
images are of insufficent clarity to assess this feature. Plus, we 
abandon the assumption that the chain lines are parallel; while 
we retain the assumption that they are straight. The lead author 
of [7] modified the straightness assumption to piecewise 
straightness in [8], with a commensurate increase in the neces-
sary signal processing. 

In this article, we test the straightness of the chain lines in the 
images in our data set and find that numerically adequate near-
straightness occurs in approximately 90% of our images. Thus, in 
our quest to establish the ability of chain-line pattern matching of 
a sufficient number of adjacent chain spaces by itself (to offer a 
reduction in a broad library to a manageable number of potential 
matches for further investigation), we assume chain-line straight-
ness. We also test our data set for the occurrence of chain-line 
patterns with at least one nonparallel chain line with a relative 
angle greater than 0.12°. This is a sizable portion of our data set.
We chose to include the possibility of handling images with non-
parallel chain lines, for which the location of the measurement of 
chain spacing on the image relative to its location on the mold 
needs to be computed, because of the fundamental simplicity of 
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[FIG2] (a)–(j) A semiautomatic method of chain-line extraction.
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this task. The end result is that we agree with [7] in that the 
chain-space sequence is “the most discriminative feature.” 

LOCATING CHAIN LINES
A semiautomatic method of chain-line extraction in beta-
radiographs is shown in Figure 2. This begins in (a) with a man-
ual trimming of (b) to remove any labels, ruler markings, and 
blank areas from the source image. The trimmed image is input 
into a Radon transform (c) and the angle at which the chain 
lines are (closest to) vertical is given by the column with the 
greatest variation. The graph (d) shows the standard deviation 
of the elements in each column, and the angle *i  with the max-
imum value gives the angle of rotation. In (e), the trimmed 
image is rotated by *i-  to give the straightened image (f). This 
is then filtered using an aggressive vertical filter (g), which is 
1/3 the image height and three pixels wide, resulting in the fil-
tered image (h). A Hough transform (i) then locates the most 
prominent lines, and the result is shown in (j), superimposed 
over the straightened image. 

Although the positions and orientations of the lines can be 
determined automatically in this procedure, both the preparation 
of the image and the final verification are done manually. It is diffi-
cult to control the exposure of beta-radiographs, since under- and 
oversaturation can occur based on the properties of the paper, 
which may not be fully known at a the time of exposure. As a 
result, it is common to adjust the contrast on the images and to 
trim unwanted portions of the raw data. The images commonly 
contain a ruler [as in Figures 1 and 2(a)], which is needed to verify 
physical dimensions, and there may be regions of all-black or all-
white [such as the wedge-shaped region in Figure 2(a)] that need 

to be cropped. While it may be possible to automate some of these 
actions, mistakes in the preprocessing almost guarantee that the 
chain lines will not be found properly. 

Once the procedure (b)–(c)–(e)–(g)–(i) of Figure 2 has been 
run, it is necessary to check that the output is sensible. Typical 
errors in the algorithm would include failing to find some of the 
lines or finding too many lines. In either case, the algorithm 
can be rerun with different thresholds and settings within the 
filters and transforms. Clearly, the method suggested in Figure 2 
is but one possibility. See [7] for another method that begins by 
exploiting the shadow around the chain lines rather than the 
chain line itself. 

As all approaches will, our method makes several assumptions 
about the chain-line patterns. First, it assumes that all the lines 
are more or less parallel (because otherwise the Radon transform 
cannot locate a single preferred direction for the step (e) derota-
tion). Second, it assumes that all the lines are genuinely straight, 
since curved or segmented lines cannot be reliably located by the 
Hough transform. The open problem of finding more automated, 
more general, more accurate, and/or faster algorithms is one task 
we are promoting here to signal processing specialists. 

Rather than pursuing an improved or more general algorithm 
here, consider the question of accuracy. It is easy to look at the 
superimposed output of Figure 2(j) and to see that it “looks” cor-
rect. It has detected the correct number of lines, and they are 
located plausibly. But what is the “real” answer, and how close 
does the algorithm come to this answer? Indeed, this becomes 
crucial when comparing different algorithms, since only by com-
paring with a ground truth can the accuracy of different candidate 
algorithms be compared. 

[FIG3] A small region containing a portion of a chain line is extracted from the beta-radiograph in Figure 1. This is then enlarged twice in 
(b) and (c). What appears to be a fairly clear vertical line in (a) dissolves into a blur of pixels in (c). Where exactly is the “line?”

(a) (b) (c)
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EXPERIMENT 1: A TEST OF ACCURACY
To see why the task of locating the chain lines may not be as 
straightforward as it might seem, the beta-radiograph B112iv is 
enlarged twice; see Figure 3. While (a) and (b) clearly show the 
chain lines as vertical linear features, (c) shows that these are not 
simple geometric lines. Rather, they are composed of uneven and 
blurry patches, they are not of uniform width (often extending sev-
eral pixels to either side), and they may be interrupted repeatedly. 

To investigate, we asked a group of Cornell University engi-
neering students taking a course on signal processing algorithms 
for analyzing art supports to manually identify the chain lines in 
several beta-radiographs. The subjects were given marking soft-
ware (a simple graphical user interface built in Mathematica), 
which allowed placement of marks near the endpoints of the chain 
lines. A semitransparent line connected the two end points so that 
the subjects could visually verify his or her marking. Such manual 
markings can be used to establish the ground truth of “where the 
lines really are” and can also be used to assess the agreement (or 
disagreement) among the subjects. 

Since the subjects could choose where to mark, it was not pos-
sible to compare the marked locations themselves. Rather, the 
lines formed by joining the two marked end points were parame-
terized in distance/angle form 

( ) ( ),cos sinx yi it i i= + (1)

where the ( , )x yi i  are the Cartesian coordinates of the two end 
points, t  is the distance from the origin and i  is the angle of the 
line. With two marked points, (1) is a system of two equations and 
two unknowns, and hence can be solved for ( , ) .t i  The ( , )t i

values for each of the lines marked by each of the subjects were 
tabulated. Altogether, there were 12 subjects who worked with 

24 beta-radiographs chosen randomly from our larger set. Each 
subject measured four to five lines on eight different beta-radio-
graphs and so each chain line was measured independently four 
times. Over this data set, the mean of the t  values was 1.06 and 
the standard deviation was 

. ,0 009ev = (2)

which corresponds to about 5.3 pixels at a nominal resolution of 
600 dots per inch (dpi). This shows that despite the patchy nature 
of the chain lines, subjects can locate the chain lines with reasona-
ble consistency. It also provides a way to assess the quality of an 
algorithm. Indeed, applying the semiautomatic procedure of 
Figure 2 to the same beta-radiographs gives values of t  that are 
within one standard deviation of the measured values. 

EXPERIMENT 2: A TEST OF STRAIGHTNESS
Both the algorithm of Figure 2 and the discussion of the geometry 
of moldmates in Figure 4 presume that the chain lines are straight. 
Staalduinen [8] observed that some chain lines may be bent and 
developed a method that attempted to locate the piecewise seg-
ments of such bent lines. Our observation was that the majority of 
chain lines did not appear to bend, and so we wanted to quantify 
the straightness of the chain lines. Toward this end, we asked the 
subjects to manually find the smallest bounding box that encloses 
the centered spine of each chain line. The subjects and image data 
were the same as in Experiment 1. The subjects now used the soft-
ware to mark three points for each chain line, from which the 
bounding boxes can be calculated. These three points were to be 
placed in the horizontal center of the vertically oriented chain line 
with one each near either end and one at some point of extreme 
departure from the straight line connecting the marked end points. 

A
B

C

β

α

θ

β ψ

γ
δ

φ

1

2

d1

d2

(a) (b)

[FIG4] (a) A paper mold is shown in schematic form where the nonparallel chain lines have been exaggerated. The paper has been cut 
into three pieces labeled ,A ,B  and .C  Given a large collection of papers, the goal of moldmate identification is to find those papers 
that come from the same mold. The geometry of two nonparallel chain lines is shown in (b).
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Again, each bounding box is measured four times, by four different 
subjects. Figure 5 shows a histogram of the widths of the chain 
line bounding boxes. The average width is 7.0 pixels, and the 
median is 5.3. Both of these numbers are comparable to (2), 
which is the accuracy to which the measurements are made—
hence, over half of the chain lines have width smaller than can 
be reliably measured. 

On the other hand, there are isolated chain lines that have 
bounding boxes with nontrivial width. In this data set [2], the lar-
gest is the left-most chain line in the image 17.37.75, which is 
measured as 52.7, 27.48, 29.83, and 30.97 pixels by the four sub-
jects. While these values are not particularly consistent, they are all 
well above the measurement error, indicating a significantly bent 
chain line. The second-largest values are from the left-most chain 
line of image 17.37.75 (2), which were reported as 40.13, 32.08, 
39.5, and 36.2. Interestingly, these two distinct images from our 
data set, included in the grouping of [2], are of the same of piece 
paper and should provide a very close match. However, they were 
not designated a very close match by the software we subsequently 
developed, which assumed chain line straightness. They were 
assessed as somewhat similar but not the closest match. 

EXPERIMENT 3: A TEST OF PARALLELISM
A common assumption is that the chain lines in a single print 
are parallel [7]. To test this assumption, this third experiment 
uses a set of N 205=  beta-radiographs we received from the 
Morgan Library & Museum, the Metropolitan Museum of Art, 
and the Rijksmuseum to measure the degree to which the lines 
are parallel, by looking at the difference between the angles of 
the chain lines. Figure 5 shows a histogram of the maximum 
angle that occurs in each print. The mean and median values 
are 0.4 and 0.36°, respectively, so overall the lines tend to be 
fairly parallel. As will be discussed in the following sections, 
when the lines are not parallel, this can be quite useful as an 
identifying feature of the print. 

THE GEOMETRY OF MOLDMATES
The dimensions of the molds used in papermaking were typically 
much larger than the sizes of final folded sheets as used for pages 
in a book or unfolded as stand-alone sheets. Figure 4 shows an 
exaggerated schematic of a mold with eight chain lines that has 
been divided into three sheets labeled ,A ,B  and .C  It is worth 
making a few observations. First, chain line matching cannot 
show directly that papers A  and B  come from the same mold 
since they have no chain lines in common. Second, measurements 
of chain spacings (interchain distances) may show a close match 
between B  and C  (because the corresponding lines are parallel), 
but they will not show a close match between A  and C  (because 
the lines have different angles). Third, given two pieces of paper 
with many chain lines, it is necessary to check all possible subsets 
for matches. For example, only the final four lines of C  can match 
with the lines of .B  Though not obvious from the figure, it is also 
worth mentioning that it is typically unknown a priori whether a 
paper has been flipped left-right, top-bottom (or both) when tak-
ing the beta-radiograph; thus, it is also necessary to check all four 

orientations when attempting to find matches. Finally, the more 
chain lines that overlap, the more certain one can be that two 
papers do (or do not) match. 

Using the distance/angle form (1) for the detected chain lines 
allows a geometric calculation to compensate for the angle dis-
crepancy. Essentially, this estimates the distance b  in Figure 4, 
though it may be pictured geometrically as sliding the chain lines 
of paper A  up and/or down until they best match the chain lines 
of paper .C  The geometry of two nonparallel chain lines is illus-
trated in the right hand side of Figure 4. The distances d1  and d2

are two measurements of how far apart the lines are, and are 
related via 

( ) .sind d1 2 b }= + (3)

Because segments 1  and 2  are parallel, angle a  equals angle 
.d  (Counterclockwise angles are positive while clockwise angles 

are negative.) Thus, because 90ca i= -  and ,90cd z= -   
.i z=  Furthermore, because 90cc }+ =  and ,90cc z- =

.} z i=- =-  A key observation is that the angle off horizontal 
of the shortest distance line to the right line from any measure-
ment point on the left-most line is the same. 
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[FIG5] (a) A histogram of the measurements of the widths of the 
bounding boxes about the chain lines. The majority of chain 
lines appear straight, though there are outliers. The methods of 
this paper will not be effective for these outliers. (b) A histogram 
of the maximum angle found between the chain lines in each 
print gives a measure of how parallel the chain lines are. The 
majority of papers have fairly parallel chain lines; those that do 
not may be more readily identified by the methods of this paper.
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Given a collection of N  laid papers each with M  chain lines 
(presumed to be straight but not necessarily parallel), the first 
step is to measure (automatically, semiautomatically, or manu-
ally) the positions of the chain lines. Using the distance/angle par-
ameterization (1), the M  chain lines in paper i  can be 
represented by the vector 

{ , } { , , , , , , , } ,Ri i i i
M
i i i

M
i M

1 2 1 2
2f f/ !t i t t t i i i (4)

where k
it  and k

ii  represent the distance and angle of each chain 
line k  with respect to the origin of the ith  paper. For ease of nota-
tion, these are partitioned into vectors it  and ,ii  each in .RM

Consider two pieces of paper i  and j  that are separated by an 
unknown distance b  on the same mold (for example, paper A  and 
the first four chain lines of C  in Figure 4). Applying the logic 
of (3) to each of the successive pairs of chain lines suggests esti-
mating b  using a least squares procedure 

.
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Though the measurements j
i,  and ii,  are similar, they are not 

identical, which is why they are averaged. Rewriting (5) using Y ,i j

for the first vector and X ,i j  for the second, the b  that minimizes 
the least squares error ( ) ( )Y X Y X Y X, , , , , ,i j i j i j i j

T
i j i j2b b b- = - -

is ( ) .X X X Y, , , , ,i j i j
T

i j i j
T

i j
1b =) -

IDENTIFYING MOLDMATES
The geometric analysis of the previous section aligns the chain 
lines of two papers (as well as possible) by offsetting them a dis-
tance .,

*
i jb  Moreover, the value achieved at this optimum 

( , )d i j Y X, ,
*

,i j i j i j 2
* b= -b (6)

provides a measure of the dissimilarity between the chain lines 
of the papers i  and .j  A value of zero would mean that the 
shifted versions overlay exactly while a large value implies that 
the two sets of chain lines are very different. Moldmates 
should have small ( , )d i j*b  while unrelated papers should have 
larger values. 

Initial experiments showed that applying (6) directly to the 
problem of finding moldmates can lead to some undesirable false 
matches. Fortunately, many of these can be removed by consider-
ing more than just the value of .( , )d i j*b  We have found four such 
modifications useful. First, if the difference between any of the 
angles is too large, any small value of ( , )d i j  is accidental; such 
accidents can be removed from consideration by placing a thresh-
old on .| |max j ii i-  Second, if all of the individual angles are 
small, then the computation of *b  is irrelevant, and the distance 

( , )d i j j it t= - (7)

is more appropriate. Third, a *b  value that is larger than about 18 in 
(a typical size for the frame) is impossible; any such false matches 
can be removed by placing a threshold on .*b  Finally, if the max-
imum of all the | |j it t-  is small, a distance of zero is reported to 
encourage consideration of this potential mold match. These can be 
written succinctly in two parts: 

 | | . ,
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(8)

where X ,i j  is defined as in (5). The various thresholds (0.005, 
0.01, 0.02, etc.) are representative and may require fine-tuning 
for specific data sets. The threshold on the differences in angle 
and distance are set so they are larger than the differences 
resulting from manual marking errors. The range of measure-
ment point separation is set by typical mold dimensions. The 
threshold for declaring the chain lines parallel (so that beta 
need not be estimated) depends on the shift causing changes 
in the distance/spacing vector that exceeds the threshold that 
designates a match. For a modest b  of 10 in and a reasonable 
distance threshold of 0.02 in, the sine of the relative angle 
should be less than 0.002. For such small values, this corre-
sponds to the angle threshold for declaring nonparallelism of 
0.002 radians or 0.12°. By this measure a large fraction of our 
images contain nonparallel chain lines. 

HOW MANY CHAIN SPACES?
The objective in moldmate identification is not to return a sin-
gle answer with the most likely fit, since this is not what the 
paper conservator or art historian would find most useful. 
Rather, the goal is to reduce a large library of chain line pat-
tern images to a small number so that the expert user can 
investigate further, with the expectation that if a match exists, 
it will likely be in this smaller set. One issue is how many adja-
cent chain spaces are needed to achieve this goal. Currently, 
the majority of the beta-radiographs available to us are limited to 
the vicinity of watermarks, which typically do not cover the entire 
print. This is due to the earlier emphasis on watermark matching 
and the technical limitations of beta-radiography [14]. An assess-
ment of the required number of adjacent chain spaces to achieve 
reliable matching would be helpful to persuade museums to 
undertake the expense in equipment and personnel costs to 
mount a campaign to acquire full-print images revealing its entire 
chain-line pattern. This section addresses that need by building a 
simple statistical model of the chain-line process and assessing the 
probability of error of the model as a function of the number of 
chain spaces. Specifically, the analysis calculates the probability 
that a sheet of interest will be confused with one or more of the 
existing sheets and the results provide guidelines for the number 
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of chain lines that need be present to reliably detect moldmates. 
This provides a rule of thumb for the real problem. 

In the past, attempts have been made to use the average 
inter-chain spacing as a way of characterizing sheets of laid 
paper for the purpose of identifying moldmates [6]. This section 
begins by conducting a statistical analysis of this procedure 
(using data gathered as in the previously discussed experiments) 
to show why the mean value alone is unlikely to provide a useful 
characterization, which agrees with observed behavior in exper-
iments reported in [7]. The analysis is then extended to consider 
the use of M 1+  chain lines (M  interchain spaces), and a sim-
ple rule of thumb is derived that suggests how large M  must be 
to reliably distinguish moldmate matches to a candidate sheet 
of paper from among a universe of N M22  sheets. 

The database of images of chain-line patterns in laid papers 
(provided by the Morgan Library & Museum, the Metropolitan 
Museum of Art, and the Rijksmuseum and used in these exper-
iments) includes N 205=  sheets. The mean chain spacing, 
calculated as i i1t t-+  where i  ranges over all the chain lines 
in a given image, is .0 977n =  inches with standard deviation 

. .0 082mv =  Considered as a collection of random samples, 
this is plausibly Gaussian, as can be seen in the histogram of 
Figure 6. To model the question of interest, consider a collec-
tion of N  random variables ~ ( , )Nmi m

2n vr r  each of which is 
measured in the presence of some small error 

 ~ ( , ) .Nm m 0 wherei i i i
2ve e= + er (9)

A new candidate element ~ ( , )Nm*
m
2n v  is measured from the 

same distribution as the ,mi  and we wish to know how many of 
the mi  lie close to this candidate .m*  (These will be the potential 
moldmates that must be subjected to closer examination.) This 
also requires quantifying “close to.” For simplicity, consider two 
elements close if they lie within ,  standard deviations of the 
measurement error, that is, if they lie within .! ,ve  This is 
shown schematically in Figure 7, where the shaded region S
lying between the lines defined by m* ,v- e  and m* ,v+ e  repre-
sents the probability that elements of the data set lie close to the 
measured .m*

Let 

( , , )f x e
2

1 ( )x
2 2

2

n v
v r

= v

n
-
-

(10)

be the normal density function. The probability represented by the 
shaded region S  is 

( , , ) ( , , )p m f x dx*
S m

m

m
m

*

*

,v v n v=
,

,

v

v

e
-

+

e

e#
[ ( ) ( )] .m m

2
1

2 2
Erf Erf

* *

m m

, ,

v

v

v

v= + - - ee (11)

Some observations: 
1) The probability pS  is independent of n  since both the data 
set and the new candidate element are assumed to have the 
same mean. 
2) As the measurement error ,0"ve  the probability of 
being close goes to zero. In words, the more accurately the 

measurements can be made, the greater the distinguishing 
power of the method. Conversely, larger ve  cause .p 1S "

3) The probability pS  does depend on the particular .m*  For 
m* 11 n  or ,m* 22 n pS  is small. 
4) Conversely, m* n=  implies that .( / )p 2ErfS m,v v= e

With an eight-to-one ratio of mv  to ,,ve  this is . .0 1
Case 4) may be interpreted to say that roughly 10% of the ele-

ments of the database will be considered close to the candidate. 
Since each must be considered in four orientations, this approxi-
mately quadruples (to 40%) the percentage of sheets that will be 
considered potential matches. One ameliorating factor is that the 
measurement of the mean values are not independent of the num-
ber of chain spacings ;M  larger M  cause smaller effective .ve  If 
each independent chain line is measured with an error ,*ve  the 
average of M  is effectively drawn from ( , ( / ) )N M1 2

*n ve  and the 
effective standard deviation is / .M*v v= ee  Perhaps the best 
use of the mean value of the chain spacings is in the cases 
described by case 3) where m*  deviates from the mean .n  In 
these cases, pS  will be small and there will be fewer possible 
matches to consider. From another point of view, these estimates 

0.8 0.9 1.0 1.1 1.2

[FIG6] A histogram of the mean chain line spacing of the N
sheets in the database is reasonably modeled as a normal 
probability distribution with mean .0 977n =  and standard 
deviation . ,0 082mv =  as shown in green. 

μ

N (m∗,σε )2
N (μ,σm)2

m∗

S

[FIG7] The means of the chain spacings are considered as 
elements of ~ ( , ) .Nmi m

2n vr The region S  shows the region in 
which elements are “close to” the test element m*  and the 
probability pS  represents the percentage of elements in the 
database close to the candidate.
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suggest that the mean value may be better used as a method of 
ruling out mold matches (in those cases when pS  is small) than as 
a method of locating mold matches in general. 

Fortunately, more information is available in the chain spac-
ings than just the mean value. The simplest way to model the 
chain spacings is to presume that the sequence of interchain 
intervals is 

{ , , , }  , , , ,m m m m i N1 2for, , ,i i i i M1 2 f f= =rr (12)

where each component m ,i j  is independent of m ,i k  for j k!  and 
where mirr  is independent of m jrr  for .i j!  Following the logic of 
(9)–(11), the probability ( , , )p m*

S m ,v verr  of accidental matches 
from the database to a candidate vector m*  is 

( , , ) ( , , ) ( , , )p m p m p m,
*

,
*

,
*

S i m S i m S i M m1 2 g, , ,v v v v v ve ee

( ( , , )) .p m*
S m

M,v v= e (13)

Unfortunately, this exponential decay of .0 1M  represents an overly 
optimistic scenario in which each chain-space element is inde-
pendent of the others even within a single sheet. 

A more realistic model observes that each chain-space 
sequence has a mean value m*  and a small variance m

2v t  about 
that mean. Let m*  be the mean value drawn from ( , )N m

2n v  as 
before. The chain spacings are then 

{ , , , },m m m m m m* * *
M1 2 f+ + +t t t (14)

where ~ ( , )Nmi m
2n vt t  and where the standard deviation mv t  is 

the variation in the chain spacings within a given sheet (which 
is less than the variation in the complete data set). Assuming 
again that the m*  is independent of the mit  and that mit  is inde-
pendent of m jt  for ,i j!  the desired probability ( )p m*

S  can be 
factored as 

( , , ) ( , , ) ( , , )p m p m p m*
S m S m S M m2 g, , ,v v v v v ve ee u uu u

( , , ) ( ( , , )) .p m p m*
S m S m

M 1, ,v v v v= ee
-u u (15)

Since ,m mı 1 1v v vu  the probability ( )p m*
S  is larger than in 

(13), giving a more pessimistic (though also more realistic) assess-
ment. Using the value .0 034mv =u  (the average of the standard 
deviations), .0 01, .ve  [the average measurement error from 
(2)], this is 

( . ) ( . ) .p 0 1 0 25S
M 1= - (16)

By M 3=  (four chain lines), there is about p4 S  chance of false 
matches. The factor four occurs because of the need to inflate the 
number of sheets by four to consider all the possible rotations and 
reflections. By ,M 4= p4 S  drops to 1% and continues to 
decrease exponentially as M  increases, reducing the number of 
potential false matches by a factor of four with each additional 
chain line. This leads us to seek matching patterns of five (or 
more) adjacent chain lines with four (or more) chain spaces. A 
comparison of the predictions of the three sets of modeling 
assumptions is given in Table 1. 

A PAIR OF MOLDMATES IDENTIFIED 
VIA A CHAIN-LINE PATTERN MATCH
Applying the distance measure ( , )i jd  of (8) to the data set of 
[2], we observed that there was a potential match between Rem-
brandt’s Medea, or the Marriage of Jason and Creusa, dated 
1648 (B112iv, Figure 1) and a left-right flipped version of The 
Artist’s Mother in Widow’s Dress and Black Gloves, B344. A 
reproduction of the etching and its beta-radiograph is shown in 
[15]. What is particularly intriguing about this match is that the 
latter print’s authorship has been questioned for many years. 
Most scholars after Adam Bartsch, the indefatigable 18th-cen-
tury cataloguer of Rembrandt prints, agree that B344 is by a 
pupil of Rembrandt, who was most likely copying an earlier 
print, dated circa 1631, The Artist’s Mother Seated at a Table, 
Looking Right (B433). This chain-line pattern match of papers 
in restrikes from around 1650, provides support for the conclu-
sion that the pupil’s print originated in Rembrandt’s studio. 
Presuming creation of B344 around 1635 narrows the list of 
potential copyists to pupils in Rembrandt’s studio at that time. 
The close match between the (shifted) chain lines of these two 
images (with the proper flips) is shown in detail in [15]. Though 
this match was identified solely from the close similarity of 
their chain-line patterns, it can be verified [1] by the match of 
the watermarks, though B344 has only a fragment of the water-
mark that is fully contained in B112iv. 

CONCLUSIONS AND OPEN QUESTIONS
This article has highlighted the problem of moldmate identifica-
tion of laid paper and provided a basic argument for the feasibil-
ity of the project. The potential for automated procedures to 
identify moldmates among collections of similar handmade laid 
papers is exciting to paper conservators and graphic art cura-
tors. Using our first-pass signal processing strategies and even 
with a modestly sized database, we were able to identify a mold-
mate pair of Rembrandt prints that was previously unrecog-
nized by the owner. 

This article has attempted to clearly display the moldmate 
problem as a set of signal processing tasks with the goal of making 
the problem accessible to the signal processing community, where 
those who are not experts in the technical analysis of paper may 
contribute. One key to this is a description of the various signal 
processing tasks that must be completed. The other major compo-
nent is making the images and data sets publicly available [2] to 
help fuel this cross-disciplinary effort. 

[TABLE 1] THE THREE MODELS MAKE INCREASINGLY MORE
REALISTIC PREDICTIONS OF THE FRACTION OF IMAGES
THAT WILL BE REGARDED AS “CLOSE,” AS A FUNCTION OF
THE NUMBER OF CHAIN LINES.

MODEL FRACTION 
#1 AVERAGE CHAIN-LINE SPACING 0.4
#2 INDEPENDENT SEQUENCE OF CHAIN LINES ( . )4 0 1 M

#3 DEPENDENT SEQUENCE OF CHAIN LINES ( . ) ( . )4 0 1 0 25 M 1-
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Some of the problems highlighted in this article are straight-
forward applications of signal processing techniques while others 
may require significant effort to realize. For example, a wonder-
fully complex problem is the automated extraction and compari-
son of watermarks (such as that in Figure 1). Such shapes are 
much more complex than the simple straight line we have chosen 
to attempt to extract and the automated comparison between such 
unparameterized shapes is not straightforward. On the other 
hand, there are many tasks that might benefit from more 
advanced signal processing techniques, more clever implementa-
tions of the algorithms, and/or more thoughtful metrics. For 
instance, the proposed algorithm for chain-line extraction (in 
Figure 2) can no doubt be improved, both in its accuracy and in its 
range of applicability, reducing the manual portions with auto-
mated extraction techniques. Similarly, the distance measure (8) 
can undoubtedly be expanded or improved. As shown in [15], such 
chain-line pattern matching software can also be used to assess 
concerns paper experts have regarding the possibility that differ-
ences in the wetting, pressure, and drying of intaglio printing and 
conservation treatments encountered separately by moldmates 
can distort the chain lines into distinctly different patterns. 

The analytic contribution of this article is to propose a simple 
model where the statistics of the chain-line data set can be used to 
estimate the number of chain lines needed to distinguish laid 
papers. For example, three or four chain lines are inadequate to 
reliably locate moldmates, and the rule of thumb relates the cer-
tainty of any such identification with the number of chain lines, 
given the experimental and computational errors inherent in 
locating the chain lines. 
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C
anvas analysis is an important tool in art-historical 
studies, as it can provide information on whether 
two paintings were made on canvas that originated 
from the same bolt. Canvas analysis algorithms 
analyze radiographs of paintings to identify (ir)reg-

ularities in the spacings between the canvas threads. To reduce 
noise, current state-of-the-art algorithms do this by averaging 
the signal over a number of threads, which leads to information 
loss in the final measurements. This article presents an algo-
rithm capable of performing thread-level canvas analysis: the 

algorithm identifies each of the individual threads in the canvas 
radiograph and directly measures between-distances and angles 
of the identified threads. We present two case studies to illus-
trate the potential merits of our thread-level canvas analysis 
algorithm, viz. on a small collection of paintings ostensibly by 
Nicholas Poussin and on a small collection of paintings by Vin-
cent van Gogh. 

INTRODUCTION
The analysis of paintings is increasingly aided by the availability 
of imaging and image-processing tools, including various types 
of imaging to reveal underpaintings and underdrawings [1], [2], 
techniques for automatic brushstroke segmentation and analy-
sis [3]–[5], and automatic face analysis techniques [6]. These 
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tools can help art historians, conservators, and restoration art-
ists understand the way in which different painters worked and 
may provide clues about the attribution of a painting to a partic-
ular artist. One of the most commonly performed analyses is 
the analysis of radiographs (X-rays) of paintings, as such radio-
graphs can reveal visible and hidden 
paint layers according to the radio-
opacity of the paint. Radiographs do 
not only provide essential informa-
tion on the materials that need to be 
used in restorations, but they may 
also form the basis for valuable art-
historical insights. 

In addition to information on the 
radio-opacity of the paint, radio-
graphs also reveal the individual 
threads in the canvas (see Figure 1) because the ground layer, 
which generally contains lead, varies in thickness when it is spread 
over the textured surface of the bare canvas. Until a few years ago, 
art experts generally considered the display of the threads as a dis-
turbance because it was obfuscating what they were truly inter-
ested in: the composition of the different paint layers. More 
recently, however, scholars have realized that the canvas threads 
visible in radiographs may carry important art-historical informa-
tion [7]. This information arises from the fact that the thicknesses 
of the threads are irregular because of the way a loom works. 
Some threads are thinner than others because of natural varia-
tions in the manufacturing process: a thread with higher tension 
on it tends to be narrower. Such irregularities persist throughout 
the entire bolt of canvas. As a result, paintings made on canvas 
that was cut from the same bolt will likely have the same irregu-
larities in their thread thicknesses. Thread thickness measure-
ments may be used to identify the bolt from which the canvas 
originates. Specifically, if we find two paintings that have the same 
canvas thread thicknesses, we have obtained a strong indication 
that these two paintings were made in the same workshop in the 
same period [8]. 

Thread densities or thread spacings are good surrogates for the 
thread thicknesses that we would like to measure. Various recent 
studies have attempted to measure thread densities and/or spac-
ings across the canvas, in particular, in paintings by Nicolas Pous-
sin [9], Vincent van Gogh [10], Johannes Vermeer [11], [12], and 
Diego Velázquez [13]. In particular, these studies estimate the 
thread density in a small patch of the painting using a two-dimen-
sional (2-D) Fourier analysis [14] or an approach based on mea-
suring autocorrelations in small canvas patches [9]. These 
analyses provide valuable information, but they average informa-
tion across relatively large patches of canvas (over five threads or 
more), which leads to low-resolution thread density maps. The 
averaging may hide variations in the thickness of individual 
threads, which makes it harder to obtain conclusive evidence that 
two canvases originated from the same roll. 

In contrast to most prior work (the work by [12] is a notable 
exception), this article proposes an algorithm for thread-level
analysis of the canvas. Our approach involves training a 

machine-learning model to identify thread crossings in the canvas 
based on their visual appearance. The resulting model is used to 
automatically identify the millions of thread crossings inside a 
canvas, which, in turn, form the basis for measuring thread spac-
ings. We show the merits of thread-level canvas analysis by using 

it to study a collection of three 
alleged Nicolas Poussin paintings as 
well as a small collection of paintings 
by Vincent van Gogh. 

THREAD-LEVEL CANVAS 
ANALYSIS
Our approach to thread-level canvas 
analysis comprises four main parts: 
1) we extract features from the radio-
graphs that are sensitive to the sig-

nals produced by the threads, 2) we train and deploy a 
machine-learning model that automatically detects thread cross-
ings based on these features, 3) we use the response of this detec-
tor to estimate the distance between neighboring threads, and 
4) we automatically try to match the resulting thread-distance 
maps produced for different canvases to determine whether or not 
these canvases likely originate from the same roll. The details of 
these four parts of our approach are described separately below. A 
MATLAB implementation of our canvas analysis algorithm is pub-
licly available from http://lvdmaaten.github.io/canvas. 

FEATURE EXTRACTION
Thread-crossing detection can be performed with very high accu-
racy because thread crossing corresponds to visually salient loca-
tions in canvas radiographs. Our thread-crossing detector: 
1) extracts histograms-of-oriented-gradient (HOG) features from 
the image region around the canvas location of which we want to 
determine whether or not it corresponds to a thread crossing and 
2) uses a linear support vector machine to determine based on 
these features whether or not the location is a thread crossing or a 
“nonthread crossing.” 

[FIG1] An example of a high-resolution radiograph of the Nicolas 
Poussin painting Triumph of Bacchus. The inset shows the 
individual threads in a small part of the canvas. (Radiography 
reproduced with permission from the Nelson-Atkins Museum of 
Arts in Kansas City.)

RADIOGRAPHS DO NOT ONLY 
PROVIDE ESSENTIAL

INFORMATION ON THE 
MATERIALS THAT NEED TO BE 
USED IN RESTORATIONS, BUT 
THEY MAY ALSO FORM THE 

BASIS FOR VALUABLE 
ART-HISTORICAL INSIGHTS.
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HOG features [15] describes an image location by a histogram 
of image gradient magnitudes for a number of quantized gradient 
orientations (we used eight orientations in our study). The histo-
grams are constructed over small image patches; depending on 
the type of canvas and the resolution of the canvas radiographs, we 
used image patches of 4 4#  or 8 8#  pixels in this study [in 

radiographs scanned at 600 dots per inch (dpi)]. Subsequently, the 
histograms are normalized for contrast differences by normalizing 
the L2-norm of all the histograms in a square, spatially connected 
block of four image patches. The advantage of the use of image 
gradients and the subsequent contrast normalization is that it pro-
duces partial invariance to larger-scale signals in the radiograph 
images that stem from the paint layers (in particular, from layers 
of white paint that contain relatively large amounts of lead, which 
in turn lead to strong radiograph responses). To obtain additional 
invariance to small variations in the gradient magnitudes, the 
contrast-normalized histograms are clipped at 0.2 and then renor-
malized according the L2-norm to produce the final HOG fea-
tures. The resulting features have a particular structure near 
thread crossings, which is illustrated in Figure 2. 

THREAD-CROSSING DETECTION
To obtain a model that can automatically distinguish thread cross-
ings from other structures in canvas radiographs, we train a logis-
tic regression model to discriminate a set of image patches that 
contain manually annotated thread crossings (positive examples) 
from a set of image patches that are randomly sampled from the 
canvas (negative examples). Ideally, the set of positive examples 
describes the variation in the visual appearance of thread cross-
ings, while the set of negative examples captures the visual varia-
tion in nonthread-crossings. Denoting an image patch in the 
training data by ,I  the corresponding label by { , },z 1 1! - +  and 
the HOG feature function by ,z  the logistic regressor builds the 
following probabilistic model: 

( | ; )
[ ( ( ) )] [ ( ) ]

[ ( ( ) )]
.I

w I w I
w I

exp exp
exp

p z
b b
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z z
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Herein, the parameters { , }w bi =  comprise a vector w  and a sca-
lar bias .b  After incorporating an isotropic Gaussian prior over ,w

( ) ( | , ),w w Ip 0N 2v=  the parameters i  are estimated via maxi-
mum a posteriori (MAP) estimation on the aforementioned data 
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Herein, the hyperparameter 2v  is set via cross-validation. The result-
ing weights w* are visualized as a HOG feature in Figure 3. The fig-
ure shows that they are a template for the visual appearance of a 
typical thread crossing. This training procedure need to be performed 
only once for a particular type of canvas, assuming the imaging con-
ditions are similar across the collection of canvas radiographs. 

After training, the trained model (i.e., the template) is applied 
to all image patches in a canvas radiograph to predict the likeli-
hood ( | ; )Ip z i  that a location in the canvas contains a thread 
crossing. An example of the resulting likelihood map is shown in 
Figure 4(c); brighter colors indicate a higher likelihood of the 
location containing a thread crossing according to the logistic-
regression model. The quality of the likelihood map can be sub-
stantially improved by exploiting that the likelihood map ought to 
be quite regular: the likelihood of the thread-crossing presence at 
location ( , )x y  should be high when there is a high likelihood of 

[FIG2] Examples of five canvas patches around (a) a thread 
crossing and (b) five randomly selected canvas patches along 
with the corresponding HOG feature-representation of these 
patches.

Crossings Noncrossings

(a) (b)

[FIG3] A visualization of our thread-crossing detector. The figure 
shows that the detector identifies crossings as a location at 
which prolonged horizontal and vertical edges (caused by the 
boundaries of the threads) cross.
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thread-crossing presence near the locations ( , ),x d yx-

( , ),x d yx+ ( , ),x y dy-  and ( , ),x y dy+  where dx  and dy  are 
the average distances between threads in the warp and weft direc-
tions, respectively. We employ a pictorial-structures model [16] 
that can exploit this information to also detect thread crossings for 
which little visual evidence is present (e.g., because the thread 
crossing is hardly visible due to the presence of lead white paint). 
Our pictorial-structures model computes the score s  for thread-
crossing presence based on the image patch ( , )I x y  extracted at 
location ( , )x y  as follows: 

( , ; ) ( | ( , ); )
( | ( , ); ) ( )

( | ( , ); ) ( ) ,

I
I
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where 0$a  is a manually set discount factor and where 
{ , }t 1 1x ! - +  and { , } .t 1 1y ! - +  Intuitively, the score for a 

location is thus given by the sum of the likelihood for that loca-
tion and the likelihood of the highest-scoring locations in a 

four-lattice surrounding that location, where the score of those 
locations is discounted by the distance to their expected location. 
While the resulting score is not technically a likelihood, it may 
be employed in the same way. An example of a pictorial-struc-
tures score map is shown in Figure 4(c). The figure illustrates 
that incorporating prior knowledge on the typical structure of 
canvas greatly improves the performance of the thread-crossing 
model. The final thread-crossing detections are obtained by 
applying nonmaxima suppression on the score map. Nonmaxima 
suppression finds local maxima in the score map that are above a 
predefined threshold .x  An example of the resulting thread-
crossing detections is shown in Figure 4(d). While some detec-
tion errors are present, the result in Figure 4(d) illustrates that 
the majority of thread-crossings and neighborhood relations is 
correctly identified. 

ESTIMATING THREAD DISTANCES
After detecting the thread crossings, we need to identify which 
crossings are the warp and weft “neighbors” to be able to measure 
the distance between two weft threads or two warp threads at that 

(a) (b)

(c) (d)

[FIG4] An illustration of our canvas analysis algorithm: (a) a small patch of canvas taken from Poussin’s Triumph of Bacchus, (b) the 
response of our thread crossing classifier on the patch of canvas, (c) the response of our model after incorporating the pictorial-
structures model that exploit canvas regularity, and (d) the final thread-crossing detections and the identified neighbor relations 
between these detections. In the response images, a brighter color corresponds to a higher likelihood of a thread crossing being 
present in the canvas (according to our model). In (d), detected thread crossings are indicated by red crossings. The blue lines indicate 
the detected neighbor relations: to construct distance maps, distances that were measured between all neighboring thread crossings 
(i.e., over all blue lines). At locations where blue lines are absent, the distances are interpolated from neighboring thread crossings. 
(Figure is best viewed in color.) 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [42] JULY 2015

location. To this end, we center an anisotropic Gaussian distribu-
tion at each thread crossing location that has much more variance 
in either the warp or the weft direction (depending on whether we 
want to measure interweft or interwarp distances). The resulting 
density map tends to follow the direction of the threads in the can-
vas. The density maps may be further improved by rotating the 
Gaussians according to the estimated orientation of the threads at 
each location to become more robust to cusping, but for simplic-
ity, we omit that in this study. To determine the neighbor of a 
thread crossing, we perform a large number of random walks that 
emanate from the thread crossing under investigation and termi-
nate at the next thread crossing we encounter. The random walks 
are forced to go in a “forward” or 
“backward” direction, while using 
the density map to determine 
whether or not to move in the direc-
tion perpendicular to the thread. We 
construct a histogram over neigh-
bor candidates that counts how 
often a random walk terminated in 
each thread crossing, and we select 
the crossing that has the highest 
count as the final neighbor candi-
date. The process is performed both 
in the “forward” and in the “back-
ward” direction, and a neighborhood relation is only accepted if 
both thread crossings pick each other as neighbor to eliminate any 
inconsistencies (i.e., when the neighborhood relation is recipro-
cal). The detected thread-crossing relations are indicated by blue 

lines in Figure 4(d). Finally, we estimate interthread distances on 
all locations where the thread identification procedure has a high 
confidence, while interpolating in low-confidence regions of the 
canvas and removing small outliers using a median filter. In a sim-
ilar manner, we can measure the orientation of the thread connec-
tions to produce a thread orientation map. An example of the 
resulting distance and orientation maps (for both warp and weft 
threads) is shown in Figure 5. 

MATCHING THREAD DISTANCE MAPS
To identify potential matches between different canvases based on 
the thread distance maps, we adopt an approach similar to that 

described by [17]. Specifically, we 
extract a small band of the distance 
map and take the median along this 
band (in the direction of the threads) 
to obtain an estimate of the thread dis-
tance signal. The thread distance sig-
nal is convolved with a Gaussian 
kernel to remove very fine-grained 
structure: empirically, we found 
matching is more accurate when per-
formed based on features in the thread 
distance signal that live on a coarser 
scale. We match the thread-distance 

signals of two canvases by sliding one signal over the other (enforc-
ing a minimum overlap), while measuring the mean absolute dis-
tance between the signals in the overlapping region. We use mean 
average distance as it is less sensitive to outliers than squared 

(a) (b) (c)

[FIG5] An illustration of the results of our canvas analysis algorithm on Nicolas Poussin’s Triumph of Bacchus: (a) spacing between warp 
threads, (b) spacing between the weft threads, and (c) orientation of the warp threads. In the spacing maps, a blue color corresponds 
to a small distance between threads, while a red color corresponds to a large distance between threads. For the warp threads, thread 
spacings range between 1.2 and 1.9 mm, while for weft threads, thread spacings range between 0.8 and 1.45 mm. The warp 
orientation map shows strong cusping on the top and bottom, caused by the deformation of the canvas as it is placed on the stretcer. 
(Figure is best viewed in color.)

WE SHOW THE MERITS OF
THREAD-LEVEL CANVAS 
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OF PAINTINGS BY 
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errors. The match is repeated for a flip of one of the thread signals 
as one of the canvases may have been “upside down” compared to 
the other. A match is only accepted if one of the two minimum 
mean average distances is a below a certain threshold. 

EXPERIMENT 1: NICOLAS POUSSIN
We used our canvas-analysis algorithm to study a collection of 
three Nicolas Poussin paintings that 
were studied before by [9]: 1) Tri-
umph of Pan, 2) Triumph of Bac-
chus, and 3) Triumph of Silenus.
This set of paintings is of particular 
art-historical interest because the 
three paintings were part of single 
commissioning in 1636 to Cardinal 
de Richelieu for the Cabinet du Roi in 
his castle in Poitou, France. Their 
authenticity has been subject to 
strong debate: some have considered Bacchus to be a copy [18], 
[19], but most Poussin scholars now believe that Bacchus and Pan
are authentic Poussin paintings. Silenus, however, is considered to 
be an early copy by its owners, the National Gallery London (Pous-
sin’s Bacchanals quickly became very popular, with the first copies 
being produced as early as 1665. For instance, at least seven 
known copies of Bacchus exist today). Recent canvas analysis 
results have challenged this belief by finding a canvas match 
between all three Triumph-paintings but were inconclusive 
because they were unable to perform thread-level canvas analysis. 
We obtained digital versions of radiographs (scanned at 600 dpi, 
500 dpi, and 1,200 dpi for Triumph of Pan, Triumph of Bacchus,
and Triumph of Silenus, respectively) and stitched them into 
whole-painting radiographs using algorithms described in [20]. 
Thereafter we manually annotated a total of 11,954 thread 

crossings in these radiographs and trained our thread-crossing 
detector on these manually annotated positive examples (negative 
examples were sampled randomly from the same radiographs). 

We set the value of the L2-regularization parameter in the 
logistic regression, ,2v  by performing a grid search guided by 
the classification error on a small held-out validation set. The 
error of our model on the validation set was approximately 9%; 

most of these errors were likely due 
to the set of negative examples con-
taining some actual thread cross-
ings by chance. The average thread 
distance parameters dx  and dy

were estimated by running the 
entire canvas-analysis procedure 
without the pictorial structures and 
taking the median interthread dis-
tance in the warp and weft direc-
tion. The nonmaxima suppression 

step used a window size of 5 5#  pixels, and a threshold .0 4x =

(on a scale from zero to one). The final thread distance maps 
were cleansed with a 7 3#  or 3 7#  median filter (depending 
on the orientations of the threads being analyzed). For weft 
maps, we removed distance values below 0.85 mm and above 
1.45 mm from the map, while for warp maps, we removed dis-
tance values below 1.2 mm and above 1.9 mm. 

Figure 5 presents the results of our analysis of Triumph of 
Bacchus. Figure 6 presents the results produced by our thread-
level canvas analysis algorithm after matching the three Poussin 
paintings. Different colors correspond to different spacings 
between individual threads. The results presented in the figure 
provide very strong evidence that all three canvases originated 
from the same roll. The results are in line with earlier results 
from automatic and manual canvas analyses of these three 

THREAD-CROSSING DETECTION 
CAN BE PERFORMED WITH 

VERY HIGH ACCURACY 
BECAUSE THREAD 

CROSSING CORRESPONDS TO 
VISUALLY SALIENT LOCATIONS 

IN CANVAS RADIOGRAPHS.

Triumph of Pan Triumph of Silenus Triumph of Bacchus

[FIG6] The results of our thread-level canvas analysis of the three Triumph paintings. Different colors indicate the distance between 
(detected) neighboring thread crossings. (The figure is best viewed in color.)
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paintings [9] but provide stronger evidence because the evidence 
is on the level of individual threads and not on the level of multi-
ple-thread averages. Indeed, the presented results make it highly 
unlikely that Silenus was copied 30 years later in a different loca-
tion (Poussin was working in Rome, Italy, whereas a copyist likely 
would have worked in France), which strongly suggests that the 
current art-historical description of the three paintings needs to 
be revised. We leave such art-historical interpretations to other 
scholars; they are outside the scope of this work. 

EXPERIMENT 2: VINCENT VAN GOGH
We also performed analyses of a small collection of paintings by 
Vincent van Gogh. Unlike the canvases of 17th-century Poussin, 
19th-century van Gogh used canvas produced by the textile indus-
try that has much finer threads and smaller irregularities in thread 
spacing [10]. Moreover, because van Gogh applies very thick paint 
layers, the thread structure is much harder to see in the X-rays. As 
a result, thread-level canvas analysis of van Gogh paintings is sub-
stantially harder than the analysis of Poussin paintings. 

A large collection of roughly 180 van Gogh paintings has been 
studied intensively in the context of the Thread Count Automation 
Project [10], the goal of which is to assign all van Gogh paintings 
to a particular roll, as this may provide information on the order 
in which van Gogh made his paintings. 

For this study, we had access to a small collection of ten 
radiographs van Gogh paintings that were scanned at 600 dpi: 

■ F402 Two White Butterflies
■ F482 Bedroom in Arles
■ F490 Mother Roulin with Her Baby
■ F511 Orchard in Blossom
■ F633 The Good Samaritan
■ F692 The Thresher
■ F699 The Shepherdess
■ F720 Enclosed Wheat Field with Rising Sun
■ F734 The Garden of Saint-Paul Hospital
■ F822 The Cows.

(The F-numbers are the catalogue numbers used by the van 
Gogh Museum in Amsterdam, The Netherlands). Some of the 
ten canvases are surmised to originate from the same roll but 
the results of current analyses are inconclusive. Our analysis 
results in a group of at least four matching canvases, as illus-
trated in Figure 7. An extensive study on all 180 van Gogh paint-
ings [10] is planned for a future work. 

CONCLUSIONS AND OUTLOOK
We have presented a novel canvas-analysis approach that is able 
to perform thread-level analyses of canvas. We believe the 
method has two main advantages over prior work: 1) it provides 
more conclusive evidence on whether or not two patches of can-
vas have the same thread patterns and 2) it is easier for art 
experts to understand exactly what is being measured. We believe 
the second advantage is essential to get canvas-analysis 

F402 F482 F490 F699

[FIG7] An illustration of canvas weave matches between four van Gogh paintings: 1) F402 Two White Butterflies, 2) F482 Bedroom in 
Arles, 3) F490 Mother Roulin with Her Baby, and 4) F699 Shepherdess (after Millet). Different colors indicate the distance between 
(detected) neighboring thread crossings. In white regions, hardly any thread crossings were detected because the crossing signal was 
obfuscated by thick paint layers; these regions were ignored in the thread spacing measurements. (The figure is best viewed in color.)
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technology widely used: showing art experts visualizations such 
as those in Figure 4 allows art experts to understand the analysis 
process, to identify potential errors in the measurements, and to 
manually correct such errors when desired, and to assess 
whether thread spacings are a good surrogate for thread thick-
nesses for the canvas a hand. 

A substantial drawback of the proposed approach is that a 
trained thread-crossing detection model is likely only applicable to 
canvas of a similar type that was imaged under similar conditions: 
for instance, models trained on the Poussin paintings do not work 
well on the van Gogh paintings because van Gogh’s canvases have 
much finer threads, which results in a different visual appearance of 
thread crossings. This implies that to apply our approach to a new 
type of canvas, it may be necessary to manually annotate a few hun-
dred thread crossings for that canvas type. To resolve this problem, 
it would be very useful to establish a database with a large collection 
of canvas radiographs along with a crowdsourcing annotation tool. 
Such a database would not only facilitate systematic comparisons 
between canvas-analysis algorithms, but it would also allow for 
training thread-crossing detectors that can be applied to a wide vari-
ety of canvas types. Similar data-gathering and annotation efforts 
have proven instrumental in improving the state of the art in other 
computer-vision problems, such as object recognition [21]. 
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uthor attribution through the recognition of visual 
characteristics is a commonly used approach by 
art experts. By studying a vast number of art-

works, art experts acquire the ability to recog-
nize the unique characteristics of artists. In 

this article, we present an approach that uses the same princi-
ples to discover the characteristic features that determine an 
artist’s touch. By training a convolutional neural network 
(PigeoNET) on a large collection of digitized artworks to per-
form the task of automatic artist attribution, the network is 
encouraged to discover artist-specific visual features. The 
trained network is shown to be capable of attributing previously 

unseen artworks to the actual artists with an accuracy of more 
than 70%. In addition, the trained network provides fine-
grained information about the artist-specific characteristics of 
spatial regions within the artworks. We demonstrate this ability 
by means of a single artwork that combines characteristics of 
two closely collaborating artists. PigeoNET generates a visual-
ization that indicates for each location on the artwork who is 
the most likely artist to have contributed to the visual charac-
teristics at that location. We conclude that PigeoNET represents 
a fruitful approach for the future of computer-supported exami-
nation of artworks. 

INTRODUCTION
Identifying the artist of an artwork is a crucial step in establishing 
its value from a cultural, historical, and economic perspective. 
Typically, the attribution is performed by an experienced art expert 

[Nanne van Noord, Ella Hendriks, and Eric Postma]

[Learning to recognize artists by their artworks]

Toward Discovery 
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with a long-standing reputation and an extensive knowledge of the 
features characteristic of the alleged artist and contemporaries. 

Art experts acquire their knowledge by studying a vast number 
of artworks accompanied by descriptions of the relevant charac-
teristics (features) [1]. For instance, the characteristic features of 
Vincent van Gogh during his later 
French period include the outlines 
painted around objects, complemen-
tary colors [2], and rhythmic brush 
strokes [3]. As Van Dantzig [4] 
claimed in the context of his Pictol-
ogy approach, describing works by an 
artist in terms of visual features 
enables the attribution of works to 
artists (see also [5]). 

The advent of computers and high-resolution digital repro-
ductions of artworks gave rise to attempts to partially automate 
the attribution of artworks [6]–[8]. Given the appropriate visual 
features, machine-learning algorithms may automatically attri-
bute artworks to their artists. As was (and still is) common prac-
tice in traditional machine learning, feature engineering, i.e., 
finding or defining the appropriate features, is critical to the suc-
cess of the automatic attribution task. Close cooperation with art 
historians and conservators facilitated the feature engineering for 
artist attribution, which led to promising results in the automatic 
attribution of artworks by van Gogh and his contemporaries [3], 
[6], [9], [10], highlighting the value of automatic approaches as a 
tool for art experts. 

Despite the success of feature engineering, these early 
attempts were hampered by the difficulty to acquire explicit 
knowledge about all the features associated with the artists of art-
works. Understandably, the explicit identification of characteristic 
features posed a challenge to art experts, because (as is true for 
most experts) their expertise is based on tacit knowledge that is 
difficult to verbalize [11]. By adopting a method capable of auto-
matically recognizing the characteristics that are known to be 
important for the task at hand, the tacit knowledge of art experts 
may be operationalized [12]. 

Feature learning is an alternative to feature engineering that 
learns features directly from the data [12]. Feature learning is 
much more data intensive than feature engineering, because it 
requires a large number of examples to discover the characteris-
tic features. In recent years, feature learning has shown great 
promise by taking advantage of deep architectures, machine 
learning methods inspired by biological neural networks. A typi-
cal example of a deep architecture is a convolutional neural net-
work, which, when combined with a powerful learning 
algorithm, is capable of discovering (visual) features. Convolu-
tional neural networks outperform all existing learning algo-
rithms on a variety of very challenging image classification 
tasks [13]. To our knowledge, convolutional neural networks 
have not yet been applied for automated artist attribution. The 
objective of this article is to present a novel and transparent way 
of performing automatic artist attribution of artworks by means 
of convolutional neural networks. 

When using only visual information, the following question 
may be raised: Is automatic artist attribution possible at all? It has 
been frequently argued by scholars working in the art domain that 
semantic or historical knowledge, as well as technical and analyti-
cal information are pivotal in the attribution of artworks. The fea-

sibility of image-based automatic 
artist attribution is supported by bio-
logical studies. Pigeons [14] and 
honeybees [15] can be successfully 
trained to discriminate between art-
ists, with pigeons correctly attribut-
ing an art work in 90% of the cases 
in a binary Monet–Picasso attribu-
tion task. This shows that a visual 

system without higher cognitive functions is capable of learning 
the visual characteristics present in artworks. While it is unlikely 
that a perfect result can be achieved without incorporating addi-
tional information, these findings do pave the way for an attribu-
tion approach that learns to recognize visual features from data 
rather than from prior knowledge. 

In this article, we present PigeoNET, a convolutional neural net-
work corresponding to the AlexNET architecture described in [13] 
to which we added a visualization component due to [16]. 
PigeoNET is applied to an artist attribution task by training it on 
artworks. As such, PigeoNET performs a task similar to the pigeons 
in [14], by performing artist attribution based solely on visual char-
acteristics. This implies that, in addition to authorship, PigeoNET 
may also take visual characteristics into consideration that relate 
indirectly to the artist (e.g., the choice of materials or tools used by 
the artist) or that are completely unrelated to the artist (e.g., repro-
duction characteristics such as lighting and digitization proce-
dure). To ensure that the visual characteristics on which the task is 
solved by PigeoNET make sense, human experts are needed to 
assess the relevance of the acquired mapping from images of art-
works to artists. Our visualization method allows for the visual 
assessment by experts of the characteristic regions of artworks. 

In our artist attribution experiments, we consider three 
sources of variation in the training set and assess their effects on 
attribution performance: 1) heterogeneity versus homogeneity of 
classes (types of artworks), 2) number of artists, and 3) number of 
artworks per artist. 

After training, the performance of PigeoNET will be assessed in 
two ways: 1) by determining how well it attributes previously 
unseen artworks and 2) by generating visualizations that reveal 
artwork regions characteristic of the artist, or in case of artworks 
that are likely created by two or more artists, generating visualiza-
tion that reveal which regions belong to which artist, and could 
aid in answering outstanding art historical questions. 

PigeoNET
A convolutional neural network can learn to recognize the visually 
characteristic features of an artist by adapting filters to respond to 
the presence of these features in an image [17]. The filters are 
adapted to respond to a feature by adjusting the parameters, or 
weights, of the filters until a suitable configuration is found. The 

IDENTIFYING THE ARTIST OF AN 
ARTWORK IS A CRUCIAL STEP IN 
ESTABLISHING ITS VALUE FROM 
A CULTURAL, HISTORICAL, AND 

ECONOMIC PERSPECTIVE.
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proper weights for this configuration are obtained by means of a 
learning algorithm called back-propagation [18], which requires no 
prior knowledge other than the input images and a label (e.g., the 
artist who created it). In the case of artist attribution, the network 
will learn to recognize features that are regarded as characteristic of 
a certain artist, allowing us to discover 
these characteristics. PigeoNET is a 
convolutional neural network 
designed to learn the characteristics of 
artists and their artworks, so as to rec-
ognize and identify their authorship. 

The filters in a convolutional neu-
ral network are grouped into layers, 
where the first layer is directly applied 
to images, and subsequent layers to 
the responses generated by previous 
layers. By stacking layers to create a 
multilayer architecture the filters can respond to increasingly com-
plex features with each subsequent layer. The filters in the initial 
layers respond to low-level visual patterns, akin to Gabor filters 
[19], whereas the final layers of filters respond to visual characteris-
tic features specific to artists. 

Because convolution is used to apply the filters to an image, 
or the response of a previous layer, the layers of filters are 
referred to as convolutional layers. The advantage of a convolu-
tional layer, over a traditional neural network layer, is that the 
weights are shared, allowing the adaptive filters to respond to 
characteristic features irrespective of their position or location 
in the input [18]. To learn a mapping from the filter responses 
to a certain artist the convolutional layers are, typically, fol-
lowed by a number of fully connected layers that translate the 
presence and intensity of the filter responses to a single certainty 
score per artist. The certainty score for an artist is high whenever 
the responses for filters corresponding to that artist are strong, 
conversely, the certainty score is low when the filter responses 
are weak or nonexistent. Thus, an unseen artwork can be attrib-
uted to an artist for whom the certainty score is the highest. 

VISUALIZATION OF ARTIST-CHARACTERISTIC REGIONS
While PigeoNET’s attribution of an artwork is based on the 
entire artwork, regions containing visual elements characteris-
tic for an artist are assigned more weight than others to achieve 
a correct attribution [20]. To increase our understanding of the 

attribution performed by PigeoNET, 
we aim to visualize such artist-
characteristic regions. Several 
methods have been proposed for 
visualizing trained convolutional 
neural networks [16], [21] and 
other layered algorithms [22]. We 
adopt the occlusion sensitivity test-
ing method proposed by [16] for 
obtaining visualizations of artist-
characteristic regions, which can be 
considered a weakly supervised 

localization method. By systematically occluding a small image 
region of an artwork, the importance of the occluded region is 
determined by observing the change in the certainty score for 
the correct artist. When an occluded region is very important (or 
highly characteristic) for correctly identifying the artist, there 
will be a significant drop in the certainty score generated by 
PigeoNET. Inversely, occluding a region that is atypical for the 
correct artist will result in an increase in the certainty score. A 
region for which occlusion results in a drop of the certainty score 
is considered characteristic for the artist under consideration. 
This approach to creating visualizations allows us to show the 
approximate areas of an artwork which are representative of 
an artist. 

As an illustration, Figure 1 depicts The Feast of Acheloüs by two 
artists; Peter Paul Rubens painted the persons and Jan Brueghel 
the scenery [23]. Although there is no single correct artist, the cer-
tainty score for Brueghel would decrease if the scenery were to be 
occluded, whereas the certainty score for Rubens would drop if the 
figures were occluded. Even when only part of the figures or part of 
the scenery were to be occluded, we see a drop in confidence 
scores. In a similar vein, when even smaller regions of the painting 
have been occluded, it becomes possible to identify important 
regions on a much more detailed scale. 

AUTHOR ATTRIBUTION EXPERIMENT
The goal of an artist attribution task is to attribute an unseen 
artwork to the artist who created it. To be able to perform this 
task adequately, PigeoNET needs to discover features that dis-
tinguish an artist from other artists but especially to discover 
features that are characteristic of each artist. In the rest of this 
section we will discuss the data set, network architecture, train-
ing procedure, evaluation procedure, and the results. 

EXPERIMENTAL SETUP

DATA SET
The characteristic features of an artist can be discovered by 
studying artworks that are representative of that artist. Yet, 

[FIG1] Peter Paul Rubens and Jan Brueghel the Elder’s work: The 
Feast of Acheloüs (45.141) in The Metropolitan Museum of Art’s 
Heilbrunn Timeline of Art History (2000–present). (Image used 
courtesy of The Metropolitan Museum of Art; http://www.
metmuseum.org/toah/works-of-art/45.141.) 

PIGEONET IS A CONVOLUTIONAL 
NEURAL NETWORK 

DESIGNED TO LEARN THE
CHARACTERISTICS OF 
ARTISTS AND THEIR 

ARTWORKS, SO AS TO 
RECOGNIZE AND IDENTIFY 

THEIR AUTHORSHIP.
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obtaining a sufficiently large sample of such images is 
problematic, given the lack of (automatic) methods 
and criteria to determine whether an artwork is repre-
sentative. A commonly utilized approach to circum-
vent the need for a representative sample is to take a 
very large sample. As such, a data set that contains a 
large number of images, and a large number of images 
per artist, is required. 

The Rijksmuseum Challenge data set [24] consists of 
112,039 digital photographic reproductions of artworks 
by 6,629 artists exhibited in the Rijksmuseum in Amster-
dam, The Netherlands. All artworks were digitized under 
controlled settings. Within the set there are 1,824 differ-
ent types of artworks and 406 annotated materials, such 
as paper, canvas, porcelain, iron, and wood. To our knowl-
edge, this is the largest available image data set of art-
works and the only data set that meets our requirements. 

We divided the Rijksmuseum Challenge data set 
into a training, validation, and test set (cf. [24]). In 
this article, these sets are used to train PigeoNET, to 
optimize the hyperparameters, and to evaluate the 
performance of PigeoNET on unseen examples, 
respectively. The data set contains a number of art-
works that lack a clear attribution, these are labeled 
as either “Anonymous” or “Unknown.” We chose to 
exclude these artworks because our objective is to 
relate visual features to specific artists. 

While the Rijksmuseum Challenge data set contains 
a large number of images of many different types of 
artworks by a large number of artists, there are many 
artists for whom only a few artworks are available or 
artists who have created many different types of artworks. As 
stated earlier, these variations might influence the performance 
of PigeoNET in nonobvious ways. To this end, we consider the 
following three sources of variation: 1) heterogeneity versus 

homogeneity of classes (types of artworks), 2) number of artists, 
and 3) number of artworks per artist. 

Two main types of subsets were defined to asses the effect of 
heterogeneity versus homogeneity of artworks: type A (for “All”) 

[TABLE 2] AN OVERVIEW OF SUBSETS AND THE NUMBER OF TRAINING, VALIDATION, AND TEST IMAGES PER SUBSET. 

SUBSETS
NUMBER OF  
EXAMPLES PER ARTIST 

NUMBER OF  
ARTISTS (CLASSES) 

NUMBER OF  
TRAINING IMAGES 

NUMBER OF  
VALIDATION IMAGES 

NUMBER OF 
TEST IMAGES

A 10 958 56,024 7,915 15,860
64 197 37,549 5,323 10,699
128 97 28,336 4,063 8,058
256 34 17,029 2,489 4,838

P1 10 673 44,539 6,259 12,613
64 165 31,655 4,484 8,983
128 78 23,750 3,408 6,761
256 29 14,734 2,171 4,200

P2 128 26 3,328 1,209 2,277
128 39 4,992 1,521 2,970
128 52 6,656 2,160 4,341
128 78 9,984 3,408 6,761

P3 10 78 780 3,408 6,761
64 78 4,992 3,408 6,761
128 78 9,984 3,408 6,761

The subsets are labeled by their types. Type A (“All”) are subsets containing varying artworks, examples, and examples per artist. Type P (“Prints”) refers to subsets of prints only. P1: varying 
numbers of artworks, examples, and examples per artist. P2: number of examples constant (128). P3: number of artists constant (78). For A and P1, the numbers of examples per artists rep-
resent the minimum numbers, while for P2 and P3, these numbers represent the exact number of artworks per artist.

[TABLE 1] A LIST OF THE 34 ARTISTS WITH AT LEAST 256 ART-
WORKS AND THE DISTRIBUTION OF ARTWORKS OVER MAIN TYPES
(PRINTS, DRAWINGS, AND OTHER).

NUMBER NAME PRINTS DRAWINGS OTHER
1 HEINRICH ALDEGREVER 347 27 —
2 ERNST WILLEM JAN BAGELAAR 400 27 —
3 BOËTIUS ADAMSZ. BOLSWERT 592 — —
4 SCHELTE ADAMSZ. BOLSWERT 398 — —
5 ANTHONIE VAN DEN BOS 531 3 —
6 NICOLAES DE BRUYN 515 2 —
7 JACQUES CALLOT 1,008 4 1
8 ADRIAEN COLLAERT 648 1 —
9 ALBRECHT DÜRER 480 9 2
10 SIMON FOKKE 1,177 90 —
11 JACOB FOLKEMA 437 4 3
12 SIMON FRISIUS 396 — —
13 CORNELIS GALLE (I) 421 — —
14 PHILIPS GALLE 838 — —
15 JACOB DE GHEYN (II) 808 75 10
16 HENDRICK GOLTZIUS 763 43 4
17 FRANS HOGENBERG 636 — 4
18 ROMEYN DE HOOGHE 1,109 5 5
19 JACOB HOUBRAKEN 1,105 42 1
20 PIETER DE JODE (II) 409 1 —
21 JEAN LEPAUTRE 559 — 1
22 CASPAR LUYKEN 359 18 —
23 JAN LUYKEN 1,895 33 —
24 JACOB ERNST MARCUS 372 23 2
25 JACOB MATHAM 546 4 —
26 MEISSENER PORZELLAN MANUFAKTUR — — 1,003
27 PIETER NOLPE 344 2 —
28 CRISPIJN VAN DE PASSE (I) 841 15 —
29 JAN CASPAR PHILIPS 401 17 —
30 BERNARD PICART 1,369 132 3
31 MARCANTONIO RAIMONDI 448 2 —
32 REMBRANDT HARMENSZ. VAN RIJN 1,236 119 29
33 JOHANN SADELER (I) 578 1 —
34 REINIER VINKELES 573 50 —
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and type P (for “Prints”), respectively. As is evident from Table 1, 
prints form the majority of artworks in the Rijksmuseum Chal-
lenge data set. The homogeneous type of subsets (P) has three 
forms: P1, P2, and P3. Subsets of type P1 have varying numbers of 
artists and artworks per artist (as is the case for A). Subsets of type 
P2 have a fixed number of artworks per artist. Finally, subsets of 
type P3 have a fixed number of artists. We remark that the number 
of examples per artist for the subsets in A and P1 are minimum val-
ues. For very productive artists these subsets may include more 
artworks. For subsets of types P2 and P3, the number of examples 
is exact and constitutes a random sample of the available works per 
artist. A detailed overview of the resulting 15 subsets is listed in 

Table 2. For the heterogeneous subset of at least 256 artworks of 
type A, Table 2 provides a more detailed listing that specifies the 
three most prominent categories: “Prints,” “Drawings,” and 
“Other.” (The largest subsets for P2 and P3 are identical, but are 
reported twice for clarity.) The “Other” category includes a variety 
of different artwork types, including 35 paintings. 

All images were down-sampled to 256 256#  pixels following 
the procedure described in [13], to adhere to the fixed input size 
requirement of the network architecture, and are normalized at 
runtime by subtracting the mean image as calculated on the 
training set. 

ARCHITECTURE
The architecture of PigeoNET is based on the Caffe [25] imple-
mentation (see http://caffe.berkeleyvision.org/model_zoo.html)
of the network described in [13], and consists of five convolu-
tional layers and three fully connected layers. The number of 
output nodes of the last fully connected layer is equal to the 
number of artists in the data set, ranging from 958 to 26 artists. 

TRAINING
An effective training procedure was used (cf. [13]), in that the 
learning rate, momentum, and weight decay hyperparameters 
were assigned the values of ,10 2-  0.9, and .5 10· 4-  The learning 
rate was decreased by a factor ten whenever the error on the vali-
dation set stopped decreasing. The data augmentation procedure 
consisted of random crops and horizontal reflections. While orien-
tation is an important feature, to detect authorship the horizontal 
reflections were used to create a larger sample size, as it effectively 
doubles the amount of available training data, providing 
PigeoNET with sufficient data from which to learn, while possi-
bly negatively impacting PigeoNET’s ability to pick up on orien-
tation clues to perform classification. In contrast to [13], only a 
single crop per image was used during training, with crops of 
size 227 227#  pixels, and the batch size was set to 256 images 
per batch. 

All training was performed using the Caffe framework [25] 
on a NVIDIA Tesla K20m card and took between several hours 
and several days, depending on the size of the subset. 

EVALUATION
The objective of the artist attribution task is to identify the cor-
rect artist for each unseen artwork in the test set. To this end 
the performance is measured using the mean class accuracy 
(MCA), which is the average of the accuracies for all artists. This 
makes sure that the overall performance is not heavily biased by 
the performance on a single artist. 

During testing the final prediction is averaged over the out-
put of the final softmax layer of the network for ten crops per 
image. These crops are the four corner patches and the central 
patch plus their horizontal reflections. 

RESULTS
The results of the artist attribution task are listed in Table 3. The 
results on the artist attribution task show that the three sources of 

[TABLE 3] THE MCA FOR THE ARTIST ATTRIBUTION TASK
ON THE 15 DATA SUBSETS.

SUBSETS
NUMBER OF EXAMPLES
PER ARTIST 

NUMBER OF ARTISTS 
(CLASSES) MCA

A 10 958 52.5
64 197 68.2
128 97 74.5
256 34 78.3

P1 10 673 60.0
64 165 70.2
128 78 73.3
256 29 78.8

P2 128 26 63.9
128 39 55.6
128 52 52.7
128 78 52.0

P3 10 78 13.1
64 78 38.0
128 78 52.0

Bold values indicate the best result per type; the overall best result is underlined.
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[FIG2] A confusion matrix for all artists with at least 256 training 
examples of all artwork types. The rows represent the artist 
estimates and the columns the actual artists. Row and column 
numbers (from left to right and from bottom to top) correspond 
to those as listed in Table 2.
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variation, [heterogeneity versus homogeneity of classes (types of 
artworks), number of artists, and number of artworks per artist] 
affect the performance in different ways. The effect of heterogeneity 
versus homogeneity can be assessed by comparing the results for A 
and P1. The results obtained with P1 are slightly better than those 
obtained with A (except for 128 examples per artist). However, A 
and P1 differ also in number of artists, which is likely to affect the 
performances as is evident from the results on P2 and P3. 

The total number of artists (P2) and the number of examples 
per artist (P3) have a more prominent effect on the attribution 
performance of PigeoNET. Increasing the number of artists 
while keeping the number of examples per artist constant (as in 
P2) leads to a decrease in performance. With more examples per 
artist (P3) the performance increases tremendously. 

Our results suggest that the effects of the number of artists 
and the number of examples per artist are closely related. This 
agrees with the findings reported in [13] and leads to the 
observation that by considering more examples per artist the 
number of artists to be modeled can be increased. 

The subsets of type A are comparable to the subsets used in 
[24], who obtain a comparable MCA of 76.3 on a data set con-
taining 100 artists using SIFT (which stands for “scale-invari-
ant feature transform”) features, Fisher vectors, and 
one-versus-rest classification. 

Figure 2 shows a visualization of the confusion matrix for 
the subset with at least 256 examples of all artwork types. The 
rows and columns correspond to the artists in Table 2. The 
rows represent the artist estimates by PigeoNET, the columns 
the actual artists. The diagonal entries represent correct attri-
butions, which are color coded. 

Upon further analysis of the results for the 256 example 
subset (A) of all artwork types it can be observed that the best 
artist-specific classification accuracy (97.5%) is obtained for 
Meissener Porzellan Manufaktur, a German porcelain manu-
facturer (class 26). Among the different types of artworks in 
the data set, these porcelain artworks are visually the most 
distinctive. Given that the visual characteristics of porcelain 
differ considerably from all other artworks in the data set, it is 
not surprising that the highest classification accuracy is 
achieved for this class. 

The worst artist-specific classification accuracy (60.6%) is 
achieved for Schelte Bolswert (class 4), as indicated by the yel-
low square on the diagonal in the confusion matrix (fourth row 
from below, fourth column from left). The low accuracy may be 
partially explained by the confusion between Schelte Bolswert 
and his older brother and instructor Boëtius Bolswert (class 3). 
Yet, because the classification accuracy for Boëtius Bolswert 
(86.3) seems much less affected by the confusion, an alternative 
possibility is that PigeoNET is more inclined to assign visual 
characteristics that are present in their works to Boëtius Bols-
wert because his works appear more frequently in the data set. 

In a similar vein, the misclassifications that occur between 
Fokke Simon (10) and Jan Caspar Philips (29), and between 
Jan Luyken (23) and Caspar Luyken (22), are notable. Fokke 
Simon was a student of Jan Caspar Philips, and Jan and Caspar 

Luyken were father and son. Both pairs of artists have worked 
together on several artworks in the Rijksmuseum Challenge 
data set, despite the label in the data set indicating that these 
artworks belong to only one of these artists. We became aware 
of these potential dual-authorship cases after having per-
formed our main experiment. Dual-authorship cases will be 
examined in more detail through visualizations in the section 
“Deciding Between Two Artists.” 

VISUALIZATION AND ASSESSMENT
Visualizations of the importance of each region in an artwork can 
be generated using the regions of importance detection method 
described in the section “Visualization of Artist-Characteristic 
Regions,” where the occlusions are performed with a gray block of 
8 8#  pixels to indicate approximate regions that are characteristic 
of the artist. The regions of importance can be visualized using 

[FIG3] The (a) image and (b) heat map of Studie van een 
op de rug geziene man (1629–1630) by Rembrandt 
Harmenszoon van Rijn. The lower (red) values in the heat map 
correspond to greater importance in correctly identifying 
Rembrandt.
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heat map color coding, as shown in 
Figure 3(b). The value of a region in 
the heat map corresponds to the cer-
tainty score of PigeoNET for the art-
work with that region occluded. In 
other words, a region with a lower 
value is of greater importance in cor-
rectly attributing the artwork, with 
(dark) red regions being highly characteristic of the artist, and 
(dark) blue regions being the least characteristic. 

When comparing the artwork and 
heat map in Figure 3 of the drawing 
by Rembrandt, it is very noticeable 
that PigeoNET assigns much weight 
to seemingly empty areas. The tex-
ture of the material on which an art-
work is created can be indicative of 
the artist who created the artwork 

[26]. When taking a closer look at Figure 4, with enhanced con-
trast, it becomes apparent that the areas are not empty and that a 
distinctive visual texture is present. The visual pattern is suffi-
ciently distinctive and artist-specific for PigeoNET to assign it a 
larger weight. The pattern is an example of a visual characteristic 
that is indirectly related to the artist. It illustrates the importance 
of the transparency of automatic attribution to allow human 
experts to interpret and evaluate the visual characteristic. 

DECIDING BETWEEN TWO ARTISTS
In the “Visualization and Assessment” section, we used 
PigeoNET to attribute an artwork to a single artist. Yet, as illus-
trated by the work of Peter Paul Rubens and Jan Brueghel in 
Figure 1, in many cases two (or more) artists have worked on 
the same artwork (see also [27]). 

As evident from our results, PigeoNET had difficulty in cor-
rectly attributing artworks of closely collaborating artists. An 
intriguing explanation for PigeoNET’s failure to assign the “cor-
rect one” of two potential artists to artworks is that the artworks 
are created by both artists. In that case, it would not be a failure at 
all and indicates that PigeoNET discovered that the two artists are 
similar, and it recognizes the characteristic features of both artists, 
even if the work is attributed to only one artist. In the remainder 
of this section, we demonstrate the possibility of using PigeoNET 
to perform a fine-grained analysis of an artwork, attributing indi-
vidual image regions to an artist. 

DISCOVERING DUAL AUTHORSHIP
PigeoNET had difficulty in distinguishing between the works of 
Jan and Caspar Luyken, a father and son who worked together and 
created many prints. Throughout their careers, Jan Luyken chose 
to depict pious and biblical subjects, whereas Caspar Luyken 
mostly depicted worldly scenes [28]. As an example, we consider 
the artwork shown in Figure 5, Over dracht der Nederlande, aan 
de Infante Isabella. The work depicts the transfer of the Spanish 
Netherlands by Filips II to Isabella Clara Eugenia. Although argu-
ably it is a very worldly scene, it is nevertheless attributed to Jan 
Luyken. Could it be possible that the artwork is incorrectly attrib-
uted to Jan Luyken? Obviously, this is a question that has to be 
answered by experts of their works. 

Our findings may support them in their assessment. Although 
PigeoNET correctly attributed the artwork to Jan Luyken, the 
reported certainty score for Caspar Luyken is very high. Apparently, 
PigeoNET responds to visual features that are characteristic of Cas-
par Luyken. Using PigeoNET’s visualization, we are able to deter-
mine for each region how characteristic it is for each of the two 
artists. We created a visualization based on the certainty scores for 

[FIG5] An image of the Overdracht der Nederlande, aan de 
Infante Isabella (1697–1699) by Jan Luyken.

THE GOAL OF AN ARTIST 
ATTRIBUTION TASK IS TO 
ATTRIBUTE AN UNSEEN 

ARTWORK TO THE ARTIST 
WHO CREATED IT.

[FIG4] A contrast-enhanced detailed view of a highly textured 
region of the artwork shown in Figure 3(a).
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Jan Luyken and Caspar Luyken. Figure 6 shows the visualization 
using color coding on a yellow to blue scale. The yellow regions are 
characteristic for Jan Luyken, whereas the blue regions are charac-
teristic for Caspar Luyken, the green regions are indeterminate and 
show characteristics of either artists in equal amounts. This exam-
ple demonstrates the potential use of 
PigeoNET to support the study of 
dual authorship artworks. 

DISCUSSION
Previous work on automatic artist 
attribution has shown that prior 
knowledge can be leveraged to engi-
neer features for automatic artist 
attribution. In this article, we pre-
sented a novel approach that does not 
rely on prior knowledge and is capable of discovering characteris-
tic features automatically enabling a successful artist attribution. 
Additionally, we demonstrated that PigeoNET visualizations reveal 
artwork regions most characteristic of the artist and that 
PigeoNET can aid in answering outstanding questions regarding 
dual-authorship. 

We will now discuss the considerations regarding the data set 
used and address how the selection of subsets may affect the 
nature of visual characteristics discovered. Although the Rijks-
museum Challenge data set is the largest available data set con-
taining digital reproductions of artworks acquired under 
controlled conditions [24], it does suffer from two main limita-
tions. First, given the wide variety of artwork types, it is unclear 
how the “controlled conditions” were defined for different art-
works. Any variation in the reproduction setting (e.g., illumina-
tion, perspective, camera type) may be picked up by PigeoNET. 
Presumably, our P (prints only) data sets suffer less from this 
problem. Still, even in these data sets subtle differences in 

digitization may leave visual marks that are picked up by 
PigeoNET. An ideal data set for attribution would be one in which 
no such visual marks are present. Unfortunately, such data sets do 
not exist and are hard (if not impossible) to create on this scale. 
Therefore, transparency of the acquired features by PigeoNET and 

proper visualizations are essential to 
aid art experts in their assessment of 
the feasibility of classifications. 

The second limitation concerns 
the labeling of artworks. After hav-
ing performed our main experi-
ments, we discovered that for some 
artworks, the Rijksmuseum catalog 
lists multiple contributions, 
whereas the Rijksmuseum Chal-
lenge data set only lists a single art-

ist [24]. The contributions listed in the Rijksmuseum catalog 
vary greatly (from inspiration to dual authorship) and do not 
always influence the actual attribution, but do create uncer-
tainty about the attribution of artworks in the Rijksmuseum 
challenge data set. Although this significantly limits the possi-
bility of learning stylistic features from such artworks, it does 
not prohibit PigeoNET from learning visual characteristics that 
are associated with the primary artist as such characteristics 
remain present in the artwork. Still, the validity and consistency 
of attributions is of major concern to safeguard the validity of 
methods such as PigeoNET. Also in the creation of such data-
bases, the involvement of human art experts is required. 

The results obtained in this work on the automatic artist 
attribution task show that PigeoNET is capable of accurately 
attributing unseen works to the correct artist. The increase of 
performance for the sets with a higher number of examples 
shows that including more examples per artist leads to a better 
performance. Moreover, the complete Rijksmuseum Challenge 
data set is a highly diverse data set with many different types of 
art. For some cases (e.g., the porcelain of the Meissener Porzel-
lan Manufaktur) this results in a class that is visually very dis-
tinctive from the rest of the data set, which could make it easier 
to identify the correct artist. However, when comparing the per-
formances obtained on the homogeneous P1 subsets (prints 
only) with those on the more heterogeneous A subsets (all art-
work types), the difference in performance is quite small. This 
demonstrates that PigeoNET is capable of learning a rich repre-
sentation of multiple artwork types without a major impact on 
its predictive power. Part of the types of features discovered in 
the A subsets are likely to distinguish between art types (e.g., a 
porcelain object versus a painting), rather than between author 
styles. In the P subsets, features will be more tuned to stylistic 
differences, because these subsets are confined to a single type 
of artwork. 

Our findings indicate that the number of artists and the num-
ber of examples per artist have a very strong influence on the per-
formance, which suggests that a further improvement of the 
performance is possible by expanding the data set. In future 
research we will determine to what extent this is the case. 

THE RESULTS OBTAINED 
IN THIS WORK ON THE

AUTOMATIC ARTIST ATTRIBUTION 
TASK SHOW THAT PIGEONET
IS CAPABLE OF ACCURATELY 

ATTRIBUTING UNSEEN WORKS 
TO THE CORRECT ARTIST. 

Jan
Luyken

Caspar
Luyken

[FIG6] Visualization of how characteristic each image region is 
for the artists Jan and Caspar Luyken. The yellow regions are 
characteristic of Jan Luyken, whereas the blue regions are 
characteristic of Caspar Luyken.
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CONCLUSIONS
In this article we have evaluated a feature learning system to 
assess to what extent it is possible to discover an artist’s visually 
characteristic features. The results on the automatic attribution 
task demonstrate that the system is capable, up to a high degree of 
accuracy, of using visual characteristics to assign unseen artworks 
to the correct artist. Moreover, we demonstrated the possibility of 
using the visual characteristics to reveal the artist of a specific 
region within an artwork, which in the case of multiple artists 
could lead to new discoveries about the origin and creation of 
important works of cultural heritage. Therefore, we conclude that 
PigeoNET represents a fruitful approach for future computer-sup-
ported examination of artworks. 
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uantitative canvas weave analysis has many appli-
cations in art investigations of paintings, includ-
ing dating, forensics, and canvas rollmate 
identification [1]–[3]. Traditionally, canvas analy-
sis is based on X-radiographs. Prior to serving as a 
painting canvas, a piece of fabric is coated with a 

priming agent; smoothing its surface makes this layer thicker 
between and thinner right on top of weave threads. These 

variations affect the X-ray absorption, making the weave pattern 
stand out in X-ray images of the finished painting. To character-
ize this pattern, it is customary to visually inspect small areas 
within the X-radiograph and count the number of horizontal and 
vertical weave threads; averages of these then estimate the overall 
canvas weave density. The tedium of this process typically limits 
its practice to just a few sample regions of the canvas. In addition, 
it does not capture more subtle information beyond weave den-
sity, such as thread angles or variations in the weave pattern. Sig-
nal processing techniques applied to art investigation are now 
increasingly used to develop computer-assisted canvas weave 
analysis tools. 

[Haizhao Yang, Jianfeng Lu, William P. Brown, Ingrid Daubechies, and Lexing Ying]

[Application of time-frequency analysis to art investigation]

Quantitative 
Canvas Weave Analysis 

Using 2-D Synchrosqueezed 
Transforms
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In their pioneering work [4], Johnson et al. developed an 
algorithm for canvas thread-counting based on windowed Fou-
rier transforms (wFTs); further developments in [5] and [6] 
extract more information, such as thread angles and weave pat-
terns. Successful applications to paintings of art historical inter-
est include works by Vincent van Gogh [7], [8], Diego Velázquez 
[9], and Johannes Vermeer [10], among others [11]–[15]. 

A more robust and automated analysis technique was later 
developed by Erdmann et al. [16] based on autocorrelation and 
pattern recognition algorithms, requiring less human inter-
vention (e.g., choosing proper frequency range and window 
size of wFTs). Unlike the Fourier-space-based approach of [4], 
[16] uses only the real-space representation of the canvas. 
Likewise, [17] also uses real-space-based features for canvas 
texture characterization. 

In this article, we consider a new automated analysis tech-
nique for quantitative canvas analysis based on the two-dimen-
sional (2-D) synchrosqueezed transforms (2DSTs) recently 
developed in [18]–[20]. This Fourier-space-based method 
applies the nonlinear synchrosqueezing procedure to a phase-
space representation of the image obtained by wave packet or 
curvelet transforms. Synchrosqueezing has shown to be a useful 
tool in independent work by some in [18]–[22], in the general 
area of materials science, medical signal analysis, and seismic 
imaging. Using as a prior assumption that the signal of interest 
consists of a sparse superposition of close to but not quite peri-
odic template functions, this mathematical tool provides sharp 
and robust estimates for the locally varying instantaneous fre-
quencies of the signal components by exploiting the phase 
information of wFTs (i.e., not only the absolute value as in pre-
vious methods). This seemed to make it a natural candidate for 
canvas analysis; as illustrated by the results we obtained, 
reported here, this intuition proved to be correct. The method, 
as shown next, is very robust and offers fine-scale weave density 
and thread angle information for the canvas. We compare our 
results with those in [4]–[6] and [16]. 

MODEL OF THE CANVAS WEAVE 
PATTERN IN X-RADIOGRAPHY
We denote by f  the intensity of an X-radiograph of a painting; see 
Figure 1(a) for a (zoomed-in) example. Because X-rays penetrate 
deeply, the image consists of several components: the paint layer 
itself, primer, canvas (if the painting is on canvas or on wood panel 
overlaid with canvas), possibly a wood panel (if the painting is on 
wood), and sometimes extra slats (stretchers for a painting on can-
vas, or a cradle for a painting on wood, thinned and cradled 
according to earlier conservation practice.) This X-ray image may 
be affected by noise or artifacts of the acquisition process. We 
model the intensity function f  as an additive superposition of the 
canvas contribution, denoted by ( ),c x  and a remainder, denoted 
by ( ),p x  that incorporates all the other components. Our 
approach to quantitative canvas analysis relies on a simple model 
for the X-ray image of the weave pattern in the “ideal” situation. 
Since it is produced by the interleaving of horizontal and vertical 
threads in a periodic fashion, a natural general model is 

( ) ( ) ( ) : ( ) ( ( )) ( ) .f x c x p x a x S N x p x2r z= + = + (1)

In this expression, S  is a periodic function on the square 
[ , ) ,0 2 2r  the details of which reflect the basic weave pattern of 
the canvas, e.g., whether it is a plain weave or perhaps a twill 
weave. This is a generalization of more specific assumptions 
used in the literature—for instance, in [4] a plain weave canvas 
is modeled by taking for S  a sum of sinusoidal functions in the 
x  and y  directions; in [6], more general weave patterns (in par-
ticular twill) are considered. The parameter N  in (1) gives the 
averaged overall weave density of the canvas (in both direc-
tions). The function ,z  which maps the image domain to ,R2  is 
a smooth deformation representing the local warping of the 
canvas; it contains information on local thread density, local 
thread angles, etc. The slowly varying function ( )a x  accounts 
for variations of the amplitude of the X-ray image of the canvas, 
e.g., due to variation in illumination conditions. 

(a) (b) (c) (d)

[FIG1] (a) A sample swatch of an X-ray image in which canvas is clearly visible (in most places) despite the paint layers on top of the 
canvas. (b) The spectrum of the wFT (top) and 2DST (bottom) at one location. Local maxima (circled in red) indicate the wave vector 
estimates; the insets show the intensity profile on a cross section (dashed line) through two maxima. (c) The same swatch as in (a) with 
noise added (such that the noise level is visually comparable to the real data example in Figure 9) to test for robustness. (d) The wFT and 
2DST spectra again at the same location, illustrating the more robust nature of the 2DST estimate (due to its taking into account phase 
information of the wFT in a neighborhood of the peaks of the absolute value of the wFT as well as the peak values). For comparison, the 
positions of the red circles are the same as in (b). The peaks are displaced in wFT due to noise, while the result of 2DST is not affected. 
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In some cases, the X-ray image fails to show canvas information 
in portions of the painting (e.g., when the paint layer dominates); the 
model (1) is then not uniformly valid. Because our analysis uses spa-
tially localized information (analyzing the image patch by patch), this 
affects our results only locally: in those (small) portions of the image 
we have no good estimates for the canvas parameters. For simplicity, 
this exposition assumes that (1) is valid for the whole image. 

We rewrite c  by representing the weave pattern function ,S
periodic on [ , ) ,0 2 2r  in terms of its Fourier series, 

( ) ( ) ( ) .c x a x n eS ( )

n

iNn x2 ·

Z2

=
!

r zt/ (2)

This is a superposition of smoothly warped plane-waves with local 
wave vectors ( ( )) .N n x$d z  The idea of our analysis is to extract 
the function z  by exploiting that the Fourier coefficients { ( )}S nt

are dominated by a few leading terms. 

FOURIER-SPACE-BASED CANVAS ANALYSIS

WINDOWED FOURIER TRANSFORM
Because a  and z  vary slowly with ,x  we can use Taylor expan-
sions to approximate the function for x  near x0  as 

( ) ( ) ( ) .c x a x S n e e( ) ( )· ( )( )

n

iNn x iN x x n x
0

2 2· ·

Z

x

2

0 0 0. d

!

r z r z-t/ (3)

The right-hand side of (3) is a superposition of complex exponen-
tials with frequencies ( , ),w w w1 2=  with 

( ) ( );w n xl l
l

l l
1

2

02 z=
=

l

l

l/

these would stand out in a Fourier transform as peaks in the 2-D 
Fourier spectrum. Since the approximation is accurate only near 

,x0  we also use a wFT with envelope given by, e.g., a Gaussian cen-
tered at x0  with width .v  We have then 

( , ) : ( )W x k e e c x x
2

1 d( ) ( ) /ik x x x x
0 2

2 2 20 0
2 2

rv
= r v- - - -##

( ) ( ) .a x S n e e( ) [ ( )( )]

n

iNn x k N n x
0

2 2

Z

x

2

0
2 2

0
2

. $d

!

r z r v z- -t/ (4)

Instead of being sharply peaked, the spectrum of the wFT is thus 
“spread out” around the ( ) ( )N n xx 0$d z —a manifestation of the 
well-known uncertainty principle in signal processing, with a 
tradeoff with respect to the parameter :v  a larger v  reduces the 
“spreading” at the price of a larger error in the approximation (3), 
since the Gaussian is then correspondingly wider in the real space. 

The method of [4] and [6] uses the local maxima of the ampli-
tude of the wFT to estimate the location of { ( ( ))}N n x0$d z  for a 
selection of positions x0  of the X-ray image (local swatches are 
used instead of the Gaussian envelope, but the spirit is the same). 
For ideal signals, (4) shows that the maxima of the amplitude 

,W x0 $^ h  identify the dominating wave vectors in Fourier space, 
which are then used to extract information, including weave den-
sity and thread angles. Thread density is estimated by the length of 
the wave vectors; the weave orientation is determined by the 
angles. This back-of-the-envelope calculation is fairly precise when 

N  is much larger than 1, resulting in a small ( )NO 1-  error in the 
Taylor expansions and stationary phase approximations. In terms of 
the canvas, N 1&  means that the inverse of the average thread 
density must be much smaller than the length scale of the vari-
ation of the canvas texture, which is typically on the scale of the 
size of the painting. This is essentially a high-frequency assump-
tion, ensuring that stationary phase approximations can be applied 
in the time-frequency analysis. Details can be found in standard ref-
erences of time-frequency analysis, e.g., [23]. 

In more complicated scenarios, in particular, when the X-ray sig-
nal corresponding to the canvas is heavily “contaminated” by the 
other parts of the painting, it is desirable to have more robust and 
refined analysis tools at hand than locating local maxima of the Fou-
rier spectrum. The synchrosqueezed transforms are nonlinear time-
frequency analysis tools developed for this purpose, in different 
[one-dimensional (1-D) and 2-D] applications that suggests they 
could be suitable for canvas analysis in challenging situations. A 
comparison of the two methods is shown in Figure 1 and will be 
explained next. For the sake of completeness, we note that in our 
implementation, we use curvelets (more or less corresponding to a 
nonisotropic Gaussian window, with axes-lengths adapted to the fre-
quencies of the oscillating component) rather than wFTs with iso-
tropic Gaussian windows, to which we have restricted ourselves in 
this exposition. The synchrosqueezing operation has similar effects 
in both cases; the curvelet implementation, while more complicated 
to explain in a nutshell, has the advantage of being governed by only 
two parameters, which set the spatial redundancy and the angular 
resolution. Setting these is well understood (see [24]); in addition 
the result is stable under small perturbations in these parameters. 

SYNCHROSQUEEZED TRANSFORMS
The synchrosqueezed transforms, or more generally time-fre-
quency reassignment techniques (see, e.g., the recent review [25]), 

(a) (b)

[FIG2] (a) An X-ray image of van Gogh’s painting Portrait of an 
Old Man with Beard, 1885, van Gogh Museum, Amsterdam 
(F205). (b) An X-ray image of Vermeer’s painting Woman in 
Blue Reading a Letter, 1663–1664, Rijksmuseum, Amsterdam, 
The Netherlands (L17). [X-ray images provided by Prof. 
C. Richard Johnson through the Rijksbureau voor 
Kunsthistorische Documentatie (RKD)/The Netherlands 
Institute for Art History data set [28].] 
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were introduced to deal with the “loss of resolution” due to the 
uncertainty principle. Originally introduced in [26] for auditory 
signals, using a nonlinear squeezing of the time-frequency 
representation to gain sharpness of the time-frequency representa-
tion, the 1-D synchrosqueezed wavelet transform was revisited and 
analyzed in [27]. For the application to canvas analysis, we rely on 
2-D extensions of the synchrosqueezing transforms based on wave 
packet and curvelet transforms [18], [19]. This 2DST has been 
applied to atomic-resolution crystal image analysis in [20]; the pre-
sent algorithm for canvas analysis is adapted from [20], where the 
2DST proved to be an excellent tool to capture and quantify devia-
tions from a perfect lattice structure, very similar to the aims of 
canvas analysis. Rigorous robustness analysis of the syn-
chrosqueezed transforms in [24] supports their application to can-
vas analysis where data is usually noisy and contains contaminants. 

The crucial observation is that the phase of the complex func-
tion ( , ),W x k  obtained from the wFT (4) contains information on 

the local frequency (i.e., the instantaneous frequency) of the sig-
nal. Indeed, for ( , )x k  such that k  is close to ( ),N nx $d z  we have 

( , ): ( ( , )) ( ) ( ) ( ),lnw x k W x k N n x o N2
1

f x x $1 d d
r

z= = + (5)

where ( )z1  stands for the imaginary part of the complex number 
.z  Motivated by this heuristic, the synchrosqueezed wFT 

“squeezes” the time-frequency spectrum by reassigning the ampli-
tude at ( , )x k  to ( , ( , ))x w x kf  as 

( , ) : ( , ) ( ( , )) .T x W x k w x k kdf
2 2p d p= -## (6)

This significantly enhances the sharpness of the time-frequency 
representation, leading to an estimate of the local frequency of the 
signal, that is more accurate as well as more robust, as we illustrate 
below. This gives a sharpened energy distribution on phase space: 

11

12

13

14

15

16

17

18

19

20

11

12

13

14

15

16

17

18

19

20

−25

−20

−15

−10

−5

0

5

10

15

20

25

−25

−20

−15

−10

−5

0

5

10

15

20

25

(a) (b) (c) (d)

[FIG4] Canvas analysis results of Vermeer’s L17 using the synchrosqueezed transform: (a) and (b) are a thread count map of the 
horizontal and vertical threads while (c) and (d) show the estimated horizontal and vertical thread angles. Average thread density 
is 14.407 threads/cm (horizontal) and 14.817 threads/cm (vertical). The boxed region of the (d) vertical thread angle map is shown, 
enlarged, in Figure 5; it is part of a striking anomaly in the vertical angle pattern in this canvas, lining up along one vertical 
traversing the whole canvas. 
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[FIG3] The canvas analysis results of van Gogh’s F205 using the synchrosqueezed transform: (a) and (b) thread count map of the 
horizontal and vertical threads and (c) and (d) the estimated horizontal and vertical thread angles. Compare with [6, Fig. 6]. 
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( , ) ( ) ( ) ( ( ( )))T x a x S n N n x
n

2 2

Z2

$d.p d p z-
!

t/ (7)

in the sense of distributions. See [18]–[20] for more details, as well 
as an analysis of the method. The peaks of the synchrosqueezed 
spectrum T  then provide estimates of the ( ( )),N n x$d z  deter-
mining local measurement of both the thread count and the angle. 
Figure 1 illustrates the resulting spectrum of the 2DST, compared 
with the wFT for a sample X-ray image from a canvas. The 
reassignment carried out in (6), taking into account the local oscil-
lation of the phase of a highly redundant wFT rather than the max-
imum energy of the wFT to reduce the influence of noise, results in 
a much more concentrated spatial frequency portrait. As illustrated 
by the behavior of the estimates when extra noise is added, this 
leads to increased robustness for the estimates of the dominating 
wave vectors, which determine the thread count and angle. The 
performance and the robustness of the 2DST are supported by 
rigorous mathematical analysis in [24]. 

APPLICATIONS TO ART INVESTIGATIONS
Let us now present some results of quantitative canvas analysis 
using 2DST. The algorithm is implemented in MATLAB. The 
codes are open source and available as SynLab at https://github.
com/HaizhaoYang/SynLab. 

The first example [Figure 2(a)] is the painting F205 by van 
Gogh, the X-ray image of which is publicly available as part of the 
RKD data set [28] provided by The Netherlands Institute for Art 
History; this was one of the first examples analyzed using the 
method based on the wFT; see [4, Fig. 4] and also [6, Fig. 6]. In 
Figure 3, the thread count and thread angle estimates are shown 
for horizontal and vertical threads. Comparing with the previous 
results in [4] and [6], we observe that the general characteristics of 
the canvas agree quite well. For example, [6] reports average thread 
counts of 13.3 threads/cm (horizontal) and 16.0 threads/cm (verti-
cal), while our method obtains 13.24 threads/cm (horizontal) and 
15.92 threads/cm (vertical). Compared to the earlier results, the 
current analysis gives a more detailed spatial variation of the thread 
counts. In particular, it captures the oscillation of the thread count 
on a much finer scale. We don’t know whether such fine details will 
have applications beyond the canvas characterization already 
achieved by less detailed methods, but it is interesting that they can 
be captured by an automatic method. Note that visual inspection 
confirms the presence of these fine details. 

We next consider a painting of Vermeer, Woman in Blue 
Reading a Letter (L17), the X-ray image of which is also avail-
able as part of the RKD data set [28]. The canvas analysis for 
Vermeer’s paintings is considerably more challenging than that 
of van Gogh’s [10]. This can be understood by direct comparison 
of the X-ray images in Figure 2(a) and (b). The stretchers and 
nails significantly perturb the X-ray image for the Vermeer. The 
results are shown in Figures 4 and 5. Although the thread count 
and angle estimate are affected by artifacts in the X-ray image, 
they still provide a detailed characterization of the canvas 
weave. This is justified by the result in Figure 5, which shows a 
zoom-in for the X-ray image and the vertical thread angle map. 
It is observed that the algorithm captures (and quantifies) 

detailed deviations in the vertical thread angle recognizable by 
visual inspection. Despite the challenges, the 2DST-based can-
vas analysis performs quite well on the Vermeer example. 

To test the algorithm on a different type of canvas weave, we 
applied it to the X-ray image of Albert P. Ryder’s The Pasture, a 
painting on twill canvas. Figure 6 shows the result for a portion 

[FIG6] (a) An X-ray image of Albert P. Ryder’s The Pasture, 1880–
1885, North Carolina Museum of Art, Raleigh. (b) An enlargement 
of the red-boxed region with clearly recognizable twill canvas 
weave. (c) and (d) Horizontal and vertical thread count maps 
corresponding to the zoomed-in region shown in (b). Note the 
much higher thread counts than for plain weave canvas, typical 
for the finer threads used in twill weave. The bottom-right insets 
of (b)–(d) show the further zoom-in of the green-boxed region 
for visual inspection. The horizontal thread count matches the 
changes observed in the X-ray image quite well. 
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[FIG5] Details of (a) the X-ray image and (b) the corresponding 
vertical thread angle map for Vermeer’s L17, highlighting two 
examples (boxed regions) of noticeable fine scale variation of 
the vertical thread angle, readily recognizable also by visual 
inspection of the corresponding zones in the X-ray image. 
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of the canvas. The twill canvas pattern is clear on the zoomed-in 
X-ray image. The method is still able to capture fine-scale fea-
tures of the canvas; the admittedly higher number of artifacts is 
due to the increased difficulty to “read” a twill versus a standard 
weave pattern, as well as a weaker canvas signal on the X-ray. 

For our final example, we apply the 2DST-based canvas ana-
lysis to The Peruzzi Altarpiece by Giotto di Bondone and his 
assistants. The altarpiece is in the collection of the North Caro-
lina Museum of Art; see Figure 7 for the altarpiece as well as the 
X-ray images used in the analysis. This is a painting on wood 
panel, but the ground of traditional white gesso was applied 
over a coarsely woven fabric interlayer glued to a poplar panel. 
We carried out a canvas analysis on the fabric interlayer, likely a 
handwoven linen cloth. The results of a canvas analysis based 
on the synchrosqueezed transform are shown in Figure 8. This 
example is much more challenging than the previous ones, 
since the X-ray intensity contributed by the canvas is much 
weaker because the ground does not contain lead; see, e.g., a 
detail of the X-ray image of the Christ panel in Figure 9. The 
canvas is barely visible, in sharp contrast to the X-ray images in, 
e.g., Figures 1(a) or 5. All panels except the central Christ panel 
are cradled; the wood texture of these cradles interferes with the 
canvas pattern on the X-ray image, introducing an additional 
difficulty. This difficulty is reflected in our results: e.g., the ver-
tical thread count for the central panel has much fewer artifacts 

than those of the other panels (see Figure 8). In future work, we 
will explore carrying out a canvas analysis after signal-process-
ing-based virtual cradle remove (see e.g., [29]).

One interesting ongoing art investigation debate concerning 
this altarpiece is the relative position of the panels of John the Bap-
tist and Francis of Assisi [Figure 7(d) and (e), respectively]. While 
the order shown in Figure 7 is the most commonly accepted [30], 
there have been alternative arguments that the Francis panel 
should be instead placed next to the central panel [Figure 7(c)]. As 
seen in X-rays, the grain of the wood typically can be used to set the 
relative position of panels in an altarpiece painted on a single plank 
of wood, but because the cradle pattern obscures an accurate read-
ing of the X-rays of the Baptist and Francis, this proposed alterna-
tive orientation cannot be discounted. We wondered what ordering 
(if any) would be suggested by the canvas analysis. Under the 
assumption that the pieces of canvas are cut off consecutively from 
one larger piece of cloth, we investigated which arrangement pro-
vides the best matching. One plausible arrangement of the canvas 
is shown in Figure 10. Our analysis suggests that the canvas of the 
central panel should be rotated 90° clockwise to match with the 
other panels. (The larger height of the central panel, possibly 
exceeding the width of the cloth roll, may have necessitated this.) 
Moreover, a better match is achieved if the canvas of the panel of 
the Baptist is flipped horizontally (in other words, flipped front to 
back). Given our results, it seems unlikely that the Francis-panel 

[FIG7] Giotto di Bondone and assistants, The Peruzzi Altarpiece, ca. 1310–1315, North Carolina Museum of Art, Raleigh. The panels are 
(a) John the Evangelist, (b) the Virgin Mary, (c) Christ in Majesty, (d) John the Baptist, and (e) Francis of Assisi. The resolution of the 
X-ray image used in the analysis is 300 dots/in. The vertical and (less obvious) horizontal stripes on the X-ray images in all panels 
except the central panel of Christ are caused by cradling. Each X-ray image is a mosaic of four X-ray films, leading to visible boundaries 
of the different pieces (thin horizontal and vertical lines) on the X-ray image. 

(a) (b) (c) (d) (e)
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[FIG8] The canvas analysis result of the Giotto altarpiece. The deviation of (a) vertical thread angle, (b) vertical thread count, 
(c) horizontal thread angle, and (d) horizontal thread count. The panels are in the same order as in Figure 7. 
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canvas would fit best to the left of the Baptist-panel canvas. A bet-
ter, more precise, result will be possible after virtual cradle removal. 
Since pieces of the canvas could have been placed on the altarpiece 
plank in another order than their cutting sequence, evidence from 
even the most thorough study of the canvas roll arrangement 
would not be conclusive for the relative position of the panels 
themselves; nevertheless, it can play a significant role when com-
bined with other elements in an exhaustive study. 

CONCLUSIONS
We applied 2DSTs to quantitative canvas weave analysis for art 
investigations. The synchrosqueezed transforms offer a sharpened 
phase-space representation of the X-ray image of the paintings, 
which yields fine-scale characterization of thread count and thread 
angle of the canvas. We demonstrated the effectiveness of the 
method on art works by van Gogh, Vermeer, and Ryder. The tool is 
applied to The Peruzzi Altarpiece by Giotto and his assistants, to 
provide insight into the issue of panel arrangement. 
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clockwise by 90°, and that of the Baptist is flipped horizontally.

[FIG9] A zoomed-in X-ray image of the central panel in The Peruzzi 
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image is scaled such that the thread density is comparable with 
that of the zoomed-in X-ray in Figure 5. 
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e propose a holistic system to classify 
ancient Roman Republican coins based on 

their reverse-side motifs. The bag-of-
visual-words (BoW) model is enriched with 

spatial information to increase the discrimi-
native power of the coin image representation. This is achieved 
by combining a spatial pooling scheme with co-occurrence 
encoding of visual words. We specifically address the required 
geometric invariance properties of image-based ancient coin 
classification, as coins from different collections can be located 
at differing image locations, have various scales in the images 

and can undergo various in-plane rotations. We evaluate our 
method on a data set of 2,224 coin images from three different 
sources. The experimental results show that our proposed 
image representation is more discriminative than the tradi-
tional bag-of-visual-words model while still being invariant to 
the mentioned geometric transformations. For 29 motifs, the 
system achieves a classification rate of 82%. It is considered to 
act as a helpful tool for numismatists in the near future, which 
facilitates and supports the traditional coin classification pro-
cess by a faster presorting of coins. 

INTRODUCTION
In ancient times, coins had become the central embodiment of 
money, starting from around the seventh century B.C. in 
Greece and spreading over other civilizations like the Roman 

[Hafeez Anwar, Sebastian Zambanini, Martin Kampel, and Klaus Vondrovec]

[Image-based classification of Roman Republican coins]

Ancient Coin Classification 
Using Reverse 

Motif Recognition
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Empire, Byzantium, India, or China 
[1]. While ancient coins were every-
day objects in the past, today they 
are also considered as pieces of art 
that reflect the individualism of the 
engravers who manually cut the 
dies used for minting the coins [2]. 
Roman coins, for instance, often 
depict portraits of gods, influential 
persons, or historical events, simi-
lar to sculptures or paintings from this era. [2]. The classifica-
tion of coins according to standard reference books is the 
fundamental work of coin experts [2] since this provides addi-
tional information such as accurate dating, political back-
ground, or minting place. However, classifying ancient coins is 
a highly complex task that requires years of experience in the 
entire field of numismatics [3]. Additionally, efficiency is a vital 
issue, both among humans and machines, especially when it 
comes to the processing of large coin collections or maybe even 
larger hoard finds. As a substantial part of numismatic coin 
analysis, coin classification can be supported and facilitated by 
an automatic system. 

The basic elements of Roman Republican coin design are 
depicted in Figure 1. The obverse coin sides frequently show a 
portrait of the goddess Roma as the central motif or, at a later 
stage, that of a historic person, whereas the reverse shows some 
kind of significant objects or scenes. Usually those main motifs 
are combined with a legend. In addition to that, there are minor 
images, such as a tiny club, or numerals, which are referred to 
as symbols in classical numismatics. Symbols split up otherwise 
large and uniform coin issues of a specific year. 

In contrast to existing works 
where the classification is based 
either on obverse portraits [4], [5], 
legends [6], [7], or dense image-to-
image matching [8], [9], we exploit 
the reverse-side motifs for classifi-
cation in this articles. Accordingly, 
the presented method closely mir-
rors the human approach, as the 
reverse images usually hold a criti-

cal amount of information that is required for successful 
numismatic classification. This is also true for periods other 
than the Roman Republican time. Naturally the central 
(reverse) motif is most prominent in all descriptions and, 
compared to legends or minor symbols, larger and more resis-
tant against the inevitable degree of wear that is generally 
found on ancient coins. If manual numismatic classification is 
not possible for exactly that reason, it is commonly agreed 
upon to give a description of the visible parts (usually the cen-
tral motif) and, if possible, the resulting probable reference 
numbers from the reference books [2]. 

PRIOR WORK AND CONTRIBUTIONS
In contrast to methods dedicated to present-day coins [10], 
[11], image-based classification of ancient coins has become a 
recent research interest, owing to the higher complexity of the 
problem due to the challenging conditions of ancient coins. 
Ancient coins do not have a rigid shape and are worn to a cer-
tain degree because of their age. Consequently, it was experi-
mentally shown by [3] that the success of classification 
methods for present-day coins cannot be transferred to the 

Reverse Motif:
Heracles and Lion

Symbol: Control Mark B

Symbol:
Bow and Quiver

Legend:
C.POBLICI.Q.

Obverse Motif:
Helmeted Bust of
Roma

Legend: ROMA

Symbol: Club

(a) (b)

[FIG1] An example of the basic coin elements on the (a) obverse and (b) reverse side of a Roman Republican coin.

WHILE ANCIENT COINS WERE 
EVERYDAY OBJECTS IN THE PAST, 

TODAY THEY ARE ALSO CONSIDERED 
AS PIECES OF ART THAT REFLECT THE 
INDIVIDUALISM OF THE ENGRAVERS 

WHO MANUALLY CUT THE DIES 
USED FOR MINTING THE COINS.
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domain of ancient coins. The first 
method exclusively dedicated to 
ancient coins was proposed by 
Kampel and Zaharieva [12]. The 
method compares two coin images 
by establishing correspondences 
between them and taking their 
total number as similarity value. 
Given such a similarity function, classification is achieved in an 

exemplar-based manner where a 
query image is compared to class 
exemplar images in the data set. 
This idea was later extended to 
more sophisticated similarity func-
tions that also take geometric con-
straints into account [8], [9]. 

Alternatively, or in addition to 
comparing the image signals, one can leverage a priori known 

Aquila Caduceus Charging Bull Curule Chair Cornucopia Crowning Ceremony

Dolphin Eagle
Elephant

Stepping on a Snake Father and Son Galley Galloping Rider

Juno Feeding a Snake Griffin Hercules and Lion Horseman with Spear Jar Lion-Biga

Marsyas Priest and Sacrificial Bull Roma Romano Snake-Biga Trident

Triga Ploughing with Two Oxen She-Wolf Wolf and Twins Youth and Soldiers

[FIG2] Reverse motifs used for classification.

CLASSIFYING ANCIENT 
COINS IS A HIGHLY COMPLEX 
TASK THAT REQUIRES YEARS 

OF EXPERIENCE IN THE ENTIRE 
FIELD OF NUMISMATICS.
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semantic background information for classification. 
Arandjelović [6] and Kavelar et al. [7] proposed to exploit the 
legend shown on ancient coins. The background information 
here is a lexicon of known legend words linked with coin 
classes, which are detected by means of graphical models that 
integrate likelihoods of letter appearances to words. However, 
the two methods are designed for two different Roman coin 
periods: the method of Kavelar et al. [7] is designed for Repub-
lican coins and has to consider more degrees of freedom in the 
word search than the method of Arandjelović [6] for Imperial 
coins. On Imperial coins, the legend is arranged along the coin 
border and the image can be nor-
malized for orientation by means 
of a log-polar transformation. 

Apart from the legend, for 
Roman Imperial coins the person 
portrayed on the obverse coin side 
has been used for classification 
[4], [5], as this is typically the 
issuer defining the coin class [13]. 
The method of Arandjelović [4] 
relies on detected scale-invariant 
feature transform (SIFT) features [14] that are quantized into a 
fixed vocabulary of visual words. The spatial configuration of 
visual words is then encoded by locally biased directional histo-
grams (LBDHs), which are again subject to vocabulary creation 
and the histogram of LBDH words serves as final image feature. 
However, a recently proposed method by Kim and Pavlovic [5] 
outperformed this method. Their approaches are more adapted 
to the field of face recognition and achieve recognition rate of 
82–86% on a 15-class-problem by using the deformable parts 
model [5], [15]. 

Our proposed method is different from prior work both from 
a contextual and methodological perspective. We aim at exploit-
ing a different semantic information for classification instead of 
the legend or the person on the obverse, particularly the motifs 
on the reverse of Roman Republican coins as shown in Figure 2. 
This is an essential part of coin descriptions and thus highly 
practical for classification. On the methodological side, we aim 
at the rotation-invariant spatial encoding of local features, as 
coin rotations cannot be handled by the best-performing meth-
ods for image-to-image coin matching [9] and obverse side rec-
ognition [5]. 

ROTATION-INVARIANT SPATIAL EXTENSIONS 
TO THE BoW IMAGE REPRESENTATION FOR 
ANCIENT COIN CLASSIFICATION
Our proposed method is based on the BoW model, which has 
become a standard paradigm for image classification in the 
last decade [16]. Local features sampled from a set of images 
are quantized using a clustering technique such as the 
k-means. These cluster centers are called the visual words and 
the collection of all visual words is called the visual vocabu-
lary. This visual vocabulary is then used to represent novel 
images. From a given image, local features are extracted and 

visual words from the vocabulary are assigned to these fea-
tures using a similarity measure such as the Euclidean dis-
tance. Finally, the image is represented as a histogram where 
each bin represents the count of the respective visual word in 
the image. This histogram is called the histogram of visual 
words or the BoW, and the size of this histogram is equal to 
the size of the visual vocabulary. 

A basic problem in the BoW image representation is the 
lack of spatial information of the quantized local features 
[17]–[19]. The histogram counts the number of visual words 
without considering their spatial positions in the two-dimen-

sional (2-D) image space. However, 
the spatial information provides 
discriminating details in problems 
such as object recognition-based 
image classification [17], [18] 
because objects have specific geo-
metric structures. There are two 
main principles used by various 
methods to add spatial informa-
tion to the BoW image representa-
tion. The first principle deals with 

the splitting of the image space into subregions of various 
shapes [17], [18]. From each subregion, statistics of visual 
words are collected to form the final histogram of visual 
words. Since these subregions are either rectangular [17], [20] 
or log-polar [18], the methods based on such partitionings are 
not invariant to translations and image rotations. The second 
principle of incorporating spatial information to the BoW 
image representation is based on modeling various relation-
ships of the visual words such as their co-occurrence [19] or 
their geometric relationships [21]. However, modeling the co-
occurrences of visual words in the case of large vocabularies 
proves to be computationally expensive [19]. The methods 
based on geometric relationships of visual words such as the 
one proposed by Khan et al. [21] are also unable to achieve 
invariance to image rotations. 

In this article, the recognition of the reverse motifs of 
ancient coins is carried out by using the BoW image represen-
tation. Due to the specific geometric structures of the reverse 
motifs, spatial information incorporated to the BoW image rep-
resentation results in improved performance. However, such 
spatial information should be added by considering certain 
issues that are specific to ancient coins. Due to flat and circular 
nature of the coins, they can exhibit rotations in the image 
plane. In addition to rotations, the images can come from dif-
ferent data sets and thus the coin region can be in different 
scales and at different image positions. Consequently, the 
method should be invariant to changes of the coin position, 
rotation, and scale. 

Our proposed method for adding spatial information to BoW is 
a combination of both the main principles, i.e., splitting the 
image space into subregions and modeling the relationships of 
visual words. To this end, we propose a three-step strategy to 
achieve an image representation for ancient coin classification 

IMAGE-BASED CLASSIFICATION 
OF ANCIENT COINS HAS BECOME 
A RECENT RESEARCH INTEREST, 

OWING TO THE HIGHER COMPLEXITY 
OF THE PROBLEM DUE TO 

THE CHALLENGING CONDITIONS 
OF ANCIENT COINS.
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that is invariant to translation, scale 
changes, and image rotations. We 
first use the automatic coin image 
segmentation [22] to segment the 
coin from the background, which 
helps to achieve invariance to scale 
changes and translation. Second, we 
apply the circular tiling scheme [20] over the segmented coin 
image to increase the discriminative power of the model while 
maintaining rotation invariance. Finally, the rotation-invariant 
geometric relationships of visual words [23], [24] in each subregion 
of the circular tiling scheme are modeled to obtain the final image 
representation. In the following, we will give a brief description of 
each step of the proposed strategy. 

AUTOMATIC COIN IMAGE SEGMENTATION
Coin image segmentation is used as a preprocessing step to 
achieve invariance to translation and scale changes. The 
method proposed in [22] is used as it is specifically proposed 

for the automatic segmentation of 
ancient coins. This method is based 
on the following two assumptions: 

■ The area of the image depict-
ing the coin contains more infor-
mation contents than the rest of 
the image. 

■ The coin is the most circular object present in the image.
Consequently, the automatic coin image segmentation 

method is a two step process. In the first step, two filters are 
applied to the image to measure the local information content. 
The first filter measures the local entropy while the second one 
measures the range of gray values. The outputs of both filters 
are summed up to obtain the intensity image which is then 
normalized to the range zero and one. To achieve the final seg-
mentation, seven empirically defined threshold values are 
applied to the normalized intensity image and a confidence 
score is calculated for each achieved segmentation. This confi-
dence score is based on the form factor [25] calculated from 

(a) (b)

[FIG3] Images of ancient coins at various scales and positions along with their segmentation masks. 

Circular Tiling

BoVWs Without Spatial Tiling

Histogram of
Visual Words

Circular Spatial Tiling, r = 3

M × 1

M × 1

M × 1

[FIG4] The BoW image representation with and without circular tiling.

A BASIC PROBLEM IN THE 
BOW IMAGE REPRESENTATION 

IS THE LACK OF SPATIAL 
INFORMATION OF THE QUANTIZED 

LOCAL FEATURES. 
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the area and perimeter of the binary mask. The form factor is 
sensitive to both the elongation and jaggedness of the border. It 
is equal to one for a circle and less than one for any other 
shape. Since the shape of the coins is supposed be circular or 
nearly circular, the form factor is a reasonable choice for the 
confidence measurement. Finally, a segmentation is only 
accepted if the area of the segmented region is less than 90% 
and more than 5% of the image area. Figure 3 depicts two 
ancient coins and their respective segmentation masks demon-
strating the effectiveness of the segmentation method for the 
images of ancient coins at arbitrary scales and positions. With 
the known location of the coin, the image is cropped and nor-
malized to a specified standard size of 480 480#  to achieve the 
required invariance to object location and scale. 

CIRCULAR TILING
Once the coin image is normalized with respect to location and 
scale, circular tiling is applied. In the circular tiling scheme, 
concentric circular subregions are imposed over the BoW 
image representation as shown in Figure 4. For a vocabulary 
size of ,M  a histogram of M  visual words is generated for each 
circular tiling. These histograms are then concatenated in a 
single feature vector of length · .M r

GEOMETRIC RELATIONSHIP 
OF IDENTICAL VISUAL WORDS
The angles of a triangle are invariant to scale changes and 
rotations. Tao and Grosky [26] use the triangular relationships 
of identical color patches of an image to construct the so-
called anglograms for spatia l color indexing. The 

anglograms-based image representation is used for scale- and 
rotation-invariant image retrieval. To achieve the triangulation 
among identical image patches, they use the Delaunay trian-
gulation, which is an efficient and well-known triangulation 
method from computational geometry [27]. In the BoW model, 
identical visual words represent similar image patches. To add 
spatial information to the BoW model, Khan et al.  [21] pro-
posed the use of identical visual words. They use the angles 
made by pairwise identical visual words (PIWs) for the con-
struction of the pairwise identical visual words angles histo-
gram (PIWAH) to represent the image. PIWAH is not invariant 
to image rotations because it is made from angles that are cal-
culated with respect to the x-axis. Inspired by the idea of Tao 
and Grosky [26], we consider three identical words to calculate 
the angles and call them triplets of identical visual words
(TIWs), as shown in Figure 5. This will achieve a rotation-invari-
ant triangular relationship among the words of a given triplet. 
Based on the angles calculated among members of each TIW,
we produce the angles histogram in a similar manner as pro-
posed by Khan et al.  [21] and call them triplets of identical 
visual words angles histogram (TIWAH). 

In the BoW model, a visual vocabulary , ,v vvoc 1 2= "
, ,v vM3 f , consists of M  visual words. A given image is first 

represented as a set of descriptors 

, , , , ,I d d d dN1 2 3 f= " , (1)

da ∈Di

dc ∈Di

x-Axis

Pc

Pa
α

(a)

db ∈Di

Pb

dc ∈Di

Pc

β

γ

da ∈Di

Pa
α

(b)

[FIG5] (a) PIWs and (b) TIWs.

d1
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d1
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d5
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d7
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d4
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(b)

[FIG6] Triangulation methods. (a) Delaunay triangulation. 
(b) Combinatorial triangulation.
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where N  is the total number of descriptors. A given descriptor 
dk  is then mapped to a visual word vi  using a similarity mea-
sures like the Euclidean distance as follows:

, ,argminv d v dDistk
v

k
voc

=
!

^ ^h h (2)

where dk  is the kth descriptor in the image and v dk^ h is the 
visual word assigned to this descriptor based on the distance 

, .v dDist k^ h  The value of the bin bi  of this histogram gives the 
number of occurrences of a visual word vi  in an image. Let Di

be the set of all descriptors mapped to a visual word ,vi  then the 
ith  bin of the histogram of visual words ,bi  is the cardinality of 
the set .Di

 , , , .b D D d k N v d v1Card wherei i i k k if! ;= = =^ ^h h6 @" ,
(3)

We previously proposed [23] to use all the distinct pairs of 
three descriptors from set Di  to calculate angles between the 
spatial positions of the descriptors as shown in Figure 6. We call 
that method combinatorial triangulation, as the triangulation 
is done for all the three distinct pairs of descriptors belonging to 
a given visual word. The spatial position of a descriptor is given 
by its position on the dense sampling grid. The set of all TIWs 
related to a visual word vi  is defined as 

, , , , , ,P P P d d d D d d dTIWi a b c a b c i a b c
3 ! !; != ^ ^h h" , (4)

where , ,P P Panda b c  are the spatial positions of the descriptors 
, , ,d d danda b c  respectively. The value of the ith  bin of the his-

togram shows the frequency of the visual word .vi  Therefore, 
in case of combinatorial triangulation, the cardinality of TIWi  is 

,Cb
3i  which is the number of all possible pairs of three distinct ele-

ments among the elements of .Di  The positions of the elements 
of each pair make a triangle. Calculating angles for such a huge 
number of triangles is time-consuming. For instance, if the cardi-
nality bi  of the set Di  is 80 then the number of unique three com-
binations is 82,160. Consequently, for the computation of the 
angles among TIWs of a given visual word, we propose to use the 
Delaunay triangulation where the number of triangles is much 

smaller. In Delaunay triangulation, the three points should not be 
collinear and the circumscribed circle defined by the three points 
should not contain any other point. The principles of the Delaunay 
triangulation significantly reduce the number of triangles for 
angle computation among TIWs. Figure 6 shows both the Delau-
nay and the combinatorial triangulations. It can be observed that 
for eight descriptors belonging to a visual word, combinatorial tri-
angulation results in 56 triangles while the Delaunay triangula-
tion results in nine triangles. The angles of all the triangles are 
calculated using the law of cosines. The angles histogram is built 
from these angles for which the bins are empirically chosen 
between 0 and 180˚. The angles histogram for a specific word vi  is 
named as .TIWAHi  The ith  bin of the histogram of visual words 
associated with visual word vi  is replaced with TIWAHi  in such a 
way that the spatial information is added without altering the fre-
quency information of .vi  Finally TIWAHi  of all the visual words 
are combined to represent a given image 

, , ,

,b
TIWAH TIWAH TIWAH TIWAH

where
TIWAH

M M

i
i

i

1 1 2 2 f} } }

}

=

=

^ h

(5)

where i}  is the normalization coefficient. For a visual vocabulary 
of size ,M  if the number of bins in angles histogram is ,i  then the 
size of the TIWAH is .Mi

In each partition or tiling of the circular tiling scheme, the 
geometric relationships of identical visual words are modeled 
using TIWAH as shown in Figure 7. The TIWs are now limited to 
the circular tilings only. Doing so not only extracts more informa-
tion from the circular tilings but also reduces the number of 
unique combinations of TIWs. Finally, the histogram of visual 
words and TIWAH of all the circular tilings are concatenated as 
described in (6). We call the final histogram TIWAHCR, which 
contains the information of TIWs and visual words other than 
TIWs for a given circular tiling. 

, , , ,

, , , ],

TIWAHCR TIWAH TIWAH TIWAH

CR CR CR

r

r

1 2

1 2

f

f

= 6
(6)

Circular Tiling

+

TIWAHCRTIWAH

(a) (b) (c)

[FIG7] (a) Simple circular tiling, (b) TIWAH, and (c) TIWAHCR.
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where for r  number of circular tilings, TIWAH j  represents the 
angles histogram and CR j  represents the histogram of visual 
words for the jth  circular tiling. Therefore for a vocabulary size 
of ,M  number of circular tilings ,r  and number of bins in angles 
histogram ,i  the length of TIWAHCR is · · · .r M r Mi +^ ^h h

DATA SET
Our data set belongs to the largest and the most diverse 
among the works that deal with image-based analysis of 

ancient coins [3], [4], [6]–[8], [12], [22]–[24]. Our data set 
consists of 2,224 images that belong to 29 different reverse 
motifs. Only the recent work by Kim and Pavlovic [5] uses 
more images but with only 15 various obverse motifs. Our 
images have been collected from the following three sources: 

1) The Vienna Museum of Fine Arts (Kunsthistorishes 
Museum Wien): The museum has 6,000 Roman Republican 
coins from which the images of 4,200 coins were collected for 
the Image-Based Classification of Ancient Coins (ILAC) project 

Vienna Museum of Fine Arts British Museum of London acsearch

(a) (b) (c)

[FIG8] The variations in reverse motifs of coins obtained from different sources: (a) the Vienna Museum of Fine Arts; (b) the British 
Museum of London; and (c) acsearch, an online auction Web site for ancient coins. 
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[28]. In our data set, 1,014 coin images are from this museum. 
2) The British Museum London: The Department of Coins 
and Medals at the British Museum is home to one of the 
largest collections of ancient coins in the world. 857 of the 
images in our data set are from the British Museum. 
3) acsearch: acsearch (http://www.acsearch.info) is an 
online auction Web site for ancient coins. It is also one of 
the largest online sources for images of the ancient coins. 
Our data set contains 353 coin images from this Web site.
Sample coin images from all three sources are shown in 

Figure 8 where the differences among the images can be observed. 
The coin images acquired from the Vienna Museum of Fine Arts 
differ from those of the British Museum and acsearch due to the 
background and illumination conditions. The images from the 
British museum vary from one another due to strong illumination 
changes. Similarly, the dirt on the coins in the images obtained 
from acsearch also cause variations among coin images of the same 
class. Finally, a significant variation can be observed among the 
coin images from the Vienna Museum due to rotations. 

EXPERIMENTS AND RESULTS
The data set is divided into two disjoint training and test sets. 
The size of the training set is 1,426 while the test set consists 
of the remaining 798 images. The histogram representations 
(TIWAHCR) of these images are obtained using the method 
mentioned in the section “Rotation-Invariant Spatial Extensions 
to the BoW Image Representation for Ancient Coin Classifica-
tion.” These histograms are then used as feature vectors for 
classification with a support vector machine. Experiments are 
performed for the following parameters. 

COMPUTATIONAL COMPLEXITY 
OF THE TRIANGULATION METHODS
Since our proposed method relies upon the triangulation of identi-
cal visual words, in this section we compare the efficiency of both 
the combinatorial and Delaunay triangulations in terms of compu-
tation time. We collect 29 images from the whole data set by ran-
domly selecting one image from each class. Images are of standard 
size, which is .480 480#  The TIWAH representation of these 
images is constructed using both the triangulation methods 
implemented in MATLAB. We also use a faster “C” implemen-
tation of the combinatorial triangulation and denote it by 
combinatorialF triangulation. The experiments are repeated ten 
times on a single core and the mean calculation time taken by 
each method is reported in Table 1. It can be concluded from these 
results that the Delaunay triangulation is even faster than the 
combinatorialF triangulation. 

SIZE OF VOCABULARY
The size of vocabulary is an important parameter in the BoW 
model [29]. We optimize for the size of vocabulary on our cur-
rent data set by empirically selecting the values from the set 
{10, 50, 100, 150, 200, 400, 800}. For each value of the vocabu-
lary size, classification runs are performed ten times and the 

[TABLE 1] AVERAGE TIME IN SECONDS TAKEN BY EACH 
TRIANGULATION SCHEME FOR 29 IMAGES.

COMBINATORIAL TRIANGULATION 2,860
COMBINATORIALF TRIANGULATION 41.6
DELAUNAY TRIANGULATION 6.4

The bold number signifies the least time taken by the Delaunay triangulation.
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[FIG9] (a) The performances of various triangulation methods 
with respect to the size of vocabulary. (b) The performances of 
TIWAHCR and circular tiling with respect to the number of 
tilings. (c) The performances of various methods on rotated 
images.
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mean performances of the TIWAH constructed with both the 
types of triangulation methods are shown in Figure 9(a). 
TIWAH constructed with Delaunay triangulation is not only 
more efficient but also performs better than the one con-
structed with combinatorial triangulation. It can also observed 
that no significant performance improvement is gained from 
the vocabulary sizes larger than 150. 

NUMBER OF TILINGS
We also optimize for the number of tilings in both the simple 
circular tiling and TIWAHCR. The values for the number of til-
ings are empirically selected from {2, 3, 4, 5}. Experiments are 
performed ten times and the mean performances achieved by 
both the settings on all the empirically selected values are 
shown in Figure 9(b). The performance of TIWAHCR is supe-
rior to that of the simple circular tiling because it contains 
additional spatial information of the visual words in each til-
ing. On four tilings, TIWAHCR 
achieves the maximum perfor-
mance. However with the increase 
in the number of tilings, its perfor-
mance tends to converge towards 
that of the simple circular tiling. 
This is due to the fact that the 
width of the tilings decrease with 
the increase in their number thus 
decreasing the occurrences of 
identical words in any given tiling. 

EVALUATION OF ROTATION-INVARIANCE
We generate synthetically rotated coin images to evaluate the 
rotation-invariance of the proposed method. The rotated coin 
images are produced by making one of them as reference and 
then rotating this reference image in 90˚ steps. The syntheti-
cally rotated images allow us to test stronger rotation differ-
ences as those already present in our data set (generally lower 
than 90˚; see Figure 8). Experiments are repeated 20 times 
and the mean performances of the BoW, simple circular tiling 
and TIWAHCR are shown in Figure 9(c). The number of til-
ings in the circular tiling and TIWAHCR is three. The size of 
the vocabulary is 150 and at each iteration a new vocabulary 
is constructed. Local rotation-invariance is achieved by using 
rotation-invariant local features such as SIFT. The experi-
mental results reflect the theoretical foundations of our rota-
tion-invariant image representation and show that rotations 
have no significant influence on the classification perfor-
mance. Our proposed method clearly outperforms the BoW 
model on rotated images while marginally performs better 
than the circular tiling. 

THE ART EXPERT’S OPINION ON
THE ACHIEVED RESULTS
Given the fundamental task of the already closed project [28], 
a rate of 80% accurate results proves that it is possible to gain 
a real benefit from the developed algorithms. Of course, to 

push this rate to 98 or 99%, a multiple amount of reference 
images and probably more “fine-tuning” (e.g., their proper selec-
tion based on the degree of preservation) would be required. 

So ultimately, this approach is of the highest interest, both 
in respect of future automated coin classification and by con-
sidering all other uses of coin matching, be that monitoring of 
(illegal) trade, retrieving scientific data from otherwise 
unspecified archives of images, or counting known specimens 
per type. The same procedure can potentially be extended to 
count coin-dies, which would lead to answering the question 
of how many coins were produced, which is an often-discussed 
issue of historic economies. 

CONCLUSIONS
We presented a system for image-based classification of ancient 
coins using their reverse motifs. Due to the lack of spatial infor-
mation in the BoW model and the requirements of the image-

based classification of ancient coins, 
we proposed a method for adding 
spatial information to the BoW 
model, which is invariant to scale 
changes, image rotations, and trans-
lation. This information is added 
using a three-step strategy that 
involves the automatic coin segmen-
tation, application of a circular tiling 
scheme over the segmented image, 
and modeling the triangular geomet-
ric relationship of identical visual 

words in each tiling. It is shown that such a representation not 
only outperforms the BoW model but also was invariant to image 
rotations, scale changes, and translations. However, it was 
observed that the proposed method was more discriminating on 
smaller vocabulary sizes, e.g., by modeling spatial relationships of 
nonidentical words. In the future, we plan to address this issue so 
that it can also work with larger vocabularies. Furthermore, we 
also plan to apply our proposed method on other art-related prob-
lems such as sculpture recognition [30].

ACKNOWLEDGMENTS
This research has been supported by the Austrian Science Fund 
(FWF) under grant TRP140-N23-2010 (ILAC) and the Vienna 
P.hD. School of Informatics, Vienna University of Technology, Aus-
tria (http://www.informatik.tuwien.ac.at/teaching/phdschool). 

AUTHORS
Hafeez Anwar (hafeez@caa.tuwien.ac.at) received his B.S. degree 
in computer systems engineering from the University of Engineer-
ing and Technology Peshawar, Pakistan, and his M.S. degree in 
computer engineering from Myongji University, South Korea, 
where he also acted as a research assistant on a funded project 
related to the design and development of an intra-oral three-
dimensional scanner. He is currently pursuing his Ph.D. degree at 
the Computer Vision Lab of the Vienna University of Technology, 
Austria, where he is funded by the scholarship program of the 

THE SAME PROCEDURE CAN 
POTENTIALLY BE EXTENDED TO 

COUNT COIN-DIES, WHICH WOULD 
LEAD TO ANSWERING THE QUESTION 

OF HOW MANY COINS WERE 
PRODUCED, WHICH IS AN 

OFTEN-DISCUSSED ISSUE OF
HISTORIC ECONOMIES. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

______________

http://www.informatik.tuwien.ac.at/teaching/phdschool
mailto:hafeez@caa.tuwien.ac.at
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [74] JULY 2015

Vienna Ph.D. School of Informatics. His research interest is in 
object category recognition-based image classification with appli-
cation to cultural heritage.

Sebastian Zambanini (zamba@caa.tuwien.ac.at) received his 
M.S. degree in computer graphics and digital image processing in 
2007 and his Ph.D. degree in 2014 from the Vienna University of 
Technology, Austria. Currently, he is employed as a university 
assistant at the Computer Vision Lab of the Vienna University of 
Technology. He has collaborated in various computer vision 
research projects addressing the areas of medical image process-
ing, surveillance, ambient assisted living, and cultural heritage. 
His research interests comprise object recognition, visual feature 
extraction, video analysis, and gesture recognition, and he has 
coauthored more than 40 publications on these topics.

Martin Kampel (martin.kampel@tuwien.ac.at) received the 
Ph.D. degree in computer science (computer graphics, pattern 
recognition, and image processing) in 2003 and the “venia docen-
di” (habilitation) in applied computer science in 2009, both from 
the Vienna University of Technology, Austria. He is an associate 
professor (Privatdozent) of computer vision at the Institute for 
Computer Aided Automation, Vienna University of Technology, 
Austria, engaged in research, project leading, industry consulting, 
and teaching. His research interests are three-dimensional vision 
and cultural heritage applications, visual surveillance, and ambi-
ent assisted living. He has been working for more than ten years 
on the acquisition and reconstruction of small archaeological arte-
facts like pottery fragments or coins.

Klaus Vondrovec (klaus.vondrovec@khm.at) is the curator of 
ancient coins in the Coin Cabinet in the Museum of Fine Arts, 
Vienna, Austria. He has been working extensively in the field of 
classification, interpretation, and statistic analysis of Roman coin-
finds in Austria. This has involved creating a scientific database-
scheme that is currently being used by the Coin-Cabinet and the 
Numismatic Commission of the Austrian Academy of Sciences. 
Another result of his work is the online database dFMRÖ (since 
2005) of the Numismatic Commission. Another field of activity 
was the digital photography of coins and their postprocessing up 
to publication that also involved the development of an automated 
plate-generating tool.

REFERENCES
[1] P. Grierson, Numismatics. Oxford, U.K.: Oxford Univ. Press, 1975.

[2] M. H. Crawford, Roman Republican Coinage, 2 vols. Cambridge, U.K.: Cam-
bridge Univ. Press, 1974.

[3] M. Zaharieva, M. Kampel, and S. Zambanini, “Image-based recognition of 
ancient coins,” in Proc. Int. Conf. Computer Analysis of Images and Patterns 
(CAIP), 2007, pp. 547–554.
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T
his article presents an integrated framework for multi-
media access and analysis of ancient Maya epigraphic 
resources, which is developed as an interdisciplinary 
effort involving epigraphers (someone who deciphers 
ancient inscriptions) and computer scientists. Our 

work includes several contributions: a definition of consistent con-
ventions to generate high-quality representations of Maya 

hieroglyphs from the three most valuable ancient codices, which 
currently reside in European museums and institutions; a digital 
repository system for glyph annotation and management; as well 
as automatic glyph retrieval and classification methods. We study 
the combination of statistical Maya language models and shape 
representation within a hieroglyph retrieval system, the impact of 
applying language models extracted from different hieroglyphic 
resources on various data types, and the effect of shape representa-
tion choices for glyph classification. A novel Maya hieroglyph data 
set is given, which can be used for shape analysis benchmarks, and 
also to study the ancient Maya writing system. 

[Rui Hu, Gulcan Can, Carlos Pallán Gayol, Guido Krempel, Jakub Spotak, 

Gabrielle Vail, Stephane Marchand-Maillet, Jean-Marc Odobez, and Daniel Gatica-Perez]

[Tools to support scholars on Maya hieroglyphics]

Multimedia 
Analysis and Access of 

Ancient Maya Epigraphy
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INTRODUCTION
The Maya culture is one of the major pre-Columbian civilizations 
that developed in ancient Mesoamerica. It began to flourish during 
the Preclassic period (2000 B.C. to A.D. 250), reached its peak dur-
ing the Classic period (A.D. 250–900), and continued throughout 
the Post-Classic (A.D. 1000–1519) period. Ancient Mayan lan-
guages were recorded by means of a highly sophisticated system of 
hieroglyphic writing, comprising several thousand hieroglyphic 
signs, which has left us with an exceptionally rich artistic legacy. 

The vast majority of ancient Maya texts were produced during 
the Classic Period, throughout which hieroglyphic texts were 
carved or painted on various media types, including stone monu-
ments, architectural elements such as columns, lintels, capstones, 
and mural paintings, as well as personal items such as precious 
stones, ceramic vessels, bones, etc., to record diverse dedicatory, 
historical, astronomical, and mythological events. A rare type of 
Maya textual source is the so-called codex, which are screenfold 
books made of bark paper, coated with a film of lime plaster upon 
which textual and icon information was painted using a brush. 
Only three of these books are known to have survived the Spanish 
Conquest. Although their exact provenience and dating is not 
entirely known, they were, in all likelihood, produced within the 
greater Peninsula of Yucatan at some point during the Post-Clas-
sic period; see Figure 1 for an example. 

Maya texts are typically composed of glyph blocks arranged in 
double columns. The most common reading order of glyph blocks 
is from left to right and from top to bottom within these double 
columns (see green arrows in Figure 1). One glyph block (also 
referred to as block in the rest of the article) could contain single 
or multiple glyphs. Due to the large variety of resources at their 
disposal, Maya scribes could choose among several writing con-
ventions to render a particular Maya term. As a result, graphic 
conventions within a single block can vary greatly, it 

could correlate with a phoneme (syllabic sign), an individual word 
(logograph), or even an entire sentence. Individual glyph recogni-
tion is a key and challenging step of Maya script decipherment. 

Maya decipherment has undergone nearly 200 years of schol-
arly research [20]. While Maya archaeologists have discovered and 
documented a vast number of hieroglyphic monuments and their 
related context, epigraphers have achieved significant progress in 
deciphering the hieroglyphic script, and historical linguists have 
determined the languages recorded. Over 1,000 signs have been 
classified thus far by scholars in several catalogs. It has been esti-
mated that approximately 80% of signs occurring in the known 
hieroglyphic corpus can be read phonetically [18]. 

Maya hieroglyphic analysis requires epigraphers to spend a sig-
nificant amount of time browsing existing catalogs to identify 
individual glyphs from each block, as a necessary step for generat-
ing transcriptions, transliterations, and translations of Maya texts. 
Technological advances in automatic analysis of digital images and 
information management are allowing the possibility of analyzing, 
organizing, and visualizing hieroglyphic data in ways that could 
facilitate research aimed at advancing hieroglyphic analysis. How-
ever, there are several challenges for automatic Maya hieroglyphic 
data analysis. First, the available digitized Maya glyph data is lim-
ited. Second, the surviving Maya scripts have often lost their visual 
quality over time. Third, glyphs segmented from blocks are often 
partially missing due to occlusion. Finally, due to the artistic flexi-
bility, glyphs of a same sign category may vary with time, location 
and styles; at the same time, glyphs of different categories may 
share similar visual features. In this article, we address automatic 
glyph recognition as image retrieval and classification problems. 

Our work is a multidisciplinary effort, where computer sci-
entists work closely with Maya epigraphers to design, develop, 
and evaluate computational tools that can robustly and effec-
tively support the work of Maya hieroglyphic researchers. Our 
contributions include: 

■ novel Maya glyph data sets with unique historical and 
artistic value, which could potentially be used as shape 
benchmarks
■ shape-based glyph retrieval and classification methods
■ an in-depth study of the statistical Maya language model 
for automatic glyph retrieval
■ a multimedia repository for data parsing and annotation. 

RELATED WORK
Computer vision algorithms have shown potential to provide new 
insights into the realm of digital humanities. Various systems have 
been proposed to aid the analysis of cultural, historical, and artis-
tic materials, which can significantly facilitate the daily work of 
scholars in the field. 

The automatic analysis of historical manuscripts is the domain 
most related to our work. A large body of literature in this field 
examines the digitization and automatic analysis of cultural heri-
tage data, produced from medieval times to the early 20th cen-
tury [6], [13]. The methodologies include applying machine 
vision algorithms for page layout analysis, text line extraction, 
character recognition, and information retrieval. However, the 

[FIG1] A detailed template (page 6b) of the Dresden codex, 
showing individual constituting elements (glyph blocks, captions, 
calendric signs, and icons) framed by blue rectangles. Green 
arrows indicate the reading order of the blocks. (Image mapping 
by Carlos Pallán based on E. Förstemann 1880 and 1892 
facsimiles.) High-resolution images of the whole codex are 
available in [4].
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application of computer vision technologies for ancient manu-
script analysis, such as Maya writing, is still a novel field. Previ-
ous work by our team contributed one of the first studies of 
visual Maya hieroglyph analysis and addressed glyph retrieval as 
a shape-matching problem [22], [23]. 

Shape-based visual information retrieval has been used for 
searching natural image data sets [10], [16], trademark images 
[19], technique drawings [14], three-dimensional objects [11], 
hand drawn images, or clip art [26]. Traditional shape-based 
retrieval systems include curve fitting [9], point-to-point matching 
[7], and grid-based matching [10]. These methods either do not 
scale well over large data sets, or only offer limited flexibility over 
shape variations. Recently, local shape descriptors [5], [16], [22] 
have been proposed and used in a bag-of-visual-words (BoW) 
framework for shape-based retrieval. Such methods can scale sub-
linearly with appropriate search structures. 

Automatic Maya glyph retrieval has been addressed in [22], 
where the histogram-of-orientation shape context (HOOSC) 
descriptor was developed. HOOSC combines the underlying for-
mulation of the shape context (SC) [7] with the benefits that the 
histogram of oriented gradients (HOG) [8] provides. It was also 
applied in [5] for Egyptian hieroglyph analysis. 

Previous studies have framed the Maya hieroglyph retrieval 
problem without considering any specific structure of Maya writing 
as a language. In contrast, language modeling has been widely used 
in machine translation and speech recognition. Glyph context 
information has recently been applied in [5] for Egyptian hiero-
glyph analysis with limited performance improvement. To the best 
of our knowledge, our previous work [17] was the first to incorpo-
rate glyph context information in Maya hieroglyph retrieval with 
significant accuracy improvement. However, the language model 
applied in [17] was at an incipient stage. It contained incomplete 
binary co-occurrence information of glyph pairs, extracted from 
the classic Thompson Maya hieroglyph catalog [25] dating from the 
1960s. In this work, we extract a refined glyph co-occurrence 
model and test it on data sets of two different resources. 

DATA SOURCES AND DIGITAL REPOSITORY
Two main data sources are considered in our work: the ancient 
Maya hieroglyphic books (codices) and monumental inscriptions. 
In this section, we first introduce the two data sources and then 
explain the novel data processing approach that we proposed to 
produce high-quality representation and annotation of ancient 
codical data. 

DATA SOURCES
Given the inherent difficulties in the direct study and examination 
of the original hieroglyphic codex materials, the codical data 
sources comprise the existing primary documentation of the three 
extant ancient codices known as the Dresden, Madrid, and Paris 
codex, respectively. This documentation consists of reproductions, 
facsimiles, photographs, digital scans, and online resources as 
described in [2] and [15]. The Dresden codex is held in the state 
library in Dresden, Germany [4]; the Madrid codex is stored at the 
Museo de América in Madrid, Spain; and the Paris codex resides at 

the Biblioteque Nationale de France [3]. While the exact prove-
nience and dating of the Maya codices remains uncertain, most 
contemporary scholars consider that they were made within the 
northern Yucatan Peninsula during the late Post-Classic period. 

The monumental inscription data sources comprise a variety of 
carved stone monuments and architectural elements. Besides dif-
ferences in media and format, it has distinctive historical charac-
teristics as compared to the codical sources. Their dating falls 
several centuries earlier than the codices, and they stem from sev-
eral parts of the Maya region, whereas the codices are restricted to 
the northern Yucatan Peninsula. Furthermore, monumental 
inscriptions number in the thousands as opposed to only three 
extant codices. Thus, the monumental sign repertoire is far better 
represented than the codical one. 

DIGITAL MULTIMEDIA REPOSITORY 
In this section, we introduce our data processing approach to 
generate high-quality digitization and annotation of the three 
Maya codices, which we refer to as the digital multimedia reposi-
tory (DMR) of Maya hieroglyphic texts and icons. Ancient Maya 
scribes usually divided codex pages into smaller sections by red 
bands/lines; these sections are referred to by modern scholars as 
t’ols; each t’ol being further divided into frames relevant to the 
specific dates, texts, and imagery depicted. Frames contain glyph 
blocks (organized in a grid-like pattern), calendric glyphs, cap-
tions, and icons. Figure 1 shows an example t’ol (register) from 
the Dresden codex “segmented” into main elements. The DMR 
approaches the codices at different levels of detail: 

■ entire codex overview
■ thematic sections
■ almanacs
■ t’ols
■ frames
■ individual elements (main text glyph blocks, calendric 
glyph blocks, captions, icons)
■ individual signs or individual iconic elements. 
With several software applications, we generate high-quality 

digitization from the raw image data. Specifically, we first con-
duct image enhancement, noise-reduction, and up-sizing of 
images to 400% of their original size; the enhanced text area is 
then cropped into glyph blocks [Figure 2(a)]; we generate clean-
raster images from the cropped blocks by separating the cultural 
information (brushstrokes) from background noise and preserva-
tion accidents [Figure 2(b)]; we then generate high-quality 

(a) (b) (c)

[FIG2] (a) A cropped glyph block. (b) A clean raster image. 
(c) A reconstructed vectorial representation. (Vectorization by 
Carlos Pallán.)
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vectorial images in various formats, and by reconstructing the 
broken lines and missing strokes through thorough comparative 
analysis, we also generate reconstructed forms [Figure 2(c)]. 
Epigraphers require 15–30 minutes to generate a clean raster for 
a block, depending on complexity and preservation factors of the 
original data, and one to two hours more to further produce the 
high-quality reconstructed vectorial glyphs. 

For the annotation of these visualizations, we developed an 
online server-like capture tool (relying on FileMaker Pro), allow-
ing all partners real-time annotation and feedback capabilities. 
Among the several interconnected tables and templates of this 
tool, it is worth mentioning the glyph-concordance tool that we 
developed and that radically reduces the amount of time required 
to annotate glyph-strings within the codices under several differ-
ent taxonomical systems. It provides automatic field translation 
and autocompletion functionalities for any individual sign (graph-
eme) or sign-string, maintaining maximum consistency between 
the annotations in four scholarly glyph catalogs [12], [20], [25], 
[27] that we have incorporated and cross-correlated. By enabling 
advanced multiple queries involving cross-referencing among 
the aforementioned catalogs, the system allows us to overcome 
the inherent limitations of having a language model based 
solely on the Thompson catalog. It also increases compatibility 
with one of our partner’s Web site [2], which contains annota-
tions for a glyph-string of up to four symbols occurring within 
the codices and that was used to build a co-occurrence model 
(see the section “Glyph Co-Occurrence Model”). Finally, several 
tables and layouts of the DMR are currently being translated 
into computer science specifications to develop an advanced 
interface for data parsing and visualization. 

GLYPH REPRESENTATION
Traditional shape descriptors [7], [21] may not be sufficient to 
capture the visual richness of Maya glyphs. We rely on the 

HOOSC descriptor, which performed well for Maya hieroglyph 
analysis [17], [22]. We now describe the preprocessing and fea-
ture extraction steps that we follow. 

Maya glyphs are often composed of strokes with different 
degrees of thickness. Thus, contour extractors sometimes gen-
erate “double” contours from the internal and external stroke 
lines, which can result in noisy descriptors. Therefore, we apply 
a thinning algorithm [23] to preprocess the binary shape 
[Figure 3(b)]. To reduce computation cost, we compute the 
local descriptor only at a set of points (called pivots) obtained 
through uniform sampling of the points along the thinned con-
tour [see Figure 3(c)]. 

HOOSC was proposed in [22] as a robust shape representa-
tion for Maya hieroglyphs. It combines the strength of HOG [8] 
with circular split binning from the SC descriptor [7]. 

For each pivot point, the HOOSC is computed on a local cir-
cular space centered at the pivot’s location, partitioned into 
eight orientations and two rings as illustrated in Figure 3(d). 
The radius of the outer ring is the average pairwise distance 
between each pair of points along the contour; the inner ring 
covers half of this distance. An eight-bin HOG is calculated 
within each spatial region. This results in a richer representa-
tion than [7] and [21], where a simple counting of points or a 
sum of the unit gradient vectors of all points falling within a 
region is computed. The HOOSC descriptor for a given pivot 
point is then the concatenation of histograms of the 16 regions, 
which forms a 128-dimensional feature vector. As suggested in 
[22], we apply a per-ring normalization. 

AUTOMATIC MAYA HIEROGLYPH RETRIEVAL
In this section, we present an automatic Maya glyph retrieval 
system, combining shape and glyph context information. Exper-
imental results show the performance of our method. 

SHAPE-BASED GLYPH RETRIEVAL
We adapt the BoW model for glyph retrieval, which has been 
established as a framework for scalable image retrieval [24]. 
Specifically, we apply k -means clustering on the set of HOOSC 
descriptors extracted from all glyphs in the database. The result-
ing k  clusters are referred to as visual words and define the 
vocabulary of the system. A histogram representing the count of 
each visual word is then computed as a global descriptor for 
each glyph. 

Given a query G  and a database glyph ,D  represented by 
histograms HG  and HD  generated from the BoW system, we 
compute the city-block distance to measure the dissimilarity 
between G and :D

( , ) | ( ) ( ) | ,d G D H i H i
i k

G D

1
= -

# #

/ (1)

where each histogram is normalized so that ( ) .H i 1
i k1

=
# #

/

GLYPH CO-OCCURRENCE MODEL
Using shape alone to distinguish different glyphs is often prob-
lematic for many reasons. First, different signs often share 

225

180

135
90

45

0

315
270

(a) (b) (c) (d)

[FIG3] (a) An original glyph; (b) thinning; (c) the pivot points (in 
red); and (d) HOOSC spatial quantization of a given pivot. (a) is 
used with permission from [25]. 

T0501 T0502 T0668 T0757 T0102 T0103

/b’a/ /ma/ /cha/ /b’a/ /ki/ /ta/

[FIG4] Thompson numbers, visual examples, and syllabic values 
of glyph pairs. Each pair contains two different signs of similar 
visual features. All images used with permission from [25]. 
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similar visual features; see Figure 4. Furthermore, glyphs of the 
same sign category vary with time, location, and individual 
styles. For example, observe the last two blocks in Figure 5(a). 
Although visually different, the two blocks are actually com-
posed of two same glyphs (T0668 and T0102; see Figure 4 for 
images of the two glyphs separately), pronounced “cha-ki” and 
representing the name of the rain god. Figure 6 shows six glyph 
pairs; each pair represents two glyphs of a same category but 
with different visual features. Finally, the surviving Maya scripts 
often lose their visual quality over time. We propose using glyph 
co-occurrence to complement visual information and help 
improve retrieval accuracy. 

Maya glyph blocks were frequently composed of combina-
tions of individual signs. Glyph co-occurrence within single 
blocks could therefore encode valuable information. While the 
reading order within a block usually follows the basic rule of 
left-to-right and top-to-bottom, several exceptions occur, partic-
ularly in the Madrid and Paris codices. Our methodology con-
verts each glyph block into a linear string of individual signs, 
according to the reading order determined by our team’s epigra-
phers, as shown in Figure 5. We consider the first-order co-
occurrence of neighboring glyphs as the glyph context 
information to build a statistical Maya language model. 

Two glyph co-occurrence models (i.e., the Thompson co-
occurrence model and the Vail co-occurrence model) are 
extracted from different sources. Their general form is 

j( , )
,

C S S
f S Sif sign appears before sign

otherwise,i
n i j

a
= ' (2)

where fn  represents the normalized frequency that sign Si

appears before sign j,S  and [ , ]0 1!a  is a smoothing factor 
that accounts for missing co-occurring glyph pairs in the two 
models, which we explore in the experiments. Note that 

j( , )C S Si ! ( , ) .C S Sj i

From a computational point of view, the difference between 
the Thompson and the Vail models are just variations of the 

(a)

(b)

(c)

(d)

( )

(b)

(c)

[FIG5] (a) Six glyph block examples from the codex data set; (b) four glyph strings segmented from the raster (black) and vectorial 
(blue) representation of the first two blocks shown individually in (a); (c) six glyph blocks from the monument data set; and (d) three 
glyph strings cropped from the first three blocks shown separately in (c).

(a) (b)

(c) (d)

(e) (f)

[FIG6] Six pairs of glyph signs: (a) T0001, (b) T0158, (c) T0544, 
(d) T0668, (e) T0671, and (f) T0145. The left one of each pair is 
from the Thompson catalog, the right one is an example from 
the codex data set. 
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co-occurrence table. However, they are really different from an 
archeological point of view, as one features the Classic period 
monumental glyphs while the other features the Post-Classic 
codices. In the section “Experimental Results,” we test both of 
them on two different query sets to investigate the impact that 
this difference of writing conventions between the codex and the 
monument data has on the retrieval results. 

THOMPSON CO-OCCURRENCE MODEL
The Thompson co-occurence model is extracted from the clas-
sic Thompson hieroglyphic catalog [25], which covers 892 signs 
extracted from codices and monuments. Despite its outmoded 
taxonomy, it remains one of the most comprehensive and 
widely used lists of Maya glyphs. Thompson categorizes signs 
into affixes, main signs, and portraits (this categorization is no 
longer used in recent research on Maya writing). Affixes often 
co-occur with main signs, portraits, or affixes to form blocks. In 
his book, Thompson provides two glyph co-occurrence tables 
for affix signs, distinguishing whether they are used as prefix or 
postfix. However, no frequency information is given in these 
tables (we set f 1n =  for valid co-occurrence), and co-occur-
rence between main signs and portraits is not listed. There are 
4,574 glyph pairs included in this model, which correspond to a 
sparsity of 99.4%. 

VAIL CO-OCCURRENCE MODEL
This co-occurrence model is extracted from the online Maya 
hieroglyphic database [2] containing a state-of-the art description 
and interpretation of the three surviving Maya codices. Using the 
database, we extract the co-occurrence information of neighbor-
ing glyphs within single blocks. The resulting model contains a 
complete set of co-occurring pairs that are known today from 
the three surviving codices, as well as their occurrence fre-
quency. In total, the database contains 336 different glyph signs. 
There are 1,818 glyph pairs, which co-occur with frequencies f
from one to 188, corresponding to a sparsity of 99.8% (since we 
consider 892 signs from the Thompson catalog). More than half 
of these pairs only co-occur once. Approximately 93% of the 
pairs appear fewer than ten times. We normalize f  with the fol-
lowing function: 

( ) .logf f1 10n = + (3)

THOMPSON AND VAIL CO-OCCURRENCE MODEL
Additionally, we build a third model by considering all co-occur-
rence pairs from the two former models. We disregard the fre-
quency information of the Vail model and generate a binary model, 
which we refer to as the Thompson and Vail co-occurrence. It con-
tains 5,600 co-occurred glyph pairs, which correspond to a sparsity 
of 99.3%. We expect this model to perform better across different 
Maya data sets (e.g., codices and monument). 

INCORPORATING CONTEXT INFORMATION
We now explain how to incorporate this information in the shape-
based retrieval system. 

SEQUENCE MODEL
Denote by [ , , , , ]G G G G:n i n1 1 f f=  the observed glyph string, 
and by S :n1  the sequence of recognized states, where Si  indicates 
the sign category annotated for glyph .Gi  Considering the glyph 
string G :n1  as a first-order Markov chain, the probability of label-
ing it to a sequence of states S :n1  is  

( | ) ( | ) ( ( | ) ( | )),P S G P G S P G S P S S: :n n
i n

i i i i1 1 1 1
2

1?
# #

-% (4)

where ( | )P S Si i 1-  denotes the transition probability. Here we directly 
use ( , )C S Si i1-  to approximate this probability. ( | )P G Si i  refers to 
the likelihood of glyph Gi  being labeled as sign .Si  To encode this 
term we use the visual similarity between Gi  and the glyph example 
of Si  in the database, and define ( | ) ,P G S e ( , )/

i i
d G Si i? m-  where 

( , )d G Si i  is computed using (1), and m  is a scale factor empiri-
cally set to the average distance of the top 50 ranked results for 
all queries. 

RETRIEVAL SYSTEM
When only shape information is considered, the score of a query 
glyph Gi  being labeled by sign ,D  is computed by their shape 
likelihood 

( ) ( | ) .S D P G S DScore i i i
sh ?= = (5)

In our model, we propose ranking the glyphs according to 

( ) ( | ),maxS D P S GScore : :i
S

n n1 1
sh context

: ; :i i n1 1 1
= =+

- +

(6)

which means the following: given ,S Di =  find the sequence of 
labels S :n1  that provides the maximum probability to label ,G :n1

under the model in (4) and use this probability as score to rank 
the database glyphs. This can be efficiently computed using the 
Viterbi algorithm. Thus, the score of the glyph Gi  being recog-
nized as S Di =  now takes into account all observed glyphs in the 
string, with the effect that a glyph D  that normally co-occurs with 
glyphs that are visually likely at neighboring positions will receive 
a higher weight. 

EXPERIMENTAL RESULTS
We present the data sets, experimental setting, and retrieval 
results. 

GLYPH DATA SETS
Two data sets, the codex and monument data sets, were used as 
query sets to retrieve from a common database.

Codex Data Set
This data set was produced by epigraphers in our team (see the 
section “Data Sources and Digital Repository”) and is available for 
download from [1]. It contains glyph blocks from the three surviv-
ing Maya codices, along with their segmented individual glyphs 
and corresponding annotations; see Figure 5(a) and (b), for exam-
ple. To study the impact of visual data quality on the retrieval 
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performance, we considered two subdata sets. The first one is 
called a codex small data set, composed of 151 glyphs segmented 
from 60 blocks, for which we have both the vectorial and raster 
representations. Remember that producing high-quality vectorial 
representations (including reconstruction of missing parts) is 
time-consuming compared to raster images, which reflect the 
actual visual content but are affected by degradations. The second 
subset is intended to assess the validity of the reported perfor-
mance by using a larger corpus (termed codex large) comprising 
only the raster representation of 587 glyphs from 224 blocks. 

Monument Data Set
The monument data set contains 127 glyphs of 40 blocks extracted 
from stone monument data and is derived from a quite different 
data source than the codex data in terms of Maya historical period, 
media type, and glyph generation process. Samples are shown in 
Figure 5(c) and (d). The data consisted of line drawings of glyphs 
manually traced on top of multiple layers of enhanced photographs 
taken at sites at night under raking-light illumination to bring out 
different levels of detail. Given each block, we manually drew a 
tight bounding box around individual glyphs to extract query 
glyphs. The queries may be affected by adverse effects, like back-
ground noise, additional strokes from neighboring glyphs, or par-
tially missing strokes due to glyphs overlapping within blocks.

Retrieval Database
We scanned and segmented all the glyphs from the Thompson 
catalog [25] to form the retrieval database. In total, it contains 
1,487 glyph images belonging to 892 different categories. Thus, 
a category is usually represented by a single glyph image, and 
sometimes by multiple ones, each representing a different 
visual instance of the glyph category. Figure 4 shows glyph 
images of six different categories. 

EXPERIMENTAL SETTING
For each glyph query, we extract the rank of the true glyph in 
the retrieval results and use the average of these ranks over all 
queries as performance measure (the lower the average ranking, 
the higher the accuracy). 

We studied the impact of several factors on the performance, 
including the vocabulary size of the BoW representation, the 
smoothing factor a  used to build the co-occurrence models 
[see (2)], and the co-occurrence models. 

RESULTS AND DISCUSSION
Results are presented in Figures 7 and 8, in which “T,” “V,” and 
“T&V” refer to the “Thompson,” “Vail,” and “Thompson and 
Vail” co-occurrence models, respectively.

Shape-Based Glyph Retrieval
Looking first at the impact of data origin and quality on glyph 
retrieval performance when only shape information is considered, 
the following observations can be made. First, as expected, higher 
quality vectorial representations result in higher retrieval accuracy 
[103 for vectorial versus 142 for raster images; see the plain and 

dotted horizontal lines in Figure 7(a)]. Second, by comparing the 
shape-based retrieval results of the monument data [see the hori-
zontal line in Figure 8(a)] and the codex data (see the plain and 
dotted horizontal lines in Figure 7), we can see that, despite the 
presence of distracting elements (background noise, line strokes 
from neighboring glyphs, etc.), the shape retrieval accuracy on the 
monument data (86) is higher than on the codex data. This reflects 
the higher visual similarity between the glyphs in the monument 
data set and those from the retrieval database. As glyphs in the 
retrieval database are extracted from the Thompson catalog, which 
largely relies on monument data, as compared to signs from the 
codex data, which often exhibit more variability as illustrated in 
Figure 6. For the same reason, using finer HOOSC descriptor 
quantization (i.e., using a larger BoW vocabulary) consistently 
improved the results on the monument data [Figure 8(b)], whereas 
it had no impact on the codex data (curves not shown).

Incorporating Context Information
As can be seen from Figures 7 and 8, the average retrieval rankings 
obtained using different co-occurrence models and smoothing 
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[FIG7] The average ranking on the codex data sets with varying 
smoothing factor a  [see (2)] and fixed vocabulary size 5,000: 
(a) “codex small” and (b) “codex large” data sets.
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factors are usually significantly lower than when using only shape. 
For instance, on the small codex data set, the Vail model (with 

)0a =  can reduce by as much as 130 and 90 the average ranking 
for the raster and vectorial representation, respectively, whereas on 
the monument data [Figure 8(a)], the gain is smaller (around 20 
for the Thompson model with . ) .0 2a =

Differences across models as well as the optimal smoothing fac-
tors mainly reflect the agreement between the source of the block 
queries and the data used to build the co-occurrence models. Thus, 
on one hand, the Vail model achieves the best accuracy on codex 
data sets (Figure 7), but underperforms on the monument data 
(Figure 8), even degrading the shape-only results for low smoothing 
factors. Since this model is purely built from the codices, this may 
imply that the Maya writing on codices and monuments follows dif-
ferent glyph co-occurrence conventions. On the other hand, the 
Thompson model, built from a mixed source of monument and 
codex data, offers a much smaller gain when applied to the codex 
data, but still performs well on monument data. Altogether, these 
two models are advantageously combined in the more versatile 
“T&V” model. 

No smoothing factor ( )0a =  is needed when applying the 
Vail model on codex data, since it covers all known co-occurrence 

instances of the codices; whereas the Thompson model that relies 
only on incomplete data sources misses some co-occurrence pairs 
and thus requires a smoothing factor (typically . ) .0 2a =  In gen-
eral, all the aforementioned remarks remain valid when consider-
ing the large codex data [Figure 7(b)]. 

As a final remark, one can notice in Figure 7(a) that the retrieval 
performance differences between the vectorial and raster represen-
tation becomes less important when using a co-occurrence model. 
In this context, the raster representation can be used as an compro-
mise between data production efficiency and retrieval accuracy. 

SHAPE-BASED GLYPH CLASSIFICATION
There are use cases in which inferring the correct category of a 
glyph is important. In this section, we study the single-glyph 
classification task, first presenting the classification methods, 
and then discussing the obtained results. 

GLYPH CLASSIFICATION METHODS
The objective is to build a classifier that categorizes a test shape 
into one of the NG  categories. As a baseline, we use the method 
of [23], where glyphs are represented using the global BoW repre-
sentation. A test glyph gets the class label of its nearest neighbor 
[using the BoW city-block distance in (1)] in the training set. 

As an alternative, we propose a method that categorizes an 
unknown glyph by first identifying the category of its individual 
local pivot points. Specifically, for a given glyph, we first com-
pute the HOOSC descriptor at each pivot point and classify it 
using a K-nearest neighbor method. In a second step we classify 
the glyph as the category that receives the largest number of 
votes from the individual pivots. 

EXPERIMENTAL RESULTS

DATA SET
We used a subset of glyphs from the monumental inscriptions 
that were used in [23]. We only consider glyph categories that 
contain more than 30 glyphs. The resulting data set is 
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[FIG8] The average ranking on the monument data set (a) with 
varying smoothing factor a  [in (2)] and fixed vocabulary size 
5,000; (b) with varying vocabulary size and fixed .0 2a =  for the 
“T” and “T&V” models and 1a =  for the “V” model.
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[FIG9] Classified pivots using HOOSC one-ring with position 
and spatial context (a) 1/16, (b) 1/4, and (c) 1, respectively. 
Green (respectively, red) points indicate correctly (respectively, 
incorrectly) classified pivots.
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composed of ten glyph categories with 25 training images per 
class and 125 test images in total. The groundtruth of the 
glyph category is provided by our team scholars. 

EXPERIMENTAL SETTING
We used 300 equidistant pivots where we compute the HOOSC 
descriptor. Note that here, we extracted the orientation from 
the raw images preprocessed by a continuous Gaussian orienta-
tion filter, as this produced more stable results than applying 
the thinning preprocessing. We considered three settings to 
compute the HOOSC descriptor: 

■ two rings and eight radial bins; see Figure 3(d); 
■ one ring and eight radial bins; see Figure 9  
■ case (2) with added position information, i.e., the HOOSC 
descriptor is augmented with the relative position (defined 
within [ , ] [ , ])0 1 0 1#  of the pivot point within the glyph 
bounding box. 
Furthermore, for each of the three settings, we considered five 

spatial contexts (defined by the radius of the outer ring in 
HOOSC computation): 1/16, 1/8, 1/4, 1/2, and 1, all defined as a 
proportion to the mean of the pairwise distance between pivot 
points (see the gray circles in Figure 9), as we are interested in 
studying the impact of the spatial scope used to compute the 
HOOSC descriptor on the classification performance. Indeed, 
while large scopes used in previous works (and our retrieval 
experiments in the “Retrieval System” section) led to good results 
when dealing with clean glyph inputs, there are situations where 
smaller scopes would be useful, e.g., when dealing with damaged 
glyph shapes (the damage will affect most of the descriptors when 
using a large scope), or if we wanted to identify which local part 
of the glyph is a “diagnostic” feature, i.e., a discriminant visual 
element that scholars rely on to distinguish a glyph. 

RESULTS AND DISCUSSION
Figure 10 shows the classification results obtained using the BoW 
method and the proposed method (“glyph-based” results, denoted 
GB) for different spatial context sizes and partition settings. To 
better understand the proposed method, we also show the “pivot-
based” (denoted PB) classification accuracy, i.e., the percentage of 
pivot points whose descriptor is correctly classified as the category 
of its associated glyph. 

First, from the results of the “pivot-based” method (blue bars), 
we can notice that the performance degrades almost linearly as 
the spatial context decreases, but remains well above chance level 
(10%) even for a small spatial extent (1/16). Interestingly, as this 
context gets smaller, the incorporation of the spatial position (PB 
one-ring with position) allows to boost performance by 10% as 
compared to the case without position (PB one-ring). Further-
more, while two rings are useful as the spatial context is large, it is 
not superior than one ring in terms of PB performance and actu-
ally degrades the GB performance when smaller spatial context is 
considered (e.g., 1/4 to 1/16). 

Second, the performance with respect to spatial context at the 
glyph level (red bars) does not decrease as dramatically as at the 
pivot level, indicating that misclassified points, even if they 

dominate, usually get distributed over all other classes rather than a 
single one. Hence, the pivots predicted with true labels may win in 
the voting phase. For GB one-ring with position, the classification 
remains as high as 94% with a spatial context of 1/8. Note that this 
is not the case in the BoW approach (green bars), whose perfor-
mance degrades as the spatial context decreases, performing worse 
than the proposed approach with spatial radius larger than 1/4, and 
cannot keep up with the one-ring with position results at smaller 
spatial scopes. 

Figure 9 illustrates the pivot classification results for two 
glyphs over three spatial context levels. We can see that the num-
ber of pivots classified correctly increases with the spatial context. 
It also shows that while some local structures are recognized at 
most scales (diagonal lines for the top glyph, hatches for the bot-
tom one), there are structures that still remain confusing among 
glyph classes, even at the larger contexts (e.g., the pivots near the 
“ears” in the bottom glyph). 

We can conclude that a two-step approach where class-informa-
tion is used to categorize the descriptor (rather than simple quanti-
zation in BoW) brings more robustness as the spatial context 
decreases (and may bring even more robustness when dealing with 
partially damaged glyphs), and that incorporating the relative posi-
tion of pivots is important, as the same local shape structure might 
be observed at different positions for different glyph categories. 

CONCLUSIONS AND FUTURE WORK
This article presented an approach to capture and produce high-
quality multimedia data from valuable historical codex data 
sources, upon which we propose algorithms for automatic Maya 
hieroglyph analysis. 

We defined consistent conventions to generate high-quality rep-
resentations of the ancient Maya hieroglyphs, as well as a data 
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[FIG10] Classification accuracy of the BoW method (green bar), 
and the proposed method at the pivot level [pivot-based (PB) 
results (blue bars)] and the glyph level [glyph-based (GB) results 
(red bars)] with various settings to compute the HOOSC
descriptor.
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model that not only provides a convenient platform for epigraphers 
to annotate and analyze data, but also serves as a bridge between 
epigraphers and computer scientists for data parsing and analysis. 
A novel codex data set is contributed under the proposed system. 

We then addressed two automatic glyph analysis tasks with 
value to support epigraphers’ daily work, namely glyph retrieval 
and glyph classification. Regarding retrieval, two Maya language 
models were extracted from different data sources and incorpo-
rated into a shape-based automatic glyph retrieval framework. Our 
study showed that glyph co-occurrence encode valuable informa-
tion of the Maya writing system, which can be used to comple-
ment the visual automatic analysis. The retrieval results also 
showed that the Maya writing on codices and monuments follows 
different glyph co-occurrence conventions. Finally, we studied the 
effect of shape representation choices in the classification task. 

Our future work includes automatic Maya text area detection, 
as well as detection and segmentation of blocks and glyphs, which 
will facilitate the daily work of scholars when more data becomes 
available. In another direction, we are working on designing a 
visualization interface to allow manipulation of Maya data in a sys-
tematic and flexible way. Data will be displayed as clusters in vari-
ous feature spaces (from low-level visual features to high-level 
semantic spaces); analyzed with different levels of context infor-
mation (within block co-occurrence, surrounding text, icons); and 
visualized in various resolutions and positions by zooming and 
panning. We expect the traditional Maya hieroglyph decipherment 
to benefit from such functionalities. 
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T
  his article explores the feasibility of face-recognition 
technologies for analyzing works of portraiture and, 
in the process, provides a quantitative source of evi-
dence to art historians in answering many of their 
ambiguities concerning identity of the subject in 

some portraits and in understanding artists’ styles. Works of 
portrait art bear the mark of visual interpretation of the artist. 

Moreover, the number of samples available to model these effects 
is often limited. Based on an understanding of artistic conven-
tions, we show how to learn and validate features that are robust 
in distinguishing subjects in portraits (sitters) and that are also 
capable of characterizing an individual artist’s style. This can be 
used to learn a feature space called portrait feature space (PFS)
that is representative of quantitative measures of similarities 
between portrait pairs known to represent same/different sitters. 
Through statistical hypothesis tests, we analyze uncertain por-
traits against known identities and explain the significance of 
the results from an art historian’s perspective. Results are shown 
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on our data consisting of over 270 portraits belonging largely to 
the Renaissance era. 

INTRODUCTION
Renaissance portraits were depictions of various important people 
of those times. These encompass a wide range of art works such as 
sculptures, death masks, mosaics, etc. Apart from being used for a 
variety of dynastic and commemorative purposes, they were used 
to depict individuals often to convey an aura of power, beauty, or 
other abstract qualities [1]. A large number of these portraits, 
however, have lost the identities of their subjects through the for-
tunes of time. 

The analysis of faces in portraits can offer significant insights 
into the personality, social standing, etc. of the subject they repre-
sent. However, this is not a simple task, since a portrait can be 
“subject to social and artistic conventions that construct the sitter 
as a type of their time” [1], thus resulting in large uncertainty 
regarding the identity of many of these portraits. Traditionally, 
identification of many of these portraits has been limited to per-
sonal opinion, which is often quite variable. The project Faces, Art, 
and Computerized Evaluation Systems (FACES) was conceptual-
ized to evaluate the application of face recognition technology to 
portrait art and, in turn, aid art historians by providing a quantita-
tive source of evidence to help answer questions regarding subject 
identity and artists’ styles. This article will describe the challenges 

inherent in face recognition in art images, and summarize the 
results obtained in this project over the last two years. Some pre-
liminary results have been presented in [12]. 

There have been lingering ambiguities about the identity in 
some portraits–henceforth referred to as test images. The question 
has been whether they might represent a certain known identity, 
which we call reference images. As an example, the test image in 
Figure 1 is a portrait painted perhaps around 1590, and is believed 
by some to represent Galileo. Through computerized face recog-
nition technologies, we try to provide an alternate and quantitative 
source of evidence to art historians in answering such questions. 

We leverage upon a number of portrait pairs that are known to 
represent a certain person as shown in Figure 1(a). The task then 
is to train the computer in identifying discriminative features that 
can not only distinguish one sitter from another, but also learn the 
importance of the chosen features depending on the amount of 
emphasis given to that feature by an artist. Using the learned fea-
tures, quantitative measures of similarity between portrait pairs 
known to represent the same person can be computed to yield 
what we call match scores. Analogously, similarity scores between 
portrait pairs not known to represent the same person yield non-
match scores. The resulting match (blue curve) and nonmatch 
scores (red curve) together constitute what we refer to as the PFS. 
Subsequently, using hypothesis tests, the similarity score between 
test and reference image, shown by the brown ball amid 
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[FIG1] An illustration of the (a) training and (b) identification framework.
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the similarity score distributions in 
Figure 1(b), is analyzed with respect 
to the learned PFS to arrive at appro-
priate conclusions of a possible 
match or nonmatch. If both match 
or nonmatch happen to be likely, 
then no decision can be made. 

We begin by describing the chal-
lenges involved in the face recogni-
tion of portraits. Apart from the 
typical challenges associated with face 
recognition systems such as varia-
tions in pose, expression, and illumi-
nation, face recognition in portraits 
comes with additional challenges. 
Some of these are described below. 

■ Modeling artists’ styles: Since portraits bear the mark of 
the visual interpretation of an artist, styles of individual artists 
characterizing their aesthetic sensibilities (often biased by 
their sociocultural backgrounds) have to be modeled. Thus, 
portraits of the same sitter can vary from artist to artist. This 
results in considerable variability in the renditions, which has 
to be accounted for by the face recognition algorithms. 
■ Lack of sufficient training data: Many existing feature 
selection methods rely on the availability of a significant 
amount of training data. This is rarely the case in our prob-
lem domain due to the following reasons: 1) lack of a signifi-
cant body of images, the authenticity of which is well 
established; and 2) we need to logically choose a set of 
related images directed toward a particular demonstrative 
end and adhering to a particular period style. 
■ Choice of features: Given the aforementioned constraints, 
we need to choose features that best justify an artist’s rendi-
tion and possess high discriminative power in distinguishing 
the sitter from others. Although there has been some pre-
liminary work on this [2], there is little to no elaborate work 
on understanding how to model style in face portraiture. 
This leads to interesting questions in machine learning on 
combinations of various algorithms that are pertinent here. 

RELATED WORK
We review some image processing techniques employed for art 
analysis and also provide a survey of the state of the art in com-
puterized face recognition. 

IMAGE ANALYSIS IN ARTWORKS
The analysis of paintings using sophisticated computer vision 
tools has gained popularity in recent years [5]. Computer analysis 
has been used for identifying the artist [25] and for studying the 
effect of lighting in artworks [26], among others. A recent paper 
has explored application of computer-based facial-image analysis 
[6] using three-dimensional (3-D) shape information to identify 
one subject, Leonardo da Vinci, in four artworks. The present 
work involves multiple sitters (both genders) by different artists 
portrayed across different media such as paintings, death masks, 

etc. Some preliminary results have 
been presented in our earlier paper 
[12] on a small set of data. In this 
article, extensive results are shown 
on a much richer data set and using 
a more sophisticated feature-extrac-
tion algorithm. Also, for the present 
analysis, shape information was 
found to be less discriminative when 
compared to other features such as 
anthropometric distances (ADs) and 
local features (LFs). This can be 
partly attributed to the evidence that 
artists often focused on LFs and took 
some liberties with shape [13]. 

COMPUTERIZED FACE RECOGNITION
A survey of still- and video-based face recognition research is pro-
vided in [3]. A vast majority of face recognition applications 
address surveillance and entertainment. These approaches can be 
classified into three categories: holistic methods, feature-based 
structural matching methods, or a combination of both depending 
on the representation in feature space. Three-dimensional model-
ing approaches such as [24] have also been studied. Recent 
research efforts have focused on cross spectral face recognition for 
comparing images taken in heterogeneous environments [8]. 
Such methods are not applicable for our study. First, since the 
images in the present scenario are obtained from museums across 
the world, we have no control on the kind of sensors used to cap-
ture them. Second, the quality of the image is not an issue here; 
the challenge is choice of appropriate features. 

Some works [9], [28] model style factors such as a facial pose, 
and expression and separate it from content, i.e., the identity of 
the person, and show promising results for face pose estimation, 
among others. In [11], the authors use attributes like “chubby,” 
“attractive,” etc. for face verification tasks. While models for sepa-
rating style (e.g., an artist’s rendition) from content (sitter’s iden-
tity) can be useful for the present study, all of the existing methods 
require hundreds of images. Some works have looked at face rec-
ognition from sparse training data [10]. In [7], the authors lever-
age upon much larger mug shot gallery images or composite 
sketches for training. In [27], the authors evaluate the probability 
that two faces have the same underlying identity cause for recog-
nition. However, these methods do not model style. In this article, 
we explore artist’s style from the available sparse data. 

DISCRIMINATIVE FEATURE SELECTION
A portrait is a visualization of an artist’s aesthetic sensibilities 
blended with the sitter’s personality. We therefore begin by under-
standing the relevant features for analysis based on a study of 
artistic trends during the period under study. 

FACE AS SEEN BY ARTISTS
It is evident from [13] that while drawing a human body, much 
emphasis was laid upon maintaining the proportions of various 

THE PROJECT FACES, ART, AND 
COMPUTERIZED EVALUATION 

SYSTEMS (FACES) WAS 
CONCEPTUALIZED TO EVALUATE 

THE APPLICATION OF FACE 
RECOGNITION TECHNOLOGY 

TO PORTRAIT ART AND, IN TURN, 
AID ART HISTORIANS BY 

PROVIDING A QUANTITATIVE 
SOURCE OF EVIDENCE TO 
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parts. It is purported that the principles for the canons of 
human body may have been defined by Egyptian artists, who 
divided the entire body into different parts and provided base-
lines for their measurement. The importance of anthropomet-
ric ratios/distances was preserved even during the Renaissance 
era. According to da Vinci, in a well-proportioned face, the size 
of the mouth equals the distance between the parting of the 
lips and the edge of the chin, whereas the distance from chin to 
nostrils, from nostrils to eyebrows, and from eyebrows to hair-
line are all equal, and the height of the ear equals the length of 
the nose [14]. 

A historical appraisal of facial anthropometry from antiquity 
upto Renaissance has been provided in [15] to compare artists’ 
concept of human profile. A flattened nose, tilted forehead, and 
prominent upper lip were some of the features prevalent in 
Renaissance art works. In fact, prominent facial landmarks of a 
person were retained in works of the sitter by different artists as 
illustrated in [1].

CHOICE OF FEATURES
From the examples described above, it is clear that ancient Renais-
sance artists laid emphasis on two aspects in their renderings, 
which we use for our analysis.

LOCAL FEATURES
We use a set of 22 fiducial points to represent each face, these 
being (1, 2) forehead tips (left, right), (3) forehead center, (4) chin 
bottom, (5) nose top, (6) nose bottom, (7, 8) points on temple (left, 
right), (9, 10) chin and ear corners (left and right), (11, 12) points 
on chin (left and right), (13, 14 ) cheekbones (left and right), 
(15, 16) mouth corners (left and right), (17, 18) iris (left and 
right), (19, 20) left eye corners (right and left eye), and (21, 22) 
right eye corners (right and left eye). The precise location of these 
points is determined by registering a generic mesh on the face. 
Gabor jets corresponding to five frequencies and eight orienta-
tions are evaluated at each of these fiducial points. At a fiducial 
point n  and for a particular scale and orientation ,j  the corre-
sponding jet coefficient Jn j  is given by 

( ),expJ a in n nj j jz= (1)

where an j  is the magnitude and n jz  is the phase. 

ANTHROPOMETRIC DISTANCES
All images are normalized with respect to scale and orientation. A 
set of 11 salient distances is used to represent each face:

■ distance between forehead tips
■ distance between forehead center and chin bottom
■ distance between nose top and bottom
■ distance between points on the temples
■ distance between chin and ear corners
■ distance between points on the chin
■ distance between each iris
■ distance between cheekbones
■ distance between mouth corners

■ the width of the nose
■ distance between the center of the forehead and bottom of 
the nose. 

FEATURE EXTRACTION
Different artists are likely to depict and emphasize the aforemen-
tioned features in different ways. We wish to learn those features 
that are characteristic of an artist’s style. We employ a method 
called the random subspace ensemble learning as it is capable of 
handling deficiencies of learning in small sample sizes [16]. Small 
sample sizes is very relevant to the present problem as we have very 
few works by an artist at our disposal (see the “Introduction” sec-
tion). The random subspace method randomly samples a subset of 
the aforementioned features and performs training in this reduced 
feature space. 

More specifically, we are given Z  training portrait pairs and D
features. Let L  be the number of individual classifiers in the 
ensemble. We choose d Di #  (without replacement) to be the 
number of features used in the ith  classifier. For each classifier, 
we determine the match and nonmatch scores (as appropriate) 
using the di  features as follows. We compute 

( , ) ( , ),s I I d s J J1
i

n
n

d

1
LF

i

=
=

l l/ (2)

where ( , )s J J l  is an average LF similarity measure between n
corresponding Gabor jets computed across salient points in image 
pair ( , ) .I I l  To compute ( , ),s J Jn l  we use the normalized similar-
ity measure mentioned in [4] given by 

( , )
a

s J J
a a

a
n

nj nj

n nj

2 2
j j

j j

=
l

l
l/ /

/
(3)

Similarly, we compute AD similarity between image pairs ( , )I I l
using the equation 

( , ) ,s I I e y
AD = b-l (4)

where y  is the two-dimensional Euclidean distance between the 
AD vectors ,mv nv  that characterize images ,I I l respectively (we 
use only those distances as selected by the random subspace clas-
sifier) and b  is a coefficient that is chosen suitably to obtain a dis-
criminative dynamic range of values. In our experiments, we set b
to be five. 

To identify features that give the highest separation between 
match and nonmatch scores, we then compute the Fisher linear 
discriminant function for each classifier. We choose the union of 
features from those classifiers that give the top k  Fisher linear dis-
criminant values as our style features. 

IMPORTANCE OF THE CHOSEN FEATURES
Not all features identified by the previously mentioned method 
are equally important in representing an artist’s style. To under-
stand the importance of the chosen features, we consider the 
nonparametric statistical permutation test [17]. The permuta-
tion test helps in assessing what features are the same across all 
the instances belonging to an artist. Thus, features that are 
more invariant across the portraits by an artist can be perceived 
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to be more characteristic of that 
artist and hence be assigned greater 
importance. Permutation tests have 
been used to determine invariant 
features in artworks [2]. 

PERMUTATION TEST
The null hypothesis ( )H0  is chosen 
to indicate that two portrait groups 

,G G1 2 have the same average value 
in a particular feature; the alternate 
hypothesis )(H1  indicates that the 
average value of that feature is different in the two groups. Thus, 

: ; : ,H HG G G G0 1 2 1 1 2!n n n n= (5)

where n  is the average value of a particular feature v  under con-
sideration in the two groups. 

If the null hypothesis is true, then it should not matter when 
this feature v  is randomly assigned among images in the group. 
For instance, let us assume that there is a certain way that the 
mouth corner is portrayed by Italian artist Bernini, whose works 
are included in our data set. On an average, if this appearance is 
the same across all images by Bernini, then the principle behind 
this test is that there will not be a significant difference if the 
mouth tips are randomly assigned across images in the group, i.e., 
assigning the feature of one sitter to the corresponding feature of 
another sitter. 

Specifically, if there are Ns  images by an artist ,Y  then we can 
divide these Ns  images into two subgroups consisting of Ns1  and 
Ns2  images depicting different sitters. Let the feature values for 
the first group be [ , , , ]v v vN1 2 sf

1
 and in second group be 

[ , , , ] .v v vN N Ns s s1 2 f+ +1 1 2
 The permutation test is done by randomly 

shuffling [ , , ]v vN1 sff  and assigning the first Ns1  values, 
[ , , , ]v v v( ) ( ) ( )N1 2 sf

1
 to the first group and the rest Ns2  values 

[ , , ]v v( ( )N N( )s s1 f+1 2
 to the other group. 

For the original two groups we compute, 

,
N

v
N

v1 1
s

i
i

N

s
N

i

N

0
1 1

s

s i

s

d = -
= =

+

1 2

1 2
1

/ / (6)

where 0d  denotes the variation in the feature v  by artist Y  as exhib-
ited by various instances , ,I IN1 f  in the two groups G1 and .G2
Thus, .G G0 1 2d n n= -  For any two permuted groups we compute 

,
N

v
N

v1 1
( ) ( )s

s
i

i

N

s
N

i

N

1 1

s

s i

s2

d = -
= =

+

1

1 2
1

/ / (7)

where sd  denotes the variation in the feature v  by artist Y  after 
assigning v  as depicted in Ii  to an image not necessarily depicting 
the sitter in .Ii

We repeat this random shuffling of features among the images 
under consideration multiple times. The proportion of times 

s o2d d  is the p  value. This value reflects the variation of the fea-
ture in the two groups. Smaller p  denotes stronger evidence against 

the null hypothesis, meaning that the 
feature differed considerably in the 
two groups and thus less characteris-
tic of the artist’s style. We compute p
values for each feature as described 
above. The computed p  values are 
used as scaling factors (weights) in 
estimating the similarity scores )(sp

in (2) and (4). It is to be noted that this 
method can be employed when we 
have 12$  images by an artist [21]; in 
cases where enough images/artists are 

not available or when the artist is unknown, we use all 22 LF and 11 
AD features with equal weight (of one assigned to all the features) in 
obtaining the LF/AD similarity scores. 

FEATURE COMBINATION
The similarity scores obtained from LF and AD features may not 
be equally important in determining the similarity between por-
trait pairs. Furthermore, since the number of LF/AD features 
used are different, the scores need to be fused in a way such that 
the resulting distribution of match and nonmatch scores are as 
peaked and disjoint as possible. We employ the following algo-
rithm toward this. 

1) We consider a convex combination of the scores from the 
two measures LF and AD, i.e., 

( ) ,s s1score LF ADm m= + - (8)

with m  being varied from 0 to 1 in steps of 0.1. 
2) For every ,m  we evaluate the mean and standard deviation of 
match and nonmatch scores using the random sampling con-
sensus algorithm [18] to prune outliers. 
3) At each ,m  we evaluate / ,S SJ b w= ^ h  where Sb  is between 
class variance and Sw  is within class variance. We choose that 
value of optm m=  that gives the maximum value of .J  This is 
essentially computing the Fisher linear discriminant [20]. 
Using the procedure described above, we compute similarity 

scores between portrait pairs that are known to depict the same 
sitters and different sitters to get match and nonmatch scores 
respectively. The resulting set of match and nonmatch scores, 
computed across various artists and sitters, are modeled as two 
Gaussians distributions (one for match scores and another for 
nonmatch scores). The mean and standard deviations of these 
distributions are estimated from training data. We refer to these 
match/nonmatch score distributions as the PFS.

VALIDATION OF THE LEARNED FEATURES
We wish to ascertain if the learned features are good representa-
tions of the portraits considered. To verify this, we perform twofold 
cross validation of the similarity scores. 

VALIDATION OF ARTIST-SPECIFIC SIMILARITY SCORES
If the chosen features are robust representations of an artist ,Y  then 
the obtained match/nonmatch scores divided into two folds (groups), 

TO UNDERSTAND THE 
IMPORTANCE OF THE CHOSEN 
FEATURES, WE CONSIDER THE 
NONPARAMETRIC STATISTICAL 

PERMUTATION TEST. THE 
PERMUTATION TEST HELPS IN 

ASSESSING WHAT FEATURES ARE THE 
SAME ACROSS ALL THE INSTANCES 

BELONGING TO AN ARTIST. 
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say , ,A B  should more or less be “similar” in that they come from the 
same artist. For this, we employ the Siegel–Tukey statistical test [23].

Siegel–Tukey Test
This is a nonparametric statistical method to test the null hypothesis 

)(H0  that two independent scores come from the same population 
(e.g., artist) against the alternative hypothesis )(H1  that the samples 
come from populations differing in variability or spread. Thus, 

: , ; : ,H Me Me HA B A B A B0
2 2

1
2 2$v v v v= = (9)

where 2v  and Me  are the variance and medians for the groups A
and .B  The test is entirely distribution-free. The absence of any 
normality assumption is an important feature of the test, because 
its parametric alternative, the F  test for variance differences, is 
quite sensitive to departures from normality [22]. The p value 
obtained from this test, ,pst  is given by 

,Prp X Ust #= 6 @ (10)

where ,U UA B  are the U  statistics for groups ,A B  and ~X  Wil-
coxon ( , )r m  [21]. This is a measure of the confidence associated 
with the scores. Thus, if the learned features are good representations 
of an artist’s style, they should be associated with a higher pst  value 
than the pst  value associated with scores obtained using all features. 

VALIDATION OF THE PORTRAIT FEATURE SPACE
To validate the PFS computed across various artists/sitters, we ran-
domly divide the known instances into two groups to perform two-
fold cross validation. In fold 1, we use group one to learn the PFS 
and use group 2 to validate and vice versa in fold 2. Ideally, the 
learned PFS from the two folds should have the same statistics. 

IDENTIFICATION FRAMEWORK
The goal of this article is to aid art historians by providing an alter-
nate source of evidence in verifying uncertain portraits against a 
reference image by providing a quantitative measure of similarity. 
We use hypothesis testing for this purpose. 

HYPOTHESIS TESTING
This is a method for testing a claim or hypothesis about a parame-
ter in a population [19]. Next, we summarize it with respect to the 
learned PFS. 

■ A Null hypothesis claims that the match distribution 
accounts for the test’s similarity score with reference better 
than nonmatch distribution. The alternate hypothesis is that 
nonmatch distribution models the score better. 
■ We set the level of significance ,a  i.e., the test’s probability 
of incorrectly rejecting the null hypothesis, as 0.05, as per the 
behavioral research standard. 
■ We compute the test statistic using one independent nondi-
rectional z  test [19], which determines the number of standard 
deviations the similarity score deviates from the mean similar-
ity score of the learned match/nonmatch distributions. 
■ We compute p  values, which are the probabilities of 
obtaining the test statistic that was observed, assuming that 
the null hypothesis is true. If ,p 1 a  we reject the null 
hypothesis. 

IDENTITY VERIFICATION
To examine the validity of the chosen approach, we consider simi-
larity scores of the test image with artworks known to depict per-
sons different from the one depicted in the reference image. We call 
these images distracters. In cases where enough works of the same 
artist are not available, we consider similar works of other artists. If 
a test image indeed represents the same sitter as in the reference 
image, not only should its score with the reference image be mod-
eled by the match distribution, but also its scores with distracter 
faces should be modeled by the nonmatch distribution. 

ANALYSIS SCENARIOS
Following the procedure outlined previously, we compute the sim-
ilarity scores of test cases with the corresponding reference image 
and with distracters. Table 1 lists various hypothesis test scenarios 
that can arise [19] and the corresponding conclusions that one 
can infer. Match and nonmatch cases are straightforward to infer 
from Table 1. In cases where both match and nonmatch distribu-
tions are likely to account for the score in the same way as in third 
and fourth rows of Table 1, it can be said that the learned PFS can-
not accurately describe the test data. If the match distribution is 
more likely to account for both test as well as distracters (bottom 
row in Table 1), it can be inferred that the chosen features do not 
possess sufficient discriminating power to prune outliers. Thus, in 
these scenarios, it is not possible to reach any conclusion. 

DATA SET

CHOICE OF IMAGES
We have employed a set of images belonging to Western Europe 
between the 15th and early 18th centuries. These images have 
been logically chosen by art historians to address different tasks 
such as 1) to test the relation of an unmediated image of the 
subject, e.g., a death mask to a work of portrait art like a paint-
ing, 2) to analyze a number of portraits of different sitters by the 
same artist to model artist’s style, and 3) to verify if the identity 
of the ambiguous subject in a given image is same as that of a 
known subject in a reference image. The images belong to dif-
ferent media such as drawings, prints, paintings, sculptures, 

[TABLE 1] HOW p  VALUES ARE USED TO MAKE A DECISION
ABOUT IDENTITY OF A PORTRAIT.

REFERENCE DISTRACTERS CONCLUSION 

MATCH NONMATCH MATCH NONMATCH 

p 2 a p 1 a p 1 a p 2 a MATCH

p 1 a p 2 a p 1 a p 2 a NO MATCH

p 2 a p 2 a NA NA NO DECISION

p 1 a p 1 a NA NA NO DECISION

p 2 a p 1 a p 2 a p 1 a NO DECISION

NA stands for “not applicable.”
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death masks, etc. The data set consists of works by over 35 art-
ists including Gian Lorenzo Bernini, Alessandro Algardi, and 
François Clouet, among others. 

DESCRIPTION
The data set consists of approximately 271 images where the iden-
tity of the subject is known beyond a doubt. There are 20 test para-
digms (with each having multiple image pairs to be compared) 
where the identity of the subject is in question and has to be com-
pared against the reference image given in that paradigm. Table 2 
provides a detailed description of the distribution of images in 
terms of the specific sitter and artist. Figure 2 provides an illustra-
tion of the data set. We encourage the interested reader to refer to 
the supplementary material in IEEE Xplore (http://ieeexplore.ieee.
org) for or a description of the sources for the portraits shown 
throughout this article. 

EXPERIMENTS

STYLE MODELING RESULTS
We first extracted the 22 LF and 11 AD for all the images. For 
those artists for which we had enough images to model their 
style, we learned the features characteristic of their style. In 
Figure 3(a), characteristic LFs with dots denoting the relative 
importance of the feature as per the p  value of permutation test 
are depicted. AD features representative of the style was simi-
larly determined for these artists; these being AD features 4, 8, 
3, 7, and 2 for Algardi (see the section “Choice of Features” for a 
description of numbers); 1, 10, 7, 5, and 8 for Bernini; 2, 1, 8, 9, 

10, 5, and 4 for Godfrey Kneller; 5, 11, 2, and 7 for Clouet; 4, 6, 
11, 7, and 3 for Michiel Jansz. van Mierevelt; and 2, 8, 11, and 3 
for Hans Holbein The Younger. Features are listed in decreasing 
order of importance for each artist. We verified the validity of 
these features using the pst  value computed from Siegel–Tukey 
test. As illustrated in Figure 3(b), for almost all cases, the confi-
dence of the similarity scores increased upon using only the 
style features, thus validating the chosen LF. Similar results 
were obtained for AD features. It is to be noted that the Siegel–
Tukey test validates both style-specific match and nonmatch 

Algardi Bernini

Clouet

MiereveltKneller
Holbein

Musscher
Various Artists

[FIG2] An illustration of the data set across individual/multiple artists depicting different sitters.

[TABLE 2] AN ILLUSTRATION OF IMAGE DISTRIBUTION: THE
NUMBER OF IMAGES PER ARTIST.

ARTIST
NUMBER 
OF IMAGES ARTIST

NUMBER 
OF IMAGES

ALGARDI 14 GIOTTO 6
BANDINI 1 HANSEN 3
BERNINI 33 HOLBEIN 45
BOTTICELLI 9 KNELLER 19
BRONZINO 5 LANGEL 1
BUGGIANO 2 LAURANA 10
CAFA 2 MANTENGA 3
CAMPIN 4 MASACCIO 4
CLOUET 14 RAPHAEL 5
DA FIESOLE 5 SIGNORELLI 5
DA VINCI 7 SITTOW 4
DE CHAMPAIGNE 7 STRINGA 4
DE BENINTENDI 3 THRONHILL 3
DEL CASTAGNO 3 TORRIGIANO 1
DELLA FRANCESCA 4 VAN MIEREVELT 24
VASARI 4 VAN MUSCCHER 18
GHIRLANDAIO 5 VERROCCHIO 6
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scores; whenever there are not enough images to obtain match 
scores, only the available nonmatch scores are validated. The 
receiver operating characteristic (ROC) curve shown in Figure 4 
compares the performance for pairwise sitter validation upon 
using 1) style features and 2) all LF/AD features. The ROC dem-
onstrates the improvement in pairwise validation upon using 
style features. 

SIGNIFICANCE OF STYLE MODELING
These results could possibly aid art historians in attributing 
works to an artist that was not attributed to him/her before. It 
could also help in identifying unrecognized portraits by these 
artists more confidently. It might also be possible to under-
stand the adherence to artistic canon and individual variations 
in art practices. 

VALIDATION WITH KNOWN SITTERS
From the set of known identities, we obtained match and non-
match scores. It is to be noted that wherever an artist’s style could 
be modeled, we used only those (weighted) features in obtaining 
the LF/AD similarity scores and otherwise used all the LF/AD fea-
tures followed by the feature combination strategy to fuse the sim-
ilarity scores. The weight for the LF similarity score was found to 
be 0.55 and the weight for the AD similarity score was 0.45. Exper-
iments showed that there was improvement in the performance 
upon fusing scores from LF and AD as against using any one of 
them. The values of mean of the PFS were 0.7246 (match) and 
0.5926 (nonmatch) with standard deviations 0.043 and 0.052 
respectively (see Figure 5). 

IDENTITY VERIFICATION
We want to provide quantitative measures of similarity to uncer-
tain test paradigms provided to us by art historians. In this article, 
we do not claim to provide the incontestable identity of the sitter 
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[FIG4] The ROC curve for pairwise sitter validation upon using 
style features.
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[FIG3] (a) The importance of chosen features with bigger dots indicating more important features. (b) The validation of style through 
the Siegel–Tukey test.
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in question, but to only provide a complementary viewpoint, 
which could serve the art history community. 

SIGNIFICANCE OF RESULTS FROM ART PERSPECTIVE
In these identification tests, support was given to previous scholarly 
opinion on a number of important cases. Among these were the 
posthumous bust of Battista Sforza by Laurana in the Bargello and 
a death mask cast also by Laurana in the Louvre Museum in Paris, 
France, shown in column 1 of Figure 6. A match suggests that, as 
was thought, the mask was that of Battista. It also supports the idea 
that the cast was quite closely followed by Laurana as a model, 
rather than, say, Piero della Francesca’s profile portrait of Battista. 
A match was also indicated for Botticelli’s Portrait of a Lady at the 
Window (c. 1475; widely thought to be a rendering of Smeralda 
Brandini) and Verrocchio’s Lady with Flowers (c. 1475), the two 
portraits also sometimes being suggested by some to represent the 
same sitter, thus lending objective support to this position despite 
the two distinctly different personas conveyed in the images. 

Tests strongly support the traditional supposition that Nicholas 
Hilliard’s Young Man Among Roses, said to be perhaps the most 
famous miniature ever painted, represents Robert Devereux, sec-
ond earl of Essex. The results of test scores between a portrait of a 
woman at the National Portrait Gallery in London thought by 
some to represent Mary Queen of Scots and eight other portraits 
known to be of Mary were almost startling in their support for the 
identification of the unknown portrait as Mary. Results also lend 
new support to previous opinion that the portrait at the National 
Portrait Gallery thought by some to depict James Scott, Duke of 
Monmouth, First Duke of Buccleuch, does portray Monmouth 
lying in bed after his beheading for treason. 

The portrait shown in the bottom row of column six in 
Figure 6 was sent to us by the Italian astronomer Paolo Molaro, 
of what he believes may be the earliest known likeness of Galileo 
Galilei, perhaps painted around 1590. When tested against a 
chronological spectrum of eight other known portraits of 
Galileo, the results gave decreasing similarity scores within the 
match range for the chronologically three closest likenesses 

(1601–c. 1612). Thus, the test gives support to the identification of 
a previously unrecognized portrait as Galileo—possibly the earli-
est known portrait of Galileo. While age remains a challenge for 
FACES and requires more research, age differences of around ten 
years or so have not been too much of an obstacle. 

A comparison between an unknown painting attributed to de 
Neve and a known portrait of George de Villiers, First Duke of 
Buckingham (column 7 of Figure 6), and a comparison between 
an unknown portrait and a known portrait of Lady Arabella Stuart 
(column five of Figure 6) gave nonmatch scores. A list of identifi-
cation paradigms with results is provided in the supplementary 
material in IEEE Xplore. For a detailed description of these results 
from the art perspective, see [29]. 

The results of FACES are only as dependable as the images 
tested. Areas that would benefit from further research include 
modeling wide age differences, strong angle views (including pro-
file images), and even the use of different media (e.g., terracotta as 
opposed to marble, chalk in contrast to oil, etc.). 
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[FIG5] The PFS showing the distribution of match and nonmatch 
scores along with their standard deviations.

Match Match MatchNonmatch Nonmatch Nonmatch NonmatchNo Decision No Decision No Decision No Decision

1(a), 1(b) 3(a), 3(b) 14(a), 14(b) 3(a), 3(c) 10(a), 10(d) 7(a), 7(b) 8(a), 8(b) 11(a), 11(b) 12(a), 12(b) 13(a), 13(b) 10(a), 10(b)

[FIG6] llustrations of identification tests with conclusions in the center. The bottom row shows images whose identity is uncertain; the 
numbers refer to corresponding images in the supplementary material supplied for this article in IEEE Xplore.
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CONCLUSIONS
We presented a work that explores the feasibility of computer-
based face analysis for portraiture. After a careful understanding 
of artistic conventions, we arrived at relevant features for analy-
sis. Subsequently, using machine-learning tools, we learned a 
feature space describing the distribution of similarity scores for 
cases known to match/not match and also validated the same. 
We proposed a novel method to model artists’ styles and to ana-
lyze uncertain portrait pairs. We believe that these results can 
serve as a source of complementary evidence to the art historians 
in addressing questions such as verifying authenticity, recogni-
tion of uncertain subjects, etc. For future work, we would like to 
explore modeling age variations in portraits and building family 
trees of artists/sitters. 
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C
ultural heritage collections are being digitized and 
made available through online tools. Due to the large 
volume of documents being digitized, not enough 
manpower is available to provide useful annotations. 
Is this article, we discuss the use of automatic tools to 

both automatically index the documents (i.e., provide labels) and 

search through the collections. We detail the challenges specific to 
these collections as well as research directions that must be fol-
lowed to answer the questions raised by these new data. 

INTRODUCTION
Digitization of cultural heritage collections has recently become a 
topic of major interest. Large campaigns of digitization have been 
launched by several institutional and private entities to allow 
instant access to billions of documents. Thanks to these new por-
tals, anyone can see these collections that were usually stored in 

[David Picard, Philippe-Henri Gosselin, and Marie-Claude Gaspard]

[Support vector machine active learning 

with applications to text classification]

Challenges in 
Content-Based Image 
Indexing of Cultural 
Heritage Collections
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archives under restricted access [see, e.g., the online collection of 
the Library of Congress (http://www.loc.gov/pictures), or that of 
the Metropolitan Museum of Art (http://www.metmuseum.org/
collection/the-collection-online)]. These campaigns are both rich 
in the number of digitized documents and targeted subjects. 
Together, these points make them appealing as a research topic 
and as a new tool for the final user. 

While the idea of an open access to digital copies of all kinds 
of historical contents is very appealing, the size and variety of 
these new data lead to a wide range of new problems. In particu-
lar, the pace at which historical artifacts are digitized greatly 
exceeds the manpower needed to manually index them. By 
indexing, we mean labeling using carefully chosen keywords for 
all documents so as to ease the search through the entire collec-
tion. The online and open aspect of digitized collections raises 
new questions with respect to the uses emerging from the size of 
available data as well as from the variety of users searching them. 

In this article, we consider automatic labeling and interac-
tive search challenges. In automatic labeling, the goal is to 
automatically infer a set keywords for each newly digitized arti-
fact. The thesaurus of all possible keywords can be very large 
and can contain concepts with varying semantic degrees. The 
main goal of automatic labeling is to ease the work of specialists 
searching throughout the entire collection by querying very 
precise keywords. In an interactive search, results of a query 
(either starting from an example or from a keyword) are graphi-
cally shown to the user. These results can be refined thanks to 

user feedback, for instance, through the highlighting or the 
removal of some elements. The goal of an interactive search is 
to find documents that cannot be retrieved using keywords in a 
minimum amount of interaction. 

CULTURAL HERITAGE DIGITAL IMAGE COLLECTIONS
This section examines the problem of indexing cultural heri-
tage collections. For this purpose, we first present the example 
of a labeled subset of the Bibliothèque Nationale de France 
(BnF) image collection. Based on this presentation, we then 
detail the expected difficulties that are to be tackled when 
indexing such collections. 

THE BnF IMAGE COLLECTION
Examples of images digitized by the BnF and their associated 
labels are shown in Figure 1. The collection, which is currently 
online, contains an estimated 275,000 images. Approximately 14% 
of them are labeled with one or several keywords. The images are 
pictures from any kind of cultural heritage artifact such as paint-
ings, coins, tapestry, a manuscript, etc. The corresponding labels 
vary from very generic terms [e.g., “animal representation” in 
Figure 1(a) and (d)] to very specific ones [e.g., “Cuir Ornemental” 
in (b) and “Ptolémée V” in (c)]. 

The images and their keywords can be accessed online at  
http://images.bnf.fr. The advance search feature can be used to 
reveal the hierarchical architecture of the thesaurus, as well as 
the statistics of occurrences of the keywords. The main level of 

Bord de Mer, Chèvre,
Fortification, Représentation
Animalière, Représentation
Scientifique

Cartouche, Corde, Cuir
Ornemental, Église, Moulin
à Eau, Namur (Province),
Oiseau, Ornementation,
Paysage, Perle Ornementale,
Personnage, Rivière,
Route, Tour, Village

Arsinoé III, Reine d’Egypte,
Couronne, de Profil,
Diadème = Bandeau,
Draperie, en Buste, épi,
Femme, Grènetis, Homme,
Lance, Portrait, Ptolémée
V, Roi d’Egypte, Sceptre,
(0323–0031 av. J.-C.)
Epoque Hellénistique, Grec

Âne, Lion, Renard,
Représentation Animalière

(a) (b)

(c) (d)

[FIG1] Examples of images and their corresponding labels (in French) from the BnF collection. Observe the variety in the keywords, 
from generic like “animal representation” in (a) and (d) to very specific like “Ptolémée V” in (c) and “Cuir Ornemental” in (b).
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the hierarchy is divided in broad categories stating the image 
acquisition geometry, the picture genre, its time and geograph-
ical information, and its subject in terms of objects and people. 

In this article, we focus on a small subset of about 4,000 labeled 
images. In Figure 2, we show the distribution of the number of labels 
per image. As we can see, only around 120 images have only one 
label. The vast majority of images have between two and 15 labels. 

In Figure 3, we show the distribution of the number of images 
per class. There are many classes with only one corresponding image, 
and these classes usually correspond to very specific labels. Examples 
of classes with one image are: Philippe IV le Bel, époque Louis XIII,
Papouasie-Nouvelle-Guinée, la guerre, électricité, marteau d’armes,
générosité. The greater the number of images per class, the fewer the 
number of classes (the peak at 100 in Figure 3 refers to the cumula-
tive tail of the distribution). This distribution gives hints to the speci-
ficity of the classes found in cultural heritage collections. 

Contrary to the Rijksbureau voor Kunsthistorische Documen-
tatie (RKD) challenge presented in [1], indexing the BnF is much 
more complex. The tasks in the RKD challenge are to predict the 
author, the type of work, the material, and the time of creation. 
The number of samples available for these classes fairly outnum-
bers the one for the classes in the BnF. Furthermore, apart from 
the author identification, the classes of the RKD challenge are 
based on physical properties and not on semantic visual content. 
Nonetheless, the RKD provides a Web search engine allowing 
users to search its entire digitized collection with keywords 
(http://www.rkd.nl). Althought these keywords are highly 
semantic like those of the BnF, they were not retained for the 
RKD challenge. Therefore, there is a need for a public data set 
that encompasses the full difficulty of indexing cultural heritage 
collections and allowing researchers to assess their tools. 

OPEN QUESTIONS
Compared to the generic image collections used in current 
computer vision benchmarks, labeling cultural heritage col-
lection is much more difficult, due to the wide range of 
expected labels and to the very specific knowledge required to 
understand them. As we can see in Figure 1, some of the labels 
are sufficiently common to be inferred by everyone, but other 
ones require specific knowledge in history or in material sci-
ence. To better evaluate the difficulty of labeling such collec-
tions, we propose to divide the labels in several domains: 

■ visual characteristic (shape, color, etc) 
■ semantic content (objects within the image, category of 
art: portrait, landscape, manuscript, etc) 
■ physical properties (canvas, marble, wood, paper, etc) 
■ historical information (production period, name of a 
character, style, etc.) 
■ geographical information (geographic name, towns, 
regions, map, etc.).
In this list, only the visual characteristic is effectively tack-

led by current content-based indexing methods. Semantic 
content has currently promising results thanks to the recent 
development in computer vision. There is, as far as we know, 
very few works on the remaining domains. 

The main difficulty induced by this list is that methods 
need to be based on specific properties of the signal to perform 
well on some very specific classes. For example, predicting the 
type of paper might use different image characteristics (differ-
ent scales, different modalities) than predicting the style. 
Designing a generic system that can automatically select the 
signal properties adapted to each specific class, without being 
a complex combination of ad hoc methods, is the main chal-
lenge of the proposed tasks. 

The second problem induced by the wide class diversity is the 
scarcity of labeled samples. Indeed, some labels have by nature very 
few examples (e.g., “King Louis XI of France”) and very few of them 
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[FIG2] A histogram of the number of labels per image in the BnF 
collection. The last value corresponds to all images with more 
than 50 labels.
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[FIG3] A histogram of the number of images per class in the BnF 
collection. The last value corresponds to all classes with more 
than 100 images.
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are labeled. Unlike generic image collections, as the cultural heri-
tage image collections grow, it is unlikely that the number of sam-
ples per class increases much for the vast majority of classes. 
Instead, it is more likely that the number of classes grows, while 
the number of samples per class remains almost constant. This 
arises challenging learning problems, since we have to build a large 
set of similarity measures and classifiers with very few samples. 

CONTENT-BASED IMAGE SIMILARITY
The main technical challenge associated with the indexing of image 
collections is to be able to compute a numerical representation of 
each image and its associated similarity measure. This similarity mea-
sure aims at being as close as possible to human visual perception. 

Generally speaking, the design of such representations and 
their associated metric is not an easy task, as it has to bridge 
the semantic gap [2]. Several families of similarity measure 
have been defined in recent years, in many cases with a very 
specific goal in mind. Indeed, the design of such measures is 
highly dependent on the application (e.g., object recognition, 
scene understanding), since it allows the incorporation of 
prior knowledge which usually boosts the performances. In 
the following, we list most of the existing families of content-
based image similarity, detailing their original application, and 
showing some of their adaptations to art collections. 

GLOBAL APPROACHES
Historically, the first approaches in defining a similarity between 
images were using a global index. A global index means that the 
numerical representation computes statistics on the properties of 
the signal at the scale of the whole image. Simple examples of such 
techniques include color histograms [3] or texture histograms [4]. 

With respect to cultural heritage images, global descriptors 
such as GIST have been used for image alignment and registration 
[5]. However, they suffer the same drawbacks as for the general 
image labeling and retrieval tasks: They are not able to handle 
classes discriminated by local visual properties. In particular, when 
the goal is to retrieve a specific instance of an object (e.g., a specific 
Roman emperor coin from the category coins), it becomes obvious 
that statistics at the image level are not sufficient to discriminate 
this specific instance from the other of the same category. 

LOCAL DESCRIPTORS
To solve the precision problem of global descriptors, local keypoint 
matching techniques have successfully been proposed. The key 
idea behind the keypoint matching techniques is to select a set of 
salient regions in the image [denoted region of interest (ROI)], to 
compute a description of the content of the region and then to 
perform a pairwise matching of the keypoint descriptions between 
two images. The more keypoints match between images, the more 
they are considered similar. 

The ROI detection step is based on salience measures like cor-
ner detectors [6] or a blob detector [7]. A good overview of the key-
point detection techniques can be found in [8]. Recently, it has 
been found that a dense extraction of keypoints leads to even better 
similarity measures, at the cost of a more complex matching step. 

The ROI description is, in a sense, very similar to that of the 
global indexes, except that it is only computed on a small region of 
the image. The most used descriptors in current systems are scale 
invariant feature transform (SIFT) [7] or histogram of oriented 
gradients (HOG) [9], which basically computes a histogram of the 
gradient orientations in cells spanning the ROI. With such 
descriptors, the shape of the edges in the ROI is encoded. 

Once descriptors are extracted, measuring the similarity 
between two images is akin to counting the number of matching 
pairs of descriptors. Given a descriptor d  of the first image, its 
nearest neighbor ( )d1NN  in the second image is considered as a 
match if their distance is less than a threshold relative to the dis-
tance with the second nearest neighbor ( ):d2NN

( , ( )) ( , ( ))d x x d x x1 2NN NN1 m (1)

with typically .0 6m =  [7]. The assumption is that a given descrip-
tor in the first image has a unique corresponding descriptor in the 
second image; together these form the closest pair. 

To extend this matching scheme to an entire image collection, 
we consider the set B Bi i,=  of all descriptor sets Bi  of all images 
i  in the collection. Then, for each descriptor from the query ,q  its 
k-nearest neighbors are retrieved from the entire collection. Every 
image receives as many votes as nearest neighbors it contains. 
Votes are summed up for all descriptors of the query and the 
image with the highest number of votes is the most similar. 

( , ) ( ( ) ) .ks q i d BNN
d B

B i
q

+=
!

/ (2)

However, such a matching scheme is unable to scale with a 
larger collection and larger sets of extracted descriptors. To run 
scalable searches, most of the accelerating schemes are based 
on an approximate nearest neighbor search in high-dimen-
sional spaces, such as inverted files [10] or locality sensitive 
hashing [11]. 

With respect to cultural heritage collections, the main assump-
tion driving local descriptor matching is relevant for duplicate or 
near duplicate retrieval. Searching for a seal, a coin, or a specific 
printed pattern are clear examples where the assumption holds. 
More semantic queries, such as author identification or time estima-
tion can also be tackled using these approaches, depending on the 
scale of the images. For example, the brush stroke of a painter creat-
ing a specific pattern, such as the ear of a character, is a highly dis-
tinctive ROI that can be matched in another painting. In [12], the 
authors proposed a matching scheme to perform object detection 
in paintings while training on natural images and show matching 
local parts of an object improve the performances. However, they 
stay with very generic categories such as “dog” or “chair.” 

The main challenge of these approaches in art-related collec-
tions is the selection of the right detector/descriptor couple to 
obtain satisfying results for a specific application. Unfortunately, 
no generic local detector/descriptor couple is able to tackle all of 
the similarities that can be defined in such collections due to the 
large variability of scale (from canvas threads to scene layout) and 
materials (parchment, canvas, marble, metal, etc.). 
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AGGREGATING METHODS
While local descriptors matching usually leads to very high perfor-
mances, accelerating schemes are not sufficiently efficient to deal with 
very large collections. In particular, since all descriptors are kept, the 
amount of data to be stored grows with the number of extracted 
descriptors per image and the number of different modalities. 

To overcome this problem, aggregating methods have been pro-
posed to reduce the representation of an image from a set to a single 
vector. To perform the aggregation, most methods use a dictionary 
D  of M  prototypical descriptors { } .D c c M1n= # #  The set of 
descriptors Bi  of an image i  can then be described in terms of sta-
tistics over .D  The first such method, called a bag of visual words
(BoW), assigns each descriptor of the image to its closest entry in 
the dictionary and computes the histogram of such assignments 
[10]. Formally, the assignment corresponds to a quantization 
function q  that returns a vector filled with zeros, except for a one 
at the component corresponding to the closest prototype, 

( ) [ ] , ( ) .q x k x1NNik id= = (3)

The signature is simply the sum of all these vectors 

( ) .x q xi
x X

=
!

/ (4)

The interesting part of the BoW method is that it corresponds 
to a matching function between two sets of descriptors, where a 
match is found if and only if the two descriptors are assigned to 
the same prototype 

( , ) ( ) ( )s q i q d q p
d B p B

BoW
q i

=
<

! !
c cm m/ / (5)

, ( ), ( ) .k d l p1 1NN NNkl
p Bd B iq

d= = =
!!

// (6)

More recently, refinement in the encoding of the descriptors 
have been proposed. For instance, instead of simply quantizing 
each descriptor to its closest prototype, sparse coding and related 
methods [13] propose viewing the encoding as a constrained 
reconstruction problem 

( ) ( ),argminq x x D 2a m aX= - +a (7)

where ( )aX  is a regularizer, typically the 1,  norm to enforce a 
sparsity pattern in the coefficients a  or a locality constraint to 
ensure descriptors are encoded by nearby prototypes in the case of 
locality constraint linear coding [13]. The incentives behind such 
encoding schemes are that the reconstruction term reduces infor-
mation loss when compared to hard quantization approaches. 
Furthermore, the aggregation of codes introduces a minimum 
averaging effect due to the sparsity pattern in the codes. Since D
is an overcomplete dictionary and using the generalized Parseval 
identity, there is a relationship between the dot product of two 
descriptors in the descriptors space and the dot product of their 
coding coefficients. As a consequence, the dot product of two sig-
natures is related to a matching scheme where the descriptors are 
compared using the dot product. 

The idea of using a matching scheme that can be linearized 
into a single vector has been proposed in several methods. In vec-
tors of locally aggregated descriptors (VLADs) [14], the authors 
assign each descriptor to its closest prototype and then encode the 
differences between the descriptor and the prototype  

( ) [ ( )] , ( ) .q d d k d1NNik i id n= - = (8)

The aggregation is simply the sum of all codes, like in BoW. The cor-
responding matching scheme compares only descriptors assigned to 
the same prototype and computes the match using the dot product 
of the descriptors centered on their respective prototypes 

,( , ) ,s q i d pkl
p Bd B

k lVLAD
iq

G Hd n n= - -
!!

// (9)

( ), ( ) .k d l p1 1NN NN= = (10)

By looking at VLADs, we can clearly see the bridge between match-
ing schemes and the comparison of different statistics over .D  In 
that sense, the BoW is a piecewise constant matching scheme and 
corresponds to a zero-order statistic, while VLADs are a piecewise 
linear matching scheme and corresponds to a first-order statistic. 

To improve the discriminative capability of the similarity mea-
sure, higher orders have been proposed. In particular, Fisher vec-
tors [15] consider second-order information by computing the 
dictionary as a Gaussian mixture model. Then, it assigns the 
descriptors to all components of the mixture proportionally to 
their likelihood. Finally, it computes the first- and second-order 
moments of the descriptors with respect to each component. 
Using a hard assignment, vectors of locally aggregated tensors 
(VLATs) [16] computes higher-order moments using the tensor 
products of descriptors. The final signature is then the concatena-
tion of all orders. The authors show that the dot product between 
the signatures is equivalent to a matching scheme using the dot 
product between the descriptor raised to the power ,t  which in 
turn is a approximation of a Gaussian matching kernel between 
the descriptors using a Taylor expansion of order .t

Considering cultural heritage images, aggregating approaches 
are likely to generalize in the labeling task, as shown with Fisher 
vectors in [17]. In an interactive search, their relation to keypoint 
matching is also likely to obtain a good accuracy thanks to the dis-
criminative power of such schemes. 

DEEP ARCHITECTURES
In contrast with the two steps of the local descriptor aggregation 
approaches, deep architectures stacking several layers of encoding 
have also been proposed. While deep neural networks have been pro-
posed for a long time [18], their recent success in generic image clas-
sification benchmarks revived recent development of such methods. 

The greatest advances were made with the use of convolutional 
neural networks (CNNs), which alternate layers of convolutional 
filters and layers of pooling operations [19]. The weights of the 
neurons on the convolution layers correspond to the coefficient of 
filters and can be trained in two steps. First, a pretraining step 
minimizing the reconstruction error trains a preliminary set of 
autoencoding filters. Second, the filters coefficients are tuned by 
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back propagation of the classification error. This second step helps 
locate the right combination of filters. 

This repetition of convolution, nonlinear operation, and pool-
ing bears some similarity with the multiscale analysis performed 
by wavelets. Indeed, the authors of [20] propose a deep architec-
ture composed of layers of wavelet filters combined with a nonlin-
ear operator (modulus) to obtain invariance to certain transforms. 

Although most CNNs are used directly in classification tasks, it 
was empirically shown that the layers before the classification pro-
vide very good image representation that can be used in almost 
any image similarity related task [21]. It has also been recently 
shown that stacking many layers [22] further improves the perfor-
mances, which raises the question of the structure rules to follow 
when designing a deep neural network. 

Since CNNs provide a strong baseline for image features, they 
were already used with paintings in [17]. The authors propose 
classifying paintings using a training set of natural images taken 

from Google images. They achieve surprisingly good perfor-
mances considering the discrepancy between the objects in natu-
ral images and their depiction in paintings. However, the 
experiments are limited to a small number of generic classes (e.g.,
boat, car, horse), and cannot be easily extended to the very specific 
classes we consider in this work. 

APPLICATIONS AND EXPERIMENTS
In this section, we present baseline results on the BnF collection 
to show the complexity of the challenging applications. We set up 
a benchmark with rigorous evaluation procedure allowing the 
comparison of different visual features (the benchmark can be 
downloaded at http://perso-etis.ensea.fr/~picard/bnf_bench/). First, 
we present results on automatic labeling and then on an interac-
tive search. 

AUTOMATIC LABELING
In these experiments, we only considered classes with more than 
ten images to be able to compute relevant statistics. We found 569 
classes corresponding to this criterion, with the following reparti-
tion: Semantic (459), visual (62), historical (26), geographical (14), 
and physical (8). We used a standard classification approach con-
sisting in a single midlevel feature per image combined with a lin-
ear support vector machine (SVM). This setup compares to most 
pipeline used in current academic challenges. We trained the SVM 
on a one-versus-rest mode for each class. Using fivefold cross-vali-
dation, we computed the average precision (AP) for each class. 

[TABLE 1] RESULTS (% mAP) OF THE LABELING TASK FOR
DIFFERENT FEATURES.

FISHER VECTORS CPVLAT CNNs
SEMANTIC 16.9 14.4 16.7
VISUAL 35.4 25.2 32.1
HISTORICAL 18.8 16.8 20.2
GEOGRAPHICAL 34.7 28.1 31.3
PHYSICAL 31.2 23.4 28.7
COMBINED 27.4 21.6 25.8

Fisher Vector

Mother Love (Semantic)
0.4% AP

Drum (Semantic)
0.4% AP

Pyrénées (Geographical)
94.5% AP

Danish (Geographical)
97.1% AP

CPVLAT

Root (Semantic)
0.4% AP

Chainmail (Semantic)
0.4% AP

Roadhouse (Semantic)
84.6% AP

Rifle (Semantic)
88.9% AP

CNN-s

Whip (Semantic)
0.4% AP

Chain (Semantic)
0.5% AP

Uniform (Semantic)
92.8% AP

Sewer (Semantic)
93.5% AP

(a) (b)

[FIG4] Examples of (a) poor and (b) well performing classes for various features.
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We compare three different types of midlevel features: Fisher 
vectors [15], compact preprocessed vector of locally aggregated 
tensors (CPVLAT) [23], and deep CNN-based features taken from 
the penultimate layer of CNNs in [24]. These three different fea-
tures allow to assess the behavior of different families of methods, 
in particular probabilistic models for Fisher vector, keypoint 
matching for CPVLAT, and deep neural networks for CNNs. Con-
trary to other methods, CNNs are trained on a much larger data 
set (ImageNet) not related to cultural heritage. 

Table 1 shows the results of each feature with respect to the 
different categories. Fisher vectors almost consistently outperform 
the other methods, which shows that classical computer vision 
methods provide a strong baseline for visual similarity even with a 
large variety of classes. As we can see, the combined mean AP 
(mAP) is less than 28%, which shows the complexity of the task. 
Semantic is the most difficult category, whereas visual is the easi-
est, although these categories are the ones containing most 
classes and thus most samples. 

We show in Figure 4 detailed results for some of the best and 
worst classes for each feature. While it is easy to understand why 
some classes are difficult, like “drum” or “whip,” which are tiny, 
blurry details combined with few training samples (between ten 
and 15), it is worth remarking that most of the easy classes obtain 
good results mainly for statistical reasons. For instance, all the 
images with the label “Danish” are from the same data set of 
sketches representing the Danish army during the 18th century. 
Likewise, the sewer class contains only maps of the sewers of Paris 
that are visually very similar. 

INTERACTIVE SEARCH
In an interactive search, we consider the scenario where a user is 
searching for a subset of the collection corresponding to a specific 
concept. This can be the case when a new class is inserted in the 
thesaurus, for example. In that case, the user wants to retrieve all 
of the images belonging to the concept with the minimum 
amount of interaction with the system (i.e., the minimum num-
ber of clicks). A typical session is as follows: starting from a single 
image belonging to the class, we interactively select five images, 
label them and add them to the pool of known images; retrain the 
classifier; and present the results for the next round of interaction 
until 50 images are labeled. 

To evaluate performances in this setup, we compared the per-
formances of two strategies of interaction by measuring the mAP 
against the number of labeled images (averaging ten sessions per 
class). The “BestSample” strategy selects the most relevant sample 
as evaluated by the current classifier (i.e., ( )max f xx  with f  the 
current classifier), while the “simple” strategy [25] selects the 
sample closest to the margin (i.e., ( ) ) .min f xx  Note that the 
labeled images are counted when computing the mAP, which 
biases the results compared to the classical labeling task. However, 
counting the labeled samples is coherent with the end-user appli-
cation that should provide all correct results to the user, including 
those seen during the interaction. 

We show in Figure 5 the mAP against the number of labeled 
images. As we can see, both strategies perform about the same 

regardless of the features, with a slight advantage for the BestSam-
ple strategy. This can easily be explained by the nature of our data, 
where most classes are very small and diverse. In such a case, sam-
ples close to the margin are likely to be negative ones mainly due 
to the low appearance probability of the relevant class. Fisher vec-
tors also outperform other features in this task. Contrary to the 
labeling task, CPVLAT offers better performances than CNNs, 
which means this feature is more able to discriminate and less 
likely to generalize, which is consistent with the retrieval task. 
This is probably due to the strong relation of CPVLAT with key-
point matching schemes. 

Furthermore, it is interesting to note that the best mAP perfor-
mance after 50 labeled images is only around 17%. Considering 
that there are few classes with more than 50 images and recalling 
that the labeled images are counted in the mAP, a good active 
learning strategy should be able to obtain much higher mAP. 

CONCLUSIONS
The main conclusions of this article are threefold: 

1) We discussed the availability of large cultural heritage 
image collections that are currently being digitized, and which 
we believe will be a major topic of interest in the content-based 
indexing community. 
2) By carefully looking at how these collections are currently 
manually indexed, we detailed specific tasks that are out of the 
scope of current content-based indexing problems, although 
they are of great interest for the users of these cultural heritage 
collections. 
3) By performing a review of currently available techniques of 
content-based indexing, and testing a baseline method on the 
BnF collection, we show that there is still a lot of research to 
be done to achieve satisfactory results. 

1 5 10 15 20 25 30 35 40 45 50
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CPVLAT Best Sample CPVLAT Simple
Fisher Vectors Best Sample Fisher Vectors Simple
CNN−s Best Sample CNN−s Simple

[FIG5] The mAP against the number of labeled images for two 
active strategies.
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The main open questions concerning the design of similarity 
measures specifically tailored for cultural heritage collections are 
with respect to the wide range in type and scale of signal proper-
ties to be encoded in the signature. In particular, it is very difficult 
with the presented techniques to design a numerical representa-
tion that can encode both microscopic properties, such as canvas 
patterns or brush strokes in painting, and macroscopic properties, 
such as a scene layout or a direction of illumination. Designing a 
similarity measure that can tackle all these different types and 
scales of similarities is probably the biggest challenge in the 
indexing of cultural heritage collections. 

The second problem arises from the paradoxical scarcity of 
the data. While data are massively available, including cultural 
heritage images, examples of specific categories may not. For 
example, only a few examples of an antic coin may be available. 
In such circumstances, methods that require a large amount of 
data to train their parameters are hindered and may not be able 
to obtain satisfactory results. Designing methods able to per-
form well on very precise similarity tasks with only few relevant 
training examples is the second challenge in the indexing of cul-
tural heritage collections. 
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ith the advance of three-dimensional (3-D) 
scanning technology, the cultural heritage 

community is increasingly interested in 3-D 
scans of cultural objects such as antiques, 
artifacts, and heritage sites. Digitization of 

these objects is commonly aimed at heritage preservation. Since 
3-D color scanning has the potential to tackle a variety of tradi-
tional documentation challenges, the use of signal processing 
techniques on such data can be expected to yield new applications 

that are feasible for the first time with the aid of captured 3-D 
color point clouds. Our contributions are twofold. First, we pro-
pose a simple method to solve partial differential equations (PDEs) 
on point clouds using the framework of partial difference equa-
tions (PdEs) on graphs. Second, we survey several applications of 
3-D color point cloud processing on real examples for which signal 
processing researchers can develop tools that can be valuable for 
museum specialists. The results of these methods have been 
reviewed by experts in the arts and found promising.

INTRODUCTION
Historians, archaeologists, and museum curators are interested in 
the preservation of pieces of art and want to make them available 

[François Lozes, Abderrahim Elmoataz, and Olivier Lézoray]

[Opportunities for cultural heritage]

PDE-Based Graph 
Signal Processing for 

3-D Color Point Clouds

W
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to as wide an audience as possible. 
While direct encounters with the 
material pieces of art will always have 
an essential value for museum spe-
cialists, one important concern for 
museum curators is the preparation 
of catalogs for the purpose of object 
identification and examination. Tra-
ditionally, museum specialists have 
used two-dimensional (2-D) imaging 
techniques such as hand drawings, photographs, or document 
scans; see [1] and [2]. Unfortunately, these standard formats have 
the limitation of being selective and insufficient to record nuanced 
information about the complete shape, color, and texture of the 
object. In addition, some objects might undergo important 

changes over time, and in this case, 
the preservation of the object state 
(at a given temporal snapshot) is 
important. These issues can now be 
addressed by using 3-D color scan-
ning, which has the ability to record 
the complete object in great detail. 
The production of digital 3-D copies 
of pieces of art has therefore gained 
considerable attention from the cul-

tural heritage community [3]. The recent proliferation of com-
mercial 3-D digital scanning devices has led to the establishment 
of 3-D scanning as a practical reality in the field of cultural heri-
tage preservation [4]. The interest is evident: it provides a high-
precision digital reference of a cultural object and makes possible 
mass distribution and consultation. 

Most traditional signal processing methods in art investiga-
tion, such as filtering, PDE-based processing, and wavelets, are 
designed for data defined on regular Euclidean grids; see [2] and 
[5]. With 3-D color point clouds, the data takes the form of 
unstructured raw point samples without any attached geometry. 
Traditional signal processing tools cannot be directly applied on 
raw 3-D color point clouds since there is no structuring informa-
tion. In addition, it is not desirable to transform point clouds to 
meshes since this requires sampling points with a loss of accu-
racy and this is not compatible with the goal of high-fidelity 
conservation. Therefore it is essential to investigate a frame-
work for the adaptation of signal processing tools for 3-D point 
cloud processing. 

Our contributions are twofold. First, we propose a simple 
method for adapting and solving PDEs on point clouds. This 
method relies on the framework of PdEs on weighted graphs [6] as 
shown in Figure 1. Second, we survey several applications in 3-D 
color point cloud processing where signal processing tools can be 
applied to images of interest to art and museum specialists. From 
a signal processing point of view, most of these problems can be 
formulated as inverse problems for graph signals [7] (signals living 
on graphs representing 3-D color point clouds as in Figure 1).

3-D COLOR POINT CLOUDS
This section details how 3-D images of historic or art items can be 
acquired. We first provide a review of the benefits and disadvan-
tages of each of the current technologies. In cultural heritage, two 
main approaches are used to digitize a 3-D object. 

The first approach is photogrammetry. This is an image-based 
modeling technique where multiple photos are taken to retrieve 
3-D data coordinates. Photogrammetry requires only cameras and 
is the least expensive approach. However, it works only with small 
objects that have regular geometric shapes. The second approach 
is laser scanning. In this approach, the scanner acquires many 3-D 
points of the object to digitize. The precision is much better but 
both the cost and the acquisition time are greater. In this article, 
we focus on this latter type of 3-D raw point clouds. 

Figure 2 shows the acquisition of several World War II items, 
acquired by a Konica Minolta VIVID-9i noncontact 3-D laser 

3-D Colors
Point Clouds

Graph Construction

Graph Weighting

Inverse Problems Solving
Restoration, Filtering, Interpolation,

Inpainting, Colorization, Segmentation

Continuous Formulation
of Inverse Problems

with PDEs

Transcription with the
PdEs Framework

on Graphs

[FIG1] The PdEs framework on weighted graphs can be applied 
to solve PDEs on 3-D point clouds.

(a) (b) (c)

[FIG2] Some objects from World War II acquired with our 3-D
scanner at the Mémorial of Caen. (a) A lamp. (b) A canteen. 
(c) Part of a destroyed church.

WITH THE ADVANCE OF 3-D
SCANNING TECHNOLOGY, THE

CULTURAL HERITAGE COMMUNITY 
IS INCREASINGLY INTERESTED IN 

3-D SCANS OF CULTURAL OBJECTS 
SUCH AS ANTIQUES, ARTIFACTS, 

AND HERITAGE SITES.
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scanner with a lens of f 25= -mm 
focal length at a distance of 0.6 m. 
According to the specification of 
the scanner, this corresponds to 
an accuracy of digitizing of 

.0 05!  mm. 
A point cloud is composed of raw data { , ..., } .d dD n1=  One 

associates to each d Di !  a 3-D coordinate vector { , ..., }p pP n1=

with ( , , ) ,p p p p Ri i
x

i
y

i
z T 3!  and a color vector { , ..., }c cC n1=  with 

( , , ) .c c c c Ri i
R

i
G

i
B T 3!  We define for a given point cloud a function 

: ,f RD* 3"  which is either :f D P* "  or : .f D C* "  The func-
tion f *  is difficult to process and to analyze with classical signal 
processing techniques because the underlying point cloud lacks of 
any topological structure. Therefore, classical 2-D signal processing 
techniques cannot be considered and new dedicated graph signal 
processing techniques are needed. 

GRAPH CONSTRUCTION FROM POINT CLOUDS
The proposed approach to process point clouds starts by creat-
ing a weighted graph from a given point cloud. This section 
explains how to build such a graph. This latter method is com-
posed of two parts: first the topology of the graph is defined 
and then the edges of the graph are weighted. 

GRAPH CONSTRUCTION
This section discusses how to build a weighted graph from 3-D 
point clouds. The creation of a graph requires several steps. 

1) Vertices are created from the raw data. 
2) The vertices are connected with edges to build a proxim-
ity graph based on geometrical structure of the point cloud. 
3) Weights associated with each edge are calculated. 

Weights of edges are deduced from values associated to verti-
ces (the graph signal) and patches can be used to compute a 
better similarity value that takes account of local neighbor-
hood similarities. 

Graph creation from point clouds is challenging. Indeed, the 
structuring information is lacking, and the data is not naturally orga-
nized in a manifold. Therefore, the set of edges cannot be easily 
determined. Given a point cloud P  with associated coordinates 
{ ,, , }p p Rn1

3f !  there are many ways of associating a graph to 
such a data set. Since point clouds data exhibit a geometrical struc-
ture, proximity graphs are preferable: if two data points satisfy certain 
geometric requirements, the corresponding vertices in the graph are 
connected by an edge. To each raw data point ,d Di !  one associates 
a vertex of a proximity graph G  to define a set of vertices 

{ , , , } .v v vV n1 2 f=  Then, determining the edge set f  of the prox-
imity graph G  requires defining the neighbors of each vertex vi

according to its embedding pi  using the Euclidean distance. Among 
many possible choices, we choose to consider the symmetric k-near-
est neighbor graph. An undirected edge ( , )v vi j  is added between 
two vertices vi  and v j  if the distance between pi  and p j  is 
among the k  smallest distances from either pi  or p j  to all the 
other data points. The construction of such a graph being compu-
tationally expensive for large point clouds, a k-dimensional tree is 
used [8] to speed up the k-nearest neighbor search. 

GRAPH WEIGHTS
Once the graph has been created, 
it has to be weighted. If one wants 
to ignore the vertex similarities, 
the weight function w  can be set 
to ( , ) ,  ( , ) .w v v v v1i j i j6 ! f=  To 

account for the similarities between the graph signals associ-
ated with the vertices, it is possible to use similarity functions 
based on distances to define the edge weights. Given an initial 
function ,:f RV m0 "  computing distances between vertices 
consists of comparing their features (as a function of ) .f 0  To 
this end, each vertex vi  is associated with a feature vector 

.( )P v Ri
q!  From this, a usual similarity measure is provided 

by the Gaussian kernel 

( , )
||

.
( ) ( ) | |P P

expw v v
v v

i j
i j

2
2
2

v
= -

-f p (1)

Traditionally, one has simply ( ) ( ) .fP v vi i
0=  However, in 

image processing an important feature vector is provided by 
image patches [9]. In [10], we have proposed a new definition 
of patches that can be used with any graph representation asso-
ciated to meshes or point clouds. We detail the latter. 

PATCH DEFINITION
Around each vertex we build a 2-D grid (the patch) describing 
the neighborhood. This grid is defined on the tangent plane of 
the point (i.e., the vertex). The patch is oriented and finally 
filled in with a weighted average of the graph-signal values in 
the local neighborhood. We detail these two steps next. 

Orientation
The first step consists of estimating the orientation of each 
patch. The algorithm first deduces a tangent vector ( )t vi1  from 
the normal vector ) .(n vi  We use a local principal component 
analysis on the coordinates pi  to estimate this normal vector: 

( ) ) .(t nv vi i0 =  Let x y z, ,  be the three axes of a 3-D space, the 
first tangent vector ( )t vi1  is computed with  

( ) ( )

( ) ( )

| ( ) |t
t x t
t z z tv v v

v v

1

otherwise

ifi i i

i i1 0

1 0 0

#

# $

=

= =Y)
(2)

with #  the cross product and $  the dot product. The condition 
on the first line of (2) checks if the t1  and z  axis vector are col-
linear. If they are not collinear, t1  is calculated from the z  axis, 
otherwise the x  axis is used. Then a bitangent vector ( )t vi2  is 
computed by ( ) ( ) ( ) .t t tv v vi i i2 0 1#=  The orientation vectors 

( ), ( ), ( )o o ov v vi i i0 1 2  are then respectively assigned to ( ),t vi1

( ), ( ) .t tv vi i2 0

Patch Construction
The second step consists of constructing the patches. Given a 
point ,pi  a patch is defined for this point by constructing a 

IN CULTURAL HERITAGE, TWO 
MAIN APPROACHES ARE USED 

TO DIGITIZE A 3-D OBJECT.
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square grid around pi  on its tangent plane in the orientation of 
the patch defined by ) .( ,o o0 1  We fix the patch length l  manu-
ally. Let n  be the number of cells on a row of the patch. A 
square lattice of n2  cells is constructed around pi  with respect 
to the basis obtained from the orientation computation. Each 
cell has a side length of / .l n  A local graph is then considered 
that connects the vertex vi  to all the vertices v j  contained in a 
sphere of diameter .l 2  Then, all the neighbors v j  of vi  are 
projected on the tangent plane of pi  giving rise to projected 
points .pil  To fill the patch with values, these projected points 
pil  are associated with the cells with the closest center. The 
value of the cell is then deduced from a weighted average of the 
values ( )f v j

0  associated with the vertices v j  that were pro-
jected onto the patch cell. This value is a spectral value (the 
point’s colors). The set of values inside the patch of the vertex 
vi  are denoted ( ) .P vi  Let ( )C vk i  denote the k th cell of the 
constructed patch around vi  with [ , ] .k n1 2!  With the pro-
posed patch construction process,  define the set 

( ) { | ( )}pV v v C vk i j j k i!= l  as the set of vertices v j  that were 
associated with the k th patch cell of .vi  Then, the patch vector 
is defined as : 

( )
( , )

( , ) ( )
,

c p

c p
P v

w

w f v

( )

( )

[ , ]

i
p

v V v
k j

p
v V v

k j j

k n

T0

1j k i

j k i

2

=

!

!

!

J

L

K
K
KK

N

P

O
O
OO/

/
(3)

with ( /, ) ( )c p c pexpwp k i k i 2
2 2v= - - l  where the ck  are the 

coordinate vectors of the k th patch cell center. This weighting 
takes into account the distribution of the points in the cells of 
the patch by computing their mean feature vector. Figure 3(a) 
summarizes the method of patch construction. Figure 3(b) 
and (c) shows that points with similar geometric configura-
tions are close with respect to the patch distance. With the fol-
lowing (parameters are respectively .0 3v =  and ) .n 5=

GRAPH SIGNAL PROCESSING
This section provides the mathematical definitions needed to 
understand the construction of weighted graphs from point clouds. 

PdEs ON WEIGHTED GRAPHS
The definitions presented here provide the basis on which it is 
possible to translate PDEs on graphs into PdEs on graphs. 
Most of these definitions are from [6]. 

DEFINITIONS
A weighted graph ( , , )wG V E=  consists of a finite set 

{ , , }v vV N1 f=  of N  vertices and a finite set V VE #1  of 
weighted edges. Assume G  to be undirected, with no self-loops 
and no multiple edges. Let ( , )v vi j  be the edge of E  that connects 
two vertices vi  and v j  of .V  Its weight, denoted by ( , ),w v vi j

represents the similarity between its vertices. Similarities are 
usually computed by using a positive symmetric function 

:w RV V "# +  satisfying ( , )w v v 0i j =  if ( , ) .v v Ei j "  The 
notation ~v vi j  is also used to denote two adjacent vertices. The 
degree of a vertex vi  is defined as ( ) ( , ) .v w v v

~w i i jv vj i
d =/  Let 

( )H V  be the Hilbert space of real-valued functions defined on 
the vertices of a graph. A function ( )f H V!  assigns a real value 

( )f vi  to each vertex .v Vi !  We define the internal border of a set 
A V1  as { | ~ , } .A v A v v v Ai j i j2 7 2! !=-

Similarly, we define the space ( )H E  of functions that are 
defined on the set E  of edges. Given a function : ,f RV "  its p,

and ,3  norms are given by 

( ) , ,f f v p1with
/

p i
p

v

p1

Vi

31#=
!

c m/ (4)

( ) , .maxf f v pfor
v

i
Vi

3= =3
!

(5)

DIFFERENCE OPERATORS ON WEIGHTED GRAPHS
Let ( , , )wG V E=  be a weighted graph and :w RV V "# +  a 
weight function that depends on the interactions between the ver-
tices. The difference operator [6], denoted : ( ) ( ),d H V H Ew "  is 
defined for all ( )f H V!  and ( , )v v Ei j !  by 

( ) ( , ) ( , ) ( ( ) ( )) .d f v v w v v f v f vw i j i j j i= - (6)

The weighted gradient operator of a function ( ),f H V!  at a 
vertex ,v Vi !  is the vector defined by 

( ) ( ) ( ) ( , ) .f v d f v vw i w i j v
T
Vjd = !^ h (7)

o2(vi)

o0(vi)

o1(vi)

pi

P (vi)
P (vi)

l

(a)

(b) (c)

[FIG3] (a) The interpolation of the content of the patch. l  is the 
patch length. ( )o vi0  and ( )o vi1  are the orientation of the patch 

( )P vi  at a point .pi  Elements marked by #` _  symbol 
correspond to the projected neighbors pil  of the point pi  on the 
patch. These projections are used to deduce values of each 
patch cell (a “o” symbol) by a weighted average of the 
associated graph signal values. (b) A point cloud with a selected 
vertex (in white), and the patch descriptor of that vertex. 
(c) A point cloud colored by the patch-based distance between 
all points and a given selected one, from most similar (in red) to 
least similar (in blue).

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [107] JULY 2015

The p,  norm of this vector is defined, for ,p 1$  as 

( ) ( ) ( , ) ( ) ( ) .f v w v v f v f v
~

/ /
w i p

v v
i j

p
j i

p p2 1

j i

d = -c m/ (8)

The external and internal morphological directional difference
operators are defined as in [11] to be ( ) ( , ) ,d f v vw i j

!^ h  with 
( ) ( , )maxx x 0=+  and ( ) ( , ) ( , ) ( ) .min maxx x x x0 0=- = - = -- +

The corresponding discrete upwind weighted gradients are 

( ) ( ) ( ) ( , ) .f v d f v vw i w i j v

T

Vj
d =! !

!
`^ h j (9)

The p,  and the ,3  norms of these gradients are 

( ) ( ) ( , ) ( ) ( ) ,f v w v v f v f v
~

w i p
v v

i j
p

j i
p p

2

1

j i

d = -! !`^ h j= G/ (10)

( ) ( ) ( , ) ( ( ) ( )) ) .maxf v w v v f v f v
~w i v v i j j i

j i
d = -! !

3 (11)

p-LAPLACE OPERATORS ON WEIGHTED GRAPHS
The isotropic weighted p-Laplace operator, with [ , [,p 1 3! +  at 
a vertex v Vi !  is defined on ( )H V  by [6] as 

( ) ( ) , ) ( ( ) ( ) ,f v v v f v f v, ,
~

w p
i

i w p
i

v v
i j i j

j i

}D = -^ h/ (12)

where 

( , ) ( , ) ( ( ) ( ) ) .v v w v v f v f v2
1

,w p
i

i j i j w i
p

w j
p

2
2

2
2d d} = +- - (13)

The 3-Laplacian is defined by [12] as 

( ) ( ) ( ) ( ) ( ) ( ) | | .f v f v f v2
1

,w i w i w id dD = -3 3 3
+ -8 B (14)

From the definitions of these discrete difference operators on 
graphs, we are now in position to translate any PDEs that involves 
gradient, p-Laplacian or 3-Laplacian in their continuous formula-
tion onto Euclidean domains. In the sequel, we will consider directly 
the discrete formulation on graphs; see [6] for further details. 

REGULARIZATION ON GRAPHS
Here we present some PDEs on graphs and show a methodology 
to regularize the functions defined on the vertices of graphs. Let 

( )f H V0 !  be a given function defined on the vertices of a 
weighted graph ( , , ) .G wV E=  In a given context, this function 
represents an observation of a clean function ( )h H V!  cor-
rupted by an additive noise ( )n H V!  such that .f h n0 = +

Regularizing functions on graphs using either isotropic or aniso-
tropic p-Laplacian, was proposed in [6] and [13]. Recently, a new 
family of p-Laplace operators based on a divergence formulation, 
which unifies both the isotropic and anisotropic p-Laplacian on 
graphs, has been proposed in [10]. 

To recover the uncorrupted function ,h  the processing task is 
to remove the noise n  from .f 0  A commonly used method is to 
seek a function ( ),f H V!  which is regular enough on ,G  and 

also close enough to .f 0  This can be formalized by the minimiza-
tion of an energy functional, that involves a regularization term 
(or penalty term) plus an approximation one (or fitting term). This 
article considers the following model: 

( )argminh J f f f2:
,

f
w p

0
2
2

RV
. m+ -

"

z (15)

 ( ) ( ( ) ( ) )J f f vwhere ,w p v w i pVi
dz=

!

z / (16)

is a gradient-based functional, and R!m  is a regularization 
parameter, called the Lagrange multiplier, that controls the 
tradeoff between the penalty term and the fitting term. The 
function ( )$z  is a positive convex function that penalizes large 
variations of f  in the neighborhood of each vertex. 

To solve (16), we consider the Euler–Lagrange equations 

( )
( )

( ( ) ( )) , ,f v
J f

f v f v v0 V,

i

w p
i i i

0

2
2

6 !m+ - =
z

(17)

where the first term denotes the variation of (16) with respect to f
at a vertex .vi

In [10], we have proven that the solution of (17) can be 
obtained with the following iterative algorithm: 

( )
( ) ( )

f v
f v f v

,
, ,

~

,
, ,

~n
i

v v
p f

v v

i v v
p f

v v

n
j

1

0

i j

j i

i j

j i

m b

m b

=
+

+

z

z

+

/
/

(18)

with 

( ) ( )f v f v,
, ,

,
, ,

v v
p f

v v
p f

j i
p 2

i j i jb a= -z z - (19)

and 

( , )
( ) ( )
( ( ) ( ) )

( ) ( )
( ( ) ( ) )

.w v v
f v

f v
f v

f v, , /
v v

p f
i j

p

w i p
p

w i p

w j p
p

w j p2
1 1i j

d

d

d

d
a

z z
= +z

- -

l l
f p (20)

Figure 4 shows such color filtering of a given 3-D colored point 
cloud (obtained from a laser scan of a Mayan temple wall). 

APPLICATIONS
This section gives an overview of 3-D color point cloud applications. 
We illustrate the abilities of the proposed methods and algorithms 

(a) (b)

[FIG4] The filtering of a noisy Mayan wall with a preservation of 
edges: (a) a noisy point cloud and (b) a denoised point cloud.
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for signal processing on point clouds. 
(All of the 3-D point clouds we used 
are available at https://lozes.users.
greyc.fr/.) The typical graph signals 
are point (respectively vertices) coor-
dinates or colors. Given a weighted 
graph ( , , )wG V E=  associated to a 
point cloud, consider an initial graph 
signal :f RV m0 "  with .m 3=  This 
signal will be either the vertices’ coor-
dinates, in which ,( )f pvi i

0 =  or the vertices’ colors, in which 
( ) ( ( ), ( ), ( ) ),f v f v f v f vi

R
i

G
i

B
i
T0 =  where ( )f vX

i  denotes the X
color component of the color at the vertex .vi

The approach we developed can be interesting within a cul-
tural heritage documentation, analysis, and dissemination per-
spective (according to the evaluation done by art expert Livio De 
Luca, as mentioned in the “Acknowledgments” section). First, 

the idea to introduce a method for 
structuring color/texture informa-
tion within a point-based 3-D repre-
sentation is particularly relevant 
within the 3-D digitization and doc-
umentation purposes. Points clouds 
(especially if enriched by color 
information) include the essential 
geometric information useful for 
several applications scenarios 

related to the heritage artifacts analysis (measurement, visual-
ization, semantic annotation, etc.). The point clouds processing 
methods we suggest (colorization, filtering and simplification, 
and inpainting of missing data and segmentation) can find sev-
eral effective applications within the digital driven process for 
documenting heritage buildings, archaeological sites, and 
museums’ objects. 

(a) (b) (c) (d)

[FIG5] The colorization of the bishop castle (approximately 1.5 million points) and a Bas-relief (with 506,000 points): (a) the original 
point cloud with annotations, (b) the colored point cloud, (c) the colorless Bas-relief with annotations, and (d) the colorized Bas-relief.

(a) (b) (c) (d) (e) (f)

[FIG6] The colorization of some cultural heritage statues [sizes of point clouds: (a) and (b) 253,000, (c) and (d) 254,000, (e) and 
(f) 791,000 points]. (a) Scribbles, (b) result, (c) scribbles, (d) result, (e) scribbles, and (f) result.

THE USE OF ADAPTIVE
GEOMETRICAL WEIGHTS RELYING 
ON A GEOMETRIC FEATURE MAPS 

PATCHES ENABLES TO BETTER TAKE
INTO ACCOUNT THE GEOMETRY 

OF THE POINT CLOUD DURING THE
COLOR DIFFUSION AND BLENDING.
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COLORIZATION
Colorization is the process of adding colors on an uncolored 
object. Let :f V C0 "  be a function that assigns colors to vertices. 
Let A V1  be the subset of vertices with unknown colors and A2
the subset of vertices with known values. The purpose of interpola-
tion is to find a function ft  approximating f 0  in V  minimizing 
the following isotropic total variation energy for :v Ai !

( ) ( )min R f f v
(

,
)

p
p

f H
w p w i

v AV
i

d=
!

!
' 1/ (21)

with ( ) ( ),f v f vi i
0=  for .v Ai 2!  This can again be solved using 

the Euler–Lagrange equations 

( ) ( ) ,
( ) ( ) .

f v v A
f v f v v A

0,w p
i

i i

i i i
0

6

6 2

!

!

D =

=
) (22)

The solution of (22) can be obtained with the iterative algo-
rithm in (18) with , .v A0 i6 2!m = -  The similarity function 

:w RV V "#  is computed from the comparison of patches of a 
geometric feature. This geometric feature is computed from the 
degree at a vertex using local height weights. These later weights 
are obtained from the similarity of height patches. Since the color-
ization starts from initial color annotations, not all the points are 
considered simultaneously. The colorization starts from the 
points that are neighbors to the annotated colors and the set 
of points to be colorized grows as the algorithm iterates. The col-
orization process stops when the set of vertices to colorize is 
empty and has converged to a stable solution. The use of adaptive 
geometrical weights relying on a geometric feature maps patches 
enables to better take into account the geometry of the point 
cloud during the color diffusion and blending. 

Figure 5 shows the colorization of the bishop castle and of a 
Bas-relief (a type of sculpture in which shapes are carved). 
Figure 6 shows the colorization on some uncolored statues. 
Both cases show that the colorization allows restoration of col-
ors not captured by the 3-D scanner (the bishop castle case), but 
also allows placement of colors on an initially uncolored object 
(statues cases) for a more realistic rendering. 

FILTERING AND SIMPLIFICATION
Modern 3-D scanners can generate large point clouds with several 
million or billion points. The processing of such data is difficult. 
Instead of downscaling the point clouds and losing details, we pro-
pose a way to remove fine details without modify the appearance 
of the point cloud. It can be interesting to filter and simplify com-
plex and redundant point clouds for Web publication purposes. 

Let :f V P0 "  be the vertices coordinates. The iterative algo-
rithm of (18) allows filtering the geometry of 3-D objects using 

.0m =  Figure 7 shows the simplification of a point cloud of the 
Saint Eligius statue with a reduction in the number of points by 
77.6% using parameters .p 0 1=  and ( ) .s spz =  With such a 
simplified point cloud, the processing of any data on this point 
cloud, like colors, becomes computationally feasible. Indeed, 
reducing the quantity of data to process makes algorithms and 
renderings faster. Finally, the simplification could be leveraged in 

(a) (b)

(a) (b)

(c) (d)

[FIG7] The simplification of a point cloud of the Saint Eligius 
statue after 10,000 iterations. (a) The original point cloud 
(201,000 points) and (b) the point cloud simplified (45,000 points).

[FIG8] The restoration pipeline of a vase. The geometric part is 
first filled, then the missing color is inpainted: (a) the denoised 
vase, (b) the hole to fill in (boundary in yellow), (c) the filled-in 
hole, and (d) the inpainted hole.
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a meshing process by producing 
more regular polygons. 

INPAINTING OF MISSING
DATA
Inpainting consists of construct-
ing new values for missing data in 
coherence with a set of known data. This can be the reconstruc-
tion of deteriorated parts of a 3-D object represented as a point 
cloud. This can be of interest for extending color information to 
missing parts (e.g., for virtual restoration purposes). Recent 
inpainting work tends to unify local and nonlocal approaches 
under a variational formulation (see [14] and references therein 
for more details). We consider that data are defined on a general 
domain represented on a graph ( , , ) .wG V E=  Let :f V C0 "

be a function that assigns colors to vertices. Let A V1  be the 
subset of vertices with unknown values and A2  the subset of 
vertices with known values. The purpose of the interpolation is 
to find a function ft  approximating f 0  in V  and that corre-
sponds to solving 

( ) ( )
( ) ( ) .

,f v v
f v f v v

0 A
A

,w i i

i i i
0

6

6 2

!

!

D =

=
3'

(23)

The infinity Laplacian is used here 
for interpolation since it provides 
better inpainting results than the 
isotropic p -Laplacian interpola-
tion (see [15]). Works in [10] have 
shown that this interpolation prob-
lem has a unique solution that can 

be obtained using the iterative algorithm presented in [12]. At the 
end of each iteration the set A2  is updated by A( )n 12 +

,A A( ) ( )n n,2 2= -  and A( )n 12- +  is updated from .A( )n 12 +  The 
algorithm stops when the set of vertices to inpaint is empty. Fig-
ure 8 shows the restoration of a broken vase. The geometric part is 
corrected first, then the hole is filled; finally, the color is inpainted. 
One major objective of the cultural heritage is the preservation of 
an object. This inpainting algorithm provides a plausible virtual 
reconstruction of the original state of an object. The algorithm 
can also be used to remove and subvert parts of a damaged object, 
as in Figure 9. 

SEGMENTATION
Segmentation is the process of partitioning a 3-D object into mul-
tiple regions. Let :f RV "  be the function on a graph 

( , , )wG V E  to segment. The segmentation problem can be for-
mulated as a PDE to be solved on weighted graphs. This latter for-
mulation is based on front propagation using the eikonal equation 
to compute general distances on graphs. Let { , ..., }L l ln1=  be the 
set of labels and let ...S S Sn

0
1
0 0, ,=  be the corresponding set of 

labeled vertices. The goal of label propagation is to label each ver-
tex u V!  under the condition that u  is a neighbor of .Si

0  Such 
a label propagation can be formulated as solving the eikonal equa-
tion on a graph G  as 

( ) ( , ) ( )

( ) ( ) ,

v t P x v

f v v x

V

V

w i p l i

i i

id !

! 1

z

z c

=

=

-

)
(24)

(a) (b) (c) (d)

[FIG10] Segmentation of a vase by resolving the eikonal equation on graphs [770,000 points for (a) and 200,000 points for (d)]:  
(a) a vase with labels, (b) the result, (c) a vase with labels, and (d) the result.

(a) (b) (c)

[FIG9] The inpainting of a part of a damaged wall: (a) the object 
to inpaint, (b) the inpainting marker, and (c) the inpainting result.

INPAINTING CONSISTS 
OF CONSTRUCTING NEW VALUES 

FOR MISSING DATA IN COHERENCE
WITH A SET OF KNOWN DATA.
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where :F RVl
3

i "  is a speed function, ( ) / ( ) ,P v F v1l i l ii i= ^ h  and 
: RV "z  represent the set of initials labels. The resolution of 

the eikonal equation (24) on a weighted graph has been investi-
gated in [16]. 

To segment a mesh or a point cloud according to the vertices 
colors, compute the similarity function :w RV V "# +  by tak-
ing into account the colorimetric distance as ,w e ( ) ( ) /f fv vi j

0 0 2

= v- -

where :f V C0 "  are the colors associated at the node .v Vi !

The function : RV "z  associates an initial label to each vertex 
.vi  The parameters are set as follows: , ( ) ,p F v2 1l ii= =   

.v Vi6 !  Figure 10 shows some segmentation results on point 
clouds after the resolution of the eikonal equation. Segmenta-
tion results are 3-D subsets of the original points clouds. These 
subsets can then be processed by applying the previous graph 
signal techniques such as filtering, simplification, inpainting, 
and colorization. 

CONCLUSIONS
This article has proposed an approach for the processing of 
functions on point clouds represented as graphs. We have 
shown how to translate PDEs using the framework of PdEs. 
The approach allows processing of signal data on point clouds 
(e.g., spectral data, colors, coordinates, and curvatures). We 
have applied this approach for cultural heritage purposes on 
examples aimed at restoration, denoising, hole-filling, inpaint-
ing, object extraction, and object colorization. The results 
demonstrate the many potentials of the point cloud approach 
to the processing of cultural heritage 3-D scanned objects. 
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H
anging in the Saint Bavo Cathedral in Ghent, Bel-
gium, is The Ghent Altarpiece, also known as The 
Adoration of the Mystic Lamb (see Figure 1).  
According to an inscription on the outer frames, it 
was painted by brothers Hubert and Jan van Eyck for 

Joos Vijd and his wife Elisabeth Borluut in 1432. It is one of the 
most admired and influential paintings in the history of art and has 
given rise to many intriguing questions that have been puzzling art 
historians to date [11]. Moreover, the material history of the panels 

is very complicated. They were hidden, dismantled, moved away, 
stolen, and recovered during riots, fires and wars. The recovery of 
the panels by the U.S. Army in the Nazi hoards deep in the 
Altaussee salt mines has particularly marked memories. One panel 
was stolen in 1934 and never recovered. Besides varying conserva-
tion conditions, the panels underwent numerous restoration treat-
ments and were even partially painted over. 

One of the most important unresolved questions related to this 
painting goes back to its creation: the division of hands between the 
two brothers and their respective workshops. The meticulous study 
of the painting technique, its different layers and materials, as well 
as the underdrawings and perhaps even numerous intriguing palm 

[Aleksandra Pižurica, Ljiljana Platiša, Tijana Ružić, Bruno Cornelis, Ann Dooms, Maximiliaan Martens, 

Hélène Dubois, Bart Devolder, Marc De Mey, and Ingrid Daubechies]

[Supporting the painting’s study and conservation treatment]

Digital Image 
Processing of 

The Ghent Altarpiece
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and fingerprints could bring us closer to answering that question. 
However, The Ghent Altarpiece hides many other secrets, like the 
meaning of inscriptions that are difficult to decipher, such as the 
text in the book depicted in the panel Virgin Annunciate.

A major conservation and restoration campaign carried out by 
the Royal Institute for Cultural Heritage (KIK-IRPA), which is 
expected to take at least six years, started in October 2012. One of 
the questions of the treatment, supported by an international com-
mission of experts, concerns uncovering van Eyck’s original paint 
to the extent which can be safely carried out. Indeed, the paintings 
were covered over centuries with disfiguring retouchings, over-
painting, and varnishes. Certain decisions regarding the restora-
tions benefit from multidisciplinary research and signal processing 
could help in this regard. 

In this article, we show progress in certain image processing 
techniques that can support the physical restoration of the paint-
ing, its art-historical analysis, or both. We first introduce a multi-
modal crack detection algorithm, which gives a clear improvement 
over earlier reported crack detection results on The Ghent Altar-
piece. We then show how a relatively simple analysis of the crack 
patterns could indicate possible areas of overpaint, which may be of 
great value for the physical restoration campaign, after further vali-
dation. Next, we explore how digital image inpainting can serve as a 
simulation for the restoration of losses (missing areas in one or 
more layers of the painting, often caused by abrasion or mechanical 
fracture and revealed after the cleaning process). As a separate 
problem, we address crack inpainting by outlining the main chal-
lenges and proposing a solution that improves upon earlier 
reported results on this painting [7]. Finally, we explore how the 
statistical analysis of the relatively simple and frequently recurring 
objects (such as pearls in this masterpiece) may characterize the 
consistency of the painter’s style and thereby aid both art-historical 

interpretation and physical restoration campaign. We carry out our 
analysis on a recently released high-resolution data set and on 
some images taken during the current treatment of the altarpiece. 

DATA SET: “CLOSER TO VAN EYCK”
Until 2012, digitized scans of old photographic negatives, acquired 
by Alfons Dierick [12] and kept in the archives of Ghent University, 
were the only available high-resolution data set of The Ghent 
Altarpiece. The development process of these negatives was 
mainly undocumented, which resulted in a data set where the 
images vary strongly in quality. Earlier reported results of digital 
image processing on The Ghent Altarpiece, such as crack detec-
tion, virtual crack inpainting [7], [24], and pearl analysis [23], 
were all based on images from that old data set. 

We report the results on extremely high-resolution images 
that are publicly available in [31]. This data set is the result of an 
interdisciplinary research project that ran from April 2010 until 
June 2011, with the goal to assess the structural condition of The 
Ghent Altarpiece and determine whether a full restoration of van 
Eyck’s polyptych was necessary. The surfaces of the altarpiece 
were documented with the following imaging modalities: digital 
macrophotography (with a pixel size of 7.2 nm; full panels, 140 
extreme close-ups, and some cleaning tests), infrared macropho-
tography (in the same resolution), infrared reflectography, and 
X-radiography. New acquisitions will be added to this data set in 
the scope of the current conservation-restoration campaign. 

IMAGE PROCESSING IN SERVICE  
OF PAINTING RESTORATION
We address two potential applications of image processing to support 
restoration of paintings: 1) detecting possible areas of overpaint based 
on the analysis of crack patterns and 2) virtually inpainting losses. 

(a) (b)

[FIG1] The Ghent Altarpiece: (a) open and (b) closed. Image copyright Ghent, Kathedrale Kerkfabriek, Luksaweb. 
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CRACK DETECTION IN PAINTINGS
Being able to accurately detect cracks can be very relevant to 
painting conservation, since cracking is one of the most com-
mon forms of deterioration. Fluctuations in humidity, causing 
the wooden support to shrink or expand, is the main reason for 
crack formation. Because the way in which cracks develop and 
spread partly depends upon the choice of materials and methods 
used by the artist, assessing cracks is useful for judging authen-
ticity [4]. Cracks can also assist conservators by providing clues 
to the causes of degradation of the paint surface. An in-depth 
study of the factors contributing to their formation can support 
preventive measures [1]. Furthermore, the analysis of crack pat-
terns provides noninvasive means of identifying the structural 
components of paintings [4]. 

Visually, cracks can be categorized into bright cracks on a dark 
background or dark cracks on a bright background. One can fur-
ther distinguish between different types of cracks such as ageing 
cracks, premature cracking (generally due to drying defects 
related to the painting materials or their application), or cracks 
formed only in the varnish layer when it becomes brittle through 
oxidation. The literature discusses mainly dark cracks; they are 
typically considered as having low luminance and being local (gray 
scale) intensity minima with elongated structure [14]. Different 
crack-detection techniques include simple thresholding, line 
detectors, and various morphological filters (see [1] for an over-
view). The method in [7] operates on a single image modality (visi-
ble image) and combines by means of a voting scheme three-crack 
detection techniques: oriented elongated filters, a multiscale 
extension of the morphological top-hat transformation, and a 
detection method based on dictionary learning [13].

THE BAYESIAN CONDITIONAL TENSOR FACTORIZATION 
METHOD FOR MULTIMODAL DATA
The newly acquired multimodal data set (see Figure 2 for an exam-
ple) allows for new crack detection techniques that are able to make 
use of the information provided by each modality, thereby yielding a 
more reliable detection scheme. However, a pixel-perfect registration 

is required prior to using all modalities together. The panels of The 
Ghent Altarpiece were already roughly registered for adjacent view-
ing in [31], but the spatial alignment of these preregistered images is 
not sufficient in the current context, as the images can be shifted by 
a few pixels or even exhibit local inconsistencies due to the different 
acquisition modalities. The nature of the different modalities and the 
stringent requirements for crack detection make direct registration 
a challenging task. However, since the cracks themselves are a more 
or less consistent component throughout all modalities, we used 
them for the registration process. Crude crack maps are first 
obtained by filtering the unregistered images with elongated filters 
and subsequent thresholding (more details of the exact procedure 
can be found in [7]). It should be noted at this point that the pres-
ence of false positives is not a nuisance as long as the locations of 
most of the cracks in each modality are identified. The crude crack 
maps obtained from the X-radiograph and the visual and infrared 
images are mutually registered using the algorithm described in [5] 
(using the infrared crack map as the reference). The resulting trans-
formation is then applied to the original images. 

Simply applying the methods described in [7], which were 
designed for a single image, requires choosing an additional set of 
parameters per modality, which would be too cumbersome. Here 
we adopt a semisupervised Bayesian approach that estimates for 
each pixel a posterior probability of belonging to the “crack” cate-
gory given a large set of feature vectors extracted over all modali-
ties. These feature vectors are obtained by processing each image 
modality with a number of different filters, commonly used in 
image processing, ranging from morphological filters to multiori-
entation filter banks, as described in [8]. The resulting feature vec-
tors, hereafter denoted as categorical predictors, or predictors for 
short, are quantized into an experimentally chosen number of 
bins. Let , ...,X Xp1  denote p  predictors at a given pixel location, 
and let Y  denote a hidden random variable, taking values 

{ , },y 0 1!  where the label “1” denotes a crack pixel and “0” a 
noncrack pixel. The conditional probability ( | , , )P Y X Xp1 f  is a 
d dp1 # #f  dimensional tensor, with d j  the number of quanti-
zation bins of the jth predictor .X j

(a) (b) (c)

[FIG2] Acquisitions of The Ghent Altarpiece: (a) macrophotography, (b) infrared macrophotography, and (c) X-ray radiography. Images 
used with permission from [31]. Image copyright Ghent, Kathedrale Kerkfabriek, Luksaweb. 
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Using the Bayesian conditional tensor factorization (BCTF) of 
[30], inspired by higher-order singular value decomposition [10], 
the conditional probability tensor can be decomposed as 

( | , , )

( ) ( ),
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for every combination of ( , ) .m xm  The factorization coefficients 
( )y, , ,j j j p1 2m f  can be seen as the latent class allocation probabilities 

and ( )x( )
j
m

mmr  as the response class probabilities, which control in a 
probabilistic manner how the levels of each predictor are clustered. 
The { , , }k d1m mf!  value impacts the number of parameters 
used to characterize the mth predictor. In the special case where 

,k 1m =  (2) yields ( ) ,x 1( )m
m1r =  which means that 

( | , , )P y x xp1 f  will not depend on xm  and the mth predictor can 
be excluded from the model. If k 1m =  for most ms, the categori-
cal predictor model becomes sparse. In practice, we do expect that 
only a few features have a significant impact on the classification 
results. More details on the exact posterior computation can be 
found in [30]. The resulting conditional probability tensor can be 
used as a lookup table where each entry contains a crack probability 
for a specific combination of predictor values. If this probability 
exceeds 0.5, we label the pixel as being part of a crack. 

A comparison between the multimodal BCTF method and 
the crack detection method introduced earlier in [7] on the 
same part of the painting is depicted in Figure 3. It can be 
observed that the older method fails to detect some thin cracks, 
while it falsely labels some thin dark brushstrokes as cracks. It 
is clear that the multimodal BCTF method detects more cracks 
with fewer false positives. 

IDENTIFYING OVERPAINT FROM CRACK PATTERNS
Some features of the detected crack patterns may have potential to 
guide the restorers to places of interest such as retouchings or 
heavily damaged areas. As an example, we applied the BCTF 
method, described previously, on the upper left corner of the Joos 
Vijd panel. Figure 4(a) shows that part of the painting and its cor-
responding crack map. A rather simple analysis consists of count-
ing the number of crack pixels in a sliding window of .100 100#

In doing so we obtain a crack density map (see Figure 4) where we 
can identify low crack density zones as well as high crack density 
zones. The lowest (and highest) crack density zones are obtained 
automatically by hysteresis thresholding, where the first chosen 
threshold is chosen to be very close to the minimum (respectively max-
imum) value of the crack density. Painting conservators confirmed 
that the areas of lowest density marked in white in Figure 4(d) are 
old losses covered with retouching that also overlap on the sur-
rounding original paint. Other zones of low crack density however, 

[FIG3] Crack detection and inpainting. (a) and (b) show a comparison between BCTF and the method in [7], where cracks detected by both
methods are marked in red and the differences in yellow. (a) Yellow indicates cracks detected only by BCTF. (b) Yellow indicates cracks 
detected only by [7]. (c) and (d) show the original visible data and the result of our patch-based inpainting after BCTF-based crack detection.

[FIG4] A crack density analysis within the upper left corner of the 
Joos Vijd panel. (a) The high-resolution macrophotograph. (b) A
detected crack map. (c) Crack density map (blue: low density; red: 
high density). (d) Detected zones of lowest crack density.

(a) (b) (c) (d)

(a) (b)

(c) (d)
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such as the ones seen in the upper left corner of the density map, 
correspond to thinner original paint that developed a different 
crack pattern over time. The interpretation of the crack maps, like 
any other diagnostic tool in art conservation, needs to be checked 
by conservators using other examination techniques and linking 
the evidence by their critical and material skills. 

VIRTUAL INPAINTING
During the ongoing physical restoration of The Ghent Altarpiece,
deteriorated retouching and overpaint are removed, revealing 
underlying losses in the original (see Figure 5). Digital image 
inpainting can virtually fill in these areas and provide a “simula-
tion” for the impact of certain actions to be taken during the phys-
ical restoration process. 

A recent overview of inpainting methods is given in [15], and 
applications to virtual restoration of paintings include [21] and 
[22]. Patch-based methods are capable of replicating both struc-
ture and texture by filling in the missing region patch-by-patch. In 
general, for each patch of the missing region (target patch), a well 

matching replacement patch is found in the available part of the 
image (source region) and copied to the corresponding location. 
Preserving structures is achieved by defining the filling order [9], 
which gives priority to the target patches containing object 
boundaries and fewer missing pixels. The so-called global meth-
ods, like [17] and [25], allow the choice of multiple candidate 
patches (instead of choosing just one best match in a “greedy” 
manner) and define inpainting as a global optimization problem. 

Figure 5 shows a part of the John the Evangelist panel that has 
been cleaned in the current restoration campaign of The Ghent Altar-
piece. Removing overpaint revealed many losses that will be carefully 
inpainted by the conservators, using stable and reversible materials, 
to restore the visual coherence of the original image. In contrast to 
losses and abrasions, age cracks are not inpainted in actual conserva-
tion unless they severely interfere with the painted form. For this rea-
son, the cracks are not inpainted intentionally in this experiment 
(unless they are inside a larger loss and assigned, therefore, to a miss-
ing region). Here we provide a virtual inpainting simulation of some 
parts obtained with the patch-based algorithm of [25] [see Figure 5 
and the enlarged part in Figure 6(a)]. We have chosen to inpaint sev-
eral figurative parts that contain structure and texture. The results 
show how challenging this problem is even for state-of-the-art 
inpainting methods. None of the methods tested so far produced a 
satisfying result that fully (albeit virtually) restored the painted form. 
Experienced conservators master a knowledge of the physical charac-
teristics of the paint layers and of the painted forms that call upon 
complex visual perception and interpretation skills. Virtual inpaint-
ings do not provide alternatives to their work on the original but test 
the potential of the methods that need to be further developed. 

DOES CRACK FILLING HELP YOU READ THAT BOOK?
While cracks are rarely inpainted in the actual, physical restora-
tion, virtual crack removal can be of interest in certain aspects. 

(a) (b)

[FIG5] (a) A part of the cleaned John the Evangelist panel. The marked regions are inpainted in (b). Image copyright Ghent, 
Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.

(a) (b) (c)

[FIG6] The results on a small part of the cleaned John the 
Evangelist panel. (a) The original image, (b) overlay with 
damaged regions marked in red, and (c) the result of the 
algorithm from [25]. Image copyright Ghent Kathedrale 
Kerkfabriek; photo courtesy of KIK-IRPA. 
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For example, crack inpainting may improve the legibility of the 
text present in parts of the polyptych, which can be of great impor-
tance to art-historical and iconographical studies. Virtual inpaint-
ing of the book in the Virgin Annunciate panel was reported in [7] 
on the scans from the Dierick collection. Here we identify some 
limitations of state-of-the-art inpainting techniques for this type of 
problem and introduce an improved method and report the 
results on the new high-resolution scans from the data set in [31]. 

CHALLENGES IN THE BOOK OF VIRGIN ANNUNCIATE
Since cracks typically appear in images as very thin and elongated 
regions, crack inpainting methods are often based on rather sim-
ple, pixel-wise operations, including median filtering [14], [26], 
interpolation [2], and controlled anisotropic diffusion [14]. In 
cases where high-resolution scans are available, such that the 
width of some cracks spans multiple pixels, patch-based inpaint-
ing methods [9], [17], [24] typically yield better results [7], [27]. 

The book in the panel Virgin Annunciate (Figure 2) is a very 
challenging case for virtual inpainting because the width of cracks 
varies greatly and some cracks are difficult to distinguish from 
parts of the letters. Moreover, as the cracks are typically sur-
rounded by bright clouds of background matching color, due to the 
lifting and abrasion of the surrounding paint and thereby imposed 
light reflections, the immediate areas around the cracks are also 
unreliable. The crack inpainting method from [7] specifically tai-
lored to this application already generally improved the legibility of 
the text and was shown to outperform some “general-purpose” 
patch-based inpainting methods like [9] and [17]. However, some 

problems are still present, e.g., parts of the letters through which 
wide cracks are passing are occasionally deleted after virtual 
inpainting. To alleviate this problem, a better approach to handling 
continuation of image structures is needed. We discuss a possible 
solution with encouraging initial results next. 

CRACK INPAINTING
In cases where painted structures, like the characters in Figure 3, 
are relatively small compared to the crack width, it is very difficult 
for the inpainting algorithm to infer the correct structure locally. 
Patch-based inpainting methods typically handle structure propa-
gation by defining the right filling order [9], [15]. Once the filling 
order is determined, most of the methods choose plausible candi-
dates for replacement patches based solely on the agreement with 
the undamaged part of a single target patch [see Figure 7(a)], and 
concentrate on defining effective distance metrics between the 
known portion of the target and the candidates [20]. Matching only 
against a small part within the target patch increases the risk of 
propagating wrong textures and wrong colors into the missing 
region. Global methods, such as [17] and [25], allow multiple can-
didates and optimize their mutual agreement in the overlap 
regions [Figure 7(b)], but even this cannot ensure agreement with 
surrounding undamaged structures: the optimization that takes 
care that neighboring replacement patches mutually agree cannot 
“undo” the damage done by selecting wrong candidates in the first 
place. Ideally, undamaged areas around the target patch should be 
taken into account in the candidate selection as well, ensuring that 
plausible candidates agree with true structures [see Figure 7(c)]. 

(b)

(a)

(c)

[FIG7] Patch-based inpainting and the proposed improvement. (a) A greedy approach chooses one replacement patch based on the 
known part of the damaged patch. (b) A global approach considers multiple candidates and their mutual agreement. (c) Our approach 
in addition adapts the candidate selection according to the locally detected structures.
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Guiding the selection of candidate patches by the agreement 
with undamaged areas is related to the idea of global visual coher-
ence introduced in [29] for video completion. The approach of [29] 
is very effective for replicating larger missing areas and textures, 
but it does not treat continuation of curvilinear structures. Alter-
native solutions that propagate structures along user-specified 
lines [19], [28] showed excellent results in photo editing, but for 
our application the amount of the user intervention required by 
such methods would be prohibitive. 

The main idea of our approach is to simultaneously detect 
directions of local structure propagation and adapt the candidate 
selection accordingly. We propose a fully automatic and low-com-
plexity method for selecting the candidate replacement patches 
based on their agreement with the undamaged part of the target 
patch and with the neighboring undamaged areas, along direc-
tions where the structures are likely to propagate. Let iz  denote 
an image patch centered at position ,i ( , )S i jz z  a certain mea-
sure of similarity between iz  and ,jz  and denote by N ,i k  a direc-
tional neighborhood of iz  along direction .k  We define prior 
preference P ,i j  for selecting a source patch iz  as a candidate 
replacement for the damaged target patch jz  as follows: 

( , ) ( , ) .maxP S S,i j i j
k l N

i l
,j k

z z z z= +
!

/ (3)

The first term measures, as usual, the similarity with the 
known part of the target patch. The novelty is in the second term, 
which takes care of the agreement with the wider context 
around the target patch. In particular, the more the candidate 
patch iz  fits with the neighborhood of the damaged patch jz  in 
any direction where structures of interest are likely to propa-
gate, the more preference it will get in the selection process. 
Common measures of patch similarity are defined in terms of 
the sum of squared differences among the patches ( , )D i jz z

,i j
2z z= -  calculated over the known pixels. We used 

( , ) ( , )S Di j i jz z z z=-  for the candidate selection in (3). With 
this improved candidate selection process in combination with 
simple greedy inpainting (selection of one replacement patch at 

each position), we already obtain a clear improvement over the 
earlier method from [7], as is visible in Figure 8 (notice, in par-
ticular, that the effect of deleting parts of letters is less severe). 
One can also select multiple candidates, with several largest val-
ues of P ,i j  in (3) and subsequently solve the resulting “puzzle” 
using a global optimization method like in [17] and [25]. It 
would be interesting to explore also alternative solutions, like 
the statistics of patch offsets [16] or hierarchical, superresolu-
tion-based inpainting [18]. 

WHAT CAN PEARLS TELL US?
Painted pearls, which are abundant in The Ghent Altarpiece,
provide a nice case study for the statistical analysis of the consis-
tency of the painterly execution. Spatial histograms, or spatio-
grams [3], were employed in [23] as digital signatures of painted 
pearls and showed potential to distinguish pearls painted by dif-
ferent artists. In particular, the pearls in the copy of the panel 
Just Judges, made by J. Van der Veken between 1939 and 1951 to 
replace the panel stolen in 1934, showed clearly different spatio-
grams than those from other panels of the altarpiece. Similar 
conclusions were drawn when comparing the spatiograms of the 
recent reconstructions by other artists. However, this earlier 
analysis in [23] was performed on the old scans of the altarpiece, 
with varying resolutions, which may have affected to some 
extent the numerical findings. It is important to verify the main 
conclusions of this earlier analysis in the light of the new high-
quality photographic material. We also go a step further, extend-
ing the study to different panels of the altarpiece and making a 
hypothesis that the consistency of the painted pearls could pro-
vide an additional support for the division of hands between the 
painters or within the workshop, as well as for detecting possible 
areas of former restorations and overpainting campaigns. 

DIGITAL PEARL SIGNATURES FROM SPATIOGRAMS
An image spatiogram [3] is a generalized histogram, with second-
order spatial moments. Suppose an image consists of N  pixels 
and denote the spatial position of the nth pixel { , ..., }n N1!  by 

(a)

(b)

(c)

[FIG8] (a) Parts of the original image, (b) the results of our method, and (c) the method of [7].
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p x yn n n
T= ^ h  and its intensity by .In  Let b  denote a histogram 

bin, being a range of pixel intensities and let ( )x1b  denote the 
indicator function (returning one if x b!  and zero otherwise). 
The spatiogram triplet for bin b  is then computed as follows: 

( )1c Ib b
n

N

n
1

h=
=

/

( )c I1pb b n
n

N

b n
1

1
n h= -

=

/

( ) ( ) ( ) .c I1p pb b
n

N

n b n b
T

b n
1

1
n nhR = - --

=

/ (4)

The normalizing constant h  is chosen such that .c 1bb

B

1
=

=
/

For bins with ,c 0b =  the values of bn  and bR  are also set to zero 
(not of interest). To enable comparison between images of differ-
ent sizes, we normalize all spatial coordinates to the range [-1, 1]. 
For the purpose of visualization of the highly dimensional spatio-
gram data, [23] proposed spatiogram triple-plots (S1, S2, S3) illus-
trated in Figure 9: 

■ S1: connected centers of bins, ( )x yb b bn = r r

■ S2: bn –positioned counts of bins (the radii of the circles 
are proportional to bin counts)  

■ S3: bn –positioned variances in the x - and y -direction.
Figure 9 demonstrates that mutually similar pearls produce 

similar spatiogram triple-plots. 

CONSISTENCY OF THE PEARLS IN THE ALTARPIECE
Here, we evaluate the consistency of painted pearls in The Ghent 
Altarpiece on the data set in [31]. We measure similarity between 
two painted pearls with the spatiogram similarity index SSim  [6], 
where .0 1SSim# #  In particular, we select 12 sets of pearls 
from five different panels, as marked in Figure 10(a). The size of 
each set and the average radius of the pearls (in pixels) are given 
in parentheses: A1(4, 576), A2(12, 265), A3(24, 273), A4(12, 144), 
B1(7, 177), B2(20, 129), C1(5, 138), C2(6, 111), C3(8, 180), D1(3, 
276), D2(6, 224), and D3(3, 239). We make a comparative analysis 
of the similarity of painted pearls within each set (within-set simi-
larity) and between different sets (cross-set similarity). 

Figure 10(b) shows within-set similarity for the 12 pearl sets, 
computed from 64-bin spatiograms. Clearly, the largest pearls 
(A1) are the most similar, which agrees with the findings of 
[23], but now we can also see that the consistency within each 
set depends also on the panel and the position of the pearls. For 
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[FIG9] (a) and (b) Two pairs of pearls from The Ghent Altarpiece and their corresponding spatiogram triple-plots (S1, S2, S3). 
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[FIG10] Exploring the consistency of the painted pearls in different panels. (a) The selected sets of pearls: A–clothing decoration of God 
the Father; B–the hat of Cumaean Sibyl; C–the diadem and brooch of The Virgin Annunciate; D1–the decoration in Prophet Zachary;
and D2, D3–the diadem and brooch in The Archangel Gabriel. (b) The corresponding SSim values. The central marks show the medians, 
the boxes indicate 25th and 75th percentiles, the extreme vertical lines (whiskers) are 1.5 times the interquartile range, and + marks 
denote the outliers. (c) Some cross-set and within-set SSim histograms.
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example, C2 shows much higher within-set similarity than D1, 
even though D1 pearls are twice as large. This could be attributed 
to the position of D1 pearls (very high in the altarpiece, where they 
are less visible to viewers). Similarly, SSim values are less consis-
tent for B2 than for B1 of the Cumaean Sibyl, in line with the fact 
that B2 pearls are smaller, as well as less densely/neatly arranged 
than the B1 pearls. Sets C1–C3 (from The Virgin Annunciate) and 
D2 and D3 (from The Archangel Gabriel) are on equally impor-
tant places in the altarpiece: two outer panels in the middle row of 
the closed view; see Figure 1(b). Our analysis suggests that C3 
pearls are more consistent than C1 and C2, which agrees with the 
fact that they are larger, more visible, and have a more central 
place in the panel. Furthermore, D2 pearls are almost twice as 
large as C1 (which appear in the same relative position in the 
other panel) and indeed give more consistent spatiograms. How-
ever, there are some interesting exceptions that deserve extra 
attention. D3 pearls seem less consistent than D2, even though 
they are larger and at a more visible place (closer to the viewer). It 
is still unclear whether this could be (partly) attributed to less 
careful execution, the state of varnish, possible retouching or over-
paint, or simply to having a rather small set (three pearls). 

It is also interesting to assess consistency of the painted pearls 
of similar sizes in different panels. Figure 10(c) shows cross-set
SSim  for three different combinations of pearl sets in comparison 
to within-set SSim  for the same sets. The SSim  histograms show 
a high similarity between B1 and C3 sets, and much less between 
B2 and C2. This can be attributed to the fact that B2 and C2 pearls 
are relatively small. Moreover, B2 is a large set of pearls decorating 
a hat, and executing them more consistently would not change 
the overall visual impression much. Also, the cross-set similarity 
between A3 and D3 is much smaller than the similarity within A3, 
which is not surprising since A3 pearls are in the central panel of 
God the Father in the open view and are brimming with jewels 
and reflections, while the D3 ones are in the closed view, figuring 
different type of lighting, possibly executed by different hands 
within the workshop and have quite likely undergone different 
conservation treatments in the past. 

CONCLUSIONS
Signal processing shows promise in helping in the decision-mak-
ing process that is involved in a painting’s conservation and resto-
ration. Our initial results show that analysis of crack patterns 
could indicate certain areas of overpaint, even though the pro-
cessed crack maps still need to be interpreted by conservators 
using other examination techniques. State-of-the-art inpainting 
techniques still do not succeed in fully restoring the painted form 
at a level that would match the criteria of art conservators, but the 
interaction between the two communities provides already a cru-
cial feedback for improving virtual inpainting techniques in this 
challenging application. The use of statistical analysis to assess the 
consistency of the painting style can be of interest for art-histori-
cal interpretation of the content. Our analysis of the consistency of 
the painted pearls in The Ghent Altarpiece points to some 
instances (specific painted objects) that might be of interest to art 
historians and conservators to examine in more detail. 
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S
ignal processing is the key to 
success for the efficient stor-
age, transmission, and manip-
ulation of information. The 
liveliness of signal processing 

relies on having a large number of stu-
dents who undertake this research and 
embark on this career path. Signal pro-
cessing is part of the curriculum in 
many undergraduate engineering pro-
grams. Some of the students also do 
their capstone or final-year projects on 
signal processing. To increase students’ 
interest in signal processing and to get 
them to better appreciate its applications 
in real life, the IEEE Signal Processing 
Society (SPS) has created an undergrad-
uate competition, referred to as the Sig-
nal Processing Cup (SP Cup) [1], which 
provides undergraduate students with an 
opportunity to form teams and work 
together to solve a challenging and 
interesting real-world problem using sig-
nal processing techniques and methods. 
The first competition was held at the 
International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP) 
2014. Based on its success, it has now 
been instated as an annual event at 
ICASSP conferences.

This column will offer a series of arti-
cles that introduce the SP Cup, outline 
how graduate students are supported in 
the competition, how they apply their sig-
nal processing knowledge, what they have 
learned from the competition, and relay 
their feedback and experience. It is articu-
lated into three parts, two of which will be 
published in upcoming issues of IEEE 
Signal Processing Magazine. In this issue, 
Part 1 introduces the SP Cup and the 
competition topics for the first and second 

editions. Parts 2 and 3 will describe the 
signal processing techniques used by the 
teams in the first and second competi-
tions, respectively. We will describe how 
the students work together on their proj-
ects and present their feedback on key 
aspects of both competitions.

STUDENT TEAMS AND SUPPORT
To join the competition, undergraduate 
students are required to form a team. 
Each team must be composed of one fac-
ulty member (to supervise the team mem-
bers), one graduate student (to assist the 
supervisor), and at least three but no more 
than ten undergraduate students. The 
teams can choose the programming lan-
guage they prefer for the competition. As 
the competition is sponsored by Math-
Works, each team that registers for the SP 
Cup is provided with complimentary soft-
ware, including MATLAB and some 
selected toolboxes. The three top teams 
are selected to participate in the final com-
petition at ICASSP, where the prizes are 
awarded. The teams are awarded prizes of 
US$5,000, US$2,500, and US$1,000 for 
first, second, and third places, respectively.

The three selected teams are also sup-
ported by the SPS with travel grants to 
attend the final competition at ICASSP. 
Each team member is offered up to 
US$1,200 for continental travel or 
US$1,700 for intercontinental travel. A 
maximum of three members per team are 
eligible for travel support. Furthermore, 
all attending members are given a compli-
mentary registration so that they can also 
attend the conference, meet other 
researchers and professors, and experience 
the signal processing research world.

Through these SP Cup competitions, 
more undergraduate students can put 
their signal processing knowledge into 
practice in a real-world project. They will 

learn how to cooperate with other team 
members and develop their interest in sig-
nal processing research. The top teams 
also have the opportunity to expand their 
horizon by attending the largest signal 
processing conference—ICASSP. So far, 
two editions of the competition have been 
run, and both of the competition themes 
were proposed by the Bioimaging and Sig-
nal Processing Technical Committee of the 
IEEE SPS. In the first edition, students 
were challenged to enhance the resolution 
of a three-dimensional (3-D) model of 
macromolecular structures obtained by 
transmission electron microscopy and 
used in structural biology. Approximately 
100 undergraduate students from all over 
the world registered for the competition 
and were grouped into 26 different teams. 
Finally, 12 teams submitted their work. 

The theme for the second competition 
was “Heart Rate Monitoring During Phys-
ical Exercise Using Wrist-Type Photople-
thysmographic (PPG) Signals.” About 270 
undergraduate students split among 66 
teams registered for the competition. Ulti-
mately, 49 teams submitted their work. 
Three teams were selected to participate 
in the final competition at ICASSP 2015. 
The following sections will briefly intro-
duce the two competition themes, and 
how they were designed for undergradu-
ate students.

THE COMPETITION THEME 
OF THE FIRST EDITION
The first edition of the SP Cup offered stu-
dents the opportunity to design an algo-
rithm to improve the resolution of 
biological macromolecules as observed in 
a transmission electron microscope. The 
goal was to provide structural biologists 
with tools capable of better showing the 
atomic structure of proteins, which deter-
mine the physiological and pathological 

Undergraduate Students Compete in 
the IEEE Signal Processing Cup: Part 1
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behavior of our cells. By being able to ana-
lyze the 3-D structure of protein targets, 
pharmaceutical companies can design 
highly specific drugs that strongly interact 
with the target molecule of interest.

Students dived into the realm of image 
restoration, deconvolution, deblurring, 
denoising, superresolution, and sparse 
coding to produce state-of-the-art algo-
rithms that allowed the resolution of the 
reconstructed volumes to increase by 
about 0.5 Å (an atom has a radius between 
0.5 and 2 Å). This increase in resolution is 
another step forward in the scientific 
quest of being able of analyzing the struc-
ture and function of each of the pieces 
that comprises life.

THE COMPETITION THEME 
OF THE SECOND EDITION 
In the second edition of the SP Cup, students 
were asked to design algorithms to estimate 
heart rate using PPG signals recorded from 
subjects’ wrists during physical exercise. 
These algorithms can potentially be used in 
smart watches and wristbands for health 
monitoring and fitness tracking.

The challenge in this task was to over-
come strong interference caused by body 
movements in exercise to accurately esti-
mate heart rate. A successful system 

architecture to solve this challenging 
problem generally consists of three com-
ponents: motion-artifact removal, power 
spectrum estimation, and selection of 
spectral peaks corresponding to heart rate. 
Signal processing techniques for the first 
two components are generally taught in 
undergraduate signal processing courses, 
such as adaptive filtering for noise 
removal and nonparametric power spec-
trum estimation. For the third compo-
nent, students have a lot of flexibility to 
design selection algorithms with full con-
siderations to overcome various practical 
situations. In this competition, students 
can separately work on each of the parts. 
However, since the three components 
interplay with each other, students also 
need to collaborate in close relationship to 
design a successful system as a whole. 

This competition not only provided an 
opportunity for students to solve an impor-
tant practical signal processing problem 
tapping into their knowledge taught in 
class, but it also prepared them for enter-
ing related industries especially in the field 
of wearable health care.

COMPETITION RESULTS
The First SP Cup competition was held at 
ICASSP 2014 on 8 May. The judging panel 

found it difficult to rank the final place-
ment. Based on the performances of the 
algorithms developed and the presenta-
tions made by the three selected teams 
(Figure 1), the final results were as follows:

■ First place: EPOCH (Anik Khan, 
Forsad Al Hossain, Tawab Ullas, Md. 
Abu Rayhan, and Mohammad Ariful 
Haque) from Bangladesh University of 
Engineering and Technology
■ Second place: NtUeLsA (Kai-Wen 
Liang, Yen-Chen Wu, Guan-Lin Chao, 
Kuan-Hao Huang, Shao-Hua Sun, 
Ming-Jen Yang, Po-Wen Hsiao, Ti-Fen 
Pan, Yi-Ching Chiu, Wei-Chih Tu, and 
Shao-Yi Chien) from National Taiwan 
University
■ Third place: Uchihas (Emroz Khan, 
Shiekh Zia Uddin, Mukhlasur Rahman 
Tanvir, and Md. Kamrul Hasan) from 
Bangladesh University of Engineering 
and Technology.
The second SP Cup competition was 

held during ICASSP 2015 on 20 April 
(Figure 2). The final results were as follows:

■ First place: Signal Processing Crew 
Darmstadt (Alaa Alameer, Bastian Alt, 
Christian Sledz, Hauke Radtki, Maxi-
milian Huettenrauch, Patrick Wenzel, 
Tim Schaeck, and Michael Muma) from 
Technische Universitaet Darmstadt 

[FIG1] Members from the three selected teams, the judging panel, sponsors, and organizers of SP Cup 2014 attended the final
SP Cup competition at ICASSP 2014.

[FIG2] Members from the three selected teams, the judging panel, sponsors, and organizers of the SP Cup 2015 attended the 
final SP Cup competition at ICASSP 2015.
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■ Second place: Supersignal (Sayeed 
Shafayet Chowdhury, Rakib Hyder, 
Anik Khan, Md. Samzid Bin Hafiz, 
Zahid Hasan, and Mohammad Ariful 
Haque) from Bangladesh University of 
Engineering and Technology
■ Third place: SSU (Gyehyun Baek, 
Minkyu Jung, Hyunil Kang, Jungsub 
Lee, Baeksan Ohn, Sunho Kim, and 
Sungbin Im) from Soongsil University.
From the first to the second edition of 

the competition, the number of under-
graduate students participating in the 
event has increased from about 100 to 
270. We foresee that students will 
become increasingly aware of this com-
petition, and more and more students 
will get involved.

FORTHCOMING COMPETITIONS
In Parts 2 and 3, we will describe the 
approaches developed by the students and 
interview some who participated. We will 
report their feedback and the secrets of 
their successes. The third edition of the SP 
Cup will be held at ICASSP 2016. The 

theme of the 2016 competition will be 
announced in September of this year. We 
hope that this series of columns will help 
undergraduate students who are interested 
in the future competitions to gain a solid 
understanding of the SP Cup and help 
them prepare for it.
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Image Analysis: The New Bottleneck in Plant Phenotyping

P
lant phenotyping is the identi-
fication of effects on the phe-
notype P G E#=  (i.e., the 
plant appearance and perfor-
mance) as a result of genotype 

differences (i.e., differences in the 
genetic code) and the environmental 
conditions to which a plant has been 
exposed [1]–[3]. According to the Food 
and Agriculture Organization of the 
United Nations, large-scale experiments 
in plant phenotyping are a key factor in 
meeting the agricultural needs of the 
future to feed the world and provide bio-
mass for energy, while using less water, 
land, and fertilizer under a constantly 
evolving environment due to climate 
change. Working on model plants (such 
as Arabidopsis), combined with remark-
able advances in genotyping, has revolu-
tionized our understanding of biology 
but has accelerated the need for preci-
sion and automation in phenotyping, 
favoring approaches that provide quanti-
fiable phenotypic information that could 
be better used to link and find associa-
tions in the genotype [4]. While early 
on, the collection of phenotypes was 
manual, currently noninvasive, imag-
ing-based methods are increasingly 
being utilized [5], [6]. However, the rate 
at which phenotypes are extracted in the 
field or in the lab is not matching the 
speed of genotyping and is creating a 
bottleneck [1]. 

While the bottleneck was previously 
the equipment (the hardware), it is now 
the analysis (the software). There is a 
need to develop accurate, robust, and 
automated analysis algorithms that can 
extract phenotypic information from 

experiments on the small (cell) or large 
scale (field), in two or three dimensions, 
in the lab but more importantly in the 
field on real crops. These algorithms 
should be coupled with affordable plat-
forms and should deal with an immense 
amount of data produced in these experi-
ments. Experts (from biology as well as 
data analysis) now agree that the analysis 
of imaging data is currently the weakest, 
or even the missing, link due to the 
major challenges in computer vision and 
image processing we are currently facing. 

COMPUTER VISION AND IMAGE 
PROCESSING CHALLENGES
Noninvasive plant investigations are done 
on different scales and modalities using a 
variety of sensors [2], [5]. This includes 
optical imaging, hyperspectral imaging to 
reveal rich pixel information on plant 
properties, and even magnetic resonance 
imaging (MRI) and positron emission 
tomography (PET). Spatial scales vary 
from the microscopic subcellular level to 
large outdoor fields. Typical problems in 
measuring a plant’s visible properties 
comprise measuring size, shape, and other 
structural traits of whole plants, their 
organs, or plant populations. 

Plants are not static, but self-changing 
systems with complexity in shape and 
appearance increasing over time. They 
emerge below image resolution and grow 
exponentially in time until, for a single 
leaf, growth levels off typically at several 
cm2 size—i.e., several orders of magnitude 
change. Relevant timescales for cellular 
processes may be seconds or minutes, for 
growing leaves in the range of hours, and 
the status of whole plants changes over days 
or even months, in which the surrounding 
environmental (as well as measurement) 
conditions may also change. 

Algorithms must deal with the afore-
mentioned complexity, and the follow-
ing sections describe unique challenges 
by illustrating typical applications. 
Clearly, the list of applications can never 
be complete, but we present some of the 
major themes. 

CELLS AND ORGANS: 
DETECTION, TRACKING, 
AND STRUCTURAL BREAKS
One of the earliest forms of phenotyping 
where imaging-based setups were used is in 
the context of microscopy [2]. Plant tissue 
samples are excised and imaged under a 
microscope to reveal the cellular structure 
[cf. Figure 1(a)]. From an image processing 
perspective, the automated delineation of 
cell walls to establish cell morphology and 
cell count is typically needed. 

However, more interesting problems 
arise from the use of recent techniques 
such as confocal microscopy, optical pro-
jection tomography, and optical coherence 
microscopy, which permit the noninvasive 
quantification of cellular morphometry at 
a variety of scales and depths. These tech-
niques enable the observation of plant tis-
sue dynamics on a short (and long) time-
scale, therefore tracking problems arise. 
These become particularly challenging 
when cell genesis needs to be observed 
and quantified, since cell division and 
expansion impose high spatiotemporal 
fidelity requirements. From a computer 
vision perspective, this problem, which 
also occurs in other biomedical appli-
cations, entails the inference of time and 
location of when and where such events 
occur within the scene, a task radically dif-
ferent from the typical tracking of objects 
entering or leaving the scene. 

Over the last decade, several controlled 
setups [see Figure 1(c)–(e)] have emerged 
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that image top-down views of small rosette 
plants, e.g., Arabidopsis or young tobacco, 
acquiring either one plant per image or sev-
eral plants at once [see Figure 1(f)–(g)], 
housed in so-called growth chambers, 
where environmental conditions are con-
trolled. Even in this very restricted imaging 
scenario, fully automatic segmentation of 
single plants can be a challenge due to, e.g., 
background clutter from moss growing on 
the soil, plant-to-plant overlap, heavy con-
trast changes due to (self-)shadowing, leaf 
color changes due to stress (e.g., drought), 
different light conditions and pathogen 
infections, and plant shape or size variation 
due to genotypic differences (cultivars or 
mutants) and treatments. 

Segmenting single leaves is a typical 
multi-instance segmentation task [see 

Figure 1(g) and (h)]; however, even 
though all the objects share a wide range 
of features (e.g., they are mostly green 
with similar brightness distributions), 
they show rich variations. Leaves differ in 
size over several orders of magnitude, 
introducing a structural break due to res-
olution limitations, and algorithms need 
to deal with leaves emerging in the scene. 

In addition, leaves vary in shape, and 
while they do share a certain basic shape, 
they overlap, bend, and vary in pose. Even 
for the same species, leaves may differ sub-
stantially, as leaf shape, size, color, and 
overall appearance of a plant depend on 
the genotype (e.g., there are thousands of 
mutants available for Arabidopsis alone), 
environmental factors (drought, low or 
high light, and temperature), and the age 

of each leaf. Readily apparent approaches 
based on learning shape from a labeled 
data set reveal their limitations when 
having to deal with such shape diversity 
and different acquisition conditions. 
While counting and segmenting leaves 
from such images can be simple for a 
human, no automated algorithmic solu-
tion is yet available that comes close to 
human performance. 

WHOLE PLANTS:  
ANATOMICALLY CORRECT 3-D
GEOMETRIC MODELING
For larger plants, reconstruction from a 
single image and viewpoint is not sufficient. 
Most approaches aim at obtaining an as 
complete three-dimensional (3-D) shape 
reconstruction as possible, geometrically 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

[FIG1] An example of plant phenotyping setups and images. (a) At the smallest scale, microscopy can image cells.  
(b)–(d) Movable imaging setups [15] or a (e) single overview camera setup can be used to image (f) many plants or (g) single 
plants, where (h) leaf segmentation is a sought-after outcome yielding growth measurements. Roots can be imaged in
(i) rhizotrons [15], requiring (j) delineation. (k)–(l) Optical flow tracking [15] can measure finer leaf level growth. Airborne 
vehicles, e.g., (m) drones, can provide information on fields, e.g., (n) hyperspectral images [15]. [(a) is adapted from [7] and 
reproduced by permission of Elsevier. (b), (c), and (m) are courtesy of Alexander Putz, (i) and (j) are courtesy of Kerstin Nagel, 
and (n) is courtesy of Uwe Rascher.]

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [128] JULY 2015

[applications CORNER]continued

modeling the overall above-ground part of 
a plant, i.e., the shoot. However, details of 
parts are also investigated, such as grains 
on an ear (e.g., of corn), berries on wine 
grapes, flower development, etc. Imaging 
becomes more and more automated using 
conveyor-belt or robotized systems [see 
Figure 1(b)–(d)], allowing high throughput 
with thousands of plants. Automation of 
image analysis is then a must. 

A variety of 3-D measuring strategies 
is currently being investigated, e.g., corre-
spondence-based triangulation methods, 
silhouette-based carving, time-of-flight 
cameras, or light detection and ranging 
laser scanning (see [8] for a comprehen-
sive overview). Setups are usually tailored 
to a particular species and conditions. This 
is, for example, due to size and image res-
olution constraints, or self-occlusion and 
self-similarity hampering triangulation. 

A major challenge for all 3-D measur-
ing methods is plant motion during 
acquisition. Time delays due to scanning 
or sequential image acquisition lead to 
notable geometric distortions, especially 
for outdoor measurements with wind. 
The data then cannot be described by a 
static model and all current approaches 
doing so fail one way or another. 

From the 3-D data, quantitative infor-
mation about plant traits need to be 
extracted. Simple summary traits, such as 
covered volume or plant height, could be 
estimated from images alone without 3-D 
reconstruction. But organ-wise traits, 
e.g., accurate leaf size or branching angle, 
require interpretation of 3-D data and 
plant part models. Simple models are 
used today (e.g., fitting two-dimensional 
surfaces to patches and merging them), 
but for most species new anatomically 
correct models are required. 

WHOLE PLANTS BELOW GROUND: 
CLUTTERED IMAGES OF ROOTS
It is not possible to look through soil with 
the naked eye. Thus, classical root system 
analysis is invasive, meaning that plants 
are dug out and the roots washed and 
imaged. Usual image analysis then applies 
threshold-based segmentation, connected 
component labeling, and skeletonization, 
followed by estimation of traits such as 
overall graph length, branching angles, 

and others. All solutions available to date 
have only limited effectiveness when root 
systems are heavily entangled. Obviously, 
no time-series analysis can be performed 
when plants are dug out. 

In soil, roots can be imaged noninva-
sively using so-called rhizotrons [9], i.e., 
flat pots with large vertical windows, such 
that parts of the roots visibly grow along 
the window [see Figure 1(i) and (j)]. In 
dark soil and at high spatial resolution, 
segmentation of bright roots may be done 
with solutions developed, e.g., for angio-
grams in medicine; but under realistic 
conditions this is difficult: even with 
high-resolution cameras (in the 30 mega-
pixel range) fine roots may be only few 
pixels wide, blurred and with poor con-
trast to the surrounding soil. Many cur-
rent segmentation solutions are slow or 
even break down when applied to such 
large images. Thus, computational effi-
ciency is an issue. In addition, windows 
can get scratched by frequent use and soil 
contains all sorts of clutter. To date, reli-
able segmentation of such images can 
only be done semiautomatically, requir-
ing user assistance. Even learning-based 
methodologies yield unimpressive results, 
which point to the need for finding (or 
learning) better feature representations. 

Using penetrating radiation or modali-
ties such as MRI, PET, and X-ray com-
puted tomography, roots can be imaged 
in soil in 3-D, where different imaging 
techniques yield complementary contrast 
information and metabolic function (e.g., 
with PET). Challenges are similar to med-
ical applications including proper (co)reg-
istration of time series of deforming 
objects of potentially different modalities, 
disentangling objects, measuring geomet-
ric traits, etc. However, artifacts and 
structures are different. 

ADDING DYNAMICS: TRACKING, 
FLOW, AND GROWTH ESTIMATION
For many plant traits, temporal dynamics 
are of high relevance. Growth analyses on 
the local tissue level are typically per-
formed on image sequences with frame 
rates in the range of one per minute. A 
long-established technique restricts the 
leaf of interest to a plane by pulling it flat 
and images it using a single camera. 

Growth is then calculated as divergence 
of an estimated optical flow field. Unfor-
tunately, with this simple engineering 
solution, gene expression analyses have 
shown that “tension-stress genes” are 
turned on during such experiments, and 
thus the observed growth may be influ-
enced on the molecular level. For non-
fixed leaves moving in 3-D, calculating 
scene flow from multicamera “light-
field” image sequences has been investi-
gated [see Figure 1(k) and (l)]. This 
allows precise translation and rotation 
field estimation. Local growth can also 
be estimated from divergence, however, 
signal-to-noise-ratio is relatively poor. 
To date, no reliable local growth mea-
suring technique without fixating leaves 
is available. 

When aiming for growth analysis (in 
terms of summary growth over an organ), 
segmentation or reconstruction tech-
niques as described earlier are needed. For 
simple plant architectures, e.g., young 
tobacco with up to eight leaves, leaf-wise 
tracking in temporally sufficiently high-
resolved data sets has been demonstrated 
[10]. No reliable method for leaf-wise 
tracking has been reported in the litera-
ture so far for when time intervals become 
larger, or plant complexity is higher. 

THE GREENHOUSE, FIELD, AND 
FARM: MORE VARIABILITY
While experiments in the laboratory do 
advance our knowledge of biological sys-
tems and their functioning, ultimately 
phenotyping must translate the knowl-
edge to the society and stakeholders, such 
as breeders and farmers [3]. Phenotyping 
investigations must then be conducted 
under “real” (or realistic) conditions in the 
greenhouse or field, on crops that carry 
agricultural importance, such as corn, 
wheat, rice, barley, etc. [11]. 

Starting with the greenhouse, auto-
mated systems that are able to water and 
image plants, either move the plant to the 
imaging station or move the imaging appa-
ratuses to the plants. Independent of set-
ting, any positioning differences, either of 
the camera or the plant, radically compli-
cate the process of establishing temporal 
correspondences between consecutive mea-
surements. Taking the imaging apparatus 
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outside and in the field introduces addi-
tional challenges. Several approaches 
exist that mount sensors on specialized 
carriers: human-controlled tractors or 
other ground vehicles, or in the air with 
unmanned aerial vehicles [Figure 1(m)] 
operated either remotely or in an auto-
mated fashion. Image data differ tremen-
dously in resolution, detail, motion blur, or 
clutter, severely affecting subsequent analy-
sis tasks, thus, more robust algorithms are 
necessary. Computational efficiency is an 
issue, as the amount of imaging data pro-
duced is enormous [cf. Figure 1(n)], and 
analysis tasks can be significantly complex. 
Efforts in directly using analysis results for 
cultivation practices are the central theme 
in precision agriculture [3], which aims at 
tailoring treatment at the individual plant 
level. Thus, computer vision becomes cru-
cial in supporting the whole process and 
evidently there is now the additional chal-
lenge of identifying low-complexity 
approaches to robust vision. 

AFFORDABILITY: 
COPING WITH RESTRICTIONS
Currently, most versatile solutions are 
too expensive, and many labs instead 
develop highly customized (hardware and 
image analysis) solutions tailored to their 
experimental setting that are capable of 
addressing only specific phenotyping 
problems. Even when they are affordable, 

this variability in methods and setups 
creates standardization problems. 

The use of off-the-shelf commercial 
equipment (such as commercial cameras 
[12] or the Kinect [5]) could facilitate stan-
dardization across experiments, lower the 
entry barrier, offer affordable solutions, and 
help many labs adopt the image-based 
approach to plant phenotyping. 

Our recent project [16] aims to pro-
vide a universal turnkey and modular 
platform based on a distributed sensing 
and analysis framework [13], as shown 
in Figure 2. This distributed approach 
presents several key advantages. Afford-
able and easy-to-install sensors can be 
deployed in laboratories (growth cham-
bers), the greenhouse, or the field to 
cover wide areas, before resorting to 
more costly and complex solutions 
based on robotics and automation. It is 
easy to become accustomed to a cloud-
based storage and analysis application 
that is always up to date. It  relieves 
users from maintaining a computing 
infrastructure and, importantly, it also 
permits consistency in experiments 
among different labs by standardizing 
equipment and analysis. 

This centralized design, particularly 
when combined with an open architec-
ture, can benefit the entire community, 
providing a modular and expandable 
architecture (by changing or adding new 

camera sensors), favoring software reuse 
(e.g., user-contributed algorithms can be 
adopted by other labs), and knowledge 
sharing (e.g., a common repository of 
acquired data and meta-data, and also 
the analysis application itself learning on 
the user’s feedback). 

Affordability and remote processing, 
however, pose technical challenges. The 
choice of optics and the fixed field of view 
restrict the quality (in resolution and 
sharpness) of the acquired images and the 
plants this setup can image (e.g., it may 
not be suitable for not coplanar plants). 
An affordable sensor will have limited 
computational power and knowledge 
access, thus, it requires low-complexity 
algorithms to perform some of the tasks 
outlined in previous sections, and as such 
remote processing is necessary. Then the 
transmission of (possibly) large volumes 
of image data necessitates compression to 
meet bandwidth constraints. While this 
loss of information will affect the accu-
racy of the analysis algorithm, recent 
advances in application-aware compres-
sion can tune compression parameters to 
meet analysis accuracy needs [13], [14]. 
From a software engineering perspective, 
backward compatibility of the analysis 
framework and of the computational 
backbone has to be ensured, such that 
experimental protocols and results 
obtained previously remain valid. 

[FIG2] (a) Affordable camera sensors (e.g., based on the Raspberry Pi [17]) acquire time-lapse sequences of the scene, including 
one or multiple plants. (b) Images are compressed and transmitted to the cloud, where high computational power and a broad 
knowledge base enable sophisticated computer vision tasks (e.g., leaf segmentation and tracking, optical flow analysis). 
Additionally, information is fed back to the sensor. Relying on Web-based graphical user interfaces, (c) phenotyping results are 
presented to the user for interpretation.
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A TIMELY AND UNIQUE 
CHALLENGE
A quantitative description of plant phe-
notypes is a key ingredient for a knowl-
edge-based bioeconomy, and this not 
only literally helps in the efforts to feed 
the world but is also essential for fiber 
and fuel production, the so-called Green 
Revolution 2.0. In fact, comparing the 
“Top 10 list of Emerging Technologies” 
in 2012 according to the world eco-
nomic forum, the top 1, 2, 3, and 5 
technologies are directly addressed by 
plant phenotyping research [18]. 
Recently, we have even witnessed direct 
investments in helping the translation 
of agricultural technology in farming. 
For example, Farm2050 [19] includes 
the information extraction powerhouse 
Google and drone company 3-D Robot-
ics among its partners.

There is not only growing interest 
from the application side, both scientifi-
cally and commercially, but exciting com-
puter vision and image processing 
problems exist that differ from other bio-
medical applications. While medicine 
focuses on the status of a single species 
(i.e., humans) in a diagnostic capacity, 
plant phenotyping addresses a large num-
ber of different plant species with hun-
dreds to thousands of genotypes 
(cultivars) per species, usually in group-
wise experiments. It addresses the devel-
opment over time in addition to static 
snapshots and under a wide range of envi-
ronmental conditions, using various 
imaging setups (as opposed to medical 
imaging where predefined protocols are 
in place and equipment variability is rela-
tively limited). Thus, even within a single 
application, diverse conditions need to be 

addressed, to ascertain a robust image-
based measurement of the phenotypic 
trait. Plant phenotyping at a high 
throughput requires reliable image pro-
cessing algorithms that could batch pro-
cess many data accurately, and an 
integration with genetic databases and 
other frameworks. 

The previous sections outlined a 
series of challenges (e.g., dealing with 
structural breaks in tracking/detection), 
for which our community can get 
involved. In this article, although we 
focus on extracting information from 
images, data mining and combing the 
information from genotyping, environ-
mental, and phenotyping sources are by 
themselves a big undertaking as well. 
Jointly, we must make the effort to solve 
these problems and push the envelope 
further, and by including the resources 
in Table 1, we hope to help facilitate this. 
We need to cooperate with different dis-
ciplines to integrate expertise across the 
spectrum and provide biologically or 
agronomically meaningful and techni-
cally robust solutions [3], [7] to help 
resolve this bottleneck. 
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[TABLE 1] GET INVOLVED: A COLLECTION OF ONLINE RESOURCES.

NAME DESCRIPTION
SPECIALIZED SCIENTIFIC EVENTS

CVPPP2014 [20] AND
CVPPP2015 [21]

THE FIRST AND SECOND WORKSHOP FOR COMPUTER VISION
PROBLEMS IN PLANT PHENOTYPING, ALSO HOSTING CHALLENG-
ES SUCH AS THE LEAF SEGMENTATION CHALLENGE (LSC) 

IAMPS [22] INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS METHODS FOR
THE PLANT SCIENCES

PHENODAYS [23] INTERNATIONAL SYMPOSIUM INVOLVING SEED INDUSTRY,
 BREEDING INSTITUTES, AND ACADEMIC BREEDING GROUPS

IPPS [24] INTERNATIONAL PLANT PHENOTYPING SYMPOSIUM

ICPA [25] INTERNATIONAL CONFERENCE ON PRECISION AGRICULTURE

IMAGE DATABASES

LSC CHALLENGE [26] IMAGES AND LEAF-BASED SEGMENTATION MASKS AS PART OF
THE FIRST LSC CHALLENGE

MAIZEGDB [27] IMAGES OF MAIZE

CWFID [28] THE CROP/WEED FIELD IMAGE DATA SET (CWFID) CONTAINS
 IMAGES WITH CROP/WEED DELINEATIONS FOR A CLASSIFICATION
TASK IN PRECISION AGRICULTURE

PHENOPSIS DB [29] ARABIDOPSIS THALIANA PHENOTYPING DATABASE

CONSORTIA AND ORGANIZATIONS

IPLANT COLLABORATIVE [30] CONNECT SCIENTISTS TO PUBLIC DATA SETS, MANAGE AND 
STORE THEIR DATA AND EXPERIMENTS, ACCESS HIGH-
PERFORMANCE COMPUTING, ETC.

IPPN [31] INTERNATIONAL PLANT PHENOTYPING NETWORK
EPPN [32] EUROPEAN PLANT PHENOTYPING NETWORK
EPSO [33] EUROPEAN PLANT SCIENCE ORGANISATION
FESPB [34] FEDERATION OF EUROPEAN SOCIETIES OF PLANT BIOLOGY
IEEE RAS [35] AGRICULTURAL ROBOTICS AND AUTOMATION
ISPA [36] INTERNATIONAL SOCIETY OF PRECISION AGRICULTURE
E-AGRICULTURE [37] ICT FOR SUSTAINABLE AGRICULTURE
BSA [38] BOTANICAL SOCIETY OF AMERICA, LISTING FURTHER PLANT

 SOCIETIES AND ORGANIZATIONS [39]

SOFTWARE DATABASES

PLANT IMAGE ANALYSIS [40] THIS DATABASE CURRENTLY PROVIDES A COLLECTION OF
APPROXIMATELY 120 ANALYSIS TOOLS
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Understanding Game Theory via Wireless Power Control

I
n this lecture note, we introduce the 
basic concepts of game theory (GT), 
a branch of mathematics tradition-
ally studied and applied in the areas 
of economics, political science, and 

biology, which has emerged in the last 
15 years as an effective framework for 
communications, networking, and signal 
processing (SP). The real catalyst has 
been all of the blooming issues related to 
distributed networks in which the nodes 
can be modeled as players in a game 
competing for system resources. Some 
relevant notions of GT are introduced by 
elaborating on a simple application in 
the context of wireless communications, 
notably the power control in an interfer-
ence channel (IC) with two transmitters 
and two receivers. 

RELEVANCE
Recently, the mathematical tools of GT 
[1] have attracted a significant interest by 
the wireless communications and SP 
engineering communities [2, Part II] due 
to the need for designing autonomous, 
distributed, and flexible systems in which 
the available resources are allocated 
through low-complexity and scalable pro-
cedures. Games are appealing, owing to 
some characteristics that are not com-
mon in classical optimization: as an 
example, GT can handle interactive situa-
tions in which each player can only have a 
partial control over the optimization vari-
ables while using its own performance 
metric. It is true that commonalities can 
be found with other disciplines, such as 
multiobjective optimization [3], convex 
optimization [4], and learning theory [5], 

but GT possesses many distinguishing 
features that make it essential for the 
standard current toolbox of communica-
tion as well as SP engineers. 

PREREQUISITES
The readers require basic knowledge in 
linear algebra, wireless communications, 
and signal processing theory. 

WHAT IS A GAME?
To take advantage of GT and its associated 
theoretical tools, the first step is to model 
the problem at hand as a game. In doing 
so, three ingredients must be identified: 

■ players who represent the main 
actors in the problem, having conflict-
ing interests and affecting the perfor-
mance of everyone else in the game  
■ a set of strategies available to each 
player that determines what each 
player can do  
■ a utility function for each player 
that measures its degree of satisfac-
tion as a function of the combination 
of all player’s choices.

This description may encompass a large 
number of situations: to mention a few 
examples, players in a game can be base sta-
tions (BSs) allocating the resources in a cel-
lular network to increase the system 
throughput, or watermarking devices choos-
ing algorithms to face potential attackers. 

The objective of the modeling effort 
is to describe the game using its strate-
gic-form representation: a triplet 

, { } , { } ,uK Sk k k kK K! !  where

{ , , }K1K f=

is the set of players, where K  is the num-
ber of players; Sk  is the set of strategies
for each player ;k  and ( )suk  is the utility 
function (also known as reward or payoff)

associated to player k  for a combination 
of choices [ , , ] [ , ],s ss s sK k k1 f= = =

w h e r e [ , , , , , ]s s s sf f=s k k k K1 1 1= - +

denotes the strategies taken by all other 
players except player k  (the opponents). 

In general, the game outcome ( )suk

for player k  depends on all players’ 
choices through ,s  which stems out from 
the interaction of the players with possibly 
conflicting interests. This brings forth a 
couple of distinguishing features of GT: 

■ each player k  can have a different 
performance metric; this feature is 
captured by a per-player specific func-
tion ( ),u sk  which accounts for the 
player’s nature  
■ each player k  has partial control 
(s Sk k!  only) over the optimization 
variables.

The first property is strictly tied with mul-
tiobjective optimization [3], although a 
clear difference exists in the scope of the 
optimization variables, as in multiobjec-
tive optimization we have full control 
over all variables. The second property is 
tightly related to the framework of dis-
tributed optimization [4], with which it 
shares many intersections, although 
there are specific differences: one of the 
most important is that, while in distrib-
uted optimization the agents follow some 
common given rules, in GT the players 
act as independent decision makers. 

THE NEAR–FAR EFFECT GAME
To picture the meaning of the strategic-
form representation, let us consider an 
example taken from a very common 
wireless communications scenario: the 
IC, represented in Figure 1(a), in which 
the two transmitters interfere with each 
other in the attempt to reach their own 
receiver. This simple scheme encompasses 
many scenarios: it can be used to model 
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■ a multicellular system with red 
and blue nodes belonging to two dif-
ferent cells
■ a heterogeneous network, where the 
red and blue nodes belong to a macro-
cell and a small cell, respectively
■ a cognitive radio system, where the 
red and blue nodes are primary users 
(PUs) and secondary users (SUs), 
respectively
■ a device-to-device system, where the 
receivers are also network nodes. 
Using GT, we can model the problem at 

hand in a suitable manner and provide the 
theoretical tools to solve it. In this case, 
solving means devising the optimal trans-
mission strategy to be selected by the two 
wireless terminals of Figure 1(a). In par-
ticular, we assume that the two nodes are 
allowed either to transmit at a certain 
power level p or to stay idle. This situation 
can be modeled as a game, with K 2=
players and strategy sets { , }p0Sk =  for 

{ , } .k 1 2K! =  For simplicity, we also 
assume that the two terminals choose 
their strategies simultaneously (i.e., with-
out being informed of the other’s choice) 
once and for all (i.e., they cannot make 
any changes after observing the outcome 
of the game)—in GT parlance, we call this 
a static game. Finally, since players and 
strategy sets are both countable, the game 
is termed finite.

As depicted in Figure 1(a), player 1 (the 
far terminal) is located much farther away 
from both receivers than player 2 (the 
near terminal). To describe this situation 
in a mathematical fashion, we introduce 
the power gains h Rjk ! +  experienced by 
terminal k’s signal when propagating to 
receiver .j  For simplicity, let us assume 
h hjk k=  for ,j 1 2=  with /h h 11 2 %

(we will better quantify this ratio at the 
end of this section), thereby giving rise to 
the so-called near–far problem.

We now need to define a utility func-
tion, and to do so we consider that each 
terminal achieves a degree of satisfaction 
that depends both on the success of its 
transmission and on the energy spent to 
transmit at power .sk  Mathematically, 
this translates into a (dimensionless) util-
ity ( ) ( ) ( ),s s su t ck k k= -  where ( )t sk

accounts for the outcome of the transmis-
sion and ( )sck  measures the cost 

associated with using .sk  We assume that 
the cost scales linearly with the transmit 
power, and that it is independent of the 
other terminal’s strategy: ( ) / .sc cs pk k=

Measuring ( )stk  is more complicated, as it 
has to capture the interaction between the 
players as a function of the selected strate-
gies s1  and .s2  In practice, successful 
reception of a signal in a multiple-access 
scenario (such as the one considered here), 
be it in the time, frequency, space, or code 
domain, depends on the signal-to-interfer-
ence-plus-noise ratio (SINR) ,kc  which 
measures the ratio of the useful received 
signal power to the amount of undesired 
power collected at the receiver. Under the 
assumption of additive white Gaussian 
noise (AWGN) with power ,2v  we get 

( ) ( ) ,s
h s

h s s s 0k
k k

k k
k k k2 $c

v
n

C
=

+
=

=
=

= (1)

where k 2= =  if ,k 1= k 1= =  if ,k 2=
and 1$C  is the processing gain, which 
depends on the multiple access technol-
ogy and the receiver processing. For the 
time being, let us assume the transmis-
sion to be successful if and only if

,k req$c c  where the minimum SINR reqc

depends on some system parameters. So, 
when ,k req1c c  the transmitted message 
cannot be decoded at receiver ,k  and

( ) .st 0k =  On the contrary, when
,k req$c c  receiver k  can correctly receive 

the information associated to user k ’s sig-
nal, and ( ) ,st tk =  where t  is a dimen-
sionless parameter that accounts for the 
throughput achieved at destination. To 
properly capture the cost–benefit analysis 
that regulates any practical wireless sys-
tem, it makes sense to assume .t c&

A profitable way to investigate finite 
static games in their strategic form, such as 
our NFE game, is through the so-called 
payoff matrix [Figure 1(b)] in which 
player 1’s strategies are identified by the 
rows, player 2’s strategies by the columns, 
and the entries of the matrix (the pair 
of numbers in the box) represent the 
utilities ( ), ( )s su u1 2^ h achieved by the 
players .  Under the assumptions 
that / hp req

2
1v c C= ^ h  and /h h1 2 1^ h

/1 1 /reqc C+^ h (see [6] for more details), 
it is easy to fill out each box of the matrix 
based on the hypotheses listed above. 

Once the game is in its strategic form, 
we have to solve it, i.e., to predict its out-
come. In the NFE game, we assume that 
both players 

■ are rational
■ only control their own strategies 
■ know each other’s payoff. 

The first assumption means that each 
player is a utility-maximizer decision 
maker. The second hypothesis casts this 
problem as a noncooperative game in 
which the players compete to unilater-
ally maximize ( ) .suk  Finally, the third 
hypothesis involves the concept of com-
plete information that each player has 
about the game. By inspecting the payoff 
matrix in Figure 1(b), it is apparent that 
player 2’s best strategy is represented by 
s p2 =
_  whatever s1  is, since t c 02-

under the assumption .t c&  For this 
reason, the strategy s 02 =  is said to be 
s t r ic t ly  dominated  by ,s p2 =  as 

([ , ]) ([ , ])u s u s p02 1 2 11 .s S1 16 !  This 
is known to player 1 as well, who ratio-
nally chooses to play .s 01 =

_  As a con-
clusion, the predictable outcome of the 
NFE game is [ , ] [ , ],s s s p01 2= =_ __  as 

[FIG1] A representation of the near–far effect (NFE) game. (a) The topology of the 
network. (b) The payoff matrix.
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highlighted by the shaded box in 
Figure 1(b). In GT parlance, this game has 
been solved by applying the iterated elimi-
nation of dominated strategies, or iterated 
dominance for short [1, Ch. 1]. 

THE IC GAME
Let us now slightly modify the scenario 
represented in Figure 1(a). Assume, for 
example, that player 1 is moved closer to 
its receiver, such that the distance between 
player 1 and both receivers becomes the 
same as the distance between player 2 and 
both receivers. For simplicity, let us also 
suppose h hjk =  for , , .j k 1 2=  By using 

/ ,hp req
2v c C= ^ h  following the same 

considerations taken for the NFE game, it 
is easy to obtain the payoff matrix reported 
in Figure 2. As an exercise, we can verify 
that no strictly dominated strategies exist, 
and thus we cannot apply the iterated 
dominance procedure used to solve the 
NFE game. 

To get out of this impasse, we intro-
duce the concept of best response (BR)

( ),sbk k=  which is mathematica lly 
defined as 

( ) [ , ] ,s sargmaxb u sk k k k k
s Sk k

= ==
!

^ h (2)

i.e., the best that we can get out of the 
game once we know the opponents’ moves

.s k=  Since player 1 chooses rows, we can 
compute its BR by examining the columns 
that can be possibly selected by player 2. 
When ,s 02 = ( ) .b s p01 2 = =  Con-
versely, when ,s p2 = ( ) .b s p 01 2 = =

The same can be obtained for player 2, 
and we end up with the players’ BRs, 
underlining the relevant payoffs in 
Figure 2. We find two boxes (shaded 
background) containing the BRs of both 
players, representing two stable states, 
where stable here means that such states 
are attained by some multiple agents 
with conflicting interests that compete 
through self-optimization, and they 
eventually reach a point where none of 
them has any incentive from which to 
unilaterally deviate. 

A point that possesses such properties 
is termed a Nash equilibrium (NE) of the 
game, which is defined as a strategy profile 

[ , ]s ssk k= =
_ _ _  such that, for all ,k K!

[ , ] [ , ] ,s su s u s s Sk k k k k k k k6$ != =
_ _ _^ ^h h

(3)

or, equivalently, ( ) .ss bk k k! =
_ _  As an exer-

cise, check that [ , ]s p0=_  is the unique 
NE of the NFE game. 

The notion of NE encompasses many 
interpretations of GT (not discussed here 
for brevity) that interested readers can 
find in many textbooks (e.g., [7, Ch. 1]). 
Modeling the players as self-optimizing 
decision makers finds a suitable applica-
tion especially in the context of SP in 
which the devices can be programmed to 
do so. Since each player has only a partial 
control of the game, the concept of NE is 
tightly coupled with the application of dis-
tributed algorithms and machine-learning 
techniques [7, Part II]. 

Due to space constraints in this lecture 
note, we will not discuss theorems on 
equilibrium existence [1, Ch. 1], which 
establish the existence of the NE in partic-
ular classes of games, and on equilibrium 
uniqueness [2, Ch. 3]. When uniqueness 
cannot be ensured, like in the case of the 
IC game, we face the problem of equilib-
rium selection. One solution to this issue 
is the concept of correlated equilibrium 
(CE) [1, Ch. 2], a generalization of the NE, 
where an arbitrator helps the players to 
correlate their strategies, so as to favor a 
decision process in the interplay, e.g., let-
ting them adopt [ , ] .s p 0=_

INTRODUCING
CONTINUOUS POWERS
The solutions of NFE and IC games, in 
which at most one terminal can success-
fully transmit, directly stem out of choos-
ing a binary strategy set { , }p0Sk =  for 
both players. Let us see what happens if 
any power level in the continuous interval 
[ , ]p0  can be selected. This amounts 
to setting { : } .s s p0RSk k k! # #=

Within this setting, the power control 
problem can be studied as a continuous 
game [7, Ch. 2]. In our attempt to get 
closer to a realistic scenario, let us also 
modify the utilities to better model how 
real data networks work in practice. A 
good approximation for the effective 
throughput in a packet-oriented transmis-
sion is ( ) { ( )}s sexpt t 1k k

Lc= - -^ h  [8], 
whose behavior is depicted (red line, left 
axis) in Figure 3. In our expression, L
denotes the number of information bits 
per packet (here, ),L 20=  and t  is the 

[FIG2] The payoff matrix of the IC game.

[FIG3] The throughput (red) and utility (blue) as functions of the SINR (continuous 
NFE game).
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communication rate (in bits/second). To 
properly capture the tradeoff between 
obtaining a satisfactory throughput and 
saving transmit power—similar to what is 
considered for the NFE and IC games—we 
will adopt a “green” approach based on 
improving each player’s energy efficiency 
[8]. This can be done by defining player k’s 
utility as the ratio between throughput 
and power expenditure, thus accounting 
for the number of bits correctly delivered 
per joule of energy consumed: 

( ) ( ) / [ ],s su t s b/Jk k k= (4)

whose normalized behavior is reported 
(blue line, right axis) in Figure 3, with 

( )sk kn =  defined as in (1). 
Using straightforward manipulation, 

player k’s BR (2) turns out to be
( ) { , / ( )},minb s p sk k k k kc n= ==

_  where kc
_

is the “optimal” SINR such that 
( ) / ( ) / ( )s s st t1( ) ( )s skk k kk k k k

2 2c c= _
c c c c= =

_ _` j
[8]. For instance, when ,L 20=  we get 

. .4 5 6 5 dBk ,c =_  for ,k 1 2=  (see Fig-
ure 3). Based on such BR, the continuous 
IC game presents a unique NE, repre-
sented by the fixed point ( )s b sk k k= =

_ _  for 
,k 1 2=  [8].

How can the NE be “visualized”? Let 
us consider a particular realization of 
the network sketched in Figure 1(a), 
with the fol lowing parameters : 

. ,h 0 7511= . ,h 0 2521= . , ;h h0 5 112 22= =

;4C = / ;p 52v =  and .L 20=  (The 
MATLAB code for all examples presented in 
this lecture note is available for download in 
[9].) The solution of this game is given by 
the NE /s 2v =_ [ . , . ],2 99 1 97  yielding nor-
malized utilities / ( ) .st u 0 2692

1v =_^ h
and / ( ) . .st u 0 4072

2v =_^ h  We display in 
Figure 4 the (normalized) utilities at the NE 
(green diamond) on the bidimensional nor-
malized utility plane, given by all achievable 
utility pairs ( ), ( )s su u1 2^ h(shaded region), 
for any strategy profile s S S1 2#!  (the 
utility plan can be found via a numerical 
search using [9]). Note that ,s s1 22_ _  and 

( ) ( ):s su u1 21_ _  this is due to the better 
channel conditions experienced by 
player 2 (both in the direct and the 
interference links), that make it achieve 
the optimal SINR 2c

_  with a lower 
power consumption than player 1. How-
ever, unlike the finite version of the 

NFE game, where s 01 =
_  (and thus

( ) ),st 01 =_  now player 1 can success-
fully connect to its receiver, getting a 
throughput ( ) .st t0 81 O_  [the same as 

( )],st2
_  at the cost of a slightly higher 

power consumption / . ,s s 1 521 2 O
_ _^ h

and thus with a lower energy efficiency. 

IS THE NE EFFICIENT?
A natural question that arises regards the 
actual efficiency, or, the performance, of 
the NE: Is the NE efficient? To address this 
question, we first need to agree upon our 
performance metric. In GT, a convenient 
way to assess how desirable a solution is 
involves the concept of efficiency, evalu-
ated in terms of Pareto optimality. A profile 
s  is Pareto-optimal (PO) if there exists no 
other s such that 1) ( ) ( )s su uk k$  for all 

,k K!  and 2) ( ) ( )s su uk k2  for some 
.k K!  In our continuous IC game, the 

performance achieved by the PO profile set 
is represented by the contour of the shaded 
area in Figure 4, which is called the 
Pareto frontier. Clearly, if we increase 

( )su1  (i.e., if we move rightward along 
),x  then ( )su2  decreases, and the same 

happens if we increase ( )su2  (by 
moving upward along ) .y  Still, Pareto 
optimality does not qualify as our per-
formance metric. 

We have to further introduce the 
notion of social welfare (SW), that is often 
used as a convenient measure for the effi-
ciency of a strategy vector [7, Ch. 2]. For-
mally, the social-optimal (SO) profile ss  is 
the PO profile that maximizes the SW, 
defined as the weighted sum-utility

( ),sw uk kk K!
/  where the weights
{ } ,wk k K! ,w 1kk K

=
!

/  allow us to 
account for different classes of service: as 
an example, unequal weights can be useful 
to model PUs (higher wk ’s) and SUs 
(lower wk ’s) in a cognitive network. In 
our two-player game, we can identify ss  as 
the tangent point between the Pareto 
frontier and a line with slope / .w w1 2-  As 
an example, if we consider .w w 0 51 2= =

(i.e., if the two players have the same prior-
ity), / [ . , . ],s 2 20 1 552v =s  thus yielding 

/ ( ) .st u 0 2782
1v =s^ h  and / ( )st u2

2v =s^ h
.0 446 (Figure 4). 

We have zoomed in on a section of Fig-
ure 4 (see inset) to show that the NE s_  is 
socially inefficient since its performance is 
distinct from (more specifically, poorer 
than) that achieved by .ss  In general, ss
cannot be achieved by distributed algo-
rithms, rather, it is the result of a global 
optimization and, in our case, it turns out 
to be unbalanced toward player 2 (the one 
with better channel conditions): this is 

[FIG4] The normalized utility plan (continuous-power NFE game).
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reminiscent of the waterfilling policy [4] 
that allocates most resources to the users 
who can achieve higher throughputs. 
More importantly, the magnification in 
Figure 4 shows that there are a multitude 
of profiles that provide utilities lying in the 
Pareto improvement region in which 

( ) ( )s su uk k$ _  for all k K!  (the shaded 
region in the inset). Consequently, the 
next question is: How can we improve the 
efficiency of the NE? In this lecture note, 
we focus on three popular methods: 

■ modifying the utility functions
■ letting the players interact more 
than once
■ letting the players cooperate. 

PRICING THE STRATEGIES
The simplest method to improve the effi-
ciency of the NE while maintaining the 
game structure is by modifying the util-
ity function. This can be done, for 
instance, by introducing some form of 
externality. This approach is, in spirit, 
close to mechanism design [1, Ch. 7]. For 
the power control games studied so far, 
one might think of charging the players 
for the powers they consume by introduc-
ing a pricing factor a  (in ):b/J W 1$ -

( ) /st s sa= -sa-( )su=( )suk k k k k ku  [10]. 
The rationale behind this approach is the 
following: if each transmitter is discour-
aged from being aggressive (due to 
power taxation), the multiple access 
interference (MAI) experienced by the 
other is reduced, and both SINRs at the 
equilibrium stay as close as possible to 

kc
_  (provided that the AWGN power 2v

is not dominant—a condition that 
always holds in multiple-access systems). 

To evaluate the benefits of this meth-
od, we compute the NE s_u  of the modified 
game using the BR approach (see [9]). 
The blue cross marker in Figure 4 repre-
sents the performance (( / ) ( ),st u2

1v _u

( / ) ( ))st u2
2v _u  of the original utility func-

tion (4) (which is the one we are actually 
interested in), using . / ,t0 12 4a v=  which 
yields / [ . , . ] .s 2 17 1 572v =_u  As can be 
seen, the performance of s_u  is very close 
to the Pareto frontier, further favoring 
player 2’s performance compared to the 
SW. We have thus improved the efficiency 
of the game solution while maintaining 
the noncooperative nature of the interplay 

(with all its desirable properties). The 
main drawback is that this improvement 
can only be achieved after a proper tuning 
of a  (which highly depends on system pa-
rameters). As an exercise, one could eval-
uate the performance of s_u  as a function 
of a  (see [9]). 

REPEATING THE GAME
The inefficiency of the NE is mainly due to 
the selfish behavior (in the sense of self-opti-
mization) of the players. An effective 
method to induce cooperation—while 
maintaining the noncooperative nature of 
the interaction  —is forcing the players to 
interact more than once. A typical example 
of this approach is a repeated game, in 
which a static game is repeated N  times. 
For instance, assume that the two transmit-
ters of Figure 1(a) interact a number N  of 
times, each time selecting their optimal 
transmit powers ( ),s nk  where n  is the time 
index [11]. When introducing the notion of 
time, each strategy set Sk  becomes a com-
plete plan of actions that depends on the 
unfolding of the game through time. 

Similarly, the utility functions must 
account for 1) the partial utilities 

( ( ))su nk = ( ( )) / ( )st n s nk k  received at 
each stage n  of the game, with ( )s n  denot-
ing the profile selected by the players at 
time n, and 2) how much past utilities 
should be weighted (i.e., decay) compared to 
present utilities. A simple example is the 
exponential decay, where the utility at time 
n  is weighted by the factor ,nd ,0 1# #d

and the total utility after N  repetitions of 
the game is ( ) ( ( )) .s su u nk

N n
kn

N
0
d=

=
/  By 

letting ,N " 3  we further define a normal-
ized utility ( ) ( )su u1k

n
kn 0

d d= - 3d

=

+/
( ( ))s n  [11]. The parameter d  is the so-
called discount factor, and its meaning is 
borrowed from microeconomics: a payoff 
received at the present time n  is larger by 
a factor /1 d  than the payoff of the next 
stage, and smaller by a factor d  than that 
of the previous one. This means that, if 
players are patient (in the SP and commu-
nications context, delay tolerant), d  is typi-
cally close to 1. Conversely, if players are 
impatient (i.e., delay sensitive), d  is typi-
cally close to 0. 

Extending the concept of NE to 
repeated games [1, Ch. 5], we can show 
that the optimal strategy { ( )}s s n n 0= 3d d

=
+

is for both players to select ( ) ss nk k=d s  if 
( ( ) ss n 1k k- =d s  and ( ) ),ss n 1k k- = ==

d s  and 
( )s n sk k= _d  otherwise, with ( ) ,ss 0k k=d s  and 

ss and s_ being the SO and NE points, respec-
tively, provided that $d d  (i.e., if they are 
delay-tolerant enough), where d  is a 
function of the network parameters [11]. 
In other words, in the repeated IC game, 
cooperation is enforced by letting the 
players interact an indefinite number of 
times: this is successful due to threaten-
ing future punishments for the player(s) 
who defect. 

The effectiveness of this approach is 
apparent in Figure 4, where the perfor-
mance of ,sd  represented by the black 
asterisk, coincides with the SW, under the 
assumption .$d d  As a drawback, play-
ers must have knowledge of :ss  this only 
occurs if each player k  knows all channel 
gains { } ,h ,jk j k K!  which might not be via-
ble for all scenarios (e.g., in a cognitive 
network). Repeated games are a subclass 
of dynamic games, which are often used 
in SP problems to account for time evolu-
tion (see [7, Ch. 3] for more details).

INTRODUCING COOPERATION 
AMONG THE PLAYERS
In the techniques considered so far, we have 
focused on improving the efficiency of the 
solution without considering any issues of 
fairness. In the aforementioned example, 
the SW is obtained by favoring player 2 to 
the detriment of player 1’s performance, as 
is apparent in the inset of Figure 4, where 
the SW is far away from the projection of 
the NE over the Pareto frontier—obtained 
by intersecting it with the “fair” line 
with slope 1 and passing through
( ( ), ( )) .s su u1 2

__  We can balance efficiency 
and fairness by explicitly introducing coop-
eration among the players, assuming some 
explicit exchange of information. The fun-
damental difference of a cooperative 
approach is that, while in the games 
assumed so far, cooperation can only be 
induced as the result of matching it with 
self-optimization (i.e., unilateral deviations 
are not beneficial anyway), now that the 
players are willing to cooperate, as they 
know that they can mutually benefit from 
reaching an agreement. In GT parlance, this 
is called a bargaining problem [2, Ch. 7], 
whose analytical tools are tightly related to 
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SP techniques, such as consensus algo-
rithms [12]. 

Consider again the continuous IC 
game and assume that the players can col-
laborate to select a satisfactory profile

.s S S1 2#!o  In case they fail to reach an 
agreement, each player k  gets ( ),suk

_

where s_  is the NE of the noncooperative 
game studied before. On the contrary, the 
players now strive to attain the Nash bar-
gaining solution (NBS), i.e., the (unique) 
PO profile that satisfies 

( ) ( ) ,s s sargmax u us S k k k1
2= - _

! =
o ^ h%

where the subset SSS 1 2#3  is such 
that ( ) ( )s su uk k$ _  for all k K!  and 
s .S!  Interestingly, the NBS has close 
analogies with proportional fair allocation 
mechanisms, as discussed in [2, Ch. 7]. As 
is apparent, the NBS tries to increase as 
much as possible the utilities of the players 
with respect to the NE in a fair manner. 

The graphical interpretation of the NBS 
is shown in Figure 4: the NBS so  corresponds 
to the profile such that ( ), ( )s su u1 2o o^ h is the 
point of tangency between the Pareto frontier 
and the hyperbola with vertex in x =

( )su1
_  and ( ) .sy u2= _  Hence, the point 

of tangency lies by definition in the Pareto 
improvement region, as illustrated in Figure 
4 using a blue dot. In our usual network con-
figuration, / [ . , . ],s 2 26 1 522v =o  yielding 
in this case / ( ) .st u 0 2882

1v =o^ h  and
/ ( ) . .st u 0 4342

2v =o^ h  The performance of 
so  lies in between the SW and the maximum-
fairness projection of the NE performance, 
thus trading off efficiency and fairness. The 
reason why the NBS is unbalanced toward 
player 2 lies again in its better channel 
condition, which makes it stronger in negoti-
ation [2, Ch. 7]. 

For more than two players, we can also 
consider a more general cooperative frame-
work, the coalitional GT [13], which pro-
vides the theoretical tools to investigate 
situations in which subsets of players can 
bind agreements to work together, aiming at 
improving their joint utility. This approach 
is particularly useful in many areas of SP, 
such as spectrum sensing for cognitive sys-
tems (see [2, Ch. 13] for further details). 

CONCLUDING REMARKS
In this lecture note, we introduced the 
very basic notions of GT by using a power 

control problem for a wireless interfer-
ence channel as the leitmotiv: by further 
detailing and adding features to this “toy 
example,” we presented the concepts of 
players, strategies, utilities, NE,  and 
Pareto and social optimality, among  oth-
ers. Interested readers who want to 
deepen their knowledge of GT are 
encouraged to review specific textbooks, 
such as general ones (e.g., [1]), and those 
specifically tailored to an SP audience 
(e.g., [2] and [7]). 

REPRODUCIBLE RESEARCH
We have provided supplementary mate-
rial in [9] that is available for download. 
The material includes MATLAB code that 
can reproduce all the simulation results. 
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Signal Processing and Automation in Anesthesia

T
o anyone who has seen or 
been to an operating room 
(OR) or an intensive care 
unit (ICU), it is obvious that 
monitoring technology 

plays an increasingly important role in 
such clinical settings. This proliferation 
of monitors and devices means that cli-
nicians in the OR or the ICU must 
absorb, integrate, and interpret a large 
amount of data to make clinical deci-
sions. This often results in an informa-
tion overload that may be detrimental to 
the effectiveness of decision making 
under critical conditions. In other areas 
of activity, such as in the aviation indus-
try, advances in technologies such as 
signal processing, feature extraction, 
smart alarm systems, human–computer 
interfaces, and automation have helped 
the human operator deal with critical 
events by increasing situation aware-
ness. In the OR, and particularly in the 
ICU, where the early detection of deteri-
oration of critically ill patients could sig-
nificantly reduce preventable morbidity, 
mortality, and cost, the introduction of 
such methodologies may be essential to 
increase patient safety. In addition to a 
brief description of the state-of-the-art 
approaches, this column reviews some 
of the efforts my research group at the 
University of British Columbia (BC) and 
BC Children’s Hospital has performed 
over the last decade to address those 
issues, starting with the OR, concentrat-
ing on anesthesia. 

AN OVERVIEW OF ANESTHESIA
The goals of anesthesia are to allow the 
surgeon to operate in optimal conditions 

while occulting the patient from the 
effects of the surgical procedure and 
maintaining homeostasis and hemody-
namic stability as much as possible. For 
this, the anesthesiologist administers a 
number of drugs to the patients (Figure 
1): 1) hypnotics that act primarily on the 
brain to induce unconsciousness (also 
known as a hypnotic state) in the patient 
to prevent intro-operative awareness and 
memorization; 2) analgesics to suppress 
nociceptive reactions in the presence of 
painful stimulus caused by the surgical 
act; and 3) neuromuscular blocking 
(NMB) agents (mostly curare derivatives) 
to induce paralysis to suppress reflex mus-
cle activity (occasionally administered, 
particularly in abdominal procedures). 

The role of the anesthesiologist is to care-
fully dose the amounts to avoid underdos-
ing, which can lead to intraoperative 
memorization, hypertension, tachicardia, 
and possible postoperative posttraumatic 
stress, as well as overdosing, which can 
lead to prolonged electrocortical silence, 
hypotension, bradicardia, and, due to the 
toxicity of the drugs involved, may lead to 
serious or even fatal intra- or postopera-
tive consequences for the patient. Recent 
studies have linked too-deep anesthesia to 
postoperative delirium, long-term cogni-
tive losses, and even increased one-year 
mortality rates. 

There are two broad classes of anes-
thetic agents: inhaled agents and intrave-
nous agents. Common inhaled anesthetics, 
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[FIG1] Modern balanced anesthesia uses a combination of 1) a hypnotic drug that 
acts on the central nervous system (CNS) to induce unconsciousness, 2) analgesics 
and -b blockers that act on the autonomic nervous system (ANS) for antinociception, 
and 3) NMB agents that act on the neuromuscular system (NMS) to induce a state of 
muscular relaxation akin to paralysis. Depth of hypnosis (DOH) can be monitored via 
electoencephalography (EEG); blood pressure (BP), heart rate (HR), and HR variabilty 
(HRV) can be used to assess the autonomic system; and an ulnar nerve stimulator can 
be used to assess the level of muscular relaxation.
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often used in combination with nitrous 
oxide, are: 

■ desflurane
■ isoflurane
■ sevoflurane. 

Inhaled anesthetics have a combined hyp-
notic and analgesic effect but also have a 
strong hypotensive action. An advantage 
of inhaled anesthetics is that measuring 
the difference between inhaled and 
exhaled concentrations allows an accu-
rate estimation of plasma or brain drug 
uptake. Modern total intravenous anes-
thesia (TIVA) usually uses propofol as the 
hypnotic agent and remifentanil as the 
analgesic agent. Propofol is characterized 
by fast redistribution and metabolism, 
provides rapid emergence, and has good 
anti-emetic properties. Remifentanil is 
characterized by a very rapid onset and 
brevity of action, thus minimizing unde-
sirable opioid-induced side effects. That, 
combined with the high specificity of 
both agents, makes them ideal for feed-
back control of anesthesia. Hence, the 
vast majority of studies of closed-loop 
control of anesthesia have been per-
formed using intravenous anesthesia. 
Finally, NMB agents such as rocuronium 
and atracurium are commonly used as a 
bolus at the beginning of the intervention 
to facilitate intubation. NMB boluses are 
sometimes repeated during the interven-
tion to provide optimal conditions for the 
surgeon if necessary. 

We next divide the anesthesia proce-
dure into three distinct stages: induction, 
maintenance, and emergence. 

INDUCTION
Induction, or the phase during which the 
patient is being rendered unconscious, 
although quite short is critical in many 
ways. As soon as the patient loses con-
sciousness, e.g., 2–3 minutes after a bolus 
of propofol is administered, they will usu-
ally stop breathing and need to be rapidly 
intubated to allow artificial ventilation. To 
facilitate insertion of the endotracheal tube, 
the bolus of propofol is usually preceded by 
a bolus of opioid such as remifentanil. Fur-
thermore, as soon as the patient loses con-
sciousness, to blunt any reflex during 
intubation, NMB is generally administered. 
Overdosing the patient at induction may 

lead to severe hypotension, which will need 
to be corrected with vasopressors, and may 
place elderly or fragile patients into too-
deep an hypnotic state. This may lead to 
prolonged periods of electrocortical silence, 
thought to have harmful long-term effects. 
Minimizing the amount of overshoot at 
induction is thus critical. 

MAINTENANCE
During the maintenance phase, it is nec-
essary to maintain an adequate DOH and 
to blunt nociceptive reactions. When 
using inhaled anesthetics, the measure-
ment of the end-tidal vapor concentration 
provides the anesthesiologist with a reli-
able feedback quantity. The situation is 
more complex with TIVA, as no measure-
ment of arterial concentration of propofol 
or remifentanil is available. In the 
absence of brain monitoring, the anesthe-
siologist will use hemodynamic parame-
ters such as HR and BP for guidance, or 
watch for patient movement. The develop-
ment of TIVA has been made easier 
through the development of pharmacoki-
netic (PK) model-driven infusion devices. 
These devices reach a desired plasma (or 
effect site) theoretical concentration by 
using a computer-controlled infusion 
pump driven by the PK parameters of the 
drug. The resulting so-called target con-
trolled infusion (TCI) [1] anesthesia is 
used extensively in most of the developed 
world except in the United States, where it 
is not approved by the U.S. Food and 
Drug Administration. 

EMERGENCE
The emergence from anesthesia is simply 
achieved by turning off delivery of the hyp-
notic and analgesic agents used during the 
surgery. This is usually done during skin 
closure so that the patient wakes up more 
quickly at the end of the surgery. An addi-
tional bolus of a long acting opioid may be 
given for postoperative pain management. 
Extubation takes place as soon as the 
patient shows clinical signs of wakefulness. 

TOOLS FOR REAL-TIME DECISION 
SUPPORT IN CRITICAL CARE
The task of an anesthesiologist is often 
compared with that of an airplane pilot 
in that both function as part of high-

performance teams with high stakes in 
complex and potentially unpredictable 
environments, with serious mishaps 
potentially resulting in loss of life. Both 
must display a high degree of skill and 
accuracy and use sophisticated technol-
ogy. As a result, both use checklists, 
safety protocols, in-depth error analysis, 
and have to deal with a constant flow of 
data from numerous monitors. Finally, 
both have to be constantly prepared to 
deal with potential disaster. Whereas 
technology such as automation has sig-
nificantly increased safety in aviation, it 
has yet to penetrate the anesthesia world. 
A number of research groups have been 
developing sophisticated decision-support 
systems for anesthesia and critical care. 
Figure 2 shows the Intelligent Anesthesia 
Navigator (IAN) proposed by our research 
team. IAN was developed to improve the 
system function of the “bedside cockpit” 
of the OR by applying advanced signal 
processing solutions that intelligently 
analyze and interpret the large amounts 
of physiological sensor data and turn it 
into clinically useful information. These 
solutions were extended from algorithms 
for feature extraction to integration of 
information with expert knowledge, to 
the design of novel human interaction 
interfaces and, finally, to enhanced auto-
mation. Indeed we see the successful 
introduction of intelligent monitoring 
and automated control as the only practi-
cal solution to the problem of informa-
tion overload produced by the increasing 
number of sensors developed for physio-
logical monitoring. 

A major component of such a system is 
a smart alarm, or more exactly a smart 
alert system that cuts down on the num-
ber of false positives, a serious nuisance in 
an OR. However, the first step is to ensure 
that artifacts are detected and, if possible, 
rejected. In an OR, the electrical surgical 
unit (ESU) passes a high-frequency cur-
rent from an active electrode to a ground-
ing plate via the patients body, resulting in 
a high-frequency noise swamping both 
EEG and ECG measurements. Electrocau-
tery noise is thus a significant obstacle to 
the real-time implementation of clinical 
monitoring expert systems. A solution 
described in [2] consists of projecting the 
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ECG into a wavelet basis in 
which the QRS complex is sparse 
whereas the additive noise is not. 
Then, by assessing the l0 norm 
of groups of wavelets coefficients 
it allows discrimination of the 
ECG signal from the electrocau-
tery noise. Whenever possible, 
redundant measurements, when 
available, should be used to 
maintain physiological monitor-
ing. For instance, HR can be 
obtained not only from the ECG 
but also from the photoplethys-
mograph obtained from pulse 
oximetry. As the latter is less 
affected by the ESU, a simple 
fusion algorithm based on a 
hybrid median filter has been 
shown to successfully reject ESU 
noise and produce a robust esti-
mate of HR [3]. Once data qual-
ity is ensured, another important 
task of such a clinical decision 
support system is to transform 
those data into information that 
is clinically relevant. Although 
all monitors come with thresh-
old-based alarms, those have 
been not only useless but actu-
ally harmful as false alarm 
fatigue leads the clinicians to 
ignore them, thus resulting in 
monitors beeping while nobody 
pays attention to them. Building 
smarter alarms, or rather alerts 
that are clinically relevant is thus 
of great interest to clinicians. 
This has led to the development 
of number of trend detection and 
change point detection algo-
rithms for use in the OR [4] and 
the ICU [5]. Such a system, cou-
pled with an expert system for 
real-time clinical decision sup-
port, has recently been shown to 
vastly improve the detection of 
critical events during anesthesia 
in a human patient simulator 
[6]. Finally, to cut down on audi-
tory pollution we developed a 
novel vibrotactitle belt to trans-
mit those alerts to the clinician 
in a way that is nonintrusive for 
the personnel in the OR and P
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demonstrated its usability and efficacy in a 
real clinical environment [7]. 

SENSING FOR CLOSED-LOOP
CONTROL OF ANESTHESIA

DEPTH OF HYPNOSIS
The effects of anesthetic drugs on the 
EEG have been known since the early 
1940s when neurophysiologists observed 
that the EEG of anesthetized patients 
contained slower waves with higher 
amplitudes. However, raw EEGs are diffi-
cult to interpret in real time and thus a 
number of techniques have been used to 
extract univariate features from the EEG 
to quantify the hypnotic component of 
anesthesia. Two such features of histori-
cal interest are the median frequency 
(MEF) and the spectral edge frequency 
(SEF), i.e., the frequency up to which 
95% of the EEG power is present. How-
ever, this is not until the advent of the 
bispectral index (BIS) monitor that 
EEG has become more common place. 
The BIS monitor is based on the obser-
vation that with increasing anesthetic 
depth, EEG frequencies tend to syn-
chronize. This led to the use of the 
bispectrum to characterize phase cou-
pling of different frequencies. The BIS 
monitor combines a number of bispec-
tra, bicoherence indices and power 
spectral values to derive a [0–100] index 
known as DOH. An index of 100 repre-
sents the awake state while it decreases 
with increasing concentration of anes-
thetics. General anesthesia is obtained for 
an index between 60 and 40. Lower values 
represent deep hypnotic states and usually 
are not desirable. Introduced in the mid-
1990s, the BIS monitor largely dominates 
the market for DOH monitors. 

The second most common DOH moni-
tor is the M-Entropy monitor (GE Health-
care, Helsinki, Finland), introduced in 
2003, which provides two indices, the 
state entropy (SE), a measure of the irreg-
ularity of frontal EEG activity within the 
frequency range of 0.8–32 Hz; and the 
response entropy (RE), a measure of the 
irregularity of frontal EEG activity within 
the frequency range of 0.8–47 Hz. While 
SE is a surrogate of the BIS, the difference 
between RE and SE is thought of as an 

indication of nociception because it may 
contain some facial electromyography. 

Although it provides anesthesiologists 
with a reliable index of hypnosis, the BIS 
introduces a large and variable delay, is 
inherently nonlinear, tending to evolve in 
stepwise manners during transient phases 
of anesthesia, and is essentially a black 
box, hard to characterize for control 
design purposes. On the other hand, the 
M-Entropy, which responds much faster, 
is a simpler algorithm but tends to provide 
a very noisy index unless heavily filtered 
and thus delayed. 

The more recent NeuroSense monitor 
(NeuroWave Systems Inc., Cleveland 
Heights, Ohio) that addresses those con-
cerns was developed specifically for use in 
closed-loop control of anesthesia. It 
derives a bilateral index based on wavelet 
decomposition of a frontal EEG, with 
emphasis on the -c band (30–70 Hz) activ-
ity [8]. It has been shown to relate well 
with the BIS in steady state, but possesses 
much faster, delay-free, and constant 
dynamics over its entire range [9], charac-
teristics that make it ideal for use in 
closed-loop control of the DOH. 

NOCICEPTION
Nociception describes the stress re-
sponse of the ANS to a noxious stimulus. 
This stress response must be controlled 
by the anesthesiologist by administering 
analgesics drugs. Sensing for nocicep-
tion or analgesia has proved to be much 
more difficult to develop than for DOH. 
In the absence of specific monitors, an-
esthesiologists assess the patient’s noci-
ceptive reactions by keeping a close eye 
on HR and BP, both of which tend to in-
crease sharply in case of a sympathetic 
response to an improperly blunted nox-
ious stimulus. To date, the only commer-
cially available system is GE’s Surgical 
Stress Index (SSI) (GE Healthcare, Hel-
sinki, Finland) computed from finger 
photoplethysmographic waveform am-
plitudes and pulse-to-pulse intervals. 
The ANI (MetroDoloris SAS, Loos, 
France) algorithm analyzes the tacho-
gram with wavelets, and tracks the time-
varying power in the HF band. The ANI 
index has been shown to respond to the 
administration of anesthetic drugs and 

to nociceptive stimuli. A related tech-
nique is based on wavelet-based cardio-
respiratory coherence, resulting in a 
normalized index that has been shown to 
respond to both nociceptive and antino-
ciceptive events, [10]. Both techniques 
are currently undergoing clinical trials 
for validation. 

An interesting and indirect method 
for assessing nociceptive reactions is 
based on the observation that a sudden 
electrocortical activation, e.g., demon-
strated by a large and rapid increase in 
the DOH, is a reflection of an inadequate 
analgesic state or level of antinocicep-
tion. This principle has been used in the 
most clinically tested closed-loop con-
troller for anesthesia described in the 
next section. 

NEUROMUSCULAR BLOCKADE
The monitoring of neuromuscular relax-
ation is performed by measuring, mostly 
by acceleromyography, evoked muscle 
response following supramaximal stimu-
lation of the ulnar nerve. The standard 
stimulation consists of a train of four 
short pulses, and the level of paralysis is 
characterized by the ratio of the ampli-
tude of the fourth response normalized 
by that of the first one, the so-called T4/
T1 ratio. Because of the virtual on/off 
nature of the measurement, it is not an 
ideal one for use in closed-loop control. 
Fortunately, fine control is not a clinical 
requirement. Nevertheless, new tech-
niques are being developed based on 
phonomyography, which consists of 
recording low-frequency sounds created 
during muscle contraction. The advan-
tage of phonomyography is that it can be 
used at sites that are more clinically rele-
vant than the adductor pollicis. 

CLOSED-LOOP CONTROL OF 
INTRAVENOUS ANESTHESIA

MODELING FOR ANESTHESIA
Modeling of the distribution and effect of 
anesthetic drugs has traditionally been 
done using PK models for the former, 
and pharmacodynamic (PD) models for 
the latter. Typically, PK models are based 
on maxillary compartmental models, 
while PD models consist of a simple 
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compartment followed by a sigmoidal 
nonlinearity. For propofol, a three-com-
partment model (as shown in Figure 3) is 
used, yielding the transfer function be-
tween the infusion rate I p  and the plasma 
concentration :C p

( )

( ) ( ) ( )
( ) ( ) ( ) .

C s

V s p s p s p
s z s z

I s1
p

p
1 1 2 3

1 1 2
=

+ + +
+ +

The PD model is usually described by a 
transfer function between the plasma con-
centration C p  and the effect site concen-
tration Ce

( ) ( )C s s k
k C se

e

e
p

0

0=
+

followed by a Hill equation relating Ce  to 
the effect: 

( )
C

E C
EC

C
e

e
e

50

=
+ cc

c

,

where EC50 denotes the effect site con-
centration corresponding to a 50% clini-
cal effect and c  is the cooperativity 
coefficient. For remifentanil, most PK 
models involve only two compartments, 
resulting in a simpler transfer function. 

Propofol and remifentanil are known 
to interact with each other in a synergistic 
fashion in their hypnotic/analgesic effect 
[11]. This observation constitutes the 
basic assumption on which the balanced 
anesthesia concept is based. Studies of the 
PD interactions between these two drugs 

have been limited to steady characteriza-
tion through the use of response surfaces, 
which can then be parameterized, e.g., as  

( , )
( )

( )
E

r
r

1p r
p p r

p p r
y y

y y ay y

y y ay y
=

+ + + +

+ + +
c

c

where py and ry are, respectively, the 
effect site concentrations of propofol and 
remifentanil normalized by their ,EC50

and 0>a  characterizes the synergy 
between the two drugs. Note that the 
interaction is equivalent to the use of a 
new fictitious drug .p r p ry y y ay y= + +

While pharmacokineticians and 
dynamicists strive to improve the accuracy 
of PKPD models by introducing a number 
of covariates in an attempt to reduce the 
uncertainty of TCI systems, a number of 
studies have shown that to develop a clini-
cally satisfactory closed-loop control sys-
tems, simpler models such as first-order 
plus delay have the same level of predic-
tive power [12]. 

ANESTHESTIC DRUG 
CONCENTRATION ESTIMATION
Whereas in inhaled anaesthetics, the end 
tidal anesthetic concentration can be used 
as a proxy of the plasma concentration, 
there is as yet no such possibility with 
intravenous anesthetics. Thus, anesthesi-
ologists come to rely on open-loop predic-
tion [see Figure 4(a)], in which the drug 
concentration is estimated by solving the 
patient PK described in terms of a multi-
compartmental model. In the absence of 

feedback, this approach inevitably suffers 
from interpatient variability. Any discrep-
ancy between the real PK of an individual 
patient and its model counterpart results 
in a mismatch between the true versus 
estimated drug concentrations However, 
a closed-loop approach, exploiting the 
clinical-effect measurement, i.e., the 
depth of anesthesia index wavelet-based 
anesthetic value CNS [see Figure 4(b)], 
has been shown to improve the accuracy 
of the estimation of intravenously admin-
istered propofol concentrations at the 
plasma and effect sites [13]. To strike the 
right compromise between robustness in 
face of interpatient variability and rejec-
tion of unknown surgical disturbances, 
the estimator was designed using -n syn-
thesis theory. 

CLOSED-LOOP CONTROL OF DEPTH 
OF HYPNOSIS IN INTRAVENOUS 
ANESTHESIA

1) Control Paradigm: After ensuring a 
fast and safe induction, the anesthesi-
ologist needs to maintain the patient 
in an adequate state of hypnosis, anal-
gesia, and paralysis according to the 
requirements of the surgical proce-
dure. The anesthetic and opioid titra-
tion needs to be constantly adjusted 
to avoid both under and overdosing of 
the patient. The idea of an automated 
system that would regulate drug dos-
ing to maintain the adequacy of the 
anesthetic regimen is thus natural. 
Closed-loop anesthesia would not 
replace the anesthesiologist, but 
would allow them to concentrate on 
higher level tasks. 
A closed-loop controller for anesthesia 

should induce the patient rapidly but with 
minimal overshoot and then maintain the 
patient in an adequate state of anesthesia 
and analgesia at least as well as an expert 
anesthesiologist. Translating this in con-
trol specifications is difficult, but for the 
DOH index, it could be translated into a 
rise time at induction of 3–4 minutes, 
with overshoot less than 10–15% and a 
damping ratio of at least 0.7. During 
maintenance, the DOH index should stay 
within ten points of the target about 
85–90% of the time. Disturbance rejection 
should be such that in case of arousal 
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[FIG3] A three-compartment PK model typically used for the hypnotic drug propofol.
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(which in control engineering terms can 
be thought of as an output disturbance), 
the patient response is rapidly suppressed, 
say within 2 minutes and without induc-
ing oscillations. The clinical outcome 
should be improved hemodynamic stabil-
ity, faster emergence, and possibly reduced 
drug consumption. The main challenge is 
the inherent variability, both interpatient 
and intraoperative, thus robust stability 
and robust performance are paramount to 
ensure patient safety when designing such 
a closed-loop control system. 

2) Research Systems: The first efforts 
to automate anesthesia go back to the 
work of Mayo and Bickford in the 
early 1950s with their attempts to 
develop EEG-based automatic delivery 
of volatile agents; see [14] for a review 
of the progress from 1949 to 1980. 
The advent of the BIS monitor in the 

mid-1990s dramatically changed the sit-
uation resulting in a significant increase 
in the number of studies, both simulated 
and clinical, on closed-loop control of 
depth of anesthesia. 

The pioneering systems for BIS-guided 
closed-loop control of propofol infusion 
were heuristic systems developed by anes-
thesiologists without the involvement of 
control experts. Absalom [15] used a PID 
controller tuned in a very ad-hoc manner 
to adjust the propofol effect site concen-
tration setpoint in a target site infusion 
system. This was clinically tested on 20 
patients. Not surprisingly, the perfor-
mance varied significantly from patient to 
patient, the system displaying instability 
for some of them. All patients were 
induced under TCI mode, with an effect 
site concentration chosen by the clinician 
who then switched to closed-loop control 
for the maintenance phase. A system with 
a similar structure is described in [16]. 
That controller is actually not a PID con-
troller, but a rule-based system that is 
somewhat similar to a PD controller. After 
significant tuning, this system was tested 
against manual control in a randomized 
controlled trial involving 164 patients (83 
in closed loop). That system was shown to 
outperform manual control in terms of 
BIS variability, and resulted in similar 
hemodynamic stability. In [17], the 
authors present what they term a dual 

loop that manipulates both the propofol 
and remifentanil infusion rates based on 
the BIS alone. The basic idea is that sud-
den increases in the BIS index are due to a 
nociceptive reaction and reflect an inade-
quate analgesic state. The controller that 
manipulates the remifentanil is a combi-
nation of a proportional action and a 
number of heuristic rules. Randomized 
clinical trials invloving 167 patients on a 
wide variety of procedures showed that the 
system provides better control of the BIS 
than manual control, similar hemody-
namic stability accompanied with 
increased remifentanil consumption. This 
system, like its predecessor induces the 
patient in TCI mode, with manually set 
targets for both propofol and remifentanil 
effect site concentrations. 

Because these pioneering systems 
were designed heuristically, their theo-
retical properties are difficult, if not 
impossible to assess. A rigorous approach 
to robust PID tuning for anesthesia is 
described in [18] where a PID controller 
is robustly tuned for a population of 

44 adults. Results of a feasibility study in 
adults showed that this simple controller 
provided adequate anesthesia. This led to 
the development of a similar system for 
pediatric use, which resulted in the DOH 
within ten points of the target 89% of the 
time in a clinical study on 108 patients 
reported in [19] and [20]. Those results 
indicate that a robust PID controller 
manages relatively well with the signifi-
cant interpatient uncertainty in a pediat-
ric population. 

THE FUTURE
Despite the number of studies that have 
over the years demonstrated the feasibility 
and safety of real-time systems for moni-
toring and closed-loop control of anesthe-
sia, the regulatory hurdles abound before it 
can be approved for routine clinical use. 
First and foremost, the clinical benefits of 
those systems have to be clearly demon-
strated, and this will require extensive 
multicentric clinical studies involving tens 
of thousands of patients. The development 
of fallback and safety systems, as well as 
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[FIG4] The open-loop prediction versus closed-loop estimation of anesthetic drug 
concentrations. (a) Open-loop prediction. (b) Closed-loop estimation. (Figure used 
courtesy of [13].) 
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the proof that they preserve patient safety, 
will be paramount to the broad clinical 
application of anesthesia automation sys-
tems. Many of the systems that have been 
used clinically so far have been developed 
without control engineers and consist of 
very heuristic controllers. It is thus impor-
tant for signal processing, control, and 
software engineering experts to be at the 
heart of the design of those systems to 
ensure they are based on sound control 
theory, as regulatory approval will likely 
require guarantees in terms of stability, 
robustness and performance. 

It is not entirely clear yet what level of 
control complexity is required to achieve 
clinically acceptable performance. Novel 
monitors of nociception are in the works 
and will hopefully allow true multivariable 
control of hypnosis and analgesia. It is also 
important to realize that the systems dis-
cussed here only consider a subset of what 
an anesthesiologist needs to do to ensure 
patient safety. Other systems, e.g., for 
hemodynamics and fluid management, 
are being considered and should undergo 
clinical trials in the coming years. 
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Fast, Accurate, and Guaranteed Stable Sliding 
Discrete Fourier Transform

D
iscrete orthogonal trans-
forms such as the discrete 
Fourier transform (DFT), 
discrete Hartley transform 
(DHT), and Walsh–Had-

amard transform (WHT) play important 
roles in the fields of digital signal pro-
cessing, filtering, and communications. 
In recent years, there has been a growing 
interest in the sliding transform process 
where the transform window is shifted 
one sample at a time and the transform 
process is repeated. 

Jacobsen and Lyons [1] introduced 
the sliding DFT (SDFT) algorithm, 
which computes the DFT bins using a 
recursive scheme. The SDFT can reduce 
the computational load of the DFT dras-
tically; however, it suffers from potential 
instability. Several algorithms were pro-
posed to guarantee the stability of the 
SDFT [2]–[4]. Basically, these algorithms 
guarantee the stability at the cost of 
computational complexity or computa-
tional accuracy. 

This article introduces a new guaran-
teed stable SDFT (gSDFT) algorithm of 
which the computational requirement is 
the lowest among the existing stable 
SDFT algorithms. Moreover, the output 
of the proposed gSDFT is mathematic-
ally equivalent to that of the DFT regard-
less of the window size and the time 
index. This work is motivated by our pre-
vious study on the hopping DFT (HDFT) 
[5]. Let us start with a brief description 
of the existing stable SDFT algorithms. 

EXISTING STABLE SDFT ALGORITHMS
In the SDFT scenario, the transform is 
computed on a fixed-length window of the 
signal. Consider a complex input signal 

( ),x n , , , ,n 0 1 2 f=  which will be 
divided into overlapping windows of size 

.M  Let k  be the frequency-domain index 
in the range .k M0 1#  Then, at time 
index ,n  the k th bin of an M-point DFT 
is computed as 

( ) ( ) ,X k x n m Wn
m

M

M
km

0

1

= +
=

-
-t/ (1)

where n n M 1= - +t  and .W e /
M

j M2= r

Accordingly, by the circular shift prop-
erty, the SDFT is formulated as [1] 
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where the periodicity property of the 
complex twiddle factor is exploited 

.W WM
k M

M
k=+` j

The SDFT has a marginally stable 
transfer function because its pole lies on 
the unit circle in the z-domain. In prac-
tice, the complex twiddle factor in (2) is 
represented by a floating-point format 
with finite precision. The numerical 
rounding of the complex twiddle factor 
might move the pole outside the unit 
circle and result in an unstable system. 
To address this issue, the stable SDFT 
algorithm that uses a simple recursive 
updating scheme was proposed in [2]. 
This algorithm is realized using a period-
ically time-varying system designed such 
that the numerical errors introduced by 

finite precision arithmetic exponentially 
decay to zero over time. 

Another stable SDFT, called rSDFT, 
was proposed in [3]. This algorithm 
forces the pole to be at a radius of r
inside the unit circle by utilizing the 
damping factor ,r  thereby guaranteeing 
stability. The DFT approximation using 
the damping factor r  is expressed as 

( ) ( ) ,X k x n m r Wn
m

M
M m

M
km

0

1

= +
=

-
- -u t/ (3)

where r0 11%  and the tilde symbol 
indicates an approximation of the DFT. 
Analogously, the SDFT recurrence in (2) 
is rewritten as 

.

( ) ( ( )

( ) ( ) )

X k rW X k

x n x n M r
n M

k
n

M

1=

+ - -

-
u u

(4)

Note that, the output bin values of the 
rSDFT are different from those of the 
DFT in (1). Moreover, the errors accu-
mulate in the resulting outputs. 

The modulated SDFT (mSDFT) was 
recently introduced in [4]. The mSDFT 
first generates a modulated sequence by 
multiplying the input signal by the mod-
ulation sequence .WM

km-  Then, using the 
modulated sequence, the mSDFT formu-
lates the recurrence of the DFT bins with 
k 0=  as 

( ) ( ) ( )
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( ) ( ( )
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n n M
km

M
k m M

n M
km

1

1

= +

- -

= +

- -

-
-

- -

-
-

(5)

where .W W( )
M

k m M
M

km=- - -  Finally, the 
desired ( )X kn  can be obtained by 

( ) ( ) .X k W X 0( )
n M

k m
n

1= + (6)

By excluding the complex twiddle factor 
from the feedback of the resonator, the 
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mSDFT has the pole located exactly on the 
unit circle and is unconditionally stable. 
However, it was reported in [4] that the 
computational requirement of the mSDFT 
is more than double that of the SDFT. 

GUARANTEED STABLE SDFT
As mentioned previously, a stable SDFT 
filter can be designed by excluding the 
imprecise twiddle factor from the feed-
back loop. We first investigate the special 
relationship between the DFT outputs, 
which can be expressed without using 
the twiddle factor. 

Basically, the SDFT computes the DFT 
bins by exploiting the recurrence relation-
ship between successive DFT bins. We can 
derive the general formula between the 
DFT bins with L-hop distance by extend-
ing the relationship between the succes-
sive bins. Let ( ) ( ) ( )d n x n x n M= - -

and, then, the resultant formula is 
obtained by substituting ( )X kn  into 

( )X kn 1- L  times in (2): 
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- - (7)

Let us define ( )D kn
L  as the kth bin of the 

L-point updating vector transform (UVT), 
which is represented by 

( ) ( ) ,D k d n m W ( )
n
L

m

L

M
m L k

0

1
1= -

=

-
- +/ (8)

where .k M0 1#  Then, using this nota-
tion, (7) is simplified as 

( ) ( ( ) ( )) .X k W X k D kn M
Lk

n L n
L= +- (9)

This leads to the result that the DFT out-
puts at time index n  can be directly com-
puted from those at time index ( )n L-  by 
exploiting ( ) .D kn

L  In the next section, we 
describe how to efficiently implement the 
UVT in (8). 

Let us focus on the twiddle factor ,WM
Lk

which is multiplied to the delayed output 
in the recursive computation (9). We can 
observe that the value of the twiddle factor 
is varied depending on the time hop .L

We consider the case / .L M 4=  The other 
cases, /L M 2=  and / ,L M3 4=  can be 
treated in a similar manner. When L  is 
equal to / ,M 4  we have 

( ( / ) ( / )) .cos sinW j j2 2/
M
Mk k k4 r r= + = (10)

Accordingly, (9) can be further simplified as 
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Then, by the periodicity property of ,j  we 
obtain the following: 
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where , , , / .i M0 1 4 1f= -  This forms 
the basis of an efficient scheme for com-
puting the DFT outputs of the shifted win-
dow. Given the DFT outputs of the 
previous window at time index ( / ),n M 4-

the outputs at time index n  can be 
directly computed without performing the 
multiplication by the twiddle factor. For 
example, when ,k i4=  the following rela-
tionship holds between ( )X i4n  and 

( ):X i4/n M 4-
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where ( )Re $  and ( )Im $  denote the real 
and imaginary parts of a complex number, 
respectively. Then, each part of ( )X i4n  is 
obtained as 

.
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Similarly, the efficient computation for the 
other cases, , , ,k i i i4 1 4 2 4 3= + + +  can 
be derived. These results demonstrate that 
only two real additions are required for 
computing ( )X kn  using ( )X k/n M 4-  and 

( ) .D k/
n
M 4  Further, since the multiplication 

by the imprecise twiddle factor is excluded 

from the recursive calculation, the numer-
ical errors do not accumulate. Therefore, 
the proposed gSDFT algorithm is stable. 

SLIDING UPDATING
VECTOR TRANSFORM
The fast implementation of the UVT in (8) 
is a crucial part because it mainly deter-
mines the computational cost of the pro-
posed gSDFT. Since the computation of 
the UVT is similar to that of the DFT, the 
traditional fast Fourier transform (FFT) 
algorithms can be used for its fast imple-
mentation. Here we use the radix-2 deci-
mation-in-time (DIT) algorithm, which 
divides a UVT of size L  into two inter-
leaved UVTs of size /L 2 at each recursive 
stage. Based on the DIT approach, we 
express ( )D kn

L  using decimated sequences 
as follows: 
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where 
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(16)

Equation (15) implies that we can obtain 
( )D kn

L  using two UVT bins of the deci-
mated sequences, { ( ), ( ), ,d n d n 2 f-

( )}d n L 2- +  and { ( ), ( ), ,d n d n1 3 f- -

( )} .d n L 1- +  The decimation process is 
repeated until the resulting sequences are 
reduced to one-point sequences. 

In the SDFT scenario, the UVT needs 
to be repeatedly computed at each time 
index. Thus, the computational require-
ment of the UVT can be reduced further if 
the UVT outputs of the current window 
can be obtained by exploiting the interme-
diate calculations of the previous window. 
From its definition, we simply derive that 
the UVT calculation at successive time 
indexes has the following relationship: 
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The above result presents that ( )D k/
n
L 2p  is 

exactly the same as ( ) .D k/
n
L

1
2
-
o  This is an 

important fact to be considered because 
the intermediate calculations of the pre-
vious window can be reused for the cur-
rent window without losing the accuracy 
of calculations. On the basis of these 
findings, we propose a sliding UVT 
(SUVT) algorithm. 

At time index ,n  the proposed SUVT 
algorithm first computes ( )D k/

n
L 2o  using 

the DIT approach. Then, according to (15), 
the UVT output ( )D kn

L  is obtained using 
( )D k/

n
L 2o  and ( ),D k/

n
L 2p  where ( )D k/

n
L 2p  has 

already been obtained at the previous win-
dow position. The price to be paid for this 
strategy is the additional memory to main-
tain the necessary intermediate calcula-
tions of the previous window. Figure 1 
shows an example of the proposed SUVT 
algorithm. It is noted that the proposed 
gSDFT algorithm has the same precision 
as the traditional FFT because the twiddle 
factors used in the SUVT are identical to 
those used in the traditional butterfly-
based FFT algorithm [6]. 

OVERALL ALGORITHM
The proposed gSDFT algorithm repeat-
edly produces the DFT outputs by shift-
ing the fixed-length window one sample 
at a time. For simplicity of explanation, 
we consider only the case / .L M 4=  At 
time index ,n  the overall algorithm for 
window size M  proceeds as follows. 

■ Compute ( )d n  using the input 
samples. Only one complex addition 
is needed in this step. 
■ Compute ( )D k/

n
M 8o  using { ( ),d n

( ), ,d n 2 f- ( / )} .d n M 4-  Note that 
{ ( ),d n 2- ( ), , ( / )}d n d n M4 4f- -

have already been obtained during 
the computation process in the previ-
ous window positions. Since the 
decimation is performed ( )log M 32 -

times, the computation of ( )D k/
n
M 8o

requires ( / ) ( )logM M4 32 -  complex 
multiplications and ( / ) ( )logM M2 32 -   
complex additions. 
■ Compute the order-LUVT ( )D k/

n
M 4

using ( )D k/
n
M 8o  and ( ),D k/

n
M 8p  where 

( )D k/
n
M 8p  is precalculated in the previ-

ous window position. The resultant 
( )D k/

n
M 4  is the input for the following 

step. This step requires ( / )M 2  com-
plex multiplications and M  complex 
additions as shown in (15). Note that 
additional memory of size /M 2  is 
required to store ( )D k/

n
M

1
8
-
o  of the pre-

vious window. 
■ According to (12), calculate ( )X kn

using ( )X k/n M 4-  and ( ) .D k/
n
M 4  This 

step needs only M2  real additions. 
A computational complexity compari-

son with varying M  is presented in 
Table 1 where RM  and RA  denote the 
numbers of real multiplications and 
additions, respectively. In particular, 
when ,M 16=  the gSDFT algorithm 

reduces the number of multiplications by 
50% and 75% as compared to the rSDFT 
and mSDFT, respectively. When ,M 2131
the number of multiplications of the 
gSDFT is fewer than that of the mSDFT 
which is the state-of-the-art method. 
Therefore, for applications where the 
numerical errors should not be accumu-
lated and the number of multiplications is 
the most important consideration, we 
would suggest the use of the gSDFT algo-
rithm when M  is less than 213. Other-
wise, the mSDFT algorithm can be used 
for the applications. 

The key characteristics of the pro-
posed gSDFT algorithm are as follows:

■ When M  is less than 213, the num-
ber of multiplications of the proposed 
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[FIG1] The SUVT calculation for M 16=  and ,L 4=  where solid and dotted lines indicate 
the plus and minus signs, respectively. Only the filled circles need to be calculated.
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gSDFT is smaller than that of the 
state-of-the-art method. 
■ The recurrence presented in (12) is 
unconditionally stable and the 
numerical errors do not accumulate. 
■ The proposed algorithm produces an 
output signal that is mathematically 
equivalent to the DFT output in (1) 
at all time indexes. 
■ The SUVT can be computed inde-
pendent of the recursive calculation of 
the SDFT. This separable feature is 
highly beneficial for hardware 
implementation. 

SIMULATION RESULTS
We investigated the efficiency of the pro-
posed gSDFT algorithm using a complex 
test signal, which was zero-mean Gaussian 
noise with a standard deviation equal to 
one. The simulation was performed in 
64-bit double-precision arithmetic and M
was set to 16. In our simulation, the 
numerical errors of the rSDFT [3], 
mSDFT [4], and gSDFT were, respectively, 
generated by recursively computing 
(4), (5), and (12) using the test signal. We 
repeated these recursive computations 106

times to accumulate the numerical errors 

and then calculated the errors at each time 
index. All algorithms were implemented 
using a highly efficient ANSI-C code and 
the performance was evaluated on an Intel 
i5 3.4 GHz CPU with 8 GB RAM. 

Figure 2 shows the measured results 
of all algorithms. The error En  at time 
index n  is calculated as 

| ( ) ( ) |E X k X kn
k

M

n n
0

1
DFT Algorithm= -

=

-

/ (18)

where ( )X kn
DFT  represents the kth  bin of 

the standard DFT in (1) and ( )X kn
Algorithm  is 

the kth  bin of each algorithm. Figure 2 
shows that the mSDFT and gSDFT algo-
rithms significantly reduce the numerical 
errors as compared to the rSDFT, where the 
damping factor r  of the rSDFT is set to 
0.99999. We show in Figure 2 the average 
numerical error Er  over 64 time indexes 
after the error accumulation process. In our 
simulation, Er s of the rSDFT, mSDFT, and 
gSDFT are . ,9 72 10 3# - . ,7 41 10 11# -  and 

. ,7 17 10 11# -  respectively. We can observe 
that the error of the gSDFT is even smaller 
than that of the mSDFT. Therefore, the pro-
posed gSDFT consistently outperforms the 
other algorithms. 

SUMMARY
In this article, we proposed a new guaran-
teed stable SDFT algorithm by excluding 
the imprecise twiddle factor from the feed-
back of the resonator. We first derived the 
general formula between the DFT bins with 
multihop distance. Then the proposed 
gSDFT algorithm was designed by exploit-
ing the special relationship between the 
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[FIG2] The measured errors of the stable SDFT algorithms.

[TABLE 1] THE COMPUTATIONAL REQUIREMENT FOR A COMPLEX INPUT SIGNAL.

ALGORITHM OPERATION 

WINDOW SIZE

4 16 64 256 1,024 4,096 M

FFT [6] RM 16 128 768 4,096 20,480 98,304 logM M2 2

RA 24 192 1152 6,144 30,720 147,456 logM M3 2

rSDFT RM 24 96 384 1,536 6,144 24,576 M6
RA 24 96 384 1,536 6,144 24,576 M6

mSDFT RM 48 192 768 3,072 12,288 49,152 M12

RA 40 160 640 2,560 10,240 40,960 M10

gSDFT RM 0 48 320 1,792 9,216 45,056 ( )logM M 12 -

RA 10 42 610 3,202 15,874 75,778 ( / ) ( )logM M2 3 1 22 + +

(continued on page 156)
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T
he High Efficiency Image 
File Format (HEIF) is a stan-
dard developed by the Mov-
ing Picture Experts Group 
(MPEG) for the storage of 

images and image sequences. The stan-
dard facilitates file encapsulation of data 
coded according to the High Efficiency 
Video Coding (HEVC) standard. The 
compression performance of HEVC is 
superior to any alternative image or 
image sequence coding format. HEIF 
includes a rich set of features building 
on top of the widely used ISO Base Media 
File Format (ISOBMFF), making HEIF 
superior feature-wise compared to other 
image file formats. This article provides 
an overview of  the performance, fea-
tures, and design of HEIF.

BACKGROUND
Version 1 of the HEVC standard [1] was 
finalized in January 2013 and has been 
reported to achieve the same image qual-
ity with about half the bit rate compared 
to the Advanced Video Coding (AVC) stan-
dard. After the finalization of version 1 of 
the HEVC standard, it was realized that to 
take the good still picture compression 
performance of HEVC into use, e.g., in 
cameras, a format to associate photo-
graphic metadata, such as various tags of 
the exchangeable image file format (Exif), 
to the coded image is needed. Various use 
cases concerning sequences of images, 
such as photo bursts, exposure stacks, or 
animations, were also considered impor-
tant. A requirements-gathering process 
was hence performed by the MPEG, 
resulting in accepted requirements docu-
ments for storage of HEVC still images 
and image sequences in August 2013. 

Subsequently, a standardization project 
was established by MPEG, in coordina-
tion with the Joint Photographic Experts 
Group (JPEG). In summary, the goal of 
the project was to specify an image file 
format capable of storing one or more 
HEVC-coded still images (i.e., indepen-
dent static images) or image sequences 
and associated photographic metadata 
into a file.

The fundamental design decisions on 
file format structures to store still images 
and image sequences were agreed upon in 
January 2014. Various features were then 
refined until a public review period was 
held from April to June 2015. This column 
is based on the draft standard available for 
the aforementioned public review (see the 
“Resources” section). The technical 
finalization of the standard took place in 
June 2015, and the standard will be 
published after a final approval ballot.

USE CASES AND REQUIREMENTS
HEVC-coded content in HEIF enables a 
wide range of use cases varying from tra-
ditional still picture capture, storage, 
and sharing to sophisticated multi-image 
use cases, such as sharing of image 
bursts or storing sets of images for the 
purpose of processing those by means of 
computational photography. As HEVC 
provides support for various chroma for-
mats and sample fidelities up to lossless 
coding, the format can serve the whole 
spectrum of use cases from today’s con-
sumer devices storing images typically at 
8 bits per sample to high-end profes-
sional devices with sample fidelity and 
dynamic range requirements going all 
the way up to 16 bits per sample. 

Computational photography forms a 
new category of use cases that can bene-
fit from HEIF. Now a set of related 
images can be stored in a single file with 

associated metadata indicating relation-
ships between different pictures. Exam-
ples of such emerging use cases include 
refocusing the shot by selecting an 
image with a desired focus from a set of 
pictures captured with different focal 
lengths, high dynamic range photogra-
phy by combining pictures with different 
exposures, and building omnidirectional 
or panoramic images from a set of pic-
tures with connected scenery.

As opposed to legacy image codecs, 
HEVC also provides interesting opportu-
nities for hybrid video and imaging use 
cases, such as simultaneous capture of 
video and still pictures, extracting still 
pictures from a video sequence, storing 
bursts of images efficiently in a single 
file, and creating animations that can be 
shared and edited easily. 

In addition to the aforementioned use 
cases, the capability of fast “random 
access” to each picture in an image 
sequence was included in the require-
ments to allow for flexibility in rendering 
the sequence and allow editing individ-
ual images in the sequence without 
affecting coding of other output images. 
Moreover, the support for auxiliary pic-
tures, such as alpha channels, was 
included in the requirements.

STILL-IMAGE CODING
PERFORMANCE
HEVC includes sophisticated intra cod-
ing tools [2], making it an excellent 
codec for still image compression. To 
assess coding efficiency of the HEVC 
intra picture coding, we carried out a set 
of experiments using the common test 
conditions [3] of the Joint Collaborative 
Team on Video Coding (JCT-VC). Tests 
were performed with constant quality 
settings, aligning the objective quality—
measured as peak signal-to-noise ratio 

The High Efficiency Image File Format Standard
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(PSNR)—for each measurement. The 
resulting picture quality typically varied 
in the range of 34–44 dB, illustrating a 
wide range of quality levels from typical 
Web usage to visually lossless. More 
information on the experimental setup 
is available in [4].

Table 1 illustrates the coding efficiency 
of HEVC intra coding with respect to well-
known still picture codecs. The results 
indicate that JPEG would require, on aver-
age, 139% higher bit rates than HEVC 
(i.e., 2.39 times the file size) to achieve the 
same objective picture quality. For JPEG-
XR and JPEG-2000, the average increase 
in bit rate is 66% and 44%, respectively. 
Table 1 also provides information about 
the objective quality differences between 
HEVC and legacy codecs measured using 
the Bjøntegaard delta PSNR metrics [5]. 
Subjective testing performed for different 
test sets appear to also verify the results 
when it comes to the perceived quality of 
material coded with different codecs. For 
instance, [6] reports that typically subjec-
tive quality of HEVC-intra coded pictures 
are comparable to that of JPEG-coded pic-
tures using two or sometimes even four 
times the bit rate of HEVC.

CODING OF IMAGE SEQUENCES
HEVC image sequences can be coded 
either by applying intra picture coding or 
using predictive video-like encoding, 

where dependencies between coded pic-
tures are restricted to guarantee quick 
random access to individual pictures in 
the file. In the case of intra picture coding, 
each image in the sequence is simply 
coded as an independent still picture with-
out reference to any of the other pictures 
in the sequence. While providing subopti-
mal coding efficiency compared to tradi-
tional video coding, HEVC intra pictures 
still provide substantial improvement over 
legacy image coding alternatives. The 
results in Table 1 also apply when compar-
ing HEVC intra coded image sequences to 
motion JPEG and motion JPEG-2000. The 
benefits of intra only coding include 
minimal random access latency to each 
output picture and the possibility to edit 
individual pictures without affecting 
coding and reconstruction of the other 
pictures in the file.

Inter coding can provide significant 
coding efficiency improvement to image 
sequences when images are correlated. 
Such correlation is especially evident in 
content like image bursts or animation 
clips. However, applying unrestricted pre-
dictive video coding can lead to unaccept-
able decoding delay when extracting only a 
specific picture out of a coded file. In the 
worst-case scenario, the whole sequence 
needs to be completely decoded to be able 
to access the last picture in the stream. To 
avoid such undesired behavior, the HEVC 

image sequences rely on a predefined set of 
intra coded reference pictures, while the 
use of inter coded pictures as reference pic-
tures for predicting other inter coded pic-
tures is disallowed. 

To measure coding efficiency of low-
latency HEVC encoding structures for 
different use cases, the following experi-
ments were performed. First, the JCT-VC 
test set of Table 1 was used to mimic 
image bursts. Eight first frames of each 
sequence were coded using the fourth 
picture in each clip as a reference picture 
for inter coding. Second, additional use 
cases with exposure stack, focal stack, 
and cinemagraph content were simu-
lated by coding a representable sequence 
in each category. For an exposure stack a 
well-known “Memorial” sequence with 
16 different exposures was used. In the 
focal stack case a “Mersu” sequence with 
13 different focus distances was selected 
and finally a “Car and Tractor” cinema-
graph was used to represent an animated 
clip where the majority of the picture is 
frozen and only a certain area of the 
scene is undergoing motion. The results 
reported in Table 2 indicate that for nat-
ural content the restricted inter coding 
can typically provide two to three times 
better compression than intra picture 
coding. In special cases like animations  
where the majority of the scene is 
static, the compression efficiency can 

[TABLE 1] THE HEVC INTRA CODING PERFORMANCE WITH RESPECT TO LEGACY FORMATS. BIT RATE INCREASE REQUIRED TO
ACHIEVE THE OBJECTIVE QUALITY PROVIDED BY HEVC INTRA CODING IS REPORTED FOR EACH TEST CATEGORY. SIMILARLY, 
THE AVERAGE PSNR DIFFERENCES WITH RESPECT TO HEVC AT ALIGNED BIT RATES ARE REPORTED IN DECIBELS.

JPEG JPEG-XR JPEG-2000

CLASS RESOLUTION CHARACTERISTICS DBR DPSNR DBR DPSNR DBR DPSNR

CLASS A 2,560 #  1,600 CROPPED 4K #  2K SEQUENCES FOR ULTRA HDTV
SERVICES 87% –3.6 44% –2.1 48% –2.1

CLASS B 1,920 #  1,080
HIGH-RESOLUTION SEQUENCES FOR STREAMING
AND BROADCAST SERVICES 124% –3.2 62% –1.9 15% –0.2

CLASS C 832 #  480
MEDIUM-RESOLUTION SEQUENCES FOR INTERNET/
MOBILE VIDEO SERVICES 122% –5.5 53% –2.6 50% –2.5

CLASS D 416 #  240
LOW-RESOLUTION SEQUENCES FOR SERVICES TO 
RESOURCE-CONSTRAINED DEVICES 110% –5.8 47% –2.7 43% –2.2

CLASS E 1,280 #  720
720p SEQUENCES FOR VIDEO CONFERENCING
APPLICATIONS 170% –5.2 73% –2.9 23% –1.0

CLASS F
1,024 #  768,
1,280 #  720

COMPUTER SCREEN CONTENT AND COMPUTER-
GENERATED CONTENT 223% –11.8 118% –8.2 87% –6.2

AVERAGE 139% –5.8 66% –3.4 44% –2.4
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significantly exceed those levels and be 
tens of times more efficient than intra 
coding. More information on the experi-
ment is available in [4].

DERIVING FROM THE ISO BASE 
MEDIA FILE FORMAT
The ISOBMFF was originally designed to 
be a container format for timed media 
data, such as audio and video. It is used 
as the basis from which widely used con-
tainer file formats, such as MP4, and 
media encapsulation formats, such as 
ISO/IEC 14496-15 for AVC and HEVC 
video streams, are derived.

Since one of the initial requirements 
of HEIF was to support multipurpose 
files, e.g., for the storage of still images 
associated with video, it was justified to 
take ISOBMFF as the basis of the devel-
opment. To reuse existing implementa-
tions, the ISOBMFF structures and 
features are used as much as possible in 
the design of HEIF.

Files conforming to ISOBMFF consist 
of a sequence of data structures called 
boxes, each comprising a four-character 
type, the size of the box in terms of bytes, 

and the payload of the box. Boxes may be 
nested, i.e., a box may contain other 
boxes. ISOBMFF specifies constraints on 
the allowed box order and hierarchy. 

In ISOBMFF, a continuous or timed 
media or metadata stream is conceptually 
organized in a track, whereas static media 
or metadata is conceptually stored in 
items. Consequently, the following basic 
design was chosen for HEIF:

1) Still images are stored as items. All 
image items are independently coded 
and do not depend on any other item 
in their decoding. Any number of 
image items can be included in the 
same file.
2) Image sequences are stored as 
tracks. An image sequence track is 
used when there is coding dependen-
cy between images or when the play-
back of the images is timed. As 
opposed to video tracks, the timing in 
the image sequence track is advisory.
While the standardization work 

started from the requirements to store 
HEVC-coded images and image 
sequences, it became apparent that the 
specified structures could be equally used 

for any coding format. The HEIF specifica-
tion is written in a way that other image 
container file formats can be derived and 
the support of other coding formats in 
addition to HEVC can be added in derived 
formats, similarly to how ISOBMFF can be 
used as a basis for derived file formats. The 
nickname of the standard, HEIF, refers to 
the structural file format specification, 
whereas the nickname HEVC Image File 
Format, or HEIC, can be used for the 
specified encapsulation of HEVC-coded 
images in HEIF files.

BRANDING AND SIGNALING
Files conforming to HEIF start with a 
File Type box (“ftyp”), which contains a 
list of brands to which the file conforms. 
Each brand is identified by its unique 
four-character code. The specification of a 
brand can include requirements and con-
straints for files of the brand and for file 
players supporting the brand. A brand 
included in the File Type box permits a 
player that supports the requirements of 
the brand to play the file. 

The brands specified in the HEIF 
standard are presented in Table 3. The 
HEIF standard specifies the mif1 and 
msf1 structural brands, where require-
ments on file structures present in the 
file and to be supported by players, are 
given, but any image coding format can 
be used. Additionally, HEVC-specific 
brands are specified as listed in Table 3. 
As the File Type box is located at the 
start of the file, it provides easily acces-
sible indications of the file contents to 
file players. It can be expected that the 
Main profile of HEVC will be most 
widely implemented out of all the HEVC 
profiles. Hence, it was decided to specify 
dedicated brand names, heic  and 

[TABLE 2] CODING EFFICIENCY IMPROVEMENTS PROVIDED BY LOW-LATENCY
PREDICTIVE CODING OF THE HEVC IMAGE FILE FORMAT. BIT RATE IMPACT AND
CODING GAIN ARE REPORTED WITH RESPECT TO HEVC INTRA CODING.

CONTENT TYPE FRAMES BIT RATE CHANGE CODING GAIN [dB]

CLASS A IMAGE BURST 8 –46% 1.9

CLASS B IMAGE BURST 8 –51% 2.0

CLASS C IMAGE BURST 8 –60% 2.5

CLASS D IMAGE BURST 8 –63% 2.7

CLASS E IMAGE BURST 8 –79% 4.8

CLASS F IMAGE BURST 8 –55% 2.2

MEMORIAL EXPOSURE STACK 16 –29% 1.4

MERSU FOCAL STACK 13 –25% 1.3

CAR AND TRACTOR CINEMAGRAPH 48 –97% 33.3

[TABLE 3] A MAPPING OF BRANDS SPECIFIED IN THE HEIF STANDARD TO THE CODING FORMAT,
THE TYPE OF THE BRAND (A STILL IMAGE BRAND OR AN IMAGE SEQUENCE BRAND), THE RESPECTIVE MIME SUBTYPE,
AND THE RECOMMENDED FILE NAME EXTENSION.

BRAND CODING FORMAT TYPE MIME SUBTYPE FILE EXTENSION

mif1 ANY IMAGE heif .heif

msf1 ANY SEQUENCE heif-sequence .heif

heic HEVC (MAIN OR MAIN STILL PICTURE PROFILE) IMAGE heic .heic

heix HEVC (MAIN 10 OR FORMAT RANGE EXTENSIONS PROFILE) IMAGE heic .heic

hevc HEVC (MAIN OR MAIN STILL PICTURE PROFILE) SEQUENCE heic-sequence .heic

hevx HEVC (MAIN 10 OR FORMAT RANGE EXTENSIONS PROFILE) SEQUENCE heic-sequence .heic
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hevc, for the Main profile compatible 
image files. This design allows players 
that support only the Main profile to 
determine whether the playback of the 
file is possible by inspecting the File 
Type box.

Internet media types, also known as 
multipurpose Internet mail extensions 
(MIME) types, are used by various appli-
cations to identify the type of a resource 
or a file. MIME types consist of a media 
type (“image” in the case of HEIF files), 
a subtype, and zero or more optional 
parameters. For multipurpose files, the 
selection of the subtype can be made on 
the basis of the primary use of the file. 
An optional codecs parameter can be 
present to indicate the used coding for-
mats and the information on the tracks 
and items present in the file. MIME 
types can be used. e.g., with the picture 
element of Hypertext Markup Language, 
version 5 (HTML5) when offering sev-
eral versions of the same original image 
using different image file formats and 
letting the browser to select which 
offered file suits its capabilities. This 
mechanism provides a forward compati-
ble mechanism to take HEIF into use, 
while legacy browsers can continue to 
receive and decode, e.g., respective 
JPEG images.

STORAGE OF STILL IMAGES
The illustration in Figure 1 shows an 
example of two HEVC-coded images 
along with their Exif metadata stored in 
a file conforming to the HEVC Image 
File Format. The file metadata for items 
is stored within a Meta box (“meta”). 
The handler type is set to “pict” indi-
cating to a reader that this Meta box 
handles images. The coded images them-
selves are stored as items of “hvc1”, 
indicating HEVC compression. The 
coded data for the images is contained 
either in a Media Data box (“mdat”) or 
in an Item Data box (“idat”). The syn-
tax of the “hvc1” items is identical to 
the sample syntax of HEVC video and 
image sequence tracks, which allows the 
data of intra coded images to be 
described both as an item and as a sam-
ple of a track. Basic image metadata, 
such as the width and the height, and all 
configuration information (e.g., parameter 
sets and information about the coding 
itself) required to initialize the decoder is 
stored as an item of type “hvcC” (for 
HEVC-coded images). 

Relations between items are provided 
as entries in the Item Reference box 
(“iref”). A relation between the coded 
image item (“hvc1”) and its initialization 
item (“hvcC”) is included as an entry 

type “init” in the Item Reference box. 
Exif metadata for the image can be 
optionally included in a file as an item of 
type “Exif” and linked to the image item 
using the “cdsc” reference type. Other 
metadata schemes, such as Extensible 
Metadata Platform (XMP), could alterna-
tively or additionally be used in a similar 
fashion as Exif. Image items can (but 
need not) share the same initialization 
data, as the same item of type “hvcC” can 
be linked to more than one “hvc1”
image items in the Item Reference box, as 
illustrated in Figure 1. The same applies 
to associating the same metadata item 
with multiple image items, which is also 
demonstrated in Figure 1.

Given a set of images in a file, it is 
sometimes essential to qualify certain 
relationships between images. HEIF facil-
itates indicating a cover image for a file, 
providing thumbnail images, and associ-
ating some or all of the images with an 
auxiliary image such as an alpha plane. 

The design of HEIF also considers the 
use case of nondestructive image editing, 
in which the original coded image itself 
is kept in the file, and the decoded image 
is transformed in a signaled way to a 
derived image before presentation. A few 
basic image editing operations—rotation 
by 90° multiples, cropping, overlaying, 

“meta”: A Container for Boxes that Provide Information About Items
hd
lr
 =
 “
pi
ct
”

di
nf

id=00, hvc1 id=02, Exifid=01, hvcC

iloc

“mdat”/“idat”: A Container for Coded Data Bytes

hdlr: Declare the Format of the Contents of the “meta” Box
iref: Typed References that Link Items Stored in the File
dinf: Declares the Location of Items (in the File or External to the File)
iloc: Locating Items, Their Offsets and Length
iinf: Provide Additional Information About Stored Items

id loc len
00
01
02

x1
x2x3

“ftyp”: Declares the Brands Included in the File

O
th

er
 B

ox
es

ii
nf

x1 x2 x3 x4l1 l2 l3 l4

iref
type from to
“init” 00 01
“init” 03 01

id=03, hvc1

“cdsc” 02 00, 03 03 x4

l1
l2l3l4

[FIG1] An example image file including two HEVC-coded images with Exif metadata.
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and tiling—are included in HEIF, while 
the design is flexible for adding other 
editing operations as extensions. Derived 
images are treated similarly to coded 
images in HEIF; e.g, a derived image can 
act as an input image in the construc-
tion of another derived image. Players 
supporting the HEVC image brands are 
required to handle 90° rotations and 
cropping, hence re-encoding of the 
images is not needed to guarantee that 
these simple operations are correctly 
carried out in all players.

STORAGE OF IMAGE SEQUENCES
Figure 2 provides a simplified example of 
a file containing an image sequence. To 
keep the figure simple, some mandatory 
boxes are omitted and the box nesting 
structure is not illustrated fully. The file 
metadata for the tracks is stored in the 
Movie box (“moov”) and its child boxes. 
The file metadata includes for example 
information where in the file to locate the 
coded media data for the tracks. Each 
track has a type, identified by a four-char-
acter handler code. HEIF specifies a new 

handler type “pict” for image sequences. 
Tracks comprise samples, such as audio or 
video frames, which are stored in the 
Media Data box (“mdat”) or in an external 
file. Samples that occupy a contiguous 
byte range form a chunk. The location of 
chunks within the file is described with the 
Chunk Offset box (“stco”). In Figure 2, 
all samples of the track are in the same 
chunk. Each chunk is associated with one 
of the sample entries that are provided 
within the Sample Description box 
(“stsd”). A sample entry includes decoder 
initialization information, such as HEVC 
parameter sets, for the linked samples. In 
Figure 2, all samples use the same initial-
ization data and hence only one sample 
entry is defined for the track. The Sample 
Size box (“stsz”) contains the length of 
the samples, hence enabling to locate indi-
vidual samples within each chunk.

As mentioned previously, random 
access was one of the key requirements 
for HEIF. ISOBMFF specifies the Sync 
Sample box (“stss”), which lists the 
intra pictures and hence facilitates their 
random access. HEIF introduces two 

features assisting in accessing inter coded 
pictures: the Coding Constraints box 
(“ccst”) and the referenced samples 
(“refs”) sample group. The Coding Con-
straints box is required to be present in 
image sequence tracks and indicates con-
straints that were used in the encoding of 
the image sequence. For example, in 
HEVC-specific image sequence brands, 
the Coding Constraints box is required to 
indicate that all reference pictures for 
inter prediction are intra coded pictures. 
The “refs” sample group is used to indi-
cate the reference pictures for each inter 
coded picture. Consequently, decoding of 
any particular desired picture in an image 
sequence can be done by first inspecting 
from the Sync Sample box if the picture is 
intra coded, in which case the picture can 
be decoded right away. Otherwise, the 
“refs” sample group can be inspected to 
identify and decode the reference pictures 
first, before decoding the desired picture. 

An image sequence track can be used 
for a set of images with inter picture pre-
diction for improved compression per-
formance, or when an image sequence is 

[FIG2] An example image sequence file where all reference pictures are intra coded.

“moov”: A Container for Metadata of Tracks

“mdat”: A Container for Coded Data Bytes

“ftyp”: Declares the Brands Included in the File

“trak”: A Container for Track Metadata

Intra Coded
Picture

References Indicated by “refs”Sample Grouping
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 =
 

“p
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“hdlr”: Track Type (”pict”for Image Sequence Tracks)
“stco”: Chunk Offset Box for Locating Chunks of Samples of a Track Within an “mdat”Box
“stsd”: Sample Description Box, Contains Sample Entries
“stsz”: Sample Size Box
“stss”: Randomly Accessible Samples
“ccst”: Coding Constraints
“refs” Sample Grouping: Referenced Samples in Intercoding

“stco”
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“stsz”
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entry_size = l1, l2, l3,
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“hvc1”sample

entry

Inter Coded
Picture
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associated with timing information. In 
the former case, an untimed playout, 
such as showing the images in a gallery 
view, should be chosen by the player, 
while in the latter case, the image 
sequence should be played as a timed 
slideshow. HEIF provides the means to 
indicate which one of these two is the 
preferred playback method. 

ISOBMFF provides rich features for 
controlling the playback of tracks, such 
as cutting away parts of the track and 
changing the playback pace. For a tuto-
rial on the timing and track-editing fea-
tures of ISOBMFF, see [7]. In addition, 
HEIF introduces a functionality to loop 
tracks, which can be useful, e.g., in cin-
emagraphs and animations to achieve 
infinite playback.

HEIF enables the grouping of image 
items and tracks of a file into alternate 
groups. Players should select exactly one 
image item or track of an alternate 
group for playback. The items and tracks 
of an alternate group are listed in their 
preference order. This feature enables 

the creation of multibranded files, 
where, e.g., a cinemagraph and a still 
image are indicated to be alternatives to 
each other, and both a still image brand 
and an image sequence brand are 
included in the File Type box. In another 
example, the same original image is rep-
resented by two alternative images in the 
file, one coded with the HEVC Main pro-
file at 1,920 × 1,080 resolution and 
another coded with the HEVC Main 10 
profile at 3,840 × 2,160 resolution, and 
both “heic” and “heix” brands are 
included in the File Type box.

Similar to image items, image 
sequence tracks may be accompanied by 
thumbnail and auxiliary image sequence 
tracks. Rotation by multiples of 90° and 
cropping can be indicated for image 
sequence tracks, and HEVC-specific 
image sequence brands are required to 
support them.

Metadata storage for image sequences 
reuses the existing ISOBMFF mecha-
nisms, i.e., untimed metadata can be 
included in the Meta box of a track, 

whereas timed metadata can use a 
metadata track linked to the image 
sequence track. For example, Exif 
metadata that applies to all samples of 
an image sequence track can be stored 
in the Meta box of a track. Metadata 
applying to certain but not all samples 
of a track is included as samples of a 
timed metadata track, and a metadata 
sample is associated with the sample of 
an image sequence track that has the 
equivalent timing information.

CONCLUSIONS
In this article, we reviewed the features 
and the design of HEIF that can be used 
for encapsulating HEVC-coded images 
and image sequences. We also gave 
some insights on the compression per-
formance of HEVC for still image coding 
and for some image sequence use cases. 
A comparison of the features of HEIF 
with other available image file formats is 
presented in Table 4. It can be observed 
that HEIF is more extensible and compre-
hensive than the others. Particularly, the 

[TABLE 4] A COMPARISON OF THE FEATURES OF SOME IMAGE FILE FORMATS.

  .HEIC JPEG/EXIF PNG GIF (89A) WEBP

FORMATS AND EXTENSIBILITY          

BASE CONTAINER FILE FORMAT ISOBMFF TIFF – – RIFF

LOSSY COMPRESSION YES (HEVC) YES (JPEG) NO NO YES (VP8)

LOSSLESS COMPRESSION YES (HEVC) YES (TIFF REV 6.0) YES (PNG)1 YES (GIF)1 YES (VP8L)

EXTENSIBLE TO OTHER CODING FORMATS YES YES NO NO NO

METADATA FORMAT (ON TOP OF INTERNAL) EXIF, XMP, MPEG-7 EXIF – – EXIF, XMP

EXTENSIBLE TO OTHER METADATA FORMATS YES NO NO NO NO

OTHER MEDIA TYPES (AUDIO, TEXT, ETC.) YES ONLY AUDIO2 NO NO NO

MULTIPICTURE FEATURES          

MULTIPLE IMAGES IN THE SAME FILE YES YES (MP EXT.) NO YES3 YES3

IMAGE SEQUENCES / ANIMATIONS YES NO NO YES YES

INTER CODING YES NO NO NO NO

DERIVED IMAGES          

MULTIPLE-OF-90° ROTATIONS YES YES NO NO NO

CROPPING YES NO NO NO NO

TILING/OVERLAYING YES NO NO NO YES

EXTENSIBLE TO OTHER EDITING OPERATIONS YES NO NO NO NO

AUXILIARY PICTURE INFORMATION          

TRANSPARENCY YES NO YES FULL TRANSPARENCY YES

THUMBNAIL IMAGE YES YES NO NO NO

1 In GIF and indexed color PNG encoding, lossy color quantization is applied while the color-quantized image is losslessly compressed.
2 PCM, μ-Law PCM, and ADPCM encapsulated in RIFF WAV.
3 Only for animations and tiling/overlaying.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


[standards IN A NUTSHELL]continued

IEEE SIGNAL PROCESSING MAGAZINE [156] JULY 2015

possibility to include other media types, 
the advanced multipicture features, and 
the support for nondestructive editing 
make HEIF more advanced than the leg-
acy formats. The rich set of features 
makes HEIF suitable for a broad range of 
devices and applications, including, e.g., 
burst photography. 

Video codecs are an integral part of 
many consumer devices. HEVC has made a 
successful market entry already, e.g., in 
high-end smartphones, digital still cameras, 
and television sets, and is expected to 
become widely supported. HEVC-coded 
images and image sequences encapsulated 
in HEIF files can complement and gradually 
replace older formats to achieve better 
compression and a wider range of features.

RESOURCES

IMAGE FILE FORMAT 
SPECIFICATIONS
More information on the formats com-
pared in Table 4 can be obtained through 
the following links. 

■ A draft HEIF standard (03/2015) is 
available at http://mpeg.chiariglione.org/
standards/mpeg-h/image-file-format/
draft-text-isoiec-fdis-23008-12-carriage-
still-image-and-image and the final 

HEIF standard (ISO/IEC 23008-12) is 
likely to appear among public ISO stan-
dards at http://standards.iso.org/ittf/
PubliclyAvailableStandards/. 
■ The JPEG, Exif, PNG, and GIF speci-
fications are available at http://www.
w3.org/Graphics/JPEG/itu-t81.pdf, 
http://www.cipa.jp/std/documents/e/DC-
008-2012_E.pdf, http://www.w3.org/TR/
PNG/, and http://www.w3.org/Graphics/
GIF/spec-gif89a.txt, respectively. 
■ The WebP container format is spec-
ified at https://developers.google.com/
speed/webp/docs/riff_container, while 
the VP8L format is specified at https://
developers.google.com/speed/webp/docs/
webp_lossless_bitstream_specification.
■ The MP4 registration authority, 
available at http://www.mp4ra.org/, con-
tains the registrations of all four-charac-
ter codes and other identifiers used in 
ISOBMFF and formats derived from it.
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[sp TIPS&TRICKS] (continued from page 148)

DFT outputs, which can be expressed with-
out using the twiddle factor. The experi-
mental results clearly demonstrated that 
the numerical error of the gSDFT is smaller 
than those of the existing stable SDFT algo-
rithms. In addition, when the window size is 
relatively small, its total number of addition 
and multiplication operations is the lowest 
among the algorithms. 
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IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING 

The new IEEE Transactions on Computational Imaging seeks original manuscripts for publication. This new 
journal will publish research results where computation plays an integral role in the image formation process. 
All areas of computational imaging are appropriate, ranging from the principles and theory of computational 
imaging, to modeling paradigms for computational imaging, to image formation methods, to the latest innova-
tive computational imaging system designs. Topics of interest include, but are not limited to the following:

Imaging Models and 
Representation

Statistical-model based methods
System and image prior models
Noise models
Graphical and tree-based models
Perceptual models

Computational Sensing

Coded source methods
Structured light
Coded aperture methods
Compressed sensing
Light-field sensing
Plenoptic imaging
Hardware and software systems

Computational Image Creation

Sparsity-based methods
Statistically-based inversion methods, 
Bayesian regularization
Super-resolution, multi-image fusion
Learning-based methods, Dictionary-
based methods
Optimization-based methods; proximal 
iterative methods, ADMM

Computational Photography

Non-classical image capture, General-
ized illumination
Time-of-flight imaging
High dynamic range imaging
Focal stacks

Computational Consumer 
Imaging

Cell phone imaging
Camera-array systems
Depth cameras

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopic 
Imaging

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic imaging
Terahertz imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

Editor-in-Chief: W. Clem Karl, Boston University. 
To submit a paper go to: https://mc.manuscriptcentral.com/tci-ieee

Digital Object Identifier 10.1109/MSP.2015.2434236
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ICASSP2016: Signal and information processing is the driving heartbeat in the development 
of technologies that enrich our lives and advance our society. The 41st International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) will be held in the 
Shanghai International Convention Center, Shanghai, China between March 20 and 25, 
2016. The conference provides, both for researchers and developers, an engaging forum to 
exchange ideas and propel new developments in this field. The 2016 conference will 
showcase world-class presentations by internationally renowned speakers and will facilitate a 
fantastic opportunity to network with like-minded professionals from around the world. 
Topics include but are not limited to:

Multimedia signal processing
Sensor array & multichannel signal processing 
Design & implementation of signal processing systems 
Signal processing for communications & networking 
Image, video & multidimensional signal processing 
Signal processing theory & methods 
Spoken language processing 
Signal processing for the Internet of Things 

Audio and acoustic signal processing 
Bio-imaging and biomedical signal processing  
Signal processing education  
Speech processing  
Industry technology tracks  
Information forensics and security  
Machine learning for signal processing  
Signal processing for Big Data  

Submission of Papers: Prospective authors are invited to submit full-length papers, with 
up to four pages for technical content including figures and possible references, and with one 
additional optional 5th page containing only references. A selection of best student papers 
will be made by the ICASSP 2016 committee upon recommendations from the Technical 
Committees. 

Tutorial and Special Session Proposals: Tutorials will be held on March 20 and 21, 2016.  
Tutorial proposals must include title, outline, contact information, biography and selected 
publications for the presenter(s), and a description of the tutorial and the material to be 
distributed to participants. Special session proposals must include a topical title, rationale, 
session outline, contact information, and a list of invited speakers. Additional information can 
be found at the ICASSP 2016 website. 

Signal Processing Letters: Authors of IEEE Signal Processing Letters (SPL) papers will be 
given the opportunity to present their work at ICASSP 2016, subject to space availability and 
approval by the ICASSP Technical Program Chairs. SPL papers published between January 1, 
2015 and December 31, 2015 are eligible for presentation at ICASSP 2016.  

Show and Tell: S&T offers a perfect stage to showcase innovative ideas in all technical 
areas of interest at ICASSP.  S&T sessions contain demos that are highly interactive and 
visible.  Please refer to the ICASSP 2016 website for additional information regarding demo 
submission. 

Important Deadlines:  
Special session & tutorial proposals ……………………………………………………… August 3, 2015 
Notification of special session & tutorial acceptance ….………………..……… September 11, 2015  
Submission of regular papers ………………………………………………..……………… September 25, 2015 
Signal processing letters ………………………………………………………….……………. December 16, 2015 
Notification of paper acceptance …………………………………………………………… December 21, 2015 
Revised paper upload ……………………………………………………………………………. January 22, 2016 
Author registration …………………………………………………………………….………..… January 22, 2016 

Shanghai: Shanghai is the most populous city in China and one of the most populous cities 
in the world. A global city, Shanghai exerts influence over global commerce, finance, culture, 
art, fashion, research and entertainment. The city is located in the middle portion of the 
Chinese coast, and sits at the mouth of the Yangtze River.  The city is a tourist destination 
renowned for its historical landmarks, such as the Bund and City God Temple, and its 
modern and ever-expanding Pudong skyline including the Oriental Pearl Tower. Today, 
Shanghai is the largest center of commerce and finance in mainland China, and has been 
described as the "showpiece" of the world's fastest-growing major economy. 

General Chairs 
Zhi Ding, Univ. of California, Davis, USA
Zhi-Quan Luo, Univ. of Minnesota, USA 
Wenjun Zhang, Shanghai Jiao Tong Univ., China
Technical Program Chairs 
P. C. Ching, Chinese Univ. of Hong Kong, HK
Dominic K.C. Ho, Univ. of Missouri, USA
Finance Chairs  
Shuguang Cui, Texas A&M Univ., USA 
Rong Xie, Shanghai Jiao Tong Univ., China  
Plenaries Chairs  
Zhi-Pei Liang, UIUC, USA 
Björn Ottersten, Univ. of Luxembourg, Luxembourg 
Special Sessions Chairs 
Tim Davidson, McMaster Univ., Canada 
Jianguo Huang, Northwestern Polytech. Univ., China 
Tutorials Chairs  
Jian Li, Univ. of Florida, USA 
Jose Principe, Univ. of Florida, USA 
Student Session Chair 
Wei Zhang, Univ. of New South Wales, AU 
Registration Chairs  
Tongtong Li, Michigan State Univ., USA
Xiaojun Yuan, ShanghaiTech Univ., China  
Publicity Chairs  
Xiaokang Yang, Shanghai Jiao Tong Univ., China  
Mounir Ghogho, Leeds Univ., UK 
Ignacio Santamaria, Univ. of Cantabria, Spain
Publication Chairs  
Min Dong, Univ. of Ontario Inst. of Tech., Canada  
Thomas Fang Zheng, Tsinghua Univ., China
Industrial & Exhibit Chairs 
Li Deng, Microsoft, USA
Jinyu Li, Microsoft, USA 
Cathy Wicks, Texas Instruments, USA 
Local Arrangement Chairs 
Ning Liu, Shanghai Jiao Tong Univ., China 
Meixia Tao, Shanghai Jiao Tong Univ., China 
Webmaster 
Yi Xu, Shanghai Jiao Tong Univ., China 
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[dates AHEAD][dates AHEAD]

Please send calendar submissions to:  
Dates Ahead, c/o Jessica Barragué  
IEEE Signal Processing Magazine  
445 Hoes Lane  
Piscataway, NJ 08855 USA  
e-mail: j.barrague@ieee.org

2015
[JUNE]
Third IEEE International Workshop on 
Compressed Sensing Theory and Its 
Applications to Radar, Sonar, and 
Remote Sensing (CoSeRa)
22–24 June, Pisa, Italy.
General Chairs: Fulvio Gini 
and Joachim Ender
URL: http://www.cosera2015.iet.unipi.it/

IEEE Signal Processing Society Summer 
School on Foundations and Advances 
in Stochastic Filtering (FASF)
22–26 June, Barcelona, Spain.
Organizers: Pau Closas and Joaquín Míguez
URL: http://fasf2015.cttc.cat/

16th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC)
28 June–1 July, Stockholm, Sweden.
General Chairs:  Joakim Jaldén 
and Björn Ottersten
URL: http://www.spawc2015.org/

IEEE International Conference on 
Multimedia and Expo (ICME)
29 June–3 July, Turin, Italy.
General Chairs: Enrico Magli, 
Stefano Tubaro, and Anthony Vetro
URL: http://www.icme2015.ieee-icme.org/
index.php

[JULY]
Third IEEE China Summit and 
International Conference on Signal and 
Information Processing (ChinaSIP)
12–15 July, Chengdu, China. 
General Chairs: Yingbo Hua and Dezhong Yao 
URL: http://www.chinasip2015.org/

[AUGUST]
IEEE Signal Processing and SP 
Education Workshop (SPW)
9–12 August, Salt Lake City, Utah, 
United States.
General Chair: Todd Moon
URL: http://spw2015.coe.utah.edu/

12th IEEE International Conference  
on Advanced Video- and Signal-Based 
Surveillance (AVSS)
25–28 August, Karlsruhe, Germany.
General Chairs: Jürgen Beyerer 
and Rainer Stiefelhagen
URL: http://avss2015.org

2015 23rd European Signal Processing 
Conference (EUSIPCO)
31 August–4 September, Nice, France. 
General Chairs: Jean-Luc Dugelay 
and Dirk Slock
URL: http://www.eusipco2015.org

[SEPTEMBER]
IEEE Signal Processing Society Italy 
Chapter Summer School on Signal 
Processing (S3P)
7–11 September, Brescia, Italy. 

Sensor Signal Processing  
for Defence (SSPD)
9–10 September, Edinburgh, 
United Kingdom.
General Chairs: Mike Davies, 
Jonathon Chambers, and Paul Thomas 
URL: http://www.sspdconference.org

IEEE International Conference  
on Image Processing (ICIP)
28 September–1 October, Quebec City, 
Quebec, Canada. 
General Chairs: Jean-Luc Dugelay 
and André Morin
URL: http://www.icip2015.org/

[OCTOBER]
IEEE International Conference on 
Ubiquitous Wireless Broadband 
(ICUWB)
4–7 October, Montreal, Canada.
URL: http://www.icuwb2015.org/index.html

IEEE Workshop on Signal Processing 
Systems (SiPS)
14–16 October, Hangzhou, China.
General Chairs: Chaitali Chakrabarti 
and Nam Ling
URL: http://www.sips2015.org/

IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
19–21 October, Xiamen, China.
General Chairs: Xiao-Ping Zhang, 
Oscar C. Au, and Jonathan Li 
URL: http://www.mmsp2015.org/

[NOVEMBER]
Seventh IEEE International Workshop 
on Information Forensics and  
Security (WIFS)
16–19 November, Rome, Italy. 
General Chairs: Patrizio Campisi 
and Nasir Memon
URL: http://www.wifs2015.org/

[DECEMBER]
IEEE 6th International Workshop  
on Computational Advances
in Multisensor Adaptive
Processing (CAMSAP)
13–16 December, Cancun, Mexico.
URL: http://inspire.rutgers.edu/camsap2015/

IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU)
13–17 December, Scottsdale, Arizona, 
United States.
URL: http://www.asru2015.org/

IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
14–16 December, Orlando, Florida, 
United States. 
General Chairs: José M.F. Moura 
and Dapeng Oliver Wu
URL: http://2015.ieeeglobalsip.org/

2016
[MARCH]
41st IEEE International Conference  
on Acoustics, Speech, and Signal 
Processing (ICASSP)
21–25 March, Shanghai, China.
General Chairs: Zhi Ding, Zhi-Quan Luo, 
and Wenjun Zhang
URL: http://icassp2016.org

[SP]
Digital Object Identifier 10.1109/MSP.2015.2409018
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Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com

Choose from hundreds of possible configurations!

Transfer Switches
DC – 18 GHz

SPDT Switches
DC – 18 GHz

SP4T Switches
DC – 18 GHz

0 – 30, 60, 90, 110 or 120 dB
Programmable Attenuators

1 MHz – 6 GHz

527 rev. B

Signal Routing & Attenuation Control for Production Test, R&D and More!

Mini-Circuits’ new ZTM-Series RF test systems 
dramatically accelerate custom solutions for a wide 
range of applications in test environments. Choose 
from our lineup of extra-long-life SPDT, SP4T, 
SP6T and transfer switches, and programmable 
attenuators with attenuation ranges of 0 to 30, 60, 
or 90, 110 or 120 dB. We’ll build and ship a solution 
tailored to your exact requirements within just 2 
weeks!

It’s that simple! Give us a call and talk to our engineers 
about how Mini-Circuits’ ZTM-Series custom rack 
mount test solutions can improve efficiency, increase 
throughput, and save cost in your business!

Features

 Rugged 19” Rack Mountable Chassis

Customizable Front Panel Layout

Delivery within 2 Weeks!

Built Your Way and Delivered within 2 Weeks!

MODULAR TEST
SYSTEMS

SP6T Switches
DC – 12 GHz
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Over one million people around the
world speak MATLAB. 
Engineers and scientists in every field
from aerospace and semiconductors 
to biotech, financial services, and 
earth and ocean sciences use it to
express their ideas. 
Do you speak MATLAB?

Solar Image taken by the
X-Ray Telescope: supplied 
courtesy of Smithsonian
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The IEEE International Symposium on Biomedical Imaging 
(ISBI) is a scientific conference dedicated to mathematical, 
algorithmic, and computational aspects of biomedical 
imaging, across all scales of observation. It fosters knowledge 
transfer among different imaging communities and 
contributes to an integrative approach to biomedical imaging.

ISBI is a joint initiative from the IEEE Signal Processing 
Society (SPS) and the IEEE Engineering in Medicine and 
Biology Society (EMBS). The 2016 meeting will include 
tutorials, and a scientific program composed of plenary talks, 
invited special sessions, challenges, as well as oral and 
poster presentations of peer-reviewed papers.

High-quality papers are requested containing original 
contributions to the topics of interest including image 
formation and reconstruction, computational and statistical 
image processing and analysis, dynamic imaging, 
visualization, image quality assessment, and physical, 
biological, and statistical modeling. Accepted 4-page regular 
papers will be published in the symposium proceedings 
published by IEEE and included in IEEE Xplore.

To encourage attendance by a broader audience of imaging 
scientists and offer additional presentation opportunities, ISBI 
2016 will continue to propose a second track featuring posters 
selected from 1-page abstract submissions without 
subsequent archival publication.

Conference Chairs
Jan Kybic

Czech Technical University in Prague

Milan Sonka 
The University of Iowa

Program Chairs
Karl Rohr

University of Heidelberg

Boudewijn Lelieveldt 
Leiden University Medical Center, Netherlands

Organizing Committee
Joe Reinhardt, Bram van Ginneken, Franjo 

Pernus, Punam Saha, Mathews Jacob, 
Arrate Munoz-Barrutia, Zoltan Szabo, Radim 

Krupicka, Michal Kozubek, Ipek Oguz, 
Tomaz Vrtovec, Jiri Jan, Jiri Janacek, Lucie 

Kubinova, Pavel Tomancak, Eduardo 
Romero, Juan David Garcia, Jan Petr, 

Michal Sofka

Contact
Janice Sandler j.sandler@ieee.org

http://biomedicalimaging.org/2016

Important Dates:
4-page paper submission

ctober 26th, 2015

Author Notification for 4-page papers 
December 23rd, 2015

Final version of 4-page papers 
& registration

January 11th, 2016

Venue:

ISBI 2016 will be held in the 4-star Clarion Congress Hotel 
Prague, one of the most modern congress hotels in Prague, 
Czech Republic. The hotel has space for up to 2500 delegates 
and a corresponding accommodation capacity,  including a 
wellness and fitness center. It takes less than 15 minutes by 
Underground to reach the historical center of Prague, a 
UNESCO Heritage Site.  Do not miss Prague’s world-famous 
Old Town Square, Charles Bridge, and Prague Castle.

IEEE International Symposium on Biomedical Imaging
April 13-16, 2016, Prague, Czech Republic

CALL FOR PAPERS
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MAY 15, 2015 VOLUME 63 NUMBER 10 ITPRED (ISSN 1053-587X)

REGULAR PAPERS

Estimation of Overspread Scattering Functions http://dx.doi.org/10.1109/TSP.2015.2403309 . . . . . . . . . . . . . . . . . . . . . . . G. Pfander and P. Zheltov 2451

A New Model for Array Spatial Signature for Two-Layer Imaging With Applications to Nondestructive Testing Using

Ultrasonic Arrays http://dx.doi.org/10.1109/TSP.2015.2403273 . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . N. Moallemi and S. Shahbazpanahi 2464

Polynomial-Time Algorithms for the Exact MMOSPA Estimate of a Multi-Object Probability Density Represented by

Particles http://dx.doi.org/10.1109/TSP.2015.2403292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Baum, P. Willett, and U. D. Hanebeck 2476

Joint Source Estimation and Localization http://dx.doi.org/10.1109/TSP.2015.2404311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Sahnoun and P. Comon 2485

http://dx.doi.org/10.1109/TSP.2015.2411229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O. Silvén 2496

http://dx.doi.org/10.1109/TSP.2015.2414895 . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. H. Lee and W. Choi 2509

IEEE T SIGNAL P (ISSN 1053-587X) is published semimonthly by the Institute of Electrical and Electronics Engineers, Inc. Responsibility for the contents

IEEE Operations

445 Hoes Lane, Piscataway, NJ 08854-4141. +1 732 981 0060.

members $602.50 per copy. (Note: Postage and handling charge not included.) Member and nonmember subscription prices available upon request.

Send ad-
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http://dx.doi.org/10.1109/TSP.2015.2414904 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Song, B. Ji, Y. Huang, M. Xiao, and L. Yang 2520

http://dx.doi.org/10.1109/TSP.2015.2411219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Baktash, M. J. Dehghani, M. R. F. Nasab, and M. Karimi 2533

http://dx.doi.org/10.1109/TSP.2015.2413379 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Farhang, N. Marchetti, L. E. Doyle, and B. Farhang-Boroujeny 2546

http://dx.doi.org/10.1109/TSP.2015.2407316 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. R. Brown, R. Wang, and S. Dasgupta 2559

Signal Recovery from Random Measurements via Extended Orthogonal Matching Pursuit http://dx.doi.org/10.1109/TSP.2015.2413384 . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. K. Sahoo and A. Makur 2572

http://dx.doi.org/10.1109/TSP.2015.2413381 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, S. Kar, M. Fardad, and P. K. Varshney 2582
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Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 

IEEE TRANSACTIONS ON

SIGNAL AND INFORMATION PROCESSING OVER 
NETWORKS

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

Now accepting paper submissions
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NEW PUBLICATION:
Transactions on Signal and Information Processing over Networks (T-SIPN)*

http://www.signalprocessingsociety.org/publications/periodicals/tsipn/

>>We are accepting paper submissions: please submit a manuscript here<<

There has been an explosion of research in network systems of various types, including 
physical, engineered, biological and social systems. Its aim is to find answers to fundamental 
questions about the systems and with them be able to understand, predict, and control them 
better. To that end, a core area of work is signal and information processing over networks.

Network systems represent a growing research field encompassing numerous disciplines in 
science and engineering. Their complexity is reflected in the diversity and the interconnectivity
of their elements, which have the capacity to adapt and learn from experience. Applications of 
network systems are wide and include communications (wireless sensor networks, peer-to-peer 
networks, pervasive mobile networks, the Internet of Things), the electric power grid, biology, 
the Internet, the stock market, ecology, and in animal and human societies.

The Transactions on Signal and Information Processing over Networks (T-SIPN) publishes
timely peer-reviewed technical articles on advances in the theory, methods, and algorithms for 
signal and information processing, inference, and learning in network systems. The following 
core topics define the scope of the Transaction:

Adaptation, Detection, Estimation, and Learning (ADEL)

o Distributed detection and estimation (ADEL-DDE)
o Distributed adaptation over networks (ADEL-DAN)
o Distributed learning over networks (ADEL-DLN)
o Distributed target tracking (ADEL-DTT)
o Bayesian learning; Bayesian signal processing (ADEL-BLSP)
o Sequential learning over networks (ADEL-SLN)
o Decision making over networks (ADEL-DMN)
o Distributed dictionary learning (ADEL-DDL)
o Distributed game theoretic strategies (ADEL-DGTS)
o Distributed information processing (ADEL-DIP)
o Graphical and kernel methods (ADEL-GKM)
o Consensus over network systems (ADEL-CNS)
o Optimization over network systems (ADEL-ONS)

Communications, Networking, and Sensing (CNS)

o Distributed monitoring and sensing (CNS-DMS)
o Signal processing for distributed  communications and networking (CNS-SPDCN)
o Signal processing for cooperative networking  (CNS-SPCN)
o Signal processing for network security (CNS-SPNS)
o Optimal network signal processing and resource allocation (CNS-NSPRA)

(continued on next page)
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Modeling and Analysis (MA)

o Performance and bounds of methods (MA-PBM)
o Robustness and vulnerability (MA-RV)
o Network modeling and identification (MA-NMI)
o Simulations of networked information processing systems (MA-SNIPS)
o Social learning    (MA-SL)
o Bio-inspired network signal processing (MA-BNSP)
o Epidemics and diffusion in populations (MA-EDP)

Imaging and Media Applications (IMA)

o Image and video processing over networks (IMA-IVPN)
o Media cloud computing and communication (IMA-MCCC)
o Multimedia streaming and transport (IMA-MST)
o Social media computing and networking (IMA-SMCN)
o Signal processing for cyber-physical systems (IMA-SPCPS)
o Wireless/mobile multimedia (IMA-WMM)

Data Analysis (DA)

o Processing, analysis, and visualization of big data (DA-BD)
o Signal and information processing for crowd computing (DA-CC)
o Signal and information processing for the Internet of Things (DA-IOT)
o Emergence of behavior (DA-EB)

Emerging topics and applications (ETA)

o Emerging topics (ETA-ET)
o Applications in life sciences, ecology, energy, social networks, economic networks, 

finance, social sciences etc. smart grids, wireless health, robotics, transportation, and 
other areas of science and engineering (ETA-APP)

>>We are accepting paper submissions: please submit a manuscript here<<

*T-SIPN is co-sponsored by the Signal Processing, Communications and Computer 
societies
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http://dx.doi.org/10.1109/TASLP.2015.2414820 . . . . . . . . . . . . . . . . . . . . . . S.-H. Liu, K.-Y. Chen, B. Chen, H.-M. Wang, H.-C. Yen, and W.-L. Hsu 957

http://dx.doi.org/10.1109/TASLP.2015.2414823 . . . . . . . . . . . . . . M. Niedź 970
Learning Spectral Mapping for Speech Dereverberation and Denoising http://dx.doi.org/10.1109/TASLP.2015.2416653 . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Han, Y. Wang, D. Wang, W. S. Woods, I. Merks, and T. Zhang 982

AUDIO, S , AND LANGUAGE P (ISSN 2329-9290) is published bimonthly in print and monthly online by the Institute of Electrical and

445 Hoes Lane, Piscataway, NJ 08854-4141. +1 732 981 0060.

prices available upon request. Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use of patrons,

Electronics Engineers, Inc. All rights reserved. AUDIO, S , AND LANGUAGE P , IEEE, 445 Hoes

in U.S.A.
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IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING

The new IEEE Transactions on Computational Imaging seeks original manuscripts for publication. This new 
journal will publish research results where computation plays an integral role in the image formation process. 
All areas of computational imaging are appropriate, ranging from the principles and theory of computational 
imaging, to modeling paradigms for computational imaging, to image formation methods, to the latest innova-
tive computational imaging system designs. Topics of interest include, but are not limited to the following:

Imaging Models and 
Representation

Statistical-model based methods
System and image prior models
Noise models
Graphical and tree-based models
Perceptual models

Computational Sensing

Coded source methods
Structured light
Coded aperture methods
Compressed sensing
Light-field sensing
Plenoptic imaging
Hardware and software systems

Computational Image Creation

Sparsity-based methods
Statistically-based inversion methods, 
Bayesian regularization
Super-resolution, multi-image fusion
Learning-based methods, Dictionary-
based methods
Optimization-based methods; proximal 
iterative methods, ADMM

Computational Photography

Non-classical image capture, General-
ized illumination
Time-of-flight imaging
High dynamic range imaging
Focal stacks

Computational Consumer 
Imaging

Cell phone imaging
Camera-array systems
Depth cameras

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopic 
Imaging

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic imaging
Terahertz imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

Editor-in-Chief: W. Clem Karl, Boston University. 
To submit a paper go to: https://mc.manuscriptcentral.com/tci-ieee
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The 23rd IEEE International Conference on Image Processing (ICIP) will be held in the Phoenix 
Convention Centre, Phoenix, Arizona, USA, on September 25 - 28, 2016. ICIP is the world’s largest 
and most comprehensive technical conference focused on image and video processing and computer 
vision. In addition to the Technical Program, ICIP 2016 will feature an Innovation Program focused 
on innovative vision technologies and fostering innovation, entrepreneurship, and networking.
The conference will feature world-class speakers, tutorials, exhibits, and a vision technology showcase.

Topics in the ICIP 2016 Technical Program include but are not limited to the following:
Filtering, Transforms, Multi-Resolution Processing
Restoration, Enhancement, Super-Resolution
Computer Vision Algorithms and Technologies
Compression, Transmission, Storage, Retrieval
Computational Imaging
Color and Multispectral Processing
Multi-View and Stereoscopic Processing
Multi-Temporal and Spatio-Temporal Processing
Video Processing and Analytics
Authentication and Biometrics

Biological and Perceptual-based Processing
Visual Quality Assessment
Scanning, Display, and Printing
Document and Synthetic Visual Processing
Applications to various fields (e.g., biomedical, 
Advanced Driving Assist Systems,  assistive 
living, security, learning,
health and environmental monitoring, 
manufacturing, consumer electronics)

The ICIP 2016 innovation program will feature a vision technology showcase of state-of-the-art vision 
technologies, innovation challenges, talks by innovation leaders and entrepreneurs, tutorials, and 
networking.

Paper Submission: Prospective authors are invited to submit full-length papers at the conference website, 
with up to four pages for technical content including figures and references, and with one additional 
optional 5th page for references only. Submission instructions, templates for the required paper format, 
and information on “no show” policy are available at www.icip2016.com.

Tutorials and Special Sessions Proposals: Tutorials will be held on September 25, 2016. Tutorial 
proposals should be submitted to tutorials@icip2016.com and must include title, outline, contact 
information, biography and selected publications for the presenter(s), and a description of the tutorial 
and material to be distributed to participants. Special Sessions proposals should be submitted to 
specialsessions@icip2016.com and must include a topical title, rationale, session outline, contact 
information, and a list of invited papers. For detailed submission guidelines, please refer the ICIP 2016 
website at www.icip2016.com.

Important Deadlines:
Special Session and Tutorial Proposals: November 16, 2015
Notification of Special Session and Tutorial Acceptance: December 18, 2015

Paper Submissions: January 25, 2016
Notification of Paper Acceptance: April 30, 2016

Visual Technology Innovator Award Nomination: March 30, 2016

Revised Paper Upload Deadline: May 30, 2016
Authors‘ Registration Deadline: May 30, 2016

General Chair
Lina Karam
    Arizona State University
General Co-Chair
Aggelos Katsaggelos
    Northwestern University
Technical Program Chairs
Fernando Pereira
    Instituto Superior Técnico
Gaurav Sharma
    University of Rochester
Innovation Program Chairs
Haohong Wang
    TCL Research America
Jeff Bier
    BDTI & Embedded Vision Alliance
Finance Chair
Sohail Dianat
    Rochester Institute of Technology
Plenary Chairs
Michael Marcellin
    University of Arizona
Sethuraman  Panchanathan
    Arizona State University
Special Sessions Chairs
Dinei Florencio
    Microsoft Research
Chaker Larabi
    Poitiers University
Zhou Wang
    University of Waterloo
Tutorials Chairs
Ghassan AlRegib
    Georgia Tech
Rony Ferzli
    Intel
Publicity Chair
Michel Sarkis
    Qualcomm Technologies Inc.
Awards Chairs
Vivek Goyal
    Boston University
Ivana Tosic
    Ricoh Innovations
Exhibits Chair
David Frakes
    Arizona State University &
    Google
Publication Chairs
Patrick Le Callet
    Nantes University
Baoxin Li
    Arizona State University
Local Arrangement Chairs
Jorge Caviedes
    Intel
Pavan Turaga
    Arizona State University
Registration Chair
Ricardo De Queiroz
    Universidade de Brasilia
Conference Management
Conference Management Services

http://www.facebook.com/icip2016

https://twitter.com/icip2016/

https://www.linkedin.com/groups/ICIP-2016-6940658

www.icip2016.com
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ICASSP2016: Signal and information processing is the driving heartbeat in the development 
of technologies that enrich our lives and advance our society. The 41st International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) will be held in the 
Shanghai International Convention Center, Shanghai, China between March 20 and 25, 
2016. The conference provides, both for researchers and developers, an engaging forum to 
exchange ideas and propel new developments in this field. The 2016 conference will 
showcase world-class presentations by internationally renowned speakers and will facilitate a 
fantastic opportunity to network with like-minded professionals from around the world. 
Topics include but are not limited to:

Multimedia signal processing
Sensor array & multichannel signal processing 
Design & implementation of signal processing systems 
Signal processing for communications & networking 
Image, video & multidimensional signal processing 
Signal processing theory & methods 
Spoken language processing 
Signal processing for the Internet of Things 

Audio and acoustic signal processing 
Bio-imaging and biomedical signal processing  
Signal processing education  
Speech processing  
Industry technology tracks  
Information forensics and security  
Machine learning for signal processing  
Signal processing for Big Data  

Submission of Papers: Prospective authors are invited to submit full-length papers, with 
up to four pages for technical content including figures and possible references, and with one 
additional optional 5th page containing only references. A selection of best student papers 
will be made by the ICASSP 2016 committee upon recommendations from the Technical 
Committees. 

Tutorial and Special Session Proposals: Tutorials will be held on March 20 and 21, 2016.  
Tutorial proposals must include title, outline, contact information, biography and selected 
publications for the presenter(s), and a description of the tutorial and the material to be 
distributed to participants. Special session proposals must include a topical title, rationale, 
session outline, contact information, and a list of invited speakers. Additional information can 
be found at the ICASSP 2016 website. 

Signal Processing Letters: Authors of IEEE Signal Processing Letters (SPL) papers will be 
given the opportunity to present their work at ICASSP 2016, subject to space availability and 
approval by the ICASSP Technical Program Chairs. SPL papers published between January 1, 
2015 and December 31, 2015 are eligible for presentation at ICASSP 2016.  

Show and Tell: S&T offers a perfect stage to showcase innovative ideas in all technical 
areas of interest at ICASSP.  S&T sessions contain demos that are highly interactive and 
visible.  Please refer to the ICASSP 2016 website for additional information regarding demo 
submission. 

Important Deadlines:  
Special session & tutorial proposals ……………………………………………………… August 3, 2015 
Notification of special session & tutorial acceptance ….………………..……… September 11, 2015  
Submission of regular papers ………………………………………………..……………… September 25, 2015 
Signal processing letters ………………………………………………………….……………. December 16, 2015 
Notification of paper acceptance …………………………………………………………… December 21, 2015 
Revised paper upload ……………………………………………………………………………. January 22, 2016 
Author registration …………………………………………………………………….………..… January 22, 2016 

Shanghai: Shanghai is the most populous city in China and one of the most populous cities 
in the world. A global city, Shanghai exerts influence over global commerce, finance, culture, 
art, fashion, research and entertainment. The city is located in the middle portion of the 
Chinese coast, and sits at the mouth of the Yangtze River.  The city is a tourist destination 
renowned for its historical landmarks, such as the Bund and City God Temple, and its 
modern and ever-expanding Pudong skyline including the Oriental Pearl Tower. Today, 
Shanghai is the largest center of commerce and finance in mainland China, and has been 
described as the "showpiece" of the world's fastest-growing major economy. 

General Chairs 
Zhi Ding, Univ. of California, Davis, USA
Zhi-Quan Luo, Univ. of Minnesota, USA 
Wenjun Zhang, Shanghai Jiao Tong Univ., China
Technical Program Chairs 
P. C. Ching, Chinese Univ. of Hong Kong, Hong Kong
Dominic K.C. Ho, Univ. of Missouri, USA
Finance Chairs  
Shuguang Cui, Texas A&M Univ., USA 
Rong Xie, Shanghai Jiao Tong Univ., China  
Plenaries Chairs  
Zhi-Pei Liang, UIUC, USA 
Björn Ottersten, Univ. of Luxembourg, Luxembourg 
Special Sessions Chairs 
Tim Davidson, McMaster Univ., Canada 
Jianguo Huang, Northwestern Polytech. Univ., China 
Tutorials Chairs  
Jian Li, Univ. of Florida, USA 
Jose Principe, Univ. of Florida, USA 
Student Session Chair 
Wei Zhang, Univ. of New South Wales, Australia 
Registration Chairs  
Tongtong Li, Michigan State Univ., USA
Xiaojun Yuan, ShanghaiTech Univ., China  
Publicity Chairs  
Xiaokang Yang, Shanghai Jiao Tong Univ., China  
Mounir Ghogho, Leeds Univ., UK 
Ignacio Santamaria, Univ. of Cantabria, Spain
Publication Chairs  
Min Dong, Univ. of Ontario Inst. of Tech., Canada  
Thomas Fang Zheng, Tsinghua Univ., China
Industrial & Exhibit Chairs 
Li Deng, Microsoft, USA
Jinyu Li, Microsoft, USA 
Cathy Wicks, Texas Instruments, USA 
Local Arrangement Chairs 
Ning Liu, Shanghai Jiao Tong Univ., China 
Meixia Tao, Shanghai Jiao Tong Univ., China 
Webmaster 
Yi Xu, Shanghai Jiao Tong Univ., China 
Workshop Chairs 
Jianguo Huang, Northwestern Polytech. Univ., China 
Jiwu Huang, Sun Yat-sen Univ., China 
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FREE SPS STUDENT MEMBERSHIP FOR 2015
You’re in the beginning stages of your career. Membership in the IEEE Signal Processing Society can help you 
lay the groundwork for many years of success. You can have it all in 2015 - and for free! Membership includes:

Discounts on conference registration fees;
Eligibility to apply for travel grants to attend SPS flagship conferences including the IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) and IEEE International Conference on 
Image Processing (ICIP);
Networking and job opportunities at the ICASSP Student Career Luncheon;
Eligibility to enter our student competition, the Signal Processing Cup, for a US$5,000 grand prize;
Involvement opportunities through SPS’s local Chapters - more than 130 worldwide;
Free electronic and digital subscriptions to IEEE Signal Processing Magazine, Inside Signal Processing 
eNewsletter, and the IEEE Signal Processing Society Content Gazette;
Access to cutting-edge educational resources, including SigView, SPS’s online video tutorial portal.

See everything Signal Processing Society membership can do for you:
http://signalprocessingsociety.org

Already an IEEE member? Join SPS for free now!
(You must have already renewed your IEEE member-
ship for 2015 to use this offer)

Visit http://ieee.org/join
On the left side, click “Societies and Special In-
terest Groups”
Click “IEEE Signal Processing Society,” then 
“Join the IEEE Signal Processing Society”
When you reach the catalog page, click “Add 
Item(s)” and sign in with your IEEE account Note: 
Free offer applies only to basic membership. For 
US$8.00, enhance your membership for more 
great benefits!
Once logged in, click “Proceed to Checkout”
When you reach the shopping cart, enter the pro-
motion code SP15STUAD and click “Apply”
Complete check out and congratulations! Wel-
come to SPS!

Not yet an IEEE Student Member?
Get a free SPS membership with the purchase of an 
IEEE Student membership!

Visit http://ieee.org/join
Click “Join as a student” on the bottom right to 
create your new IEEE Student member account
After your IEEE account is created, complete the 
membership application and proceed to “Do you 
want to add any memberships and subscrip-
tions?”
Select “Signal Processing Society membership” 
and click “add selected item”
Click “Proceed to Checkout”
When you reach the shopping cart, enter the pro-
motion code SP15STUNW and click “Apply”
Complete check out and congratulations! Wel-
come to SPS!

Note: Must be an active IEEE Student or Graduate Student member. This offer does not apply to SPS Students or 
Graduate Students  renewing for 2015.
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1st Call for Papers

ISSPIT 2015
Dec., 7-10,
2015
Abu Dhabi
UAE

           
General Chair
Adel Elmaghraby
University of Louisville, USA
Begoña  García Zapirain
DeustoTech, Spain 

Technical Prog. Chair
Esam Abdel-Raheem
University of Windsor, Canada

Technical Prog. Co-Chairs
Mohammed Ghazal
Abu Dhabi University, UAE
Walaa Sheta
City for Scientific Research, Egypt

Registration & Finance Chair
Reda Ammar
University of Connecticut, USA

Publication Co-Chairs
Hassan Hajjdiab
Abu Dhabi University, UAE
Zakaria Maamar
Zayed University, UAE

Tutorials Co-Chairs
Murad Elhadef
Abu Dhabi University, UAE
Sartaj Sahni                  
University of Florida, USA

Plenary & Special Sessions Co-Chairs
Braham Barkat
The Petroleum Institute, UAE
Christos Douligeris
University of Piraeus, Greece

Publicity Co-Chairs
Manar Abu Taleb
University of Sharjah, UAE
Adel Khelifi
Al Hosn University, UAE
Marco Re
Univ. of Rome “Tor Vergata”, Italy

Industrial Liaison Co-Chairs
Mohammed Abu Khousa
The Petroleum Institute, UAE
Motasir Qasymeh
Abu Dhabi University, UAE

Local Arrangements Co-Chairs
Riad Kanan
Ashraf Khalil 
Abu Dhabi University, UAE

Web Manager
Mostafa G. Mostafa
Mckendree University, USA

The IEEE ISSPIT 2015 is the fifteenth in a series of international  symposia 
that aims to cover most of the aspects in the fields of signal processing and 
information technology. Sessions will include tutorials in addition to 
presentations on new research results. Papers describing original work are 
invited in any of the areas listed below. Accepted papers will be published in 
the Proceedings of IEEE ISSPIT 2015 and will be available via IEEE Xplore.
Acceptance will be based on quality, relevance, and originality. Contest for Best 
Paper Award will be held and award will be given.
Papers are invited in the following topics:

Signal Processing Theory and
Methods
Signal Processing for
Communications and Networking
Design & Implementation of 
Signal Processing Systems
Image, Video & Multidimensional 
Signal Processing
Multimedia Signal Processing
Biological Image and signal 
processing
Audio and Acoustic signal 
Processing
Health Informatics and e-Health

Sensor Arrays
Radar Signal Processing
Internet Software Architectures
Multimedia and Image Based
Systems
Mobile Computing and Applications
E-Commerce
Bioinformatics and Bioengineering
Information Processing
Geographical Information Systems
Object Based Software Engineering
Speech Processing
Computer Networks
Neural Network

Prospective authors are invited to submit full-length, 6-page (max) papers in
two-column formats including diagrams and references. Authors can submit 
their papers as PDF files through the online submission system found on
the ISSPIT website: www.isspit.org. The title page should include author(s) 
name(s), affiliation, mailing address, telephone, fax, and e-mail address. The 
author should indicate one or two of the above categories that best describe 
the topic of the paper.

Important Dates
Proposals for Tutorials & Special Sessions       Sept. 4th, 2015
Regular paper submission                               Sept. 4th, 2015
Notification of acceptance                                   Oct. 9th, 2015
Final version paper with registration                   Oct.  23rd , 2015

website: http://www.isspit.org

      Supported byThe 15th IEEE International Symposium on 
Signal Processing

and Information Technology

December 7-10, 2015, Abu Dhabi, UAE

Co-sponsored by
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.    
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2015 IEEE MEMBERSHIP APPLICATION  

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address  City State/Province

Postal Code Country

Secondary Phone  

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  
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IEEE Aerospace and Electronic Systems AES010 25.00 12.50

IEEE Antennas and Propagation AP003 15.00 7.50

IEEE Broadcast Technology BT002 15.00 7.50

IEEE Circuits and Systems CAS004 19.00 9.50

IEEE Communications C0M019 30.00 15.00

IEEE Components, Packaging, & Manu. Tech. CPMT021 15.00 7.50

IEEE Computational Intelligence CIS011 29.00 14.50

IEEE Computer C016 56.00 28.00

IEEE Consumer Electronics CE008 20.00 10.00

IEEE Control Systems CS023 25.00 12.50

IEEE Dielectrics and Electrical Insulation DEI032 26.00 13.00

IEEE Education E025 20.00 10.00

IEEE Electromagnetic Compatibility EMC027 31.00 15.50

IEEE Electron Devices ED015 18.00 9.00

IEEE Engineering in Medicine and Biology EMB018 40.00 20.00

IEEE Geoscience and Remote Sensing GRS029 19.00 9.50

IEEE Industrial Electronics IE013 15.00 7.50

IEEE Industry Applications IA034 20.00 10.00

IEEE Information Theory IT012 30.00 15.00

IEEE Instrumentation and Measurement IM009 29.00 14.50

IEEE Intelligent Transportation Systems ITSS038 35.00 17.50

IEEE Magnetics MAG033 26.00 13.00

IEEE Microwave Theory and Techniques MTT017 17.00 8.50

IEEE Nuclear and Plasma Sciences NPS005 35.00 17.50

IEEE Oceanic Engineering OE022 19.00 9.50

IEEE Photonics PHO036 34.00 17.00

IEEE Power Electronics PEL035 25.00 12.50

IEEE Power & Energy PE031 35.00 17.50

IEEE Product Safety Engineering PSE043 35.00 17.50

IEEE Professional Communication PC026 31.00 15.50

IEEE Reliability RL007 35.00 17.50

IEEE Robotics and Automation RA024 9.00 4.50

IEEE Signal Processing SP001 20.00 10.00

IEEE Social Implications of Technology SIT030 33.00 16.50

IEEE Solid-State Circuits SSC037 29.00 14.50

IEEE Systems, Man, & Cybernetics SMC028 12.00 6.00

IEEE Technology & Engineering Management TEM014 35.00 17.50

IEEE Ultrasonics, Ferroelectrics, & Frequency Control UFFC020 20.00 10.00

IEEE Vehicular Technology VT006 18.00 9.00

PROMO CODECAMPAIGN CODE

 Yes     No     If yes, provide the following:

Member Recruiter Name ___________________________________

IEEE Recruiter’s Member Number (Required) ______________________

Credit Card Number

Name as it appears on card

Signature

Proceedings of the IEEE ..................  print $45.00 or online $39.00 
Proceedings of the IEEE (print/online combination) ..................$55.00
IEEE Standards Association (IEEE-SA) ................................................$52.00
IEEE Women in Engineering (WIE) .....................................................$25.00

Please total the Membership dues, Society dues, and other amounts 
from this page:
IEEE Membership dues    ............................................................. $_______
IEEE Society dues (optional)     ................................................. $_______
IEEE-SA/WIE dues (optional)    .................................................. $_______
Proceedings of the IEEE (optional)    ....................................... $_______
Canadian residents pay 5% GST or appropriate HST (BC—12%; NB, NF,
ON-13%;NS-15%) on Society payments & publications only.....................TAX $_______

AMOUNT PAID ................................................................................TOTAL $_______

Payment Method
All prices are quoted in US dollars. You may pay for IEEE membership 
by credit card (see below), check, or money order payable to IEEE, 
drawn on a US bank.

6

CARDHOLDER’S 5-DIGIT ZIPCODE

(BILLING STATEMENT ADDRESS) USA ONLY

MONTH                   YEAR
EXPIRATION DATE

5

7

7

Check

Please reprint your full name here

BETWEEN
1 MAR 2015-
15 AUG 2015

PAY

BETWEEN
 16 AUG 2014-
28 FEB 2015

PAY

Complete both sides of this form, sign, and return to:
IEEE MEMBERSHIP APPLICATION PROCESSING
445 HOES LN, PISCATAWAY, NJ 08854-4141 USA
or fax to +1 732 981 0225
or join online at www.ieee.org/join

Add IEEE Society Memberships (Optional)5 2015 IEEE Membership Rates 
(student rates available online)

6

More Recommended Options7

Payment Amount8

Were You Referred to IEEE?9

1
4

-M
EM

-1
1

9
  

  
  

 7
/1

4

Minimum Income or Unemployed Provision
Applicants who certify that their prior year income did not exceed US$14,500
(or equivalent) or were not employed are granted 50% reduction in: full-year dues,
regional assessment and fees for one IEEE Membership plus one Society Membership. 
If applicable, please check appropriate box and adjust payment accordingly. Student 
members are not eligible.

I certify I earned less than US$14,500 in 2014 or 2013
I certify that I was unemployed in 2014 or 2013

The 39 IEEE Societies support your technical and professional interests.
Many society memberships include a personal subscription to the core journal, 
magazine, or newsletter of that society. For a complete list of everything 
included with your IEEE Society membership, visit www.ieee.org/join. 
All prices are quoted in US dollars.

Please check the appropriate box.

One or more Society publications

Society newsletter

Legend—Society membership includes:
Online access to publication

CD-ROM of selected society 
publications

IEEE member dues and regional assessments are based on where 
you live and when you apply. Membership is based on the calendar 
year from 1 January through 31 December. All prices are quoted 
in US dollars.

Please check  the appropriate box.

RESIDENCE
United States .................................................................$193.00 ............. $96.50
Canada (GST)*.............................................................$171.25 ............... $85.63
Canada (NB, NF and ON HST)*...........................$182.85 ............... $91.43
Canada (Nova Scotia HST)*...................................$185.75 ............... $92.88
Canada (PEI HST)*.....................................................$184.30 ............... $92.15

Canada (GST and QST Quebec)..........................$185.71 ............... $92.86
Africa, Europe, Middle East......................................$158.00 ............... $79.00
Latin America.................................................................$149.00 ............... $74.50
Asia, Pacific .....................................................................$150.00 ............... $75.00
*IEEE Canada Business No. 125634188

Auto Renew my Memberships and Subscriptions (available when paying by credit card).
I agree to the Terms and Conditions located at www.ieee.org/autorenew

BETWEEN
16 AUG 2014-
28 FEB 2015
PAY

BETWEEN
1 MAR 2015-
15 AUG 2015

PAY
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http://www.signalprocessingsociety.org/publications/periodicals/tci/tci-edics/
http://www.signalprocessingsociety.org/publications/periodicals/tsipn/tsipn-edics/
http://www.signalprocessingsociety.org/about-sps/governance/policy-procedure/part-2
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [38]  JULY 2015

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_____________

http://www.signalprocessingsociety.org
mailto:new.membership@ieee.org
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

______________

mailto:new.membership@ieee.org
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com


Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com

	Zoom In: 
	For navigation instructions please click here: 
	See Next Page: 
	Page 18: 
	Page 28: 
	Page 38: 
	Page 46: 
	Page 64: 
	Page 75: 
	Page 85: 
	Page 95: 
	Page 103: 
	Page 112: 
	Page 4: 
	Page 6: 
	Page 160: 
	Page 12: 
	Page 150: 
	Page 8: 
	Page 55: 
	Next Page: 
	Search Issue: 
	Contents: 
	http://www: 
	signalprocessingsociety: 
	org: 

	qmags: 
	com: 


	Front Cover: 
	Previous Page: 
	Page 123: 
	COVER 1: 
	Page 14: 
	Page 16: 
	Page 127: 
	Page 129: 
	Page 133: 
	Page 135: 
	Page 139: 
	Page 141: 
	Page 143: 
	Page 147: 
	Page 156: 
	Page 151: 
	Page 155: 
	Page 153: 
	Page 148: 
	Page 7: 
	Page 17: 
	COVER 4: 
	Page 3: 
	Page 5: 
	COVER 2: 
	COVER 3: 
	Page 9: 
	Page 15: 
	Page 145: 
	p1: 
	POP-UP: 
	Page 138: 
	Page 132: 
	Page 126: 
	Zoom Out: 


