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[from the EDITOR]
Min Wu

Editor-in-Chief 
minwu@umd.edu

I
am writing this editorial for the March 
issue of IEEE Signal Processing Mag-
azine (SPM) as 2014 comes to a close. 
My son’s elementary school class just 
learned about the Jewish holiday of 

Hanukkah, the Muslim holiday of Rama-
dan, and the African-American celebration 
of Kwanzaa. This was in addition to the 
Thanksgiving and Christmas holidays that 
students are already keenly aware of. The 
school encourages parents to share any 
major holidays that their families celebrate 
as part of a cultural education for global 
citizenship. I volunteered to teach my son’s 
class about the Lunar New Year celebrated 
by Chinese and several other Asian ethnic 
groups. Indeed, wherever we are and what-
ever ethnic roots we have, we are all proud 
of our cultural heritage. Through celebra-
tions, not only do we enjoy this important 
time with our families and friends, but 
more importantly, we pass the cultural 
assets onto the next generation and share 
our cultures with the world. 

This pride and desire to share are also 
common in our professional lives. Many 
professional groups, including the IEEE, 
have public outreach efforts to raise aware-
ness of their (respective) professions and to 
attract more young people to join. One 
recent high-profile effort is CODE.org, 
which aims at expanding participation in 
computer science by making it available in 
elementary, middle, and high schools 
(known as K–12). With hands-on participa-
tion by celebrities and even U.S. President 
Barack Obama, this nonprofit organization 
developed accessible means to demystify 
computer programming. Within just a 
year from its launch, CODE.org reportedly 
prepared 3,000 new teachers in K–12 
schools, brought an introductory course to 

4 million students in 90,000 classrooms, 
and had tens of millions of people try an 
hour of programming. Even my son in ele-
mentary school proudly brought home a 
certificate that declared he completed an 
hour of coding!  

This is one of many successful efforts by 
the computer science community in bring-
ing excitement and the “cool factor” to the 
public as well as in attracting funding 
agencies’ support. What can we learn from 
their efforts to advocate our field, i.e., to 
explain what signal processing is and to 
share the far-reaching contributions of sig-
nal processing with the world? 

The leadership of the IEEE Signal Pro-
cessing Society (SPS) has been working on 
this for a number of years. The most recent 
effort is an outreach video series led by SPS 
President-Elect Rabab Ward. The first video 
is now available on YouTube and shows the 
ubiquitous contributions of signal process-
ing in our everyday life [1]. This 2-minute 
video uses multimedia to visualize “Signal 
Processing Inside,” a notion coined in the 
September 2004 editorial by SPS Past Pres-
ident K.J. Ray Liu (who was editor-in-chief 
of SPM at the time). Check it out, and 
please share this cool video with your 
schools, colleagues, friends, and families.  

Now comes the harder part: how can 
we go further to explain in accessible 
terms and engaging styles what signals 
and signal processing are? Published over 
a decade ago, the book Engineering Our 
Digital Future: The Infinity Project by 
Orsak et al. offered a unique curriculum 
for high school students and college fresh-
men to learn about digital technologies. 
Authored by active volunteers in the SPS 
community, it covered the creation, stor-
age, and communications of various 
modalities of signals. Since then, digital 
cameras, broadband communications, and 
online platforms have become affordable 

and ubiquitous to everyone including kids 
and senior citizens. These advances have 
lowered the entry point for the general 
public to relate and appreciate signal pro-
cessing technologies, but perhaps not 
through a systematic curriculum and hun-
dreds of textbook pages. 

Could and should SPM—known for its 
fine tutorials—fill in this gap to bring short 
stand-alone tutorials accessible to a broad-
er audience (in addition to serving its tradi-
tional readership)? Such articles may sup-
plement overview videos to raise awareness 
and the visibility of signal processing; they 
might serve as a bridge to invite interested 
students, teachers, and professionals to 
explore in-depth articles in the magazine 
(as well as the SigView online tutorials 
highlighted by SPS President Alex Acero in
the January 2015 issue of SPM).  

To quote Nobel Laureate Richard Feyn-
man, the author of The Feynman Lectures 
on Physics, “If you can’t explain something 
to a six-year-old, you really don’t under-
stand it yourself.” Perhaps six-year-old 
readers are on the other extreme from the 
expert audience to which many of our 
authors are accustomed. As a compromise, 
how about explaining signal processing to 
a sixth grader? I invite you, our readers, to 
join our editorial team for this exercise, as 
we explore new opportunities to share sig-
nal processing with the world. 

REFERENCES
[1] IEEE SPS. “What is signal processing?” [On-
line]. Available: https://www.youtube.com/watch?v=
EErkgr1MWw0

[2] G. C. Orsak, S. L. Wood, S. C. Douglas, D. C. 
Muson, J. R. Treichler, R. A. Athale, and M. W. Yoder, 
Engineering Our Digital Future: The Infinity Project.
Englewood Cliffs, NJ: Prentice Hall, 2003.
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

The IEEE Signal Processing Cup: 
A Competition for Undergraduate Students

S
ignal processing is becoming 
part of the curriculum in many 
undergraduate engineering 
programs. To leverage and rein-
force this, the IEEE Signal Pro-

cessing Society (SPS) has created the 
IEEE Signal Processing Cup, a competi-
tion that provides undergraduate students 
with the opportunity to form teams and 
work together to solve a challenging and 
interesting real-world problem using sig-
nal processing techniques and methods.

The theme of the inaugural 2014 com-
petition was “Image Restoration/Superres-
olution for Single-Particle Analysis.” Each 
team participating in the competition was 
composed of one faculty member (who is 
the supervisor of the team members), at 
most one graduate student (who will assist 
the supervisor), and at least three but no 
more than ten undergraduates. At least 
three of the undergraduate team members 
had to be either IEEE SPS members or 
student members.

Twelve teams from all over the world 
submitted their work. Three of these 
teams were selected to present their work 
at the International Conference on Acous-
tics, Speech, and Signal Processing 
(ICASSP) 2014. I was part of the panel that 
judged the three projects, and I was pleas-
antly surprised by the work of these 

talented and energetic undergraduates. I 
could envision several future start-ups 
based on all three projects.

All three projects were very good, but 
we had the difficult job of ranking them in 
first, second, and third place as follows. 

■ First place: EPOCH (Anik Khan, 
Forsad Al Hossain, Tawab Ullas, Md. 
Abu Rayhan, and Mohammad Ariful 
Haque) from Bangladesh University of 
Engineering and Technology  

■ Second place: NtUeLsA (Kai-Wen 
Liang, Yen-Chen Wu, Guan-Lin Chao, 
Kuan-Hao Huang, Shao-Hua Sun, 
Ming-Jen Yang, Po-Wen Hsiao, Ti-Fen 
Pan, Yi-Ching Chiu, Wei-Chih Tu, and 
Shao-Yi Chien) from National Taiwan 
University  
■ Third place: Uchihas (Emroz Khan, 
Shiekh Zia Uddin, Mukhlasur Rahman 
Tanvir, and Md. Kamrul Hasan) from 
Bangladesh University of Engineering 
and Technology. 
Teams were awarded SPS-sponsored 

prizes in the amounts of US$5,000, 

US$2,500, and US$1,000 for first, second, 
and third place, respectively.

Each team invited to ICASSP2014 had 
their travel expenses supported by the 
SPS. Each team member was offered up 
to US$1,200 for continental travel, or 
US$1,700 for intercontinental travel, with 
at most three people from each team sup-
ported. We are very grateful to the Bioim-
aging and Signal Processing Technical 
Committee for proposing the theme for 
the first Signal Processing Cup and steer-
ing this competition and to Mathworks 
for providing complimentary licenses of 
MATLAB and selected toolboxes.

Following the success of the first com-
petition, we will be hosting another com-
petition at ICASSP2015 with the theme of 
“Heart Rate Monitoring During Physical 
Exercise Using Wrist-Type Photoplethys-
mographic Signals,” and we expect just as 
much interest!

The students’s feedback was extremely 
positive: they told us that they learned 
much about signal processing and working 
on a team, and they also relayed that this 
was a tremendously enriching experience 
for them. I encourage professors to help put 
together more teams for the Signal Pro-
cessing Cup and undergraduate students to 
participate in this unique opportunity.
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I WAS PART OF THE
PANEL THAT JUDGED 
THE THREE PROJECTS, 

AND I WAS PLEASANTLY 
SURPRISED BY THE WORK 

OF THESE TALENTED 
AND ENERGETIC

UNDERGRADUATES.
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Top Downloads in IEEE Xplore

T
he “Reader’s Choice” column 
in IEEE Signal Processing 
Magazine contains a list of 
articles published by the IEEE 
Signal Processing Society 

(SPS) that ranked among the top 100 most 

downloaded IEEE Xplore articles. This 
issue is based on download data through 
June 2014. The table below contains the 
citation information for each article and 
the rank obtained in IEEE Xplore. The 
highest rank obtained by an article in this 

time frame is indicated in bold. Your sug-
gestions and comments are welcome and 
should be sent to Associate Editor Michael 
Gormish (gormish@ieee.org).

Digital Object Identifier 10.1109/MSP.2014.2374977

Date of publication: 12 February 2015

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 N TIMES
IN TOP
100 (SINCE
JAN 2011)

JUN 
2014

MAY 
2014

APR 
2014

MAR 
2014

FEB 
2014

JAN 
2014 

A TUTORIAL ON PARTICLE FILTERS FOR
ONLINE NONLINEAR/NON-GAUSSIAN-
BAYESIAN TRACKING
Arulampalam, M.S.; Maskell, S.;
Gordon, N.; Clapp, T. 
IEEE Transactions on Signal Processing
vol. 50, no. 2, 2002, pp. 174–188

This article reviews optimal and 
suboptimal Bayesian algorithms for nonlin-
ear/non-Gaussian tracking problems, with 
a focus on particle filters. Variants of the 
particle filter are introduced within a 
framework of the sequential importance 
sampling algorithm and compared with 
the standard EKF.

12 15 9 9 10 31 39

IMAGE QUALITY ASSESSMENT: FROM
ERROR VISIBILITY TO STRUCTURAL
SIMILARITY
Wang, Z; Bovik, A.C.; Sheikh, H.R.;
Simoncelli, E.P
IEEE Transactions on Image Processing 
vol. 13, no. 4, 2004, pp. 600–612

This paper introduces a framework for 
quality assessment based on the 
degradation of structural information. 
Within this framework a structure 
similarity index is developed and 
evaluated. MATLAB code available. 

13 33 46 31 42 24 21

AN INTRODUCTION TO
COMPRESSIVE SAMPLING
Candes, E.J.; Wakin, M.B. 
IEEE Signal Processing Magazine
vol. 25, no. 2, Mar. 2008, pp. 21–30

This article surveys the theory of 
compressive sampling, also known as 
compressed sensing or CS, a novel 
sensing/sampling paradigm that goes 
against the common wisdom in data 
acquisition.

35 31 27 21 19 14 41

IMAGE QUALITY ASSESSMENT
FOR FAKE BIOMETRIC DETECTION:
APPLICATION TO IRIS, FINGERPRINT,
AND FACE RECOGNITION
Galbally, J; Marcel, S.; Fierrez, J. 
IEEE Transactions on Image Processing
vol. 23, no. 2, 2014, pp. 710–724

This paper uses 25 general image quality 
features extracted from the authentication 
image to distinguish between legitimate 
and imposter samples for fingerprint, iris, 
and two-dimensional face biometrics.

50 74 50 3

NEW CHALLENGES FOR IMAGE
PROCESSING RESEARCH
Pappas, T.N.
IEEE Transactions on Image Processing
vol. 20, no. 12, 2011, p. 3321

The editor-in-chief of IEEE Transactions on 
Image Processing addresses the direction 
of the journal and image processing.

77 1

SCALING UP MIMO:
OPPORTUNITIES AND CHALLENGES
WITH VERY LARGE ARRAYS
Rusek, F.; Persson, D.; Lau, B.K.;  
Larsson, E.G.; Marzetta, T.L.; Edfors, O.; 
Tufvesson, F. 
IEEE Signal Processing Magazine 
vol. 30, no. 1, 2013, pp. 40–60

The more antennas the transmitter/
receiver is equipped with and the more 
degrees of freedom that the propagation 
channel can provide, the better the perfor-
mance in terms of data rate or link 
reliability. This article quantifies the 
reliability and achievable rates.

80 77 93 78 82 15
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 N TIMES
IN TOP
100 (SINCE
JAN 2011)

JUN 
2014

MAY 
2014

APR 
2014

MAR 
2014

FEB 
2014

JAN 
2014 

IMAGE SUPER-RESOLUTION VIA SPARSE
REPRESENTATION
Yang, J.; Wright, J; Huang, T.S.; Ma, Y.
IEEE Transactions on Image Processing
vol. 19, no. 11, 2010, pp. 2861–2873

This paper presents an approach to 
single-image superresolution, based upon 
sparse signal representation of low and 
high resolution patches.

84 81 55 92 27 12

K-SVD: AN ALGORITHM FOR DESIGNING
OVERCOMPLETE DICTIONARIES FOR
SPARSE REPRESENTATION
Aharon, M.; Elad, M.; Bruckstein, A.
IEEE Transactions on Signal Processing
vol. 54. no. 11, 2006, pp. 4311–4322

K-SVD is an iterative method that 
alternates between sparse coding of the 
examples based on the current dictionary 
and a process of updating the dictionary 
atoms to better fit the data in a 
computationally efficient manner.

85 1

AN OVERVIEW OF MASSIVE MIMO:
BENEFITS AND CHALLENGES
Lu, L.; Li, G.Y.; Swindlehurst, A.L.;  
Ashikhmin, A.; Zhang, R.
IEEE Journal on Selected Topics in Signal 
Processing
vol. 8, no. 5, 2014, pp. 742–758

Equipping cellular base stations with a 
very large number of antennas, potentially 
allows for orders of magnitude 
improvement in spectral and energy 
efficiency. This paper presents an extensive 
overview and analysis of massive MIMO 
systems.

89 1

TENSORS: A BRIEF INTRODUCTION
Comon, P. 
IEEE Signal Processing Magazine
vol. 31, no. 3, 2014, pp. 44–53

This article explains the different 
properties of tensors and matrices. In 
particular the canonical polyadic tensor 
decomposition and singular-value matrix 
decomposition.

97 23 2

THE PAST, PRESENT, AND THE FUTURE
OF UNDERWATER ACOUSTIC SIGNAL
PROCESSING
Vaccaro, R.J. 
IEEE Signal Processing Magazine
vol. 15, no. 4, 1998, pp. 21–51

A collection of articles by members of the 
Underwater Acoustic Signal Processing 
Technical Committee ranging from 1960s 
history to future applications including 
synthetic aperture sonar.

89 1

SPARSE REPRESENTATION FOR BRAIN
SIGNAL PROCESSING: A TUTORIAL ON
METHODS AND APPLICATIONS
Li, Y.; Yu, Z.L.; Bi, N.; Xu, Y.; Gu, Z.;  
Amari, S.I.
IEEE Signal Processing Magazine
vol. 31, no. 3, 2014, pp. 96–106

Formulates the task of blind source 
separation of brain signals and other brain 
signal processing problems as an 
underdetermined linear model and solves 
via sparse representations. Includes 
applications such as BSS and EEG inverse 
imaging, feature selection, and 
classification.

72 1
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SPS Fellows and Award Winners Recognized

I
n this column of IEEE Signal Pro-
cessing Magazine, 51 IEEE Signal 
Processing Society (SPS) members 
are recognized as Fellows, and award 
recipients are announced.

51 SPS MEMBERS
ELEVATED TO FELLOW
Each year, the IEEE Board of Directors 
confers the grade of Fellow on up to one-
tenth of 1% of the Members. To qualify for 
consideration, an individual must have 
been a Member, normally for five years or 
more, and a Senior Member at the time 
for nomination to Fellow. The grade of 
Fellow recognizes unusual distinction in 
IEEE’s designated fields.

The SPS congratulates the following 51 
SPS members who were recognized with 
the grade of Fellow as of 1 January 2015:

Jean Armstrong, Melbourne, Austra-
lia: For contributions to the theory and 
application of orthogonal frequency divi-
sion multiplexing in wireless and optical 
communications. 

Kristine Bell, Reston, Virginia, United 
States: For contributions to statistical 
signal processing with radar and sonar 
applications. 

Ewert Bengtsson, Uppsala, Sweden: 
For contributions to quantitative micros-
copy and biomedical image analysis.

Daniel Bliss, Tempe, Arizona: For con-
tributions to adaptive sensor systems in 
radar and communications. 

Christian Cachin, Ruschlikon, Swit-
zerland: For contributions to steganogra-
phy and secure distributed systems.

Joseph Cavallaro, Houston, Texas, 
United States: For contributions to VLSI 
architectures and algorithms for signal 
processing and wireless communications.

Biao Chen, Syracuse, New York, Unit-
ed States: For contributions to decen-
tralized signal processing in sensor net-
works and interference management of 
wireless networks. 

Israel Cohen, Haifa, Israel: For contri-
butions to the theory and application of 
speech enhancement.

Iain Collings, Epping, Australia: For 
contributions to multiple user and multiple 
antenna wireless communication systems.

Michael Davies, Edinburgh, United 
Kingdom: For contributions to sparse 
representations in signal processing and 
compressed sensing. 

Mérouane Debbah, Gif-sur-Yvette, 
France: For contributions to the theory 
and application of signal processing in 
wireless networks.

Lieven De Lathauwer, Leuven, Belgium: 
For contributions to signal processing algo-
rithms using tensor decompositions.

Gordon Frazer, Edinburgh, Australia: 
For contributions to advanced over-the-
horizon radar.

Pascale Fung, Clear Water Bay, Hong 
Kong: For contributions to human–ma-
chine interactions.

Xiqi Gao, Nanjing, China: For contri-
butions to broadband wireless communi-
cations and multirate signal processing.

Monisha Ghosh, Melville, New York, 
United States: For contributions to cogni-
tive radio and signal processing for com-
munication systems.

S. Gunasekaran, Rome, New York, 
United States: For contributions to high-
performance computer vision algorithms 
for airborne applications.

K.V.S. Hari, Bangalore, India: For con-
tributions to high-resolution signal pa-
rameter estimation.

Zhihai He, Columbia, Missouri, United 
States: For contributions to video commu-
nication and visual sensing technologies.

Jianying Hu, Yorktown Heights, New 
York, United States: For contributions to 
pattern recognition in business and 
health analytics and document analysis.

Hong Jiang, Santa Clara, California, Unit-
ed States: For leadership in parallel multime-
dia computing architectures and systems.

Tzyy-Ping Jung, La Jolla, California, Unit-
ed States: For contributions to blind source 
separation for biomedical applications.

Simon King, Edinburgh, United King-
dom: For contributions to text-to-speech 
synthesis and speech technology. 

Stefanos Kollias, Athens, Greece: For 
contributions to intelligent systems for 
multimedia content analysis and human–
machine interaction.

Deepa Kundur, Toronto, Canada: For 
contributions to signal processing tech-
niques for multimedia and cybersecurity.

Edmund Lam, Pokfulam, Hong Kong: 
For contributions to modeling and compu-
tational algorithms in imaging applications. 

Henry Leung, Calgary, Canada: For 
contributions to chaotic communications 
and nonlinear signal processing. 

Zicheng Liu, Redmond, Washington: 
For contributions to visual processing for 
multimedia interaction.

David Love, West Lafayette, Indiana, 
United States: For contributions to feedback-
adaptive wireless communication systems. 

Detlev Marpe, Berlin, Germany: For 
contributions to video coding research 
and standardization.

Teresa Pace, Orlando, Florida, United 
States: For contributions to image and signal 
processing algorithms for sensor systems. 

Mark Plumbley, London, United Kingdom: 
For contributions to latent variable analysis.

Markus Rupp, Wien, Austria: For con-
tributions to adaptive filters and commu-
nication technologies.

Robert Safranek, Warren, New Jersey, 
United States: For contributions to 
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perceptual image and video compression 
and quality. 

Paris Smaragdis, Urbana, Illinois, 
United States: For contributions to audio 
source separation and audio processing. 

Hing Cheung So, Kowloon, China: For 
contributions to spectral analysis and 
source localization.

Eckehard Steinbach, Munich, Germa-
ny: For contributions to visual and haptic 
communications.

Wonyong Sung, Seoul, South Korea: 
For contributions to real-time signal pro-
cessing systems.

Johan Suykens, Leuven, Belgium: For 
developing the least squares support vec-
tor machines.

Dacheng Tao, Sydney, Australia: For 
contributions to pattern recognition and 
visual analytics.

David Taubman, Sydney, Australia: 
For contributions to image and video 
communications.

James Truchard, Austin, Texas, United 
States: For leadership in instrumentation 
and computing for signal processing.

Vesa Valimaki, Espoo, Finland: For 
contributions to synthesis and processing 
of audio signals.

An-Yeu (Andy) Wu, Taipei, Taiwan: For 
contributions to digital signal processing 
algorithms and VLSI designs for commu-
nication IC/SoC.

Hsiao-Chun Wu, Baton Rouge, Loui-
siana, United States: For contributions 
to digital video broadcasting and wire-
less systems. 

Isao Yamada, Tokyo, Japan: For con-
tributions to inverse problems and 
learning in signal processing.

Liuqing Yang, Fort Collins, Colorado, 
United States: For contributions to theory and 
practice of ultrawideband communications.

Aylin Yener, University Park, Pennsyl-
vania, United States: For contributions to 
wireless communication theory and wire-
less information security.

Moti Yung, New York, New York, United 
States: For contributions to cryptography. 

Wei Zhang, Sydney, Australia: For contri-
butions to cognitive radio communications. 

Haitao Zheng, Santa Barbara, Califor-
nia, United States: For contributions to 
dynamic spectrum access and cognitive 
radio networks.

2014 IEEE SPS AWARDS PRESENTED 
IN BRISBANE, AUSTRALIA
The IEEE SPS congratulates the following 
SPS members who will receive the Society’s 
prestigious awards during ICASSP 2015 in 
Brisbane, Australia,  19–24 April 2015.

The Society Award honors outstanding 
technical contributions in a field within 
the scope of the IEEE SPS and outstand-
ing leadership within that field. The Soci-
ety Award comprises a plaque, a certifi-
cate, and a monetary award of US$2,500. 
It is the highest-level award bestowed by 
the IEEE SPS. This year’s recipient is K.J. 
Ray Liu, “for influential technical contri-
butions and profound leadership impact.” 

The IEEE Signal Processing Magazine 
Best Paper Award honors the author(s) of an 
article of exceptional merit and broad inter-
est on a subject related to the Society’s tech-
nical scope and appearing in the Society’s 
magazine. The prize comprises US$500 per 
author (up to a maximum of US$1,500 per 
award) and a certificate. In the event that 
there are more than three authors, the max-
imum prize shall be divided equally among 
all authors and each shall receive a certifi-
cate. This year, the IEEE Signal Processing 
Magazine Best Paper Award recipients are 
Sergios Theodoridis, Konstantinos Slavakis, 
and Isao Yamada for their article “Adaptive 
Learning in a World of Projections: A Unify-
ing Framework for Linear and Nonlinear 
Classification and Regression Tasks,” pub-
lished in IEEE Signal Processing Magazine,
vol. 28, no. 1, Jan. 2011.

The IEEE Signal Processing Magazine 
Best Column Award honors the author(s) 
of a column of exceptional merit and broad 
interest on a subject related to the Soci-
ety’s technical scope and appearing in the 
Society’s magazine. The prize shall consist 
of US$500 per author (up to a maximum 
of US$1,500 per award) and a certificate. In 
the event that there are more than three 
authors, the maximum prize shall be di-
vided equally among all authors and each 
shall receive a certificate. This year, the 
IEEE Signal Processing Magazine Best 
Column Award recipients are Göran 
Bergqvist and Erik G. Larsson for their ar-
ticle “The Higher-Order Singular Value 
Decomposition: Theory and an Applica-
tion,” published in IEEE Signal Processing 
Magazine, vol. 27, no. 3, May 2010.

Two Technical Achievement Awards 
will be presented this year. Moeness G. 
Amin will receive the award “for funda-
mental contributions to signal processing 
algorithms for communications, satellite 
navigations, and radar imaging.” Richard 
G. Baraniuk will be recognized “for con-
tributions to the theory and applications 
of sparsity and compressive sensing.” The 
Technical Achievement Award honors a 
person who, over a period of years, has 
made outstanding technical contribu-
tions to theory and/or practice in techni-
cal areas within the scope of the Society, 
as demonstrated by publications, patents, 
or recognized impact on this field. The 
prize for the award is US$1,500, a plaque, 
and a certificate.

The Meritorious Service Award is pre-
sented this year to V. John Mathews “for 
exemplary service to and leadership in the 
IEEE Signal Processing Society.” The 
award comprises a plaque and a certificate; 
judging is based on dedication, effort, and 
contributions to the Society.

The SPS Education Award honors ed-
ucators who have made pioneering and 
significant contributions to signal pro-
cessing education. Judging is based on a 
career of meritorious achievement in sig-
nal processing education as exemplified 
by writing of scholarly books and texts, 
course materials, and papers on educa-
tion; inspirational and innovative teach-
ing; and creativity in the development of 
new curricula and methodology. The 
award comprises a plaque, a monetary 
award of US$1,500, and a certificate. The 
recipient of the SPS Education Award is 
Sergios Theodoridis, “for sustained con-
tributions to education in the area of ma-
chine learning for signal processing.”

The Sustained Impact Paper Award 
honors the author(s) of a journal article of 
broad interest that has had sustained im-
pact over many years on a subject related 
to the Society’s technical scope. The prize 
consists of US$500 per author (up to a 
maximum of US$1,500 per award) and a 
certificate. In the event that there are 
more than three authors, the maximum 
prize shall be divided equally among all 
authors and each shall receive a certifi-
cate. To be eligible for consideration, a pa-
per must have appeared in one of the 
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IEEE SPS transactions or IEEE Journal of 
Selected Topics in Signal Processing, in 
an issue predating the Spring Awards 
Board meeting by at least ten years (typi-
cally held in conjunction with ICASSP). 
The recipients of the first Sustained Im-
pact Paper Award are:

■ Stephane G. Mallat and Zhifeng 
Zhang, “Matching Pursuits with Time-
Frequency Dictionaries,” IEEE Trans-
actions on Signal Processing, vol. 41, 
no. 12, Dec. 1993. 
Six Best Paper Awards will be awarded, 

honoring the author(s) of a paper of ex-
ceptional merit dealing with a subject re-
lated to the Society’s technical scope and 
appearing in one of the Society’s transac-
tions, irrespective of the author’s age. The 
prize is US$500 per author (up to a maxi-
mum of US$1,500 per award) and a certifi-
cate. Eligibility is based on a five-year win-
dow preceding the year of election, and 
judging is based on general quality, origi-
nality, subject matter, and timeliness. Up 
to six Best Paper Awards may be presented 
each year. This year, the awardees are:

■ Namrata Vaswani and Wei Lu, 
“Modified-CS: Modifying Compressive 
Sensing for Problems with Partially 
Known Support,” IEEE Transactions 
on Signal Processing, vol. 58, no. 9, 
Sept. 2010. 
■ Hiroshi Sawada, Shoko Araki, and 
Shoji Makino, “Underdetermined 
Convolutive Blind Source Separation 
via Frequency Bin-Wise Clustering 
and Permutation Alignment,” IEEE 
Transactions on Audio, Speech, and 
Language Processing, vol. 19, no. 3, 
Mar. 2011.
■ Alexey Ozerov and Cédric Févotte, 
“Multichannel Nonnegative Matrix 
Factorization in Convolutive Mixtures 
for Audio Source Separation,” IEEE 
Transactions on Audio, Speech, and 
Language Processing, vol. 18, no. 3, 
Mar. 2010.
■ Stefania Sardellitti, Massimiliano 
Giona, and Sergio Barbarossa, “Fast 
Distributed Average Consensus Algo-
rithms Based on Advection-Diffusion 
Processes,” IEEE Transactions on Sig-
nal Processing, vol. 58, no. 2, Feb. 2010. 
■ Federico S. Cattivelli and Ali H. 
Sayed, “Diffusion LMS Strategies for 

Distributed Estimation,” IEEE Trans-
actions on Signal Processing, vol. 58, 
no. 3, Mar. 2010.
■ Rony Ferzli and Lina J. Karam, “A 
No-Reference Objective Image Sharp-
ness Metric Based on the Notion of 
Just Noticeable Blur (JNB),” IEEE 
Transactions on Image Processing,
vol. 18, no. 4, Apr. 2009.
The Young Author Best Paper Award 

honors the author(s) of an especially meri-
torious paper dealing with a subject relat-
ed to the Society’s technical scope and ap-
pearing in one of the Society’s transactions 
and who, upon date of submission of the 
paper, is fewer than 30 years of age. The 
prize is US$500 per author (up to a maxi-
mum of US$1,500 per award) and a certifi-
cate. Eligibility is based on a three-year 
window preceding the year of election, and 
judging is based on general quality, origi-
nality, subject matter, and timeliness. Five 
Young Author Best Paper Awards are being 
presented this year:

■ Tomáš Filler and Jan Judas, for the 
paper coauthored with Jessica Frid-
rich, “Minimizing Additive Distortion 
in Steganography Using Syndrome-
Trellis Codes,” IEEE Transactions on 
Information Forensics and Security,
vol. 6, no. 3, Sept. 2011.
■ Jort F. Gemmeke, for the paper co-
authored with Tuomas Virtanen and 
Antti Hurmalainen, “Exemplar-Based 
Sparse Representations for Noise Ro-
bust Automatic Speech Recognition,”
IEEE Transactions on Audio, Speech, 
and Language Processing, vol. 19, no. 7, 
Sept. 2011. 
■ Daniele Giacobello, for the paper co-
authored with Mads Græsbøll Chris-
tensen, Manohar N. Murthi, Søren 
Holdt Jensen, and Marc Moonen, 
“Sparse Linear Prediction and Its Ap-
plications to Speech Processing,” IEEE 
Transactions on Audio, Speech, and 
Language Processing, vol. 20, no. 5, 
July 2012. 
■ Tiangao Gou and Chenwei Wang, 
for the paper coauthored with Syed A. 
Jafar, “Aiming Perfectly in the Dark-
Blind Interference Alignment Through 
Staggered Antenna Switching,” IEEE 
Transactions on Signal Processing,
vol. 59, no. 6, June 2011. 

■ Meisam Razaviyayn, for the paper 
coauthored with Gennady Lyubeznik 
and Zhi-Quan Luo, “On the Degrees 
of Freedom Achievable Through In-
terference Alignment in a MIMO In-
terference Channel,” IEEE Transac-
tions on Signal Processing, vol. 60, 
no. 2, Feb. 2012. 
The IEEE Signal Processing Letters 

Best Paper Award honors the author(s) of 
a letter article of exceptional merit and 
broad interest on a subject related to the 
Society’s technical scope and appearing in 
IEEE Signal Processing Letters. The prize 
shall consist of US$500 per author (up to a 
maximum of US$1,500 per award) and a 
certificate. To be eligible for consideration, 
an article must have appeared in IEEE 
Signal Processing Letters in an issue pre-
dating the Spring Awards Board meeting 
by five years (typically held in conjunction 
with ICASSP). Judging shall be on the ba-
sis of the technical novelty, the research 
significance of the work, quality, and effec-
tiveness in presenting subjects in an area 
of high impact to the Society’s members. 
The recipients of the IEEE Signal Process-
ing Letters Best Paper Award are

■ Emanuël A.P. Habets, Sharon Gan-
not, and Israel Cohen, “Late Rever-
berant Spectral Variance Estimation 
Based on a Statistical Model,” IEEE 
Signal Processing Letters, vol. 16, 
no. 9, Sept. 2009. 

2014 CHAPTER OF THE YEAR AWARD
The IEEE SPS Malaysia Chapter has been 
selected as the fourth recipient of the 2014 
Chapter of the Year Award. The award is 
presented annually to a Chapter that has 
provided its membership with the highest 
quality of programs, activities, and ser-
vices. The SPS Malaysia Chapter will 
receive a certificate and a monetary award 
of US$1,000 to support local Chapter 
activities. The Chapter will publish an arti-
cle in a future issue of IEEE Inside Signal 
Processing e-Newsletter.

SPS MEMBERS RECEIVE
2015 IEEE AWARDS
The following SPS members will receive 
2015 IEEE Technical Field Awards. 

(continued on page 15)
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Signal Processing Drives a Medical Sensor Revolution

S
ensor technology’s impact on 
health care is growing rapidly. 
New applications are appearing 
almost daily. Wireless sensors 
are now used in an ever-grow-

ing number ways, such as monitoring glu-
cose levels in diabetics, recording and 
tracking heart irregularities, and diagnos-
ing infectious diseases. Linking sensors to 
mobile phones has made wearable sensors 
a reality, allowing individuals to monitor 
not only chronic diseases but also their 
lifestyle activities.

“There’s a lot happening in health 
monitoring,” says Andreas Spanias, a pro-
fessor in the Arizona State University 
School of Electrical, Computer, and Ener-
gy Engineering. “Integrated sensors, on 
mobile phones, for example, can monitor 
vital signs, such as heart rates, breathing 
activity, oxygenation, and blood pressure,” 
says Spanias, who is also the founder and 
director of the university’s Sensor Signal 
and Information Processing (SenSIP) Cen-
ter, a National Science Foundation (NSF) 
Industry and University Cooperative Re-
search Center (NSF/UCRC).

Spanias says that signal processing is 
essential to optimal sensor operation and 
performance. “Our industry collaborators 
build inexpensive sensors, and signal pro-
cessing improves precision and event de-
tection using machine learning and 
fusion,” he notes. “Even if the data is noisy 
or contains artifacts, signal processing can 
reduce noise effects. Signal processing al-
gorithms, for example, will make wireless 
health monitoring more accurate and reli-
able. Signal processing makes it possible to 
use data from several sensors and combine 
the information appropriately to maximize 
the probability of correct detection.”

Signal processing algorithms are 
likely to become even more essential to 
wireless health-care sensor development 
in the years to come. The technology is 
now entering a new phase made possible 
by the development of microscopic
nanosensors and nanorobots designed 
for insertion into bodily tissues and the 
bloodstream. “With so many sensors in 
the body, and the large volumes of data 
they will be transmitting, how do you 
fish out the information that you need?” 
Spanias asks. “Signal processing and bio-

medical informatics will have a big role 
in that area, and algorithms will enable 
reliable prediction of disease and incen-
tivize healthy lifestyles.”

INTRABODY NETWORKS
A system of wirelessly networked intra-
body sensors and actuators could lead to 
revolutionary new applications in health-
care monitoring, potentially creating in-
novative approaches to the treatment of 
an almost endless number of diseases, 
both major and minor. Yet an important 
obstacle to the development of reliable 
intrabody sensor/actuator networks is the 
fact that most health-care sensor net-
work research to date has focused on 
communication along the body surface 
via devices linked through traditional 

electromagnetic radio-frequency (RF) 
transmissions. Such technology has sig-
nificant limitations for intrabody system 
developers, however, due to the physical 
nature of propagation within the human 
body, which is composed primarily of wa-
ter, a medium through which RF electro-
magnetic waves do not easily propagate. 

Researchers at Northeastern Univer-
sity in Boston, in collaboration with re-
searchers at the University of Catania 
and the Sapienza University of Rome, are 
hoping that by taking a novel approach 
to wireless sensor communication—ul-
trasonic networking technology—they 
can make intrabody sensors and actua-
tors an accurate and reliable technology.

The researchers are currently pursuing 
a closed-loop combination of mathemat-
ical modeling, simulation, and experi-
mental evaluation to determine the 
practicality of using ultrasonic network-
ing in human tissues. “A major chal-
lenge is creating a waveform that’s 
resistant to the effects of multipath and 
scattering,” says team member Tommaso 
Melodia, an associate professor in North-
eastern University’s Department of Elec-
trical and Computer Engineering.

The magnitude and direction of a re-
flected wave depends on the orientation 
of the boundary surface as well as on the 
acoustic impedance of the tissue. Scat-
tered reflections happen whenever an 
acoustic wave encounters an object that’s 
relatively small in relation to its wave-
length or meets a tissue with an irregular 
surface. “At the receiver, basically, you re-
ceive a combination of multiple replicas 
of the same signal,” Melodia says. “You 
have to create a receiver that can differ-
entiate between these various signals; it 
basically needs to be able to record the 
original signal from multiple replicas 
that it’s receiving.”

LINKING SENSORS TO 
MOBILE PHONES HAS

MADE WEARABLE SENSORS
A REALITY, ALLOWING 

INDIVIDUALS TO MONITOR
NOT ONLY CHRONIC 

DISEASES, BUT ALSO THEIR
LIFESTYLE ACTIVITIES.
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Signal processing is also essential for 
creating receivers that can cope with an 
onslaught of data coming in from large 
numbers of ultrasonic sensors floating 
inside a body. “Basically, solving some 
mathematical optimization problems 
gives us the best way to share the chan-
nel between different devices that are try-
ing to transmit at the same time,” 
Melodia explains.

Early in their investigation, the re-
searchers proposed basing their ultra-
sonic intrabody network on ultrasonic 
wideband (UsWB), a relatively new mul-
tipath-resilient physical and medium ac-
cess control (MAC) layer integrated 
protocol. UsWB is the only MAC proto-
col specifically designed for ultrasonic 
intrabody sensor networks, while a wide 
variety of MAC protocols designed for 
traditional RF-based wireless networks 
are currently available. 

According to the researchers, UsWB is 
based on the concept of transmitting short 
carrierless ultrasonic pulses following a 
pseudorandom adaptive time-hopping pat-
tern, featuring a superimposed adaptive 
spreading code. After testing the protocol, 
the researchers were able to show that 
UsWB enables nodes to flexibly trade data 
rate performance for power consumption 
while allowing multiple concurrent  sen-
sors to coexist by dynamically adapting 
their transmission rate to channel and in-
terference conditions. 

Recently, the researchers compared 
the performance of UsWB with a pair of 
existing MAC protocols originally designed 
for use with RF-based wireless networks: 
ALOHA and carrier sense multiple access 
(CSMA). Their tests showed that UsWB 
generally outperforms ALOHA in terms of 
throughput, although CSMA can achieve 
comparable performance under certain 
kinds of setups. Additionally, according to 
the researchers, ALOHA and CSMA both 
exhibit very high packet drop rates com-
pared to UsWB, which always keeps the 
packet drop rate below a given threshold. 
The tests also found that UsWB performs 
better than either ALOHA or CSMA in 
terms of short-term fairness, average 
packet delay, and delay variation. Finally, 
the researchers discovered that CSMA has 
the highest energy consumption per bit, 

due to long idle listening times. UsWB’s 
bit cost, on the other hand, is the lowest 
and can be further reduced by trading 
throughput for energy consumption 
through energy-minimizing rate adapta-
tion, the researchers say.

Testing various intrabody network 
system technologies and configurations 
required creating an environment that 
mimicked real-world conditions. “We 
used some devices known as medical 
phantoms,” Melodia says. For this par-
ticular project, the phantoms were syn-
thetic devices designed to produce the 
basic ultrasound characteristics of real 
tissue. “We’ve used mostly kidneys so 
far,” Melodia says. “We have a synthetic 
kidney that we transmit information 
through” (Figure 1). The next step is 
building a miniaturized prototype of the 
transceiver. “We have a prototype that 
works well, but it’s big,” Melodia says. 
“We want to build a miniaturized plat-
form that will be able to do what we’re 
doing now, but be much smaller and can 
be implantable.  

Melodia predicts that an intrabody 
network system could become available 
for general use within a decade. “It will 
take a lot of work, but that seems like a 
realistic possibility,” he says.

NEURAL RECORDING SENSORS
A research group in the University of 
Bath’s Centre for Advanced Sensor 

Technologies (CAST) is investigating the 
use of implantable devices for electro-
neurogram (ENG) signal recording, po-
tentially increasing the quantity and 
quality of received information. An ENG 
is used to visualize directly recorded 
electrical activity of neurons in the cen-
tral nervous system (brain and spinal 
cord) or the peripheral nervous system.

Reliably collecting neural data is a goal 
that has eluded numerous researchers for 
many years. “Nerves tend to come in bun-
dles of hundreds or thousands and carry 
neural traffic to different destinations to 
and from the central nervous system,” 
says John Taylor, CAST’s head and a pro-
fessor in the University of Bath’s Depart-
ment of Electronic and Electrical 
Engineering. Identifying individual path-
ways and the traffic on them is difficult. 
“Several years ago we invented a tech-
nique called velocity selective recording 
(VSR) that, we believe, goes some way to 
solving this problem,” Taylor continues.

Working with project collaborators, in-
cluding University College London, the 
University of Cambridge, the University of 
Freiburg, and Aalborg University, the Bath 
researchers developed a range of implant-
able electrodes and amplifiers to test a 
technique that Taylor says is essentially a 
simple signal processing concept. 

“Our recording technique provides re-
al-time velocity spectral analysis of ac-
tivity on a nerve,” Taylor says. In practice, 

[FIG1] A synthetic kidney was used in preliminary tests at Northeastern University
to evaluate various ultrasonic communication technologies and configurations. 
(Photo credit: Northeastern University.)
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[special REPORTS]continued

such a nerve might contain hundreds or 
thousands of individual fibers [axons], 
with signals propagating over a wide 
range of velocities (up to 120 m/s in hu-
mans) in both directions. “This (tech-
nique) should be useful because neural 
propagation velocity and fiber diameter 
are generally related, so an analysis of 
activity by velocity and direction is 
equivalent to knowing the diameters of 
the nerves that are excited at that time,” 
Taylor says. “Anatomy then allows us to 
link this to function.”

In the future, Taylor says these func-
tion-specific signals might be used to de-
sign systems for controlling neuropros-
thetic devices, such as providing a neural 
stimulator with a feedback loop for blad-
der control to treat urinary incontinence. 
“Currently available methods to provide 
the information we seek tend to rely on 
fairly classical pattern processing meth-
ods, such as clustering and principal com-
ponent analysis under the generic title of 
‘spike sorting’,” Taylor says. Such methods 
tend to be computationally intensive and 
therefore unattractive for implantation. 
“In addition, some form of training is gen-
erally required and may be impossible or 

impracticable,” he adds. By contrast the 
signal processing required for VSR is com-
putationally simple, power efficient and 
lends itself to real-time working.

Taylor says that signal processing is a 
key building block in the group’s research. 
“This is because surgical considerations 
impose strict limits on the size and com-
plexity of our implanted devices and hence 
on the sensitivity and resolution of our ba-
sic signal acquisition capability,” he ex-
plains. “Signal processing can compensate 
for this and is used wherever possible for 
filtering noise, performing spectral analy-
sis of waveforms, and ultimately for decod-
ing the impulses that we record from the 
nervous system.”

According to Taylor, VSR requires 
multiple samples of the composite prop-
agating neural signal. Such samples are 
typically provided by a multielectrode 
cuff (MEC) placed around the nerve 
(Figure 2). The MEC, which is an insu-
lating cuff typically 2–3 cm in length 
and containing 10–12 electrodes, is an 
extension of the traditional tripolar type 
of nerve cuff that has been implanted in 
many patients successfully for several 
decades, Taylor says.

The samples are identical but delayed 
by a period that depends on both the cuff 
geometry and the propagation velocity of 
the signal. To construct the velocity spec-
trum from this data an operation called 
“delay-and-add” is applied. The operation 
adds artificial delays that cancel the natu-
ral delays in each channel before finally 
adding all the signals together. “When the 
artificial delays are equal to the naturally-
occurring ones, the spectral output passes 
through a peak (local maximum) indicat-
ing the presence of an excited population 
of axons at that velocity,” Taylor says. “This 
is the simplest approach to VSR and the 
resulting spectrum is called the intrinsic 
velocity spectrum (IVS).” The method, he 
notes, is closely related to various beam-
forming algorithms employed in radio and 
radar antenna systems. 

Unfortunately the method achieves rel-
atively poor velocity selectivity, Taylor 
says. It has particular difficulty in distin-
guishing closely spaced velocity peaks. 
Various additional techniques have been 
developed to improve the velocity selectiv-
ity including the use of bandpass filters 
and time delay neural networks (TDNNs), 
Taylor explains.

One of the biggest limitations inherent 
in existing neural signal processors is the 
requirement to build complex statistical 
models. “These models are not only com-
putationally expensive to produce but also 
require a good deal of time to ‘learn’ as 
they become patient-specific,” Taylor says. 
“To overcome these limitations we consid-
ered an entirely different signal processing 
approach, based on conduction velocity 
instead of pattern shape.”

Noise poses another challenge. “The 
signals we record are from biological 
sources and so are often very noisy,” Tay-
lor remarks. “It is not uncommon for the 
signal-to-noise ratio (SNR) to be less than 
0 dB, and so innovative methods must be 
developed to extract information.” Cou-
pled with the requirements for real-time 
operation and good long-term stability, 
the challenges are not insignificant.

Recording neural activity from an in-
tact nerve represents another highly chal-
lenging task, due to the poorly understood 
nature of the electrode-tissue interface 
and the associated problems of handling 

[FIG2] A multielectrode nerve cuff used for velocity-selective recordings made by Martin 
Schuettler, a senior scientist at the University of Freiburg and chief technology officer 
of CorTek, a Freiuburg, Germany-based developer of a neurotechnological platform for 
measuring and stimulating of brain activity. (Photo credit: Martin Schuettler.)
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very small signals. “We have worked ex-
tensively to improve electrode and amplifi-
er designs so as to stabilize the electrode 
characteristics and maximize the possible 
recorded SNR,” Taylor says.

Taylor notes that the group’s signal 
processing algorithms are still incomplete. 
“So far, we have been recording and ana-
lyzing electrically evoked ENG—neural 
signals produced by electrical stimula-
tion,” he says. “This is an interesting and 
useful exercise, but is an approximation in 
several ways to natural neural recording.”

According to Taylor, the amplitude and 
SNR of the recorded signals are much 
larger than in comparable natural signals. 
Additionally, information such as pressure 
or joint angle are encoded in neural firing 
rates, so identifying the source and direc-
tion of a neural signal is only part of the 
overall package necessary to create a com-
plete recording system.

“The impulses generated by electrical 
stimulation—compound action potentials 
(CAPs)—are synchronized to the stimulat-
ing pulse, so their arrival times are predict-
able,” Taylor says. “The signal processing 
algorithms required to interpret them are, 
therefore, essentially time invariant and 
therefore relatively simple.” Taylor notes 

that the researchers have recently begun 
modifying their VSR algorithms to include 
time dependence, including the ability to 
identify not just the velocity and direction 
of neural traffic but also the number of im-
pulses in a particular velocity band arriving 

per second. “This has required the inclu-
sion of statistical methods in our algo-
rithms that we refer to as velocity spectral 
density (VSD),” he says.

The researchers are now looking to 
extend their work, which to date has in-
cluded only single acute experiments, to 
extensive long-term chronic studies in 
nonhuman models. “To achieve this, we 
must overcome the surgical, mechani-
cal, and electrical challenges that are 

associated with long-term implantation of 
electronic devices,” Taylor says. “New 
methods will need to be devised to handle 
communications and power concerns.”

Since the project is still in a develop-
mental stage, seeking commercial interest 
would be premature, Taylor says. “Howev-
er we have good links with the United 
Kingdom’s largest commercial manufac-
turer of implanted medical devices, indeed 
the only company licensed to produce im-
plantable electronics in this country, and 
they are aware of and interested in our 
project,” he says. “However, before giving 
it to a company for development, we have 
still to prove conclusively that VSR is clin-
ically useful.”

Yet Taylor is optimistic that the re-
search will ultimately lead to a widely used 
medical technology. “We have tested the 
method in animals, and our results are 
quite promising so far, although we feel we 
are still a long way from a human implant 
that could be generally adopted,” he says.

AUTHOR
John Edwards (jedwards@johnedwardsme-
dia.com) is a technology writer based in the 
Phoenix, Arizona, area.

[SP]

[society NEWS] (continued from page 11)

The IEEE James L. Flanagan Speech 
and Audio Processing Award will be present-
ed to Stephen John Young “for pioneering 
contributions to the theory and practice of 
automatic speech recognition and statistical 
spoken dialogue systems.” This award was 
founded and is sponsored by the IEEE SPS.

The IEEE Fourier Award for Signal 
Processing will be presented to Georgios 
B. Giannakis “for contributions to the 
theory and practice of statistical signal 
processing and its applications to wireless 
communications.”

The IEEE Donald O. Pederson Award in 
Solid-State Circuits will be presented to 
Robert Whitlock Adams “for contributions 

to noise-shaping data converter circuits, 
digital signal processing, and log-domain 
analog filters.” 

 IEEE medals are the highest honor of 
awards presented by the IEEE. The med-
als will be presented at the 2015 IEEE 
Honors Ceremony at ICASSP in Brisbane, 
Australia. Three SPS members were 
awarded with IEEE medals for 2015:

The IEEE Edison Medal recognizes a 
career of meritorious achievement in 
electrical science, electrical engineering, 
or the electrical arts. James Julius Spilker 
will be honored “for contributions to the 
technology and implementation of civil-
ian GPS navigation systems.”

The IEEE Jack S. Kilby Signal Process-
ing Medal, awarded for outstanding 
achievements in signal processing, was 
presented to Harry L. Van Trees “for fun-
damental contributions to detections, esti-
mation, and modulation theory; sensor 
array processing; and Bayesian bounds.”

The IEEE James H. Mulligan, Jr. Edu-
cation Medal, distributed for a career of 
outstanding contributions to education in 
the fields of interest of the IEEE, was 
awarded to Richard Gordon Baraniuk “for 
fundamental contributions to open edu-
cational resources for electrical engineer-
ing and beyond.”

[SP]

THE RESEARCHERS
ARE NOW LOOKING 

TO EXTEND THEIR WORK, 
WHICH TO DATE HAS

INCLUDED ONLY SINGLE 
ACUTE EXPERIMENTS, TO 
EXTENSIVE LONG-TERM

CHRONIC STUDIES IN 
NONHUMAN MODELS.
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Signal Processing Techniques for Assisted Listening

N
atural hearing is a desirable 
goal in many electronic 
communication applica-
tions, such as hearing aids, 
audio conferencing, gaming, 

and virtual reality applications. The era of 
low-power, high-complexity electronics 
supports the implementation of computa-
tionally complex algorithms as needed to 
provide a more natural listening environ-
ment for the advanced augmentation of 
virtual reality and natural content.

As such, assisted listening techniques 
provide the means to communicate audio 
information from devices to human listen-
ers. The main objective is to provide the 
user with a listening experience through 
the device that resembles natural hearing 
of the sound information. Prominent ap-
plications include virtual augmented au-
dio, hearing aids, and cochlear implants. 
But the same techniques are also applica-
ble in other communication applications 
such as monaural voice communication, 
where additional spatial information can 
greatly enhance the listening experience. 
In the realm of hearing aids, current de-
vices aim to be more natural both for the 
hearing impaired and profoundly deaf by 
using new processing techniques. They 
even promise to enhance the listening ex-
perience of so-called normal hearing us-
ers. Along with increasingly affordable and 
growing computer power, a large variety 
of elaborate algorithms for overlayed au-
dio or so-called augmented audio continu-
ously strive toward new applications in 
gaming and telepresence to provide a “be-
ing there” experience. 

The articles in this special issue of 
IEEE Signal Processing Magazine (SPM)
focus on three main aspects of signal 

processing in this domain: audio en-
hancement, presentation/rendering, and 
evaluation. To limit the scope in this spe-
cial issue, machine-learning techniques 
have been excluded. While it is under-
stood that future systems for assisted lis-
tening will greatly be influenced by 

machine-learning-based algorithms, an-
other special issue dedicated to this de-
velopment can already be envisioned.

Audio signal enhancement, particular-
ly of speech signals, has a long research 
tradition and still dominates the scene, 
and, consequently, is also the main topic 
of this special issue. Techniques for sin-
gle-channel and multichannel signal en-
hancement techniques play a preeminent 
role in telecommunication, hearing aids, 
and augmented headsets. Accordingly, 
fundamental problems and state-of-the-
art techniques are presented in the article 
“Multichannel Signal Enhancement Algo-
rithms for Assisted Listening Devices” by 
Doclo et al. Beyond the description of the 
generic algorithms, this article emphasiz-
es the specific problems and solutions for 
hearing aids and headsets addressing both 
the signal acquisition and the binaural 
rendering aspect. 

As a special technique for capturing and 
describing the spatial information relevant 

for assisted listening, multichannel tech-
niques that estimate the direct path infor-
mation and suppress a combination of 
reverberation and diffuse noise are provid-
ed in the article “Parametric Spatial Sound 
Processing” by Kowalczyk et al.  

Two articles provide overviews on high-
ly relevant aspects of single-channel en-
hancement techniques: “Optimizing 
Speech Intelligibility in a Noisy Environ-
ment” by Kleijn et al. focuses on techniques 
for improving speech intelligibility using 
perceptual criteria and auditory modeling, 
and “Phase Processing for Single-Channel 
Speech Enhancement” by Gerkmann et al. 
provides a survey of techniques that utilize 
both amplitude and phase information for 
speech enhancement.

Processing and coding signals for cochle-
ar implants is addressed in the article “Sound 
Coding in Cochlear Implants” by Wouters 
et al. This article describes signal processing 
techniques used in cochlear implants to 
map the information extracted from an au-
dio signal onto cochlea excitation that a 
profoundly deaf person can understand.

Rendering of audio aims at providing 
an immersive, undisturbed listening expe-
rience for recorded information via loud-
speakers or headsets with typical applica-
tions demanding high-quality sound 
reproduction, such as, e.g., home theaters, 
gaming, or telepresence systems. Betlehem 
et al. provide an overview of techniques to 
deliver audio information to multiple lis-
teners via loudspeakers in their article 
“Personal Sound Zones.” These techniques 
also have applications in providing audio in 
public areas without disturbing the sur-
roundings. Then the natural sound in the 
environment is augmented by the rendered 
audio. A similar concept to augment out-
side information using personal headsets is 
presented by Välimäki et al. in “Assisted 
Listening Using a Headset,” which also 
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THE MAIN OBJECTIVE 
OF ASSISTED LISTENING 

TECHNIQUES IS TO 
PROVIDE THE USER 
WITH A LISTENING 

EXPERIENCE THROUGH 
THE DEVICE THAT

RESEMBLES NATURAL
HEARING OF THE SOUND 

INFORMATION.
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reviews audio enhancement techniques for 
music listening in a noisy environment. A 
third article in this area, “Natural Sound 
Rendering for Headphones,” by Sunder et 
al., is an overview of techniques for render-
ing via headsets for applications in three-
dimensional audio. 

Finding methods for the evaluation and 
prediction of speech and audio quality is a 
central task for anyone working in audio 
signal processing. As subjective evaluations 
are resource intense and time consuming, 
it is highly desirable to find objective meth-
ods that closely match subjective measures. 
Objective methods provide instant feedback 
and results become reproducible. In their 
article “Objective Quality and Intelligibility 

Prediction for Users of Assistive Listening 
Devices,” Falk et al. provide an overview of 
algorithms for objective quality and intelli-
gibility evaluation for hearing aids and co-
chlear implants.

We sincerely thank all of the au-
thors for their high-quality contribu-
tions and are grateful for the reviewers 
for their invaluable help in selecting 
and improving the articles in this spe-
cial issue. We also thank Fulvio Gini, 
special issues area editor, and Abdelhak 
Zoubir, SPM’s past-editor-in-chief, for 
their constant support, patience, and 
guidance in the process of outlining, 
soliciting, and reviewing the selected 
articles. Our appreciation also goes to 
Rebecca Wollman for her administra-
tive guidance in the process.

We hope that you will find this special 
issue useful and inspiring for your work!  

[SP]

AUDIO SIGNAL
ENHANCEMENT, 

PARTICULARLY OF 
SPEECH SIGNALS, HAS

A LONG RESEARCH 
TRADITION AND STILL

DOMINATES THE SCENE, 
AND, CONSEQUENTLY, IS
ALSO THE MAIN TOPIC 
OF THIS SPECIAL ISSUE.
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I
n everyday environments, we are frequently immersed by 
unwanted acoustic noise and interference while we want to 
listen to acoustic signals, most often speech. Technology 
for assisted listening is then desired to increase the effi-
ciency of speech communication, reduce listener fatigue, 

or just allow for enjoying undisturbed sounds (e.g., music). For 
people with normal hearing, assisted listening devices (ALDs) 
mainly aim to achieve hearing protection or increase listening 
comfort; however, for hearing-impaired individuals, as the 

most prominent user group so far, further progress of assisted 
listening technology is crucial for better inclusion into our 
world of pervasive acoustic communication. 

MOTIVATION
The essential functionality of ALDs comprises three steps (see Fig-
ure 1): acquiring the signals of interest, enhancing desired and 
removing undesired components from the acquired signals, and 
presenting the enhanced signal(s) to the listener. 

Given the acquired microphone signals, the efficiency of such 
devices is largely determined by the performance of the signal pro-
cessing algorithms for signal enhancement and presentation. Con-
sidering that multiple microphones are now common in many 
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listening devices (e.g., hearing aids or mobile phones) and allow to 
exploit the spatial diversity in addition to the spectrotemporal 
diversity, multichannel algorithms appear to be decisive for cur-
rent and future ALDs. Moreover, in contrast to single-microphone 
signal enhancement algorithms, which have not been shown to 
improve speech intelligibility but may reduce, e.g., the listening 
effort, multimicrophone signal enhancement algorithms are capa-
ble of increasing speech intelligibility [1], especially when the 
sound sources have different spatial characteristics. 

Although microphone array signal processing, e.g., for telecon-
ferencing systems, is a well-established field dealing with similar 
problems and signals [2], the problem setting for ALDs exhibits a 
number of distinctive features. First, the microphone placement is 
typically constrained by the fact that the devices should be incon-
spicuously placed at the user’s head and should capture the rele-
vant spatial information of the sound sources. Moreover, while 
all signal enhancement algorithms ideally aim to remove the 
undesired components and leave the desired components undis-
torted, the compromises need to be chosen differently depend-
ing on the application domain: for ALDs, distortion of the 
desired signal or annoying noise artifacts will typically be penal-
ized more than a higher level of residual undistorted noise, and 
the balance between reduced listener fatigue, increased speech 
intelligibility, and subjective quality plays an even greater role 
than in other speech communication devices. Finally, for bin-
aural systems that are expected to dominate the future markets, 
preservation of the critical binaural cues as necessary for a cor-
rect spatial perception is crucial [3], not just for the desired sig-
nal, but also for the residual noise and interferers. 

SCOPE
In this article, we will discuss several algorithms for multimicro-
phone signal enhancement and presentation that are suitable for 
ALDs. The considered acoustic scenario is defined by a single 
source of interest (target source) at any point in time, while mul-
tiple interfering point sources (e.g., competing speakers) and 

additional incoherent noise (e.g., sensor noise, diffuse back-
ground noise) may be active simultaneously (see Figure 2). It is 
assumed that some knowledge is available to distinguish the tar-
get source from the interfering sources once they are sufficiently 
enhanced or separated. Bearing in mind that the wearers of ALDs 
may move their heads, the relative positions of both the target 
source as well as the interfering sources must be considered as 
time-varying, so that source localization and tracking is required. 

The fundamental concept of all considered multimicrophone 
algorithms relies on spatial and/or spectrotemporal diversity, 
i.e., the desired components should be separated from the 
undesired components in the spatial and/or time-frequency 
domain. The algorithms hence correspond to spatial filtering 

[FIG1] The main processing blocks in an ALD.

[FIG2] A scenario with the target source ( ),s t0  point-like 
interferers ( ),s tp  incoherent noise sources, and microphones at 
the user’s head.
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(often termed beamforming) and filtering in the time-frequency 
domain, respectively. In addition to exploiting the statistics of 
the available observations, the optimum filter design should 
also use available prior knowledge, e.g., the estimated or 
assumed position of the target source. This implies that, in this 
article, blind source separation 
(BSS) algorithms [4] are only con-
sidered in forms that allow the 
inclusion of such prior knowledge. 
Aside from some target-related 
knowledge, we assume natural 
unpredictable scenarios that may 
be arbitrarily complex and time-
varying. This implies that the fil-
ters must be estimated from 
currently available observations 
and cannot be learned in advance, 
thus algorithms that are based on trained models (e.g., using 
nonnegative matrix factorization) are not considered in this 
article. In addition, in time-varying environments, the estima-
tion of the spatial and spectrotemporal information from short 
observation intervals is of crucial importance, so we will focus 
on techniques exploiting second-order statistics, keeping the 
variance of the estimated quantities small. 

SIGNAL MODEL
According to the acoustic scenario in Figure 2, we consider P
point sources ( ),s tp  with t  as the discrete time index, in a noise 
field of unknown coherence, which are recorded by an array of 
M  microphones. The target source is denoted by ( ) .s t0  Assum-
ing the acoustic paths between the sources and the micro-
phones to be linear and time-invariant, the mth  microphone 
signal ( )x tm  is given by the convolutive mixing model 

( ) ( ) * ( ) ( ), ,x t h t s t n t m M1,m p m
p

P

p m
0

1

f= + =
=

-

/ (1)

where ( )n tm  denotes the noise component in the mth  micro-
phone signal, ( )h t,p m  is the room impulse response (RIR) 
between the pth  source and the mth  microphone, and *
denotes convolution. Typically, the signals are processed in the 
short-time Fourier transform (STFT) domain, i.e., 

( , ) ( ) ( , ) ( , ), ,x k h k s k n k m M1,m p m
p

P

p m
0

1

f, , ,= + =
=

-

/ (2)

where ( , ), ( , )x k s km p, ,  and ( , )n km ,  denote the STFTs of the 
respective time-domain signals, with ,  representing the frame 

index and k  representing the fre-
quency bin index, and where ( )h k,p m

denotes the acoustic transfer function 
(ATF) between the pth  source and 
the mth  microphone. Note that (2) 
is strictly speaking only valid for 
frames that are significantly longer 
than the RIR length. When this is not 
the case, a convolutive transfer func-
tion model should be used. For con-
ciseness, we omit the dependency on 
the indices k  and ,  in the remainder 

of this article. In vector form, the equation set (2) can be written as 

,s s sx h h n h vp
p

P

p0 0
1

1

0 0= + + = +
=

-

/ (3)

with ,x xx M
T

1 g= 6 @  and n  and h p  defined similarly, and h0

denoting the ATF of the target source. This signal model will 
form the basis for the subsequent description of the main signal 
processing tasks with ALDs, i.e., source localization, signal 
enhancement, and signal presentation. 

SIGNAL ACQUISITION
For ALDs in realistic acoustic environments, the ATFs include 
the microphone characteristics, room acoustics, and filtering 
effects due to the user’s head. The diffraction and reflection 
properties of the user’s head, pinna, and torso are described by 
the so-called head-related transfer function (HRTF), which is 
the frequency- and angle-dependent transfer function between a 
sound source and the user’s ear drum in an anechoic environ-
ment [5]. The pair of left and right HRTFs contain the so-called 
binaural cues of a sound source: the interaural time difference 
(ITD) and the interaural level difference (ILD), which are result-
ing from the time difference of arrival (TDOA) between both 
ears and the acoustic head shadow, respectively. In contrast to 
point sources, the spatial characteristics of incoherent noise can 
not be properly described by the ITD and ILD, but rather by the 
interaural coherence (IC) [5]. Binaural cues play a major role in 
spatial awareness, i.e., for source localization and for determin-
ing the spaciousness of auditory objects, and are important for 
speech intelligibility due to binaural unmasking, e.g., [5]. 

For capturing the relevant spatial information and binaural 
cues of the sound sources, in principle, at least two micro-
phones are required, which are preferably mounted on both 
sides of the head. Ideally, the microphones are placed as close as 
possible to the corresponding loudspeakers that present the sig-
nals to the ear drums to allow the recreation of the authentic 
spatial impression for the listener. In typical ALDs today, two or 
three microphones are available on each side of the head, with 

x1(k, )

x2(k, )

y (k, )

xM (k, )

w1(k, )∗

w2(k, )∗

wM (k, )∗

. .
 . Σ

[FIG3] The filter-and-sum structure.
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spacings ranging from 7 mm to 15 mm. Since the positions of 
the microphones do not coincide with the ear drum, and the 
acoustic path between the loudspeaker and the ear drum differs 
from the HRTF, the overall response of the device should be 
equalized to match the open-ear HRTF [3]. 

SOURCE LOCALIZATION
The objective of source localization is to estimate the position or 
the direction of arrival (DOA) of the target source (and possibly the 
interfering sources), be it for supporting signal extraction or for 
furnishing signal presentation algorithms with spatial 
information. 

SIGNAL EXTRACTION
The main task is to extract from the given recordings an undis-
torted version of the target source while all undesired compo-
nents are suppressed. Two generic approaches can be used to 
achieve this: 

■ One can aim at separating all point sources and then pick 
the target source based on additional knowledge. 
■ One can directly use the additional knowledge to extract 
the target source only.

Intuitively, the second approach promises a lower overall algorith-
mic complexity for a desired performance, as it essentially requires 
only to separate the target source from all other sources, and obvi-
ously avoids the complexity of estimating the potentially large 
number of irrelevant sources in a given acoustic scene. In addi-
tion, the first approach may be limited to setups where the num-
ber of microphones is larger than the number of point sources. 

Signal extraction is typically achieved using a filter-and-sum 
structure, depicted in Figure 3, where each microphone signal xm
is passed through a linear filter w*

m  and the outputs are summed. 
The output signal y  is then given in the STFT domain by 

y w x w x*
m

m

M

m
H

1
= =

=

/ (4)

with .w w ww * * *H
M1 2 f= 6 @  The time-domain output signal 

may then be computed using the inverse STFT. 
While, in principle, additional knowledge may describe source 

characteristics in both the time-frequency domain or the spatial 
domain, in this article we will mainly consider additional know-
ledge in the spatial domain, assuming that the sources are physic-
ally located at different positions. Typical prior spatial knowledge is 
then given by, e.g., the estimated or assumed DOA of the target 
source relative to the head. With this spatial information, we can 
support signal extraction algorithms, e.g., a beamformer pointing 
toward a given DOA or BSS algorithm exploiting the target DOA. 
These algorithms will be covered in more detail in the sections 
“Data-Independent Beamforming” and “Statistically Optimum Sig-
nal Extraction.” 

SIGNAL PRESENTATION
After extracting the target source, the enhanced signal is to be 
presented to the listener, where we need to distinguish between 

monaural and binaural systems. For a monaural ALD, i.e., a sin-
gle device on one ear, it seems obvious to just feed the enhanced 
signal to the loudspeaker of this device. For a binaural ALD, i.e., 
a system jointly considering and processing the microphone 
signals of both ears, different signals can be presented to the left 
and the right ear. This can generate an important binaural 
advantage since the auditory system can exploit binaural cues 
and the signal processing algorithms can use information from 
all microphones on both devices [6, ch. 14]. On the other hand, 
in a bilateral system where both devices work independently, 
this potential is not fully exploited since not all microphone sig-
nals from both devices are combined. To exploit the full poten-
tial of binaural processing, both devices need to cooperate with 
each other and exchange information or signals, e.g., through a 
wireless link. 

Besides signal extraction, a second major task should be 
achieved in binaural ALDs: the auditory impression of the acoustic 
scene, i.e., the spatial perception of the target source, the residual 
interfering sources and noise, should be preserved. This can be 
achieved either by so-called binaural rendering of the monaural 
output signal of the signal extraction algorithm, or by directly 
incorporating the desired binaural cues into the spatial filter 
design. These algorithms will be covered in more detail in the sec-
tion “Presentation of the Enhanced Signals.”

SOURCE LOCALIZATION
In principle, any source localization algorithm that can handle 
multiple nonstationary wideband sources can be used for ALDs [6, 
ch. 6]. This includes direct methods based on steered-response 
power (SRP) [2, ch. 8] or subspace methods [Multiple Signal Clas-
sification (MUSIC)] [7] and the large and popular class of indirect 
two-step methods based on TDOA estimation and a subsequent 
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[FIG4] TDOAs for different azimuthal directions i (0° = front, 
180° = back) based on free-field assumption, measured HRTFs 
and two head models, respectively.
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geometric inference of the source position. The latter class com-
prises cross-correlation-based [8] and cross-relation-based algo-
rithms, e.g., [9] and [10]. 

The main difference of using these algorithms for ALDs com-
pared to their conventional use results from the fact that the 
microphones are typically mounted close to the user’s head. 
Therefore, the propagation paths of a point source to the different 
microphones can not be simply modeled by the free-field TDOA, 
but the filtering effects of the head should be taken into account. 
As HRTFs vary between individuals, the results produced by 
source localization algorithms will always suffer from some 
uncertainty if the individual HRTFs and the microphone topology 
are not exactly known. This is especially true for binaural sys-
tems, where the relative microphone positions are user depend-
ent and not fixed. However, useful approximations can be 
employed, which are, e.g., based on 
spherical head models [11] or meas-
ured HRTFs. The TDOAs for different 
source directions based on the free-
field assumption, measured HRTFs, 
and typical head models is depicted 
in Figure 4. Alternatively, for bin-
aural systems, computational audi-
tory  scene analys is  (CASA) 
algorithms [12] can be used for local-
izing multiple sources, e.g., incorporating a probabilistic model of 
the binaural ILD and ITD cues [13].

Given the microphone topology, cross-correlation-based algo-
rithms such as the generalized cross-correlation with phase trans-
form (GCC-PHAT) [8] can be used to localize a single source for 
ALDs when the head filtering effects are taken into account. How-
ever, when multiple sound sources are present, identifying the 
correct source-specific TDOAs typically becomes very difficult [14]. 
Generalizations of the GCC, such as SRP-PHAT [2, ch. 8], coher-
ently add up signals originating from a certain point in space to 
estimate the source likelihood at this position. While conceptually 
suited for an arbitrary number of microphones and sources, they 
involve considerable computational complexity for sufficient spa-
tial resolution and are inherently sensitive to reverberation.

More general cross-relation-based algorithms, e.g., [9] and 
[10], aim at system identification via cross-relation and are natur-
ally suited for identifying relative head-related impulse responses 
(HRIRs) from the source to the different microphones, delivering 
TDOA information as long as the direct path can be detected in the 
identified relative impulse responses. While the adaptive eigen-
value decomposition method in [9] is able to identify relative 
HRIRs only for a single source while exploiting nonstationarity, 
the BSS-based method in [10] can robustly localize multiple 
sources even in noisy and moderately reverberant environments. 

Finally, subspace-based source localization algorithms such 
as MUSIC [7] are in principle also suitable for arbitrary numbers 
of microphones and sources (assuming the number of sources 
is known). As they essentially estimate the source positions 
using the eigenvectors corresponding to the largest eigenvalues 
of a spatial covariance matrix, the estimates for this covariance 

matrix must be sufficiently reliable for every frequency bin. 
Since subspace-based algorithms are separating the signal and 
noise subspace, where the noise needs to be white or whitened, 
this is typically difficult to achieve for wideband nonstationary 
sources in time-varying environments where only short obser-
vation intervals can be considered. 

DATA-INDEPENDENT BEAMFORMING
A simple but popular way for enhancing the target source in 
ALDs is data-independent beamforming, where the filters w  in 
(4) are designed to enhance sources arriving from the (estimated 
or assumed) target DOA and suppress sources not arriving from 
this DOA, but do not account for the statistics of the microphone 
signals. Various data-independent beamformers include delay-
and-sum beamformers and superdirective or differential beam-

formers [2, ch. 2], [15]. For the 
design of such beamformers, the 
target DOA and the complete micro-
phone topology need to be known. 
Data-independent beamformers 
have mainly been used for monaural 
devices [16], where robustness 
against microphone mismatch is 
crucial due to the closely spaced 
microphones [17], [18]. For bin-

aural devices, data-independent beamformers have also been pro-
posed, which, however, suffer from spatial aliasing due to the 
distance between the microphones and require consideration of 
the head filtering effects, e.g., [19]. 

STATISTICALLY OPTIMUM SIGNAL EXTRACTION
In contrast to data-independent beamformers, data-dependent sig-
nal enhancement methods exploit both the spectrotemporal as 
well as the spatial information of the microphone signals to extract 
the target source s0  (or a filtered version of it) from all interferers 
and noise [20], possibly equalizing the reverberation effect caused 
by the ATFs’ .h0  Since the filters adapt to the current statistics of 
the typically nonstationary signals, this will be treated as an opti-
mum multichannel filtering problem in the sequel. 

Relying on estimates of either the interference and noise statis-
tics or the target source statistics, two main classes of supervised 
optimum multichannel filtering will be discussed in the sections 
“Minimum Variance Distortionless Response Beamformer” and 
“Multichannel Wiener Filtering.” In addition, BSS algorithms, in 
particular the variants exploiting target-related prior information 
for constraining the optimization problem to explicitly separate 
the target source, will be considered in the section “Blind Source 
Separation.” Techniques for estimating the required second-order 
statistics will be presented in the section “Estimation of Interfer-
ence and Noise Statistics.”

MINIMUM VARIANCE DISTORTIONLESS
RESPONSE BEAMFORMER
The minimum variance distortionless response (MVDR) beam-
former is a special case of a linearly constrained minimum 

THE FUNDAMENTAL
CONCEPT OF ALL CONSIDERED

MULTIMICROPHONE 
ALGORITHMS RELIES ON SPATIAL

AND/OR SPECTROTEMPORAL
DIVERSITY.
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variance (LCMV) beamformer [20], [21], where the power of the 
output signal is minimized subject to a single constraint assuring 
an undistorted response for the target source (or a filtered version 
of it). Different versions of the MVDR beamformer exist, either 
using the complete target ATF, the direct path of the ATF, or the 
relative transfer functions (RTFs). In practice, the MVDR beam-
former is often implemented using a so-called generalized sidelobe 
canceler (GSC) structure [22]–[25]. 

DERIVATION OF THE MVDR BEAMFORMER
The power spectral density (PSD) of the filter-and-sum beam-
former output signal y  is given by 

{ } { } ,E y E w xx w w wH H H2
xxU= = (5)

where { }E xxHxxU =
9  denotes the crosspower spectral density 

matrix of the observed microphone signals. The distortionless 
response constraint requires that the desired component in the 
output signal ys0  is equal to the target signal ,s0  i.e., 

.y s sw h
!

s
H

0 0 00 = = (6)

Hence, by solving the constrained minimization problem 

, ,min 1subject tow w w hH H
0w xxU = (7)

we obtain the MVDR filter [20], [21] 

.w
h h

h
H
0

1
0

1
0

MVDR
xx

xx

U
U= -

-

(8)

By assuming the target source, the interfering sources and the 
noise to be mutually uncorrelated and of zero mean, the 
crosspower spectral density matrix xxU  can be written using (3) as 

,h hs s
H

0 0xx vv0 0z UU = + (9)

where { }E vvHvvU =
9  denotes the crosspower spectral density 

matrix of the interference and noise components and 
.{| | }E ss s 0

2
0 0z =  Using (9), it can be shown that the MVDR filter 

in (8) can be written as [20] 

.w
h h

h
H
0

1
0

1
0

MVDR
vv

vv

U

U
=

-

-

(10)

As can be seen, the MVDR filter is solely determined by the 
crosspower spectral density matrix of the observations and the 
ATFs .h0  However, due to the high order and the typically time-
varying nature of the corresponding RIRs ( ),h t,m0  blindly iden-
tifying these impulse responses is generally difficult if at all 
possible. Hence, instead of using the complete RIRs, one can 
consider only the direct path of the RIRs (corresponding to the 
free-field HRIR for the estimated or assumed target DOA), 
which may, however, lead to target signal distortion, or one can 
use the so-called RTFs. 
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[FIG5] The GSC implementation of an MVDR beamformer
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MVDR USING RTFs
By constraining the desired component in the output signal to 
be equal to the speech component at an arbitrarily chosen refer-
ence microphone r  [24], the constraint in (6) becomes 

,y s h sw h
!

,s
H

r0 0 0 00 = = (11)

which is equivalent to ,1w hH
0 =u  where the RTF h0

u  is defined as 

.h h
h

h
h

h
h1h h

, ,

,

,

,

,

,

r r r r

M
T

0
0

0

0

0 1

0

0 2

0

0
g g= =

9u ; E (12)

By substituting the ATFs h0  with the RTFs h0
u  in (8) and (10), 

the modifed MVDR filter is obtained as 

.hw w
h h

h
h h

h
,r H H0

0
1

0

1
0

0
1

0

1
0

MVDR MVDR
xx

xx

vv

vv

U

U

U
U= = =)

-

-

-

-

u
u u

u

u u

u
(13)

Note that blind identification of RTFs is significantly easier than 
blind identification of ATFs. When noise and interference are 
absent, this can simply be achieved by dividing the crosspower 
spectral densities of the microphone signals. When noise and/or 
interference are present, methods exploiting the nonstationarity 
of speech or based on the generalized eigenvalue decomposition 
have been proposed, e.g., [24] and [25]. 

GSC
The constrained optimization problem of the MVDR beamformer 
in (7) can be transformed into an unconstrained optimization 
problem, leading to the highly popular GSC structure [22]–[25], 
consisting of three main blocks (see Figure 5): 1) a fixed beam-
former (FB), ensuring the fulfillment of the constraint in (6) or 
(11), 2) a blocking matrix (BM), creating so-called noise refer-
ences ,um  and 3) a multichannel interference canceler ,gm
minimizing the residual interference and noise in the output of 
the FB that is correlated with the noise references. If the target 
signal leaks into the noise references due to a mismatched BM 
(e.g., caused by RTF estimation errors or by DOA errors, micro-
phone mismatch, and reverberation when using free-field 
HRIRs), the target signal will be partially canceled as well. To 
mitigate this target signal cancellation, the interference 
canceler is typically adapted only during periods when the tar-
get source is inactive; see, e.g., [23]. Moreover, several tech-
niques have been proposed to reduce the speech leakage 
components in the noise references, e.g., [24], [25], and/or limit 
the distorting effect of the remaining speech leakage [23], [26], 
[27], e.g., by imposing a quadratic inequality constraint or by 
using the so-called speech-distortion-regularized GSC [27]. 

APPLICATION IN ALDs
The GSC or one of its more robust variants can be considered as 
the current state-of-the-art solution for monaural hearing devices 

with an end-fire microphone array configuration, e.g., [28]–[30]. 
A very popular variant is the adaptive directional microphone 
(ADM) [15], [28], [29], where the fixed beamformer and the BM 
are differential beamformers forming a front- and back-oriented 
cardioid pattern, and an adaptive scalar minimizes the energy 
arriving from the back hemisphere. A two-microphone imple-
mentation was indeed shown to achieve a considerable speech 
intelligibility improvement for hearing aid users (about 3.4 dB 
improvement for three babble noise sources) [29]. 

MULTICHANNEL WIENER FILTER
The second popular class of multichannel signal enhancement 
techniques is associated with the multichannel Wiener filter 
(MWF), e.g., [2, ch. 3, 6, 14], [27], [31]. It produces a minimum 
mean square error (MMSE) estimate of either the target source [2, 
ch. 3], the speech component at an arbitrarily chosen microphone 
[2, ch. 6,14], [31], or a reference speech signal [2, ch. 14], [27]. To 
trade off speech distortion and noise reduction, the so-called 
speech-distortion-weighted MWF was introduced [27], [31]. 

Similarly to the MVDR using RTFs, the MWF neither 
requires a priori information about the microphone configura-
tion nor the position of the target source, making it an appeal-
ing approach from a robustness point of view. On the other 
hand, relying on the second-order statistics of the desired and 
undesired signal components implies that, for the assumed 
nonstationary processes, these statistics must be estimated with 
sufficient accuracy at all times; cf. the section “Estimation of 
Interference and Noise Statistics.” 

MMSE ESTIMATION FOR THE MWF
The MWF aims to extract the target source by minimizing the 
mean square error (MSE) between the (unknown) source signal 
s0  and the beamformer output, i.e., 

{ } { } .argmin argminE s y E sw w xH
0

2
0

2
MWF

w w
= - = - (14)

Assuming the target source and the interfering sources and 
noise to be uncorrelated, the solution of (14) is given by 

{ } ,E sw x h*
s s

1
0

1
0MWF xx xx 0 0zU U= =- - (15)

requiring the ATFs h0  and the target source PSD s s0 0z  to be 
estimated, which is a nontrivial task. However, similarly to the 
MVDR using RTFs, we can also design an MWF aiming at 
extracting the speech component at an arbitrarily chosen refer-
ence microphone r  by 

,argmin E h sw w x,r
H

0 0
2

MWF
w

= -u " , (16)

which yields 

{ } .E h s hw x h h h,
* *

,
*

r s s
H

s s r
1

0 0 0 0
1

0 0MWF xx vv0 0 0 0z zU U= = +- -
u ^ h (17)

Although it appears that the ATFs and the target source PSD are 
required to compute (17), the (rank-1) crosspower spectral 
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density matrix h hs s
H

0 00 0z  can be estimated from the second-
order statistics of the microphone signals; cf. the section “Esti-
mation of Interference and Noise Statistics.”

SPEECH-DISTORTION-WEIGHTED MWF
The MMSE criterion in (16) can be easily generalized to allow 
for a tradeoff between noise reduction and speech distortion 
[27], [31] by introducing a weighting factor [ , ]:0 3!n

,argmin E h s s Ew w h w v,r
H H

0 0 0 0
2 2

SDW
w

n= - +u " ", , (18)

which is referred to as the speech-distortion-weighted MWF 
(SDW-MWF). The solution of (18) is given by 

.hw h h h ,
*

s s
H

s s r0 0
1

0 0SDW vv0 0 0 0z n zU= +
-

u ^ h (19)

The smaller the factor n  is chosen, the smaller the resulting 
speech distortion. If ,1n =  the MMSE criterion (16) is 
obtained. If ,12n  the residual noise level will be reduced at 
the expense of increased speech distortion. 

RELATIONSHIP BETWEEN MWF AND MVDR 
It is interesting to note that the MWF can be decomposed as an 
MVDR beamformer, exploiting the spatial information of the 
target and interfering sources, followed by a single-channel 
Wiener filter (SWF) [2, ch. 3], [32], i.e., 

,w
h h

h
y y y y

y y

H
0

1
0

1
0

SDW

SDW SWF postfilter MVDR beamformer

vv

vv

s s v v

s s
#

z nz

z

U
U=

+
-

-

-

u
u u

u

1 2 3444 444 1 2 344 44
(20)

where y ys sz  and y yv vz  denote the PSDs of the desired and unde-
sired components at the output of the MVDR beamformer 
wMVDRu  using RTFs. 

APPLICATION IN ALDs
In [1], a three-microphone MWF implementation for a monaural 
hearing device was evaluated at different test sites and compared 
with other single- and multimicrophone noise reduction tech-
niques. In this study it was shown that overall the MWF achieved 
the largest speech intelligibility improvements (up to 7 dB), even 
in highly reverberant environments. 

BLIND SOURCE SEPARATION
Generalizing the approach of extracting a single desired source, 
BSS algorithms aim at extracting multiple sources from observed 
mixtures without requiring prior knowledge on the positions of 
the sources and the microphones, spatiotemporal signal statistics, 
or the mixing system. Moreover, they do not need any reference 
information on the activity of the sources in the spectrotemporal 
domain. On the other hand, they do require knowledge on the 
total number of sources and can only separate sources that can be 
modeled as point sources. Considering time-varying mixing sys-
tems, we disregard approaches that perform BSS based on learn-
ing from a large amount of data and focus on independent 
component analysis (ICA)-based methods that are—similar to 

adaptive filtering approaches—suited to time-varying acoustic 
scenes [4], [33]–[35]. 

For the following, we rewrite the STFT signal model in (3) as 

,sx h n Hs np
p

P

p
0

1

= + = +
=

-

/ (21)

describing M  noisy observations x  of the convolutive mixture of 
P  point sources .sp  To obtain estimates of the original sources ,ps
a linear demixing/separation system W  is applied, consisting of 
M P#  filters with frequency response ,wmp , , ,m M0 1f= -

, , .p P0 1f= -  The P  separated signals ,yq  stacked in the vec-
tor ,y  are then obtained as 

.y W x W Hs W nH H H= = + (22)

Known methods for identifying optimum demixing filters W
are based on the assumption that the signals to be separated are 
mutually statistically independent and that enforcing statisti-
cally independent outputs yq  of the demixing system yields 
good estimates of the desired separated source signals .ps  For 
the mostly assumed case where the number of microphones is 
larger than or equal to the number of sources ( ),M P$  an 
appropriate generic cost function ( )J ,  for frame ,,  describing 
an estimate of the Kullback–Leibler divergence between the 
joint probability density function (pdf) of the output signals yq
and the desired independent outputs, can be formulated as [4, 
ch. 4]: 

( ) ( , )
( ( , ))

( ( , ))
,logK

p y

p1 y
J

,

,
K

y L
q

P

q
0 0

1

0

1ICA
PLy

q

, ,b m

l m

l m
=

3

m l= =

-

=

-

t

t

%
/ / (23)

where ( ( , ))p y,y L qq l mt  denotes an estimate for the L-variate pdf 
of a segment of length L  of the qth  output signal ,yq  and 

( ( , ))p y,PLy l mt  denotes an estimate for the PL-variate joint pdf 
for all P  output signals. Averaging over K  frames accounts for 
the nonstationarity of the data, while the windowing function 

( , ),b m  describes the weight of a block average at time m  for the 
cost function at time ,,  in a similar way as for recursive least 
squares adaptation. Forming gradients of this cost function, or 
simplified versions, with respect to the demixing matrix W
allows for maximization of statistical independency with respect 
to individual data frames (online adaptation, , ( , )K 1 0,b m= =

for ),,!m  as well as for an entire recording (offline adaptation, 
, )K 1 constant2 b =  [35]. 

It should be noted that using the statistical independence 
assumption only, the separation system W  can at best be 
obtained up to a linear filtering uncertainty and a permutation 
of the outputs, and thus cannot itself identify the inverse mixing 
system which would solve the deconvolution problem and per-
fectly dereverberate the source signals [36]. 

Numerous algorithms have been proposed for ICA of convol-
utive mixtures, which are often categorized as either time-
domain or frequency-domain algorithms. Time-domain 
algorithms estimate the demixing system W  as finite impulse 
response filters [35], whereas frequency-domain algorithms 
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formulate the demixing problem as a scalar source separation 
problem for each frequency independently (instantaneous ICA), 
and implement scalar ICA algorithms for each STFT bin [33], 
[36], [37]. 

Similar to adaptive filtering, where time-domain approaches 
imply a significantly higher computational complexity for 
obtaining a similar performance as frequency-domain 
approaches, frequency-domain implementations of ICA (FD-
ICA) are computationally more attractive. On the other hand, if 
these are straightforwardly formulated as independent ICA 
problems in each STFT bin, the resulting demixing system does 
not perform a linear but a circular convolution, which is inade-
quate for demixing a linear mixing system [35]. As an immedi-
ate consequence, the so-called internal permutation and scaling 
problems result: as the outputs of any unconstrained ICA sys-
tem are only determined up to an unknown scaling factor and a 
permutation of their order, for FD-ICA the order and the scaling 
of the outputs may be different for each STFT bin. Therefore the 
outputs of the scalar ICA units have to be realigned so that for a 
given output channel qy  all frequency bins belong to the same 
source [37] and are properly scaled, e.g., by minimizing the 
average power difference of the outputs qy  relative to the inputs 
xm  (minimum distortion principle) [38]. 

In the acoustic signal extraction context, the mechanism of 
BSS based on ICA has been shown to be equivalent to a set of 
P  adaptive beamformers, each of which aims to extract one 
source by suppressing all other sources, thereby exploiting the 
spatial diversity of the microphone signals [39]. Note that for 
adaptive beamforming, the DOA or the RTFs of the target 
source should be known, and that it can adapt the required 
statistics only with given source activity information, while 
ICA does not need such information. 

APPLICATION IN ALDs
To illustrate the spatial filtering capacity of ICA, Figure 6 depicts 
the overall transfer function W HH  from a given source position in 
a reverberant environment for a null-steering (delay-and-subtract) 

beamformer and one output channel of an ICA system, thereby 
demonstrating the actual interference suppression performance in 
a reverberant environment [40]. The improved spatial null 
achieved by ICA confirms the hypothesis that, due to capturing all 
correlated components belonging to the same source in the same 
output, ICA does not only suppress the direct path but also reflec-
tions of an interfering source, e.g., [40]. Nevertheless, one has to 
bear in mind that the suppression of reflections results from a 
compromise in the spatial directivity, which a null-steering beam-
former cannot offer. Obviously, using the same number of micro-
phones, ICA cannot use more spatial degrees of freedom than a 
supervised beamformer, and therefore the spatial selectivity of ICA 
remains limited to what an optimum and ideally controlled beam-
former can achieve, as long as it uses the same statistics for deter-
mining its parameters [39]. 

The fact that ICA does not require prior knowledge about 
source positions, microphone topology, and source activity, and 
can adapt well during the activity of multiple sources, renders it 
a highly attractive method for ALDs in complex acoustic envi-
ronments with unpredictable interference and noise, and usu-
ally unknown source and microphone topologies. 
Unfortunately, however, ICA systems that can robustly and 
quickly separate more than three sources in real-world environ-
ments have not been presented yet, so that scenarios with an 
unknown number of interferers cannot be handled by such a 
generic ICA system. 

ESTIMATION OF INTERFERENCE AND NOISE STATISTICS
The performance of the signal extraction algorithms discussed in 
the sections “MVDR Beamformer” and “Multichannel Wiener Fil-
ter” critically depends on the estimates of the statistics of the 
desired and the undesired signal components, respectively. When 
implementing these algorithms, it is typically assumed that there 
is a domain where either the desired or the undesired components 
can be observed alone. While in selected cases, stationarity 
assumptions may hold reliably to justify a predetermined estimate 
[41], it must usually be assumed that the statistics of both the 
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desired and the undesired components vary in an unpredictable 
way and call for instantaneous estimates. 

In the spectrotemporal domain, voice activity detection and 
speech presence probability estimation typically aim at identifying 
regions in the STFT domain where only undesired components 
are present, e.g., [6, ch. 5], [42]. Obviously, this is very difficult for 
the given scenario with interfering speech sources that naturally 
occupy the same frequency range and whose temporal activity pat-
tern is generally not known, especially if their signal level is com-
parable to the level of the target source in any of the microphone 
signals. Therefore, the desired and undesired components can 
usually only be separated along the time axis. For example, for 
computing the MWF according to (19), it is typically assumed that 
the interference and noise can be observed during noise-only peri-
ods, so that with the assumed uncorrelatedness of noise and 
desired speech, the crosspower spectral density matrix h hs s

H
0 00 0z

can be estimated as 

,h hs s
H

0 0 xx vv0 0 .z U U- (24)

where xxU  is estimated continually and vvU  during periods of 
interference and noise only. As a fundamental problem, however, 
all these methods still suffer from the fact that the interference 
and noise estimates cannot be updated while the target source is 
active, so that they are prone to failure with nonstationary noise 
and interference, such as human speakers. 

On the other hand, in the spatial domain, reference informa-
tion for all the interference and noise components can be obtained 
by suppressing the target source. Here, the spatial selectivity 
allowed by the microphone array topology constitutes the main 
limitation. Exploiting the spatial domain for obtaining interfer-
ence and noise reference information is an inherent feature of the 
GSC (cf. the section “MVDR Beamformer”), where the BM aims to 
suppress the target source. For moving sources and multipath 
propagation scenarios, robust adaptation schemes for the BM have 
already been proposed, e.g., [23]. These concepts still require 
knowledge about the activity of the target source, as the BM 
should only be adapted when the target source is dominant. If the 
DOA of the target source is known, its activity can be monitored 
by directing both a delay-and-sum beamformer and a delay-and-
subtract beamformer in this direction and inferring the activity 
from the ratio of its output powers, see, e.g., [23]. However, these 
noise estimates will still be suboptimal if the BM could not be 
updated while the target source changed its position relative to 
the microphones on the user’s head or the acoustic environ-
ment changed. 

More recently, a constrained BSS scheme has been proposed 
to identify the filters of two-channel blocking matrices [40], 
which does not need source activity information and continu-
ously delivers up-to-date estimates for noise and interference. 
For this, the cost function in (23) is complemented by a quad-
ratic constraint for one output (here )yp  steering a null toward 
the target source: 

( )W w dJ p
H

2
2

C = , (25)

where w p  denotes the vector of demixing filters in W  which pro-
duce the output ,yp  and d  denotes the steering vector corre-
sponding to the DOA of the direct path of the target source. This 
yields the constrained ICA cost function 

( ) ( ) ( ),W W WJ JJC ICA ICA Ch= +- (26)

whose minimization suppresses the target in one output channel 
and thereby provides a reference for all other sources and noise of 
unknown coherence. The weight is typically chosen as 

. .0 5 0 8f.h  with larger values required if interfering sources 
are close to the target source. It should be noted that, although 
the constraint captures only the direct path, constrained ICA will 
intrinsically also aim at suppressing all correlated components, 
i.e., reflections of the target source, in the same output, thereby 
providing an advantage over a delay-and-subtract beamformer as 
shown in Figure 6. As the most attractive advantage, however, the 
fundamental concept of ICA assures a continuous update of the 
noise estimate without the need of estimating the activity of the 
involved sources. Recently, it was also shown that this concept can 
be generalized to identify all RTFs required for the BM of a GSC 
with an arbitrary number of constraints [43]. 

PRESENTATION OF THE ENHANCED SIGNALS
After extracting the target source using data-independent beam-
forming or statistically optimum filtering (cf. the sections 
“Data-Independent Beamforming” and “Statistically Optimum 
Signal Extraction”), the enhanced signal needs to be presented 
to the listener. While microphone placement is important to 
maintain a close relationship to the individual HRTFs, we also 
need to distinguish between a monaural system, i.e., a single 
device on one ear, and a binaural system, i.e., a system jointly 
processing signals, at both ears. While for a monaural system it 
seems obvious to just feed the enhanced signal to the loud-
speaker of this device, for a binaural system different output 

xL, 1(k, )

xL, 2(k, )

xL, M (k, )

wR(k, )wL(k, )

yR(k, )yL(k, )

xR, 1(k, )
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xR, M (k, )

. .
 .

. .
 .

[FIG7] The general binaural processing scheme.
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signals yL  and yR  can be generated and presented to the left 
and the right ear (cf. Figure 7). 

In a bilateral system, i.e., a set of two independently operating 
monaural systems, each device uses its own microphone signals 
and optimizes its filter coefficients independently, which may 
lead to a distortion of the binaural cues and hence the localiza-
tion ability [44]. To achieve true binaural processing, both 
devices need to cooperate with each other and exchange informa-
tion or signals, e.g., through a wireless link. Currently, the first 
commercial systems reach the market which exchange micro-
phone signals in full-duplex mode. These systems pave the way to 
future implementations of fully 
fledged binaural multimicrophone 
signal extraction algorithms, where 
microphone signals from both 
devices are processed and combined 
in each device. The gain in noise 
reduction performance of a binaural 
over a monaural system is exempla-
rily shown for an MVDR beamformer 
in Figure 8. 

The objective of a binaural speech enhancement algorithm is 
not only to selectively extract the target source and to suppress 
interfering sources and background noise, but also to preserve 
the auditory perception of the complete acoustic scene. This can 
be achieved by preserving the binaural cues, i.e., ITD, ILD, and IC, 
of the target source and the residual interfering sources and back-
ground noise. In addition to monaural cues, these binaural cues 
play a major role in spatial awareness and localization and are 
very important for speech intelligibility due to binaural unmask-
ing, e.g., [5]. 

All discussed signal enhancement algorithms in the sections 
“Data-Independent Beamforming” and “Statistically Optimum 

Signal Extraction” essentially generate a single-channel output 
signal. Since in a binaural system two output signals (i.e., one for 
each ear) are required, this single-channel output signal can 
either be binauralized, e.g., using binaural spectral postfiltering 
techniques [19], [45], [46] or by mixing the output signal with 
scaled (noisy) microphone signals [47], [48], or two different 
complex-valued spatial filters can be optimized, where the desired 
binaural cues are directly incorporated into the spatial filter 
design, e.g., [48]–[50]. Although the latter paradigm allows for 
more degrees of freedom to achieve noise reduction, there is typi-
cally a tradeoff between noise reduction performance and binau-

ral cue preservation. 
In binaural spectral postfiltering 

techniques, the same real-valued 
gain is applied to one microphone 
signal of each device, where a gain 
close to one is applied when the 
STFT bin should be retained (target 
source), and a gain close to zero is 
applied when the STFT bin should 
be suppressed (interfering source or 

background noise). This spectral gain can, e.g., be computed by 
comparing the estimated binaural cues with the expected cues of 
the target source or based on the temporal fluctuations of the 
ITD [45]. Other commonly used approaches compute the spectral 
gain based on the output signal of a data-independent or statisti-
cally optimum spatial filter (e.g., MVDR beamformer, BSS) [19], 
[46]. Although binaural spectral postfiltering techniques preserve 
the binaural cues of all sound sources, in essence, they can be 
viewed as single-channel noise reduction techniques, hence typi-
cally introducing speech distortion and exhibiting single-channel 
noise reduction artifacts (e.g., musical noise), especially at low 
input SNRs. 

The MVDR beamformer (using RTFs) and the MWF can be 
straightforwardly extended into a binaural version producing 
two output signals, by estimating the speech component in two 
reference microphone signals, i.e., one on each hearing aid [48]. 
In [48] and [44], it was shown both analytically and using sub-
jective listening experiments that the binaural MWF preserves 
the binaural cues of the target source but distorts the binaural 
cues of interferers and noise, such that all components are per-
ceived as coming from the direction of the target source. 
Clearly, this is undesired and, in some situations (e.g., traffic), 
even dangerous. To optimally benefit from binaural unmasking 
and to optimize the spatial awareness of the hearing aid user, 
several extensions for the binaural MWF and the MVDR beam-
former have been proposed, which aim at also preserving the 
binaural cues of the residual noise component by including cue 
preservation terms in the binaural cost function, e.g., [48]–[50]. 
These include either RTF preservation or interference rejection 
constraints for directional interfering sources [48], [49], or IC 
preservation constraints for diffuse noise [50]. Another 
approach is partial noise estimation, which corresponds to mix-
ing the binaural outputs with scaled versions of the noisy refer-
ence microphone signals [48]. 

[FIG8] The SNR gain of a monaural and a binaural MVDR
beamformer (diffuse noise field).
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APPLICATION IN ALDs
In [30] and [44], the performance of the binaural MWF and some 
of its extensions has been perceptually evaluated, both in terms of 
speech intelligibility and localization performance. First, it was 
shown that the binaural MWF achieved significant speech intelligi-
bility improvements compared to the bilateral MWF and the bilat-
eral ADM. This demonstrates that transmitting and processing 
microphone signals from both devices can result in a significant 
gain in noise reduction, especially when multiple interfering 
sources are present. Second, using a localization experiment in the 
frontal horizontal hemisphere, it was shown that using the bin-
aural MWF with partial noise estima-
tion it is possible to preserve spatial 
awareness without significantly 
affecting speech intelligibility. 

SUMMARY AND OUTLOOK
In this article, we have presented an 
overview of several multimicro-
phone signal enhancement algo-
rithms for ALDs and have addressed 
other important issues, such as microphone placement and bin-
aural signal presentation. Using appropriate processing with 
multiple microphones in a binaural ALD allows both speech 
intelligibility improvement as well as a preservation of the audi-
tory perception of the acoustic scene. 

Future work in this area will focus both on algorithmic 
aspects and a better integration of psychoacoustics. On the algo-
rithmic side, more accurate and robust estimation and careful 
exploitation of comprehensive spatiotemporal signal statistics 
for all relevant sources in highly time-varying scenarios will be 
necessary to allow for the ultimate desired binaural presenta-
tion. The learning of acoustic scenarios and source characteris-
tics can certainly be expected to contribute to reaching this 
goal. Optimum distribution of the computational load over the 
available computing hardware via bit rate-constrained “body 
area networks” will constitute another challenge to algorithm 
developers. On the psychoacoustic side, ideally, meaningful cri-
teria are desirable that can directly be integrated into the cost 
functions to allow perceptually optimum signal processing at 
any given time instant. This may start from incorporating gen-
eral knowledge about well-known noise masking effects com-
bined with knowledge on the relative importance of certain 
binaural cues as used already in audio coding and reach to more 
powerful, yet unknown models for human hearing. For each 
individual, it should be merged with knowledge about possible 
hearing impairments or personal listening preferences, i.e., a 
so-called auditory consumer profile. One may speculate that 
with suitable user interfaces, the traditional fitting procedures 
will be replaced by training procedures supervised by the user 
and even the cost functions for optimizing the multichannel fil-
tering will be as individual as the users themselves. All of these 
developments will certainly benefit from the integration into 
handy, but powerful personal computing platforms that are 
already emerging. 
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F
lexible and efficient spatial sound acquisition and subse-
quent processing are of paramount importance in com-
munication and assisted listening devices such as mobile 
phones, hearing aids, smart TVs, and emerging wearable 
devices (e.g., smart watches and glasses). In application 

scenarios where the number of sound sources quickly varies, 
sources move, and nonstationary noise and reverberation are 
commonly encountered, it remains a challenge to capture sounds 
in such a way that they can be reproduced with a high and invari-
able sound quality. In addition, the objective in terms of what 
needs to be captured, and how it should be reproduced, depends 
on the application and on the user’s preferences. Parametric spa-
tial sound processing has been around for two decades and 

provides a flexible and efficient solution to capture, code, and 
transmit, as well as manipulate and reproduce spatial sounds. 

Instrumental to this type of processing is a parametric model 
that can describe a sound field in a compact and general way. In 
most cases, the sound field can be decomposed into a direct 
sound component and a diffuse sound component. These two 
components together with parametric side information such as 
the direction-of-arrival (DOA) of the direct sound component or the 
position of the sound source, provide a perceptually motivated 
description of the acoustic scene [1]–[3]. In this article, we provide an 
overview of recent advances in spatial sound capturing, manipula-
tion, and reproduction based on such parametric descriptions of the 
sound field. In particular, we focus on two established parametric 
descriptions presented in a unified way and show how the signals and 
parameters can be obtained using multiple microphones. Once the 
sound field is analyzed, the sound scene can be transmitted, manipu-
lated, and synthesized depending on the application. For example, 
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sounds can be extracted from a specific direction or from a specific 
arbitrary two-dimensional or even three-dimensional region of inter-
est. Furthermore, the sound scene can be manipulated to create an 
acoustic zoom effect in which direct sounds within the listening 
angular range are amplified depending on the zoom factor, while 
other sounds are suppressed. In addition, the signals and parameters 
can be used to create surround sound signals. As the manipulation 
and synthesis are highly application dependent, we focus in this arti-
cle on three illustrative assisted listening applications: spatial audio 
communication, virtual classroom, and binaural hearing aids. 

INTRODUCTION
Communication and assisted listening devices commonly use 
multiple microphones to create one or more signals, the content 
of which highly depends on the application. For example, when 
smart glasses are used to record a video, the microphones can be 
used to create a surround sound recording that consists of mul-
tiple audio signals. A compact yet accurate representation of the 
sound field at the recording position makes it possible to render 
the sound field on an arbitrary reproduction setup in a different 
location. On the other hand, when the device is used in hands-free 
or speech recognition mode, the microphones can be used to 
extract the user’s speech while reducing background noise and 
interfering sounds. In the last few decades, sophisticated solutions 
for these applications were developed. 

Spatial recordings are commonly made using specific micro-
phone setups. For instance, there are several stereo recording 
techniques in which different positioning of the microphones of 
the same or different types (e.g., cardioid or omnidirectional 
microphones) is exploited to make a stereo recording that can be 
reproduced using loudspeakers. When more loudspeakers are 
available for spatial sound rendering, the microphone recordings 
are often specifically mixed for a given reproduction setup. These 
classical techniques do not provide the flexibility required in many 
modern applications where the reproduction setup is not known 
in advance. Signal enhancement, on the other hand, is commonly 
achieved by filtering, and subsequently summing the available 
microphone signals. Classical spatial filters often require informa-
tion on the second-order statistics (SOS) of the desired and unde-
sired signals (cf. [4] and [5]). For real-time applications, the SOS 

need to be estimated online, and the quality of the output signal 
highly depends on the accuracy of these estimates. To date, major 
challenges remain, such as:

1) achieving a sufficiently fast response to changes in the 
sound scene (such as moving and emerging sources) and to 
changes in the acoustic conditions
2) providing sufficient flexibility in terms of spatial selectivity
3) ensuring a high-quality output signal at all times
4) providing solutions with a manageable computational 
complexity. 

Although the use of multiple microphones provides, at least in 
theory, a major advantage over a single microphone, the adoption 
of multimicrophone techniques in practical systems has not been 
particularly popular until very recently. Possible reasons for this 
could be that in real-life scenarios, these techniques provided 
insufficient improvement over single-microphone techniques, 
while significantly increasing the computational complexity, the 
system calibration effort, and the manufacturing costs. In the last 
few years, the smartphone and hearing aid industries made a sig-
nificant step forward in using multiple microphones, which has 
recently become a standard for these devices. 

Parametric spatial sound processing provides a unified solution 
to both the spatial recording and signal enhancement problems, 
as well as to other challenging sound processing tasks such as add-
ing virtual sound sources to the sound scene. As illustrated in 
Figure 1, the parametric processing is performed in two successive 
steps that can be completed on the same device or on different 
devices. In the first step, the sound field is analyzed in narrow fre-
quency bands using multiple microphones to obtain a compact 
and perceptually meaningful description of the sound field in 
terms of direct and diffuse sound components and some paramet-
ric information (e.g., DOAs and positions). In the second step, the 
input signals and possibly the parameters are modified, and one or 
more output signals are synthesized. The modification and synthe-
sis can be user, application, or scenario dependent. Parametric 
spatial sound processing is also common in audio coding (cf. [6]) 
where parametric information is extracted directly from the loud-
speaker channels instead of the microphone signals. 

The described scheme also allows for an efficient transmission 
of sound scenes to the far-end side [1], [7] for loudspeaker 

[FIG1] A high-level overview of the parametric spatial sound processing scheme.

Microphone
Signals Spatial

Analysis

Direct

Diffuse

Parameters

Storage

Transmission

(Optional)

Direct

Diffuse

Parameters

Processing
and

Synthesis

Output
Signal(s)

User Settings

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [33] MARCH 2015

reproduction with arbitrary setups or for binaural reproduction 
[8]. Hence, instead of transmitting many microphone signals and 
carrying out the entire processing at the receiving side, only two 
signals (i.e., the direct and diffuse signals) need to be transmitted 
together with the parametric information. These two signals 
enable synthesis of the output signals on the receiving side for the 
reproduction system at hand, and additionally allow the listener to 
arbitrarily adjust the spatial responses. Note that in the considered 
approach, the same audio and parametric side information is sent, 
irrespective of the number of loudspeakers used for reproduction. 

As an alternative to the classical filters used for signal enhance-
ment, where an enhanced signal is created as a weighted sum of 
the available microphone signals, an enhanced signal can be cre-
ated by using the direct and diffuse sound components and the 
parametric information. This approach can be seen as a generali-
zation of the parametric filters used in [9]–[12] where the filters 
are calculated based on instantaneous estimates of an underlying 
parametric sound field model. As will be discussed later in this art-
icle, these parameters are typically estimated in narrow frequency 
bands, and their accuracy depends on the resolution of the time-
frequency transform and the geometry of the microphone array. If 
accurate parameter estimates with a sufficiently high time-
frequency resolution are available, parametric filters can quickly 
adapt to changes in the acoustic scene. The parametric filters have 
been applied to various challenging acoustic signal processing 
problems related to assisted listening, such as directional filtering 
[10], dereverberation [11], and acoustic zooming [13]. Parametric 
filtering approaches have been used also in the context of binaural 
hearing aids [14], [15]. 

PARAMETRIC SOUND FIELD MODELS

BACKGROUND
Many parametric models have originally been developed with the 
aim to subsequently capture, transmit, and reproduce high-quality 
spatial audio; examples include directional audio coding (DirAC) 
[1], microphone front ends for spatial audio coders [16], and high 
angular resolution plane wave expansion (HARPEX) [17]. These 
models were developed based on observations about the human 
perception of spatial sound, aiming to recreate perceptually 
important spatial audio attributes for the listener. For example, in 
the basic form of DirAC [1], the model parameters are the DOA of 
the direct sound and the diffuseness that is directly related to the 
power ratio between the direct signal power and the diffuse signal 
power. Using a pressure signal and this parametric information, a 
direct signal and a diffuse signal could be reconstructed at the far-
end side. The direct signal is attributed to a single plane wave at 
each frequency, and the diffuse signal is attributed to spatially 
extended sound sources, concurrent sound sources (e.g., applause 
from an audience or cafeteria noise), and room reverberation that 
occurs due to multipath acoustic wave propagation when sound is 
captured in an enclosed environment. A similar sound field model 
that consists of the direct and diffuse sound has been applied in 
spatial audio scene coding (SASC) [2] and in [3] for sound repro-
duction with arbitrary reproduction systems and for sound scene 

manipulations. On the other hand, in [16] the model parameters 
include the interchannel level difference and the interchannel 
coherence [18] that were estimated using two microphones and 
were previously used in various spatial audio coders [6]. These 
model parameters are sent to the far-end side together with a so-
called downmix signal to generate multiple loudspeaker channels 
for sound reproduction. In this case, the downmix signal and 
parameters are compatible with those used in different spatial 
audio coders. In contrast to DirAC and SASC, HARPEX assumes 
that the direct signal at a particular frequency is composed only of 
two plane waves. 

Besides offering a compact and flexible way to transmit and 
reproduce high-quality spatial audio, independent of the reproduc-
tion setup, parametric processing is highly attractive for sound 
scene manipulations and signal enhancement. The extracted 
model parameters can be used to compute parametric filters that 
can, for instance, achieve directional filtering [10] and dereverber-
ation [11]. The parametric filters represent spectral gains applied 
to a reference microphone signal, and can in principle provide 
arbitrary directivity patterns that can adapt quickly to the acoustic 
scene provided that the sound field analysis is performed with a 
sufficiently high time-frequency resolution. For this purpose, the 
short-time Fourier transform (STFT) is considered a good choice 
as it often offers a sufficiently sparse signal representation to 
assume a single dominant directional wave in each time-frequency 
bin. For instance, the assumption that the source spectra are suffi-
ciently sparse is commonly made in speech signal processing [19]. 
The sources that exhibit sufficiently small spectrotemporal 
overlap fulfill the so-called W-disjoint orthogonality condition. 
This assumption is, however, violated when concurrent sound 
sources with comparable powers are active in one frequency 
band. Another family of parametric approaches emerged within 
the area of computational auditory scene analysis [20], where 
the auditory cues are utilized for instance to derive time-fre-
quency masks that can be used to separate different source sig-
nals from the captured sound. 

Clearly, the choice of an underlying parametric model 
depends on the specific application and on the way the extracted 
parameters and the available audio signals are used to generate 
the desired output. In this article, we focus on geometry-based 
parametric models that take into account both direct and dif-
fuse sound components, allowing for high-quality spatial sound 
acquisition, which can be subsequently used both for transmis-
sion and reproduction purposes, as well as to derive flexible par-
ametric filters for sound scene manipulation and signal 
enhancement for assisted listening. 

GEOMETRIC MODELS
In the following, we consider the time-frequency domain with k
and n  denoting the frequency and time indices, respectively. For 
each ( , ),k n  we assume that the sound field is a superposition of a 
single spherical wave and a diffuse sound field. The spherical wave 
models the direct sound of the point-source in a reverberant envi-
ronment, while the diffuse field models room reverberation and 
spatially extended sound sources. As shown in Figure 2, the 
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spherical wave is emitted by an isotropic point-like source (IPLS) 
located at a time-frequency-dependent position ( , ) .d k nIPLS  The 
magnitude of the pressure of the spherical wave is inversely pro-
portional to the distance traveled, which is known in physics as 
the inverse distance law. The diffuse sound is assumed to be spa-
tially isotropic and homogenous, which means that diffuse sound 
arrives from all directions with equal power and that its power is 
position independent. Finally, it is assumed that the direct sound 
and diffuse sound are uncorrelated. 

The direct and diffuse sounds are captured with one or 
more microphone arrays (depending on the application) that 
are located in the far field of the sound sources. Therefore, at 
the microphone array(s), the spherical wave can be approxi-
mated by a plane wave arriving from direction .( , )k ni  In the 
following, we will differentiate between two related geometrical 
models: the DOA-based model and the position-based model. In 
the DOA-based model, the DOA and direct sound are estimated 
with a single microphone array, while in the position-based 
model, the position of the IPLS is estimated using at least two 
spatially distributed arrays, and the sound is captured using 
one or more microphones. 

Under the aforementioned assumptions, the signals received 
at the omnidirectional microphones of an M-element micro-
phone array can be written as 

( , ) ( , ) ( , ) ( , ),x x x xk n k n k n k ns d n= + + (1)

where the vector ( , ) [ ( , , ), , ( , , )]x d dX Xk n k n k n M1
Tf=  con-

tains the M  microphone signals in the time-frequency domain, 
where d M1f  are the microphone positions. Without loss of general-
ity, the first microphone located at d1  is used as a reference micro-
phone. The vector ( , ) [ ( , , ), , ( , , )]x d dX Xk n k n k ns s M1 s

Tf=  is 
the captured direct sound at the different microphones and 

( , ) [ ( , , ), , ( , , )]x d dX Xk n k n k n M1d d d
Tf=  is the captured diffuse 

sound. Furthermore, ( , )x k nn  contains the slowly time-varying 
noise signals (for example, the microphone self-noise). The direct 
sound at the different microphones can be related to the direct 
sound at the reference microphone via the array propagation vector 

( , ),g k i  which can be expressed as 

( , ) ( , ) ( , , ) .x g dk n k X k n 1s si= (2)

The mth element of the array propagation vector 
( , ) [ ( , , ), , ( , , )]g gg d dk k n k n M1

Tfi =  is the relative transfer 
function of the direct sound from the mth to the first micro-
phone, which depends on the DOA ( , )k ni  of the direct sound 
from the point of view of the array. For instance, for a uniform 
linear array of omnidirectional microphones , , dg k n m =^ h

d dexp sinj m 1l i-" , where j  denotes the imaginary unit, l
is the wavenumber, and d dm 1-  is the distance between 
positions dm  and .d1

In this article, we will demonstrate how this geometric model 
can be effectively utilized to support a number of assisted listening 
applications. In the considered applications, the desired output 
signal of a loudspeaker (or headphone) channel ( , )Y k ni  is given 
as a weighted sum of the direct and diffuse sound at the reference 
microphone, i.e., 

( , ) ( , ) ( , , ) ( ) ( , , )d dY k n G k n X k n Q k X k ni i i1 1s d= + (3a) 
( , ) ( , ),Y k n Y k n, ,s i id= + (3b) 

where i  is the index of the output channel, and ( , )G k ni  and 
( )Q ki  are the application-dependent weights. It is important to 

note that ( , )G k ni  depends on the DOA ( , )k ni  of the direct sound 
or on the position ( , ) .d k nIPLS  To synthesize a desired output sig-
nal two steps are required: 1) extract the direct and diffuse sound 
components and estimate the parameters (i.e., DOAs or positions), 
and 2) determine the weights ( , )G k ni  and ( )Q ki  using the esti-
mated parameters and application-specific requirements. The first 
step is commonly referred to as the spatial analysis and is dis-
cussed next. In this article, the second step is referred to as the 
application-specific synthesis.

SPATIAL ANALYSIS
To facilitate flexible sound field manipulation with high-quality 
audio signals, it is crucial to accurately estimate the components 
describing the sound field, specifically the direct and diffuse sound 
components, as well as the DOAs or positions. Such spatial analysis 
based on the microphone signals is depicted in Figure 3. The direct 
and diffuse sound components can be estimated using single-
channel or multichannel filters. To compute these filters, we may 
exploit knowledge about the DOA estimate of the direct sound or 
compute additional parameters as discussed in the following. 

[FIG2] A geometric sound field model: the direct sound emitted 
by a point source arrives at the array with a certain DOA, and 
the point-source position can be estimated when the DOA 
estimates from at least two arrays are available.

[FIG3] A block diagram for spatial analysis.
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SIGNAL EXTRACTION

SINGLE-CHANNEL FILTERS
A computationally efficient estimation of the direct and the diffuse 
components is possible using single-channel filters. Such process-
ing is applied for instance in DirAC [1], where the direct and dif-
fuse signals are estimated by applying a spectral gain to a single 
microphone signal. The direct sound is then estimated as 

( , , ) ( , ) ( , , ),d dX k n W k n X k n1 1s s=t (4) 

where ( , )W k ns  is a single-channel filter, which is multiplied with 
the reference microphone signal to obtain the direct sound at .d1

An optimal filter ( , )W k ns  can be found, for instance, by minimiz-
ing the mean-squared error between the true and estimated direct 
sound, which yields the well-known Wiener filter (WF). If we 
assume no microphone noise, the WF for extracting the direct 
sound is given by ( , ) ( , ) .W k n k n1s W= -  Here, ( , )k nW  is the 
diffuseness, which is defined as 

( , ) ( , ) ,k n k n1
1

SDRW =
+

(5) 

where ( , )k nSDR  is the signal-to-diffuse ratio (SDR) (power 
ratio of the direct sound and the diffuse sound). The diffuseness 
is bounded between zero and one, and describes how diffuse the 
sound field is at the recording position. For a purely diffuse field, 
the SDR is zero leading to the maximum diffuseness 

( , ) .k n 1W =  In this case, the WF, ( , ),W k ns  equals zero and 
thus, the estimated direct sound in (4) equals zero as well. In 
contrast, when the direct sound is strong compared to the dif-
fuse sound, the SDR is high and the diffuseness in (5) 
approaches zero. In this case, the WF ( , )W k ns  approaches one 
and thus, the estimated direct sound in (4) is extracted as the 
microphone signal. The SDR or diffuseness, required to compute 
the WF, is estimated using multiple microphones as will be 
explained in the section “Parameter Estimation.”

The diffuse sound ( , , )dX k n 1d  can be estimated in the same way 
as the direct sound. In this case, the optimal filter is found by mini-
mizing the mean-squared error between the true and estimated dif-
fuse sound. The resulting WF is given by ( , ) ( , ) .W k n k nd W=
Instead of using the WF, the square root of the WF is often applied to 
estimate the direct sound and diffuse sound (cf. [1]). In the absence 
of sensor noise, the total power of the estimated direct and diffuse 
sound components is then equal to the total power of the received 
direct and diffuse sound components. 

In general, extracting the direct and diffuse signals with sin-
gle-channel filters has several limitations: 

1) Although the required SDR or diffuseness are estimated 
using multiple microphones (as will be discussed later), only 
a single microphone signal is utilized for the filtering. Hence, 
the available spatial information is not fully exploited. 
2) The temporal resolution of single-channel filters may be 
insufficient in practice to accurately follow rapid changes in 
the sound scene. This can cause leakage of the direct sound 
into the estimated diffuse sound. 

3) The WFs defined earlier do not guarantee a distortionless 
response for the estimated direct and diffuse sounds, i.e., they 
may alter the direct and diffuse sounds, respectively. 
4) Since the noise, such as the microphone self-noise or the 
background noise, is typically not considered when comput-
ing the filters, it may leak into the estimated signals and dete-
riorate the sound quality. 

Limitations 1 and 4 are demonstrated in Figure 4(a), (b), and (d), 
where the spectrograms of the input (reference microphone) signal 
and both extracted components for the noise only (before time frame 
75), castanet sound (between time frame 75 and time frame 150), 
and speech (latter frames) are shown. The noise is clearly visible in 
the estimated diffuse sound and slightly visible in the estimated 
direct sound. Furthermore, the onsets of the castanets leak into the 
estimated diffuse signal, while the reverberant sound from the casta-
nets and the speech leaks into the estimated direct signal. 

MULTICHANNEL FILTERS
Many limitations of single-channel filters can be overcome by 
using multichannel filters. In this case, the direct and diffuse 
signals are estimated via a weighted sum of multiple microphone 
signals. The direct sound is estimated with 

( , , ) ( , ) ( , ),w xdX k n k n k n1s s
H=t (6)

where ( , )w k ns  is a complex weight vector containing the filter 
weights for the M  microphones and H$^ h  denotes the conjugate 
transpose. A filter ( , )w k ns  can be found for instance by minimiz-
ing the mean-squared error between the true and estimated direct 
sound, similarly as in the single-channel case. Alternatively, the fil-
ter weights can be found by minimizing the diffuse sound and 
noise at the filter output while providing a distortionless response 
for the direct sound, which assures that the direct sound is not 
altered by the filter. This filter is referred to as the linearly con-
strained minimum variance (LCMV) [21] filter, which can be 
obtained by solving 

( , ) ( , ) ( )w w wargmink n k n k
w

s
H

d nU U= +6 @

( , ) ( , ) ,w gk n k 1subject to H i = (7) 

where the propagation vector ( , )g k i  depends on the array geom-
etry and DOA ( , )k ni  of the direct sound. Here, ( , )k ndU  is the 
power spectral density (PSD) matrix of the diffuse sound, which 
can be written using the aforementioned assumptions as 

( , ) ( , ) ( , )x xk n k n k nEd d d
HU = " , (8a)

( , ) ( ),k n kd dz C= (8b)

where ( , )k ndz  is the power of the diffuse sound and ( )kdC  is 
the diffuse sound coherence matrix. The th( , )m ml  element of 

( )kdC  is the spatial coherence between the signals received at 
microphones m  and ,ml  which is known a priori when assum-
ing a specific diffuse field characteristic. For instance, for a 
spherically isotropic diffuse field and omnidirectional micro-
phones, the spatial coherence is a sinc function depending on 
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the microphone spacing and frequency [22]. Therefore, 
( , )k ndU  in (7) can be computed with (8b) when the diffuse 

sound power ( , )k ndz  is known. The PSD matrix of the noise 
( )knU  in (7) is commonly estimated during silence, i.e., when 

the sources are inactive, assuming that the noise is stationary. 
The estimation of ( , )k ndz  and ( )knU  is explained in more 
detail in the next section. Note that the filter ( , )w k ns  is recom-
puted for each time-frequency bin with the geometric parame-
ters estimated for that bin. The solution is computationally 
feasible since there exists a closed-form solution to the optimiza-
tion problem in (7) [21]. 

To estimate the diffuse sound ( , , ),k nX d1d
t  a multichannel fil-

ter that suppresses the direct sound and minimizes the noise 
while capturing the diffuse sound can be applied. Such a filter can 
be obtained by solving 

( , ) ( )w w warg mink n k  subject to
w

d
H

nU=

( , ) ( , ) ( , ) ( , ) .w g w ak n k k n k n0 1andH Hi = = (9) 

The first linear constraint ensures that the direct sound is
strongly suppressed by the filter. The second linear constraint 
ensures that we capture the diffuse sound as desired. Note that 
there exist different definitions for the vector ( , ) .a k n  In [23], 

( , )a k n  corresponds to the propagation vector of a notional 
plane wave arriving from a direction ( , ),k n0i  which is far away 

from the DOA ( , )k ni  of the direct sound. With this definition, 
( , )w k nd  represents a multichannel filter that captures the dif-

fuse sound mainly from direction ( , ),k n0i  while attenuating 
the direct sound from direction ( , ) .k ni  In [24], ( , )a k n  corre-
sponds to the mean relative transfer function of the diffuse 
sound between the array microphones. With this approach, 

( , )w k nd  represents a multichannel filter that captures the dif-
fuse sound from all directions except for the direction ( , )k ni

from which the direct sound arrives. Note that the optimization 
problem (9) has a closed-form solution [21], which can be com-
puted when the DOA ( , )k ni  of the direct sound is known. 

Figure 4(c) and (e) depict the spectrograms of the direct 
sound and diffuse sound that were extracted using the multi-
channel LCMV filters for the example scenario consisting of
noise, castanets, and speech. As can be observed, the direct 
sound extracted using the multichannel filter is less noisy and 
contains less diffuse sound compared to the direct sound 
extracted using the single-channel filter. Moreover, the diffuse 
sound extracted using the multichannel filer contains no onsets 
of the direct sound (clearly visible for the onsets of the castanets 
in time frames 75–150) and a significantly reduced noise level. 
As expected, the multichannel filters provide more accurate 
decomposition of the sound field into a direct and a diffuse sig-
nal component. The estimation accuracy strongly influences the 
performance of the discussed parametric processing approaches. 

[FIG4] Spectograms of (a) the input signal, (b) the direct signal estimated using a single-channel filter, (c) the direct signal estimated 
using a multichannel filter, (d) the diffuse signal estimated using a single-channel filter, and (e) the diffuse signal estimated using a 
multichannel filter.
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PARAMETER ESTIMATION
For the computation of the filters described in the previous sec-
tion, the required parameters need to be estimated. In single-
channel extraction, one parameter needs to be estimated, 
specifically the signal-to-diffuse ratio ( , )k nSDR  or the diffuse-
ness ( , ) .k nW  In the case of multichannel signal extraction, the 
required parameters include the DOA ( , )k ni  of the direct sound, 
the diffuse sound power ( , ),k ndz  and the PSD matrix ( )knU  of 
slowly time-varying noise. In addition, the DOA or the position of 
the direct sound sources, respectively, are required to control the 
application-specific processing and synthesis. It should be noted 
that the quality of the extracted and synthesized sounds is largely 
influenced by the accuracy of the estimated parameters. 

The estimation of the DOA of a direct sound component is a 
well-addressed topic in literature and different approaches for 
this task are available. Common approaches to estimate the 
DOAs in the different frequency bands are ESPRIT and root 
MUSIC (cf. [21] and the references therein). 

For estimating the SDR, two different approaches are com-
mon in practice, depending on which microphone array geome-
try is used. For linear microphone arrays, the SDR is typically 
estimated based on the spatial coherence between the signals of 
two array microphones [25]. The spatial coherence is given by the 
normalized cross-correlation between two microphone signals in 
the frequency domain. When the direct sound is strong compared 
to the diffuse sound (i.e, the SDR is high), the microphone sig-
nals are strongly correlated (i.e., the spatial coherence is high). 
On the other hand, when the diffuse sound is strong compared to 
the direct sound (i.e., the SDR is low), the microphone signals are 
less correlated. 

Alternatively, when a planar microphone array is used, the SDR 
can be estimated based on the so-called active sound intensity vec-
tor [26]. This vector points in the direction in which the acoustic 
energy flows. When only the direct sound arriving at the array from 
a specific DOA is present, the intensity vector constantly points in 
this direction and does not change its direction unless the sound 
source moves. In contrast, when the sound field is entirely diffuse, 
the intensity vector fluctuates quickly over time and points towards 

random directions as the diffuse sound is arriving from all direc-
tions. Thus, the temporal variation of the intensity vector can be 
used as a measure for the SDR and diffuseness, respectively [26]. 
Note that, as in [1], the inverse direction of the intensity vector can 
also be used to estimate the DOA of the direct sound. The intensity 
vector can be determined from an omnidirectional pressure signal 
and the particle velocity vector as described in [26], where the later 
signals can be computed from the planar microphone array as 
explained, for instance, in [11]. 

Various approaches have been described in the literature to 
estimate the slowly time-varying noise PSD matrix ( ) .knU
Assuming that the noise is stationary, which is a reasonable 
assumption in many applications (e.g., when the noise represents 
microphone self-noise or a stationary background noise), the 
noise PSD matrix can be estimated from the microphone signals 
during periods where only the noise is present in the microphone 
signals, which can be detected using a voice activity detector. To 
estimate the diffuse power ( , ),k ndz  we employ the spatial filter 

( , )w k nd  in (9) that provides an estimate of the diffuse sound 
( , , ) .dk nX 1d  Computing the mean power of ( , , )dk nX 1d

t  yields 
an estimate of the diffuse power. 

Finally, note that for some applications, such as the virtual 
classroom application described in the next section, the estimation 
of the IPLS positions from which the direct sounds originate may 
also be required to perform the application-specific synthesis. To 
determine the IPLS positions, the DOAs at different positions in the 
room are estimated using multiple distributed microphone arrays. 
The IPLS position can then be determined by triangulating the 
estimated DOAs, as done in [27] and illustrated in Figure 2. 

APPLICATION-SPECIFIC SYNTHESIS
The compact description of the sound field in terms of a direct sig-
nal component, a diffuse signal component, and sound field 
parameters, as shown in Figure 1, can contribute to assisted listen-
ing in a variety of applications. While the spatial analysis yielding 
estimates of the model parameters and the direct and diffuse signal 
components at a reference microphone is application independent, 
the processing and synthesis is application dependent. For this 

[FIG5] Spatial audio communication application: (a) communication scenario and (b) rendering of the loudspeaker signals.
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purpose, we adjust the gains ( , )k nGi  and ( )kQi  in (3) depending 
on the application and as desired by the user. For spatial audio ren-
dering, ( , )k nGi  and ( )kQi  are used to generate the different 

output channels for a given reproduction setup, whereas for signal 
enhancement applications, ( , )k nGi  and ( )kQi  are used to realize 
parametric filters that extract a signal of the desired sound source 
while reducing undesired and diffuse sounds. In all cases, the gains 
are computed using the estimated sound field parameters, and are 
used to obtain a weighted sum of the estimated direct and diffuse 
components, as given by (3). In the following, we present an over-
view of different applications in which the output signals are 
obtained using this approach. 

SPATIAL AUDIO COMMUNICATION
Using spatial audio communication, we can allow participants in 
different locations to communicate with each other in a natural 
way. The sound acquisition and reproduction should provide good 
speech intelligibility, as well as a natural and immersive sound. 
Spatial cues are highly beneficial for understanding speech of a 
desired talker in multitalker and adverse listening situations [18]. 
Therefore, accurate spatial sound reproduction is expected to 
enable the human brain to better segregate spatially distributed 
sounds, which in turn could lead to better speech intelligibility. In 
addition, flexible spatial selectivity offered by adjusting the time-
frequency dependent gains of the transmitted signals based on the 
geometric side information, enables the listener to focus even bet-
ter on one or more talkers. These two features make the parametric 
methods particularly suited to immersive audio-video teleconfer-
encing, where hands-free communication is typically desired. In 
hands-free communication (that is without any tethered micro-
phones), the main challenge is to ensure the high quality of the 
reproduced audio signals captured from distance, and to recreate 
plausible spatial cues at the listeners ears. Note that for full-duplex 
communication, multichannel acoustic echo control would addi-
tionally be required to remove the acoustic coupling between the 
loudspeakers and the microphones [5]. However, the acoustic echo 
cancelation problem is beyond the scope of this article. 

Let us consider such a teleconferencing scenario with two 
active talkers at the recording side, as illustrated in Figure 5. The 
goal is to recreate the spatial cues from the recording side at the lis-
tener side over an arbitrary, user-defined multichannel loudspeaker 
setup. At the recording side, one of the talkers is sitting on a couch 
located in front of a TV screen at a distance of 1.5 m and angle 10° 
with respect to array broadside direction, while the other is located 
to the left (at –20°) at roughly the same distance. The TV has a 
built-in camera and is equipped with a six-element linear array 
with inter-microphone spacing of 2.5 cm that captures the rever-
berant speech and noise (with SNR = 45 dB); the reverberation 
time is 350 ms. At the reproduction side, the ith loudspeaker signal 
is obtained as a weighted sum of the direct and diffuse signals, as 
given by (3). To recreate the original spatial impression of the 
recording side (without additional sound scene manipulation), the 
following gains suffice ( , ) ( , , )k n k nG Pi i i=  and ( ) 1,kQi =

where ( , , )k nPi i  is the panning gain for reproducing the direct 
sound from the correct direction, which depends on the selected 
panning scheme and the loudspeaker setup. As an example, the 
vector-base amplitude panning (VBAP) [28] gain factors for a stereo 
reproduction system with loudspeakers positioned at 30! c  are 

[FIG6] The results in a communication scenario: (a) applied gain 
functions, (b) spectrogram of the input signal, (c) estimated 
directions of arrival, (d) gains applied to the direct sound for the 
right loudspeaker channel, (e) spectrogram of the right 
loudspeaker signal, and (f) spectrogram of the right loudspeaker 
signal after applying ( )B i  defined in (a).
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depicted in Figure 6(a). To reproduce the diffuse sound, the signals 
( , )k nY , id  are decorrelated such that ( , )k nY , id  and ( , )k nY , jd  for 

i j!  are uncorrelated [29]. Note that the less correlation between 
the loudspeaker channels, the more enveloping the perceived 
sound is. The described processing for synthesizing the loud-
speaker signals is depicted in Figure 5(b). 

When sound scene manipulation, such as directional filtering 
[10] and dereverberation [11], is also desired, an additional gain 

( , , )k nB i  can be applied to modify the direct signal. In this case, 
the i th loudspeaker channel gain for the direct sound can be 
expressed as 

( , ) ( , , ) ( , , ),k n k n k nG P Bi i i i= (10) 

where ( , , )k nB i  is the desired gain for the sound arriving from 
( , ) .k ni  In principle, ( , , )k nB i  can be defined freely to provide 

any desired directivity pattern; an example directivity gain function 
is shown in Figure 6(a). In addition, the diffuse sound gain ( )kQi

can be adjusted to control the level of reproduced ambient sound. 
For instance, dereverberation is achieved by selecting ( ) .kQ 1i 1

The results for the considered teleconferencing scenario are 
illustrated in Figure 6. Depicted in Figure 6(a)–(c) are the gain func-
tions, the spectrogram of an input signal, and the DOAs estimated 
using ESPRIT. Figure 6(d) and (e) illustrate the spatial reproduction 
and  depict the panning gains ( , , )k nPright i  used for the right loud-
speaker and the spectrogram of the resulting signal. Lower weights 
can be observed when the source on the left side is active than for 
the source in the right, which is expected from the panning curve 

( , , )k nPright i  depicted in Figure 6(a). Note that the exact values for 
the respective DOAs should be .P 0 26right =  for –20° and 

.P 0 86right =  for 10°. Next we illustrate an example of sound scene 
manipulation. If the listener prefers to extract the signal of the 
talker sitting on a sofa, while reducing the other talker, a suitable 
gain function ( , , )k nB i  can be designed to preserve the sounds 
coming from the sofa and attenuate sounds arriving from other 
directions; an example of such a gain function is shown in 
Figure 6(a). Additionally, setting the diffuse gain to a low value, for 
example ( ) . ,kQ 0 25i =  reduces the power level of the diffuse 
sound, thereby increasing the SDR during reproduction. The spec-
trogram of the manipulated output signal is shown in Figure 6(f), 
where the power of the interfering talker and reverberation are sig-
nificantly reduced. 

VIRTUAL CLASSROOM
The geometric model with IPLS positions as parametric informa-
tion can facilitate assisted listening by creating binaural signals for 
any desired position in the acquired sound scene, regardless of 
where the microphone arrays are located. Let us consider the vir-
tual classroom scenario in Figure 7 as an example, although the 
same concept also applies to other applications such as teleconfer-
ence systems in dedicated rooms, assisted listening in museums, 
augmented reality, and many others. A teacher tutors in a typical 
classroom environment, where only some students are physically 
present, while the rest participates in the class remotely, for exam-
ple, from home. As illustrated in Figure 7, the sound scene is 

captured using several distributed microphone arrays, with known 
positions. The goal is to assist a remote student to virtually partici-
pate in a class from his preferred position, for instance close to the 
teacher, in between the teacher and another student involved in 
the discussion, or at his favorite desk, by synthesizing the binaural 
signals for the desired virtual listener (VL) location .dVL  These bin-
aural signals are generated at the reproduction side based on the 
received audio and position information, such that the student 
could listen to the synthesized sound over headphones on a laptop 
or any mobile device that can play multimedia content. 

The processing to achieve this goal is in essence similar to that 
utilized in the virtual microphone (VM) technique [12], [27], [30], 
where the goal was to generate the signal of a VM that sounds per-
ceptually similar to the signal that would be recorded with a 
physical microphone located at the same position. The tech-
nique has been shown successful in synthesizing the VM signals 
in arbitrary positions in a room [27], [30]. However, in the vir-
tual classroom application, instead of generating the signals of 
nonexisting microphones with physical characteristics, we 
directly aim to generate the binaural signals for headphone 
reproduction. The overall gain for the direct sound in the ith 
channel can be divided into three components: 

.( , ) ( , ) ( , ) ( , , )dk n k n k n k nG D H B,ii s HRTF IPLS= (11) 

The first gain ( , )k nDs  is a factor compensating for the wave 
propagation from dIPLS  to the VL position ,dVL  and from dIPLS

to d1  for the direct signal estimated at the reference 

Virtual Classroom

Virtual
User B

Virtual
User C

Virtual
User A

A

B

C

[FIG7] A virtual classroom scenario.
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microphone position .d1  As in [27], the real factors are typically 
applied which compensate for the amplitude change following 
the /r1  law, where r  is the propagated distance. The second 
gain ( , )k nH ,iHRTF  is a complex head-related transfer function 
(HRTF) for the left or right ear, { , },i left right!  respectively, 
which depends on the DOA ( , )k nVLi  with respect to the posi-
tion and look direction of the VL. Apart from creating a plausi-
ble feeling of being present in the actual classroom, the 
user-defined spatial selectivity can be achieved with the third 
gain ( , , ),dk nB IPLS  which enables the amplification or attenua-
tion of directional sounds emitted from dIPLS  as desired. In prin-
ciple, any desired spatial selectivity function ( , , )dk nB  can be 
defined. For instance, a spatial spot can be defined at a teacher’s 
desk or in front of a blackboard to assist the student in better 
hearing the teacher’s voice. Such a gain function for a circular 
spot centered around dspot  with a 1 m radius could be defined as 

( , , )
;

,dk n
r

r
B

1
1

1

otherwiseIPLS

1
=

a
* (12)

where ( , )d d k nr spot IPLS= -  and a  controls the spatial selec-
tivity for the sources located outside the spot. In addition, the 
gain ( ) [ , ]kQ 0 1i !  applied to the diffuse component enables the 
student to control the level of the ambient sound. The output 

diffuse signals ( , )k nY ,id  for the left and right headphone channel 
are decorrelated such that the coherence between ( , )k nY ,leftd  and 

( , )k nYd,right  corresponds to the target coherence in binaural 
hearing [18], [29]. Finally, it should be noted that since the prop-
agation compensation and the spatial selectivity gains are typi-
cally real factors, the phase of the direct and diffuse components 
are equal to those observed at the reference microphone. How-
ever, the complex HRTFs that dependent on the DOAs at the vir-
tual listening position ensure that the spatial cues are correct. 

BINAURAL HEARING AIDS
Developments in acoustic signal processing and psychoacoustics 
have lead to the advancement of digital hearing aids that were first 
developed in the 1990s. The early devices included the unilateral 
(i.e., single-ear) and bilateral hearing aids, where two independent 
unilateral hearing aids are used for the left and right ears, respec-
tively. More recently binaural hearing aids, in which signals and 
parameters can be exchanged between the left and right hearing 
aid, have been brought to the market. Binaural hearing aids are 
advantageous compared to unilateral and bilateral hearing aids as 
they can further improve speech intelligibility in difficult listening 
situations, improve the ability to localize sounds, and decrease lis-
tening fatigue. Besides dynamic range compression and feedback 
cancelation, wind and ambient noise reduction, dereverberation 
and directional filtering are important features of state-of-the-art 
hearing aids. 

Let us consider a situation in which we have one desired talker 
in front and two interfering talkers at the right side of the hearing-
aids user, as illustrated in Figure 8. In such a situation, directional 
filtering allows a hearing-aid user to perceive sounds arriving from 
the front more clearly than the sounds from the sides. In addition, 
one can aim at reducing the amount of diffuse sounds such that 
the SDR increases. 

While many state-of-the-art directional filtering techniques 
for hearing aids are based on classical differential array pro-
cessing, some parametric spatial sound processing techniques 
have been proposed. In [14], the left and right microphone sig-
nals were jointly analyzed in the time-frequency domain to 
determine: 1) the interaural phase difference and interaural 
level difference that strongly depend on the DOA of the direct 
sound, and 2) the interaural coherence that measures the 
degree of diffuseness. Based on these parameters, three gains 
were computed related to the degree of diffuseness, signal-to-
interference ratio, and direction of the sound. Finally, real-val-
ued gains for the left and right microphones were determined 
based on these gains to reduce reverberation and interfering 
sounds. According to the authors of [14], the quality of the sig-
nal was good but the speech intelligibility improvement for a 
single interfering talker was unsatisfactory. In [15], the authors 
used two microphones at each side and adopted the DOA-based 
geometric model. The DOAs were estimated at low frequencies 
using the microphones at the left and respectively right side, 
and at high frequencies using the intermicrophone level differ-
ences. Finally, the signal of a single microphone positioned at 
the left and right, respectively, was modified based on the DOA 
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[FIG8] A general parametric spatial sound processing scheme for 
binaural hearing aids.
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estimates and degree of diffuseness. The evaluation of different 
setups with one desired talker and one interfering talker dem-
onstrated that an improvement in the speech reception thresh-
old (SRT) between 4 and 24 dB could be obtained. 

In Figure 8, a general parametric spatial sound processing 
scheme is illustrated, where spatial analysis provides the DOA esti-
mates, and the direct and diffuse sound estimates for the left and 
right ear are obtained using different (left or right) reference micro-
phones. The left (and right) output signal can then be computed 
using (3) with ( , ) ( , , ) ( )k n k n kG B Hi exi=  for { },i left, right!

where ( , , )k nB i  defines the desired spatial response that depends 
on the listening mode, ( )kHex  helps to externalize sounds, and 

( ) ( ) ( )k c k kQ Hi ex=  with ( )c k0 11#  is a constant used to 
reduce the diffuse sound and hence increase the SDR at the output. 
At the cost of an increase in computational complexity and memory 
use, the proposed scheme can fully exploit all microphones. 

While many more examples can be found in the literature, it 
can readily been seen that the parametric spatial sound process-
ing, using either geometrically or psychoacoustically motivated 
parametric models, provides a flexible and efficient way to achieve 
directional filtering. The limited improvement in terms of the 
SRT reported in [14] could be related to the inherent tradeoff 
between interference reduction and speech distortion found in 
most single-channel processing techniques. Further research is 
required to develop robust and efficient parameter estimators for 
this application and to study the impact on the SRT. More 
advanced schemes to modify the spatial response and the DOAs 
based on the listening mode and the listening situation could be 
realized using the processing scheme depicted in Figure 8. 

CONCLUSIONS
Parametric models have been shown to provide an efficient way to 
describe sound scenes. While in earlier work multiple microphones 
were only used to estimate the geometric model parameters, in 
more recent work it has been shown that they can also be used to 
estimate the direct and diffuse sound components. As the latter esti-
mates are more accurate than single-channel estimates, the sound 
quality of the overall system is increased, for instance, by avoiding 
decorrelating the direct sound that may partially leak into the dif-
fuse sound estimate in single-channel extraction. Depending on the 
application, the estimated components and parameters can be 
manipulated before computing one or more output signals by mix-
ing the components together based on the parametric side informa-
tion. In a spatial audio communication scenario in which the direct 
and diffuse signals as well as the parameters are transmitted to the 
far-end side, it is possible to determine at the receiver side which 
sounds to extract and how to accurately reproduce the recorded spa-
tial sounds over loudspeakers or headphones. By using the position-
based model, we have shown how binaural signals can be 
synthesized at the receiver side that correspond to a desired listen-
ing position on the recording side. Finally, we have described how 
parametric spatial sound processing can be applied to binaural hear-
ing aids to achieve both directional filtering and dereverberation. 

To date, the majority of the geometric models assume that at 
most one direct sound is active per time-frequency. Extensions 

of these models are currently under development where multi-
ple direct sound components plus diffuse sound components 
coexist in a single time-frequency instance [23]. Preliminary 
results have shown that this model can help to further improve 
the spatial selectivity and sound quality. 

We hope that by presenting this unified perspective on para-
metric spatial sound processing we can help readers to 
approach other problems encountered in assisted listening from 
this perspective and to help highlight relations between a family 
of approaches that may initially seem divergent. 
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M
odern communication technology facilitates 
communication from anywhere to anywhere. As 
a result, low speech intelligibility has become a 
common problem, which is exacerbated by the 
lack of feedback to the talker about the render-

ing environment. In recent years, a range of algorithms has been 
developed to enhance the intelligibility of speech rendered in a 
noisy environment. We describe methods for intelligibility 
enhancement from a unified vantage point. Before one defines a 
measure of intelligibility, the level of abstraction of the representa-
tion must be selected. For example, intelligibility can be measured 
on the message, the sequence of words spoken, the sequence of 
sounds, or a sequence of states of the auditory system. Natural 
measures of intelligibility defined at the message level are mutual 
information and the hit-or-miss criterion. The direct evaluation of 

high-level measures requires quantitative knowledge of human 
cognitive processing. Lower-level measures can be derived from 
higher-level measures by making restrictive assumptions. We dis-
cuss the implementation and performance of some specific 
enhancement systems in detail, including speech intelligibility 
index (SII)-based systems and systems aimed at enhancing the 
sound-field where it is perceived by the listener. We conclude with a 
discussion of the current state of the field and open problems. 

INTRODUCTION
Humans adapt their speech to the physical environment. Based on 
the facial expression of a listener, a talker may repeat or reformu-
late the message. A noisy environment gives rise to the Lombard 
effect, e.g., [1], an involuntary change in the speech characteristics 
that makes speech more intelligible. 

In modern communication systems, the speaker often has lit-
tle or no awareness of the physical environment in which the 
speech is rendered. This is perhaps most obvious for current-
generation speech synthesis, which produces speech without 
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consideration of the rendering environment. It is also a major fac-
tor in human-to-human communications as communication 
technology degrades or severs the auditory and visual links 
between the speaker and the environment. For example, an 
announcer at a railway station generally receives little visual or 
auditory feedback. Similarly, a phone user lacks information about 
the rendering environment, even less so if effective noise-suppres-
sion technology is used. 

The lack of feedback, together with the recent ability to commu-
nicate from anywhere to anywhere, often leads to low intelligibility. 
Phone booths are a relic of the past: 
the mobile phone is expected to func-
tion in any environment, whether it 
is a car, a cafeteria, or a windstorm. 
Thus, there is a strong motivation for 
algorithms that can improve the in-
telligibility of speech rendered in a 
noisy environment. 

Ever since the early work of 
Griffiths [2] and Niederjohn and Gro-
telueschen [3], researchers have 
attempted to create processing meth-
ods that increase the intelligibility of speech in a noisy environ-
ment. Driven by the rapid growth of mobile telephony, research 
efforts on intelligibility in noise have increased significantly in the 
last five years. The result is that it is now possible to significantly 
increase the intelligibility of speech in noise, e.g., [4]– [11]. 
Approaches to intelligibility enhancement are increasingly based 
on the mathematical optimization of quantitative measures that 
are hypothesized to represent intelligibility accurately. First intro-
duced by [2], the optimization approach has been used in numer-
ous recent studies, starting with [12]. The optimization criteria 
vary widely as the signal processing algorithms are derived from 
different viewpoints and with different computational and delay 
constraints. Criteria used include the probability of correct pho-
neme recognition [11], auditory models [6], [13], [14], the articu-
lation index [2], the SII [4], [8], mutual information [15], and 
sound-field distortion [16]. 

In this tutorial, we describe a range of methods for intelligibil-
ity enhancement from a unified vantage point, delineating the 
similarities and dissimilarities between the various approaches. In 
contrast to the broad overview of human and algorithmic modifi-
cations that affect intelligibility in [7], our discussion focuses on 
the definition and use of quantitative measures of intelligibility, 
showing that many of these measures can be derived from the 
same basic principle. 

MEASURES OF INTELLIGIBILITY
In this section, we first discuss how to define a quantitative mea-
sure of intelligibility. We then discuss practical measures of 
intelligibility.

DEFINING INTELLIGIBILITY
The word intelligibility expresses a qualitative measure of whether 
a conveyed message is interpreted correctly by a human listener. 

To define quantitative instrumental measures of intelligibility, we 
must select a level of abstraction. That is, we must decide if we 
measure intelligibility on the sequence of words spoken, on the 
sequence of sounds, on a sequence of states of the auditory system, 
or on the acoustic signal waveform. A word sequence is an exam-
ple of a description at a high level of abstraction, whereas a signal 
waveform is a description at a low level of abstraction. 

The higher the level of abstraction, the more fundamental the 
measure of intelligibility: the objective of speech is to convey a mes-
sage and not to convey a sequence of sounds. A particular measure 

will be useful for enhancement at its 
own level of abstraction and below. 
Consider an intelligibility measure 
operating at the word sequence level. 
It can be used to evaluate which of a 
set of sentence formulations with 
similar meaning is more intelligible. 
It can also be used to evaluate if a par-
ticular spectral modification (e.g., a 
particular filtering operation) makes 
speech more intelligible. 

The generality of high-level mea-
sures has a cost: we must map the observations into a sequence at 
that high abstraction level. For acoustic observations and a mea-
sure operating at the word-sequence level, this requires a robust 
model of hearing that maps the observed acoustic signal into a 
word sequence. Therefore, although it cannot optimize linguistic 
formulations, an intelligibility measure operating on a sequence of 
auditory states may be attractive when optimizing a spectral modi-
fication of the signal. 

While illusive in practical measurements, the message itself, a 
random variable that we denote as ,M  can be used to define the 
most basic measure of intelligibility. (To aid clarity, we will write 
random variables as bold-face characters and their realizations 
as regular characters.) In the following, we will show how such 
a basic measure can be used to derive measures that have been 
derived earlier on a heuristic basis. To facilitate our reasoning, 
we will be opportunistic and sometimes describe the messages 
as countable, which is consistent with the notion that a mes-
sage is a discrete word sequence, and at other times as continu-
ous, which is consistent with the notion that articulation is 
continuously variable. To avoid confusion, we add a breve, as in 

,M˘  whenever messages are considered countable. 
A natural measure of intelligibility is the mutual informa-

tion between the message conveyed by the talker MT
˘  and the 

message interpreted by the listener :ML
˘

( ; ) ( , )
( )

( | )
,logI p M M

p M
p M M

M M
,

|
L T

M M
L T

L L

L T L T˘ ˘
LT

L T

= { {
{

{ {

{ {
/ (1)

where we used the simplified notation p pM MLT L T
˘ ˘=  and 

p p| |L T M M˘ ˘= L T  for the joint and conditional probabilities and use 
the same convention for the marginal probabilities of the con-
veyed and received messages and pT  and .pL

We can reformulate the criterion (1) as a measure of distor-
tion ( , )D M ML T

˘ ˘  that is a functional of .p |L T  Mutual information 

IN RECENT YEARS, 
A RANGE OF ALGORITHMS HAS 
BEEN DEVELOPED TO ENHANCE 
THE INTELLIGIBILITY OF SPEECH 

RENDERED IN A NOISY ENVIRONMENT. 
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is nonnegative and cannot be larger than the entropy .( )H MT
˘

Thus, the difference ( , ) ( ) ( ; )D H IM M M M ML T T L T
˘ ˘ ˘ ˘ ˘= -  is non-

negative and can be interpreted as a distortion. It can be written 
as a general distortion measure operating on p |L T  for a given 
talker message distribution :pT

( , ) ( ) ( ( | )),D p M d p M MM M |L T T
M

T
M

L T L T
˘ ˘

T L

= { { {
{ {
/ / (2)

where d  is a nonnegative function of ( | ) .p M M|L T L T
{ {  For the 

mutual information based distortion measure ( ( | ))d p M M|L T L T ={ {

( | ) ( ( ) / ( , )),logp M M p M p M M| ,L T L T L L L T L T
{ { { { {  where we note that the 

argument of the logarithm can be written in terms of ( | )p M M|L T L T
{ {

and the given ( )p MT T
{  only. The intelligibility enhancement 

problem is to find the p |L T  that minimizes the distortion (2) 
subject to the constraints set by the scenario. 

An alternative to the mutual information based distortion 
measure can be based on the hit-or-miss distortion, 

( ( | )) ( | ) ( ),d p M M p M M 1| | ,L T L T L T L T M ML Td= -{ { { { { {  where ,M ML Td { {  is a 
Kronecker delta function. In this case (2) becomes 

( , ) ( , ) [ ( | )] .ED p M M p1 1M M M M|LTL T

M
T T T L T T T

˘ ˘ ˘ ˘

T

= - = -{ {
{
/ (3)

The conditional probability ( | )p M M|L T T T
{ {  in (3) corresponds to 

the probability that the message is interpreted correctly. Thus, an 
alternative to maximizing the mutual information of the conveyed 
and received message is to maximize the expected probability of 
correct message interpretation, [ ( | )],pE M M|T L T T T

˘ ˘  where the 
expectation is over the conveyed messages, .MT

˘  We will discuss 
the practical use of this high-level measure in the section “Mea-
sures Operating on a Word Sequence.” 

While the measures (1) and (3) are general, they cannot be 
used directly. Either the description of the message or the 
human cognitive system must be approximated such that the 
measures can be applied to observable signals. The paradigm 
shows where such approximations are made, but it does not 
show their quantitative impact. Thus, experiments must be used 
to verify the validity of the resulting system. 

Next, we consider how to derive a low-level, acoustics-based 
measure from a high-level, message-based measure. For this it is 
convenient to consider the message as a continuous variable. A 
conveyed speech message MT  is rendered in the form of an acous-
tic signal, which we represent by an acoustic sequence aT . The 
sequence aT  can, for example, consist of signal samples or short-
term spectral descriptions, such as cepstral vectors. This sequence 
is rendered in a noisy environment and the listener observes a cor-
rupted sequence ,aL  which is then interpreted as a message .ML

The communication process thus forms a Markov chain 
.M a a MT T L L" " "  It is natural that environmental noise 

makes the mapping a aT L"  stochastic. 
Upon reflection, it is clear that the mappings M aT T"  and 

a ML L"  are also stochastic: a message is generally not formulated 
and never articulated in precisely the same manner, and the inter-
pretation of the acoustic sequence aL  is subject to random varia-
tions during the human cognitive process. Anticipating the 

discussions in the section “Measures Operating on a Word 
Sequence,” it can be argued that these variations are captured by 
the statistical modeling of modern automatic speech recognition 
(ASR) algorithms. If we assume the message formulation is perfect, 
a simple but effective model of the production and interpretation 
processes is that they are subject to additive noise components [15], 
which we will refer to as, respectively, production noise and inter-
pretation noise. For example, variability in articulation across differ-
ent persons may be approximated as additive noise in a 
representation based on cepstral or log spectral vectors. 

For convenience let us define auxiliary bijective mappings 
M sT T)  and ,M sL L)  where sT  and sL  are realizations of ran-
dom acoustic sequences. We have 

a s vT T T= +

a a vL T E= + (4)
,s a vL L L= +

where ,vT ,vE  and vL  are additive noise processes, modeling the 
production noise, environmental noise, and interpretation noise, 
respectively. Note that the system model differs from the stan-
dard system model in communication theory, which does not 
include production noise and interpretation noise. 

To facilitate analysis, let us assume the sequences ,sT ,vT ,vE

and vL  to be jointly Gaussian processes. Furthermore, we denote 
by sat  the correlation coefficient of (the samples of the) processes 
s  and a  and write .0 s a a st t t=

T T L L
 Let us first consider the case 

where the signals are white. Exploiting that mutual information is 
invariant under reparametrization of the marginal variables, it is 
then easy to see that [15] 

( ; ) ( ; )
( )

,logI I 2
1

1
1 1

M M s sL T T L
0
2

p

t p
= =-

+
- +

(5)

where ( / )2 2
a vp v v= T E  is the signal-to-noise ratio (SNR) of the 

acoustic channel ,a aT L"  and 2
av T  and 2

vv E  are the variances of 
processes aT  and ,vE  respectively. An important and intuitive con-
clusion that can be drawn from (5) is that if the environmental 
noise variance is small compared to the production and interpreta-
tion noise variances, then the mutual information between talker 
and listener is not affected significantly by the environmental noise. 

The spectral coloring of the acoustic content can be accounted 
for by splitting the signal into spectral bands such that each band 
can be approximated as white. If we assume the signals to be sta-
tionary, the frequency bands are independent and the mutual 
information can be written as the sum of the mutual informations 
in the bands 

( ; )
( )

,logI 2
1

1
1 1

M M ,
L T

i i

i i0
2

p

t p
=-

+
- +/ (6)

where i  is the band index and where ( / )i
2 2
a vp v v= , ,T i E i  is the SNR 

of the acoustic channel in band .i  Note that the SNR in (6) is com-
puted on whichever representation is used for the acoustic fea-
tures. Also note that the variances 2

av ,T i  and 2
vv ,E i

 are generally 
unknown and must be estimated in practice. For example, if the 
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acoustic features are based on the 
short-time discrete Fourier trans-
form (DFT) coefficients, variance 
estimation can be based on the 
short-time DFT periodogram, i.e., 

| |a ,T i
2 2
av =

,T i
t  having a variance of 

.| |E a 2 2
,T i6 @  The low-level measure 

(6) can then be used directly to opti-
mize speech intelligibility [15]. 

The frequency resolution of the human auditory system 
decreases with frequency, which reduces the mutual information 
from that obtained with (6) for a uniform high resolution. An 
improved model of information transfer is obtained by assuming 
that the signal is represented with one independent component 
per equivalent rectangular bandwidth (ERB), which is consistent 
with studies on intelligibility [17]. We show in the section “Mea-
sures Operating on Spectral Band Powers” that this approach pro-
vides an information-theoretical justification of the well-known 
SII [18], a low-level measure of intelligibility. 

PRACTICAL MEASURES OF INTELLIGIBILITY
Existing practical measures of intelligibility generally operate at 
the word-sequence level, at the level of a sequence of auditory 
states, or at the level of short-term spectra. We discuss these 
classes next and end with a discussion of the constraints that must 
be imposed on the optimization. 

MEASURES OPERATING ON A WORD SEQUENCE
In the section “Defining Intelligibility,” we discussed that the ex-
pected probability of correct interpretation of the message, 

[ ( | )],E p M M|T L T T T
˘ ˘  is a reasonable measure of intelligibility. This 

measure can be approximated as ( | )p M M|L T T T
{ {  on real-world 

data, where the overbar indicates averaging over realizations .MT
{

If the averaging is done in time, i.e., over segments of a single 
larger message (e.g., words), then this operation assumes ergodic-
ity. The measure is easily evaluated in a test with human test sub-
jects, where ( | )p M M|L T T T

{ {  can be estimated using histograms. A 
machine-based quantitative measure requires a mapping from 
any particular acoustic observation aL  to a message ML

{  that cap-
tures the probabilistic nature of this mapping as performed by 
humans. As will be discussed in the section “Word-Sequence 

Probability-Based Enhancement,” 
the standard approach to ASR com-
putes the probability of the observa-
tions given a message (word, or word 
sequence). The basic assumption for 
machine-based intelligibility en-
hancement is then that the trend of 
ASR word probability in noise tracks 
the trend of human recognition per-

formance in noise sufficiently well for the modification parame-
ters that are optimized. Experiments confirmed this hypothesis 
[11], [19] for a particular set of practical systems. 

MEASURES OPERATING ON A SEQUENCE
OF AUDITORY STATES
It is advantageous to minimize the delay and computational 
requirements of the intelligibility measure, particularly if the 
types of modification are restricted. Let us assume that the modi-
fication is a spectral modification, that the word sequence and 
speaking rate are fixed, and that the highest intelligibility is 
achieved by the original speech without environmental noise. 
(The latter assumption is an additional simplification required for 
this approach.) Then it is natural to use a distortion measure 
operating on the sequence of auditory states as a measure of 
intelligibility. Such measures can exploit that quantitative knowl-
edge of the auditory periphery has increased significantly in the 
last three decades (e.g., [20]). 

The straight comparison of the auditory states of the conveyed 
and received signal ignores the production noise vT  of (4). That is, 
the auditory model does not weigh signal components according to 
their relevance in terms of precision of signal production. However, 
the auditory model precision of a speech component may form a 
reasonable match to the precision of speech production, simplifying 
the introduction of production noise. 

Although auditory models differ in exactly how the inner ear 
representation is obtained, they follow in many cases a similar 
strategy for modeling the auditory system. In Figure 1, we outline 
the basic building blocks of the psychoacoustic model presented in 
[21], which is simple but representative of many other models, 
such as [20]. The first stage of the auditory model consists of a fil-
ter that mimics the frequency characteristics of the outer and 

[FIG1] The basic structure of the auditory model presented in [21].

102 103 104
−80
−70
−60
−50
−40
−30
−20
−10

0
10

Frequency (Hz)
102 103 104

Frequency (Hz)

Le
ve

l (
dB

)

0

0.2

0.4

0.6

0.8

1

R
es

po
ns

e

Envelope
Follower

Outer-Middle Ear Filter Auditory Filterbank

+

Constant

Log
Transform Inner Ear

Representation

THE LACK OF FEEDBACK,
TOGETHER WITH THE RECENT
ABILITY TO COMMUNICATE  

FROM ANYWHERE TO
ANYWHERE, OFTEN LEADS
TO LOW INTELLIGIBILITY.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [47] MARCH 2015

middle ear. This filter is cascaded with an auditory filter bank that 
models processing at the level of the basilar membrane in the 
cochlea. Subsequently, the envelope of each of the outputs of the 
auditory filters is obtained, which simulates the transduction of 
the inner hair cells. To model an absolute hearing threshold, a 
constant is added to each envelope. In the current context, this 
threshold corresponds to an interpretation noise. In the final 
stage, a log transform is used to model the loudness dependent 
compression of the auditory filter bank outputs by the outer hair 
cells. An important difference between the model from [21] and 
the more advanced model presented in [20] is the logarithmic 
transform, which is a simplification of the adaptation loops that 
are used in [20]. The simplification particularly affects the output 
near transitions where the gain of adaptation loops changes. 

By applying an auditory model to the acoustic sequences aT
and aL  and comparing the results, a distortion measure can be 
obtained. Mutual information is a natural measure for this pur-
pose, but, to our best knowledge, it has not been applied to the 
auditory representation for intelligibility enhancement. Note that 
while mutual information is not affected by smooth invertible 
mappings, auditory representations likely are not smooth map-
pings from features such as cepstra, or line spectral frequencies. 
This suggests that it may be essential to consider the detailed 
behavior of more sophisticated auditory models. 

In the literature, various measures have been used to compare 
the auditory representations of aT  and .aL  In [14], it was shown 
that an 1,  criterion leads to a mathematically tractable method 
and to provide good results for intelligibility enhancement. Refer-
ence [13] uses a similar auditory model for the so-called glimpse 
proportion measure of intelligibility: rather than comparing aT
and aL  directly, it compares the auditory representation of the aT
with the auditory representation of the environmental noise .vE
The glimpse proportion approach computes the proportion of sig-
nal blocks where the auditory representation of the signal is 
louder than the noise. In more recent work on the glimpse pro-
portion, a sigmoidal function is applied to the difference of the 
auditory signal and noise representations [6], [22]. The method 
provides good intelligibility enhancement [6], [22], [23]. Both the 

1,  criterion and glimpse proportion approaches do not explicitly 
consider the information conveyed in a particular signal compo-
nent, which should, at least in principle, be a disadvantage com-
pared to mutual information-based approaches. 

MEASURES OPERATING ON SPECTRAL BAND POWERS
The mutual information between ML  and MT  (6) can be seen to 
correspond to a classic view of intelligibility based on band powers 
of the auditory filter bank [17], [18], [24]–[27], by writing it as 

( ; ) ( )I I AM ML T i
i

i ip= u/ (7)

( )logI 2
1 1 ,i i0

2t=- -u (8)

( )
( )

( )
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log

log
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1
1

1 1
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,

i i
i

i

i i

0
2

0
2

p
t

p

t p

=
-

+
- +

(9)

The maximum mutual information is attained at high SNR and is 
.I

i iu/  Defining /II Ii ji j= u u/  and normalizing (7) accordingly, we 
recognize Ii  as the so-called band-importance function and ( )Ai ip

as the so-called weighting function or band-audibility function. The 
formulation (7) forms the basis of speech intelligibility measures 
such as the SII [18] and the extended SII [27]. These measures are 
descendants of the so-called articulation index [24], [25], a measure 
that predates information theory. In this classic view, Ii  character-
izes the importance of frequency band i  and the factor Ai  is a 
weighting function that indicates what fraction of the information is 
delivered to the listener. The information-theory derived form of Ai
shown in (9) describes a sigmoidal function that approximates the 
definition of Ai  in the SII. [Equation (9) neglects the threshold of 
hearing, the effect of high loudness, and the self-masking of noise.] 
Our derivation of the band importance function Ii  of (8) makes its 
dependency on the production and interpretation noise explicit. If 
the relative variances of the production and interpretation noise of a 
band are low (high production and interpretation SNR; ,i0t

approaches one), that band is important for intelligibility. In the SII 
definition, the values of Ii  are set empirically. As is shown in [15], 
the differences between the formulas for the classic approach and 
the aforementioned information-theoretical derivation are well 
within the precision of the original heuristic derivation of the classic 
view. The classic SII has proven to be highly correlated with speech 
intelligibility in many conditions and has been used as a basis for 
speech intelligibility enhancement [4], [8], [12], [28]. It is discussed 
in additional detail in the section “SII-Based Enhancement.” 

CONSTRAINTS ON OPTIMIZATION
In most cases, the optimization must be performed subject to one 
or more constraints. Important constraints are the speech-like 
nature of the output, the signal power, and system delay. Addi-
tional constraints may be required. For instance, for a given mes-
sage MT  (and speaking rate), a longer word sequence will likely be 
more intelligible than a short one, thus making a length con-
straint natural. 

The speech-like nature, or the speech quality, of the enhanced 
output may require an explicit constraint. However, in most prac-
tical systems the speech-like nature is enforced implicitly by either 
the modification strategy, or the optimization criterion, or both. 
Modification strategies such as slowly varying spectral shaping 
facilitate speech-like output only. The maximum probability of 
correct phoneme recognition is an example of a criterion that 
favors signal features that resemble those of clean speech. 

Signal power is a natural constraint. The unconstrained optimi-
zation of signal spectral modifications may lead to an unbounded 
increase of the signal power if the reduction in recognition perfor-
mance of the human auditory system for loud sounds is not consid-
ered. Thus, a power constraint must be applied to prevent hearing 
injuries and loudspeaker damage. Approximations to perceived 
loudness, either in the form of an analytic expression, or in the 
form of an algorithm, may also be used as constraints. 

The system delay must be constrained in real-time systems. 
This may prevent the usage of particular distortion measures 
and modification operators. 
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SIGNAL PROCESSING 
APPROACHES
In this section, the focus is on cre-
ating practical enhancement sys-
tems. We start with a discussion of 
various modifications that can be 
made and then discuss three 
approaches to enhancement and 
their performance. Specific applica-
tions are described in “Making Mobile Phones More Intelligi-
ble” and “Making It Work for Hearing Instruments.”

SPEECH MODIFICATIONS
The basic paradigm of intelligibility enhancement discussed in 
this article is to select a modification operation to be used for 
preprocessing the signal and a measure of intelligibility, and 
then to adjust the parameters of the modification operation to 
maximize the measure. We discuss the classes of modifications 
that have been used or can be used and report on current 
knowledge about their effectiveness. 

Enhancement operators can be classified according to a 
number of criteria. Operators can be classified generically as 
time-varying or time-invariant and as linear or nonlinear. Most 
intelligibility enhancement operators are time-invariant and 
nonlinear. However, low-level operators that use a linear filter-
ing of the signal [8] have been used and perform well (if the fil-
ter is adapted, the operator is nonlinear). 

Additional classifications can be made based on the specific 
processing performed on the message. Depending on the 
abstraction level where a modification takes place, we identify 
lexical (high level), prosodic (midlevel), and spectral and 

temporal (low level) modifications. 
In accordance with the Markov 
chain model of the communication 
process, presented in the section 
“Defining Intelligibility,” a high-
level modification affects the mes-
sage representation at the lower 
levels. The operator can be indepen-
dent or dependent on the environ-

mental disturbance, i.e., it can be nonadaptive or adaptive. 
Finally, depending on the origin of a modification there are 1) 
mimicking strategies, i.e., modifications that attempt to mimic 
modifications used consciously or subconsciously by humans 
producing speech in adverse conditions, and 2) rational strate-
gies based on, e.g., expert insight in the human auditory periph-
ery and in cognition [3] or of the sound field [16], [29]. 

In unpublished work of the Listening Talker (LISTA) project 
(http://listeningtalker.org), 44 possible modifications were iden-
tified. This includes the modification strategies used in essen-
tially all existing intelligibility enhancement systems. The 
effectiveness of some of the listed modifications on the intelligi-
bility in noisy environments is reviewed in [7] and [9].

As is discussed in [7] and [9], mimicking strategies such as 
pitch modification, vowel space adjustment, and uniform speak-
ing rate reduction do not improve intelligibility consistently 
when applied to natural speech. This outcome suggests that 
such modifications may have an auxiliary role or may be the 
result of physical limitations in the speech production mecha-
nism. Other mimicking candidate modifications include chang-
ing the relative duration of phonetic units and shortening units 
that are more sensitive to energetic masking in favor of more 
robust units. As of now, no conclusions can be drawn about the 
benefit from such modifications. In the remainder of this sec-
tion we focus on rational strategies. 

Lexical speech modifications consist of, among others: 1) rep-
etition to provide additional cues and 2) rephrasing to increase 
correct recognition probability as a result of better noise robust-
ness and/or higher predictability. While repetition does not facili-
tate intelligibility optimization, rephrasing provides an intuitive 
and attractive modification class. The section “Measures of Intelli-
gibility” discussed high-level modification measures that can, at 
least in principle, be used for this purpose. A practical rephrasing 
approach is presented in [19]: rather than comparing the mea-
sures directly, the method compares the sensitivity to noise 
addition of each formulation, according to the probability of 
correct recognition. The approach does not consider the pre-
dictability of the formulation, which is a major factor in intelli-
gibility. An indirect indication of the expected gain from 
increasing the predictability of a formulation, e.g., by vocabu-
lary size reduction, can be obtained by comparing the outcomes 
of intelligibility evaluations using closed-set [14] and open-set 
vocabulary bases [9]. The considerably higher intelligibility gain 
for closed-set evaluation suggests that it is feasible to design a 
modification system achieving intelligibility gain by improving 
the predictability of the formulation. 

MAKING MOBILE PHONES MORE INTELLIGIBLE
Mobile telephony is often conducted in the presence of 
acoustical background noise such as traffic or babble 
noise. In this situation, the listener perceives a mixture 
of clean speech and environmental noise from the 
near-end side, which generally leads to an increased lis-
tening effort and possibly to reduced speech intelligi-
bility. As the noise signal generally cannot be changed, 
the manipulation of the far-end signal is the only way 
to effectively improve speech intelligibility and to ease 
listening effort for the near-end listener. 

In the mobile phone application, the algorithmic delay of 
the processing is crucial since the allowed round-trip delay 
of the communication system is limited. This places a severe 
constraint on the modification operator. Furthermore, the 
restrictions of the microloudspeakers of mobile phones 
need to be considered. The maximum thermal load of the 
microloudspeaker constitutes a major limitation, which can 
be taken into account with a constraint on the total audio 
power. Finally, the ear of the near-end listener is usually 
next to the loudspeaker and must be protected from dam-
age and pain. This can be ensured by power limitations for 
the critical bands.

THE CLASSIC SII HAS PROVEN 
TO BE HIGHLY CORRELATED 

WITH SPEECH INTELLIGIBILITY 
IN MANY CONDITIONS AND HAS 

BEEN USED AS A BASIS FOR SPEECH 
INTELLIGIBILITY ENHANCEMENT.
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Low-level modifications do not require knowledge of the 
intended message transcription. These can be subdivided into 
spectral, temporal, and spatial signal modifications as well as com-
binations thereof. 

Straightforward spectral shaping is employed in [8] and [12]. 
This modification facilitates both low 
complexity and a high intelligibility 
gain, e.g., [9], making these 
approaches particularly suitable for 
application in mobile telephony. 

Spectrotemporal energy redistri-
bution is considered in [6], where 
the glimpse proportion is opti-
mized. The use of a genetic algo-
rithm to perform the optimization 
makes this method interesting primarily from a theoretical per-
spective. A low-complexity approach with high intelligibility 
gain that performs spectrotemporal energy redistribution by opti-
mizing a perceptual distortion measure is presented in [14]. 

A particular class of spectrotemporal energy redistribution is 
obtained with dynamic range compression. This approach can 
either be nonadaptive or adaptive. In a large-scale subjective evalu-
ation of proposed speech modification systems [9], most of the 
entries that incorporated dynamic range compression, including 
those related to the descriptions in [5], [23], [28], performed well. 

Intelligibility can also be enhanced by controlling the spatial 
sound field near the ear with a multitude of remote loudspeakers. 
As discussed in more detail in the section “Enhancement over 
Multiple Spatial Points,” if users are wearing microphones near 
their ears, reverberation and cross-talk between different messages 
can be reduced by feedback [16]. The goal is that only the desired 
signal is present at the ear of a user. If microphones are further 
from the ears of the listeners, the emerging field of multizone 
audio rendering becomes relevant, e.g., [29]. 

INTELLIGIBILITY ENHANCEMENT SYSTEMS
This section describes three practical methods for intelligibility 
optimization approaches. The described approaches are based on 
different principles. 

SII-BASED ENHANCEMENT
State-of-the-art systems have been developed based on the decompo-
sition into band-importance and band-audibility functions [4], [8], 
[28]. We provided a recent perspective on this decomposition in the 
section “Measures Operating on Spectral Band Powers.” This section 
describes implementations that closely follow the SII standard. 

The computation of the SII [18] uses a carefully calibrated 
specification of the speech spectrum 2

av ,T i  and the noise spectrum 
2
vv ,E i  (where i  is a critical or third-octave band index) as measured 

over an entire utterance, including minor pauses. The approach 
accounts for both the hearing threshold and the loss of intelligibil-
ity at very high presentation (loudness) levels, using information 
stored in tables. For an acoustic time-domain speech signal ,aT

the equivalent speech spectrum level in dB, commonly denoted as 
,Ei  is computed as 

( ) ( ),log logE f10 10
,

i
i

10

2

10 0
2av
v= -

D

,T i (10)

where 0
2v  denotes the digital reference power per hertz corre-

sponding to the reference sound pressure of 20 n  Pa and f ,iD  is 
the frequency bandwidth of the ith
subband in hertz. The equivalent 
disturbance spectrum level, ,Di  is 
computed in three steps: first the 
calibration (10) is applied, and then 
the threshold of hearing and in-
stantaneous masking are account-
ed for. In [4] the threshold of 
hearing and in [8] both the thresh-
old of hearing and instantaneous 

masking are neglected. 
The band-audibility function of the SII also accounts for the 

decrease in intelligibility at high presentation (loudness) levels, 
which is not accounted for in (9). Consequently, it depends on 
both the SNR in the band and the absolute presentation level .Ei

The band-audibility function is identical for different bands and 

MAKING IT WORK FOR HEARING INSTRUMENTS
Hearing instruments aim to compensate for a hearing 
loss. Typically, this is done by amplifying a sound 
recording, followed by dynamic range compression to 
ensure the signal remains within the audible and com-
fortable range. Environmental noise degrades intelligi-
bility for hearing instrument users in two ways. A first 
degradation is due to noise recorded by the micro-
phones. To decrease the impact of this noise, noise 
reduction is applied to the recorded signal prior to 
amplification for hearing loss compensation. 

A second degradation depends on the fitting: the user 
may experience direct environmental noise, leaking 
through the hearing instrument vent. This leakage 
degrades the intelligibility and can be overcome by pro-
cessing the signal with the application of a speech intel-
ligibility enhancement algorithm before play-out as 
discussed in the article. 

Adopting the concept of interpretation noise, the 
patient’s hearing loss can be measured and modeled by the 
noise process .vL The environmental noise that reaches the 
ear through the hearing instrument vent can be modeled 
by the process vE  of (4). Dynamic range compression can be 
taken into account by expressing the desired output range 
in terms of (frequency-dependent) absolute power con-
straints. Given this model, the hearing instrument can be 
optimized using one of the measures discussed in 
the section “Measures Operating on Spectral Band Powers” 
in a constrained fashion. The resulting integrated solution 
compares favorably with an ad hoc concatenation of pro-
cessing steps, facilitates a conceptual understanding of the 
hearing impairment, and is likely to lead to an effective 
control of the instrument. 

THE MAXIMUM PROBABILITY 
OF CORRECT PHONEME 

RECOGNITION IS AN EXAMPLE 
OF A CRITERION THAT FAVORS 

SIGNAL FEATURES THAT RESEMBLE 
THOSE OF CLEAN SPEECH.
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we denote it for a band i  as .( , )A E Di i  Let us define the piece-
wise linear sigmoid 

( ; , )xS 1 2b b = ( ( , ), ) /max min x 2 1 1b b b-^ h ( ),2 1b b-

which has a range [ , ]0 1 . The band audibility function of the SII is 
factorized into two factors: the first factor accounts for the instan-
taneous masking and the second factor accounts for high presen-
tation levels: 

( , ) ( ; , )

( ; , ),

A E D E D D

E U U

15 15

170 10

S

S

i i i i i

i i i

= - +

- - - - - (11)

where Ui  is the standard speech level at normal voicing effort 
(provided in a table in the standard). The heuristic factor 

( ; , )E D D15 15S i i i- +  assumes that speech signals 15 dB below 
the disturbance level are fully masked, and speech signals 15 dB 
above the disturbance level are not masked, which leads to a curve 
similar to the result derived in (9). 

The SII is a refined and normalized version of (7) that accounts 
for decreased intelligibility at high presentation levels 

( , ).I A E DSII i
i

i i=/ (12)

The band-importance function Ii  in the SII is specified by a table 
that is based on fitting to a database. Figure 2 illustrates the com-
putation of the SII. The suppression of the audibility function at 
high presentation levels is clearly shown in the panel showing the 
audibility function (11). 

The measure (12) can be used to optimize a modification oper-
ator that shapes the spectrum. As the intelligibility decreases both 

at high and low presentation levels, the SII criterion can, in princi-
ple, be optimized without constraint. It is seen from (12) that if 
there is no global constraint, each frequency band can be opti-
mized independently. The resulting solutions are not necessarily 
unique because of the form of .S  It is natural to select the solu-
tion that has the lowest power but does not reduce the speech 
power in any band. For low absolute noise levels, where the solu-
tion is not limited by the second factor in (11), the solution for the 
gain is [4] 

, ,maxg D E E15i i i i= + -^ h (13)

where the shaping gain gi  for band i  is given in dB. In (13) the 
original equivalent speech spectrum level is Ei  and the modi-
fied speech has equivalent speech spectrum level .g Ei i+

As was discussed in the section “Constraints on Optimization,” 
it is common to constrain the overall loudspeaker signal power in 
practical applications. The optimization of (12) subject to a power 
constraint was studied in [4] and [8]. To facilitate analysis, the two 
approaches use approximations of (12). Although the approxima-
tions are different, both neglect the second factor in (11) and start 
from ( , )A E Di i . .( ; , )E D D15 15S i i i- +  Reference [4] simpli-
fies ( , )A E Di i  further by removing the lower bound on the sig-
moid and writing ( , )A E Di i . ( / ) ( , ) / .min E D1 2 15 30i i+ -  Ref-
erence [8], on the other hand, makes the approximation 

( , ) / ( ),A E D 10 10 10/ / /
i i

E E D10 10 10i i i. +  which is a differentiable 
function. When writing the above expressions for the modified 
speech, the audibility-function approximations are concave func-
tions of the (linear) spectral gain .10 /g 10i  Optimizing the approxi-
mations subject to linear constraints on 10 /g 10i  form 

[FIG2] The computation of the SII.
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straightforward optimization problems that can be solved using the 
Karush–Kuhn–Tucker conditions. The resulting analytic solutions 
are easy to implement. The later work of [8] models ( , )A E Di i

more accurately at low SNR values and provides improved perfor-
mance over the original work of [4] under low SNR conditions. 

The discussion in this section assumed stationarity. Time varia-
tion can be accounted for by recursive updating of the equivalent 
spectrum levels Ei  and Di  and periodically recomputing the 
gains gi  [4]. This is consistent with the SII update described in 
[27], which uses frequency-dependent temporal windows. 

WORD-SEQUENCE PROBABILITY-BASED 
ENHANCEMENT
The section “Defining Intelligibility” identified the suitability of the 
expected probability of correct message recognition as a measure for 
optimizing intelligibility at a high level of abstraction. We noted in 
the section “Measures Operating on a Word Sequence” that, under 
an ergodicity assumption, the expectation over messages can be 
approximated by averaging over time. 
Optimizing a measure derived from 
the probability of correct recognition 
under a power constraint has been 
shown to provide significant intelligi-
bility gain assuming that accurate 
sound segmentation information and 
an appropriate acoustic speech model 
are available [11]. We emphasize that 
the method assumes that ASR word probability tracks the human 
recognition performance, which was found to be true in [11] but is 
not guaranteed. Here we provide more detail about this approach. 

To make high-level machine-based optimization feasible in 
practice, we can represent the message at the phoneme level. This 
means we refine our Markov chain to include an intermediate 
level. The chain now becomes ,M u a a u MT T T L L L" " " " "

where uT  and uL  denote the talker and lister phoneme sequences, 
respectively. By first performing time alignment of a sequence of 
acoustic features vectors aT  and a sequence of phonemes uT  by 
means of an ASR engine, a practical intelligibility enhancement 
approach can be defined. The ASR speech model can then be used 
to provide the probability densities that characterize clean speech 
sounds in the acoustic feature space. 

To enhance intelligibility, we want to find the parameters C*  of 
our speech modification scheme that maximize the average proba-
bility that the listener interpreted phoneme sequence uL  is the 
talker-generated sequence :uT

| , ,argmax p u uC C*
| T Tu u

C
= L T

^ h (14)

where the subscripts of the density label the density it repre-
sents. Note that the densities are consistent with the models 
shown in (4). 

Simplifications were introduced in [11] to make the optimiza-
tion tractable. It was tacitly assumed that the message is accu-
rately represented by the phonemes and production noise was not 

formally considered. It was also assumed that vE  (the representa-
tion of the noise) can be approximated as deterministic, which is 
reasonable for typical acoustic signal representations and station-
ary noise. The only remaining uncertainty is due to the interpre-
tation noise in the mapping from aL  to .uL  In an ASR system 
based on an HMM, this is modeled by the observation noise. 
Equation (14) can now be approximated by 

| ( , )argmax p u a uC C*
| T L Tu a

C
. L L

tt ^ h (15)

| , ( )argmax p a u p uC| L T Ta u u
C

= L L L
tt ^ h

T
( | , ) ( ) ,p a u p uC|u L T T

1
a u u

-

L L L
l l

l
tt` j/ (16)

where we used Bayes’ rule and where ( , ),a u CL Tt  abbreviated to 
,aLt  is the set of acoustic features observed by the listener, which 

is modeled as a deterministic function of the talker phoneme 
sequence uT  and the speech modi-
fication parameters .C  The first 
term of (16) is the likelihood of the 
talker phoneme sequence for the 
observed features ,aLt  the second 
term is the a priori probability that 
the phoneme sequence uT  is 
decoded by the listener, and the 
third term is the inverse a priori

probability of the listener-observed features. Optimization of the 
likelihood term only reduces complexity and provides good 
results [11]. 

The theory is simplest to implement if the sequences are con-
sidered stationary. The averaging of (16) over long time intervals 
(multiple sentences) is then preferred. In a practical implementa-
tion, shortcuts may have to be made due to requirements on delay 
and complexity and because the stationarity assumption may not 
be sufficiently accurate. 

A system-level perspective of the proposed approach is 
shown in Figure 3. In [11], the approach was validated for a 
combination of two modifications: prosody-affecting phoneme 
gain adjustment and a spectral modification redistributing the 
signal energy across frequency bands. The method compared 
favorably to a method based on the optimization of a measure 
operating on a sequence of auditory states [14], discussed in the 
section “Measures Operating on a Sequence of Auditory States.” 
Results reported in [9] suggest that using the full Bayesian 
approach rather than optimizing only the likelihood component 
of (16) improves performance. 

In text-to-speech applications it may be possible to select 
from a set of phrases to convey a particular message. The mea-
sure given in (16) has also been used to determine the optimal 
phrasing of utterances [19]. This study indicates that maximiz-
ing the probability of correct interpretation of the phoneme 
sequence increases intelligibility. Considering prior information 
on the predictability of various formulations is expected to fur-
ther enhance performance. 

TO MAKE HIGH-LEVEL 
MACHINE-BASED OPTIMIZATION 
FEASIBLE IN PRACTICE, WE CAN 

REPRESENT THE MESSAGE AT THE 
PHONEME LEVEL.
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ENHANCEMENT OVER MULTIPLE
SPATIAL POINTS
We have considered preprocessing 
techniques that do not consider the 
spatial aspects of the rendering sce-
nario. In this section, we show that 
spatial aspects can also be exploited to 
enhance intelligibility. In announce-
ment scenarios in public spaces such 
as airports, train stations, or shopping 
malls, environmental noise and rever-
beration contribute to a reduced intelligibility for the listeners. If 
different messages are communicated to different spatial regions, 
acoustic leakage between regions [16] exacerbates the problem. 
The impact on intelligibility is particularly large for hearing-
impaired persons. 

Consider a scenario in a public environment where N  mes-
sages are conveyed via the public address (PA) system to N  lis-
teners wearing a hearing instrument. A possibility is to 
downstream the corresponding signals directly to the listeners, 
but listeners often wear an open fit (nonoccluded) hearing 
instrument, where the direct signal also is mixed in at the ear-
drum. Instead of using direct downlink connections, it is possi-
ble to preprocess all speech signals jointly at the PA system so as 
to minimize the expected distortion at the eardrums of the lis-
teners. The distortion measure can be based on any (mathemat-
ically well-behaved) model for speech quality or intelligibility, 
such as some of the models discussed in the section “Practical 
Measures of Intelligibility.” 

Let [ , , , ] ,a a a a, , ,
T

T T T T N1 2 f= aTu  and aL  (defined similarly) 
be the (complex-valued) short-time DFT coefficients of the source 
speech signals, enhanced signals (at the PA system), and received 
signals at the listeners, respectively. The signals aL  are captured by 
the microphones of the hearing instruments. For simplicity, we 
neglect production and interpretation noises of the section “Defin-
ing Intelligibility” and assume that degradations are purely acousti-
cal and consist of noise, reverberation, and cross-talk between 
messages. It is easy to see that if we use stacked-vector notation for 
the signals a ,T i  and ,a ,L i , , , ,i N1 2 f=  upon preprocessing, all 

effects can be included in the affine 
signal model given by [16] 

,a H vaL E T E= +u (17)

where the channel matrix HE  col-
lects all reverberation and cross-talk 
transfer coefficients between produc-
tion and reception points, and vE  is 
additive noise in the environment. 

Consider also a distortion mea-
sure ( , ),d a aT L  smooth (continuously differentiable) as a function 
of aL , which quantifies the distortion between the reference pro-
duced coefficients aT  and what is eventually listened to, .aL  Our 
aim is to find the modification a aT T7 u  that minimizes the 
expected distortion according to ,d jointly for all talker-listener 
points, i.e., we want to solve the optimization problem 

[ ( , )],H vd a aminimize E T E T E
aT

+u
u

(18)

where the expectation is taken only over the acoustic disturbances 
,HE ,vE  since we have direct access to the speech of the talker aT

and therefore take it to be deterministic. 
Generic necessary conditions can be derived for solving (18) in 

terms of a functional description of the distortion measure .d  The 
conditions are [16] 

( , ) ,H H vE
a
d a a 0*
L

T E T E
H
E
2
2 + =u; E (19)

where ( ) H$  is the Hermitian transpose, and / /v 1 2*2 2 /^ ^h h

/ / /jv v12 2 2 2-0 1^ ^ ^^ h h hh  is a complex differential operator, 
expressed in terms of the real differential operators / v2 2 0^ h and 

/ ,v2 2 1^ h  in Hessian (vertical) notation, with respect to the real 
and imaginary components of the variable ,v  respectively. The 
meaning of (19) is that, for optimality, it is required to choose the 
preprocessed speech aTu  such as to make the complex gradient of 
the distortion measure with respect to the listener DFT bins in all 
zones orthogonal to all columns of the channel matrix .HE
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[FIG3] The intelligibility enhancement using a phoneme-level measure.
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To demonstrate the use of the 
optimality conditions (19), let us 
consider the simple 2,  distortion 
measure given by 

( , ) ,d a a a aT L L T
2= - (20)

where $  is the 2,  norm. In this 
case, (18) is a convex optimiza-
tion problem, so that (19) are 
also sufficient conditions. By 
using the optimality conditions (19) under the assumption that 
HE  and vE  are uncorrelated, and including the hybrid deter-
ministic-stochastic model for HE  introduced in [16], where the 
early response is described solely by a deterministic direct path 
and the late response is modeled by an exponentially fading sto-
chastic process, the preprocessing algorithm is derived as 

,a D D D aH H
T T

1K= +
-u ^ h (21)

where D  is a matrix collecting direct path responses of the 
channel, and K  is a diagonal matrix collecting diffuse reverber-
ation response channel energies. Note that in the case of low 
reverberation, ,0"K  the scheme (21) reduces to a conven-
tional acoustic cross-talk canceler [30], ,a D aT T

1= -u  which by 
compensating for the direct paths of the channel ,HE  makes 
the cross-signals cancel out at the listeners. We thus conclude 
that optimization-based multipoint preprocessing enhancement 
as formulated in (18) leads to acoustic cross-talk cancelation, 
when applied to the 2,  distortion measure (20).

CONCLUSIONS AND OPEN PROBLEMS
Modern speech communication often leads to the signal being 
rendered by a machine in a noisy environment. In these circum-
stances, communication benefits from methods that make speech 
more intelligible in noise, particularly if the enhancement can 
adapt to the scenario at hand. This requires quantitative models of 
the communication process and distortion measures. 

The use of a distortion measure facilitates the formulation of 
convergent algorithms and generally reduces the need for ad 
hoc solutions. Measures formulated at a high level of abstrac-
tion, such as (1) and (3) apply, at least in principle, to all com-
munication tasks. However, when these high-level measures are 
applied to specific tasks assumptions must be made, either for 
the signal or for a model of the human cognitive system (e.g., by 
an ASR system), or both. Thus, optimization of any measure can 
never replace the need of extensive real-world testing to verify 
the performance of an intelligibility-enhancement system for 
the task at hand. 

At first sight, the intelligibility-enhancement problem resem-
bles the standard problem of transmission over a noisy channel. 
However, we have shown that the unprecise nature of the human 
production and interpretation must be accounted for. When that 
is done, standardized measures for intelligibility, which have a 

long history and were derived heuristi-
cally, are found to be consistent with 
communication theory. 

While the field of intelligibility 
enhancement has developed rapidly, 
opportunities for significant improve-
ment remain. Careful accounting for 
time-domain masking may improve 
performance. Methods developed for 
scenarios with additive noise only 
must be extended to include reverber-

ation. Refining methods that perform spectral shaping to include 
range compression may increase their performance. For meth-
ods based on mutual information, the effect of time and fre-
quency dependencies must be considered. Studies to determine 
the best representation (e.g., cepstra or DFT coefficients) and 
the determination and usage of appropriate noise distributions 
for the model likely will lead to improvement. The determina-
tion of a word choice for a message that is more robust to noise 
is an essentially unsolved task. 

Although major challenges remain, the field of intelligibility 
enhancement has made major strides in recent years. The tech-
nical outcomes will likely become an integral part of speech-
rendering devices in the near future, leading to improved 
communication among humans and from machines to humans. 
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ith the advancement of technology, both 
assisted listening devices and speech com-

munication devices are becoming more por-
table and also more frequently used. As a 

consequence, users of devices such as hearing 
aids, cochlear implants, and mobile telephones, expect their 
devices to work robustly anywhere and at any time. This holds in 
particular for challenging noisy environments like a cafeteria, a 
restaurant, a subway, a factory, or in traffic. One way to making 
assisted listening devices robust to noise is to apply speech 
enhancement algorithms. To improve the corrupted speech, spa-
tial diversity can be exploited by a constructive combination of 
microphone signals (so-called beamforming), and by exploiting 
the different spectrotemporal properties of speech and noise. 
Here, we focus on single-channel speech enhancement algorithms 
which rely on spectrotemporal properties. On the one hand, these 

algorithms can be employed when the miniaturization of devices 
only allows for using a single microphone. On the other hand, 
when multiple microphones are available, single-channel algo-
rithms can be employed as a postprocessor at the output of a 
beamformer. To exploit the short-term stationary properties of 
natural sounds, many of these approaches process the signal in a 
time-frequency representation, most frequently the short-time 
discrete Fourier transform (STFT) domain. In this domain, the 
coefficients of the signal are complex-valued, and can therefore be 
represented by their absolute value (referred to in the literature 
both as STFT magnitude and STFT amplitude) and their phase. 
While the modeling and processing of the STFT magnitude has 
been the center of interest in the past three decades, phase has 
been largely ignored. 

In this article, we review the role of phase processing for 
speech enhancement in the context of assisted listening and 
speech communication devices. We explain why most of the 
research conducted in this field used to focus on estimating 
spectral magnitudes in the STFT domain, and why recently 
phase processing is attracting increasing interest in the speech 
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enhancement community. Further-
more, we review both early and 
recent methods for phase process-
ing in speech enhancement. We aim 
to show that phase processing is an 
exciting field of research with the 
potential to make assisted listening 
and speech communication devices 
more robust in acoustically challen-
ging environments. 

INTRODUCTION
Let us first consider the common speech enhancement setup con-
sisting of STFT analysis, spectral modification, and subsequent 
inverse STFT (iSTFT) resynthesis. The analyzed digital signal 

,x n^ h  with time index ,n  is chopped into L  segments with a 
length of N  samples, overlapping by N R-  samples, where R
denotes the segment shift. Each segment ,  is multiplied with the 
appropriately shifted analysis window ( )w n Ra ,-  and trans-
formed into the frequency domain by applying the discrete Fou-
rier transform (DFT), yielding the complex-valued STFT 
coefficients X C,k !,  for every segment ,  and frequency band .k
To compactly describe this procedure, we define the STFT opera-
tor: .X xSTFT= ^ h  Here, x  is a vector containing the complete 
time-domain signal x n^ h and X  is an N L#  matrix of all ,X ,k ,

which we will refer to as the spectrogram. Since we are interested 
in real-valued acoustic signals, we consider only complex symmet-
ric spectrograms  ,X CS N L! 1 #  where S  denotes the subset of 
spectrograms for which X X, ,N k k=, ,-  for all ,  and ,k  with X
being the complex conjugate of .X

After some processing, such as magnitude improvement, is 
applied on the STFT coefficients, a modified spectrogram XM  is 
obtained. From XM  a time-domain signal can be resynthesized 

through an iSTFT operation, denoted 
by x ( ) .XiSTFT=K M  For this, the 
inverse DFT of the STFT coefficients 
is computed and each segment is 
multiplied by a synthesis window 

( );w n Rs ,-  the windowed segments 
are then overlapped and added to 
obtain the modified time-domain sig-
nal. A final renormalization step is 

performed to ensure that, if no processing is applied to the spectral 
coefficients, there is perfect reconstruction of the input signal, 
i.e.,   .x xiSTFT STFT =^ ^ hh  The renormalization term, equal to 

,w n qR w n qR
q sa + +

3

3

=-

+ ^ ^h h/  is R -periodic and can be 
included in the synthesis window. A common choice for both 
w na ^ h and w ns ^ h is the square-root Hann window, which for 
overlaps such that /N R N!  (e.g., 50%, 75%, etc.) only requires 
normalization by a scalar. If the spectrogram is modified, using the 
same window for synthesis as for analysis can be shown to lead to a 
resynthesized signal whose spectrogram is closest to XM  in the 
least-squares sense [1]. This fact will turn out to be important for 
the iterative phase estimation approaches discussed later. 

Until recently, in STFT-based speech enhancement, the focus 
was on modifying only the magnitude of the STFT components, 
because it was generally considered that most of the insight 
about the structure of the signal could be obtained from the mag-
nitude, while little information could be obtained from the phase 
component. This would seem to be substantiated by Figure 1 
when considering only (a) and (b), where the STFT magnitude (a) 
and STFT phase (b) of a clean speech excerpt are depicted. In 
contrast to the magnitude spectrogram, the phase spectrogram 
appears to show only little temporal and spectral regularities. 
There are nonetheless distinct structures inherent to the spectral 
phase, but they are hidden to a great extent because the phase is 

[FIG1] (a) Magnitude spectrogram, (b) phase spectrogram, (c) group delay, and (d) IF deviation of the utterance ”glowed jewel-bright” 
using a segment length of 32 ms and a shift of 4 ms. 
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wrapped to its principle value, i.e.,   .X, ,
X
k k+# #r z r- =, ,  To 

reveal these structures, alternative representations have been pro-
posed, which consider phase relations between neighboring 
time-frequency points instead of absolute phases. Two examples 
of such representations are depicted in Figure 1(c) and (d). In 
(c), the negative derivative of the phase along frequency, known 
as the group delay, is shown. It has been shown to be a useful 
tool for speech enhancement, e.g., by Yegnanarayana and Mur-
thy [2]. Besides the group delay, the derivative of the phase 
along time, i.e.,   the instantaneous frequency (IF), also unveils 
structures in the spectral phase. For an improved visualization, 
in (d), we do not show the IF, but rather its deviation from the 
respective center frequency in Hz, which reduces wrapping 
along frequency [3], [4]. It is interesting to remark that the tem-
poral as well as the spectral derivatives of the phase both reveal 
structures similar to those in the magnitude spectrogram in (a). 
Please note that both phase transformations are invertible and 
thus carry the same information as the phase itself. No additional 
prior knowledge has been injected. 

The observed structures in the spectral phase can well be 
explained by employing models of the underlying signal, e.g., by 
sinusoidal models in the case of voiced speech [5]. Besides the 
structures in the phase that are caused by signal characteristics, 
neighboring time-frequency points also show dependencies due 
to the STFT analysis: first, because of the finite length of the seg-
ments, neighboring frequency bands are not independent; sec-
ond, successive segments overlap and hence share partly the 
same signal information. This introduces particular spectrotem-
poral relations between STFT coefficients within and across 
frames of the spectrogram, regardless of the signal. If the spectro-
gram is modified, these relations are not guaranteed to be main-
tained and the modified spectrogram XM  may not correspond to 
the STFT of any time-domain signal anymore. As a consequence, 
the resynthesized signal may have a spectrogram ( ),XG M  where 

( )  : ( ( )),X XSTFT iSTFTG =M M (1)

which is different from the desired spectrogram ,XM  as illus-
trated in Figure 2. Such spectrograms are called inconsistent,
while consistent spectrograms verify X XG =^ h  and can be 
obtained from a time-domain signal. 

Since the majority of speech enhancement approaches only 
modify the magnitude, the mismatch between the enhanced 
magnitude and the degraded phase will most likely lead to an 
inconsistent spectrogram. This implies that even if the esti-
mated magnitudes | |XM  are optimal with respect to some objec-
tive function, the magnitude spectrogram of the synthesized 
time-domain signal is not, as | ( ) | | |X XG !M M  (where | · |  denotes 
the element-wise absolute value). To maintain consistency, and 
thus also optimality, the STFT phase has to be taken into 
account as well. 

As a final illustration emphasizing the power of phase, it is 
interesting to remark that, from a particular magnitude spectro-
gram, it is possible to reconstruct virtually any time-domain signal 
with a carefully crafted phase. For instance, one can derive a 

magnitude spectrogram from that of a speech signal such that it 
yields either a speech signal similar to the original or a piece of 
rock music, depending on the choice of the phase. The point here 
is to exploit the inconsistency between magnitude and phase to 
make contributions of neighboring frames cancel each other just 
enough to reconstruct the energy profile of the target sound. 
Reconstruction is thus done up to a scaling factor, and quality is 
good albeit limited by dynamic range issues. An audio demonstra-
tion is available in http://www.jonathanleroux.org/research/
LeRoux2011ASJ03_sound_transfer.html. 

SPEECH ENHANCEMENT IN THE STFT DOMAIN
Speech enhancement is a field of research with a long-standing 
history. In this section, we will wrap up the different fields of 
research that have led to remarkable progress over the years. 
For a more detailed treatment and references to the original 
publications, see [6]. 

In the STFT domain, noisy spectral coefficients can, for 
instance, be improved using spectral subtraction or using mini-
mum mean squared error (MMSE) estimators of the clean 
speech spectral coefficients [6, Ch. 4]. Examples of the latter are 
the Wiener filter as an estimator of the complex speech coeffi-
cients and the short-time spectral amplitude estimator [7]. 
These MMSE estimators are driven by estimates of the speech 
and noise power spectral densities (PSDs). The noise PSDs can 
be estimated in speech pauses as signaled by a voice activity 
detector, by searching for spectral minima in each subband, or 
based on the speech presence probability [6, Ch. 6]. With the 
noise PSD at hand, the speech PSD can be estimated by sub-
tracting the noise PSD from the periodogram of the noisy sig-
nal. This has been shown to be the maximum likelihood (ML) 
optimal estimator of the clean speech PSD when considering 
isolated and independent time-frequency points and complex 
Gaussian distributed speech and noise coefficients [6, Sec. 4.2]. 
To reduce outliers, the ML speech PSD estimate is often 
smoothed, for instance, using the decision-directed approach 
[7] or more advanced smoothing techniques [6, Ch. 7]. 

Over the years, many improvements have been proposed 
resulting in a considerable progress thanks to better statistical 
models of speech and noise [6, Ch. 3], improved estimation of 
speech and noise PSDs [6, Ch. 6 and 7], combination with speech 
presence probability estimators [6, Ch. 5], and integration of per-
ceptual models [6, Sec. 2.3.3]. Recent years have seen an explosion 
of interest in data-driven methods, with model-based approaches 
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[FIG2] An illustration of the notion of consistency.
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such as nonnegative matrix factorization, hidden Markov models, 
and discriminative approaches such as deep neural networks. 
However, mainstream approaches have tended to ignore the 
phase, mainly due to the difficulty of modeling it and the lack of 
clarity about its importance, as discussed next. 

RISE, DECLINE, AND RENAISSANCE OF PHASE
PROCESSING FOR SPEECH ENHANCEMENT
The first proposals for noise reduction in the STFT domain arose in 
the late 1970s. While the spectral subtraction approaches only mod-
ified the spectral magnitudes, the role of the STFT phase was also 
actively researched at the time. In particular, several authors inves-
tigated conditions under which a signal is uniquely specified by only 
its phase or only its magnitude and proposed iterative algorithms 
for signal reconstruction from either one or the other (e.g., [1], [8], 
and references therein). For minimum or maximum phase systems, 
log-magnitude and phase are related through the Hilbert trans-
form, meaning that only the spectral phase (or only the spectral 
magnitude) is required to reconstruct the entire signal. But the 
constraint of purely minimum or maximum phase is too restrictive 
for real audio signals, and Quatieri [8] showed that more con-
straints are needed for mixed-phase signals. For instance, imposing 
a causality or a finite-length constraint on the signal and specifying 
a few samples of the phase or the signal itself is in some cases suffi-
cient to uniquely characterize the entire phase function from only 
the magnitude. Quatieri [8] also showed how to exploit such con-
straints to estimate a signal from its spectral magnitude: assuming 
some time-domain samples are known, and starting with an initial 
phase estimate and the known spectral magnitude, the signal is 
transformed to the time domain, where the given set of known 
samples is used to replace the corresponding time-domain samples. 
Then the time-domain signal is transformed back to the frequency 
domain, where the resulting magnitude is replaced by the known 
magnitude. This procedure is repeated for a certain number of iter-
ations. In the case of the STFT domain, the correlation between 
overlapping short-time analysis segments can be exploited to derive 
similar iterative algorithms that do not require time-domain sam-
ples to be known. A popular example of such methods is that of 
Griffin and Lim (GL) [1], which we describe in more detail later 
along with more recent approaches. While algorithms such as GL 
can also be employed with magnitudes that are estimated rather 
than measured from an actual signal, the quality of the synthesized 
speech and the estimated phase strongly depends on the accuracy of 
the estimated speech spectral magnitudes and artifacts such as 
echo, smearing, and modulations may occur [9]. 

To explore the relevance of phase estimation for speech 
enhancement, Wang and Lim [10] performed listening experi-
ments where the magnitude of a noisy speech signal at a certain 
signal-to-noise ratio (SNR) was combined with the phase of the 
same speech signal but distorted by noise at a different SNR. Lis-
teners were asked to compare this artificial test stimulus to a noisy 
reference speech signal and to set the SNR of the reference such 
that the perceived quality was the same for the reference and the 
test stimulus. The result of this experiment was that the SNR gain 
obtained by mixing noisy magnitudes with a less distorted phase 

resulted in typical SNR improvements of 1 dB or less. Hence, 
Wang and Lim concluded that improving phase was not critical in 
speech enhancement [10]. Similarly, Vary [11] showed that only 
for local SNRs below 6 dB a certain roughness could be perceived 
if the noisy phase was kept unchanged. Finally, Ephraim and 
Malah [7] investigated the role of phase improvement from a sta-
tistical perspective: they showed that, under a zero-mean circular 
Gaussian speech and noise model and assuming that time-fre-
quency points are mutually independent given the speech and 
noise PSDs, the MMSE estimate of the complex exponential of the 
speech phase has an argument equal to the noisy phase. Also, for 
more general models for the speech magnitudes with the same 
circularity assumption, it has been shown that the noisy phase is 
the ML optimal estimator of the clean speech phase, e.g.,  [12]. 
Note, however, that the independence assumption does not hold in 
general, and especially not for overlapping STFT frames, where 
part of the relationship is actually deterministic. 

As a consequence of these observations, subsequent research in 
speech enhancement focused mainly on improving magnitude 
estimation, while phase estimation received far less attention for 
the next two decades. Even methods that considered phase, either 
by use of complex domain models, or by integrating out phase in 
log-magnitude-based models in a sophisticated way [13], ultimately 
used the noisy phase because of similar circularity assumptions. 

However, as the performance of magnitude-only methods can 
only go so far without considering phase, and with the increase in 
computational power of assisted listening and speech communica-
tion devices, all options for improvements are back on the table. 
Therefore, researchers started reinvestigating the role of the STFT 
phase for speech intelligibility and quality [14], [15]. For instance, 
Kazama et al. [14] investigated the influence of the STFT segment 
length on the role of phase for speech intelligibility for a segment 
overlap of 50%. They found that, while for signal segments 
between 4 ms and 64 ms the STFT magnitude spectrum is more 
important than the phase spectrum, for segments shorter than 
2 ms and segments longer than 128 ms, the phase spectrum is 
more important. These results are consistent with Wang and Lim’s 
earlier conclusions [10]. To focus on practical applications, Paliwal 
et al. [15] investigated signal segments of 32 ms length, but in con-
trast to Wang and Lim [10] and Kazama et al. [14], they used a seg-
ment overlap of 7/8th instead of 1/2 in the STFT analysis, and they 
also zero-padded the time segments before computing the Fourier 
transform. With this increased redundancy in the STFT, the perfor-
mance of existing magnitude-based speech enhancement can be 
significantly improved [15] if combined with enhanced phases. For 
instance, Paliwal et. al [15, case 4] report an improvement of 0.2 
points of the mean opinion score (MOS) predicted by the instru-
mental “perceptual evaluation of speech quality” (PESQ) measure 
for white Gaussian noise at an SNR of 0 dB when combining an 
MMSE estimate of the clean speech magnitude with the oracle 
clean speech phase in a perfectly reconstructing STFT framework. 

Paliwal et al.’s research confirmed the importance of develop-
ing and improving phase processing algorithms. This has recently 
been the focus of research by multiple groups. We now survey the 
main directions that have been investigated so far: better and 
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faster phase estimation from magnitude, modeling of the signal 
phase, group delay and transient processing, and joint estimation 
of phase and magnitude. 

ITERATIVE ALGORITHMS FOR PHASE ESTIMATION
Among the first proposals for phase estimation are iterative 
approaches, which aim at estimating a time-domain signal 
whose STFT magnitude is as close as possible to a target one 
[1], [8]. Indeed, if the STFT magni-
tude of two signals are close, the 
signals will in general be perceptu-
ally close as well. Thus, finding a 
signal whose STFT magnitude is 
close to a target one is considered a 
valid goal when looking to obtain a 
signal that “sounds” like that target 
magnitude. This motivated intense 
research on algorithms to estimate 
signals (or equivalently a corresponding phase) given target 
magnitudes, with applications such as speech enhancement or 
timescale modification. In the case of speech enhancement, the 
magnitude is typically obtained through one of the many mag-
nitude estimation algorithms mentioned earlier, while some 
estimate of the phase, such as that of the noisy mixture, may 
further be exploited for initialization or as side information. 

The most well known and fundamental of these approaches 
is that of Griffin and Lim [1], which consists in applying STFT 
synthesis and analysis iteratively while retaining information 
about the updated phases and replacing the updated magni-
tudes by the given ones. This exploits correlations between 
neighboring STFT frames to lead to an estimate of the spectral 
phases and the time-domain signal. 

Given a target magnitude spectrogram ,A  Griffin and Lim 
formulated the problem as that of estimating a real-valued time-
domain signal x  such that the magnitude of its STFT X  is closest 
to A  in the least-squares sense, i.e., estimating a signal x  which 
minimizes the squared distance 

( , ) || | | .x Ad X A
,

, ,
k

k k
2= -

,

, ,/ (2)

They proposed an iterative procedure which can be proven to min-
imize, at least locally, this distance. Starting from an initial signal 
estimate x( )0  such as random noise, iterate the following compu-
tations: compute the STFT X( )i  of the signal estimate x( )i  at step 
;i  compute the phase estimate ( )iz  as the phase of ,X( )i

;X( ) ( )i i+z =  compute the signal estimate x( )i 1+  at step i 1+  as 
the iSTFT of .Aej ( )iz  Using the operator G  defined in (1), this can 
be reformulated as 

( ) .AeG( )i 1 j ( )i

+z = z+ (3)

This procedure can be proven to be nonincreasing as well for a 
measure of inconsistency of the spectrogram Aej ( )iz  defined 
directly in the time-frequency domain: 

( ) ( ) .A Ae eI G j j
2
2

z = -z z (4)

Indeed, one can easily show that ( , ) ( ) ( , ) .x A x Ad dI( ) ( ) ( )i i i1 # #z+

Interestingly, if only parts of the phase are updated according to (3), 
the nondecreasing property still holds for ( ),I z  but whether it still 
does for ( , )x Ad  has not been established. 

Due to the extreme simplicity of its implementation and to its 
perceptually relatively good results, GL was used as the standard 
benchmark and a starting point for multiple extensions in the 
three decades that have followed, even after better and only mar-

ginally more involved algorithms 
had been devised. Most of the algo-
rithms that have been developed 
since attempted to fix GL’s issues, of 
which there are several: first, conver-
gence typically requires many itera-
tions; second, GL does not provide a 
good initial estimate, starting from 
random phases with no considera-
tions for cross-frame dependencies; 

third, the updates rely on computing STFTs, which are computa-
tionally costly even when implemented using fast Fourier trans-
forms (FFTs); fourth, the updates are typically performed on whole 
frames, without emphasis on local regularities; and finally, the 
original version of GL processes signals in batch mode. 

On this last point, it is interesting to note that Griffin and Lim 
did actually hint at how to modify their algorithm to use it for 
online applications. They described briefly in [1] and with more 
details in [16] how to sequentially update the phase using “cas-
caded processors” that each take care of one iteration; their partic-
ular proposal however still incurs an algorithmic delay of I  times 
the window length if performing I  iterations. In [16], Griffin also 
presented several methods that he referred to as “sequential esti-
mation methods”: these only incur a single frame delay and could 
thus be used for online application, the best performing one being 
reported as on par with batch GL. 

While one can already see in Griffin’s account [16] several ele-
ments to modify GL into an algorithm that can lead to high qual-
ity reconstruction in a real-time setting, such as sliding-block 
analysis across the signal and the use of windows that compensate 
for partially reconstructed frames, these ideas seem to have gone 
largely unnoticed and it is not until much later that they were 
incorporated into more refined methods. Beauregard, Zhu, and 
Wyse proposed consecutively two algorithms for real-time signal 
reconstruction from STFT magnitude, the real-time iterative spec-
trogram inversion (RTISI) algorithm and RTISI with look ahead 
(RTISI-LA) [17]. RTISI aims at improving the original batch GL in 
two respects: allowing for online implementation, and generating 
better initial phase estimates. The algorithm considers the frames 
sequentially in order, and at frame ,,  it only uses information 
from the current frame’s magnitude and the previous overlapping 
frames. The initial phase estimate ( )0

z,  for frame ,  is obtained as 
the phase of the partial reconstruction from the previous frames, 
windowed by an analysis window, which already ensures some 
consistency between the phases of the current and previous 
frames. An iterative procedure similar to GL is then applied, lim-
ited to the current frame’s phase: at each iteration, frame , ’s 

FINDING A SIGNAL WHOSE 
STFT MAGNITUDE IS CLOSE TO

A TARGET ONE IS CONSIDERED A 
VALID GOAL WHEN LOOKING TO

OBTAIN A SIGNAL THAT “SOUNDS” 
LIKE THAT TARGET MAGNITUDE. 
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contribution to the signal is obtained by the inverse DFT of the 
phase ( )i

z,  combined with the target magnitude; frame , ’s contri-
bution is then combined by overlap-add to the contribution of the 
previous frames, leading to a signal estimate for frame , ; the 
phase ( )i 1

z,
+  is estimated as the phase of this signal estimate to 

which the analysis window is applied. 
RTISI does lead to better results than GL for the first few itera-

tions, but it quickly reaches a plateau and is ultimately signifi-
cantly outperformed by GL. This is mainly due to the fact that 
RTISI does not consider information from future frames at all, 
even though the contribution of these future frames will later on 
be added to that of the past and current frames, effectively altering 
the estimation performed earlier. Its authors thus proposed an 
extension to RTISI including an M  frame look-ahead, RTISI-LA. 
Instead of considering only the current frame as active, RTISI-LA 
performs GL-type updates on the phases in a block of multiple 
frames. The contribution of future frames outside the block is dis-
carded during the updates, because the absence of a reliable phase 
estimate for them is regarded as likely to make their contribution 
more of a disturbance than a useful clue. This creates an asymme-
try, which Zhu et al.  [17] proposed to partially compensate by 
using asymmetric analysis windows with a reverse effect. Although 
the procedure relies on heuristic considerations, the authors show 
that it leads to much better performance than GL for a given 
number of iterations per block. 

While RTISI and RTISI-LA were successful in overcoming 
GL’s issues regarding online processing and poor initialization, 
they did not tackle the problems of heavy reliance on costly FFT 
computations and lack of care for local regularities in the time-
frequency domain. Solving these problems was difficult in the 
context of classical approaches relying on enforcing constraints 
both in the time-frequency domain (to impose a given magni-
tude) and the time domain (to ensure that magnitude and phase 
are consistent), because they inherently had to go back and 
forth between the two domains, processing whole frames at a 
time. A solution was proposed by Le Roux et al. [18], whose key 
idea was to bypass the time domain altogether and reformulate 
the problem within the time-frequency domain. The standard 
operation of classical iterative approaches, i.e., computing the 
STFT of the signal obtained by iSTFT from a given spectrogram, 
can indeed be considered as a linear operator in the time-fre-
quency domain. Le Roux et al. noticed that the result of that 
operation at each time-frequency bin can be well approximated 
by a local weighted sum (LWS) with complex coefficients on a 
small neighborhood of that bin in the original spectrogram. 
While the very small number of terms in the sum does not suf-
fice to reduce the complexity of the operation compared to using 
FFTs, the locality of the sum opens the door to selectively updat-
ing certain time-frequency bins, as well as to immediately propa-
gating the updated value for a bin in the computations of its 
neighbors’ updates. Taking advantage of the sparseness of natu-
ral sound signals, Le Roux et al. showed in particular that focus-
ing first on updating only the bins with high energy not only 
reduced greatly the complexity of each iteration, but also could 
lead to better initializations, the high energy regions serving as 

anchors for lower energy ones. While the LWS algorithm was 
originally proposed as an extension to GL for batch-mode com-
putations, the authors later showed that it could be effectively 
used in online mode as well in combination with RTISI-LA [19]. 
Interestingly, a different prioritization of the updates based on 
energy, at the frame level instead of the bin level, was also suc-
cessfully used by Gnann and Spiertz to improve RTISI-LA [20]. 

Recently, several authors investigated signal reconstruction 
from magnitudes with specific task-related side information. Those 
developed in the context of source separation are of particular inter-
est to this article. Gunawan and Sen [21] proposed the multiple 
input spectrogram inversion (MISI) algorithm to reconstruct mul-
tiple signals from their magnitude spectrograms and their mixture 
signal. The phase of the mixture signal acts as very powerful side 
information, which can be exploited by imposing that the recon-
structed complex spectrograms add up to the mixture complex 
spectrogram when estimating their phases, leading to much better 
reconstruction quality than in situations where the mixture signal 
is not available. Sturmel and Daudet’s partitioned phase retrieval 
(PPR) method [9] also handles the reconstruction of multiple 
sources. Their proposal was to reconstruct the phase of the magni-
tude spectrogram obtained by Wiener filtering by applying a GL-
like algorithm, which keeps the mixture phase in high SNR regions 
as a good estimate for the corresponding source and only updates 
the phase in low- to mid-SNR regions. Both methods, however, 
only modify the phase of the sources, and thus implicitly assume 
that the input magnitude spectrograms are close to the true source 
spectrograms, which is not realistic in general in the context of 
blind or semiblind source separation. Sturmel and Daudet proposed 
to extend MISI to allow for modifications of both the magnitude 
and phase, leading to the informed source separation using iterative 
reconstruction (ISSIR) method [22], and showed that it is efficient 
in the context of informed source separation where a quantized ver-
sion of the oracle magnitude spectrograms is available. Methods to 
jointly estimate phase and magnitude for blind source separation 
and speech enhancement will be presented later. 

SINUSOIDAL MODEL-BASED PHASE ESTIMATION
In contrast to the iterative approaches presented in the previous 
section, sinusoidal model-based phase estimation [4] does not 
require estimates of the clean speech spectral magnitudes. 
Instead, the clean spectral phase is estimated using only an esti-
mate of the fundamental frequency, which can be obtained from 
the degraded signal. However, since usage of the sinusoidal model 
is reasonable only for voiced sounds, these approaches do not 
provide valid spectral phase estimates for unvoiced sounds, like 
fricatives or plosives. 

For a single sinusoid, ,sin n {X +^ h  with normalized angular 
frequency ,X  the phase difference between two samples 
n n R2 1= +  is given by ( ) ( ) .n n R2 1z z zD X= - =  For a har-
monic signal, H  sinusoids at integer multiples of the normalized 
angular fundamental frequency ,0X  i.e., ( )h 1h

0 !X X= +

, ,0 2rh6  are present at the same time: 

,coss n A n n nh

h

H
h h

0

1

$ {X= +
=

-

^ ^ ^ ^h h h h/ (5)
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with real-valued amplitude Ah  and initial time-domain phase h{

for harmonic component .h  Due to the fixed relation between the 
frequencies, (5) is also referred to as the harmonic model, which is 
a special case of the more general sinusoidal model. The harmonic 
frequencies and amplitudes are assumed to be slowly changing 
over time with respect to the length N  of an STFT signal segment 
and we define /A A R N 2h h ,= +, ^ h and /R N 2h h ,X X= +, ^ h as 
the representative harmonic amplitudes and frequencies for the 
th,  signal segment.

In speech enhancement, the sinusoidal model has, for instance, 
been employed in [23], where the model parameters are iteratively 
estimated from a noisy observation in the STFT domain, and the 
enhanced signal is synthesized using (5). In the absence of noise, 
synthesis results are reported to be almost indistinguishable from 
the clean speech signal, underlining the capability of (5) to accu-
rately model voiced human speech. In contrast to [23], we now dis-
cuss how the sinusoidal model (5) can be employed to directly 
reconstruct the STFT phase. If the frequency resolution of the 
STFT is high enough to resolve the harmonic frequencies hX  in 
(5), in each frequency band k  only a single harmonic component 
is dominant. The normalized angular frequency hX,  of the har-
monic that dominates frequency band k  is denoted as 

| / | ,argmin k N2,k
h

h
rX X= -, ,

X,

" ,N (6)

i.e., the harmonic frequency that is closest to the center frequency 
/k N2r  of the kth  frequency band. Interpreting the STFT of a sig-

nal as the output of a complex filter bank subsampled by the hop 
size ,R  the spectral phase ,k

Sz ,  changes from segment to segment 
according to 

,mod modR, , , , ,k k k k k
2

1
2

1
S S S Sz z z zX D= + = +, , , ,,

r r
- -^ ^h hN (7)

where the modulo operator mod
2
$

r
^ h wraps the phase to values 

between 0 and 2r.
When the clean signal s n^ h is deteriorated by noise, the spec-

tral phases and thus the temporal phase differences ,k
SzD ,  are dete-

riorated as well. With an estimate of the fundamental frequency at 
hand, however, the temporal phase relations in each band can be 
restored using (7) recursively from segment to segment. 

Almost 50 years ago, a similar approach for the propagation of 
the spectral phase along time was taken in the phase vocoder [5] 
for time-scaling or pitch-shifting of acoustic signals. The temporal 
STFT phase difference is modified according to 

,, , ,k k k1
S S Sz z a zD= +, , ,-
t t (8)

where in this context, ,
S
kzD ,  is often referred to as the IF. By scaling 

,
S
kzD ,  with the positive real-valued factor ,a  the IF of the signal 

component is either increased 12a^ h or decreased .11a^ h

Comparing (7) to (8), the phase estimation along time for speech 
enhancement can be expressed in terms of a phase vocoder with a 
scaling factor of .1a =  However, the application is completely dif-
ferent: instead of deliberately modifying the original phase, the clean 
speech phase is estimated from a noisy observation. It is worth not-
ing that for the original phase vocoder, in contrast to 

phase estimation in speech enhancement, no fundamental frequency 
estimate is needed, as the phase difference , , ,k k k 1

S S Sz z zD = -, , ,-  can 
be taken directly from the clean original signal. 

For an accurate estimation of the clean spectral phase along 
segments using (7) a proper initialization is necessary [4]. In 
voiced sounds, the bands between spectral harmonics contain only 
little signal energy and, in the presence of noise, these bands are 
likely to be dominated by the noise component, i.e., ,, ,k k

Y N.z z, ,

where ,k
Yz ,  and ,k

Nz ,  are the spectral phases of the noisy mixture 
and the noise, respectively. Even though the phase might be set 
consistent within each band, the spectral relations across fre-
quency bands are distorted already at the initialization stage. 
Directly applying (7) to every frequency band therefore does not 
necessarily yield phase estimates that could be employed for phase-
based speech enhancement [4]. 

In the phase vocoder, this problem can be alleviated by aligning 
phases of neighboring frequency bands relative to each other, 
which is known as phase locking, e.g., [24]. There, the phase is 
evolved along time only in frequency bands that directly contain 
harmonic components. The phase in the surrounding bands, 
which are dominated by the same harmonic, is then set relative to 
the modified phase. For this, the spectral phase relations of the 
original signal are imposed on the modified phase spectrum. 

In the context of speech enhancement, the same principle has 
been incorporated to improve the estimation of the clean speech 
spectral phase [4]. However, since only a noisy signal is observed, 
the clean speech phase relations across frequency bands are not 
readily available. To overcome this limitation, again the sinusoidal 
model is employed. The spectrum of a harmonic signal segment is 
given by the cyclic convolution of a comb-function with the trans-
fer function of the analysis window, which causes spectral leakage. 
The spectral leakage induces relations not only between the ampli-
tudes, but also between the phases of neighboring bands. It can be 
shown that phases of bands that are dominated by the same 

[FIG3] Symbolic spectrogram illustrating the sinusoidal model-
based phase estimation [4]. Starting from the noisy phase at the 
onset of a voiced sound in segment ,0,  in bands containing 
harmonic components (red) the phase is estimated along 
segments. Based on the temporal estimates, the spectral phase 
of bands between the harmonics (blue) is then inferred across 
frequency.
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harmonic are directly related to each 
other through the phase response of 
the analysis window ;kWz  see, e.g., [4] 
for more details. Accordingly, starting 
from a phase estimate at a band that 
contains a spectral harmonic, possi-
bly obtained using (7), the phase of 
the surrounding bands can be inferred by accounting for the phase 
shift introduced by the analysis window. For this, only the funda-
mental frequency and the phase response k

Wz  are required, of 
which the latter can be obtained offline either from the window’s 
discrete-time Fourier transform (DTFT) or from its DFT with a 
large amount of zero padding. The complete setup of [4] is illus-
trated in Figure 3. 

It can be argued that for speech enhancement, the phase recon-
struction across frequency bands between harmonics is more 
important than the temporal reconstruction on the harmonics: on 
the one hand, the local SNR in bands that directly contain har-
monics is rather large for many realistic SNR situations, i.e.,  

., ,k k
Y S.z z, ,  Thus, the temporal alignment of the harmonic com-

ponents is maintained rather well in the noisy signal. Further, the 
noisy phase ,k

Yz ,  in these bands typically yields a good starting 
point for the phase reconstruction along frequency. On the other 
hand, frequency bands between harmonics are likely to be domi-
nated by the noise, i.e.,   ,, ,k k

Y N.z z, ,  and the clean phase relations 
across bands are strongly disturbed. Here, the possible benefit of 
the phase reconstruction is much larger. 

Even though the employed model is simple and limited to 
purely voiced speech sounds, the obtained phase estimates yield 
valuable information about the clean speech signal that can be 
employed for advanced speech enhancement algorithms. Interest-
ingly, even the sole enhancement of the spectral phase can lead to a 
considerable reduction of noise between harmonic components of 
voiced speech after overlap-add [4]. This is because the speech 
components of successive segments are adding up constructively 
after the phase modifications, while the noise components suffer 
from destructive interference, since the phase relations of the noise 
have been destroyed. However, speech distortions are also intro-
duced, which are substantially reduced when the estimated phase 
is combined with an enhanced magnitude, as, e.g., in [25]. Besides 
its value for signal reconstruction, the estimated phase can also be 
utilized as additional information for phase-aware magnitude esti-
mation [25] and even for the estimation of clean speech complex 
coefficients [12], which will be discussed in more detail later. 

GROUP DELAY AND TRANSIENT PROCESSING
Structures in the phase are not limited to voiced sounds, but are 
also present for other sounds, like impulses or transients. These 
structures are well captured by the group delay, which can be seen 
in Figure 1(c), rendering it a useful representation for phase pro-
cessing. For example, the group delay has been employed to facili-
tate clean speech phase estimation in phase-sensitive noise 
reduction [26]. It can be shown geometrically that if the spectral 
magnitudes of speech and noise are known, only two possible 
combinations of phase values remain, both of which perfectly 

explain the observed spectral coeffi-
cients of the mixture. In [26] (and 
the references therein), Mowlaee and 
Saedi proposed to solve this ambigu-
ity by choosing the phase combin-
ation that minimizes a function of 
the group delay. 

Besides phase estimation, the group delay has successfully been 
employed for the detection of transients sounds, such as sounds of 
short duration and speech onsets. To illustrate the role of the phase 
for transient sounds, let us consider a single impulse as the sim-
plest example. The DFT of such a pulse is ,Ae N

n k2j 0r-  where n0  is 
the shift of the peak relative to the beginning of the current seg-
ment and A  denotes the spectral magnitude. Hence, we observe a 
linear phase with a constant slope of .( / )Nn2 0r-  For impulsive 
signals, we accordingly expect a phase difference across frequency 
bands that is approximately constant, i.e., a constant group delay. 
That this is the case also for real speech sounds can be seen in Fig-
ure 1(c), where transient sounds show vertical lines with almost 
equal group delay. 

For the detection of impulsive sounds, in [27] a linearity index 
kLIz ^ h is defined, which measures the deviation of the observed 

phase difference across frequencies to the one that is expected for 
an impulse at ,n0  i.e., ( / ) .Nn2 0r-  The observed phase differ-
ences are weighted with the spectral magnitude and averaged over 
frequency to obtain an estimate of the time domain offset .n0  Only 
if kLIz ^ h is close to zero, i.e.,  the observed phase fits well to the 
expected linear phase, an impulsive sound is detected. The detec-
tion can be made either at a segment level or for each time-
frequency point separately. While the former states if an impulsive 
sound is present in the current signal segment or not, the latter 
allows to localize frequency regions that are dominated by an 
impulsive sound, such as a narrowband onset. 

Apart from the group delay, the IF, which corresponds to the 
temporal derivative of the phase, has also been employed for the 
detection of transient sounds, e.g., in [28] and the references 
therein. For steady-state signals, like voiced sounds, the IF is 
changing only slowly over time, due to the temporal correlation of 
the overlapping segments. When a transient is encountered, how-
ever, the most current segment differs significantly from previous 
segments and thus the IF also changes abruptly. This can be 
observed in Figure 1(d), where at speech onsets thin vertical lines 
appear in the IF deviation. Hence, the change of the IF from seg-
ment to segment—and its distribution—allow for the detection of 
transient sounds, such as note onsets [28]. 

The phase of transient sounds is not only relevant for detection, 
but also for the reduction of transient noise. In low SNR time-fre-
quency regions, the observed noisy phase is close to the approxi-
mately linear phase of the transient noise. This can lead to artifacts 
in the enhanced signal if only the spectral magnitude is improved 
and the noisy phase is used for signal reconstruction: usage of the 
phase of the transient noise reshapes the enhanced time-domain 
signal in an uncontrolled way, such that it may again depict an 
undesired transient behavior. Even for a perfect magnitude esti-
mate, the interfering noise is not perfectly suppressed if the phase 

THE PHASE OF TRANSIENT
SOUNDS IS NOT ONLY RELEVANT

FOR DETECTION, BUT ALSO
FOR THE REDUCTION OF

TRANSIENT NOISE.
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is not processed alongside. To illustrate this, let us consider a 
speech signal degraded by an impulse train with a period length of 

,T0  which is nonzero every N T fs0 0=  samples. In Figure 4, the 
noisy signal (a) is presented together with the result obtained 
when combining the true clean speech STFT magnitudes with the 
noisy phase (b). Even though the clean magnitude is employed, 
which represents the best possible result for phase-blind magni-
tude enhancement, the time-domain signal still depicts residual 
impulses, which are caused by the noisy phase. In regions where 
the enhanced spectral magnitude is close to zero, i.e.,   in speech 
absence, the phase is not relevant and the peaks are well sup-
pressed. During speech presence, however, the spectral magnitude 
is nonzero and the phase becomes important. Accordingly, the 
residual impulses are most prominent in regions with some speech 
energy at low local SNRs, where the noisy phase is close to the 
phase of the impulsive noise. 

Recently, Sugiyama and Miyahara proposed the concept of 
phase randomization to overcome this issue; see, e.g., [27] and 
references therein. First, time-frequency points that are domi-
nated by speech are identified by finding spectral peaks in the 
noisy signal. These peaks are excluded from the phase randomi-
zation to avoid speech distortions. To further narrow down 
time-frequency regions where randomization of the spectral 
phase is sensible, phase-based transient detection can be 
employed as well [27]. Then, the spectral phase in bins classified 
as dominated by transient noise is randomized by adding a 
phase term that is uniformly distributed between r-  and .r  In 
this way, the approximately linear phase of the dominant noise 
component is neutralized. The effect of phase randomization is 
depicted in Figure 4(c), where a perfect magnitude estimate is 
combined with the modified phase for signal reconstruction. It 
can be seen that the residual peaks that are present when the 
noisy phase is employed are strongly attenuated, showing that 
phase randomization can indeed lead to a considerable increase 
of noise reduction, especially in low local SNRs. It is interesting 
to note that while the previously described iterative and sinusoi-
dal model-based approaches aim at estimating the phase of the 
clean speech signal, the phase randomization approach merely 
aims at reducing the impact of the phase of the noise on the 

enhanced speech signal. Although the presented example is just 
a simple toy experiment, it still highlights the potential of phase 
randomization toward an improved suppression of transient 
noise, which has also been observed for real-world impulsive 
noise, like tapping noise on a touchscreen [27]. 

RELATION BETWEEN PHASE- AND 
MAGNITUDE ESTIMATION
So far, we have discussed phase estimation using iterative 
approaches, sinusoidal model-based approaches, and group 
delay approaches; we now address the question of how STFT 
phase estimation can best be employed to improve speech 
enhancement. The most obvious way to do this is to combine 
enhanced speech spectral magnitudes in the STFT domain with 
the estimated or reconstructed STFT phases. It is interesting to 
note that Wang and Lim [10] already stated that obtaining a 
more accurate phase estimate than the noisy phase is not worth 
the effort “if the estimate is used to reconstruct a signal by 
combining it with an independently estimated magnitude [...]. 
However, if a significantly different approach is used to exploit 
the phase information such as using the phase estimate to fur-
ther improve the magnitude estimate, then a more accurate 
estimation of phase may be important” [10]. However, at that 
point it was not clear how a phase estimate could be employed 
to improve magnitude estimation. 

Gerkmann and Krawczyk [25] derived an MMSE estimator of 
the spectral magnitude when an estimate of the clean speech 
phase is available, referred to as phase-sensitive or phase-aware
magnitude estimation. They were able to show that the informa-
tion of the speech spectral phase can be employed to derive an 
improved magnitude estimator that is capable of reducing noise 
outliers that are not tracked by the noise PSD estimator. In babble 
noise, in a blind setup, the PESQ MOS can be improved by 0.25 
points in voiced speech at 0 dB input SNR [25]. Further experi-
mental results are given in the following section. 

Instead of estimating phase and magnitude separately, one may 
argue that they should ideally be jointly estimated. The first step in 
this direction was proposed by Le Roux and Vincent [29] and refer-
ences therein in the context of Wiener filtering for speech 

[FIG4] (a) Speech degraded by a click train. (b) Signal obtained by combination of the clean speech spectral magnitude with the noisy 
phase. (c) Signal after supplemental phase randomization. Samples that contain a click are highlighted in red.
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enhancement. As a classical Wiener 
filter only changes the magnitudes in 
the STFT domain, the modified spec-
trum XN  is inconsistent, meaning 
that ( ( )) .X XSTFT iSTFT !N N  In con-
trast to this, in [29] the relationship 
between STFT coefficients across 
time and frequency is taken into 
account, leading to the consistent 
Wiener filter [29], which modifies 
both the magnitude and the phase of 
the noisy observation to obtain the separated speech. Wiener filter 
optimization is formulated as a maximum a posteriori problem 
under Gaussian assumptions, and a consistency-enforcing term is 
added either through a hard constraint or a soft penalty. Optimiza-
tion is respectively performed directly on the signal in the time 
domain or jointly on phase and magnitude in the complex time-
frequency domain, through a conjugate gradient method with a 
well-chosen preconditioner. Thanks to this joint optimization, the 
consistent Wiener filter was shown to lead to an improved separ-
ation performance compared to the classical Wiener filter and 
other methods that attempt to use phase information in combin-
ation with variance estimates [9], [21], [22], in an oracle scenario 
as well as in a blind scenario where the speech spectrum is 
obtained by spectral subtraction from a stationary estimate of the 
noise spectrum. 

To combine phase-sensitive magnitude estimation and iterative 
approaches, Mowlaee and Saeidi [26] proposed placing the phase-
sensitive magnitude estimator into the loop of an iterative 
approach that enforces consistency. Starting with an initial group-
delay-based phase estimate, they proposed to estimate the clean 
speech spectral magnitude using a phase-sensitive magnitude esti-
mator similar to [25]. After computing the iSTFT and the STFT 
they reestimated the clean speech phase, and from this reestimate 

the magnitudes. With this approach, 
convergence is reached after only 
few iterations. 

Another way to jointly estimate 
magnitudes and phases is to derive 
a joint MMSE estimator of magni-
tudes and phases directly in the 
STFT domain when an uncertain 
initial phase estimate is available. 
This phase-aware complex estima-
tor is referred to as the complex 

estimator with uncertain phase (CUP) [12]. The initial phase 
estimate can be obtained by an estimator based on signal charac-
teristics, such as the sinusoidal model-based approach [4]. Using 
this joint MMSE estimator [12], no STFT iterations are required. 
The resulting magnitude estimate is a nonlinear tradeoff 
between a phase-blind and a phase-aware magnitude estimator, 
while the resulting phase is a tradeoff between the noisy phase 
and the initial phase estimate. These tradeoffs are controlled by 
the uncertainty of the initial phase estimate, avoid processing 
artifacts, and lead to an improvement in predicted speech quality 
[12]. Experimental results for the CUP estimator are given in the 
following section. 

EXPERIMENTAL RESULTS
In this section, we demonstrate the potential of phase processing 
to improve speech enhancement algorithms. To focus only on the 
differences due to the incorporation of the spectral phases, we 
choose algorithms that employ the same statistical models and 
PSD estimators: for the estimation of the noise PSD we choose the 
speech presence probability-based estimator with fixed priors (see 
[6, Sec. 6.3] and references therein) while for the speech PSD we 
choose the decision-directed approach [7]. We assume a complex 
Gaussian distribution for the noise STFT coefficients and a heavy-
tailed |-distribution for the speech magnitudes. Furthermore, we 
use an MMSE estimate of the square root of the magnitudes to 
incorporate the compressive character of the human auditory sys-
tem. These models are employed in the phase-blind magnitude 
estimator [30], the phase-aware magnitude estimator [25], and the 
phase-aware CUP [12]. We use a sampling rate of 8 kHz and 32 ms 
spectral analysis windows with 7/8th overlap to facilitate phase 
estimation. To assess the speech quality, we employ PESQ as an 
instrumental measure that has been originally proposed for speech 
coding applications but has been show to correlate with subjective 
listening tests also for enhanced speech signals. The results are 
averaged over pink noise modulated at 0.5 Hz, stationary pink 
noise, babble noise, and factory noise, where the latter three are 
obtained from the NOISEX-92 database. To have a fair balance 
between male and female speakers, per noise type, the first 100 
male and the first 100 female utterances from dialect region 6 of 
the Texas Instruments and Massachusetts Institute of Technology 
(TIMIT) training database are employed. The initial phase estimate 
is obtained based on a sinusoidal model [4], which only yields a 
phase estimate in voiced speech. The fundamental frequency is 
estimated using PEFAC from the voicebox  toolkit (http://www.

[FIG5] The PESQ improvement over the noisy input. The results 
are averaged over four noise types. Evaluated (a) on voiced 
speech and (b) on the entire signal.
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ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox.html). Because with [4] we 
only have a phase estimate in voiced 
sounds, we show the improvement in 
voiced segments alongside the overall 
improvement for entire utterances in 
Figure 5. When the fundamental fre-
quency estimator detects unvoiced 
speech segments, the estimators fall 
back to a phase-blind estimation. 
Thus, if evaluated over entire signals, 
the results of the phase-aware esti-
mators will get closer to the phase-blind approaches while the 
general trends remain. 

It can be seen that employing phase information to improve 
magnitude estimation [25] can indeed improve PESQ. The domi-
nant benefit of the phase-aware magnitude estimators is that the 
phase provides additional information to distinguish between noise 
outliers and speech. Thus, the stronger the outliers after process-
ing with phase-blind approaches, the larger the potential benefit of 
phase-aware processing. While here we show the average result 
over four noise types, a consistent improvement for the tested non-
stationary noise types has been observed. While in stationary pink 
noise the PESQ scores are virtually unchanged, the largest 
improvements are achieved in babble. This is because babble 
bursts are often of high energy and may result in large outliers in 
phase-blind magnitude estimation that can be reduced by exploit-
ing the additional information in the phase. 

When an initial phase estimate is also employed as uncertain 
prior information when improving the spectral phase as proposed 
in the phase-aware complex estimator CUP [12], the performance 
can be improved further. The CUP estimator [12] employs the 
probability of a signal segment being voiced to control the cer-
tainty of the initial phase estimate. In unvoiced speech, the uncer-
tainty is largest, effectively resulting in a phase-blind estimator. 
Therefore, again, we can only expect a PESQ improvement in 
voiced speech. Compared to phase-blind magnitude estimation 
[30] in voiced speech and at an input SNR of 0 dB, an improve-
ment in PESQ by 0.12 points is achieved when all parameters are 
blindly estimated, while 0.18 points are gained with an oracle fun-
damental frequency. Considering that the improvement of the 
phase-blind estimator improves PESQ by 0.46 points, the addi-
tional improvement of 0.18 points by incorporating phase infor-
mation in voiced speech is remarkable (factor 1.4), and 
demonstrates the potential of phase processing for the improve-
ment of speech enhancement algorithms. While the average 
improvements using phase processing are still moderate, in spe-
cific scenarios, e.g., in voiced sounds or impulsive noise, phase pro-
cessing can help to reduce noise more effectively than using 
phase-blind approaches. Audio examples can be found at www.
speech.uni-oldenburg.de/pasp.html. 

FUTURE DIRECTIONS
While the majority of single-channel STFT domain speech 
enhancement algorithms only address the modification of STFT 

magnitudes, in this article we 
reviewed methods that also involve 
STFT phase modifications. We 
showed that phase estimation could 
be done mainly based on models of 
the signal or by exploiting redun-
dancy in the STFT representation. 
Examples for model-based algo-
rithms are sinusoidal model-based 
approaches, and approaches that 
employ the group delay. By contrast, 
iterative approaches mainly rely on 

the spectrotemporal correlations introduced by the redundancy 
of the STFT representation with overlapping signal segments. 
While the results of the instrumental evaluations indicate that a 
sophisticated utilization of phase information can lead to 
improvements in speech quality, for a conclusive assessment, for-
mal listening tests are required, rendering the subjective evalu-
ation of particularly promising phase-aware algorithms a 
necessity for future research. 

Despite recent advances, there are still many open issues in 
phase processing. For instance, similar to magnitude estimation, 
phase estimation is still difficult in very low SNRs. A promising 
approach for performance improvement is to join the different 
types of phase processing approaches, such as by including more 
explicit signal models into iterative phase estimation approaches or 
vice versa. A first step in this direction is presented in [26]. As 
another example, while the consistent Wiener filter only exploits 
the phase structure of the STFT representation, an exciting chal-
lenge going forward is to integrate models of the phase structure of 
the signal itself into a joint optimization framework. 

Modern machine-learning approaches such as deep neural net-
works, which have proven to be very successful in improving 
speech recognition performance, have recently been shown to lead 
to state-of-the-art performance for speech enhancement using a 
magnitude-based approach. The natural next step is to extend their 
use to phase estimation to further improve performance. On top of 
the fact that they are data driven, which reduces the necessity for 
modeling assumptions that may be inaccurate, a great advantage 
of such methods over the iterative approaches for phase estimation 
presented here or approaches based on nonnegative matrix factori-
zation or Gaussian mixture models, is that they can typically be 
efficiently evaluated at test time. 

Indeed, striving for fast, lightweight algorithms is critical in the 
context of assisted listening and speech communication devices, 
where special requirements with respect to complexity and latency 
persist. While more and more computational power will be availa-
ble with improved technology, for economic reasons as well as to 
limit power consumption, it is always of interest to keep the com-
plexity as low as possible. Thus, more research in reducing com-
plexity remains of interest. Complexity reduction could be 
obtained, for instance, by decreasing the overlap of the STFT analy-
sis, but its impact on performance of phase estimation algorithms 
is not well studied. On the other hand, the lower bound on the 
latency of the algorithms is dominated by the window lengths in 
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STFT analysis and synthesis. Further research could therefore also 
address phase estimation using low latency filter banks. 

After many years in the shadow of magnitude-centric speech 
enhancement, phase-aware signal processing is now burgeoning 
and expanding quickly: with still many aspects to explore, it is an 
exciting area of research that is likely to lead to important break-
throughs and push speech processing forward. Supplemental 
material and further references can be found at www.speech.
uni-oldenburg.de/pasp.html. 
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C
ochlear implantation is a life-changing intervention 
for people with a severe hearing impairment [1]. For 
most cochlear implant (CI) users, speech intelligibility 
is satisfactory in quiet environments. Although mod-
ern CIs provide up to 22 stimulation channels, infor-

mation transfer is still limited for the perception of fine 
spectrotemporal details in many types of sound. These details con-
tribute to the perception of music and speech in common listening 
situations, such as where background noise is present. Over the 
past several decades, many different sound processing strategies 
have been developed to provide more details about acoustic signals 
to CI users. In this article, progress in sound coding for CIs is 
reviewed. Starting from a basic strategy, the current commercially 
most-used signal processing schemes are discussed, as well as 
recent developments in coding strategies that aim to improve audi-
tory perception. This article focuses particularly on the stimulation 
strategies, which convert sound signals into patterns of nerve stim-
ulation. The neurophysiological rationale behind some of these 

strategies is discussed and aspects of CI performance that require 
further improvement are identified. 

INTRODUCTION
The CI is the most successful man-made interface to the human 
neural system; i.e., a machine–brain interface. The auditory nerve 
is stimulated electrically, which leads to a partial restoration of 
auditory perception for people who have a severe hearing impair-
ment. The understanding of speech by CI recipients in quiet envi-
ronments can be very good, but is considerably worse than that of 
normal-hearing (NH) listeners in realistic listening situations. Typ-
ically, the presence of background noise greatly reduces the perfor-
mance of CI systems. For example, the signal-to-noise ratio 
required for many CI users to attain 50% speech understanding is 
about 15 dB higher than that of NH listeners. 

Currently, more than 300,000 people worldwide with severe 
hearing impairment, of whom 80,000 are young children, have 
received CIs. The proportion of children with CIs (two years old and 
younger) is increasing due to the increasing deployment of neona-
tal hearing-screening programs in many countries. Early implanta-
tion can give profoundly deaf children access to important 
information to process auditory signals and master spoken 
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language skills at a young age. In many countries, a single CI is 
reimbursed by health insurance organizations, and in some coun-
tries, the cost of a second CI is also reimbursed, primarily for chil-
dren. About 80% of normally developing, severely 
hearing-impaired children with a CI eventually participate in the 
mainstream educational system. 

Apart from the technological and surgical progress that has 
made cochlear implantation the success it is today, the preformed 
cochlear duct and the ease of surgical access via the middle ear 
have played a role in its proliferation and progress. How CIs work 
has been described before in several articles; e.g., in [2]–[4]. This 
article focuses on a review of stimulation strategies. These are the 
techniques that convert sound signals picked up by a microphone 
into patterns of electric stimuli that activate the auditory nerve. 
The remainder of this section provides a short overview on how 
we hear and how a CI works. 

In the normal auditory system, sound is captured and trans-
mitted by the outer ear, predominantly the pinna (external ear) 
and ear canal, and then transformed in the middle ear (via the 
ossicles—small bones that have a mechanical impedance-
matching function) to movement of the fluids and membranes 
in the cochlea, or inner ear. The cochlea has a spiral structure 
typically about 10 mm wide and 5 mm high. Within the cochlea, 
there are numerous transducer structures—the inner and outer 
hair cells—which have stereocilia that are deflected in response 
to incoming sound waves. In a healthy ear, movement of the 
stereocilia of inner hair cells leads to streams of action poten-
tials in the auditory nerve fibers. This electrical activity has pat-
terns with temporal and tonotopic characteristics that 
ultimately enable identification and interpretation of sounds, 
including music, speech, and language, at higher neural levels 
[5]. Temporal information about sound signals is carried 
through the precise timing of action potentials both within and 
between nerve fibers, whereas spectral information is repre-
sented mainly in the spatial distribution of activity across the 
neural population; the latter is referred to as the tonotopic orga-
nization of auditory nerve. 

The most common cause of deafness is damage to or loss of the 
stereocilia and hair cells, resulting from infections, trauma, expo-
sure to high levels of noise, side effects of certain drugs, and a 
range of physiological disorders. Hearing impairment may be 
acquired by adults who previously had normal hearing, or it may 
be present at birth. In many cases, the degree of hearing loss 
becomes progressively worse over time. When the hair cells are 
absent or extensively damaged, the transduction of the acousti-
cally induced motion in the cochlea to neural action potentials is 
disrupted. If the resulting hearing loss is severe, the amplification 
that can be provided by acoustic hearing aids may be insufficient 
to restore satisfactory perception of sounds. 

A CI bypasses the deficient transducer structures and produces 
action potentials at the auditory nerve sites (or the residual neu-
rons, depending on the degree and type of pathology) using direct 
electrical stimulation. Most of today’s CI systems have an external 
and an internal part. The external part consists of a behind-the-ear 
(BTE) device connected to an external transmission coil, which 
provides a radio-frequency (RF) link to a matching coil in the 
internal part, the implant. The implant consists of a miniature 
enclosure containing electronics connected to a number of elec-
trodes. There are one or more reference electrodes on the enclo-
sure or on a separate lead, and there is an array of multiple 
intracochlear electrodes, between 12 and 22 depending on the 
manufacturer and implant type. The stimulation currents flow 
between selected electrodes to activate the neural structures near 
the electrode-neuron interface. The electrode array is surgically 
inserted into the cochlea. Implantation of the complete internal 
system takes approximately three hours. 

As illustrated in Figure 1, sound is captured in the external BTE 
device by a microphone system (one or more microphones). Pre-
processing is applied, for example, to optimize the input dynamic 
range relative to input signal levels and to adjust the spectrum 
shape using a pre-emphasis filter. In some systems, there is also 
fixed or adaptive beamforming or other types of noise-reduction 
processing that typically exploit the differences between signals 
obtained from several microphones to enhance desired sounds 
while suppressing competing noise. The stimulation “strategy” 
refers to the transformation of the input sound signal into a pattern 
of electrical pulses. Digital specifications of the required stimula-
tion patterns produced by the stimulation strategy are coded in the 
transcutaneous RF transmission. The RF signal also provides 
power to the internal part. The specifications of the stimulation are 
decoded from the RF signal. The electronics of the implant include 
one or more current source(s) to deliver the electrical stimulation 
pattern to the electrode channels. A channel is defined as a set of 
two or more electrodes with currents flowing between them. The 
term monopolar stimulation is used to describe current passing 
between an intracochlear electrode and a remote reference elec-
trode, whereas bipolar refers to stimulation current passing 
between two intracochlear electrodes. The implant also has mea-
surement amplifiers on-chip for the recording of evoked neural 
activity from nonstimulating electrodes via outward telemetry. 

A few weeks after implantation and at regular intervals thereafter, 
stimulation levels are adjusted (“fitted”) to the individual patient. In 
each fitting session, a patient-specific “map” is set up containing all 
stimulation parameters. For each channel, minimal levels of stimula-
tion (min) and levels of maximal comfortable loudness (max) are 
determined. In some cases, the shape of the growth function 
between min and max that converts the input acoustic levels to elec-
tric stimulation levels is also determined. During a fitting session, 

Microphone Preprocessing
Stimulation

Strategy
RF

Transmission
Decoder

Pulse
Generation

Electrode
Array

[FIG1] A block diagram of a complete CI system. 
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impedances of the stimulation channels can be measured (which 
may lead to deactivation of some electrodes if faults are detected) and 
parameters of the preprocessing stage can be adjusted. 

Today’s CIs have a high power consumption compared to hear-
ing aids, which means that the batteries largely determine the size 
of the BTE sound processor, making it cumbersome and unsightly 
for users. This also means that users need to replace batteries 
often, typically every day with rechargeable cells and every two 
days for primary cells, which may be expensive and inconvenient. 
Therefore, extensive research and development is currently 
devoted to reducing power consumption. Another major comfort 
improvement would be a totally implantable CI. The major chal-
lenge of a totally implantable system is the capture of airborne tar-
get sound with microphones and accelerometers, while 
suppressing the high levels of unwanted noise emanating from 
inside the human body. 

A major technical and basic scientific challenge, and the sub-
ject of this article, is the translation of the captured sounds, partic-
ularly speech or music, to electrical stimulation patterns across 
the intracochlear channels to optimize auditory perception and 
interpretation. Historically, the objective of CIs has mainly been to 
improve speech intelligibility. Speech intelligibility is determined 
by spectral and temporal characteristics of the acoustic signal. The 
spectral information is coarsely coded through multichannel rep-
resentation following the auditory system’s natural tonotopic 
organization; i.e., acoustic spectral information is normally repre-
sented from low to high frequency in a corresponding spatial pro-
gression within the cochlea. Temporal speech information is 
commonly classified into three categories: 

■ the speech envelope, defined as the fluctuations in overall 
amplitude at rates between 2 and 20 Hz
■ the periodicity from around 50 to 500 Hz, usually due to the 
fundamental frequency (F0)
■ temporal fine structure (TFS). 

TFS can be defined as the variations in wave shape within single 
periods of periodic sounds, or over short time intervals of aperi-
odic ones. It has dominant fluctuation rates from around 500 Hz 
to 10 kHz. Alternatively, from a perceptual point of view, TFS can 
be defined as the fast fluctuations in a signal that can be used by 
NH listeners to perceive pitch, to localize sounds, and to binau-
rally segregate different sound sources. The fine structure is mod-
ulated in amplitude by the temporal envelope and periodicity. For 
speech sounds, F0 is the frequency at which the vocal cords 
vibrate. Recently the transmission of F0 information, related to 
pitch perception, has attracted a lot of interest because of the need 
to improve perception of music and tonal languages with CIs. 

It is not easy to define pitch. It is defined by the American 
National Standards Institute (1994) as “that attribute of auditory 
sensation in terms of which sounds may be ordered on a scale 
extending from high to low.” From a musical point of view, it can 
be defined as “that attribute of sensation whose variation is associ-
ated with musical melodies.” For periodic sounds, pitch is the per-
ceptual counterpart of the fundamental frequency (F0), leading to 
the alternative definition that “a sound has a certain pitch if it can 
be reliably matched by adjusting the frequency of a pure tone of 

arbitrary amplitude” [6]. While F0 is a purely physical signal attri-
bute, i.e., the frequency of the first harmonic of a complex tone, 
pitch is a perceptual attribute that arises after processing in the 
brain and can not always be easily linked to physical signal attri-
butes. Typical relevant signals that elicit a pitch percept are spoken 
vowels and sustained sounds produced by musical instruments. 
Aperiodic sounds can also elicit a pitch percept, but it is less 
well-defined. 

In the normal auditory system, pitch is determined by three 
different physical cues: 1) place of stimulation in the cochlea, 
2) TFS, and 3) periodicity. The cochlea is tonotopically orga-
nized, so sounds with different spectral content will activate dis-
tinct neural populations, leading to different percepts. In the 
case of a simple sinusoid, there is a one-to-one relation between 
frequency and place of stimulation. For harmonic sounds, the 
situation is more complicated: the place of stimulation of the 
lowest harmonic still has a one-to-one relationship with F0, but 
the higher harmonics do not by themselves directly code F0. 
The spectral pitch mechanism is not very sensitive to small 
changes in F0, and the change in percept associated with a pure 
change in spectral pitch has been reported to correspond more 
to a change in timbre than a change in pitch [6]. Timbre, also 
called tone color, tone quality, or brightness, is the quality of a 
sound that distinguishes different types of sound production, 
such as voices or musical instruments. The American Standards 
Association (1960) defines timbre by exclusion as “that attribute 
of sensation in terms of which a listener can judge that two 
sounds having the same loudness and pitch are dissimilar.” 

The second pitch-related cue, TFS, can yield a strong and tonal 
pitch percept when individual harmonics are coded by discrete 
neural populations and their frequency is lower than the maximal 
frequency to which neurons can phase-lock (around 1,500 Hz); 
i.e., the neural action potentials tend to occur during a particular 
phase of the oscillation. When multiple harmonics excite the same 
hair cells and therefore neurons, information is carried mainly by 
the aggregate stimulation pattern. This is likely to happen at 
higher frequencies because harmonics of a given F0 are spaced 
linearly in frequency whereas the auditory periphery is organized 
logarithmically. This leads to unavailability of the TFS of individ-
ual harmonics. However, the auditory system can still make use of 
a third physical cue: the periodicity of the combined harmonics, 
which corresponds to the F0. Perception of periodicity is limited 
to around 300–500 Hz. Periodicity pitch is weak compared to TFS 
pitch. For good pitch perception across a wide variety of types of 
sound, all three cues are needed. 

Pitch perception with CIs is extremely poor. This is due both to 
limitations at the interface with electrical stimulation (spread of 
excitation) and to imprecise coding of temporal cues. The large 
spread of excitation in the cochlea and the small number of chan-
nels to code the low frequencies with electrical stimulation 
reduces the spectral resolution and therefore the precision of spec-
tral pitch. Another limitation with electrical stimulation is the 
inability of CI users to perceive TFS. Therefore the only remain-
ing mechanism is periodicity pitch perception, which is much 
weaker than TFS pitch and limited by the maximum frequency 
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at which pitch changes are perceived, around 300 Hz. Further-
more, temporal envelope fluctuations are not always accurately 
coded by current sound processing strategies. 

Currently, an increasing number of people are being implanted 
bilaterally, especially children. Also, due to relaxed implantation 
criteria, an increasing number of people can make use of bimodal 
stimulation. These CI recipients have residual hearing in the non-
implanted ear, which can be aided with an acoustic hearing instru-
ment. Listeners with bilateral CIs or using bimodal stimulation 
can potentially perceive interaural time differences (ITDs). There-
fore another topic of intensive research is binaural hearing and the 
preservation of binaural cues in applications with bilateral and 
bimodal devices. ITDs, the difference in arrival time between the 
ears, are important binaural cues for NH listeners to localize 
sound sources and to separate multiple sound sources such as 
speech and noise. The latter is called binaural unmasking. ITDs 
range from 0 μs for sounds in front to around 700 μs for sounds 
from the side of the head. NH listeners can use ongoing temporal 
cues that are present in both the fine structure and the envelope of 
sound signals, and temporal cues in the onset of signals. 

BASIC STIMULATION STRATEGIES
Historically, the first main types of stimulation strategies can be clas-
sified as feature extraction strategies. In such strategies, estimates of 

F0 and formants F1 and F2 of speech signals are calculated in real 
time. Formants are peaks in the spectral envelope corresponding to 
resonances of the vocal tract. Formants are used by the auditory sys-
tem to identify sounds such as vowels. The formant information is 
used predominantly to stimulate channels corresponding to F1 and 
F2. The F0 is used to control the pulse rate. The outcomes in speech 
understanding of these schemes are, on average, lower than those of 
more recent schemes, and therefore they are not normally used any 
more in commercial processors [2[, [4]. 

A simple strategy, widely used in CI signal processing, is 
continuous interleaved sampling (CIS); see Figure 2 and [7]. 
CIS is based on a running spectral analysis of the preprocessed 
digital input sound signal performed by a bank of band-pass fil-
ters or a fast Fourier transform (FFT). The filter bank has an 
overall bandwidth from approximately 100 to 8,000 Hz, and 
the number of filters usually equals the number of stimulation 
channels at the electrode array-neuron interface. The filters 
have partially overlapping frequency responses and bandwidths 
that generally become broader with increasing frequency. Each 
filter is assigned to (at least) one intracochlear electrode fol-
lowing the frequency-place tonotopic organization of the 
cochlea. Although the correspondence of signal frequencies 
and filter bank outputs to depth of electrode insertion follows 
the tonotopy, the signal is not necessarily delivered to 

[FIG2] A block diagram of all monaural strategies discussed in this article. Common elements are shown in (a) and (c), while strategy-
specific elements are shown in (b).
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the normal anatomical or neurophysiological place because 
generally electrode arrays do not allow insertion beyond the 
anatomical position corresponding to acoustic frequencies 
lower than 500–1,000 Hz. However, studies have shown that 
with time of use of the CI, cortical plasticity can partly compen-
sate for this mismatch. Also, manufacturers have recently 
introduced CI systems with electrode arrays that allow deeper 
insertion depths to facilitate more apical stimulation. 

After the filter bank, the magnitude of the envelope in each 
channel is determined (block 4 in Figure 2), for instance with an 
envelope detector using rectification or using a Hilbert transforma-
tion followed by low-pass filtering. The filter cut-off frequency 
should at least comprise the modulation frequencies below 20 Hz to 
preserve the speech envelope information. Typical cut-off frequen-
cies are between 125 and 300 Hz. When spectral estimates are 
obtained via an FFT, magnitudes corresponding to each of the elec-
trodes are obtained from the allocated FFT bins, summing the pow-
ers across adjacent FFT bins depending on the filter bandwidths. 

The stimulation levels are related to the magnitudes of the 
band-limited input signals by user-specific functions. The output 
of the envelope detector is transformed to a value between the 
min and max levels according to a nonlinear compression func-
tion because the electrical stimulation dynamic range 10 dB.^ h

is much smaller than the input dynamic range of the preproces-
sor (block 5 in Figure 2). This mapping is patient specific because 
min and max can vary widely across patients, stimulation chan-
nels, and electrode configurations (due to the status of the neural 
structures at the electrode-neuron interface and higher-level neu-
ral structures). Next, these transformed magnitudes modulate 
carrier waves of electrical pulses. Commonly, symmetric biphasic 
pulse trains are used in commercial CIs, and magnitude is coded 
by varying the pulse amplitude and/or the pulse width. 

For practical reasons (many CIs have only one current source) 
but also for limiting across-channel interactions, pulsatile stimuli 
are used in an interleaved stimulation scheme (i.e., only one pulse 
is delivered at any time). Furthermore, all channels are activated in 
a temporally nonoverlapping sequence, and a fixed stimulation car-
rier rate is used [typically 500–2,000 pulses per second (pps)], with 
the total pulse rate equal to the number of active channels times 
the channel rate. The latter has no relationship with auditory neu-
rophysiology, as neural fibers do not fire at fixed rates and stimula-
tion rates are generally far higher than neural spike rates. However, 
it is simple from a signal processing point of view and provides 
most CI recipients with adequate perception of sounds. 

This strategy can faithfully represent the temporal speech 
envelope in the electrical stimulation patterns, leading to effec-
tive transmission of envelope information, which is a necessary 
condition for speech perception. CIS was described by Wilson et 
al. in 1991 [7]. Essentially the same sound processing scheme, 
albeit with a relatively low stimulation rate (around 300 pps), 
was previously used in an earlier French CI system [8]. 

In general, the evaluation (and comparison) of strategies is 
mainly based on behavioral performance measures on identifica-
tion and discrimination tasks related to speech understanding, 
music and tone perception, directional hearing, sound quality, 

and preference measures. Right now, no validated model of these 
measures, nor objective neurophysiological markers, exists for 
electrical stimulation. So behavioral tests are the reference eval-
uation approach. 

In the following sections, a range of stimulation strategies for 
CI sound coding is described. Along with a description of the 
technical features of each strategy, we highlight the rationale 
behind the strategy, where one can be identified. We also review 
selected published outcomes for speech understanding and, if 
relevant and available, also for music or tone perception. Some 
of these schemes are widely used in commercial processors while 
others are experimental and still in development. 

SOUND PROCESSING STRATEGIES IMPLEMENTED IN 
COMMERCIAL SOUND PROCESSORS
Since the introduction of the first stimulation strategies in com-
mercial multichannel CIs over 30 years ago, a number of diverse 
sound processing strategies have been devised and evaluated. 
These strategies focus on better spectral representation, better 
distribution of stimulation across channels, and better temporal 
representation of the input signal. The four most commonly 
used strategies are described: 1) advanced combination encoder 
(ACE) with channel selection based on spectral features; 2) 
MP3000 (named after the MP3 digital audio format) with chan-
nel selection and stimulation based on spectral masking; 3); fine 
structure processing (FSP) based on enhancement of temporal 
features; and 4) HiRes120 (high resolution) with temporal fea-
ture enhancement and current steering to improve the spatial 
precision of stimulus delivery. 

An overall outline of the sound processing steps for the dif-
ferent stimulation strategies, with common and differentiating 
parts, is shown in Figure 2. The outputs of the strategies are 
shown as electrodograms. An electrodogram is similar to a 
spectrogram, but the vertical axis indicates channel number 
rather than frequency, and biphasic current pulses are repre-
sented as vertical lines with amplitudes between 0 (min level 
of map) and 1 (max level of map). Electrodograms are shown 
of the synthesized vowel ah (Figure 3), a naturally spoken sen-
tence in quiet taken from the HINT corpus (Figure 4), a 
selected word from the same sentence (Figure 5), and the 
same sentence in steady noise with a speech-weighted spec-
trum at a signal-to-noise ratio of 10 dB (Figure 6). The base 
stimulation rate per channel for ACE/CIS was 900 pps, for FSP 
1,500 pps, and for HiRes120 1,856 pps. 

Four manufacturers of CI systems are on the international 
market (with implementations of strategies described in this 
review): Cochlear (ACE, MP3000), Advanced Bionics (HiRes120), 
Med-El (FSP), and Oticon Medical (formerly Neurelec). 

ACE
ACE is the sound processing scheme currently used by most recip-
ients of CI systems manufactured by Cochlear. It is functionally 
very similar to the spectral maxima sound processor (SMSP) and 
the Speak scheme [9] used with previous models of Cochlear CIs. 
The original development of the SMSP arose from the observation 
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[FIG3] (a) Waveform, (d) spectrogram, and (b)–(c) and (e)–(i) electrodograms for a synthesized vowel with F0=100 Hz, and 
formant frequencies 700, 1,220, and 2,600 Hz. The signal was presented at an average root-mean-square (RMS) level of 
60 dB sound pressure level (SPL). For the electrodograms, the vertical axis indicates the channel, and the height of each vertical 
line represents the magnitude of the pulse. The magnitude is expressed in different units for different strategies. The red and 
blue colors serve to visually distinguish adjacent channels and have no additional meaning. For the (g) CIS, (e) ACE, (b) MP3000,
(c) EE, and (f) F0mod strategies, the channel magnitudes are shown between 0 and 1 before compression. For (h) HiRes120, the 
current was normalized by dividing by the maximum current, and normalized values below 0.1 were set to 0. HiRes120 uses 
simultaneous stimulation of adjacent electrodes to generate virtual channels, which is hard to distinguish on the current plot. 
For (i) FSP, the channel magnitudes between 0 and 1 are shown, which are linearly mapped to current, and multipulse sequences 
have been replaced by single pulse sequences for clarity. 
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that sound processing schemes based on the presentation of 
selected acoustic features of speech signals were technically and 
perceptually limited. As mentioned previously, most of those 
schemes provided CI users with partial information primarily 
about the two lowest speech formants (F1, F2) and the fundamen-
tal frequency (F0). While those schemes enabled many recipients 
to understand speech adequately in favorable listening conditions, 

performance was degraded by even moderate levels of background 
noise. This was mainly because of the technical difficulty of esti-
mating parameters corresponding to the selected speech features 
in real time when the signal-to-noise ratio is poor. The SMSP and 
its successor schemes, Speak and ACE (as well as closely related 
schemes provided by other CI companies), attempt to provide CI 
users with information about salient aspects of the acoustic 

[FIG4] (a) Waveform, (d) spectrogram, and (b)–(c) and (e)–(i) electrodograms of the sentence ”A boy fell from the window” from the 
HINT corpus, uttered by a male speaker. All parameters are identical to those of Figure 3. 
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spectral shape without explicitly estimating speech features. 
Indeed, there is no inherent assumption that the sound signals 
processed for CI recipients contain any speech. 

ACE has many signal processing modules in common with CIS 
and almost all other current CI processing schemes (blocks 1–6 in 
Figure 2). However, the major distinction with CIS is that on each 
stimulation cycle, only a subset of the available electrodes is 

selected. This is indicated by the “channel selection” block 
(block 7) in Figure 2. The subset comprises the n type of process-
ing scheme is sometimes referred to as n-of-m. In cochlear CI sys-
tems, typically eight electrodes from the available set of 22 are 
selected for stimulation at a rate of 900 pps per electrode, although 
stimulation parameter values can be varied to optimize perfor-
mance for individual recipients. 
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[FIG5] (a) Waveform, (d) spectrogram, and (b)–(c) and (e)–(i) electrodograms of the sentence ”A boy fell from the window” from the 
HINT corpus, uttered by a male speaker, but zoomed in on the word ”boy.”
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Figures 4–6 show that ACE represents some speech formant 
peaks and formant trajectories (i.e., changes in formant frequency 
over time) more distinctly than CIS, particularly when background 
noise is present. Because frequency bands containing relatively low 
signal levels are not represented in the stimulation pattern, ACE can 
enhance certain spectral features when perceived by CI users. This 
may be one reason that several studies of speech understanding have 
demonstrated slightly higher scores for ACE than CIS. For example, 
Skinner et al. [10] reported that CI listeners in two separate compari-
son studies scored about six to nine percentage points higher, on 
average, in sentence tests when using ACE rather than CIS. 

FSP
Although most CI users obtain good performance with sound pro-
cessing schemes such as ACE and CIS, unfortunately intelligibility 
of speech in competing noise is often unsatisfactory, and essential 
components of musical sounds—particularly pitch—are poorly 
perceived. Part of the reason may be the lack of TFS in the stimula-
tion patterns. In general, TFS is characterized by the rapid ampli-
tude variations within each of the band-pass filters that implement 
the initial spectral analysis of sound signals. In contrast, only the 
slowly varying envelope of the band-limited signals is used to mod-
ulate stimulation levels in schemes such as ACE and CIS. 

In the quest for improved CI sound processing, numerous 
attempts have been made to introduce TFS cues explicitly. One 
such scheme, currently the default in systems manufactured by 
Med-El, is known as FineHearing Technology. The aim of Fine-
Hearing Technology is to represent TFS information present in the 
lowest frequencies of the input sound signals by delivering bursts 
of stimulus pulses on one or several of the corresponding CI elec-
trodes. These bursts can consist of one or more stimulation pulses 
and are derived indirectly from the band-limited acoustic signals. 
Each burst is triggered by a positive zero-crossing in the bandpass-
filtered waveform, while stimulus pulses within the burst are deliv-
ered at a constant, high rate that depends on user-specific settings 
(typically 5,000–10,000 pps). The duration and amplitude-envelope 
modulation of each burst are predetermined to approximate the fil-
tered acoustic waveforms after half-wave rectification. These bursts 
contain information about the TFS in the lower frequency bands 
that is not available in the envelope of those signals, potentially 
leading to improved perception for CI users. In essence, FineHear-
ing Technology uses variable-rate coding to provide additional 
information about the TFS of the signal. Med-El has released the 
FSP, FS4, and FS4-p coding strategies. These strategies differ 
mainly in the frequency range across which TFS is presented. 
While in FSP, TFS is represented for frequencies up to 350–500 Hz; 
in FS4 and FS4-p, TFS is presented for frequencies up to 750–950 Hz. 
To faithfully represent F0, these strategies cover an input frequency 
range from 100–8,500 Hz by default, which differs from the CIS 
strategies from Med-El (250–8,500 Hz). The FSP coding strategy is 
illustrated in Figures 3–6, where TFS pulse patterns are delivered 
by the two most apical electrodes while the remaining electrodes 
convey CIS-like pulse trains. 

Several of the coding strategies available in the Med-El system 
have been compared in a number of studies. Most published 

studies evaluating the perception of CI recipients when using FSP 
relative to other sound processing schemes (e.g., CIS) are difficult 
to interpret. In some cases, the sound-processor hardware and 
settings such as the input frequency range were altered at the 
same time as the processing algorithm was changed. In one study 
of 46 experienced CI users where such differences were explicitly 
taken into account, no significant differences were found between 
FSP and a variant of CIS in speech perception tests, although the 
participants’ subjective preferences generally favored FSP [11]. 
Moreover, it should be noted that in some experiments the fitting 
of the CI system to recipients was not altered when changing 
from CIS to FSP. The study by Riss et al. [12] seems to indicate 
that at least some of the short-term improvements that have been 
reported with FSP can be attributed to the extended frequency 
range. As studies with the newer FS4 and FS4-p strategies are 
ongoing, further research is needed to quantify perceptual out-
comes more thoroughly. 

HiRes120
Another sound processing scheme designed to enhance delivery 
of TFS information to CI recipients is used in systems manufac-
tured by Advanced Bionics. Known as HiRes120, this scheme 
applies a technique to identify the dominant spectral peak within 
each of the band-pass filters that perform the spectral analysis of 
incoming sounds. The frequency of each spectral peak is used to 
control a synthetic modulator such that the modulations contain 
temporal information derived from each frequency band that is 
not present in the amplitude envelope of the band-limited signals 
[13]. These modulations are combined with the corresponding 
envelope levels and then sampled in synchrony with the pulses 
delivered to the electrodes. The typical pulse rate on each elec-
trode is about 2,000 pps. At the same time, the estimated peak 
frequency within each of the analysis filters is used to control the 
relative currents of pulses delivered simultaneously on two adja-
cent electrodes that are allocated to the filter. There are 16 intra-
cochlear electrodes in the Advanced Bionics implant, and 
therefore 15 paired electrodes can be allocated to the filters. By 
varying the relative currents on the electrode pairs, so-called vir-
tual channels are created, and it is assumed that the site of maxi-
mal neural activity can be steered with finer spatial resolution 
than is possible when the electrodes are activated one at a time. 
With HiRes120, eight different ratios of current are implemented, 
leading to eight virtual channels per adjacent pair of physical 
electrodes. HiRes120 is claimed to provide improvements over 
sound processing schemes such as CIS in both temporal and spa-
tial resolution of the stimulation patterns. The main differences 
between these stimulation schemes are most clearly visible in the 
electrodograms of Figures 3 and 5. Additionally, a graphical rep-
resentation of the virtual channels is shown in Figure 7. 

HiRes, which is a CIS-like strategy without current-steering, 
has been compared with HiRes120 in various studies (e.g., [14] 
and the references therein) using measures of speech perception 
in quiet and in noise, and music perception. There were no clear 
significant effects of the processing strategy on any of the speech 
and music perception abilities nor on temporal modulation 
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detection. Furthermore, experience with the strategies did not 
seem to play a significant role. For some psychophysical measures 
differences were observed, but with varying results for HiRes120. 
Further research is needed to investigate the impact on more eco-
logically relevant outcome measures. 

For all CI sound processing strategies, the information 
throughput at the electrode-neural interface may be a fundamental 

limitation restricting improvements in perceptual performance. 
The limited perceptual effects of introducing explicit information 
about the fine structure of acoustic signals in some CI sound pro-
cessing schemes such as HiRes120 and FSP may be a consequence 
of this “bottleneck” at the electrode-neural interface. In particular, 
if the spatial extent of the neural population activated by each elec-
trode is broad and the populations associated with each electrode 

[FIG6] (a) Waveform, (d) spectrogram, and (b)–(c) and (e)–(i) electrodograms of the sentence  ”A boy fell from the window” from the 
HINT corpus, uttered by a male speaker, but with noise added at an SNR of 10 dB. 
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partially overlap, then temporal information from closely spaced 
electrodes will generally be combined at the neural level. Psycho-
physical studies have reported evidence that temporal patterns 
from nearby electrodes cannot be completely resolved by most CI 
recipients. This suggests that sound processing schemes like 
HiRes120 and FSP, which use very different approaches but rely on 
providing independent channels of information across adjacent 
electrodes, may result in only limited benefits [15]. More carefully 
controlled studies of CI recipients’ listening experiences using 
schemes such as HiRes120 and FSP over an extended time are 
needed to determine specifically whether provision of fine-struc-
ture information by these schemes is perceptually beneficial. 

MP3000
The MP3000 strategy is based on the ACE scheme but uses a psy-
choacoustic masking model with the aim of improving sound per-
ception for CI users based on more perceptually relevant channel 
selection. The masking model attempts to select the perceptually 
most important spectral components in the coding of any given 
input audio signal. The rationale for this development was that it 
should not be necessary to code sounds in parts of the spectrum 
that are masked. This approach reduces the spread of excitation 
and can lead to a more precise representation of the spectrum, 
which in turn could lead to improved speech intelligibility. Process-
ing techniques based on auditory masking are widely used in com-
mon audio and music data-compression algorithms. These 
techniques also compress the audio signals by selecting only a sub-
set of the frequency bands at a time. A well-known example is the 
MP3 compression algorithm. In principle, the n-of-m speech cod-
ing strategies such as ACE are similar to these data reduction or 
compression algorithms. 

In MP3000, an additional processing stage is introduced 
between the envelope estimation and the channel selection mod-
ules (see Figure 2, block 8). The psychoacoustic masking model 
used is derived from a body of data from psychoacoustic mea-
surements in human auditory perception, such as studies on 
absolute thresholds of hearing and simultaneous masking [5]. 
For each sound, the envelopes of each channel of the filter bank 
are inputs to the psychoacoustic model, and masking spread 
functions with three parameters (peak amplitude or attenuation, 
high- and low-frequency slope) are calcu-
lated. The masked threshold is calculated 
for each channel selected. The overall 
masked threshold from all channels is 
approximated by a nonlinear superposi-
tion of the separate masked thresholds 
[16]. Subsequently, the n channels with 
highest levels relative to an estimate of the 
spread of masking are selected in each 
stimulation cycle. This selection of stimu-
lation channels can be significantly differ-
ent from the ACE standard scheme where 
only the n channels (typically )8n =  with 
the highest envelope magnitudes are 
selected. This is clearly visible in Figure 3, 

where in channel 14 a formant is coded with MP3000 that is not 
coded by ACE. 

MP3000 has been implemented and evaluated in a within-sub-
ject repeated measures design with 221 subjects using an ABABA-
design with “A” for ACE and “B” for MP3000. With a fixed pulse 
rate per channel, no significant difference was found for speech 
intelligibility and strategy preference between MP3000 (four to six 
spectral maxima selected) and ACE (eight to ten spectral maxima 
selected). The best results were found for MP3000 with six spectral 
maxima, leading to an increase in battery life of about 24% relative 
to ACE [17]. Thus when a lower number of stimulation channels 
is selected in each cycle, resulting in a lower overall stimulation 
rate, MP3000 has advantages. However, overall subject preferences 
were equally distributed between the two strategies, and additional 
parameters have to be fitted in the MP3000 mapping sessions. 

EXPERIMENTAL PROCESSING STRATEGIES
In this section, some experimental stimulation strategies are 
briefly discussed to demonstrate the current limitations and 
opportunities with CI stimulation. Most of these strategies have 
been or are being considered for implementation in commercial 
speech processors for CIs. The following sections concern loud-
ness-based strategies, envelope enhancement based on a neural 
model, enhancement of periodicity modulation, and bilateral 
stimulation strategies. The loudness-based strategies are not 
shown in Figure 2. They can be added onto any strategy by add-
ing an extra block before the mapping block (5). The bilateral 
strategies are not shown for reasons of clarity. 

LOUDNESS-BASED STRATEGIES
A distinctive approach to sound processing for CIs has been 
explored in a range of experimental schemes with the broad aim 
to improve the experience of loudness by CI recipients when lis-
tening to sounds with widely varying acoustic characteristics. 
Psychophysical studies have shown that CI users generally do 
not experience the loudness of sounds in the same way as listen-
ers with NH, particularly when the spectral content and level of 
sound signals change over time. 

In one such scheme, known as SpeL (for “Specific Loud-
ness”), the initial stages of sound processing are based on a 

[FIG7] A virtual channel plot for the sentence ”A boy fell from the window” processed 
by HiRes120. Color intensity indicates current. Integer numbers indicate ”real” channels.
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running spectral analysis and the distribution of current levels 
across electrodes is determined such that the loudness experi-
enced by the CI user is similar to that experienced by an average 
listener with NH. Preliminary perceptual studies with CI recipi-
ents using SpeL confirmed that the relation between loudness 
and the level and bandwidth of sounds was closer to normal [18]. 

More recently, SCORE (“Stimulus Control to Optimize Recipi-
ent Experience”), a simplified version of SpeL, was developed that 
uses the estimated specific loudness function to calculate the 
total loudness of sound signals in real time. Tests of speech recog-
nition with SCORE showed small but significant improvements 
over ACE. Tests with an extended version for CI recipients who 
use an acoustic hearing aid in the nonimplanted ear (SCORE 
bimodal), suggested that it may improve speech recognition and 
the ability of users to localize sounds, presumably because the 
loudness differences between ears that carry information about 
the direction of a sound source are conveyed more consistently 
(cf. [19] and the references therein). 

ENVELOPE ENHANCEMENT 
In a CI, the electrical stimulation directly generates action poten-
tials in auditory neurons, predominantly bypassing any remain-
ing hair cells and synapse function. The synapse normally 
demonstrates neural short-term adaptation [20], i.e., an increased 
firing rate at the onsets of sounds. This short-term adaptation 
acts as an across-channel phonological timing cue [20] and, with 
conventional schemes such as CIS, is not present in the electri-
cally stimulated auditory nerve as in the normal auditory system. 
Furthermore, recent studies have demonstrated that the tran-
sient parts of the speech envelope carry information that is 
important for speech intelligibility in NH listeners. 

Based on this rationale and former investigations, the 
enhanced envelope (EE) strategy was developed and its feasibility 
studied for applications in auditory prostheses. In this approach, 
an additional processing stage is introduced after the envelope 
detection stage (see Figure 2, block 11) wherein peaks, as a model 
for the short-term adaptation and dependent on the onset rise 
time, are added at the onsets in the envelope. This scheme is com-
plementary to the main structure of ACE or CIS. 

The EE algorithm was evaluated with CI users and all lis-
teners demonstrated an immediate benefit with EE relative to 
ACE [21]. The advantage of this enhanced envelope coding is 
due to the emphasis of across-channel temporal coherence in 
the coded speech signal. This temporal marker is an important 
attribute for speech understanding in adverse listening situa-
tions and for sound source segregation; see also the electrodo-
grams in Figures 4–6. The onset enhancement is particularly 
noticeable for the “b” sound in the word “boy” in Figure 5. 

PERIODICITY MODULATION ENHANCEMENT 
From psychophysical studies it is known that periodicity cues are 
better perceived when modulation depth is high and modulations 
are synchronized across channels to some extent [15]. This is 
probably due to spread of excitation: electrodes close together 
stimulate overlapping populations of neurons, which therefore 

receive the aggregate stimulation pattern of multiple electrodes. 
So if modulations are not synchronized across electrodes, the 
modulation depth at the neural level may be severely reduced. 

From the electrodograms in Figures 4–6, it is clear that 
with most commercial strategies temporal modulations are not 
well coded. In some channels, modulation depth is quite shal-
low and the desynchronization across channels combined with 
spread of excitation leads to reduced modulation depth or even 
spurious modulations in the aggregate pattern that will be 
received by the auditory nerve fibers. 

To improve this, several strategies have been developed 
(e.g., [22]–[25] and the references therein). While the signal 
processing to achieve it may differ, these strategies either 
expand modulation depth or remove existing modulations and 
explicitly modulate the envelope at the rate of F0. As an exam-
ple, in the following, the F0 modulation (F0mod) and eTone 
strategies are briefly described. 

The F0mod strategy is a simple example of a periodicity 
enhancement strategy based on the ACE strategy. For each 
frame of samples it estimates F0 and voicing probability using 
an autocorrelation approach. If a frame is unvoiced, ACE pro-
cessing is applied. If a frame is voiced, all channels are modu-
lated synchronously using a sinusoidal modulator constructed 
based on the F0 estimate. The block diagram and the output of 
F0mod are shown in Figure 2 and Figures 4–6, respectively. 

The eTone strategy [23] is based on the same principles but 
includes an F0 estimator based on harmonic sieves, which is 
very precise and robust to noise, and the modulated envelope is 
mixed with the original envelope with a ratio depending on an 
estimate of harmonicity of that particular channel. Modula-
tions are synchronous across channels and an exponential 
decay modulation shape is used. 

The F0mod and eTone strategies were evaluated for music 
perception and speech recognition, and with tonal languages in 
which pitch determines the lexical meaning of certain pho-
nemes (see [22]–[25] and the references therein). While period-
icity enhancement strategies can clearly improve periodicity 
pitch perception, performance is still well below that of NH lis-
teners. For good pitch perception, listeners need access to all 
three physical cues (see the “Introduction” section) and spectral 
(place) and temporal cues need to be consistent. There are no 
current CI strategies that make this possible, and we hypothe-
size that with the current electrode design and stimulation par-
adigm it is not possible to provide sufficiently place-specific 
stimulation to achieve performance similar to NH. Note that for 
a good representation of temporal information, good place spec-
ificity is required as well: when a population of neurons is stim-
ulated by information from several channels due to spread of 
excitation, the aggregate pattern will be coded. 

BILATERAL STRATEGIES
In various studies with controlled stimulation in laboratory 
conditions, it has been found that bilateral CI users can be sen-
sitive to ITDs [26]. ITD thresholds, i.e., the smallest ITD that 
can be detected, vary widely across subjects, with the best 
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thresholds around 50–100 μs and, in the worst case, no ITD 
sensitivity at all. However, with commercial sound processors, 
subjects hardly use ITDs in ecologically relevant tasks such as 
sound source localization. This is at least partly due to poor 
coding of temporal cues by current commercial sound process-
ing strategies. The delay and spectral characteristics of the pro-
cessing paths can be very different for the left and right CI 
devices, and certainly for bimodal systems where a CI is used in 
one ear and an acoustic hearing aid in the other ear. This may 
lead to nonsynchronous and noncoordinated (across channels) 
left and right auditory stimulation. 

One of the first strategies developed to improve ITD coding 
with bilateral CIs is the peak derived timing (PDT) strategy [26]. 
It operates by synchronizing stimulation pulses from the CI 
with amplitude peaks in the fine structure of the signals in the 
different channels of the filter bank. In this manner, fine pulse 
timing cues are transmitted, in contrast with CIS-type sound 
processing techniques that provide only envelope information 
with fixed stimulation rates. Evaluations are reported in [22]. 

As bilateral CI strategies like PDT can introduce temporal 
patterns that are not synchronized with the acoustic signal, the 
modulation enhancement strategy (MEnS) was proposed [27] 
for bimodal stimulation. A deeply modulated envelope is 
imposed on all frequency channels simultaneously, explicitly 
synchronized with peaks in the acoustic signal. Improved ITD 
thresholds and improved lateralization (the extent to which the 
sound image can be moved to either side of the head by only 
changing ITD) were found with MEnS compared to ACE. 

While some improvements in ITD perception have been 
obtained in laboratory tests with experimental strategies, the 
same caveats hold as with the pitch strategies described in the 
section “Periodicity Modulation Enhancement”: performance is 
much poorer than with NH. It should be noted, however, that 
thus far only acute experiments have been performed, while lis-
teners potentially need long-term exposure to the novel stimula-
tion paradigm to learn to use the binaural timing cues provided. 

GENERAL DISCUSSION
In this article, a tutorial of CI stimulation strategies was pre-
sented, together with a review of concepts and rationales of differ-
ent standard and experimental processing schemes. Some of the 
newer schemes have demonstrated significant improvements in 
the understanding of speech and perception of other types of 
sound. Although each of these strategies may lead to only a small 
benefit, it is plausible that appreciably larger benefits may be 
obtained when they are combined. Furthermore, some signal-
processing approaches introduce speech enhancements in noisy 
conditions at the cost of significant signal distortions. These dis-
tortions may be detrimental for sound quality when appraised by 
listeners with normal or impaired acoustic hearing, but are 
hardly noticeable by most CI recipients. This is an opportunity for 
further improvements in auditory perception for CI users. 

However, the broad neural excitation profiles inherent to 
present-day electrode array technology and electrical stimulation 
parameters most probably limit the potential for improvement. 

The number of independent information transmission chan-
nels is still very small because of both technical and percep-
tual/neural sensitivity limitations. Not all CI users can 
discriminate all channels, but even if all actual and virtual 
stimulation channels and electrodes may be perceptually dis-
criminated from each other, this does not imply that channels 
can be resolved, nor that different channels can effectively con-
vey independent information. 

It has become clear that some temporal aspects of the input 
sound, such as the speech envelope and partly periodicity can be 
transmitted faithfully by CIs. However, the TFS and F0 are not 
adequately represented in present-day CI processors and are there-
fore presented to the auditory neural system only imprecisely. 

Auditory perception results can be spectacular for many CI 
recipients in quiet environments, particularly in early-
implanted deaf children when neural plasticity can fully play 
its role and in adults with a largely intact neural periphery. 
However, hearing in realistic adverse listening situations, as 
well as music perception and sound source localization are 
still major challenges for sound coding and electrical stimula-
tion in CIs. Also, a wide variation in outcomes is observed 
across CI users. A significant proportion of recipients receive a 
limited benefit from their CI, at least in terms of speech 
understanding. Some investigations indicate that a better indi-
vidual fitting of the stimulation parameters (the map) may 
result in substantial improvement, be it by better selection of 
active channels [28] or by development of closed-loop auto-
matic fitting paradigms [29]. 

Another important factor is the neural survival at the 
electrode-neuron interface in the auditory periphery, which 
may be improved by application of drugs such as neurotroph-
ins. Future research will include a greater focus on the com-
bination of nonstandard pulse waveforms [30], new 
stimulation modes to reduce across-channel interactions, 
and improved electrode designs. These approaches may 
result in the provision of more independent information 
channels in future CI systems. 
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S
ound rendering is increasingly being required to extend 
over certain regions of space for multiple listeners, 
known as personal sound zones, with minimum interfer-
ence to listeners in other regions. In this article, we pres-
ent a systematic overview of the major challenges that 

have to be dealt with for multizone sound control in a room. Sound 
control over multiple zones is formulated as an optimization prob-
lem, and a unified framework is presented to compare two state-of-
the-art sound control techniques. While conventional techniques 
have been focusing on point-to-point audio processing, we introduce 
a wave-domain sound field representation and active room compen-
sation for sound pressure control over a region of space. The design 
of directional loudspeakers is presented and the advantages of using 
arrays of directional sources are illustrated for sound reproduction, 
such as better control of sound fields over wide areas and reduced 
total number of loudspeaker units, thus making it particularly suit-
able for establishing personal sound zones. 

INTRODUCTION
Sound recording and sound reproduction are becoming increas-
ingly ubiquitous in our daily lives. The ultimate goal of sound 

reproduction is to recreate the full richness of a sound field 
including not only the sound content but also the spatial proper-
ties to give the listener full knowledge about both the sound 
source and acoustic environment. Spatial sound reproduction 
technologies so far have made tremendous progress in reproduc-
ing sound fields over fairly large regions of space using an array of 
loudspeakers. This introduces the idea of establishing personal 
sound zones, whereby interface-free audio is delivered to multiple 
listeners in the same environment without physical isolation or 
the use of headphones (Figure 1). This concept has recently drawn 
attention due to a whole range of audio applications, from control-
ling sound radiation from a personal audio device to creating indi-
vidual sound zones in all kinds of enclosures (such as shared 
offices, passenger cars, and exhibition centers) and generating 
quiet zones in noisy environments. 

The first known demonstration of reproducing a sound field 
within a given region of space was conducted by Camras at the 
Illinois Institute of Technology in 1967, where loudspeakers 
were distributed on the surface enclosing the selected region to 
control sound radiation, and the listeners could move freely 
within the recreated environment [1]. The well-known ambi-
sonics [2], wave field synthesis [3], and higher-order spherical 
harmonics-based techniques [4] were developed separately for 
more advanced spatial sound field reproduction over a large 
region of space. Druyvesteyn and Garas [5] first proposed the 
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concept of a personal sound zone, i.e., reproducing sound 
within a desired region of space with a reduced sound level else-
where. Microsoft researchers later demonstrated their “Personal 
Audio Space” project at Microsoft Research TechFest 2007, 
where a linear loudspeaker array consisting of 16 drivers was 
used to enhance the sound in one area while canceling sound 
waves in another area within the same physical space. By step-
ping even a few paces outside the target region, users reported 
that they could not hear the reproduced music. Researchers fur-
ther extended this concept to develop personal audio for per-
sonal computers and televisions [6], as well as for mobile 
devices [7] and automobile cabins [8]. 

A way to create personal sound zones is to formulate a 
multizone sound control problem within the same physical 
space as illustrated in Figure 1. Here, multiple microphones 
and loudspeakers are used to control the reproduced sound 
fields. A preference is to use a single array of loudspeakers 
rather than separate arrays for each zone. This improves free-
dom and flexibility, allowing sound zones to be positioned 
dynamically and listeners to freely move between zones. When 
the system is implemented in reverberant enclosures, loud-
speaker designs and audio processing are two key aspects to 
control sound radiation and to deal with the complexity and 
uncertainty associated with sound field reproduction. This 
article aims at reviewing these techniques to support the goal 
of establishing personal sound zones. 

MULTIZONE SOUND CONTROL
In a general formulation, sound fields are produced over Q  sound 
zones. Here M  pressure controlling microphones are placed 
within each zone so that the zone sound fields are controlled by a 
total of QM  matching points. The sound pressures measured at 
the microphone positions in each zone q  are represented as a vec-
tor ( )[ ( ), , ]xp x pp , ,, , q Mq q

T
1 f ~~=  and given by 

,p H gq q= (1)

where [ ( , ), , ( , )]g y yg g L
T

1 f~ ~=  denotes the vector of loud-
speaker driving signals at a given frequency ~  to create personal 
audio sound scenes and Hq  represents a matrix of acoustic transfer 
functions (or acoustic impedances) between the loudspeaker driv-
ers and the microphones in zone .q  Sound control techniques can 
broadly be classified into two categories, acoustic contrast control 
(ACC) and pressure matching (PM), and we consider each in turn. 

ACOUSTIC CONTRAST CONTROL
Choi and Kim [9] first formulated the personal audio problem by 
creating two kinds of sound zones: the bright zone within which 
we want to reproduce certain sounds with high acoustic energy, 
and the dark zone (or the quiet zone) within which the acoustic 
energy is kept at a low level. The principle of ACC is to maximize 
the contrast in the acoustic energy between the bright zone and 
the dark zone. Among the Q  sound zones, we specify the first 
zone as the bright zone and the remaining Q 1-  zones as the 
dark zones. The acoustic energy in the bright zone is defined from 
the sound pressures measured at the M  matching points, that is 

p H gE 2 2
b b b= =  with H H1b =  and ·  denoting the 2,

norm. Similarly, the acoustic energy in the dark zones is repre-
sented as p H gE 2 2

d d d= =  with [ , , ]H H HH
Q
H H

2d f=  and 
( ) H$  represents the Hermitian transpose. 

In [9], the acoustic contrast, defined as a ratio between the 
average acoustic potential energy density produced in the bright 
zone to that in the dark zones, is maximized. The acoustic con-
trast maximizing method may perform well over the dark zones 
but may be unrobust to providing the desired maximum energy 
in the bright zone. To ensure the sound energy within different 
zones are optimized simultaneously, the problem can be refor-
mulated as maximizing the acoustic energy in the bright zone 
with the constraint that the energy in the dark zone is limited to 
a very small value .D0  In addition, a limit is imposed on the 
loudspeaker power consumption, i.e., ,g E2

0#  also known as 
the array effort. These constraints ensure that sound leakage out-
side the Q  zones is not excessive and also that realized 

g (y1) g (y2)

g (yL) g (yl)

R

HQ

Oq

ro

Zone 1

Zone q

Zone Q

(a) (b)

[FIG1] (a) An illustration of personal sound zones in an office environment. (b) A loudspeaker array is used to create multiple sound 
zones for multiple listeners.
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loudspeaker weights are chosen to ensure the implementation is 
robust to driver positioning errors and changes in the acoustic 
environment. The ACC problem can then be posed as 

max H g
g

2
b (2a)

H g Dsubject to 2
0d # (2b)

.g E2
0# (2c)

The objective and the constraints are summarized into a single 
objective function represented using the Lagrangian [10], 

( ) ( ) ( ),

, ,

max g H g H g gL D E

0
g c

2
1

2
0 2

2
0

1 2

b d

$

m m

m m

= - - - -

(3)

where 1m  and 2m  are Lagrange multipliers to adjust the relative 
importance of each condition (2b) and (2c). The solution that 
maximizes the Lagrangian is obtained by taking the derivative of 
Lc  with respect to g  and equating it to zero, and is written as 

[ ] [ ] ,H H I g H H gH H
1

1

2
d d b bm

m
m+ = (4)

which is recognized as a generalized eigenvector problem. The 
optimum source strength vector gc  is set as the eigenvector cor-
responding to the maximum eigenvalue of the matrix 

.[ ( / ) ] [ ]H I H HHH H
2

1
1d d b bm m+ -  The ratio of Lagrange multipliers 

/2 1m m m=  determines the tradeoff between the performance and 
array effort and must be chosen iteratively for the constraint on 
the array effort to be satisfied. The formulation in (4) yields essen-
tially the same answer as that in [8], or the so-called indirect for-
mulation in [10], which diagonally loads the matrix H HH

d d  before 
inverting it to improve the matrix condition number. 

The formulation adopted here leads to a straightforward way 
for demonstrating the connection between the ACC method and 
the PM method, which will be explained next. 

PRESSURE MATCHING
The PM method aims to reproduce a desired sound field in the 
bright zone at full strength, while producing silence in other zones. 
The idea comes from the traditional crosstalk-cancelation problem, 
where small regions of personal audio are created by controlling 
the pressure at discrete spatial points (microphone or listener posi-
tions). Multizone sound control is an extension of the traditional 
approach with a sufficiently dense distribution of matching points 
within all the zones. Given a target sound field pdes  to be repro-
duced in the bright zone, the robust PM formulation can be written 
using an 2,  PM objective along with the constraints on the sound 
energy in the dark zones and the array effort constraint, 

min H g p
g

2
b des- (5a)

H g Dsubject to 2
0d # (5b)

.g E2
0# (5c)

The problem can then be written as a Lagrangian cost function, 

( ) ( ) ( ),

, ,

min g H g p H g gL D E

0
g p

2
1

2
0 2

2
0

1 2

b des d

$

m m

m m

= - + - + -

(6)

where again 1m  and 2m  are Lagrange multipliers. The solution 
that minimizes Lp  is obtained by setting the derivative of Lp  with 
respect to g  to zero and is written as 

[ ] .H H H H I g H pH H H
1 2b b d d b desm m+ + = (7)

Equation (7) may be solved using an interior point algorithm to 
choose appropriate values of 1m  and 2m  to satisfy the constraints 
[11]. A simpler formulation is to set the parameter ,11m =  which 
implies applying equal effort to matching the pressure in the 
bright zone and minimizing the energy in the dark zone. This 
gives the original formulation of multizone sound control as in 
[12] but has an added robustness constraint on the array effort, 
that is [ ] .g H H H H I H pp

H H H
2

1
b b d d b desm= + + -  This solution is 

also identical to that of the ACC method provided that 1) the 
choice of target pressures in the bright zone is an ACC solution, 
p H gdes b c=  and 2) identical constraints in E0  and D0  are met. 
This demonstrates that the formulation in the PM approach to 
sound field reproduction subsumes the ACC problem. Chang and 
Jacobsen [13] investigated a combined solution of these two tech-
niques, [( ) ] ( ) ,g H H H H H p1 1H H H1

b b d d b descb l l l= - + --  which 
is actually same as the one presented in (7) with the regularization 
term omitted. The tuning parameter l  is equivalent to the tuning 
parameter .1m  The design has been shown effective for reproduc-
ing plane wave sound fields at frequencies even above the Nyquist 
frequency with good contrast control, thus providing the potential 
to reduced the number of loudspeakers required and increase the 
zone sizes and upper operating frequencies using the PM method. 

The PM approach gives an explicit solution to obtain the loud-
speaker driving signals and does not require solving an eigenvec-
tor problem, as is required in the case of acoustic contrast 
optimization. PM is especially suitable for the situation that differ-
ent constraints are imposed on each sound zone when the listen-
ers require different quality of listening experiences. However a 
series of Lagrange multipliers need to be determined, and a gener-
alized eigenvalue solution is no longer possible. Instead convex-
optimization methods like the interior-point method should be 
used [11]. The PM approach also imposes an objective on the 
phase of reproduced sound fields within the bright zone, and thus 
provides a better holographic image compared to the contrast 
control method. Figure 2(b) demonstrates that the ACC method 
always maintains a high level of contrast between the bright and 
dark zone using a small array effort, but a high reproduction error 
also indicates that the reproduced sound field may swirl around 
the listener in different directions. On the other hand, the PM 
approach achieves small reproduction error while higher contrast 
may be obtained by choosing an appropriate desired sound field. 
Preliminary perceptual tests were found to generally agree with 
the simulation results however the source signal itself signifi-
cantly affects the system performance [14]. 

While the least squares solutions in the frequency domain 
seems to provide a great deal of simplicity and flexibility, the 
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positions of the loudspeakers and the matching points within 
sound zones must be chosen judiciously for good reproduc-
tion performance. Representing sound fields in the wave 
domain or mode domain as in (S1) in “Wave-Domain Sound 
Field Representation” can provide physical insights into these 
critical issues [15]. Dimensionality analysis tells us that for 
PM over Q  sound zones, the number of loudspeakers required 
is determined by the upper frequency or wave number k  of 
operation, the number of sound zones, and the size of each 
sound zone [15]. Here we assume that each sound zone is a 
circle or sphere of radius r0  located at the origin Oq  as shown 
in Figure 1, although without loss of generality each sound 
zone could be of arbitrary shape. The minimum number L
is about ( )Q kr2 10+  for two-dimensional (2-D) reproduction 
and ( )Q kr 10

2+  for three-dimensional (3-D) reproduction, 
respectively [4]. 

DISCUSSION

Practical Implementation
When a small number of loudspeakers are used, for example, three 
speakers used in a mobile device, current personal audio systems 
can only achieve limited performance, i.e., ~10 dB contrast level 
between bright and dark zones [7]. An array of nine sources has 
been implemented for personal audio systems in televisions and 
personal computers, in an anechoic chamber achieving over 19 dB 
contrast under ideal conditions [6]. However, in terms of practical 
implementation in a car cabin, Cheer et al. [8] demonstrated that 
the optimized level of acoustic contrast obtained from the ACC 
method may not be achieved because of errors and uncertainties 
and the least-squares-based PM approach may provide a more 
robust solution. In addition, multizone reproduction is fundamen-
tally constrained whenever attempting to reproduce a sound field 
in the bright zone that is directed to or obscured by another zone. 
This is known as the occlusion problem [11], [12]. 

Loudspeaker Positions
Using the compressive sensing idea, the formulation of multizone 
sound field reproduction can be regularized with the 1,  norm of 

WAVE-DOMAIN SOUND FIELD REPRESENTATION
The Helmholtz wave equation can be solved to express 
any sound field as a weighted sum of basis functions, 

( , ) ( ) ( , ),x xp n
n

n
1

~ a ~ b ~=
3

=

/ (S1)

where ( )wna  are sound field coefficients corresponding 
to mode index ,n ( , )xnb ~  are basis functions with the 
orthogonality property 

, ( , ) ( , ) ( ) .x x xd w*
n m n m n nm

C
_G Hb b b ~ b ~ p d=#

The sound field within a control region C  can be repre-
sented using a finite number of basis functions, i.e., 

[ , ]n 1 N!  and ( ) ,wn n nG Hp b b=  is the strength of each 
mode over the control zone. 

The modal basis functions for source distributions and 
sound fields expressed in cylindrical coordinates and spheri-
cal coordinates can be written as [17] 

( , ) ( ) ( ) ( )x expp kr iJ( )

N

N

2
2

D
D~ a ~ oz= o

o

o

=-

/ (S2a)

( , ) ( ) ( ) ( , ),xp kr YJ( )
N

3
0

3
D

D~ a ~ i z= o
n

n o

o

o

o o
n

=-=

// (S2b)

where ( )exp $  and ( )Y $o
n are complex exponentials and spheri-

cal harmonics, respectively and ( )krJ( )2D
o  and ( )krJ( )3D

o  are 
functions representing the 2-D and 3-D mode amplitudes at 
radius ,r  respectively. Given the radius of the control region 
r0, wave number ,k  and the truncation number N kr0.  [4], 
we have the following dimensionality results: kr2 1N D2 0= +

and .( )kr 1N D3 0
2= +  This gives the Nyquist sampling condi-

tion for a uniform circular array )(M N D2$  and a spherical 
array ),(M N D3$  respectively.
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[FIG2] A plane wave of 500 Hz from 45˚ is reproduced in the bright zone (red circle) using PM while deadening the sound in the dark 
zone (blue circle) using 30 loudspeakers placed on a circle of radius ,R 3 m=  and each zone is of radius .r 0 6 m=  as shown in (a). (b) 
The acoustic contrast versus the array effort and the mean-square reproduction error in the bright zone using the ACC method (blue 
line) and the PM method (red line).
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the loudspeaker weights and solved using the least-absolute 
shrinkage and selection operator [16]. The assumption here is that 
the desired sound field can be reproduced by a few loudspeakers, 
which are placed close to the direction of the virtual source and 
are sparsely distributed in space. This can produce low sound lev-
els outside the bright zones and hence can reduce the interference 
to the dark zone. 

Further Remarks
While the reproduction error has been widely used to quantify the 
performance of sound field rendering methods, a planar wavefront 
may be reproduced whose direction of propagation does not coin-
cide with the desired direction, which may give a high reproduc-
tion error. In [18], the cost function of the ACC method is refined 
to optimize the extent to which a sound field resembles a plane 
wave. A constraint is imposed on the plane-wave energy within the 
bright zone over a range of incoming directions, thus optimizing 
the spatial aspects of the sound field for ACC. Simulation results 
demonstrate that a circular array of 48 equally spaced loudspeak-
ers produces consistently high contrast and a planar target sound 
zone of radius 0.15 m for frequencies up to 7 kHz. 

ACTIVE ROOM COMPENSATION
One challenge in the personal audio problem is room reverbera-
tion. A strong wall reflection may ruin the personal audio listening 
experience [14]. Room reverberation can be corrected by using 
active room compensation, provided the acoustic transfer function 
(ATF) matrices are determined. For static room environments 
these matrices may be premeasured but for time-varying environ-
ments they must be determined adaptively. In this section, meth-
ods for determining and correcting for these matrices to 
compensate for room responses over spatial regions are described. 

The room compensation approaches described here are more 
robust at low frequencies. At high frequencies, a reverberant 
sound field is diffuse. Compensation is extremely sensitive to small 
changes within the room and cannot be practically compensated 
for without very fast filter adaptation. Personal sound systems may 
not be able to compensate for these variations. Instead, diffuse 
components may be treated as noise and the system made robust 
to them. 

We summarize the advances made for the case of a single zone 
with the ATF matrix, ,H H1/  using wave-domain or modal-space 
processing. These approaches demonstrate the challenges inher-
ent in applying room compensation to the multizone problem. We 
also review a crosstalk-cancelation approach to the multizone case 
that utilizes impulse response reshaping. 

MODAL-SPACE PROCESSING
Based on the wave-domain sound field representation (S1), the 
sound field ( , )xp ~  can be expressed as in (3). The ATF ( , )xH ~,

from each loudspeaker ,  to a point x  inside the sound control 
zone can also be parameterized as 

( , ) ( ) ( ) ( ),expxH kr iJ( ) ( )

N

N
2 2D D~ c ~ oz=, ,o

o

o

=-

/ (8a)

( , ) ( ) ( ) ( , ),xH kr YJ( ) ( )
N

3

0

3D D~ c ~ i z=, ,o
n

n o

o

o

o o
n

=-=

// (8b)

where ( )wnc ,  and ( )c ~,o
n  are ATF coefficients. The sound 

pressure vector p  and ATF matrix H  can then be written in 
matrix form 

,p Ba= (9a)
,H BC= (9b)

where B  is the M N#  matrix of basis functions evaluated at 
each of the M  microphone positions defined [ ] ( , ),B xmn n mb ~=

a  is an M -long vector of sound field coefficients, C  is the 
LN#  matrix of the ATF coefficients defined [ ] ,n ncC =, ,  and N

is either N2D  or .N3D  The PM problem of (5a) in the mode 
domain becomes ,g desaC =  where desa  is the N -long vector of 
coefficients for the desired sound field. The compensation prob-
lem can then be solved in offline manner by determining the 
least-squares solution [19]. 

An adaptive mode-domain approach was devised in [20]. 
The ATF matrix can be further parameterized 

,H UJC= (10)

where U  is a tall Vandermonde matrix (2-D) or spherical harmonic 
matrix (3-D) with the property that U U IH =  and J  is a diagonal 
matrix of the mode amplitudes at the microphone positions. The 
vector of microphones’ signals p Hg=  are hence transformed into 
mode-domain coefficients through .J U pH1a = -  For modest levels 
of room reverberation, C  can be expressed as the sum of an 
anechoic room component and a small reverberant component. By 
approximating the reverberation as small, a simple iterative proce-
dure for choosing g  to drive a  to desa  can be formulated. Reverber-
ant compensation methods [19], [20] may have difficulties in practice 
with preringing artefacts, but these artefacts may be reduced by 
using more advanced multiple-input, multiple-output polynomial fil-
ter designs [21]. 

ACTIVE LISTENING ROOM COMPENSATION 
WITH WAVE-DOMAIN ADAPTIVE FILTERING
Active listening room compensation can be used to make a rever-
berant room problem look like an anechoic room problem [22]. 
By applying a compensation filter matrix to the input loudspeaker 
signals, the uncompensated anechoic-room driving signals can 
then be used. The essence of the problem as depicted in Figure 3 is 
to minimize the error energy ,e eH  where 

,e H g HCg0= -

H0  is the anechoic-room ATF matrix, and C  is an L L#  compen-
sation filter matrix. This effectively chooses the filter matrix C  to 
drive the net transfer function matrix HC  to the anechoic-room 
ATF matrix .H0

In massive multichannel problems for which the number of 
loudspeakers L  and microphones M  are large, the resultant 
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matrices are large and may have issues with computational 
requirements (for filtered x-RLS) and convergence rates (for fil-
tered x-LMS). Poor convergence can be solved using eigenspace 
adaptive filtering [22] by performing a generalized singular value 
decomposition (SVD) to diagonalize the system. Unfortunately the 
SVD still incurs a high computational cost. 

Fortunately, the problem can be solved computationally and 
efficiently by using a wave-domain approach. If the microphones 
are arranged over a uniform circular array of radius r  and the 
sources are arranged over a concentric uniform circular array, 
then the anechoic-room ATF matrix may be parameterized 

,H UJ K VH H
0

0

=
C
=

(11)

where 0C  is a matrix of ATF coefficients corresponding to the 
anechoic room, K  is a diagonal matrix of Hankel functions, and 
V  is a tall Vandermonde matrix (2-D) or a spherical harmonic 
matrix (3-D). Matrix V  possesses the property ,V V IH =  provided 
that at least one loudspeaker is present for each mode to be con-
trolled, i.e., L N2D$  or .L N3D$

The wave-domain adaptive filtering (WDAF) approach trans-
forms the signals at the microphones and the loudspeaker signals 
into the wave domain through the transform T1  and ,T3  then 
adaptively calculates the mode-domain compensation signals 

( ),C wu  and transforms the compensated loudspeaker signals back 
using the inverse transform T2  as depicted in Figure 3. If the 
compensation filter matrix ( )C wu  is forced to be diagonal, then 

each of its diagonal entries can be determined from decoupled 
adaptive filters. This would explicitly solve the problems of compu-
tational complexity that appeared in multipoint compensation 
techniques. While it is straightforward to choose T1  and T3  to do 
so, in reality T2  cannot always be chosen without a priori knowl-
edge of the ATF matrix. However, [22] and [23] show that the sys-
tem can be partially diagonalized by choosing ,VT H

1 = ,VT2 =

and .UT H
3 =

SYSTEM IDENTIFICATION OF THE ATF MATRIX
The ATFs change in a room as people move about and as tempera-
ture changes. Since active room compensation in particular is 
sensitive to this phenomenon, it is better if the ATFs are deter-
mined adaptively. Similar to active listening room compensation, 
this task can be performed efficiently in the wave domain where 
transforms are used to part-diagonalize the reverberant-room ATF 
matrix [23]. 

The advantages of WDAF and the mode-domain approaches are 
that 1) sound pressure is controlled over the entire control region 
and not just at specific points and 2) they represent the problem 
with a reduced number MN2D 1  (or )MN3D 1  of parameters, 
which reduces the complexity and reduces the correlation in the 
elements of the ATF matrix since the filters are part decoupled. 
This helps speed the convergence of adaptive filtering.

Since many more microphones and loudspeakers are required 
for a 3-D control zone, active room compensation is more practi-
cally deployed in 2-D scenarios. However, 2-D compensation can-
not satisfactorily correct for roof and floor reflections, so sound 
absorbers must be employed to eliminate these effects. 

IMPULSE RESPONSE RESHAPING
Multiple listening zones may also be achieved by using crosstalk 
cancelation. Here, each of Q  signal is delivered to a listening posi-
tion while canceling the crosstalk paths to the remaining Q 1-
positions using L  loudspeakers and, for monaural signals, M 1=
microphone in each zone. As shown in Figure 4, this problem is 
solved by implementing crosstalk-cancelation filters. The basic 
idea of the impulse response reshaping approach is that fully 
equalizing the delivered paths is unnecessary. It is more robust 
and efficient to reshape these impulse responses. 

Using impulse response reshaping, the early reflections of the 
delivered paths are reinforced while late reverberation and crosstalk 
are minimized [25]. Here, by defining windows on these desired 
and undesired ATF components w( )

q
d  and w( )

q
u  respectively in each 

zone ,q  the ratio of undesired-to-desired components is minimized 

,min log
W r
W r

g p

p

d

u

d

u

{

{

{
(12)

where r{  represents the global impulse response given a concate-
nated vector of crosstalk cancelation filters [ , , ]g g gT

L
T T

1 f_{ { {  and 
a block-Toeplitz matrix H{  representing the room impulse 
responses, i.e., ,r Hg={ { { ( , , ),W w wDiag ( ) ( )

Q1u
u u
f_  and Wd _

.( , , )w wDiag ( ) ( )
Q1

d d
f  Different pd - and pu-norms may be chosen 

for the desired and undesired components, but it has been shown 
to be perceptually favorable to choose norms that approximate the 

Q

g(ω ) g(ω )˜
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[FIG3] The listening room compensation using WDAF. The
free-field transformed loudspeaker excitation signals gu  are 
used in a reverberant room with the filter matrix Cu  to 
compensate for the ATFs in matrix .H

[FIG4] Crosstalk cancelation for delivering a time-domain signal 
s  to the top microphone while canceling the signals at the 
remaining Q 1-  microphones.
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infinite norm. Equation (12) can be solved analytically for the 
p p 2u d= =  case where it reduces to a generalized Rayleigh quo-
tient. In general, (12) is solved using the steepest descent meth-
ods [25]. A relaxed multichannel approach using least squares 
[26] and minimax metrics [24] may include regularizations to 
reduce the array effort below that of the ratio-based approach in 
[25]. These approaches are compared in Figure 5 for simulation 
with L 3=  and Q 2=  in a room with a reverberation time of 
250 ms using only 150 ms-long reshaping filters. The ratio-based 
approach shown is for ,p 10u = ,p 01d =  and 1,000 steepest 
descent iterations. 

Impulse response reshaping, in principle, can be applied to 
the PM- and modal-space approaches of creating personal sound 
zones. More robust and efficient filters can be obtained than 
equalization by canceling the undesirable late reverberation 
while leaving in some beneficial early reflections. Unfortunately 
this problem must be formulated in the time domain, which 
results in a computationally intractable massive multichannel 
problem. The future development of lower-complexity convex 
optimization algorithms may permit practical solutions to these 
large problems. 

DIRECTIONAL SOURCES
The use of directional sources can provide advantages over con-
ventional loudspeakers, whose directivity is omnidirectional at low 
frequencies and is not typically controllable. Directional sources 
that provide multiple modes of sound radiation can be used with 
active compensation to produce sound arriving from angles where 
there are no sources by reflecting sound from room surfaces and 
can also cancel unwanted reverberation (Figure 6). 

In a multilistener situation, a single directional loudspeaker 
can reduce unwanted radiation of sound to other listeners by max-
imizing the direct sound to the intended recipient relative to the 
reverberant field. A loudspeaker with directivity D  and radiating 
acoustic power W  in an ideal Sabinian space produces a direct 
sound intensity / ( )I WD r4 2

dir r=  and a reverberant sound inten-
sity of / ,I W R4rev = l  where / ( )R S 1e e= -l  is the room con-
stant, S  the room surface area, and e  the mean absorption 

coefficient of the room surfaces. The direct to reverberant inten-
sity ratio is thus 

.
r

DR
4

DRR 2r
=

l (13)

Increasing the directivity then allows the direct sound at the lis-
tener to be increased relative to the reverberant sound. Equiva-
lently, the reverberant field is reduced by / .DRR1
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[FIG5] The shortening of impulse responses to 50 ms in a room of reverberation time 250 ms using (a) relaxed multichannel least 
squares, (b) the relaxed minimax approach in [24], and (c) the ratio optimization approach of [25].
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[FIG6] A demonstration of the higher-order loudspeaker in (a) a 
cylindrical baffle and (b) the schematic plot of its behavior.
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Standard loudspeakers typically have insufficient directivity to 
provide a significant enhancement of direct sound in a reverberant 
space. High directivity can be achieved using traditional array 
techniques such as delay and sum beamforming, but the array size 
must be large at low frequencies to achieve significant directivity. 
For practical use, superdirectional arrays are required, which 
achieve higher directivities than an array with uniform amplitude 
weightings [27]. Superdirectivity can be achieved using linear dif-
ferential arrays, where the transducer weights have alternating 
signs, or by using circular and spherical arrays, where the weights 
are obtained from trigonometric or spherical harmonic functions, 
respectively. Such loudspeakers are termed higher-order sources
(HOSs) and can produce multiple radiation patterns that are 
described by cylindrical or spherical harmonics. 

Because superdirectional arrays are compact relative to their 
directivity, they may be built into a single unit, and we therefore 
assume here that a directional source is a single unit, typically of 
similar dimension to a standard loudspeaker. This section consid-
ers the design of directional loudspeakers and their application to 
maximum directivity and then focuses on the advantages of using 
arrays of  sources, which allow greater control of sound fields over 
wide areas and are particular suitable for establishing personal 
sound zones. 

SPHERICAL ARRAYS
The sound field produced by an arbitrary source of maximum 
radius a  positioned at the origin and radiating a complex fre-
quency ( )exp i t~  is represented in the wave domain as in 
(S2b) [17] 

( , , , ) ( ) ( ) ( , ), ,p r w w h kr Y r a( )
N

0

2 $i z a i z= o
n

n o

o

o

o o
n

=-=

// (14)

where ( )h kr( )2
o  is the spherical Hankel function of the second 

kind, i.e., the radial function to represent the mode amplitude at r
and ( )wao

n  are sound field coefficients. Similar to the dimension-
ality analysis in the wave domain, we will assume that the directiv-
ity of the source can be described by a maximum order N  so that 

.[ , ]N0!o
The most direct method for constructing a loudspeaker that 

can produce a controllable directivity is to mount a number of 
drivers in a spherical baffle of radius a  [28]. The general behavior 
of such a source is most simply explained by deriving the sound 
field due to a sphere with arbitrary surface velocity 

, , , ( ) ( , ),v t w e w Ys s
i t

s s

N

0
i z g i z= ~

o
n

o
n

n o

o

o =-=

^ h // (15)

where ( , )s si z  is the driver position on the sphere. The exterior 
field has the general form of (14). The expansion coefficients are 
found by calculating the radial velocity for the general case, and 
requiring that they equal (15), i.e., 

o

( )
( )

w i c
h ka

w
( )2a t
g

=-o
n o

n

l ^ h

and the sound field, including the effect of mass-controlled driv-
ers, is 
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Hence, each coefficient of the surface velocity produces a cor-
responding mode of radiation whose polar response is governed 
by a spherical harmonic. 

The normalized magnitude of the mode responses for orders 
0–5 are shown in Figure 7(a). For all modes greater than order 

,0o =  the response reduces at low frequencies. All modes of 
order o  become active at a frequency approximately given by 
ka o=  or 

.f a
c

2r
o= (16)

This means that it is not possible to create high-order directivities 
at low frequencies. The spherical loudspeaker is omnidirectional at 
low frequencies and can produce increasing directivities as more 
modes become active above frequencies given by (16).

In practice, the surface velocity in (15) must be approximated 
using a discrete array of L0  drivers positioned on the sphere. Ide-
ally the drivers are positioned so that they are spaced equally 
from each other which produces the most robust approximation 
to the integration over the sphere required to approximate each 
spherical harmonic. This is possible if the drivers are placed in 
the center of the faces of platonic solids, allowing up to 20 drivers 
(for the icosahedron). Higher numbers of drivers can be used 
using numerically optimized integration nodes for the sphere.

A simple way to model the discrete approximation is to 
assume each driver is a point source. The sound field due to a 
point source on a sphere then models a single driver, and the 
sound fields due to L0  point sources allows the calculation of the 
total field. However, this approach ignores the directivity of each 
driver, which becomes significant at high frequencies. A more 
accurate model of the drivers that is mathematically tractable is 
to model each one as a spherical cap vibrating radially [28]. 

The sampling of the sphere means that the spherical loud-
speaker is unable to generate spherical harmonic terms above 
the spatial Nyquist frequency of the array. This may be derived 
by noting that there are a total of ( )N 1N 2= +  spherical har-
monics up to order .N  Controlling this number of modes 
using L0  loudspeakers is possible for .L N0 $  At a given fre-
quency, the maximum-mode order that can be radiated is 

.N ka=  Hence, the spatial Nyquist frequency is 

( ) .f a
c L

2
1

, D3
0

Nyq
r

=
- (17)

The number of drivers required for a sphere of radius a  to produce 
Nth-order directional responses up to a frequency f  is given by

.L c
af2 1D3

2r= +c m
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For example, a third-order speaker with radius . ma 0 1=  and a 
Nyquist frequency of 4 kHz would require 70 drivers. This is a 
large number of drivers, and motivates the investigation of sim-
pler approaches such as cylindrical and line arrays. 

CYLINDRICAL ARRAYS
A simpler approach may be taken if the directional loudspeaker is 
only required to produce directivity in a 2-D plane. This is com-
monly the case for sound reproduction in the home, where stereo 
and 5.1-surround formats are ubiquitous. A circular array requires 
fewer drivers than a spherical array for the same spatial Nyquist 
frequency. To see this, consider a sphere where L0  drivers are 
placed on the equator instead of equally spaced around the sphere. 
This arrangement allows for the generation of sectorial spherical 
harmonics, where | | ,o n=  which produce radiation with lobes 
only in the ( , )x y  plane. The driver spacing is now /a L2 0r  and 
the spatial Nyquist frequency is 

( ) .f a
c L

4
1

, D2
0

Nyq
r

=
- (18)

The number of drivers for a given 2-D spatial frequency is

.L c
af4 1D2
r= +

Comparing (18) with (17), the 2-D Nyquist frequency can be 
much higher than the 3-D Nyquist frequency for the same 
number of drivers. The limitation of the circular array is that 
the transducer layout does not provide sufficient vertical direc-
tivity at high frequencies, and the source begins to produce 
unwanted radiation lobes in elevation. To reduce these lobes, 
the transducers must either have greater aperture in elevation 
or a line array must be used to control the vertical directivity. 
Since a line array is more effective when mounted on a cylinder 
than on a sphere, a practical alternative to the spherical array 
for the 2-D case is a cylindrical baffle in which multiple 

circular arrays are mounted (Figure 6). Such a geometry can 
still use fewer transducers than the spherical case, for the 
same spatial Nyquist frequency.

The radiation of sound for the cylindrical case can be approxi-
mated by assuming that the cylinder is infinite and that each 
driver is represented as a surface velocity distribution in height z
and azimuth angle z  [29]. Its produced mode responses are 
shown in Figure 7(b). The responses are similar to those for the 
spherical source, and the activation frequencies are the same. The 
limitation of this analysis is that, in practice, a truncated cylinder 
must be used leading to variations of the mode response magni-
tude around the infinite cylinder values due to diffraction from the 
ends of the cylinder. 

LINE ARRAYS
The simplest array for providing high directivity is a line array, 
which produces an axisymmetric polar response. While this does 
not provide the full control of 3-D or 2-D radiation that the spheri-
cal and cylindrical arrays do, it is sufficient for maximizing the 
direct to reverberant ratio. It has the same limitation as the circu-
lar and spherical arrays, that is difficult to create high-order 
responses at low frequencies. However, the line array allows an 
order N  response to be produced using L N 10 = +  transducers 
as opposed to ( )N 1 2+  using a spherical array or N2 1+  for a cir-
cular array (assuming no vertical directivity control). The maxi-
mum directivity produced in 3-D is [30] 

( ) .D N 1 2= +

An order N  loudspeaker with this directivity will produce the 
maximum direct to reverberant ratio for an on-axis listener. The 
simplest case, ,N 1=  results in a polar response ( ) .p 0 25i = +

. ( ),cos0 75 i  which has a directivity of four [7]. The first-order 
response can be implemented using N 2=  coupled or uncoupled 
drivers, or more simply, using a single driver and controlling the 

[FIG7] The normalized magnitude of the mode responses of (a) a spherical source and (b) a cylindrical source for orders 0–5.
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radiation from the rear of the driver, although the directivity 
results can be less accurate with frequency [7]. 

ARRAYS OF DIRECTIONAL SOURCES
If multiple directional loudspeakers are available, then it becomes 
possible to create multiple zones of sound. Multizone reproduc-
tion requires a large number of monopole loudspeakers. The use 
of directional sources allows the production of multizone fields 
using significantly fewer loudspeaker units. In effect, a large num-
ber of drivers are grouped into a small number of physical devices 
to allow the creation of complex sound fields. 

It has been shown that an array of L Nth  order sources 
operating in free-field conditions has a spatial Nyquist fre-
quency of approximately N2  times that of the same geometry 
monopole array [31]. Results better than free-field can be 
achieved in a reverberant room by using the techniques dis-
cussed in [32]. In this case, the directional sources are able to 
exploit room reflections to provide directions of arrival other 
than those directly from the sources. The use of L  HOSs, each 
of which can produce up to order N  responses, can produce a 
similar accuracy of a reconstructed field to ( )L N2 1+  mono-
pole loudspeakers in the 2-D case, and ( )L N 1 2+  loudspeakers 
in the 3-D case. For example, Figure 8 shows the sound field 
reproduction error achieved using a circular array of five 
higher-order loudspeakers in comparison with an array of 45 
monopole sources. For a virtual source angle of 72° (the 
desired source position is equal to the first loudspeaker posi-
tion), the error is similar to that produced by the monopole 
sources. At the angle of 36° (the desired source halfway 
between two loudspeakers), the error is about 10 dB higher 
than the monopole case but still reasonably accurate, particu-
larly at low frequencies. Reproduction has been achieved over a 
1-m diameter using only five loudspeaker units with room 

dereverberation. The simulation is limited to 2-kHz bandwidth 
for computational complexity reasons. The worst-case repro-
duction error will be below 10-  dB up to around 3 kHz. The 
bandwidth and reproduction radius of accurate reproduction 
can be extended by using more sources and higher orders, cre-
ating sufficient space for multiple listeners listening to inde-
pendent sound fields. 

The use of HOSs can be viewed as an optimization problem 
with a constraint on the total number of loudspeaker units in the 
room. The only way to improve reproduction in such a case is to 
add capability to the existing loudspeakers. HOSs offer a practical 
approach to providing the control of the high-spatial-dimension 
sound fields that are required for creating multiple personal sound 
zones. For example, the reproduction of sound in Q  zones of 
radius ,r0  up to a spatial frequency ,kmax  using L  HOSs requires a 
maximum order per source of 

( . ) . .N L
Q k r 0 5 0 5max 0

=
+

-c m (19)

For 8 kHz reproduction over regions of radius 0.2 m, the order is 
N 10=  for L 10=  sources and N 6=  for L 15=  sources. Such 
numbers are achievable in moderate- to large-sized rooms. 

SUMMARY AND FUTURE OPPORTUNITIES
In this article, we presented, according to our involvement and 
insights, the audio processing and loudspeaker design aspects 
that support the goal of establishing personal sound zones. The 
problems that have been explored include multizone sound con-
trol, wave-domain active room compensation, and directional 
loudspeaker design, which allow for sound control over spatial 
regions. A high-performance personal audio system would likely 
address many of these aspects in its design. In sound field 
control, interference mitigation and room compensation robust 
to changes and uncertainty in the acoustic environment remain 
as challenging problems. Yet future opportunities exist in 
1) higher-order surround sound using an array of directional 
sources and wave-domain active room compensation to perform 
multizone sound control in reverberant enclosures and 2) per-
sonal audio devices using multiple sensors to establish personal 
sound zones by efficiently canceling crosstalk and using distrib-
uted beamforming. 
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include active room compensation, microphone array processing, 
and room acoustic modeling.
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H
istorically, headphones have mainly been used for 
analytic listening in music production and in 
homes. During the last decade, with the boom of 
dedicated music players and mobile phones, the 
everyday use of light headphones has become highly 

popular. Current headphones are also paving the way for more 
sophisticated assisted listening devices. Today, active noise con-
trol (ANC), equalization techniques, and a hear-through function 
are already a standard part of many headphones that people com-
monly use while traveling. It is not difficult to predict that, in the 
near future, a headset will be a “hearing aid for those with normal 
hearing,” which can improve listening conditions for example in 
a noisy environment. 

Additionally, mobile augmented reality has become a hot topic 
[1], and new products such as the Google Glass will make it more 
common. On the audio side of augmented reality systems, mixing 
of the ambient and reproduced sounds will be an essential fea-
ture. Augmented reality headsets may also serve as the main user 

interface for the disappearing computer in the future, when 
visual displays and tangible keyboards vanish. 

This article gives an overview of various signal processing 
techniques needed in assisted listening. The basic use case and 
various others are described in Figure 1, which shows how head-
phone listening can be extended by incorporating external micro-
phones and some signal processing. Assisted listening in heavy 
background noise environments, such as in an airplane, can be 
implemented using ANC [2]. 

HEADPHONE LISTENING IN A NOISY ENVIRONMENT
When headphones are used in a noisy environment, their design 
goals are somewhat different than those of a conventional pair of 
high-fidelity (hi-fi) headphones. The most important feature of 
mobile headphones is the noise isolation capability, which can be 
passive or enhanced with ANC. Furthermore, the headphone fre-
quency response can be designed to manage noisy environments, 
typically by boosting the bass end of the response, as natural 
ambient sounds have most of their energy at low frequencies 
(such as bus or airplane noise) and headphones usually attenuate 
low frequencies the least. 
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Figure 2 shows measured isolation 
curves of different types of headphones, 
where the black solid line is the isolation 
curve of an open-back circum-aural (CA) 
hi-fi headphone, the green dashed-dotted 
line is the isolation of a closed-back 
supra-aural (SA) headphone, the red 
dashed line shows the passive isolation 
curve of an in-ear (IE) headphone, and 
the purple dashed line shows the active 
isolation of the same IE headphone, i.e., 
when the ANC is turned on. 

ANC actively reduces the ambient noise 
leaked into the ear canal by introducing an 
antinoise signal. Ideally, the antinoise sig-
nal has the same magnitude and opposite 
phase as the noise signal inside the ear 
canal. The two basic operation principles 
of ANC are feedforward and feedback con-
trol [2]. The main difference between these two types is the posi-
tion where the ambient noise is captured. Feedforward ANC 
typically uses two microphones: an external microphone captur-
ing ambient noise, and an error microphone inside the headset, 
which is used to adaptively tune the ANC filtering. A feedback 
ANC uses only the internal error 
microphone both for capturing 
ambient sounds and for adapting the 
ANC system. Moreover, the feedback 
and feedforward structures can also 
be used simultaneously. 

At its most basic, the frequency 
response equalization can be a bass 
boost to compensate for the auditory 
masking occurring at low frequen-
cies. However, more intelligent systems also exist, e.g., for speech 
in mobile communication applications in noise [3], for car audio 
[5], and for headphone listening in noisy environments [4]. The 
goal in [3] is to maximize the speech intelligibility index by 
enhancing the clean far-end speech signal for the near-end listener 
who is situated in a noisy environment, hence the abbreviation 
NELE, which stands for “near-end listening enhancement.” NELE 
techniques typically exploit psychoacoustically justifiable spectral 
resolution, such as Bark or equivalent rectangular bandwidth 
(ERB) scale, and an auditory masking model. 

A similar idea is suggested in [4], where a clean wideband 
music signal is enhanced based on the content of the music, the 
characteristics of the headphones, and the ambient noise around 
the user. This system uses a microphone outside the headset to 
register the ambient noise, as shown in Figure 3. The characteris-
tics of the headphones, which are measured beforehand, are used 
to estimate the level of the music and noise at the eardrum. These 
levels depend on the frequency and isolation responses of the 
headphones, respectively. The music and ambient noise are ana-
lyzed in Bark bands. The goal is to estimate the masking thresh-
old from the captured ambient noise signal, and then to enhance 

only those frequency bands of the music signal which are below 
the masking threshold (completely masked) or just above it (par-
tially masked), as shown in Figure 4. Using the unmasking pro-
cess, the timbral balance of the music is enhanced in the 
presence of ambient noise and at the same time the volume 

increase is minimized, since only 
those bands that actually need 
amplification are boosted [4]. 

VIRTUAL REALITY LISTENING
Virtual auditory content can be dis-
played spatially, e.g., for guidance or 
navigation, by processing the sound 
so that it mimics the experience of 
listening to a real, physical sound 

source. Rendering a virtual sound source in such a way is referred 
to as binaural synthesis [6]. 

Binaural synthesis works by providing localization cues to the 
listener’s ears [7], [8]. The delay and attenuation due to sound 
propagation, resulting in time and level differences between the 
ear signals, are the two main cues. They are termed the interau-
ral time difference (ITD) and interaural level difference (ILD), 
respectively, and depend on the relative direction and, for nearby 
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[FIG1] The main use cases of a headset are natural listening, listening in noise, virtual 
reality, augmented reality, and modified reality.
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[FIG2] Measured isolation curves of different headphones.
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sources, also on the distance of the 
source. Spectral cues (SCs), caused 
by the reflection or diffraction by 
the listener’s torso and pinnae, pro-
vide additional localization informa-
tion. The ITD, ILD, and SCs are 
conveniently represented by head-
related transfer functions (HRTFs), 
which model the free-field acoustic transfer functions between 
the position of the source in space and the listener’s ears [9]. 
Thus, in its elementary form, binaural synthesis is performed by 
filtering a source signal with the respective HRTFs for the left 
and right ears.

Adding room reflections and reverberation to binaural syn-
thesis improves the naturalness, source localization properties, 
and externalization [6], [8], [10]. Discrete room reflections 
improve the perception of both direction and distance of a sound 
source. They can be incorporated into binaural synthesis by ren-
dering them as additional virtual sources obtained from a geo-
metric model, e.g., the mirror-image source model. This, 
however, significantly increases reproduction complexity. Late 
diffuse reverberation mainly contributes to the perception of 

distance, because the ratio between 
direct and reverberant energy 
decreases with increasing source 
distance [8]. A recent review paper 
explains various artificial reverbera-
tion techniques [11]. 

In a natural listening environ-
ment, dynamic head movements 

contribute significantly to source localization. To exploit these so-
called dynamic binaural cues, a binaural synthesis system for vir-
tual reality listening must provide several functionalities. First, 
the position and orientation of the listener’s head have to be 
determined continuously, e.g., by using a head tracker. Second, 
the synthesis has to be adapted dynamically by updating the 
HRTFs according to the relative position of the virtual sources. 
Finally, the overall latency of the reproduction system must sat-
isfy perceptual limits to provide the intended localization and a 
plausible listener’s experience. The situation becomes more com-
plicated if the spatial audio content is to be broadcasted as the 
standards for spatial audio are still under development. 

HEAD TRACKING
In many applications, it is essential that the orientation of the 
user’s head is known. This is achieved by head-tracking tech-
niques. Once the listener’s orientation is known, it is possible to 
use HRTFs to project the sound sources in correct directions. This 
is especially important in interactive applications in which the 
soundscape should remain stable even when the user turns his/
her head. Without head tracking, the soundscape moves with 
respect to the user’s head, breaking the illusion of virtual sources. 
Head tracking also helps in reducing reversals in sound source 
localization [10]. 

The same head-tracking techniques can be used both for visual 
head-mounted displays and headphones for audio reproduction. 
For the visual domain, one of the first head-tracking systems was 
presented by Ivan Sutherland in a virtual reality installation in 
1968 [12]. This early system utilized mechanical and ultrasound 
tracked techniques. Jens Blauert, the pioneer of head tracking for 
audio reproduction over headphones, presented in his patent in 
1973 several alternative techniques for head tracking, including 
the use of mechanical levers as well as magnetic and gyroscopic 
control arrangements [13]. Even today, most of those techniques 
are utilized in practice as one can buy tracking systems that are 
based on electromagnetic, inertial, or computer-vision techniques, 
or in their combination, such as in the new Oculus Rift (Crystal 
Cove prototype) virtual reality headset. 

The category of computer-vision-based head tracking contains 
two different approaches. The most common one uses external 
infrared light emitters and reflective markers attached to the user. 
A less intrusive technique is the use of regular cameras without 
any special markers or light source, but it is more challenging to 
implement reliably. While both of these techniques can provide 
accurate and wireless tracking, they require the line-of-sight to 
the user, which is not needed with electromagnetic or inertial 
tracking. Smartphones, with their embedded video camera, 
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[FIG3] The unmasking of an audio signal disturbed by ambient 
noise can be implemented with adaptive equalization, which 
uses the external microphone and knowledge of the 
characteristics of the headphones [4].
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[FIG4] An example of the unmasking process in Bark bands, 
where the black line is the energy of the music, the green 
dash-dotted line is the energy of the ambient noise, the red 
dashed line is the estimated masking threshold, and the purple 
line is the spectrum of the unmasked music. The vertical 
dashed lines show the Bark band edges.
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provide the required hardware for computer-vision-based head 
tracking for mobile applications.

DYNAMIC BINAURAL SYNTHESIS
HRTFs can be obtained by measuring the acoustic path from a 
point in space to the ear entrances of a test subject or dummy 
head. Alternatively, HRTFs of an individual can be estimated from 
anthropometric data or by using listening tests. These methods 
are reviewed in the article “Natural Sound Rendering for Head-
phones” on page 98 of this special issue of IEEE Signal Process-
ing Magazine [14]. Existing and upcoming standards for 
broadcasting spatial audio, e.g., MPEG Spatial Audio Object Cod-
ing or MPEG-H 3D Audio address the need for suitable HRTFs by 
either providing interfaces to supply individualized data or by 
transmitting predefined data sets in the encoded bit stream. 

HRTF measurements are typically performed at discrete loca-
tions on a spherical grid centered around the test subject’s head. 
Using such measurements directly for binaural synthesis would 
impose the same discrete grid on the virtual source positions. 
However, HRTFs at nonmeasured positions can be estimated from 
available measurements via interpolation, allowing to place and 
move virtual sources freely inside the measurement grid. For hi-fi 
rendering, the measurement grid should cover all or most of the 
sphere surrounding the listener and have a spatial resolution of 
5–15° in elevation and 4–5° in azimuth, with fewer measurement 
points required toward extreme elevations [15]. 

Different types of preprocessing, either in the time or the fre-
quency domain,  are typically applied to the measured HRTF data 
[16]. Equalization techniques such as free-field or diffuse-field 
equalization compensate for the response of the measurement or 
reproduction system. Smoothing of HRTF data decreases percep-
tually irrelevant fluctuations, thus reducing the complexity of the 
frequency responses, enabling more efficient filtering and 
smoother interpolation between HRTFs.

Several approaches for HRTF interpolation have been pro-
posed in the literature, including linear interpolation of neigh-
boring HRTFs, spherical splines, and spherical harmonics. The 

advantage of linear interpolation over more sophisticated 
approaches is the reduced complexity in terms of implementation 
and computation, which can be a decisive factor in real-time 
applications. Linear interpolation is typically performed via a 
weighted combination of a subset of measured HRTFs lying close 
to the desired spatial location. 

Publicly available HRTF databases are typically measured at 
locations on the surface of a sphere, based on the assumption that 
HRTFs are distance-independent further than about 1 m from the 
head of the listener [17]. For HRTFs measured on a sphere, the 
measurement points can be grouped into nonoverlapping trian-
gles via triangulation. The interpolation is then performed by 
combining the HRTFs forming the triangle enclosing the loca-
tion to be estimated. For measurement points obtained at various 
distances, triangulation yields a mesh of nonoverlapping tetrahe-
dra. To estimate the HRTFs at a nonmeasured location, the 
HRTFs forming a tetrahedron enclosing the location to be esti-
mated are interpolated. The weights for interpolating HRTFs 
forming a triangle or tetrahedron can be calculated from bary-
centric coordinates [18]. 

Once a suitable subset has been determined and the interpo-
lation weights have been calculated, the actual interpolation is 
performed. A direct weighted addition of the selected HRTFs, 
which is equivalent to a linear combination of the correspond-
ing impulse responses due to the linearity of the Fourier trans-
form, typically leads to severe comb-filtering artifacts. This is 
due to the combination of transfer functions with different 
phases. Several approaches have been proposed to overcome this 
problem. A typical signal flow for dynamic synthesis, which con-
tains the basic building blocks for interpolation and application 
of HRTF filters, is depicted in Figure 5. The main functionalities 
are the handling of time delays, interpolation of frequency 
responses, convolution with the source signals, and crossfading 
to enable smooth transitions between different HRTFs.

The separate handling of time delays, which are either 
extracted from the HRTF data set in a preprocessing step or from 
geometrical models, e.g., a spherical head model [19], yields 
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[FIG5] The signal flow of a dynamic binaural synthesis system for multiple sound sources.
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several advantages. First, it lowers 
the required filter orders of the 
HRTFs, reducing computational and 
memory requirements. Second, the 
phase differences between neighbor-
ing HRTFs are significantly reduced, 
which alleviates the comb-filtering 
artifacts during interpolation. Finally, 
the perceptual limits for the ITD necessitate variable time delays 
with subsample accuracy, which are best implemented using frac-
tional-delay filtering techniques, e.g., [20].

Several strategies exist to interpolate the HRTF responses 
(without delays). Interpolating the magnitude and phase responses 
separately preserves the complex-valued responses of HRTF filters 
[6]. Other approaches make use of the physical properties of (delay-
compensated) HRTFs, which closely resemble minimum-phase 
systems [21], or the limited perceptual relevance of the phase [19], 
[22]. Interpolation of the magnitude responses followed by mini-
mum-phase reconstruction is proposed in [6] and [16]. Another 
method is to interpolate only the HRTF magnitudes [19].

Filtering of HRTFs can be performed either by linear convolu-
tion in the time domain, or by frequency-domain fast convolution 
techniques. While the latter is significantly more efficient than lin-
ear convolution for all but the lowest filter orders, it introduces an 
additional  blocking  latency in the order of the HRTF filter length, 
which can be critical for assisted listening, e.g., hear-through 
applications. Partitioned convolution techniques [23], [24] enable 
advantageous tradeoffs between the efficiency of fast convolution 
and system latency.

HRTF crossfading, which is also denoted as commutation [6], 
refers to the gradual transition between interpolated HRTFs. It 
reduces audible artifacts that are caused by the exchange of filter 
coefficients. Thus, crossfading is typically performed at a much 
higher time resolution than HRTF interpolation. The choice of 
the crossfading algorithm tightly depends on the convolution 
method used for HRTF filtering. In case of linear convolution, it 
can be efficiently implemented by a linear interpolation of the 
finite impulse reponse (FIR) filter coefficients. In contrast, inte-
grating crossfading with frequency-domain convolution is more 
difficult due to block-based operation. A typical solution is to per-
form two convolution processes in parallel and to crossfade the 
filtered signals in the time domain. A technique that combines 
crossfading with frequency-domain and partitioned convolution 
to avoid the complexity of two separate filtering processes is pro-
posed in [24].

AUDIO-AUGMENTED REALITY
Audio-augmented reality refers to a system with which the user 
hears simultaneously both the synthetic and the ambient sounds 
around her/him. In addition to the requirements of regular head-
phone or virtual-reality listening, a hear-through mode is now 
needed [25], [26]. 

The hear-through mode is trivial in open and bone-conduction 
headphones, which do not block the ear canal [27]. Then the user 
will always hear the ambient sounds without extra attenuation. 

However, other types of headphones, 
such as closed and IE headphones, 
block the ear canal and suppress out-
side sounds. The hear-through mode 
must compensate for this attenua-
tion so that the environmental 
sounds could be heard in a natural 
way. As seen in Figure 2, in closed-

back and IE headphones, the attenuation at low frequencies is not 
dramatic, but at frequencies higher than 1 kHz it can be remark-
able, such as more than 20 dB. This corresponds to a severe acous-
tic isolation of the headphone user, similar to that observed with 
hearing protectors. 

A hear-through system is usually based on an external micro-
phone [25]. The ambient sound signal captured by the micro-
phone is filtered and sent to the earpiece with an appropriate gain. 
The aim of the filtering and the amplification is to cancel the 
attenuation caused by the headphone itself. Thus, the filter is usu-
ally of high-pass type, because low frequencies leak to the ear 
without being much damped. 

An additional constraint in a hear-through system is its 
latency, or the time delay between the leaked and processed sound 
[25]. It is inevitable that some delay is caused by the analog-to-dig-
ital and digital-to-analog conversions and the processing itself, 
which the microphone signal undergoes. This delay can be, e.g., 1 ms. 
When the delayed and processed sound are added to the leaked 
sound at the ear, a comb-filtering effect can color ambient sounds, 
which is disturbing. The disturbance is strongest when a notch of 
the comb filter occurs at the frequency range where the leaked 
and processed sound are equally loud [25]. This corresponds to a 6 
dB attenuation in both direct sound and the processed sound. For 
this reason, slightly surprisingly, a colorless hear-though system is 
easiest to implement for headphones that attenuate outside 
sounds well, because then most of the ambient sound can come 
through microphones and processing. 

ALL-PASS HEAR-THROUGH DESIGN
We describe briefly a method to design a hear-through system 
based on the all-pass principle [28]. The method takes as its input 
the impulse response corresponding to the isolation transfer func-
tion of the headset. It can be measured using a dummy head with 
headphones and by playing a sinusoidal sweep signal from a loud-
speaker. Additionally, it is necessary to know the latency of the 
acoustic signal processing system from the microphone input to 
the earpiece output, which is easy to measure. Furthermore, it is 
important to account for the magnitude and group-delay of the 
earpiece response, but here we assume it to be flat and delay-free. 

The beginning of the impulse response is given as the input to 
the all-pass filter design method, which completes it so that the 
overall system is all-pass [28]. Figure 6(a) shows an example where 
the given sequence is the beginning of the isolation impulse 
response, which corresponds to the low-pass filter response in Fig-
ure 6(b). When a truncated impulse response of an all-pass filter is 
combined with it, the overall magnitude response becomes flat, as 
shown in Figure 6(b). In practice, the headphone itself produces 

AN ADDITIONAL CONSTRAINT
IN A HEAR-THROUGH SYSTEM
IS ITS LATENCY, OR THE TIME
DELAY BETWEEN THE LEAKED

AND PROCESSED SOUND.
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the given sequence while the external microphone signal is fil-
tered with an FIR filter having the allpass tail impulse response. 

ASSISTED LISTENING APPLICATIONS
We limit the scope of assisted listening to such applications that 
help listening in a noisy environment or that employ augmented 
and modified reality technologies. Nevertheless, by far the most 
common application of assisted listening technology is the hear-
ing aid. In this context, a hearing aid can be interpreted as a modi-
fied reality system that enhances ambient sounds mainly by 
amplifying them in a desired manner. However, the focus of this 
article is on other modern assisted listening applications, which 
are aimed at people with normal or nearly normal hearing. 

LISTENING TO MUSIC 
In a noisy environment, everyone suffers from hearing problems 
caused by the auditory masking effect. A typical situation is listen-
ing to music or a movie soundtrack in a vehicle, such as in a bus 
or in an airplane. ANC and NELE methods help to cope with such 
situations, as discussed previously. 

There are additionally other situations where music listening 
can be enjoyed better by using augmented reality technology. 
Examples of systems, which are easy to implement, include the 
silent disco and the silent concert. Both applications require the 
use of headphones. In a silent disco, music played by the DJ is 
delivered to the audience via a wireless network or FM radio. 
Everyone can then decide whether to listen to the music or not 
and can also adjust the volume to her/his liking. The actual sonic 
environment in the disco is therefore fairly quiet, with noises 
mainly coming from conversations and dancing. The silent con-
cert is a similar concept but with the important difference that 
singers and acoustic musical instruments will be heard also with-
out headphones. However, a proper mix of the music can only be 
enjoyed through the headphones. 

In music festivals, the listening position of most people is far 
from optimal, and assisted listening technology can enhance the 
experience. Larsen et al. have built and tested a system in which 
the music from the stage is transmitted via FM radio to mobile 
devices of the listeners to be played through headphones [29]. The 
usability of such a system is critical with respect to the delay such 

that the actual audio from the public address system is heard 
simultaneously with the content transmitted via radio. Thus, a 
localization method and an intelligent delay control, based on the 
distance from the stage, are required. Overall, the opinions of test 
users were positive. 

The LiveEQ application described by Rämö et al. captures 
ambient sounds around the user, provides a user-controllable 
graphic equalization, and plays back the equalized ambient signal 
to the user with headphones [30]. This modified reality hear-
through system can be used for example in a loud concert to limit 
the noise exposure caused by the live music. If the headset attenu-
ates the ambient sound well, the user can mix her/his own version 
of the music by boosting selected frequency ranges with the real-
time equalizer. Still, the sound pressure level of the mixed music 
can be lower than that of the original live music. 

AUDIO-AUGMENTED REALITY
In audio-augmented reality, the real soundscape and virtual audi-
tory events mix seamlessly together [31]. In such applications 
sound is typically used to deliver information that assists the user 
in performing certain tasks, or to enhance the perception of the 
environment. A major advantage of auditory over graphical display 
is that the user can perceive acoustic information from any direc-
tion without being required to turn toward the acoustic source. 
Therefore, an important application area of audio-augmented real-
ity are scenarios where the user cannot or should not look at a dis-
play to obtain information, due to the user’s vision being either 
impaired or occupied with a primary task, e.g, while walking or 
driving. Similarly, audio-augmented reality may convey informa-
tion about the immediate surroundings that lie outside the user’s 
field of view, for instance, the approaching of a quiet electric car.

Most often, the application scenarios are mobile such that the 
user can freely move around and the augmented audio content is 
determined based on the user’s location. One typical application is 
navigation in which the user always gets accurate spatialized 
instructions on how to proceed to achieve the target location. This 
same concept is valid in a wide range of use scenarios covering, 
e.g., walking in a city, driving a car, or taxiing an airplane at an air-
port. However, the group of people that benefits most from audio 
in navigation are the visually impaired [32], especially in 

0 20 40 60 80 100
–0.1

0

Sample

A
m

pl
itu

de

Given
Sequence

All-Pass
Tail

Impulse Response

100 1 k 10 k
–60

–40

–20

Frequency (Hz)
(a) (b)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Total Allpass
Given Sequence
All-Pass Tail

–0.05

[FIG6] An example all-pass filter design for acoustic transparency [28]: (a) The engineered impulse response contains the leaked sound 
in the beginning and a designed all-pass tail, and (b) their combination has a flat magnitude response. 
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short-distance navigation and object 
avoidance in which spatialized sound 
can play a crucial role to help people 
advance safely. 

A typical use case of audio-aug-
mented reality is a museum guide 
[33], [34]. With the augmented real-
ity techniques it is possible to have 
each piece at an exhibition to act as a virtual sound source such 
that a visitor can hear the attraction introduce itself. Another 
interesting application domain for augmented reality is gaming. 
An example of an audio-only augmented reality game is Guided by 
Voices, where an overlay of virtual objects and game characters 
onto the real world is created entirely using sound [35]. 

USABILITY ISSUES
Although the presented techniques have many attractive appli-
cations, they are not completely free of usability problems. The 
observed sound quality and naturalness are on a very high 
level, but user comfort should be improved [36]. Tikander has 
shown that the user’s own sounds are challenging, too, since 
current audio-augmented reality systems aim at natural hear-
through of ambient sounds [36]. For example, when the user 
reads aloud or eats crispbread, the technology alters the experi-
ence such that it may cause annoyance. This is caused by the 
blocking of the ear canals—the occlusion effect—and the 
inability of the techniques to alter bone-conducted sounds, 
such as the user’s own voice. 

Another related question is social acceptability. When one is 
wearing headphones, others often assume that she/he is not listen-
ing, although with augmented reality headphones the case might 
be the opposite, and one’s listening can actually be more intense 
than without the headphones. 

CONCLUSIONS
This article has reviewed signal processing methods and applica-
tions related to assisted listening. Headphones are commonly used 
with a mobile phone or another portable device, and the ambient 
noise disturbs listening by masking some of the audio content. 
Active noise control helps to improve the attenuation of noises 
while NELE methods improve the audibility and intelligibility by 
modifying the audio signal itself. An unmasking method devel-
oped for headphone listening was described, which estimates the 
levels of music and noise in the ear by accounting for the attenua-
tion characteristics of the headphone. It then computes a masking 
threshold from the noise signal and compares the spectrum of the 
music signal against it. An adaptive equalizing filter is then 
adjusted to boost those frequencies in the music, which would 
otherwise be completely or partially masked by the noise. 

Virtual reality audio is an extension of regular headphone lis-
tening in which the user can hear transmitted or recorded sounds 
seemingly from his environment. This is achieved by using head-
tracking and binaural synthesis techniques, which help to keep the 
virtual sources at their prescribed locations even when the user is 
moving. Interpolation techniques and a complete signal processing 

system to implement time-varying 
binaural synthesis were discussed. 

Audio-augmented reality mixes 
real and reproduced sounds, requir-
ing external microphones and a 
hear-through function to cancel the 
attenuation caused by the headset. 
A new method for designing a filter 

to achieve colorless, or allpass-type, hear-through system 
was described. 

While there are many audio applications for virtual and 
augmented reality, such as navigation tools and museum 
guides, several relevant applications belong to the category of 
modified reality. These systems reproduce through the headset 
a processed version of the ambient sound field, such as in 
enhanced concert applications or in the LiveEQ system, which 
provides a real-time equalizer to concert audiences. The 
increase in computational power of mobile devices will enable 
even more advanced new devices and applications, such as 
adaptive intelligent headphones that will observe the environ-
ment continuously and modify the audio mix and content to 
deliver the most relevant information to the user according to 
her/his personal preferences.
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ith the strong growth of assistive and per-
sonal listening devices, natural sound ren-

dering over headphones is becoming a 
necessity for prolonged listening in multime-

dia and virtual reality applications. The aim of 
natural sound rendering is to naturally recreate the sound scenes 
with the spatial and timbral quality as natural as possible, so as to 
achieve a truly immersive listening experience. However, render-
ing natural sound over headphones encounters many challenges. 
This tutorial article presents signal processing techniques to 
tackle these challenges to assist human listening.

INTRODUCTION
Sound is an inherent part of our everyday lives for information, 
communication, and interaction. Sound improves situational 
awareness by providing feedback for actions and situations that 
are out of the view of the listener. An advantage of sound is that 
multiple sound sources can be perceived from any location 

around the head in the three-dimensional (3-D) space [1]. The role 
of natural 3-D sound, or spatial sound, in high-stress applications, 
like flight navigation and communication systems, is indisputable 
[1]. Naturally rendered sound has also been proven to be beneficial 
in personal route guidance for visually impaired people and in 
medical therapy for patients [1]. Last but not least, the ever-grow-
ing market of consumer electronics calls for natural sound ren-
dering for digital media, such as movies, games, and augmented, 
virtual reality applications like teleconferencing.

In most of these applications, listening is seldom from the phys-
ical sound sources but is instead from playback devices, such as 
headphones or loudspeakers. Headphones, by virtue of their conve-
nience and portability, are typically chosen as the preferred play-
back device, especially for personal listening. Therefore, to assist 
headphone listening, it is critical for the sound to be rendered in a 
way that listeners can perceive it as natural as possible. In this con-
text, natural sound rendering essentially refers to rendering of the 
original sound scene using headphones to create an immersive lis-
tening experience and the sensation of “being there” at the venue of 
the acoustic event. To achieve natural sound rendering, the virtual 
sound rendered should exactly emulate all the spatial cues of the 
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original sound scene, as well as the 
individual spectral characteristics of 
the listener’s ears. In this article, we 
mainly consider the most widely used 
channel-based audio as the input sig-
nals for the natural sound rendering 
system, though some of the signal 
processing techniques discussed 
could also be used in other audio for-
mats, such as object-based format and 
ambisonics [2], [3]. 

In recent years, the design criteria 
for commercial headphones have undergone significant develop-
ment. At Harman International Industries, Olive et al. investigated 
the best target responses for designing headphones based on the lis-
tener’s preference for the most natural sound [4]. Creating realistic 
surround sound in headphones has become a common pursuit of 
many headphone technologies such as Dolby, DTS, etc. Further-
more, a personalized listening experience and incorporation of the 
information of listening environment have also been trends in the 
headphone industry. These trends in headphones share one com-
mon objective—to render natural sound in headphones.

CHALLENGES
The listening process in humans can generally be considered as a 
source-medium-receiver model, as stated by Begault [1]. This 
model is used in this article to highlight the differences between 
natural listening in a real environment and listening via head-
phones. In natural listening, we listen to the physical sound 
sources in a particular acoustic space, with the sound waves 
undergoing diffraction, interference with different parts of our 
morphology (torso, head, and pinna) before reaching the eardrum. 
This information of sound wave propagation can be encapsulated 
in spatial digital filters termed head-related transfer functions
(HRTFs) [1]. Listeners also get valuable interaural cues for sound 
localization with head movements. However, headphone listening 
is inherently different from natural listening as the sources we are 
listening to are no longer physical sound sources but are recorded 
and edited sound materials. These differences between natural and 
headphone listening lead to various challenges in rendering natu-
ral sound over headphones, which can be broadly classified into 
categories from the perspectives of source, medium, and receiver, 
as described next.

SOURCE
The sound scenes rendered for headphone listening should com-
prise not only the individual sound sources but also the features of 
the sound environment. Listeners usually perceive these sound 
sources to be directional, i.e., coming from certain directions. 
Moreover, in most of the digital media content, the sound environ-
ment is usually perceived by the listener to be diffuse (partially). 
This perceptual difference between the sound sources and the 
sound environment requires them to be considered separately in 
natural sound rendering [2]. Though there are other formats that 
can represent the sound scenes (e.g., object based, ambisonics), the 

convention for today’s digital media 
is still primarily a channel-based for-
mat. Hence, the focus of this article 
lies in the rendering of channel-based 
audio, where sound source and envi-
ronment signals are mixed in each 
channel [2]. In channel-based sig-
nals, where only the sound mixtures 
are available (assuming one mixture 
in every channel), it is necessary to 
extract the source signals and envi-
ronment signals, which can be quite 

challenging. Furthermore, most of the traditional recordings are 
processed and mixed for optimal playback over loudspeakers 
rather than headphones. Direct playback of such recordings over 
headphones results in an unnatural listening experience, which is 
mainly due to the loss of crosstalk, and localization issues. 

MEDIUM
Headphone listening does not satisfy free-air listening conditions 
as in natural listening. Since the headphone transfer function 
(HPTF) is not flat, equalization of the headphone is necessary. 
However, this equalization is tedious and challenging as the head-
phone response is highly dependent on the individual anthropo-
metrical features and also varies with repositioning.

RECEIVER
The omission of listener’s individualized filtering with the outer 
ear in headphone listening often leads to coloration and localiza-
tion inaccuracies. These individualized characteristics of the lis-
tener are lost when the sound content is recorded or synthesized 
nonindividually, i.e., the subject in the listening is different from 
the subject in the recording or synthesis. Furthermore, the sound 
in headphone listening is not adapted to the listener’s head move-
ments, which departs from a natural listening experience. 

SIGNAL PROCESSING TECHNIQUES
To tackle the aforementioned challenges and enhance natural 
sound rendering over headphones, digital signal processing 
techniques are commonly used. In Figure 1, we summarize the 
differences between natural listening and headphone listening 
and introduce the following corresponding signal processing 
techniques to tackle these challenges:

■ Virtualization: to match the desired playback for the digi-
tal media content 
■ Sound scene decomposition using blind source separation 
(BSS) and primary-ambient extraction (PAE): to optimally 
facilitate the separate rendering of sound sources and sound 
environment 
■ Individualization of HRTF: to compensate for the lost or 
altered individual filtering of the sound in headphone 
listening 
■ Equalization: to preserve the original timbral quality of 
the source and alleviate the adverse effect of the inherent 
headphone response 

TO ACHIEVE NATURAL
SOUND RENDERING, THE

VIRTUAL SOUND RENDERED
SHOULD EXACTLY EMULATE

ALL THE SPATIAL CUES OF THE
ORIGINAL SOUND SCENE, AS

WELL AS THE INDIVIDUAL
SPECTRAL CHARACTERISTICS

OF THE LISTENER’S EARS.
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■ Head tracking: to adapt to the dynamic head movements 
of the listener.
The following sections describe in detail the virtualization and 

its interaction with head tracking, sound scene decomposition, 
individualization, and equalization. These signal processing tech-
niques are integrated and evaluated using subjective tests.

VIRTUALIZATION
In digital media, sound is typically mixed for loudspeaker playback 
rather than headphone playback. The spatial sound to be rendered 
naturally over headphones should emulate the natural propagation 
of the acoustic waves emanating from the loudspeaker to the ear-
drum of the listener. To emulate stereo or surround sound loud-
speaker rendering over headphones, virtualization techniques based 
on HRTFs corresponding to the loudspeaker positions are commonly 
used. Given these acoustic transfer functions (i.e., HRTFs), the virtu-
alization technique is applicable to any multichannel loudspeaker 
setup, be it stereo, 5.1, 7.1, 22.2, or even loudspeaker arrays in wave-
field synthesis. As shown in Figure 2(a), for every desired loudspeaker 
position, the signal in the mth channel x nm ^ h is filtered with the 
corresponding HRTF , ,h n h nxmL xmR^ ^h h  and summed before 
being routed to the left and right ears [1], [5], respectively, as: 

,
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where * denotes convolution and M is the total number of chan-
nels. When the HRTFs are directly applied to multichannel loud-
speaker signals, the rendered sound scenes in headphone playback 
suffer from inaccurate virtual source directions, lack of depth, and 
reduced image width [5], [6].

To solve these problems in virtualization of multichannel loud-
speaker signals and achieve a faithful reproduction of the sound 
scenes, the HRTFs should be applied to the individual source sig-
nals that are usually extracted (using BSS and PAE) from the loud-
speaker signals (i.e., mixtures). In this virtualization [as shown in 
Figure 2(b)], the sources are rendered directly using the HRTFs of 
the corresponding source directions ,h n h nskL skR^ ^h h
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where K  is the total number of sources, s nk ^ h is the kth  source 
in the multichannel signal, and the environment signals 

,a n a nL R^ ^h h are the rendered signals representing the sound 
environment perceived by two ears. To render the acoustics of the 
environment, the environment signals can be either synthesized 
according to the sound environment [7] or extracted from the 
mixtures. Techniques like decorrelation [5], [8] and artificial rever-
beration [9] are commonly employed to render the environment 
signals to create a more diffuse and natural sound environment. 

[FIG1] A summary of the differences between natural listening and headphone listening and the corresponding signal processing 
techniques to solve these challenges for natural sound rendering. The main challenges and their corresponding signal processing 
techniques in each category (source, medium, and receiver) are highlighted and their interactions (not shown here) are further 
discussed in the article.
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Furthermore, adding the rever-
beration of sources (or the loud-
speaker signals in virtualization of 
multichannel loudspeaker signals) 
can also improve the realism of the 
reproduced sound scene [10]. There-
fore, in virtualization, it is quite com-
mon to use BRIRs  [1], [5] that 
encapsulate HRTFs and reverbera-
tion. Accordingly, selecting the cor-
rect amount of early reflections as 
well as late reverberation is critical to 
recreate a faithful sound environ-
ment [1]. In general, the BRIR that 
matches the sound environment of the scene or BRIR of a mix-
ing studio are considered to be more suitable [4]. As discussed 
in the section “Challenges,” natural sound rendering requires 
the accurate reproduction of both the sound sources and the 
sound environment. Compared to the virtualization of multi-
channel loudspeaker signals [Figure 2(a)], the latter technique of 
virtualizing the source and environment signals [Figure 2(b)] is 
more desirable as it is closer to natural listening [6], [8], [9]. These 
virtualization techniques can also be incorporated into spatial 
audio coding systems, such as binaural cue coding [11], spatial 
audio scene coding [5], and directional audio coding [3].

In virtualization, the directions of the sources [or the loud-
speakers in virtualization of multichannel loudspeaker signals as 

in Figure 2(a)] have to be calibrated 
according to the head movements 
(as in natural listening). To fulfill this 
need, the HRTFs/BRIRs in the virtu-
alization are updated on the fly based 
on these head movements, which are 
often tracked by a sensor (e.g., accel-
erometer, gyroscope, camera, etc.). 
The latency between the head track-
ing and sound rendering should be 
such that the localization accuracy is 
not affected [12]. When incorporated 
in the virtualization process, such a 
head-tracking system can provide 

useful dynamic cues to resolve the localization conflicts [1] and 
enhance natural sound rendering [10], [12]. It shall be noted that 
head tracking is more critical for the directional sources but less 
important for the diffuse signals like environment signals and late 
reverberation [12]. This is because the perception of diffuse signals 
is less affected by head movements. 

Recreating the perception of distance of the sources close to 
natural listening is another critical aspect in virtualization for nat-
ural sound rendering. However, the challenges in simulating accu-
rate distance perception are numerous. Human beings’ ability to 
accurately estimate these distances has long been known to be 
poorer compared to our ability to estimate directions, even in the 
physical listening space [1]. Virtual listening through headphones 

[FIG2] Virtualization of (a) multichannel loudspeaker signals x nm ^ h [5], and (b) multiple sources s nk ^ h and environment signals 
, .a n a nL R^ ^h h ,y n y nL R^ ^h h is the signal sent to the left and right ear, respectively. Note that head tracking can be used to update the 

selected directions of HRTFs/binaural room impulse responses (BRIRs).
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further hinders the distance perception as it leads to inside-the-
head localization (IHL) of sound [1]. IHL of sound is caused by 
several factors, such as the use of nonindividualized HRTFs, 
absence of equalization, lack of reverberation, and impedance mis-
match due to the presence of headphones [1], [13]. The presence 
of individualized HRTFs, equalization, and reverberation can 
improve the externalization of sound but does not ensure accurate 
distance perception [1].The direct-to-reverberation energy ratio is 
found to be the most critical cue for absolute distance perception, 
even though the intensity, loudness, and binaural cues can provide 
relative cues for distance perception [1]. Since reverberation is an 
essential cue for both distance perception and perception of a real 
environment context, a veridical simulation of the reverberation is 
highly imperative for natural sound rendering [1]. However, accu-
rate simulation of distance perception is challenging since rever-
beration entirely depends on the room characteristics. The correct 
amount of reverberation to be added to simulate distance percep-
tion in a particular room can be obtained only by carrying out 
acoustical measurements.

SOUND SCENE DECOMPOSITION USING BSS AND PAE
To achieve natural sound rendering in headphones, two important 
constituents of the sound scenes are required in the virtualization:  
the individual sound sources and characteristics of the sound envi-
ronment. However, this information is usually not directly avail-
able to the end user. One has to work with the existing digital 
media content that is available, i.e., the mastered mix distributed 
in channel-based formats (e.g., stereo, 5.1 surround sound). 
Therefore, to facilitate natural sound rendering, it is necessary to 
extract the sound sources and/or sound environment from their 
mixtures. In this section, we discuss two types of techniques 
applied in sound scene decomposition: BSS and PAE.

DECOMPOSITION USING BSS
Extracting the sound sources from the mixtures, often referred to 
as BSS, has been extensively studied in the last few decades. The 
basic mixing model in BSS can be considered as anechoic mixing, 
where the sources s nk ^ h in each mixture x nm ^ h have different 
gains gmk  and delays .mkx  Hence, the anechoic mixing is formu-
lated as follows:

, , , , ,x n g s n e n m M1 2m mk k mk m
k

K

1
6 f!x= - +

=

^ ^ ^h h h " ,/
(3)

where e nm ^ h is the noise in each mixture, which is usually 
neglected for most cases. Note that estimating the number of 
sources is quite challenging and it is usually assumed to be 
known in advance [14]. This formulation can be simplified to 
represent instantaneous mixing by ignoring the delays, or can 
be extended to reverberant mixing by including multiple paths 
between each source and mixture. An overview of the typical 
techniques applied in BSS is listed in Table 1. 

Based on the statistical independence and non-Gaussianity 
of the sources, independent component analysis (ICA) algo-
rithms have been the most widely used techniques in BSS to 
separate the sources from mixtures in the determined case, 
where the numbers of mixtures and sources are equal [14]. In 
the overdetermined case, where there are more mixtures than 
sources, ICA is combined with principal component analysis 
(PCA) to reduce the dimension of the mixtures, or combined 
with least-squares (LS) to minimize the overall mean-square 
error (MSE) [14]. In practice, the underdetermined case is the 
most common, where there are fewer mixtures than sources. 
For the underdetermined BSS, sparse representations of the 
sources are usually employed to increase the likelihood of 
sources to be disjoint [15]. The most challenging underdeter-
mined BSS is when the number of mixtures is two or lesser, i.e., 
in stereo and mono signals.

Stereo signals (i.e., ),M 2=  being one of the most widely 
used audio format, have been the focus in BSS. Many of these 
BSS techniques can be considered as time-frequency masking 
and usually assume one dominant source in one time-frequency 
bin of the stereo signal [16]. In these time-frequency masking-
based approaches, a histogram for all possible directions of the 
sources is constructed, based on the range of the bin-wise 
amplitude and phase differences between the two channels. The 
directions, which appear as peaks in the histogram, are selected 
as source directions. These selected source directions are then 
used to classify the time-frequency bins and to construct the 
mask. For every time-frequency bin , ,n l^ h  the kth  source at 
mth  channel ,S n lmk

t ^ h is estimated as: 

, , , ,S n l n l X n lmk mk mW=t ^ ^ ^h h h (4)

where the mask and the mth  mixture are represented by 
,n lmkW ^ h and , ,X n lm ^ h  respectively.

In the case of single-channel (or mono) signals, the separa-
tion is even more challenging since there is no interchannel 
information. Hence, there is a need to look into the inherent 
physical or perceptual properties of the sound sources. Nonneg-
ative matrix factorization (NMF)-based approaches have been 
extensively studied and applied in single-channel BSS in recent 
years. The key idea of NMF is to formulate an atom-based repre-
sentation of the sound scene [17], where the atoms have repeti-
tive and nondestructive spectral structures. NMF usually 
expresses the magnitude (or power) spectrogram of the mixture 
as a product of the atoms and time varying nonnegative weights 
in an unsupervised manner. These atoms, after being multiplied 
with their corresponding weights, can be considered as 

[TABLE 1] AN OVERVIEW OF TYPICAL TECHNIQUES IN BSS.

OBJECTIVE: TO EXTRACT K K( 2)2 SOURCES FROM M  MIXTURES

CASE TYPICAL TECHNIQUES
DETERMINED: K M= ICA [14]

OVERDETERMINED: K M1 ICA WITH PCA OR LS [14]

UNDERDETERMINED: K M2 M 22 ICA WITH SPARSE SOLUTIONS [14], [15]

M 2= TIME-FREQUENCY MASKING [16]

M 1= NMF [17], [18]; CASA [19]
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potential components of sources [18]. Another technique 
applied in single-channel BSS is the computational auditory 
scene analysis (CASA) that simulates the segregation and group-
ing mechanism of the human auditory system [19] on the model-
based representation (monaural case) of the auditory scenes. An 
important aspect worth considering is the directions of the 
extracted sources, which can usually come as a by-product in mul-
tichannel BSS. In single-channel BSS, this information of source 
directions has to be provided separately.

DECOMPOSITION USING PAE
In most sound scenes, the mixture comprises not only the dry 
sources but also the reverberation and ambient sound, which are 
contributed by the acoustics of the surrounding space. Therefore, 
the mixing model of the sources in BSS usually does not match 
with the actual sound scenes. In this article, we refer to the domi-
nant sources as primary (or direct) components, while the signals 
contributed by the sound environment are referred to as ambient 
(or diffuse) components. The primary and ambient components 
are perceived to be directional and diffuse, respectively. Different 
rendering methods should be applied to the primary and ambient 
components [6], [7] due to their perceptual differences. Therefore, 
rendering of natural sound scenes requires the decomposition of 
the mixtures into primary and ambient components [6], [7], [9]. 
Since stereo is still the most widely used format for digital media 
content, our discussion on the decomposition using PAE is 
focused on stereo signals .( )M 2=

In PAE, we often follow some intuitive signal models as 
discussed in [3], [5], [7], [8], and [20]. In the mth  channel, the 
mixture x nm ^ h is assumed to be the sum of the primary com-
ponent p nm ^ h  and ambient component ,a nm ^ h  i.e., 

.x n p n a nm m m= +^ ^ ^h h h  The discrimination of directional 
primary components and diffuse ambient components is mainly 
based on their interchannel correlations, where the primary and 
ambient components in the two channels are assumed to be 
correlated and uncorrelated, respectively. In the basic mixing 
model for PAE, the primary components are assumed to be 
amplitude panned, while the ambient components are of 
approximately equal levels in all channels. 

Based on these assumptions, various approaches are proposed 
in PAE for stereo signals. Similar to BSS, time-frequency masking 
approaches are introduced to extract ambient components 

,A n lm
t ^ h [7], [20] and these approaches can be generalized as 

, , , ,A n l X n l n lm m AW=t ^ ^ ^h h h (5)

where ,n l0 1A# #W ^ h  is the real-valued ambient mask at the 
time-frequency bin , .n l^ h  Time-frequency bins having high inter-
channel correlation are considered to be primary components (or 
mostly primary components in the soft masking case), whereas low 
correlation bins are more likely to be ambient components. 

Several linear estimation-based PAE approaches were also 
introduced [21], which exploits the differences between the two 
channels of the stereo signal to perform the PAE, including PCA-
based approaches [20] and LS-based approaches. In these 
approaches, the extracted primary components ,p n p n0 1t t^ ^h h and 

ambient components ,a n a n0 1t t^ ^h h are expressed as weighted 
sums of the mixtures:
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The solutions for the weights in (6) are derived based on different 
performance-related criteria [21]. More specifically, PCA extracts 
the primary components having maximum variance and extracts 
the ambient components having minimum variance with the con-
straint that the primary and ambient components are uncorrelated, 
while LS extracts these components having minimum MSE. Based 
on the study in [21], it is recommended that PCA-based approaches 
should be used for signals that contain dominant primary compo-
nents (e.g., gaming), while LS-based approaches are preferred for 
signals that contain a balanced mix of primary and ambient compo-
nents (e.g., movies). In addition, to deal with more complex types of 
input signals that do not fit into the basic mixing model, other tech-
niques have also been introduced, such as time shifting to compen-
sate for time differences [22] and adaptive frequency bin 
partitioning for multiple sources in primary components [23]. Fur-
thermore, though it is possible to extend the framework of PAE 
from stereo signals to multichannel signals, e.g., [24], more com-
prehensive studies on PAE for multichannel signals are required.

A COMPARISON BETWEEN BSS AND PAE
Both BSS and PAE are extensively applied in sound scene decom-
position—a comparison between these approaches is summarized 
in Table 2. The common objective of BSS and PAE is to extract 
useful information (mainly the sound sources and their direc-
tions) about the original sound scene from the mixtures, and to 
use this information to facilitate natural sound rendering. There 
are three common characteristics in BSS and PAE. First, only the 
mixtures are available and usually no other prior information is 
given. Second, the extraction of the specific components from the 
mixtures is based on certain signal models. Third, both techniques 
require objective and subjective evaluation. 

As discussed earlier, the applications of different signal mod-
els in BSS and PAE lead to different techniques. In BSS, the 
mixtures are considered as the sums of multiple sources, and 
the independence among the sources is one of the most impor-
tant characteristics. In contrast, the mixing model in PAE is 
based on human perception of directional sources (primary 
components) and diffuse sound environment (ambient compo-
nents). The perceptual difference between primary and ambient 
components is due to the directivity of these components which 
can be characterized by their correlations. The applications that 
adopted BSS and PAE also have distinct differences. BSS is com-
monly used in speech and music applications, where the clarity 
of the sources is usually more important than the effect of the 
environment. On the other hand, PAE is more suited for the 
reproduction of movie and gaming sound content, where the 
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ambient components also contribute significantly to the natu-
ralness and immersiveness of the sound scenes. Subjective 
experiments revealed that BSS- and PAE-based headphone ren-
dering can improve the externalization and enlarge the sound 
stage with minimal coloration [6].

Despite the recent advances in BSS and PAE, the chal-
lenges due to the complexity and uncertainty of the sound 
scenes still remain to be resolved. One common challenge in 
both BSS and PAE is the increasing number of audio sources 
in the sound scenes, while only a limited number of mixtures 
(i.e., channels) are available. In certain time-frequency repre-
sentations, the sparse solutions in BSS and PAE would require 
the sources to be sparse and disjoint [15]. Considering the 
diversity of audio signals, finding a robust sparse representa-
tion for different types of audio signals is extremely difficult. 
The recorded or postprocessed source signals might even be 
filtered due to physical or equivalently simulated propagation 
and reflections. Moreover, the audio signals coming from 
adverse environmental conditions (including reverberation 
and strong ambient sound) usually degrade the performance 
of the decomposition. These difficulties can be addressed by 
studying the features of the resulting signals and by obtaining 
more prior information on the sources, the sound environ-
ment, the mixing process [18], and combining auditory with
visual information of the scene.

INDIVIDUALIZATION OF HRTF
Binaural technology is the most promising solution for delivering 
spatial audio in headphones, as it is the closest to natural listening. 

Unlike conventional microphone recordings, which are meant for 
loudspeaker playback, the binaural signals are recorded or synthe-
sized at the ears of the listener. In a binaural audio system, the 
spatial encoding (i.e., HRTFs) should encapsulate all the spectral 
features due to the interaction of the acoustic wave with the listen-
er’s morphology (torso, head, and pinna). The pinna, which is also 
considered as the acoustic fingerprint, embeds the most idiosyn-
cratic spectral features into HRTFs, which are essential for accu-
rate perception of the sound [Figure 3(a)]. Thus, the HRTF 
features of the individuals are extremely unique, as shown in 
Figure 3(c). Often the HRTFs used for virtualization are nonindi-
vidualized HRTFs, typically measured on a dummy’s head, since 
they are easily accessible.

However, the use of nonindividualized HRTFs leads to several 
artefacts like IHL, localization inaccuracies in perceiving eleva-
tion, and front–back, up–down reversals. Additionally, subjects dis-
play poor angular resolution and sometimes find it difficult to 
pinpoint the exact location of the auditory image in the case of 
using nonindividualized HRTFs. Thus, individualization of the 
HRTFs [Figure 3(b)] plays a critical role to create an immersive 
experience closest to the natural listening experience. There are 
various individualization techniques to obtain the individualized 
HRTFs from acoustical measurements, anthropometric features of 
the listener, customizing generic HRTFs with perceptual feedback 
or frontal projection of sound, as summarized in Table 3. 

ACOUSTICAL MEASUREMENTS
The most straightforward individualization technique is to actu-
ally measure the individualized HRTFs for every listener at differ-
ent sound positions [25], [26]. This is the most ideal solution but it 
is extremely tedious and involves highly precise measurements. 
These measurements also require the subjects to remain motion-
less for long periods, which may cause the subjects fatigue. Zotkin 
et al. developed a fast HRTF measurement system using the tech-
nique of reciprocity, where a microspeaker is placed into the ear 
and several microphones are placed around the listener [13]. 
Other researchers developed a continuous 3-D azimuth acquisi-
tion system to measure the HRTFs using a multichannel adap-
tive filtering technique [27]. However, all these techniques to 
acoustically measure the individual HRTFs require a large 
amount of resources and expensive setups. 

ANTHROPOMETRIC DATA
Individualized HRTFs can also be modeled as weighted sums of 
basis functions, which can be performed either in the frequency 
or spatial domain. The basis functions are usually common to 
all individuals and the individualization information is often 
conveyed by the weights. The HRTFs are essentially expressed as 
weighted sums of a set of eigenvectors, which can be derived 
from PCA or ICA [26], [13]. The individual weights are derived 
from the anthropometric parameters that are captured by opti-
cal descriptors, which can be derived from direct measure-
ments, pictures, or a 3-D mesh of the morphology [13]. The 
solution to the problem of diffraction of an acoustic wave with 
the listener’s body results in individual HRTFs. This solution 

[TABLE 2] COMPARISON BETWEEN BSS AND PAE IN SOUND
SCENE DECOMPOSITION.

BSS PAE

OBJECTIVE TO OBTAIN USEFUL INFORMATION ABOUT THE 
ORIGINAL SOUND SCENE FROM GIVEN MIXTURES
AND FACILITATE NATURAL SOUND RENDERING.

COMMON
CHARACTERISTICS

USUALLY NO PRIOR INFORMATION, ONLY MIXTURES
■ BASED ON CERTAIN SIGNAL MODELS
■ REQUIRE OBJECTIVE AS WELL AS SUBJECTIVE

EVALUATION

BASIC MIXING
MODEL

SUMS OF MULTIPLE
SOURCES (INDEPENDENT, 
NON-GAUSSIAN, ETC.)

PRIMARY COMPONENTS
(HIGHLY CORRELATED) AND
AMBIENT COMPONENTS
(UNCORRELATED)

TECHNIQUES ICA [14], SPARSE
SOLUTIONS [15], 
TIME-FREQUENCY
MASKING [16], NMF
[17], [18], CASA [19], ETC.

PCA [20], LS [8], [21], 
TIME-FREQUENCY MASKING
[7], [20], TIME/PHASE-
SHIFTING [22], [23], ETC.

TYPICAL
 APPLICATIONS

SPEECH, MUSIC MOVIE, GAMING

RELATED
 APPLICATIONS

SPEECH ENHANCEMENT, 
NOISE REDUCTION,
SPEECH RECOGNITION,
MUSIC CLASSIFICATION

SOUND REPRODUCTION,
SOUND LOCALIZATION,
CODING

LIMITATIONS ■ SMALL NUMBER OF
SOURCES

■ SPARSENESS/DISJOINT
■ NO/SIMPLE

ENVIRONMENT

■ SMALL NUMBER OF
SOURCES

■ SPARSENESS/DISJOINT
■ LOW AMBIENT POWER
■ PRIMARY AMBIENT

COMPONENTS UNCORRE-
LATED
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may be obtained by analytical or numerical methods, such as 
the boundary element method (BEM) or the finite element 
method (FEM) [13], [26]. Other methods used include multiple 
linear regressions [26], multiway array analysis [28], and artifi-
cial neural networks [26]. The inputs to these methods can be a 
simple geometrical primitive [29] (e.g., a sphere, cylinder, or an 
ellipsoid), a 3-D mesh obtained from a magnetic resonance 

imaging (MRI) machine or laser scanner or a set of two-dimen-
sional (2-D) images [13]. An important advantage of these tech-
niques is that the relative effects of a particular morphological 
element (e.g., torso, head, and pinna) and their variation with 
size, location, and shape can be independently investigated [13]. 
Another technique used a simple customization technique, 
where an HRTF is selected by matching certain anthropometric 

[TABLE 3] A COMPARISON OF THE VARIOUS HRTF INDIVIDUALIZATION TECHNIQUES.

HOW TO OBTAIN
 INDIVIDUAL FEATURES TECHNIQUES PROS CONS PERFORMANCE

AND REMARKS
ACOUSTICAL
 MEASUREMENTS

INDIVIDUAL MEASUREMENTS [25], 
IRCAM FRANCE, CIPIC, UNIVERSITY OF  MARYLAND, 
TOHOKU UNIVERSITY, NAGOYA UNIVERSITY
AUSTRIAN ACADEMY OF SCIENCES [26] 

IDEAL, ACCURATE REQUIRES HIGH
PRECISION; TEDIOUS;
IMPRACTICAL FOR
EVERY LISTENER

REFERENCE FOR
INDIVIDUALIZATION
TECHNIQUES

ANTHROPOMETRIC
DATA

OPTICAL DESCRIPTORS:
3-D MESH, 2-D PICTURES [13]

BASED ON ACOUSTIC
PRINCIPLES; STUDIES
THE EFFECTS OF
 INDEPENDENT ELEMENTS
OF THE MORPHOLOGY

NEED A LARGE
DATABASE; TEDIOUS;
REQUIRES HIGH-
RESOLUTION IMAGING; 
EXPENSIVE EQUIPMENT; 
QUALIFIED USERS

USES THE
CORRELATION BETWEEN 
INDIVIDUAL HRTF AND
 ANTHROPOMETRIC DATA

ANALYTICAL OR NUMERICAL SOLUTIONS:
PCA + MULTIPLE LINEAR REGRESSION [26]
FEM, BEM [26], [13], MULTIWAY ARRAY ANALYSIS
[28], ARTIFICIAL NEURAL NETWORK [26]

STRUCTURAL MODEL OF HRTFs [13], HRTF
DATABASE MATCHING [30]

LISTENING/TRAINING SELECTION FROM NONINDIVIDUALIZED
HRTF [13], FREQUENCY SCALING [31]

EASY TO IMPLEMENT;  
DIRECTLY RELATES TO
PERCEPTION

TAKES TIME; REQUIRES
REGULAR TRAINING;
CAUSES FATIGUE

OBTAINS THE BEST
HRTFs PERCEPTUALLY

TUNE MAGNITUDE SPECTRUM [13], ACTIVE
SENSORY TUNING [26], PCA WEIGHT TUNING [32]
SELECT CEPSTRUM PARAMETERS [34]

PLAYBACK MODE FRONTAL PROJECTION HEADPHONE [33] NO ADDITIONAL
MEASUREMENT,  
LISTENING TRAINING

NEW STRUCTURE;
NOT APPLICABLE TO
NORMAL HEADPHONES;
TYPE-2 EQUALIZATION

AUTOMATIC
 CUSTOMIZATION,
REDUCED FRONT–BACK
CONFUSIONS

NONINDIVIDUALIZED
HRTF

GENERALIZED HRTF [1] EASY TO IMPLEMENT NOT ACCURATE; POOR
LOCALIZATION

NOT AN
 INDIVIDUALIZATION
TECHNIQUE

[FIG3] (a) Human ears act as a natural filter in physical listening. (b) The natural HRTF filter is modeled by a digital filter using various 
individualization techniques. (c) Note the vast variation of the HRTF spectrum at high frequencies of the various subjects taken from 
the Center for Image Processing and Integrated Computing (CIPIC) database and the Massachusetts Institute of Technology’s Knowles 
Electronic Manikin for Acoustic Research (KEMAR) dummy head database [26]. This is due to the idiosyncratic nature of the pinna. 
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parameters [30]. One of the major challenges today to numeri-
cally model the HRTF is the very high resolution of imaging 
techniques required for accurate prediction of HRTFs at high 
frequencies. The required resolution of the mesh imaging 
depends on the shortest wavelength, which is around 17 mm at 
20 kHz [13]. Moreover, obtaining these optical descriptors 
demands for the use of extremely expensive laser, MRI scanners, 
and also requires highly skilled, qualified users. 

PERCEPTUAL FEEDBACK
Several attempts have been carried out to personalize HRTF from 
a generic HRTF database using perceptual feedback. Subjects 
select the HRTFs through listening tests, where they choose the 
HRTFs based on the correct perception of frontal sources and 
reduced front–back reversals [13]. Listeners can also adapt to the 
nonindividualized HRTF by modifying the HRTFs to suit his or 
her perception. Middlebrooks observed that the peaks and notches 
of HRTFs are frequency shifted for different individuals and that 
the extent of the shift is related to the size of pinna [31]. Listeners 
often tune the spectrum until they achieve a satisfactory and natu-
ral spatialization [13]. Other techniques involve active sensory 
tuning [26] and tuning the PCA weights [32] to individualize the 
HRTFs. These perceptual-based methods are much simpler in 
terms of the required resources and effort compared to the indi-
vidualization methods using acoustical measurements or anthro-
pometric data. However, these listening sessions can sometimes be 
quite long and result in listener fatigue.

FRONTAL PROJECTION PLAYBACK
More recently, a study by Sunder et al. [33] customized the non-
individualized HRTFs using a frontal projection headphone. 
Unlike side projection of sound in conventional headphones, a 
frontal projection headphone projects the sound from the front to 
emulate the playback from a physical set of loudspeakers. By pro-
jecting the sound from the front, the idiosyncratic frontal pinna 
spectral cues of the listener are captured inherently during the 
playback [33]. It is found that the idiosyncratic high-frequency 

pinna cues captured in the frontal projection headphones 
response match well with the frontal HRTF cues, giving it a bet-
ter frontal perception (as shown in Figure 4). The authors of 
[33] reported that the front–back reversals were reduced by 
almost 50% [33] using the frontal projection headphone, thus 
improving the veracity of the 3-D audio. The advantage of this 
technique is that it does not require any measurements, train-
ing, or the anthropometric data of the listener. However, the 
frontal projection individualization technique has been limited 
to only the horizontal plane and also requires a special kind of 
headphone equalization (Type-2). 

As discussed previously, head tracking is important in the 
virtualization process. It was found that head tracking, when 
used with nonindividualized HRTFs, can improve the localiza-
tion [10]. However, head tracking primarily helps in reducing 
the front–back confusions and has minimal effect in reducing 
the elevation localization errors, IHL [10], and coloration 
caused by nonindividualized HRTFs. Since individualization of 
HRTFs can alleviate some of these limitations, it is suggested 
that head tracking be used with individualized rendering.

In summary, there is a noticeable trend to achieve more and 
more accurate individualization with lesser data, complexity, 
and effort. However, the effect of individualization of HRTFs can 
be hindered by the presence of the headphones. Hence, the 
headphones have to be compensated to ensure that the spec-
trum at the eardrum has only the individualized HRTF features. 
Additionally, equalization of the binaural recording itself may be 
necessary in certain applications (e.g., musical recordings). The 
challenges and methods of equalization for both binaural and 
stereo recordings are explained in the next section.

EQUALIZATION
Headphones are not acoustically transparent as they not only 
color the sound that is played from the headphone but also affect 
the free-air characteristics at the ear. Typically the HPTF com-
prises the headphones transducer response and the acoustic cou-
pling between the headphones and the listener’s ears. To 
compensate for the headphone response, the HPTF is first mea-
sured at the same point where the recording was carried out at 
the blocked ear canal or at the eardrum [35]. The binaural 
recording is then deconvolved with the HPTF to eliminate the 
effect of the recording microphones and the headphone. This type 
of direct equalization is also known as the nondecoupled mode of 
equalization (Table 4) [36]. This method is often used when the 
HPTF is measured with the same measurement setup as the 
recording and particularly works well when the HPTF measure-
ment and recording are carried out on the same dummy’s head.

It is observed that, in the absence of headphone equalization, 
the front–back reversals are increased and the elevation localiza-
tion is distorted [1], [13], [26]. Thus, headphone equalization is 
critical to create a convincing perception of virtual sound sources. 
However, headphone equalization is challenging since the HPTF 
depends on individual morphology (headphone–ear coupling). 
Researchers have also reported that the use of nonindividualized 
equalization can reduce the externalization and the effect can be 
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[FIG4] A comparison of the frontal projection headphone 
response and the frontal directional HRTFs measured on a 
dummy’s head. (Figure used courtesy of [33].) 
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as critical as the use of nonindividualized HRTFs [13]. Thus, 
equalization using individual HPTFs is strongly recommended. 
Another difficulty in carrying out accurate headphone equaliza-
tion is the variability of the HPTFs with repositioning. The effect of 
repositioning of headphones is lower at low frequencies but dis-
plays high standard deviations up to 10 dB at high frequencies 
[37]. Kulkarni et al. [37] observed that equalization based on a sin-
gle measurement may become worse than no equalization at all. 
The positional dependency has no specific solution and its effect 
can only be reduced by taking the average of a number of trials as 
a representative HPTF [37]. Thus, to create a convincing immer-
sive sound environment, use of individualized HRTFs and individ-
ualized equalization is entailed, which may not be viable all the 
time. To reduce the dependency on individualized equalization, 
Sunder et al. [33] designed a Type-2 equalization technique for the 
playback through frontal projection headphone, which is indepen-
dent of the headphone-ear coupling. Unlike the conventional 
equalization technique, Type-2 equalization compensates only for 
the distortion due to the emitter, thereby preserving the individual 
pinna cues due to frontal projection.

The other type of equalization is the “decoupled” equalization 
technique, and it is the most commonly used method of equaliza-
tion for rendering music. In this technique, the binaural record-
ing [(BIR) or HRTFs] as well as the headphone are equalized 
using a reference sound field (REF) (e.g., FF, DF, etc.) [36]. If the 
REF of the recording environment is well known and reproduced 
reliably, this method of equalization can result in a very natural 
perception of sound similar to the nondecoupled equalization 
technique. This method of equalization is mainly carried out to 
make the binaural recordings compatible with stereophonic (con-
ventional microphone) recordings in terms of timbral quality. 

If the recording is binaural, then a reference field equalized 
binaural recording (BIR/REF) achieves a sound quality equivalent 
to a conventional microphone recording. When the equalized 
recording is played from a reference field equalized headphone 
(HPTF/REF), the perceived timbre of the spatial sound would be as 

natural as the original binaural recording. Individualized binaural 
recordings are thus necessary to experience the true immersive-
ness of sound without any timbral coloration and spatial degrada-
tion. Note that for rendering conventional stereo recorded music, 
it is sufficient to carry out just the headphone equalization using 
an appropriate reference field. Some of the commonly used refer-
ence fields are: 

■ Free-field (FF) equalization: With the aim to replicate the ear 
signals produced by frontal loudspeakers, the target response of 
FF equalization is the HRTF of frontal incidence. Hammershoi 
et al. proposed an FF equalization curve, which has additional 
high frequency energy above 3 kHz to approximate listening to 
stereo loudspeakers in the FF [4]. A FF equalized headphone 
can reproduce a frontal sound with natural sound quality but 
colors the sound that originates from other directions. More-
over, it is important to note that there are large interindividual 
variations in the FF equalization filters [38].
■ Diffuse-field (DF) equalization: In this case, the target 
response for equalization is the DF response, i.e., the average 
of the HRTFs of all measured directions in horizontal plane. 
The interindividual variations are reduced drastically due to 
the averaging effect [38]. Thus, the DF target response can be 
achieved universally over a great number of individuals. 
Møller [35] identified certain headphones which are already 
DF equalized and recommended such type of headphones for 
stereo listening.
■ Other target responses: A typical listening room is not 
completely diffuse but it can be considered somewhere 
between a FF and a DF. Møller [38] illustrated other alterna-
tive target responses which are partially diffuse by applying 
unequal weighting to different directions within ± 45° azi-
muth and elevation. Other researchers also modified the DF 
equalization filters with the help of certain parametric fil-
ters and found that the subjects generally preferred the tar-
get response with a 3 kHz peak lower in amplitude than in 
the DF response for both music and speech [4]. Recent 

[TABLE 4] EQUALIZATION TECHNIQUES FOR DIFFERENT PLAYBACK MODES (BINAURAL, STEREOPHONY).

MODE OF 
EQUALIZATION AIM

TYPES OF
EQUALIZATION AND
TARGET RESPONSE CHARACTERISTICS

NONDECOUPLED
(BINAURAL)

SPECTRUM AT
EARDRUM IS THE
INDIVIDUAL HRTF
FEATURES

CONVENTIONAL
EQUALIZATION (FLAT
TARGET RESPONSE)

■ FOR CONVENTIONAL HEADPHONES. THE SPECTRUM AT
THE EARDRUM HAS INDIVIDUAL FEATURES (IF INDIVIDUALIZED HRTF IS USED)

■ DEPENDENT ON THE INDIVIDUAL’S UNIQUE PINNA FEATURES

TYPE-2 EQUALIZATION
[33]

■ FOR FRONTAL PROJECTION HEADPHONES. THE SPECTRUM AT EARDRUM
AUTOMATICALLY MODELS THE INDIVIDUAL PINNA SPECTRAL CUES

■ REMOVES ONLY THE DISTORTION DUE TO THE HEADPHONE EMITTER
■ INDEPENDENT OF THE IDIOSYNCRATIC FEATURES OF THE EAR

DECOUPLED
(BINAURAL,
STEREOPHONY)

EMULATE
THE MOST NATURAL
REPRODUCTION
CLOSER TO THE
PERCEPTION IN A
REFERENCE FIELD

FF EQUALIZATION [38] ■ TARGET RESPONSE IS THE FF RESPONSE CORRESPONDING TO
THE FRONTAL INCIDENCE

DF EQUALIZATION [38] ■ TARGET RESPONSE IS THE DF RESPONSE
■ LESSER INTERINDIVIDUAL VARIABILITY

DF TARGET RESPONSE
BASED ON MØLLER [38]

■ TARGET RESPONSE BASED ON AVERAGE OF HRTFS BETWEEN ± 45 DEGREES
AZIMUTH AND ELEVATION WITH UNEQUAL WEIGHTING

DF TARGET RESPONSE
BASED ON LORHO [4]

■ REDUCED A 3-KHZ PEAK FROM ABOUT 12 DB TO 3 DB OF DF RESPONSE

RR_G AND RR1_G [4] ■ RR_G: BASED ON THE IMPULSE RESPONSE OF HARMAN
REFERENCE LISTENING ROOM

■ RR1_G HAS LESSER BASS AND TREBLE
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experiments [4], [38] showed that listeners prefer other alter-
native target responses more than the conventional FF and 
DF equalizations. Examples of these preferred target curves 
include RR_G and RR1_G proposed by Olive et al. [4] based 
on the impulse response of the loudspeaker system in the 
Harman Reference rooms.
Ideally, the best reference field that preserves the true quality 

of the recording would be the field where the recording is carried 
out. Furthermore, the choice of 
headphones can also greatly affect 
the transparency of the binaural ren-
dering even with the correct head-
phone equalization. The external ear 
is unhindered in the natural listen-
ing conditions, where the sound 
pressures at the ear are governed by 
free-air characteristics. With head-
phones placed over the ear, the pres-
sure characteristics of the sound arriving at the eardrum are 
greatly affected compared to the free-air characteristics due to the 
interaction between the external ear and the headphone enclo-
sure. The closer the coupling characteristic of the headphones 
with that of the free-air, the more accurate and transparent is the 
reproduced sound. Møller [35] defined the effect of the headphone 
for a binaural recording at the blocked ear canal in terms of the 
electrical transmission gain, G:

,G 1
MPTF HPTF PDR

$
$= ` j (7)

where MPTF is the transfer function of the recording microphone, 
and PDR is the pressure division ratio. PDR is defined as the ratio of 
the equivalent Thévenin impedances when the ear is in free-air to the 
case when the headphone is placed on the ear, and is given as [35]: 

,Z Z
Z Z

PDR
earcanal radiation

earcanal headphones
=

+
+

(8)

where Zearcanal  and Zheadphones  are the input impedances of the 
ear canal and the impedance of the headphone, respectively; 
Zradiation  is the free-air radiation impedance as seen from the ear 
canal. The PDR reduces to unity when the pressures in the free-
air and with headphones become equal. Such headphones are 
defined as FEC (free-air equivalent coupling) headphones, 
which are also sometimes called open headphones [35]. Open 
headphones are different from the commercially available 

“open–back headphones.” Most of 
the commercially available head-
phones have less than ideal FEC 
characteristics [35]. It is important 
to note that the FEC condition for 
the headphone is necessary only for 
binaural recordings made at the 
blocked ear canal, which is also the 
most common technique for indi-
vidualized binaural recording [35]. 

In such a case, headphone equalization alone is sufficient to 
achieve auralization transparency. To summarize, equalization 
(both recording and playback) and individualization play a criti-
cal role in the natural rendering of sound of any formats (binau-
ral or stereo) over headphones.

INTEGRATION OF NATURAL SOUND
RENDERING TECHNIQUES
An integration of these signal processing techniques for natural 
sound rendering reviewed in this article is depicted in Figure 5. 
The original sound sources along with their environmental 
information are represented as a sound mixture after the mix-
ing process. The sound scenes from the mix are then decom-
posed into primary components (sources) and/or ambient 
components (environment) using BSS and/or PAE. The 
extracted primary components, which are basically directional 
sound sources as perceived by the listener, can be rendered 
using (individualized) HRTFs [1]. Ambient components 

[FIG5] The natural sound rendering system for headphones: an integration of all the signal processing techniques reviewed in 
this article.
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are rendered in a manner so as to 
recreate a natural sound environ-
ment. Modeling the acoustics of the 
natural sound environment by add-
ing the correct amount of early 
reflections and reverberation also 
helps in enhancing the perception 
of the sound environment as well as 
veridical distance, which is critical 
for natural listening. Moreover, a suitable individualization 
technique has to be applied to the directional sources such that 
the rendered sound scenes played over headphones are maxi-
mally tailored for the individual listener. Meanwhile, the use of a 
robust equalization technique can significantly reduce the 
adverse coloration of the source. Finally, the influence of the 
head movements on the rendered sound can be taken into 
account by incorporating head tracking in virtualization.

In general, natural sound rendering requires both the spatial 
and timbral quality of the reproduced sound to be realistic. For 
digital media content that contains plenty of spatial cues (e.g., 
movies, games), all five techniques reviewed are important in 
creating a sense of immersiveness. For other content, where the 
timbral quality is of utmost importance (e.g., music record-
ings), a subset of the techniques (e.g., individualization, equal-
ization) are sufficient. 

SUBJECTIVE EXPERIMENTS
Subjective experiments were carried out to validate the 
reviewed natural sound rendering system by comparing it with 
the conventional stereo playback system. A total of 18 subjects 
(15 males and three females), who were all between 20 and 30 
years old, participated in this listening experiment. None of the 
subjects reported any hearing loss. The test was conducted in a 
semianechoic listening room at Nanyang Technological Univer-
sity (NTU) in Singapore. The two systems of headphone listen-
ing tested in this experiment were: 

■ Conventional stereo system: The materials are directly 
played back over headphones without any processing.
■ Natural sound rendering system: The signal processing 
techniques introduced in the article were applied to the 
audio content. 

In this study, we chose PAE as the sound scene decomposition 
method since our primary interest lies in movie and gaming 
audio content that contains the individual sound sources and the 
sound environment [21]. Individualization is carried out by fron-
tal projection headphones since it inherently embeds the personal 
pinna cues during playback and does not require any individual 
acoustical experiments, anthropometric data, or training [33]. To 
fully exploit the frontal projection in the natural sound rendering, 
we have developed a new four-emitter headphone [39] that 
houses a frontal emitter and a conventional side emitter in each 
ear cup of the headphone [33]. In the virtualization process, the 
frontal emitters are used to render the directional sources, while 
all the emitters (both frontal and side) are used to render the 
sound environment. Type-2 equalization is applied to the frontal 

emitters for source rendering [33], 
and DF equalization is used to ren-
der environment signals over all the 
emitters. Head tracking has not 
been incorporated in this system.

The stimuli used in this experi-
ment were binaural (a motorcycle 
in a storm and a bee at a waterfall), 
movies (Brave, Prometheus), and 

gaming tracks (Battlefield 3), which contain numerous spatial 
cues. Each track was played back using the two headphone 
playback systems tested in this article. The tracks correspond-
ing to the two systems were named “A” and “B” and played 
back in a random order. The listening tests were conducted in a 
double-blind manner, where both the experimenter and the 
subjects were unaware of the order of the stimuli. In this 
experiment, four audio quality measures were considered to 
evaluate the performance of the two systems. Their descrip-
tions are: 

1) Sense of direction: How clear or distinct are the per-
ceived directions of the sound objects?
2) Externalization: How clear is the stimulus perceived out-
side the head?
3) Ambience: How clear and natural is the perceived ambi-
ence of the sound environment?
4) Timbral quality: How realistic is the timbral quality of 
the sound?
Subjects were asked to give scores for the four measures for 

each of the two tracks “A” and “B.” The scores were based on a 
0–100 scale where subjects rated 0–20 (Bad), 21–40 (Poor), 
41–60 (Fair), 61–80 (Good), and 81–100 (Excellent). Finally, 
the subjects were also required to indicate their overall prefer-
ence for the two tracks by selecting one of the following three 
choices: “Prefer A,” “Not sure,” or “Prefer B.” To carry out this 
experiment, a graphical user interface was created, which ran-
domized the order of the stimuli and automatically stored the 
responses of the subjects in a file.

The responses of the subjects were analyzed for both sound 
rendering systems. Figure 6 shows the overall comparison 
between the two systems in terms of the mean opinion score 
(MOS), scatter plot, and the overall preference of the subjects. 
In (a), the MOS of the four measures for the two systems were 
computed across all 18 subjects and five stimuli. While the 
MOS for the conventional stereo system for all the measures 
were around 60, the natural sound rendering system per-
formed much better with an MOS of over 70. An analysis of 
variance (ANOVA) was conducted to generalize these results to 
the whole population of listeners. The p-values were found to 
be very small (<< 0.01) for all measures, indicating that the 
improved performance of the natural sound rendering system 
over the conventional stereo system is statistically significant. 
The scatter plot in Figure 6(b) implies that most of the sub-
jects gave a higher score for the natural sound rendering sys-
tem for all the four measures. The overall preference of the 
subjects across all the five tracks is shown in Figure 6(c). The 

IN GENERAL, NATURAL
SOUND RENDERING REQUIRES

BOTH THE SPATIAL AND
TIMBRAL QUALITY OF 

THE REPRODUCED SOUND
TO BE REALISTIC.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [112] MARCH 2015

pie chart suggests that 61% of the subjects preferred the natu-
ral sound rendering, while only 33% preferred the conven-
tional stereo rendering.

To sum up the subjective test results, we found that the 
natural sound rendering system using the various signal pro-
cessing techniques explained in this article enhances the lis-
tening experience compared to a conventional stereo system. 
Additionally, the presence of head tracking in the system will 
only improve the natural sound 
rendering as observed in several 
studies [10]. 

CONCLUSIONS AND
FUTURE TRENDS
With the advent of low cost, low 
power, small form factor, and high-
speed multicore embedded proces-
sor, we can now implement the 
aforementioned signal processing 
techniques in real time and embed 
processors into the headphone design. However, various imple-
mentation issues regarding the computation cost of sound 
scene decomposition, HRTF/BRIR filtering in virtualization, 
and equalization as well as the latency in head tracking should 
be carefully considered. One example of such a natural sound 
rendering system is the four-emitter 3-D audio headphone [39] 
developed at the Digital Signal Processing Lab at NTU. This 
system has been psychophysically validated and found to per-
form much better than the conventional stereo headphone 
playback system.

Besides the five types of techniques discussed in this article, 
there have been other efforts to enhance the natural experience 
of headphone listening. To enable the natural pass through of 

the sound from outside world without coloration, headphones 
can be designed with suitable acoustically transparent materi-
als. When this is not effective, microphones integrated into 
headphones and associated signal processing techniques, such 
as equalization, and active noise control, are employed. The 
headphones with built-in microphones open a new dimension 
to augment the listening experience with the physical world. 

The future of headphones for assistive listening applications 
would be where listeners cannot dif-
ferentiate between the virtual acous-
tic space created from headphone 
playback and the real acoustic space. 
This would require a combined effort 
from the whole audio community—
from the headphone manufacturers 
and sound engineers to audio scien-
tists. More information about the 
content production has to be distrib-
uted from the content developers to 
the end user to enhance the extrac-

tion process. Moreover, obtaining and exploiting every individual’s 
anthropometrical feature or hearing profile is crucial for a natural 
listening experience. Finally, with more sensors, such as global 
positioning systems, gyroscopes, and microphones that can be 
integrated into headphones, future headphones are becoming 
more content-, location-, and listener-aware, and hence more 
intelligent and assistive. 
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T
his article presents an overview of 12 existing 
objective speech quality and intelligibility predic-
tion tools. Two classes of algorithms are pre-
sented—intrusive and nonintrusive—with the 
former requiring the use of a reference signal, 

while the latter does not. Investigated metrics include both 
those developed for normal hearing (NH) listeners, as well as 
those tailored particularly for hearing impaired (HI) listeners 
who are users of assistive listening devices [i.e., hearing aids 
(HAs) and cochlear implants (CIs)]. Representative examples of 
those optimized for HI listeners include the speech-to-rever-
beration modulation energy ratio (SRMR), tailored to HAs 
(SRMR-HA) and to CIs (SRMR-CI); the modulation spectrum 

area (ModA); the HA speech quality (HASQI) and perception 
indices (HASPI); and the perception-model-based quality pre-
diction method for hearing impairments (PEMO-Q-HI). The 
objective metrics are tested on three subjectively rated speech 
data sets covering reverberation-alone, noise-alone, and rever-
beration-plus-noise degradation conditions, as well as degrada-
tions resultant from nonlinear frequency compression and 
different speech enhancement strategies. The advantages and 
limitations of each measure are highlighted and recommenda-
tions are given for suggested uses of the different tools under 
specific environmental and processing conditions. 

INTRODUCTION
According to 2005 estimates from the World Health Organization, 
278 million people worldwide had moderate to profound hearing 
loss in one or both ears. Depending on the degree of hearing 
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impairment, these subjects can become candidates for HA or CI 
devices. Recently, a number of factors, such as aging population, 
enlargement of candidacy criteria, and technological advances 
have drawn great attention to HA and CI research and develop-
ment. For users of such assistive listening devices, however, envir-
onmental distortions, such as reverberation and additive noise 
(and their combined effects) significantly degrade speech intelligi-
bility and reduce perceived quality to unacceptable levels [1]. As 
such, current research has focused on the development of speech 
enhancement techniques (e.g., noise suppression, feedback can-
cellation) to meet this demand. To assure that the developed algo-
rithms are behaving as expected, quality and intelligibility 
monitoring must be performed. 

Traditionally, subjective tests have been used to assure that 
acceptable levels of speech quality and intelligibility are attained. 
For CI devices, two approaches are commonly taken. The first 
makes use of vocoded speech to simulate CI hearing and presents 
vocoded speech to NH listeners for identification. The second 
approach is more direct and presents degraded (or enhanced) 
speech stimuli directly to HI CI users for analysis (e.g., [1]). For 
HA users, this latter approach has been commonly used to investi-
gate the effects of various HA signal processing techniques, such 
as noise suppression and feedback cancellation, on the perceived 
speech quality. Subjective testing, however, is laborious, time-con-
suming, and expensive. As such, automated, repeatable, fast, and 
cost-effective objective quality/intelligibility monitoring tools need 
to be developed, thus replacing the listeners with an auditory-
inspired computational algorithm. 

Reliable objective quality/intelligibility measurement tools 
can play key roles in the development, fitting, and online pro-
cessing of different assistive listening devices. In the develop-
ment stage, for example, different processing algorithms can be 
optimized to improve the final perceived speech quality/intelli-
gibility. Wide dynamic-range compression algorithms have been 
developed to improve the audibility of low-intensity speech 
sounds. It is well known, however, that the time-varying gain 
changes can introduce unwanted nonlinear distortions. As such, 
objective tools provide a means of evaluating the tradeoffs 
between audibility and distortion, thus allowing for optimal 
parameters to be set. Moreover, for HA fitting, objective meas-
ures can be used to provide presettings tailored to the individual 
hearing loss, thus providing more effective starting points for 
the adjustment of the HA. Furthermore, the settings that pro-
vide optimum intelligibility may not be the ones that result in 
maximum quality, thus toggling between settings based on an 
intelligibility and on a quality index can provide a meaningful 
comparison for the HA user. Finally, objective tools can be used 
in the real-time adaptation of, e.g., speech enhancement algo-
rithms (i.e., model-in-the-loop), such that the processing guar-
antees optimal quality/intelligibility as the user moves from one 
(noisy/reverberant) environment to another. 

Signal-based objective metrics can be classified as intrusive 
or nonintrusive, depending on the need for a reference signal 
or not, respectively. While significant research and standardiza-
tion efforts have been placed in developing objective measures 

for telephone speech with NH listeners [2], only a small num-
ber of objective measurement tools targeted toward CI/HA 
users have been developed. Given the rapidly aging population 
and the projected increase of hearing loss that comes with 
growing older, it is of great importance that the advantages and 
drawbacks of existing tools be characterized, as well as com-
pared to each other on data sets collected under different prac-
tical experimental conditions. 

In this article, we present several existing tools that have 
been recently developed for users of assistive listening devices; 
seven of the investigated tools belong to the intrusive class and 
five are nonintrusive. All the metrics were evaluated on the 
same data sets comprising speech processed under different 
complex listening conditions, such as noise, reverberation, 
noise-plus-reverberation, as well as under different nonlinear 
effects, such as frequency compression and speech enhance-
ment (i.e., noise suppression and dereverberation). Advantages 
and limitations of the investigated tools are presented and sug-
gestions as to which metrics are to be used under different spe-
cific scenarios are given, thus serving as a useful guide for 
researchers and developers of assisted listening devices. 

OBJECTIVE SPEECH QUALITY AND 
INTELLIGIBILITY PREDICTION
Over the last two decades, significant standardization efforts 
have been made by the International Telecommunications 
Union (ITU-T) to standardize both intrusive and nonintrusive 
algorithms for telephone speech using NH listeners [2]. On the 
other hand, only a handful of algorithms have been proposed 
that are specifically tuned to assistive listening devices. To 
overcome this limitation, recent studies have explored the use 
of NH-optimized tools, as well as proposed modifications to 
such tools to tailor them to assistive listening devices (e.g., 
[3]). In the following sections, several such measures, both 
intrusive and nonintrusive, are described. The choice of meas-
ures used in this study was guided not only by their applicabil-
ity to the task at hand, but also by the availability of publicly 
available source code (or code that could be licensed at a rea-
sonable cost). 

INTRUSIVE METRICS

NORMALIZED COVARIANCE METRIC
The normalized covariance metric (NCM) measure estimates 
speech intelligibility based on the covariance between the enve-
lopes of the time-aligned reference and processed speech sig-
nals [4]–[6]. Computation of NCM values depends on deriving 
speech temporal envelopes, via the Hilbert transform, from 
outputs of a gammatone filter bank used to emulate cochlear 
processing. The normalized correlation between the reference 
and processed speech envelopes produces an estimate of the so-
called apparent signal-to-noise ratio (SNR) SNRapp^ h given by 

( ) ,logk
r

r10
1

SNR
[ , ]k

k
10 2

2

15 15
app =

- -

e o= G (1)
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where rk  is the correlation coefficient between the reference and 
processed speech envelopes estimated in filter bank channel k
(typically, 23 gammatone channels are used), and the [–15], [15] 
operator refers to the process of limiting and mapping SNRapp

into that range. The last step consists of linearly mapping the 
apparent SNR to the [0, 1] range using the following rule: 

( )
( ( ( ), ), )

.
max min

k
k
30

15 15 15
SNR

SNR
final
NCM app

=
+ - +

(2)

The SNRfinal
NCM  values are then weighted in each frequency 

channel according to the so-called articulation index (AI) 
weights ( )W k recommended in the American National 
Standards Institute (ANSI) S3.5 Standard [7]. The final NCM 
value is given by: 

( ) ( )
.

W k

W k k
NCM

SNR

k

k
k
K

1

23
1
23

final
NCM

=
=

=
=

=

^ h/
/

(3)

The NCM has been widely used to characterize the perceived 
intelligibility for CI users (e.g., [3] and [4]). 

SHORT-TIME OBJECTIVE INTELLIGIBILITY
The short-time objective intelligibility (STOI) metric is based on a 
correlation coefficient between the temporal envelopes of the 
time-aligned reference and processed speech signal in short-time 
overlapped segments [8]. The signals are first decomposed by a 
1/3-octave filter bank, segmented into short-time windows, nor-
malized, clipped, and then compared by means of a correlation 
coefficient. The normalization step compensates for, e.g., different 
playback levels, which do not have a strong negative effect on 
intelligibility. Clipping, in turn, sets an upper bound on how 
severely degraded one speech time-frequency unit can be. Accord-
ing to [8], clipping is used to avoid changes in intelligibility pre-
diction once speech has already been deemed “unintelligible.” The 
resultant correlation coefficients correspond to short-time inter-
mediate intelligibility measures for each of the segments, which 
are then averaged to one scalar value corresponding to the pre-
dicted speech intelligibility for the processed signal. The STOI was 
originally proposed to assess the intelligibility of time-frequency 
weighted noisy speech and enhanced speech for NH listeners. 
Nonetheless, a channel selection algorithm for CIs that employs 
STOI has been recently proposed [9]. 

PERCEPTUAL EVALUATION OF SPEECH QUALITY
The International Telecommunications Union ITU-T P.862 stand-
ard, also known as Perceptual Evaluation of Speech Quality
(PESQ) [10], is a widely used objective quality measurement 
standard algorithm. As with most intrusive algorithms, the first 
step in PESQ processing is to time-align the reference and pro-
cessed speech signals. Once the signals are time aligned, they are 
mapped to an auditory representation using a perceptual model 
based on power distributions over time-frequency and compres-
sive loudness scaling, and then their differences are taken. Positive 
differences indicate that components such as noise are present, 
whereas negative differences indicate that components have been 
omitted. With PESQ, different scaling factors are applied 

to positive and negative disturbances to generate the so-called 
symmetrical and asymmetrical disturbances. The final PESQ qual-
ity score is obtained as a linear combination of the symmetrical 
and asymmetrical disturbances, with weights optimized using 
telephony data. While the original PESQ algorithm described in 
[10] was developed for narrow-band speech (8-kHz sampling rate), 
wideband (16 kHz) extensions were described in [11] and are used 
in the experiments described herein. It is important to emphasize 
that the P.862 standard was recently superseded by ITU-T Recom-
mendation P.863 [also known as Perceptual Objective Listening 
Quality Assessment (POLQA); see [2] and references therein], thus 
covering a wider scope of distortions and speech bandwidths (e.g., 
superwideband). POLQA, however, is not used in this study as its 
source code is not publicly available and its license is very costly. 

HEARING AID SPEECH QUALITY AND 
INTELLIGIBILITY INDICES
As originally described in [12], the HA speech quality index 
(HASQI) uses an auditory model to analyze the reference and pro-
cessed signals from an HA. The auditory model was recently 
extended in [13] and now serves as the basis of a unified approach 
for predicting both intelligibility [14] and quality [15]. This HASQI 
Version 2 model is used in the experiments described herein. The 
auditory model includes the middle ear, an auditory filter bank, 
the dynamic-range compression mediated by the outer hair cells 
in the cochlea, two-tone suppression (where a tone at one fre-
quency can reduce the cochlear output for a tone at a different fre-
quency), and the onset enhancement inherent in the inner 
hair-cell neural firing behavior. Hearing impairment is incorpo-
rated in the model as a broadening of the auditory filters with 
increasing hearing loss, a reduction in the amount of dynamic-
range compression, a reduction in the two-tone suppression, and a 
shift in the auditory threshold. 

The HA speech intelligibility index (HASPI), in turn, combines 
two measures of signal fidelity. The first measure compares the 
evolution of the spectral shape over time for the processed signal 
with that of the reference signal. The second measure cross-corre-
lates the high-level portions of the two signals in each frequency 
band. The envelope measure is sensitive to the dynamic signal 
behavior associated with consonants, while the cross-correlation 
measure is more responsive to preserving the harmonics in steady-
state vowels. The HASQI quality model incorporates the effects of 
noise and nonlinear distortions, as well as linear spectral changes. 
The noise and nonlinear terms combine two measurements. The 
first measurement compares the time-frequency envelope modula-
tion of the processed and reference signals and is similar to the 
envelope comparison used in HASPI. The second measurement is 
based on normalized signal cross-correlations in each frequency 
band. The linear term compares the long-term spectra and the 
spectral slopes. The final quality prediction is the product of the 
two terms. Both HASPI [14] and HASQI [15] have been evaluated 
for NH and HI listeners over a wide range of processing conditions, 
including additive stationary and modulated noise, nonlinear dis-
tortion, noise suppression, dynamic-range compression, frequency 
compression, feedback cancellation, and linear filtering. 
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PERCEPTION-MODEL-BASED QUALITY PREDICTION
In its original version, the perception-model-based quality predic-
tion method, PEMO-Q, compares the auditory-inspired “internal 
representation” of the reference speech signal to that of its pro-
cessed counterpart to objectively characterize the quality of the 
processed speech signal [16]. The auditory representation is 
obtained given the following signal processing chain. First, the 
signals are split into critical bands using a gammatone filter bank. 
Each subband is half-wave rectified and low-pass filtered at 1 kHz. 
Envelope signals are then thresholded to account for the absolute 
hearing threshold and passed through an adaptation chain con-
sisting of five consecutive nonlinear feedback loops. Finally, the 
envelope signal is either lowpass filtered at 8-Hz modulation fre-
quency (in PEMO-Q’s optional “fast mode”) or analyzed by a linear 
modulation filter bank comprising eight filters with center fre-
quencies up to 129 Hz (i.e., in the default mode used here). When 
comparing the reference and processed signals, two quality meas-
ures are produced: the overall perceptual similarity measure 
(PSM) and a per-frame counterpart PSMt.

PSM corresponds to the overall cross-correlation coefficient 
between the complete internal representations of the reference and 
processed speech signals. PSMt, in turn, is a more refined measure 
and explicitly accounts for the temporal course of the instantan-
eous audio quality as derived from a temporal frame-by-frame cor-
relation of internal representations. While PSM provides greater 
generalizability, PSMt has been found to be more sensitive to small 
distortions [16]. Since the experiments described in this article will 
be dealing with a wider range of speech quality levels, the PSM 
measure will be used. PSM was also previously shown to reliably 
predict the quality of speech enhancement algorithms [17]. 

More recently, an extension to PEMO-Q was developed to 
account for hearing impairments (PEMO-Q-HI) for HA users 
[18]. In the modified version, sensorineural hearing losses are 
modeled by an instantaneous expansion and an attenuation 
stage applied before the adaptation stage. While the former 
accounts for the reduced dynamic compression caused by the 
loss of outer hair cells, the latter accounts for the loss of sensi-
tivity due to loss of inner hair cells [19]. With PEMO-Q-HI, the 
amount of attenuation and expansion is quantified from the 
impaired listeners’ audiograms, as detailed in [18]. 

NONINTRUSIVE METRICS

ITU-T RECOMMENDATION P.563
In 2004, the ITU-T standardized its first nonintrusive algorithm 
called ITU-T P.563 [20]. The P.563 algorithm extracts a number of 
signal parameters to detect one of six dominant distortion classes. 
The distortion classes are, in decreasing order of “annoyance”:  
high level of background noise, signal interruptions, signal-corre-
lated noise, speech robotization (voice with metallic sounds), 
unnatural male speech, and unnatural female speech. For each 
distortion class, a subset of the extracted parameters is used to 
compute an intermediate quality rating. Once a major distortion 
class is detected, the intermediate score is linearly combined with 
other parameters to derive a final quality estimate. Unnaturalness 

of the speech signal is characterized by vocal tract and linear pre-
diction analysis of the speech signal. More specifically, the vocal 
tract is modeled as a series of tubes of different lengths and time-
varying cross-sectional areas, which are then combined with 
higher-order statistics (skewness and kurtosis) of the linear predic-
tion and cepstral coefficients and tested to see if they lie within the 
restricted range expected for natural speech. While P.563 was 
developed as an objective quality measure for NH listeners and 
telephony applications, a recent study has shown promising 
results with P.563 as a correlate of noise-excited vocoded speech 
intelligibility for NH listeners, thus simulating CI hearing [21]. 
Note that the ITU-T P.563 algorithm is only applicable to narrow-
band speech signals sampled at 8-kHz sampling rate. 

ModA
The ModA [22] measure is based on the principle that the speech 
signal envelope is smeared by the late reflections in a reverberant 
room, thus affecting the modulation spectrum of the speech sig-
nal. To obtain the ModA metric, the signal is first decomposed into 

( )N 4=  acoustic bands (lower cutoff frequencies of 300, 775, 
1,375, and 3,676 Hz, as in [22]); the temporal envelopes for each 
acoustic band are then computed using the Hilbert transform, 
downsampled and grouped using a 1/3-octave filter bank with cen-
ter frequencies ranging between 0.5 and 8 Hz. As in [22], 13 
modulation filters are used to cover the 0.5–10 Hz modulation fre-
quency range. For each acoustic frequency band, the so-called 
area under the modulation spectrum is computed Ai^ h and finally 
averaged over all N 4=  acoustic bands to obtain the ModA meas-
ure, which has been used as an intelligibility correlate for CI users 
in reverberant and enhanced conditions [22]. 

SRMR
The SRMR was originally developed for reverberant and derever-
berated speech and evaluated against subjective NH listener data 
[23]. The metric is computed as follows. First, the input speech 
signal is filtered by a gammatone filter bank with center frequen-
cies ranging from 125 Hz to approximately half the sampling fre-
quency, and with bandwidths characterized by the equivalent 
rectangular bandwidth. For 8-kHz and 16-kHz sampled speech 
signals, 23 and 32 filters are used, respectively. Temporal envelopes 
are then computed via the Hilbert transform for each of the filter 
bank outputs and used to extract modulation spectral energy for 
each critical band. To emulate frequency selectivity in the modula-
tion domain [24], modulation frequency bins are grouped into 
eight overlapping modulation bands with center frequencies loga-
rithmically spaced between 4 and 128 Hz. Finally, the SRMR value 
is computed as the ratio of the average modulation energy content 
available in the first four modulation bands (3–20 Hz, consistent 
with clean speech content) to the average modulation energy con-
tent available in the last four modulation bands (20–120 Hz), con-
sistent with room acoustics information [25]. 

SRMR-CI AND SRMR-HA
To tailor the SRMR measure for CI, a few modifications were 
recently implemented [26], [27]. First, the gammatone filter 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [118] MARCH 2015

bank was replaced by the filter bank used in the speech coding 
strategy of the CI devices used by the listeners in the subjective 
test. Second, speech content variability was reduced by means 
of a modulation spectrum thresholding scheme [27]. Finally, to 
model the reduced sensitivity of the HI listeners, the 4–128 Hz 
range of the eight modulation filter bank center frequencies of 
the original SRMR metric was reduced to 4–30 Hz. The SRMR-
CI has been tested as a correlate of intelligibility for CI users 
under clean, noisy, reverberant, noise-plus-reverberation, and 
speech-enhanced conditions [26], [27]. 

Similar to the modified SRMR-CI metric previously 
described, an alternate modification to the original SRMR met-
ric has been performed to tailor it to HA devices [28]. First, the 
gammatone filter bank in the original SRMR implementation 
was modified to take into account the listener’s individual 
hearing loss thresholds obtained via an audiogram. More spe-
cifically, the Q-factors of each of the filters were adjusted to 
simulate the hearing loss due to outer hair cell damage. Hence, 
as hearing loss increased, so did the filter bandwidths (i.e., 
Q-factors decreased). Additionally, the temporal Hilbert enve-
lopes were compressed using a nonlinear compression func-
tion, similar to that used in the HASQI metric, to further 
model outer hair cell losses. For HA devices, it was found that 
the original 4–128 Hz range of modulation filter bank center 
frequencies was optimal, thus no changes were implemented in 
the modulation filter bank. The SRMR-HA was tested as a cor-
relate of subjective quality for HA users in noisy, reverberant, 
and speech-enhanced conditions [28]. 

EXPERIMENTAL SETUP
In this section, the data sets used in the experiments as well as 
the evaluation criteria that will be used to characterize the per-
formance of the investigated metrics are described. 

CI SPEECH INTELLIGIBILITY DATA SET
This database is described in full detail in [1] and in the references 
therein. The material comprises speech data presented to CI users 
within the framework of an intelligibility subjective test. The 
speech sentences presented to the CI users were taken from the 
well-known IEEE sentence corpus. Four recorded room impulse 
responses were convolved with the clean speech data to simulate 
reverberant speech with reverberation times (RT60) of 0.3, 0.6, 
0.8, and 1 s. Speech-shaped noise was also added to the anechoic 
and the reverberant signals to generate noise-only and noise-plus-
reverberation degradation conditions, respectively. Noise was 
added at SNRs of -5, 0, 5, and 10 dB for the anechoic samples and 
5 and 10 dB for the reverberant samples. For the noise-plus-rever-
beration condition, the reverberant signals served as reference for 
SNR computation. Additionally, the database includes sentences 
enhanced using an ideal reverberant masking (IRM) strategy [29]. 
These sentences were under reverberant conditions with RT60 s of 
0.6, 0.8, and 1 s, and all of the noise-plus-reverberation conditions 
previously described. The IRM algorithm was configured to use 
two to three different threshold values for each condition. Speech 
files were sampled at 16 kHz with 16-bit resolution. 

Eleven adult CI users were recruited to participate in the sub-
jective intelligibility experiments. The participants were all native 
speakers of American English with postlingual deafness and had 
an average age of 64 years. All participants had a minimum of one 
year experience using their device routinely, with some being 
bilaterally implanted for over six years. For consistency, all partici-
pants were temporarily fitted with a SPEAR3 research processor 
(22 filter bank channels with Mel-like spacing) with parameters 
matching the individual CI user’s clinical settings. Participants 
were presented with 31 lists of 20 sentences randomly selected 
from the IEEE database, each list being corrupted by the afore-
mentioned degradation conditions. Degraded stimuli were pre-
sented directly to the audio input of the research processor and 
the level was adjusted individually for comfort at the beginning of 
the experiment. Listeners were instructed to repeat aloud each 
sentence after its presentation. A tester then marked the words 
correctly identified by the subject according to the ground truth 
transcript. Finally, the number of words correctly recognized by 
the listener were divided by the total number of presented words 
to find the per-participant intelligibility scores. More details about 
the listening test can be found in [1]. 

HA SPEECH QUALITY DATA SETS
Two speech quality data sets collected with HA users were used in 
the experiments described herein. The first database explores the 
effects of frequency lowering, an amplification strategy for HI lis-
teners with severe to profound high frequency sensorineural hear-
ing loss that has gained renewed attention recently. Nonlinear 
frequency compression (NFC) is a particular type of frequency 
lowering algorithm, wherein the input spectral content beyond a 
cutoff frequency (CF) is compressed by a factor determined by the 
compression ratio (CR) before further processing by the HA. Thus, 
NFC moves high frequency energy to lower frequency regions 
(where there is better residual hearing acuity) increasing the 
chances of audibility and potential benefit. We refer the interested 
reader to [30] and the references therein for more details about 
the database and NFC processing. 

The speech material presented to the listeners consisted of 
IEEE sentences, spoken by two males and two females and 
recorded through HAs with different NFC strategies; more specifi-
cally: 1) CF 4 kHz=  and : ;CR 2 1=  2) ,CF 2 kHz= : ;CR 2 1=

3) ,CF 3 kHz= : ;CR 2 1=  4) ,CF 3 kHz= : ;CR 6 1=  and 5) 
,CF 3 kHz= : .CR 10 1=  In addition, two “anchor” stimuli were 

created for each sentence: peak clipping at 25% of maximum sig-
nal amplitude and lowpass filtering at 2 kHz. In this study, the 
anchor conditions are not used during metric performance com-
parison to place emphasis solely on the effects of NFC. As such, of 
the available 32 stimuli [4 speakers #  (5 NFC conditions + 2 
anchors + 1 clean reference)], only 24 are used in the analysis 
presented in the section “Experimental Results.” 

Quality ratings of this database were obtained with 11 HI listen-
ers with severe to profound hearing loss. Each participant was fitted 
with a Phonak Savia behind-the-ear (BTE) HA and seated in a dou-
ble-walled sound booth in front of a speaker and a computer moni-
tor. Ratings of speech quality were obtained using the [20–100] 
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Multiple Stimuli with Hidden Reference and Anchor (MUSHRA)
quality scale, with “20” referring to poor quality and “100” repre-
senting excellent quality. Participants selected and listened to the 
reference and test stimuli and then indicated their quality judg-
ments by adjusting the corresponding sliders on the computer 
screen. Custom HA recordings were obtained for the purpose of 
objective speech quality prediction. To this end, the Phonak Savia 
BTE HA was programmed to match the amplification targets for 
each participant and was subsequently connected to a 2-cc coupler 
and placed inside a portable anechoic HA test box. The 32 stimuli 
within the database were then played back individually through the 
loudspeaker in the test box, and the resulting HA output was stored 
in a .wav file with 16-kHz sample rate and 16-bit resolution. 

In the second database, the impact of HA speech enhancement 
on perceived speech quality was investigated in noise-only, rever-
beration-only, and noise-plus-reverberation listening conditions. 
Full details about the data set can be found in [28]. Twenty-two 
adult HA users (average age of 71 years) with moderate to severe 
sensorineural hearing loss profiles were recruited to participate in 
the subjective quality experiments. Each of the participants was 
fitted bilaterally with the Unitron experimental BTE HA and seated 
at the center of a loudspeaker array, first in a double-walled sound 
booth (RT60 .0 1=  s) and then in a reverberant chamber (RT60 

.0 9=  s). In each of these rooms, sentences spoken by a male 
talker were played from a speaker at 0° azimuth and multitalker 
babble or speech-shaped noise at 0 or 5 dB SNR was played from 
speakers at 0, 90, 180, and 270° azimuth. 

Participants listened to the degraded stimuli four times, each 
time with a different HA setting: omnidirectional microphone, 
adaptive directional microphone, partial strength signal enhance-
ment (directionality, noise reduction, and speech enhancement 
algorithms operating below their maximum strengths), and full 
strength signal enhancement (all enhancement algorithms oper-
ating at maximum strength). Within each condition, subjects 
rated their perceived quality for each stimulus using the MUSHRA 
quality scale. Once again, a customized set of HA recordings was 
obtained to enable objective speech quality predictions. To this 
end, the bilateral HAs were programmed to match the amplifica-
tion requirements for each HI participant and were then placed on 
a Bruel and Kjaer head and torso simulator (HATS). The HATS 
was then positioned in the center of the loudspeaker array in each 
of the two room environments. The same stimuli used in subject-
ive speech quality experiments were played and the ensuing HA 
outputs were stored in .wav files with 16-kHz sample rate and 
16-bit resolution. In the analysis described in the section “Experi-
mental Results,” the objective metrics were computed separately 
for the left and right channels (using the listeners’ left and right 
audiograms, respectively) and then averaged into a final score that 
would be compared against the subjective ratings using the per-
formance criteria described next. Moreover, all databases were also 
downsampled to 8 kHz, such that ITU-T P.563 could also be tested. 

PERFORMANCE CRITERIA
To assess the performance of the tested algorithms, four perfor-
mance criteria were used. As suggested in the literature, 

performance values are reported on a per-condition basis, where 
condition-averaged objective and subjective intelligibility/qual-
ity ratings are used to reduce intra- and intersubject variability 
[2]. First, linear relationships between predicted quality/intelli-
gibility scores and subjective ratings are quantified via a Pear-
son correlation .t^ h  Second, the ranking capability of the 
objective metrics is characterized by the Spearman rank corre-
lation ,speart^ h  which is computed in a manner similar to t  but 
with the original data values replaced by their ranks. These two 
measures together can provide insight into the need for a non-
linear monotonic mapping between the objective metric scale 
and the subjective rating scale. Here, a sigmoidal mapping func-
tion is used and once the objective values are mapped, a new 
Pearson correlation (termed )sigt  is computed and used as the 
third performance criteria. The sigmoid mapping is given by: 

%,Y
e1

1 100( )X1 2
#=

+ a a- - (4)

where 1a  and 2a  are the fitting parameters, X  represents the 
objective metric, and Y  the mapped intelligibility/quality score. 

Finally, the so-called epsilon insensitive root-mean-square esti-
mation error (f-RMSE) is used. This f-RMSE measure differs 
from the conventional one as it considers only differences related 
to an epsilon-wide band around the target (subjective) quality/
intelligibility value, thus taking the uncertainty of the subjective 
ratings into account. As proposed by ITU-T, epsilon can be defined 
as the 95% confidence interval ci95^ h of the subjective ratings and 
is given on a per-condition basis [31]. More specifically, 

( ) ( . , ) ( ) ,ci c t M
M
c0 0595

v
= (5)

where c  indexes a condition type, M  corresponds to the total 
number of conditions, v  to the standard deviation of the per-con-
dition subjective scores, and ( . , )t M0 05  to the t-value computed at 
a 0.05 significance level. As such, the per-condition f-RMSE ( )c  is 
given by: 

( ) ( , ( ) ( ) ( )),maxc Y c S c ci c0-RMSE 95f = - - (6)

where ( )Y c  corresponds to the average sigmoid-mapped intelli-
gibility/quality score for a particular degradation condition c
(out of a total of M  conditions) and ( )S c  is the corresponding 
average subjective score. The final f-RMSE is then given by: 

( ) ,M d c1- -RMSE RMSE
c

M

1

2f f=
-

=

/ (7)

where the degree of freedom d  is set to “2” for the sigmoidal 
mapping function. An ideal objective metric will possess sigt

close to unity and an f-RMSE close to zero. 
When comparing the performance criteria of two or more met-

rics, it is important to characterize the statistical significance of 
the difference between them. For correlation-based criteria, a 
Fisher transformation z-test can be used; here, a significance level 
of 0.05 was used. For the f-RMSE criterion, the following statis-
tical significance test was used, as suggested by ITU-T [31]: 
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, ( . , , ) ,maxT F M M0 0 05
-RMSE
-RMSE

,i j
j

i
2

2

f

f
= -e o (8)

where ( . , , )F M M0 05  corresponds to the F-value computed at 
a 0.05 significance level. T 0,i j =  indicates that metrics i  and j
achieved statistically equivalent f -RMSEs, whereas a T 0,i j 2
indicates that metric i  is statistically significant worse than .j

EXPERIMENTAL RESULTS
Table 1 presents the results obtained with four intrusive and 
four nonintrusive measures on the CI intelligibility database. 
Note that results for HASQI, HASPI, PEMO-Q-HI, and SRMR-
HA have been omitted from the table, as they rely on the 
impaired listener’s audiogram, which is not readily available 
from the CI participants. As can be seen from the table, the 
STOI and SRMR-CI measures achieved the highest sigt  and 
lowest f -RMSE among the tested intrusive and nonintrusive 
metrics, respectively. The scatter plots in Figure 1(a) and (b) 
depict the subjective versus objective scores obtained for these 

two metrics, respectively, along with 
their fitted sigmoidal curves. 

Table 2, in turn, presents the 
results obtained with seven intrusive 
and four nonintrusive measures on 
the HA nonlinear frequency com-
pression quality database. Note that 
the results for SRMR-CI have been 
omitted from the table as they rely 
on filter bank information from CI 
devices. As observed, the PEMO-Q-
HI metric achieved the best sigt  and 
f-RMSE of the intrusive metrics, fol-
lowed closely by the STOI metric 
(and the HASQI, in terms of .)sigt

For the nonintrusive metrics, all 
tested measures performed poorly, with ModA achieving some-
what better performance. The scatter plots in Figure 2(a) and (b) 
depict the subjective versus objective scores obtained for the 
PEMO-Q-HI and ModA metrics, respectively, along with their 
fitted sigmoidal curves. 

Finally, Table 3 presents the results obtained with seven 
intrusive and four nonintrusive metrics on the noisy, reverber-
ant, and enhanced HA quality database. As in Table 2, SRMR-CI 
is omitted as it was developed for CI users and not HA. As can 
be seen, in the nonenhanced condition, all intrusive measures 
achieved similar sigt  values with PESQ achieving the lowest 
f -RMSE, followed closely by STOI. For the enhanced condi-
tion, HASPI achieved the highest ,sigt  but STOI, PESQ, and 
PEMO-Q-HI achieved lower f-RMSE (over three times lower). 
For the nonintrusive metrics, ModA outperformed all others 
across both the enhanced and nonenhanced conditions. The 
scatter plots in Figure 3(a) and (b) depict the subjective versus 
objective scores obtained for the PESQ and ModA metrics, 
respectively, along with their fitted sigmoidal curves. 

[TABLE 1] PER-CONDITION PERFORMANCE CRITERIA FOR THE CI INTELLIGIBILITY
DATABASE. THE NUMBERS IN BOLD REPRESENT THE BEST ATTAINED PERFORMANCES 
(STATISTICALLY INDIFFERENT) AMONG ALL TESTED INTRUSIVE AND NONINTRUSIVE
ALGORITHMS.

ALL
NONENHANCED 
(NOISE/REVERB) ENHANCED

METRIC t speart sigt f-RMSE t speart sigt f-RMSE t speart sigt f-RMSE

NCM 0.68 0.74 0.87 9.03 0.96 0.93 0.93 8.41 0.47 0.68 0.77 10.33

STOI 0.81 0.76 0.89 7.05 0.97 0.96 0.97 0.6 0.66 0.69 0.92 3.82

PESQ −0.09 0.01 −0.02 26.85 −0.25 0.4 0.14 26.14 −0.09 0.21 −0.02 23.89

PEMO-Q 0.67 0.53 0.68 15.68 0.72 0.8 0.69 15.67 0.38 0.53 0.44 13.52

P.563 0.05 0.38 0.33 23.59 0.76 0.6 0.78 11.77 −0.79 0 −0.43 25.23

ModA 0.78 0.59 0.78 16.88 0.82 0.76 0.8 13.59 −0.13 −0.17 −0.07 18.42

SRMR 0.49 0.53 0.68 18.41 0.93 0.89 0.92 9.6 −0.35 −0.03 −0.37 23.16

SRMR-CI 0.86 0.77 0.93 5.67 0.98 0.98 0.98 2.06 0.65 0.5 0.88 4.65
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[FIG1] Scatterplots of subjective intelligibility versus objective scores for condition-averaged data points obtained from the (a) STOI 
and (b) SRMR-CI metrics for the CI intelligibility database.
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DISCUSSION
Table 4 summarizes the recommendations for metric usage based 
on distortion condition type (i.e., overall, nonenhanced, enhanced, 
NFC), assistive device (CI, HA), and the availability or unavailabil-
ity of a reference signal (intrusive or nonintrusive). The recom-
mended metrics include those that attained the highest sigt  and 
lowest f-RMSE, shown in bold in the table, as well as all others 
which attained insignificantly different sigt  and f-RMSE levels. A 
more detailed discussion is given next. 

CI: NOISY AND ENHANCED CONDITIONS
For users of CI devices the STOI metric outperformed all other 
intrusive measures, thus corroborating the usefulness of the 
measure as a channel selection criteria for CI processing [9] (see 
Table 4). This was true for both nonenhanced and speech-
enhanced conditions. The NCM metric, on the other hand, despite 
having similar processing stages with STOI and achieving 

[TABLE 2] PER-CONDITION PERFORMANCE CRITERIA FOR 
THE HA NONLINEAR FREQUENCY COMPRESSION QUALITY
DATABASE. THE NUMBERS IN BOLD REPRESENT THE BEST
ATTAINED PERFORMANCES (STATISTICALLY INDIFFERENT)
AMONG ALL TESTED INTRUSIVE AND NONINTRUSIVE
ALGORITHMS.

METRIC t speart sigt f-RMSE

NCM 0.67 0.67 0.89 7.46

STOI 0.77 0.67 0.92 2.24
PESQ 0.62 0.56 0.79 5.73
HASQI 0.71 0.71 0.93 7.67

HASPI 0.83 0.72 0.81 9.9

PEMO-Q 0.67 0.6 0.79 5.06

PEMO-Q-HI 0.89 0.71 0.92 1.83

P.563 −0.27 −0.38 −0.33 23.25

ModA 0.52 0.48 0.54 8.86

SRMR 0.49 0.59 0.4 17.06

SRMR-HA 0.51 0.58 0.46 14.39

[TABLE 3] PER-CONDITION PERFORMANCE CRITERIA FOR THE HA REVERBERATION/ENHANCEMENT QUALITY DATABASE.
THE NUMBERS IN BOLD REPRESENT THE BEST ATTAINED PERFORMANCES (STATISTICALLY INDIFFERENT) AMONG ALL TESTED
INTRUSIVE AND NONINTRUSIVE ALGORITHMS.

ALL NON-ENHANCED ENHANCED

METRIC t speart sigt f-RMSE t speart sigt f-RMSE t speart sigt f-RMSE

NCM 0.84 0.84 0.83 6.61 0.85 0.81 0.81 8.54 0.77 0.75 0.74 7.67

STOI 0.78 0.78 0.77 6.21 0.81 0.75 0.78 6.26 0.8 0.79 0.77 4.11

PESQ 0.76 0.8 0.81 4.45 0.76 0.74 0.78 5.07 0.7 0.68 0.72 4.59

HASQI 0.73 0.82 0.81 8.02 0.78 0.76 0.77 10.8 0.75 0.83 0.86 5.6

HASPI 0.71 0.86 0.83 12.95 0.8 0.83 0.84 13.23 0.71 0.87 0.9 15.57

PEMO-Q 0.81 0.88 0.86 8.11 0.85 0.8 0.8 10.46 0.77 0.83 0.83 7.91

PEMO-Q-HI 0.84 0.85 0.83 6.23 0.84 0.78 0.77 9.01 0.84 0.85 0.84 4.18

P.563 0.39 0.52 0.52 14.95 0.80 0.78 0.8 7.5 −0.22 −0.15 −0.23 22.38

ModA 0.86 0.9 0.86 10.39 0.83 0.84 0.84 7.16 0.82 0.91 0.9 3.85

SRMR 0.74 0.77 0.74 8.19 0.8 0.78 0.75 9.45 0.39 0.52 0.39 7.64

SRMR-HA 0.79 0.82 0.77 9.9 0.83 0.81 0.75 10.99 0.55 0.63 0.53 7.32
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[FIG2] Scatterplots of subjective quality versus objective scores for condition-averaged data points obtained from the (a) PEMO-Q-HI 
and (b) ModA metrics for the HA nonlinear frequency compression quality database.
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insignificantly different sigt  values in the nonenhanced case, 
resulted in significantly higher f -RMSE values. Such finding 
shows the importance of short-time processing for CI users. 
Interestingly, while PESQ and PEMO-Q have been shown to be 
highly correlated with subjective quality ratings of NH listeners in 
a number of telephony applications, poor performance was 
obtained for CI users, particularly under speech enhancement. 
For the nonintrusive measures, the SRMR-CI measure achieved 
the best results with performance levels in-line with those 
obtained with STOI, but with the advantage of not requiring a ref-
erence signal. In fact, when both noisy and enhanced conditions 
were considered overall, the SRMR-CI metric outperformed STOI 
across all four performance criteria. By incorporating CI process-
ing percepts into the original SRMR measure, significant gains 
could be observed. Generally, the findings observed here resonate 
with those reported in the literature showing the importance of 
spectral envelopes for CI intelligibility. 

HA: NFC CONDITIONS
For users of HAs with frequency lowering strategies, PEMO-Q-HI 
and STOI attained insignificantly different sigt  and f-RMSE 
results. The HASQI measure, in turn, resulted in the highest sigt ,
but achieved a significantly higher f-RMSE than the two afore-
mentioned metrics. This higher error may be a result of the range 
of conditions used during training of the internal parameter (i.e., 
noise, linear, and nonlinear terms) mapping available in the 
HASQI. Notwithstanding, given the burgeoning popularity of such 
nonlinear frequency compression schemes for HI listeners with 
severe to profound high frequency sensorineural hearing loss, our 
results suggest that users have a few reliable intrusive metrics to 
choose from. On the other hand, the tested nonintrusive measures 
were not capable of correctly characterizing the perceptual arte-
facts caused by NFC in HA users. For example, none of the metrics 
surpassed the correlation threshold of 0.8 established by ITU-T 
during the competition that resulted in the P.563 Recommenda-
tion [20]. These findings motivate the need for more research on 
the development of innovative nonintrusive quality measures for 
frequency-lowering strategies. As an exploratory test, the modula-
tion energy thresholding and modulation filter bank compression 
strategies implemented in the SRMR-CI metric (see the section 
“SRMR-CI and SRMR-HA”) were tested on the original SRMR and 
SRMR-HA metrics and significant improvements .p 0 051^ h

could be observed (e.g., .0 80sigt =  and f-RMSE .4 68=  with the 
so-called SRMR-HAcomp). In fact, these newly obtained results were 
in-line with some of the intrusive metrics, such as PEMO-Q, and 
suggest that further improvements may be obtained with nonin-
trusive measures. 

HA: NOISY AND ENHANCED CONDITIONS
Finally, for HA users in complex listening environments compris-
ing noise, reverberation, and noise-plus-reverberation, it was 
observed that all intrusive measures achieved insignificantly differ-
ent sigt  and f-RMSE values (with the exception of HASPI, in the 
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[FIG3] Scatterplots of subjective quality versus objective scores for condition-averaged data points obtained from the (a) PESQ and 
(b) ModA metrics for the HA reverberation/enhancement quality database.

[TABLE 4] A SUMMARY OF RECOMMENDED OBJECTIVE
METRICS FOR DIFFERENT CONDITIONS. THE METRICS IN
BOLD REPRESENT THOSE THAT ACHIEVED HIGHEST sigt
AND LOWEST f-RMSE. THE METRIC SRMR-HA comp  CORRE-
SPONDS TO AN EXPLORATORY MEASURE DESCRIBED IN
THE SECTION “HA: NFC CONDITIONS.”

CI HA

CONDITION INTRUSIVE NON-
INTRUSIVE

INTRUSIVE NONINTRUSIVE

COMBINED STOI, NCM SRMR-CI PESQ, STOI, 
PEMO-Q-HI,
NCM

ModA, SRMR-HA

NON-
ENHANCED

STOI SRMR-CI ALL EXCEPT
HASPI
(PEMO-Q)

ALL (ModA)

ENHANCED STOI SRMR-CI PEMO-Q-HI,
HASQI, PEMO-
Q

ModA

NFC – – PEMO-Q-HI,
STOI

SRMR-HA comp
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latter case). In the scenario where nonlinear speech enhancement 
(noise suppression and dereverberation) was activated, three meas-
ures stood out: HASQI, PEMO-Q, and PEMO-Q-HI. Interestingly, 
for the nonenhanced and enhanced cases, HASPI, a metric tailored 
for intelligibility prediction, outperformed HASQI (its quality pre-
dictor counterpart) and all other metrics in terms of .sigt  Such 
f indings resonate with what  was mentioned in 
the section “HA: NFC Conditions” that alternate mappings of HAS-
QI’s internal parameters could be devised to reduce f-RMSE. For 
nonintrusive measures, in turn, it was found that all tested metrics 
achieved insignificantly different sigt  values in the noisy condition, 
with ModA achieving the highest sigt  and lowest f-RMSE. In the 
enhanced conditions, on the other hand, only ModA achieved lev-
els above ITU-T’s “acceptability threshold.” Interestingly, in the 
nonenhanced conditions (i.e., noise-alone, reverberation-alone, 
and noise-plus-reverberation) ITU-T P.563 achieved reliable results 
in line with those obtained with SRMR-HA and ModA. With speech 
enhancement enabled, however, both P.563 and SRMR-HA perfor-
mances decreased to unacceptable levels, thus suggesting that 
these two metrics are not capable of detecting and quantifying the 
effects of speech enhancement artefacts on perceived quality. 
These findings motivate the need for more research on the devel-
opment of innovative nonintrusive quality measures for HA 
devices with nonlinear speech enhancement. 

CONCLUSIONS
This article has provided a comprehensive review of 12 existing 
objective quality and intelligibility prediction algorithms that have 
been developed for NH and HI listeners who are users of assistive 
listening devices, such as HAs and CIs. The algorithms were tested 
on three common subjectively rated speech data sets: one with 
subjective ratings collected from CI users in noisy and reverberant 
environments, one from HA users in noisy and reverberant envi-
ronments with and without speech enhancement, and one from 
HA users with NFC. The recommended metrics to be used under 
each condition (nonenhanced, enhanced, NFC) were tabulated for 
the two different assistive devices. In summary, for CI devices, two 
measures stood out: STOI (intrusive) and SRMR-CI (nonintru-
sive). For HA with NFC, several intrusive measures attained com-
parable results, including the recently proposed PEMO-Q-HI. 
None of the tested nonintrusive measures, on the other hand, 
achieved acceptable results, thus leading us to explore the develop-
ment of a new metric called SRMR-HAcomp . Finally, for HA with 
speech enhancement enabled, the HASQI and PEMO-Q-HI intru-
sive measures stood out alongside ModA, a recently proposed non-
intrusive measure. It is hoped that these insights will be useful not 
only for those in the assistive listening device research and devel-
opment community but also clinicians, audiologists, and patients 
who wish to quickly gauge the performance of different devices 
across different practical environmental conditions. 
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M
any classes of data are composed as constructive combinations of parts. By constructive combi-
nation, we mean additive combination that does not result in subtraction or diminishment of 
any of the parts. We will refer to such data as compositional data. Typical examples include 
population or counts data, where the total count of a population is obtained as the sum of 
counts of subpopulations. To characterize such data, various mathematical models have been 

developed in the literature. These models, in conformance with the nature of the data, represent them as non-
negative linear combinations of parts, which themselves are also nonnegative to ensure that such a combination 
does not result in subtraction or diminishment. We will refer to such models as compositional models.

Although the notion of purely constructive composition most obviously applies to nonsignal data such as 
counts of populations, compositional models have frequently been employed to explain other forms of data as 
well [1]. During the last few years, such models have provided new paradigms to solve old standing audio pro-
cessing problems, e.g., blind and supervised source separation [2], [3] and robust recognition [4]. Therefore, the 
models have been used as parts of audio processing systems to advance the state of the art on many problems 
that deal with audio data consisting of multiple sources, e.g., on the analysis of polyphonic music [5] and recog-
nition of noisy speech [6]. A significant reason to study these methods is not only their inherent robustness but 

[Tuomas Virtanen, Jort F. Gemmeke, Bhiksha Raj, and Paris Smaragdis]

[Uncovering the structure of sound mixtures]

COMPOSITIONAL 
MODELS
for Audio Processing
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also the flexibility to use them in 
ways that are nonstandard in audio 
processing. In this article, we show 
how they can be powerful tools for 
processing audio data, providing 
highly interpretable audio represen-
tations and enabling diverse applica-
tions such as signal analysis and 
recognition [4], [7], [8], manipula-
tion and enhancement [9], [10], and coding [11], [12].

The basic premise underlying the application of compositional 
models to audio processing is that sound, too, can be viewed as 
being compositional in nature. The premise has intuitive appeal: 
sound, as we experience it, does indeed have compositional char-
acter. The sounds we hear are usually a medley of component 
sounds that are all concurrently present. Although a sound may 
mask others by its greater prominence, the sounds themselves do 
not generally cancel one another, except in a few cases when it is 
done intentionally, e.g., in adaptive noise cancellers. Even sounds 
produced by a single source are often compositions of component 
sounds from the source, e.g., the sound produced by a machine 
combines sounds from all of its parts, and music sounds are com-
positions of notes produced by various instruments.

The compositionality of sound is also evident in time–
frequency characterizations of the signal, as illustrated by 
Figure 1. The figure shows a spectrogram—a visual representa-
tion of the magnitude of time–frequency components as a func-
tion of time and frequency—of a signal, which comprises two 
notes played individually at first and then played together. The 
spectral patterns characteristic of the individual notes are dis-
tinctly observable even when they are played together.

The compositional framework for 
sound analysis builds upon these 
impressions: it characterizes the 
sounds from any source as a con-
structive composition of atomic 
sounds that are characteristic of the 
source and postulates that the 
decomposition of the signal into its 
atomic parts may be achieved 

through the application of an appropriately constrained compos-
itional model to an appropriate time–frequency representation of 
the signal. This, in turn, can be used to perform several of the 
tasks mentioned earlier.

The models themselves may take multiple forms. The 
nonnegative matrix factorization (NMF) models [3], [13] treat 
nonnegative time–frequency representations of the signal as 
matrices, which are decomposed into products of nonnegative 
component matrices. One of the matrices represents spectral 
patterns of the atomic parts, and the other represents their acti-
vation to the signal over time.

The probabilistic latent component analysis (PLCA) models 
treat the nonnegative time–frequency representations as histo-
grams drawn from a mixture of multivariate multinomial ran-
dom variables representing the atomic parts [14]. The two 
approaches can be shown to be equivalent as well as arithmetic-
ally identical under some circumstances [15].

The purpose of this article is to serve as an introduction to the 
application of compositional models to the analysis of sound. We 
first demonstrate the limitations of related algorithms that allow 
for the cancellation of parts and how compositional models can 
circumvent them, through an example. We then continue with a 
brief exposition on the type of time–frequency representations 
where compositional models may naturally be applied.

We subsequently explain the models themselves. Two of the 
most common formulations of compositional models are based 
on matrix factorization and PLCA. For brevity, we primarily pre-
sent the matrix factorization perspective, although we also 
introduce the PLCA model briefly for completeness.

Within these frameworks, we address various issues, including 
how a given sound may be decomposed into the contributions of 
its atomic parts, how the parts themselves may be found, restric-
tions of the model vis-à-vis the number and nature of these parts 
and of the decomposition itself, and finally how the solutions to 
these problems make various applications possible.

WHY CONSTRUCTIVE COMPOSITION?
Before proceeding further, it may be useful to address a question 
that may already have struck you. Since the models themselves 
are effectively matrix decompositions, what makes the compos-
itional model with its constraints on purely constructive compos-
ition different from other forms of matrix decompositions such as 
principal component analysis (PCA), independent component 
analysis (ICA), or other similar methods?

The answer is given as illustrated in Figure 2, which shows the 
outcome of PCA- and ICA-based decomposition of the spectrogram 
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[FIG1] A magnitude spectrogram of a simple piano recording. 
Two notes are played in succession and then again in unison. 
We can visually identify these notes using their unique 
harmonic structure.
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of Figure 1. Intuitively, the signal is entirely composed of only two 
notes, and an effective decomposition technique would discover 
these notes when they were played. PCA and ICA were employed 
to decompose the spectrogram into two bases and their activa-
tions. In both cases, a nearly perfect decomposition is achieved in 
the sense that the bases, when excited by their corresponding 
activations, combine to construct the original spectrogram nearly 
perfectly, reflecting the fact that the signal does indeed comprise 
only two basic elements (i.e., the two notes). However, an inspec-
tion of the actual bases discovered and their activations reveals a 
problem. PCA [see Figure 2(a)] discovers two bases that, although 
orthogonal to one another, are actually combinations of the two 
notes, and their corresponding activations provide no indication 
of the actual composition of the sound. In this particular example, 
ICA [see Figure 2(a)] discovers two bases whose activations track 
the actual activation of the notes in the signal. However, the dis-
covered bases themselves have both negative and positive compo-
nents, effectively characterizing the atomic units that compose 
the sound as having negative spectral magnitudes, which has no 
physical interpretation. More generally, even the degree of con-
formance to the underlying structure found in this particular 
example is usually not achieved. The intuitive dissonance is obvi-
ous—intuitively, the building blocks of this sound were the notes 
and both methods have failed to discover these effectively. 
Although we do not go into this further, the dissonance is more 
than intuitive; several of the solutions we develop later in 
the article through compositional models are simply not 
possible through normal matrix decomposition techniques 
such as PCA and ICA, which permit both constructive and 
destructive composition.

In contrast, Figure 3 shows the results obtained by decom-
posing the spectrogram of Figure 1 with NMF. The nonnegative 
factorization is observed to successfully uncover both the notes 
themselves (as defined by their spectra) and their activations. In 
practice, the discovered atoms will not always have as clearly 
associative semantics as in this example; for instance, in 
Figure 3, we have assumed that the correct number of atoms, two, 
is known a priori, and this is generally not the case. Neverthe-
less, the atoms that are discovered tend to be consistent spectral 
structures that compose the signal.

REPRESENTING AUDIO SIGNALS
As noted earlier, the constructive compositionality of sound is 
evidenced in the distribution of energy in time–frequency char-
acterizations of the signal. This observation has a theoretical 
basis: the power in any frequency band of the sum of uncorre-
lated signals is the sum of the powers of the individual signals 
within that band. We will therefore employ time–frequency 
characterizations to represent audio signals.

The time–frequency characterizations of the signal are gener-
ally obtained through filter bank analysis. Thus, a signal [ ],y n
n N1g=  is transformed into a matrix of values [ , ],Y t f t =

, ,T f F1 1g g=  where T  is the number of time frames, F  is the 
number of filters in the filter bank, and /N Tx = 6 @ is the period 
with which the output of the filter bank is sampled. It is also 
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[FIG2] The PCA and ICA analyses of the data in Figure 1: 
(a) the learned PCA and ICA atoms and (b) their corresponding 
activations. Compared to the learned parameters in Figure 3, 
we can see that these analyses are not resulting in an intuitive 
decomposition.
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[FIG3] The NMF decomposition of the spectrogram of Figure 1: 
(a) the discovered atoms and (c) their corresponding activations 
and (b) is the approximation to the input.
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known that the human auditory system effectively acts as a filter 
bank [16] and that the amplitude of a signal is encoded by the 
nonnegative number of the firings of neurons [17] (even though 
neurons encode amplitudes in a nonlinear manner). Thus, the 
signal representation used in com-
positional models has some similar-
ities to the representation used in 
the human auditory system. For 
simplicity, the specific filter bank 
analysis we will use is the short-time 
Fourier transform (STFT), although 
other forms of time–frequency representations may also be used, 
some of which we will invoke later in the article. More specifically, 
we will work with the magnitude of these representations, i.e., 
with .| [ , ] |Y t f

There are three main reasons for using compositional mod-
els on magnitudes of time–frequency representations. First, the 
purely constructive composition required by the compositional 
framework also necessitates the representations to be non-
negative. Second, the phase spectra (and therefore also the 
time–domain signals) of natural sounds are rather stochastic 
and therefore difficult to model, whereas the magnitude spectra 
are much more deterministic and can be modeled with a simple 
linear model. Third, the squared magnitude of time–frequency 
components of the signal represents the power in the various 
frequency bands. As mentioned earlier, theory dictates that the 
power in the sum of uncorrelated signals is the sum of the 
power in the component signals. Hence, the power in a signal 
composed from uncorrelated atomic units will be the sum of 
the power in the units. In practice, however, the time–frequency 
components of the signal are estimated from short-duration 
windows in which the above relationship does not hold exactly. 
Also, more than one component may be used to represent a sin-
gle source, in which case the phases of the components are 
coherent. It has been empirically observed that the optimal 
magnitude exponent  depends on the task at hand and how the 
performance is measured [18].

The original signal cannot be recovered directly from the mag-
nitudes of the filter bank output alone; the phase is also required. 
This presents a problem since we often would like to reconstruct 
the signal from the output of the compositional analysis. For exam-
ple, when a compositional model is used to separate out sources 
from a mixed signal, it is often desired to recover the time–domain 
signal from the separated time–frequency characterizations, which 
comprise only magnitude terms. The missing phase terms must be 
obtained through other means. As will be explained in the section 
“Source Separation,” this can be accomplished, e.g., by using the 
phase of the mixed signal. Thus, compositional models do not, 
strictly speaking, perform signal separation but separation using a 
midlevel representation that allows separating latent parts of a mix-
ture. Nevertheless, the separated midlevel representation, together 
with mixture phases, allows for reconstruction of signals that are 
close to source signals before mixing.

An important consideration in deriving time–frequency repre-
sentations is that of time- and frequency-analysis resolution. 

Time–frequency representations have a fundamental limitation: 
the bandwidth, ,FD  of the filters, representing the minimum dif-
ference in frequencies that can be resolved is inversely propor-
tional to the time resolution, ,TD  which represents the minimum 

distance in time between two seg-
ments of the signal that can be dis-
tinctly resolved. In the case of the 
STFT, in particular, FD  is inversely 
proportional to the length in samples 
of the analysis window employed. 
Increasing the length of the analysis 

window increases the frequency resolution, but decreases the time 
resolution. Low time resolution analysis may result in the tempo-
ral blurring of rapidly changing events, such as those that occur in 
speech. On the other hand, low frequency resolution can result in 
the obscuring of frequency structures in signals such as music. 
Hence, the optimal time/frequency resolution will depend on the 
type of the signals we wish to analyze. For instance, music pro-
cessing typically requires longer analysis frames (up to 100 ms), 
whereas speech processing typically applies shorter windows (tens 
of milliseconds).

COMPOSITIONAL MODELING OF AUDIO
In the following, we represent the magnitude spectrogram (which 
we will simply refer to as a spectrogram for brevity) as a matrix 
Y R F T! #

+  comprising magnitudes of time–frequency components 
[ , ] .Y f t  Here, R+  represents the set of nonnegative real num-

bers. Each column of the matrix Y  is an F-component (magni-
tude) spectral vector ,y Rt

F 1! #
+  representing the magnitude 

spectrum of one slice or frame of the signal.
In alternate representation variants that attempt to explicitly 

capture the temporal dynamics of signals, a single column, ,yt

may represent multiple adjacent spectra concatenated into a 
single vector [4]. In such cases, ,Y R LF T! #

+  where L  is the 
number of frames that are concatenated together.

The compositional model represents the spectrogram as a non-
negative (purely constructive) linear combination of the contribu-
tions of atomic units (which we will simply refer to as atoms
throughout). In its simplest form, the atomic units themselves are 
spectral vectors, representing steady-state sounds, and every spec-
tral vector in the spectrogram can be decomposed into a non-
negative linear combination of these atoms. We describe two 
formalisms to achieve this decomposition. 

COMPOSITIONAL MODELS AS MATRIX FACTORIZATION
The matrix factorization approach to compositional modeling 
treats the problem of decomposing a spectrogram into its 
atomic units as nonnegative matrix decomposition.

Let ak  represent any atom, representing spectral vectors in 
this context. In the matrix factorization approach, we will 
represent them as column vectors, i.e., .a Rk

F 1! #
+  The atoms 

are indexed by ,k K1g=  where K  is the total number of 
atoms. Each spectral vector yt  is composed from all the atoms as 

[ ],x ty a
k

K
t k k1
=

=
/  where [ ]x tk  is the nonnegative activation of 

the kth  atom in frame .t  Thus, the spectrogram is modeled as 

THE MAGNITUDE SPECTRA
ARE MORE DETERMINISTIC

AND CAN BE MODELED WITH
A SIMPLE LINEAR MODEL.
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the sum of factors having a fixed spectrum ak  and time-varying 
activation .[ ]x tk  Representing the activation of the kth  atom to 
all of the spectral vectors in Y  as a vector [ [ ] [ ]x x1 2xk k k g=

[ ]] ,x Tk
<  we can represent the overall contribution of ak  to Y

as .a xk k
<

We can arrange all of the atoms , ,k K1ak g=  as columns 
of a matrix .A RF K! #

+  We can similarly arrange the activation 
vectors of the atoms, , k K1xk g=  as rows of the a matrix 

.X RK T! #
+  The composition of Y  in terms of the atoms and 

their activations can now be written as

,Y AX. (1)

where all entries are strictly nonnegative. 
To decompose the signal into its atomic parts, we must deter-

mine the A  and X  that together satisfy (1) most closely. To do so, 
we define a scalar-valued divergence ( | | )D Y AX  between the 
observed spectrogram Y  and the decomposition ,AX  which char-
acterizes the error between the two. The minimum value of the 
divergence is zero, which is only reached if the error is zero, i.e.,

.Y AX=  Typically, the divergence is calculated entry wise, i.e.,

( | | ) ( , ),D d y yY Y
,

, ,
f t

f t f t=t t/ (2)

where y ,f t  and y ,f tt  are the ( , )f t th  entries of Y  and ,Yt  respect-
ively, and ()d  is the divergence between two scalars.

The optimal values A*  and X*  of A  and X  are obtained by 
minimizing this divergence.

, ( | | ) , .argmin 0DA X Y AX A 0 X* *

A,X
* *= (3)

Here, we assume that both the atoms A*  and their activations 
X*  must be obtained from the decomposition. However, if the 

atoms A  are prespecified, then decomposition only requires 
estimation of the activations

( | | ) .argmin DX Y AX X 0*

X
*= (4)

A similar solution may also be defined when X  is specified, and 
A* must be obtained.

The most commonly used divergence in matrix decomposition 
problems is the squared error: ( | | ) | | | | .D Y AX Y AX F

2= -  How-
ever, in the context of audio modeling, other divergence measures 
have been found more appropriate [3], [19], [20]. Audio signals 
typically have a large dynamic range—i.e., the energy in high-
frequency components can be tens of decibels lower than that in 
low-frequency components, even when both are perceptually 
equally important. The magnitude of errors in decomposition 
tends to be much larger in lower frequencies than in high ones. 
The squared error emphasizes the larger errors and, as a result, 
decompositions that minimize the squared error emphasize the 
accuracy in lower frequencies at the cost of perceptually important 
higher frequencies. Divergence measures that assign greater 
emphasis to low-energy components are required for audio.

For representing audio, two commonly used divergences are 
the generalized Kullback–Leibler (KL) divergence

( , ) ( / )logd y y y y y y yKL = - +t t t (5)

and the Itakura–Saito (IS) divergence

( , ) / ( / ) .logd y y y y y y 1IS = - -t t t (6)

The divergences in (5) and (6) and the squared error ( , )d y ySQ =t

( )y y 2- t  are illustrated in Figure 4 for two values of y  as the func-
tion of .yt
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[FIG4] An illustration of the typical divergence functions used in NMF. The divergences are calculated for an observation (a) y 1=  and 
(b) y 2=  as the function of the model .yt  The scale of the input affects the scale of the divergence.
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The various divergences scale differently with their argu-
ments. The squared error scales quadratically, meaning that 

( | | ) ( | | ),D DY AX Y AX2
SQ SQa a a=  the IS divergence is scale 

invariant, i.e., ( | | ) ( | | ),D DY AX Y AXIS ISa a =  while the KL diver-
gence scales linearly: ( | | ) ( | | ) .D DY AX Y AXKL KLa a a=  The rela-
tive merits of the divergences may be inferred from this property: 
the squared error divergence puts undue emphasis on high-
energy components, and the IS divergence fails to distinguish 
between the noise floor and higher-energy speech components. 
The KL divergence provides a good compromise between the two 
[3], [19], [20]. A generalization of the divergences in (5) and (6) is 
the beta divergence [21], which defines a set of divergences that 
are a function of a parameter .b

The divergences in (5) and (6) (KL, IS, or squared) can be 
obtained from maximum likelihood estimation of the parameters, 
when observed data is generated by a specific generative model 
(Poisson distribution, multiplicative Gamma noise, or additive 
Gaussian noise) independently at each time–frequency point [13]. 
Even though some of these models (e.g., the Poisson distribution) 
do not match well with the distribution of natural sounds, the stat-
istical interpretation allows incorporating a prior distributions for 
the parameters.

The squared error and KL divergence are convex as the func-
tion of ,yt  and for these, the divergence ( | | )D Y Yt  is also convex 
in .Yt  In this case, the optimization problem of (4) and its coun-
terpart, where X  is specified and A  must be estimated, minim-
ize a convex function, and can be solved by any convex 
optimization technique.

When Yt  is itself a product of two matrices, e.g., ,Y AX=t

( | | ) ( | | )D DY Y Y AX=t  becomes biconvex in A  and .X  This 
means that it is not jointly convex in both of these variables, but 
if either of them is fixed it is convex in the other. Therefore, (3) 
is biconvex and cannot directly be solved through convex opti-
mization methods. Nevertheless, convex optimization methods 
may still be employed by alternately estimating one of A  and ,X
holding the other fixed to its current estimate.

A commonly used solution to estimating nonnegative 
decompositions is based on the so-called multiplicative updates. 
The parameters to be estimated are first initialized to random 
positive values and then iteratively updated by multiplying them 
with correction terms. The strength of the method stems from 
the ability of the updates to fulfill the nonnegativity constraints 
easily: provided that both the previous estimate and the correc-
tion term are nonnegative, and the updated term is guaranteed 
to be nonnegative as well. The multiplicative updates that 
decrease the KL divergence are given as

A A
1X

AX
Y X

! 7 <

<

(7)

and

,X X
A 1

A AX
Y

! 7 <

<

(8)

where 1 is an all-one matrix of the same size as ,Y 7  is an ele-
ment-wise matrix product, and all the divisions are element wise. 

It can be easily seen that if A  and X  are nonnegative, the terms 
that are used to update them are also nonnegative. Thus, the 
updates obey the nonnegativity constraints. If both A  and X  must 
be estimated, (7) and (8) must be alternately computed. If one of 
the two is given and only the other must be estimated, then only 
the update rule for the appropriate variable need be iterated. For 
instance, if A  is given, X  can be estimated by iterating (8). In all 
cases, the KL divergence is guaranteed be nonincreasing under 
the updates. These multiplicative updates as well as rules for mini-
mizing the squared error were proposed by Lee and Seung [22].

In addition to multiplicative updates, various alternative 
methods have been proposed, based on, e.g., second-order 
methods [23], projected gradient [1, pp. 267–268], etc. The 
methods can also be accelerated by active-set methods [24], 
[25]. Some divergences, such as the IS divergence, are not con-
vex, and minimizing them requires more carefully designed 
optimization algorithms than the convex divergences [13].

There also exist divergences that aim at optimizing the per-
ceptual quality of the representation [12], which are useful in 
audio coding applications. However, in most of the other appli-
cations of compositional models, such as source separation and 
signal analysis, the quality of the representation is affected more 
by its ability to isolate latent compositional units from a mix-
ture signal, not by the ability to accurately represent the obser-
vations. Therefore, simple divergences such as the KL or IS are 
the most commonly used even in the applications where a mix-
ture is separated into parts for listening purposes.

COMPOSITIONAL MODELS AS PLCA
The PLCA approach to compositional models treats the spectro-
gram of the signal as a histogram drawn from a mixture multi-
nomial process, where the component multinomials in the 
mixture represent the atoms that compose the signal [14]. This 
model is an extension of probabilistic latent semantic indexing 
and probabilistic latent semantic analysis techniques that have 
been successfully used, e.g., for topic modeling of speech [26].

The generative model behind PLCA may be explained as follows. 
A stochastic process draws frequency indices randomly from a col-
lection of multinomial distributions. In each draw, it first selects 
one of these component multinomials according to some probabil-
ity distribution, ( ),P k  where k  represents the selected multino-
mial. Subsequently, it draws the frequency, ,f  from the selected 
multinomial ( | ) .P f k  Thus, the probability that a frequency, ,f  will 
be selected in any draw is given by ( ) ( | ) .P k P f k

k
/  To generate a 

spectral vector, the process draws frequencies several times. The 
histogram of the frequencies is the resulting spectral vector.

The mixture multinomial ( ) ( | )P k P f k
k
/  thus represents the 

distribution underlying a single spectral vector—the vector itself 
is obtained through several draws from this distribution. When we 
employ the model to generate an entire spectrogram comprising 
many spectral vectors, we make an additional assumption: that the 
component multinomials ( | )P f k  are characteristic of the source 
that generates the sound, and represent the atomic units for the 
source. Hence, the set of component multinomials is the same for 
all vectors, and the only factor that changes from analysis frame to 
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analysis frame is the probability distribution over ,k  which speci-
fies how the component multinomials are chosen in any draw. The 
overall mixture multinomial distribution model for the spectrum 
of the tth  analysis frame in the signal is given by

( ) ( ) ( | ),P f P k P f kt t
k

K

1
=

=

/ (9)

where ( )P kt  represents the frame-specific a priori probability of 
k  in the tth  frame and ( | )P f k  represents the multinomial dis-
tribution of f  within the kth  atom. Even though the formula-
tion of the model is different from NMF, the models are 
conceptually similar: decomposition of a signal is equated to 
estimation of the atoms ( | )P f k  and their activations ( )P kt  to 
each frame of the signal, given the spectrogram .[ , ]Y t f

The estimation can be performed using the expectation 
maximization algorithm [27]. The various components of the 
mixture multinomial distribution of (9) are initialized randomly 
and re-estimated through iterations of the following equations:

( | )
( ) ( | )

( ) ( | )

P
P k f

k P f k

P k P f k

tk

kt
t

1

=
=

l l
l
/

( | )
( | ) [ , ]

( | ) [ , ]
,P f k

P k f Y t f

P k f Y t f

f

F

t
T

t

T

t

t

11

1=
==

=

l
l
//
/

(10)

( )
( | ) [ , ]

( | ) [ , ]
.P k

P k f Y t f

P k f Y t f

f

F

k
K

f

F

t
t

t

11

1=
==

=

l
l
//
/

(11)

The contribution of the kth  atom to the overall signal is the 
expected number of draws from the multinomial for the atom, 
given the observed spectrum, and is given by

[ , ] [ , ] ( | ) [ , ]
( ) ( | )

( ) ( | )
.Y t f Y t f P k f Y t f

P k P f k

P k P f k

k

Kk t
t

t

1

= =
=

l l
l
/

This effectively distributes the intensity of [ , ]Y t f  using the poster-
ior probability of the kth  source in point [ , ],t f  and is equivalent to 
the Wiener-style reconstruction described in the next section.

The rest of this article is presented primarily through the 
matrix-factorization perspective for brevity. However, many of the 
NMF extensions described below are also possible within the PLCA 
framework, often in a manner that is more mathematically intuitive 
than the matrix-factorization framework. These include, e.g., tensor 
decompositions [27], convolutive representations, the imposition of 
temporal constraints [28], joint recognition of mixed signals, and 
the imputation of missing data [29]. We refer you to the studies 
mentioned previously for additional details of these models.

UNIQUENESS, REGULARIZATION, AND SPARSITY
The solutions to (3) and (4) are not always unique. We have 
noted that the divergence ( | | )D Y AX  is biconvex in A  and .X
As a result, when both A  and X  are to be estimated, multiple 
solutions may be obtained that result in the same divergence. 

Specifically, for any ,Y RF T! #
+  if ( , )A XR RF K K T! !# #

+ +  is a 
solution that minimizes the divergence, then any matrix pair 
( , )A XR RF K K T! !# #

+ +
u u  such that AX AX=u u  is also a solution. 

For ,K F$  in particular, trivial solutions also become possible. 
For ,K F= Y AX=  can be made exact by simply setting A I=
and .X Y=  For ,K F2  infinite exact decompositions may be 
found, for instance, simply by setting the first F  columns of A
to the identity matrix; the remaining dictionary atoms become 
irrelevant (and can be set to anything at all) as an exact decom-
position can be obtained by setting their activations to zero.

Even if A  is specified and only X  must be estimated, the solu-
tion may not be unique although ( | | )D Y AX  is convex in .X  This 
happens particularly when A  is overcomplete, i.e., when .K F$
Any F  linearly independent columns of A  can potentially be used 
to represent an F-dimensional vector with zero error. We can 
choose F  linearly independent atoms from A RF K! #

+  in up to 

F
K` j ways, potentially giving us at least that many ways of decom-

posing any vector in Y  in terms of the atoms in .A  If we permit 
combinations of more than F  atoms, the number of minimum-
divergence decompositions of a vector in terms of A  can be much 
greater. The exact conditions for the uniqueness of the decomposi-
tions are studied in more detail in [30].

To reduce the ambiguity in the solution, it is customary to 
impose additional constraints on the decomposition, which is 
typically done through regularization terms that are added to 
the divergence to be minimized. Within the NMF framework, 
this modifies the optimization problem of (3) to

, ( | | ) ( ) , ,argminD 0 0A X Y AX X A X* *

,A X
* *Um= + (12)

where ( )XU  is a differentiable, scalar function of X  whose 
value decreases as the conformance of X  to the desired con-
straint increases, and m  is a positive weight that is given for the 
regularization term.

The introduction of a regularization term as given in (12) can 
nevertheless still result in trivial solutions. Two solutions, ( , )A X
and ( , ),A Xu u  will result in identical divergence values if A A1e= -u

and ,X Xe=u  i.e., ( | | ) ( | | ) .D DY AX Y AX= u u  Structurally, the two 
solutions are identical since they are merely scaled versions of 
one another. On the other hand, the regularization terms for the 
two need not be identical: ( ) ( ) .X X!U U u  As a result, the regular-
ization term on the right-hand side of (12) can be minimized by 
simply scaling X  by appropriate e  values and scaling A  up by 

,1e-  without actually modifying the decomposition obtained.
To avoid this problem, it becomes necessary to scale the atoms 

in A  to have a constant 2,  norm. Typically, this is done by normal-
izing every atom ai  in A  such that || | | 1ai 2 =  after every update.

Assuming that all atoms are normalized to unit 2,  norm, for 
the KL divergence, the update rules from (8) are modified to

( )
,

1
X X

A X

A AX
Y

! 7
Um+<

<

l
(13)

where ( )XUl  is the matrix derivative of ( )XU  with respect to 
.X  The update rule for A  remains unchanged, besides the 
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additional requirement that atoms must be normalized after 
every iteration. There exists also ways to take the normalization 
into account in the update, which guarantee that the updates 
and normalization together decrease the value of the cost func-
tion [3], [31].

One of the most common constraints is that of sparsity, e.g., 
[4], [32], and [33]. A vector x  is said to be sparse if the number 
of nonzero entries in it is fewer than the dimensionality of the 
vector itself, i.e., .Fx0 1  The fewer the nonzero elements, the 
sparser the vector is said to be. Sparsity is most commonly 
applied to the activations, i.e., the columns of the activation 
matrix .X  The sparsity constraint is most commonly included 
by employing the 1,  norm of the activation matrix as a regular-
izer, i.e., ( ) | | | | [ ] .x tX X

tk k1U = = //  This leads to the fol-
lowing update rule for the activations: 

.
1

X X
A

A AX
Y

! 7
m+<

<

(14)

Other constraints may be similarly applied by modifying the regu-
larization function ( )XU  to favor the type of solutions desired. 
Similarly, regularization functions may be applied on dictionary ,A
in which case the update rule of A  should be modified. In the con-
text of compositional models for audio, the types of regularizations 
applied on the dictionary include sparsity [32] and dissimilarity 
between learned atoms and generic speech templates [34].

It must be noted that despite the introduction of regulariza-
tion terms, both (3) and (12) are still typically biconvex, and no 
algorithm is guaranteed to reach the global minimum in prac-
tice. Different algorithms and initializations lead to different 
solutions, and any solution obtained will, at best, be a local opti-
mum. In practice, this can result in some degree of variation in 
the signal processing outcomes obtained through these 
decompositions.

The entire discussion in this section also applies to the 
PLCA decompositions, although the manner in which the 
regularization terms are applied within the PLCA framework is 
different. We refer the reader to [14], [27], and [35] for addi-
tional discussion of this topic.

SOURCE SEPARATION
Sound source separation refers to the problem of extracting a sin-
gle or several signals of interest from a mixture containing multi-
ple signals. This operation is central to many signal processing 
applications because the fundamental algorithms are typically 
built under the assumption that we operate on a clean target sig-
nal with minimal interference. Having the ability to remove 
unwanted components from a recording can allow us to perform 
subsequent operations that expect a clean input (e.g., speech rec-
ognition or pitch detection). We will predominantly focus on the 
case where we only observe a single-channel mixture and briefly 
discuss multichannel approaches later in the article.

The compositional model approach to the separation of sig-
nals from single-channel recordings addresses the problem in a 
rather simple manner. It assumes that any sound source can draw 

upon a characteristic set of atomic sounds to generate signals. 
Here, a source can refer to an actual sound source or to some 
other grouping of acoustic phenomena that should be jointly 
modeled, such as background noise or even a collection of sound 
classes that must be distinguished from a target class. A mixture 
of signals from distinct sources is composed of atoms from the 
individual sources. Hence, the separation of any particular com-
ponent signal from a mixture only requires the segregation of the 
contribution of the atoms from that source from the mixture.

Mathematically, we can explain this as follows. We use the 
NMF formulation in our explanation. Let matrix A s  represent 
the set of atoms employed by the sth  source. We will refer to it 
as a dictionary of atoms for that source. Any spectrogram Ys

from the sth  source is composed from the atoms in the diction-
ary A s  as .Y A Xs s s=  A mixed signal Ymix  combining signals 
from several sources is given by

.Y Y A Xs
s

s
s

smix = =/ / (15)

Equation (15) can be written more compactly as follows. Let 
A A A1 2g= 6 @ be a matrix composed by stacking the dictionaries 
for all the sources side by side. Let X X X1 2g= < <<6 @  be a matrix 
composed by stacking the activations for all the sources vertically. 
We can now express the mixed signal in compact form as

.Y AXmix =

The contribution of the sth  source to Ymix  is simply .Y A Xs s s=

In unsupervised source separation, both ,A X  are estimated from 
the observation ,Ymix  followed by a process that identifies which 
source each atom is predominantly associated with. In a super-
vised scenario for separation, the dictionaries, ,A s  for each of the 
sources are known a priori. We address the problem of creating 
these dictionaries in the next section. Thus, sA s 6  are known, and 
thereby so is .A X  can now be estimated through iterations of (8).

The activations X*
s  of source s  can be extracted from the 

estimated activation matrix X*  by selecting the rows corre-
sponding to the atoms from the sth  source. The estimated 
spectrogram for the sth  source is then simply computed as

.Y A X*
s s s=t (16)

An example of a source separation task using a dictionary repre-
senting isolated speech digits and a dictionary representing 
background noises is shown in Figure 5.

In practice, the decomposition will not be exact and we will 
only achieve approximate decomposition, i.e., ,Y AX*

mix .  and 
as a consequence, Ymix  is not fully explained by the decomposi-
tion. Hence, the separated signal spectrograms given by (16) 
will not explain the mixed signal completely.

To be able to account for all the energy in the input signal, 
we can use an alternative method to extract the contributions of 
the individual sources. Although the separated signals do not 
completely explain the mixed signal, we assume that they do 
nevertheless successfully characterize the relative proportions 
of the individual signals in the mixture. This leads to the follow-
ing estimate for the separated signals:
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,Y Y AX
A X*

*

s
s s

mix7=

where the last term is the ratio of the contribution of the sth
source to all the sources in each time–frequency point. This filter 
response is used by the well-known Wiener filter, and the recon-
struction is often referred to as the Wiener-style reconstruction. 

If we wish to listen to these separated components, we need 
to convert them back to the time domain. At this point, we only 
have magnitude spectrogram representations ,Y*

s  so we need to 
find a way to create some phase values to be able to invert them 
back to a waveform. Although one can use magnitude inversion 
techniques [36], [37], a simple approach that leads to a reason-
able quality is to use the phase of the original mixture. This 
leads to the following estimate for the separated complex spec-
trogram, which can be reverted to a time-domain signal:

,Y Y AX
A X*

*

s
s s

mix7=r r

where Y*
sr  and Ymixr  represent complex spectrograms.

Although we have assumed in this section that the dictionaries 
for all sources are known, this is not essential. The technique may 
also be employed if the dictionary for one of the sources is not 
known. In this case, in addition to estimating the activation matrices, 
we must also estimate the unknown dictionary. This is done simply 
by using the same iterative updates as for NMF but with (7) only act-
ing on the atoms reserved for modeling the unknown source.

DICTIONARY CREATION
The key to effective modeling and separation of sources is to have 
accurate dictionaries of atoms for each of the sources. The basic 

NMF (3) aims at estimating both the atoms and their activations 
from mixed data. Contrary to that, in supervised processing, 
source-specific dictionaries A s  are obtained in a training stage 
from a source-specific data set, and combined to form the whole 
dictionary. The dictionary is then kept fixed, and only the activa-
tions are estimated according to (4).

There are two main approaches for dictionary learning: the 
first attempts to learn dictionary atoms, which jointly describe the 
training data [38], [39], whereas the second approach uses sam-
ples from the training data itself as its dictionary atoms: a sam-
pling-based approach [4], [35]. Good dictionaries have several 
properties. They should be capable of accurately describing the 
source and generalize well to unseen data. They should be kept 
relatively small to reduce computational complexity. They should 
be discriminative, meaning that sources cannot be well repre-
sented using a dictionary of another source. These requirements 
can be at odds with each other, e.g., because small, accurate dic-
tionaries are often less discriminative. The various approaches for 
dictionary creation each have their strengths and weaknesses.

Let us denote the training data of source s  as ,D s  a matrix 
with as its columns the training samples. The prevailing technique 
for dictionary learning is to use unsupervised NMF: For each data 
set, s  we write D A Xs s s.  and estimate the parameters using the 
optimization methods described in the previous sections. The acti-
vations X s  are discarded, and the dictionaries A s  of each source 
are concatenated as explained previously. To illustrate this, let us 
consider the piano and speech sounds described by the magnitude 
spectrograms in the left plots of Figure 6(a) and (b). We use 
unsupervised NMF on each individual sound to obtain a 16-atom 
dictionary, visualized in the plots on the right-hand sides of 
Figure 6(a) and (b). We can observe that the dictionaries capture 

NMF
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[FIG5] An example of supervised separation of noisy speech. In the top left corner, we display the noisy spectrogram of the isolated 
word zero corrupted with babble noise. In (a), we display parts of the speech and noise exemplar dictionaries. In (b) the five atoms 
with the highest weight are shown. The bottom left spectrogram illustrates the underlying clean speech, whereas the bottom right 
spectrogram shows the clean speech reconstruction.
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the spectral character of each sound. The speech dictionary con-
tains some atoms that have the harmonic structure of vowels, and 
others that contain a lot of broadband energy at the high frequen-
cies, representing consonant sounds. 
For the piano dictionary, we obtain 
atoms that have a harmonic struc-
ture, each predominantly describing 
a different note.

An alternative dictionary-learning 
technique is based on clustering. In 
clustering, data samples are first 
grouped based on some measure of 
similarity, after which a representation of each group (cluster) 
becomes a dictionary atom. A popular technique is the k-means 
clustering approach [25]. Another alternative is given by diction-
ary-learning techniques employed in the field of sparse representa-
tions and compressed sensing [39], which aim at finding 
dictionaries that can sparsely represent a data set. Although most 
of these methods do not conform to the nonnegativity constraints 
of the compositional models we discuss in this article, at least one 
popular method, K-singular value decomposition (K-SVD), which 
has a nonnegative variant, has been used for the dictionary learn-
ing of audio signals [38].

The advantage of dictionary learning is that it typically yields 
dictionaries that generalize well to unobserved data. The NMF 

and sparsity-based methods both use the fact that atoms can 
linearly combine to model the training data, rather than having 
atoms that each individually need to model an observation as 

well as possible. This naturally leads 
to parts-based dictionaries, in 
which only parts of the spectra con-
tain energy. This in turn leads to 
small dictionaries and very sparse 
representations, which may also be 
more interpretable for some phe-
nomena. When the different 
sources are highly related, however, 

this may also be a disadvantage because a parts-based dictionary 
may no longer discriminative with respect to other dictionaries. 
The clustering approach typically yields dictionaries that are 
larger but more discriminative.

While dictionary learning is a powerful method to create 
small dictionaries, it can be difficult to train overcomplete dic-
tionaries, in which there are many more atoms than features. A 
large number of atoms would naturally increase the represen-
tation capability of the model, but learning overcomplete dic-
tionaries from data then requires additional constraints such 
as sparsity and careful tuning, as will be discussed in the next 
section. As an alternative to learning the dictionaries represent-
ing training data, dictionary atoms can also be sampled from 
the data. Given a training data set ,D s  the dictionary A s  is con-
structed as a subset of the columns of .D s

By far, the simplest method is random sampling, where the 
dictionary is formed by a random subset of columns of .D s

Interestingly, dictionaries obtained with this approach yield 
comparable and often superior results as more complex diction-
ary creation schemes [4]. The example in Figure 5 used ran-
domly sampled atoms representing isolated speech digits and 
background noise.

The sampling methods typically require little tuning and 
allow for the creation of large, overcomplete dictionaries. A disad-
vantage is that they may not generalize as well to unseen data, 
and that smaller dictionaries are often incapable of accurately 
modeling a source because they disregard the fact that atoms can 
linearly combine to model an observation.

An alternative approach to dictionary creation, which avoids 
the need for training data, is to create dictionaries by using 
prior knowledge of the structure of the signals. For example, in 
music transcription, harmonic atoms that represent different 
fundamental frequencies have been successfully used [8]. In the 
excitation-filter model [5] described later in this article, atoms 
can describe filter bank responses and excitations. This 
approach is only used in a small number of specialized applica-
tions because, while it yields small dictionaries that generalize 
well, they are typically not very discriminative.

THE NUMBER OF ATOMS IN THE DICTIONARY
Let us now more carefully consider the issue of the number of 
atoms in the dictionary. Dictionary atoms are assumed to 
represent basic atomic spectral structures that a sound source 
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[FIG6] Learning dictionaries from different sound classes. (a) An 
input magnitude spectrogram for a speech recording and the 
dictionary that was extracted from it. (b) A piano recording input 
and its corresponding dictionary. Note how both dictionaries 
capture salient spectral features from each sound.

DICTIONARY ATOMS ARE
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STRUCTURES THAT A SOUND
SOURCE MAY PRODUCE.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [135] MARCH 2015

may produce. A source may produce any number of distinct 
spectral structures. To accommodate all of them, the dictionary 
must ideally be large. When we attempt to learn large dictionar-
ies, however, we run into a mathematical restriction: K  becomes 
larger than F  and, as a result, in the absence of other restric-
tions, trivial solutions for A  can be obtained as explained earlier. 
Consequently, a learned dictionary with F  or more atoms will 
generally be trivial and carry little information about the actual 
signal itself. Even if the dictionary is 
not learned through the decomposi-
tion but specified through other 
means such as through random 
draws from the training data, we run 
into difficulties when we attempt to 
explain any spectral vector in terms 
of this dictionary. In the absence of 
other restrictions, the decomposition of an F 1#  spectral vector 
in terms of an F K#  dictionary is not unique when K F$  as 
explained earlier.

To overcome the nonuniqueness, additional constraints must 
be applied through appropriate regularization terms. The most 
common constraint that is applied is that of sparsity. Sparsity is 
most commonly applied to the activations, i.e., to the columns of 
the activation matrix .X  Intuitively, this is equivalent to the claim 
that although a source may draw from a large dictionary of atoms, 
any single spectral vector will only include a small number of 
these. Other commonly applied constraints are group sparsity, pro-
motes sparsity over groups of atoms [40], and temporal continuity, 
which promotes smooth temporal variation of activations [3].

The number of atoms in the dictionary has a great impact on 
the decomposition, even when the number of atoms is fewer than 

.F  Ideally, the number atoms should equal the number of latent 
compositional units within the signal. In certain cases, we might 
know exactly what this number might be (e.g., when learning a 
dictionary for a synthetic sound with a discrete number of states), 
but more often this information is not available and the number 
of atoms in the dictionary must be determined in other ways. A 
dictionary with too few elements will be unable to adequately 
explain all sounds from a given source, whereas one with too 
many elements may overgeneralize and explain unintended 
sounds that do not belong to that source as well, rendering it inef-
fective for most processing purposes. Although, in principle, the 
Bayesian information criterion can be employed to automatically 
obtain the optimal dictionary size, it is generally not as useful in 
this setting [41], and more sophisticated reasoning should be 
used. Sparsity can be used for automatic estimation of the number 
of atoms, e.g., by initializing the dictionary with a large number of 
atoms, enforcing sparsity on the activations, and reducing diction-
ary size by eliminating all atoms that exhibit consistently low acti-
vations [42]. Another approach is to make use of Bayesian 
formulations that allow for model selection in a natural way. For 
example, the Markov chain Monte Carlo methodology has been 
applied to estimate the size of a dictionary [41], [43].

In general, the trend is that larger dictionaries lead to better 
representations, and consequently superior signal processing, 

e.g., in terms of the separation quality [25], provided that they 
are appropriately acquired. The downside of larger dictionaries 
is, of course, increased computational complexity.

ANALYZING THE SEMANTICS OF SOUND
One of the fundamental goals in audio processing is the extrac-
tion of semantics from audio signals with ample applications 
such as music analysis, speech recognition, speaker identifica-

tion, multimedia archive access, 
and audio event detection. The 
source separation applications 
described in previous sections are 
often used as a preprocessing step 
for conventional machine-learning 
techniques used in audio analysis, 
such as Gaussian mixture models 

(GMMs) and hidden Markov models. The compositional model 
itself, however, is also a powerful technique to extract meaning 
from audio signals and mixtures of audio signals.

As an example, let us consider a music transcription task. 
The goal is to transcribe the score of a music piece, i.e., the pitch 
and duration of the sounds (notes) that are played. Even when 
considering a recording in which only a single instrument, such 
as a piano, is playing, this is a challenging task since multiple 
notes can be played at once. Moreover, although each note is 
characterized by a single fundamental frequency, their energy 
may span the complete harmonic spectrum. These two aspects 
make music transcription difficult for conventional methods 
based on sinusoidal modeling and STFT spectrum analysis, in 
which notes are associated with a single frequency band, or 
machine-learning methods, which cannot model overlapping 
notes. An example using NMF is shown in Figure 7.

Information extraction using the compositional model 
works by associating each atom in the dictionary with metain-
formation, e.g., class labels indicating notes. With the observa-
tion described as a linear combination of atoms, the activation 
of these atoms then serves directly as evidence for the presence 
of (multiple) associated class labels. Formally, let us define a 
label-matrix ,L  a binary matrix that associates each atom in A
with one or multiple class labels. The dimensions of L  are 

,Q K#  where Q  is the total number of classes. A nonzero entry 
in the qth row of L  indicates those atoms are associated with 
the label .q  A straightforward method for classification is to cal-
culate the label activations as

[ ],tg Lxt = (17)

with [ ] [ [ ], [ ], , [ ]]t x t x t x tx K1 2 f= <  the atom activations of an 
observation .yt  The entries of the Q-dimensional vector g  are 
an unscaled score proportional to the presence of class labels in 
the observation. An example of this procedure is given in 
Figure 8, where the dictionary atoms of the source separation 
example of Figure 5 are now associated with word labels.

The formulation (17) is closely related to several other tech-
niques such as k-nearest neighbor (k-NN) classification. When 

THE SAMPLING METHODS
TYPICALLY REQUIRE LITTLE
TUNING AND ALLOW FOR
THE CREATION OF LARGE, 

OVERCOMPLETE DICTIONARIES.
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[ ]tx  is maximally sparse (contains only one nonzero entry), 
(17) is in fact identical to nearest neighbor classification. For 
less sparse solutions, the difference is that the compositional 
model represents an observation as 
a combination of atoms, whereas 
k-NN represents an observation as a 
collection of k  atoms that each 
individually are close to .yt

In literature, many different types 
of metainformation exist. In the 
music transcription example of 
Figure 7, dictionary atoms were 
associated with notes. Even in the previous application, source 
separation, we used metainformation by labeling atoms with a 
source identity. In speaker identification [44], atoms are associ-
ated with speaker identities. In simple speech processing tasks, 
such as phone classification [45] or word recognition [46], the 
associated labels are simply the phones or words themselves.

In these examples, the dictionary A  is either constructed or 
sampled from training data, which makes it straightforward to 

associate labels to atoms. When the dictionary is learned from data, 
however, the appropriate mapping from atoms to labels is unclear. 
In this scenario, the mapping can be learned by first calculating 

atom activations on training data for 
which associated labels are known, 
followed by NMF or multiple regres-
sion. In [47], this approach was shown 
to improve the performance even 
with a sampled dictionary. Alterna-
tively, we can treat either gt  or the 
activations [ ]tx  as features for a con-
ventional supervised machine-learn-

ing technique such as GMMs [48] or a neural network [49].
Another powerful aspect of the compositional model is that 

dictionary atoms can be as easily associated with other kinds of 
information, e.g., audio. Consider, for example, a bandwidth exten-
sion task [9], [50] where the goal is to estimate a full-spectrum 
audio signal given a bandwidth-limited audio signal. This is a use-
ful operation to perform since, in many audio transmission cases, 
high-frequency information is removed to reduce the amount of 
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[FIG7] A music analysis example where a polyphonic mixture spectrogram (b) is decomposed into a set of note activations (d) using a 
dictionary consisting of spectra of piano notes (a). Each atom in the dictionary is associated with an MIDI note number. The reference 
note activations are given in (c). This example is an excerpt from Beethoven’s Moonlight Sonata. Even though the activations are rather 
noisy and do not exactly match the reference, the structure of the music is much more clearly visible in the activation plot than in the 
spectrogram of the mixture signal.
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information to transmit, which negatively impacts intelligibility 
and the perception of quality. To use the compositional model 
approach for this task, two dictionaries are first constructed: a 
bandwidth-limited dictionary A  and a full-bandwidth dictionary .L
The atoms in the dictionaries should be coupled, i.e., each atom in 
A  should represent a band-limited version of the corresponding 
atom in .L  This can be done through training on parallel corpora 
of full-bandwidth and band-limited signals, or by calculating L
from ,A  if the details of the band-limitation process are known 
and can be modeled computationally. We then estimate the atom 
activations [ ]tx  using the limited-bandwidth observation yt  and 
the limited-bandwidth dictionary .A  Finally, direct application of 
(17) serves as a replacement for the audio reconstruction [ ]tAx
and yields a full-bandwidth reconstruction. We illustrate this pro-
cess in Figure 9. Very similar principles underlay voice conversion, 
in which the associated audio is another speaker [51], [52].

Missing data imputation [29], [53], [54] is closely related to 
bandwidth extension in that the goal is to estimate a full-spec-
trum audio signal, but with the difference that the missing data 
are not a set of predetermined frequency bands but rather arbi-
trary located time–frequency entries of the spectrogram. Algo-
rithms for compositional models can be easily modified so that 
model parameters are estimated using only a part of the observed 
data (ignoring missing data) [29], [54], but the model output can 
be calculated also for entries corresponding to the missing data. 
Provided that there is a sufficient amount of observed (not miss-
ing) data, which will allow estimating the activations (and atoms 
in the case of unsupervised processing), reasonable estimates of 
missing values can be obtained because of dependencies between 

observed and missing values. In general, the quality of a model 
can be judged by its ability to make predictions, and the capability 
of compositional models to predict missing data also illustrates 
its effectiveness.

EXCITATION-FILTER MODEL AND
CHANNEL COMPENSATION
Creating dictionaries from training data, as presented earlier, 
yields accurate representations as long as the data from which the 
dictionaries are learned match the observed data. In many prac-
tical situations, this is not the case, and there is a need to adapt the 
learned dictionaries. Moreover, we often have knowledge about the 
types of sources to be modeled, e.g., that they are musical instru-
ments but do not have suitable training data to estimate the dic-
tionaries in a supervised manner.

Natural sound sources can be modeled as an excitation sig-
nal being filtered by an instrument body filter or vocal tract fil-
ter. These kinds of excitation- or source-filter models have been 
very effective, e.g., in speech coding (several codecs use it). In 
addition to modeling the properties of a body filter, the filter can 
also model the response from a source to a microphone and, 
therefore, also do channel compensation.

In the context of compositional models, excitation-filter models 
have been found useful in, e.g., music processing [55], [56], where 
both the excitations and filters contain different type of informa-
tion: excitations typically consists of harmonic spectra with differ-
ent fundamental frequency values and are therefore useful in pitch 
estimation, whereas the filter carries instrument-dependent infor-
mation that can be used for instrument recognition [5].
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[FIG8] By associating each dictionary atom from Figure 5 with a word label, the linear combination of speech atoms in Figure 5 serves 
directly as evidence for the underlying word classes. We observe that the word zero, underlying the noisy observation of Figure 5, 
does indeed obtain the highest score.
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Filtering, which corresponds to convolution in the time 
domain, can be expressed as a pointwise multiplication in the fre-
quency domain. In the context of compositional models, the fil-
tering can therefore be modeled in the magnitude spectral 
domain by pointwise multiplication of the magnitude spectrum 
of the excitation and the magnitude spectrum response of the fil-
ter. Assuming a fixed magnitude spectrum response of the filter 
that is denoted by the length-F  column vector ,h  the model for a 
filtered atom an  is given as

,a e hk k7= (18)

where ek  is the excitation of the kth  atom. Here, all the atoms 
share the same filter, and the model for an input spectrum yt  in 
frame t is

( ) [ ] .x ty a ht
k

K

k k
1
7=

=

t / (19)

When multiple sources are modeled, the atoms of each source 
can also have a separate filter [5]. The free parameters of an 
excitation-filter model can be estimated using the principles 
described in the previous sections—by applying iteratively 
update rules for each of the terms that decrease the divergence 
between an observed spectrogram and the model. Even for com-
plex models like this, deriving update rules is rather straightfor-
ward using the principles presented in [3], [57], and [58].

Excitations can often be parameterized quite compactly: e.g., in 
music signal processing, it is known that many sources are harmonic 
and many sources have a distinct set of fundamental frequency val-
ues that they can produce, each corresponding to a harmonic spec-
trum with different fundamental f0. Therefore, many excitation-filter 
models use a fixed set of harmonic excitations [5], [55], [58].

The filters, on the other hand, are specific to each instrument, 
recording environment, or microphone. To avoid the filter model-
ing harmonic structures when learned in an unsupervised man-
ner, smooth filters over frequency can be obtained, e.g., by using 
constraints on two adjacent filter values [56], or by modeling fil-
ters a sum of smooth elementary filter atoms [55]. 

Figure 10 gives an example of an atom being modeled using 
the excitation-filter model. The filter is modeled as the sum of 
spectrally smooth filter atoms to make the filter also spectrally 
smooth. The excitation is a flat harmonic spectrum. The mod-
eled atom can have a high frequency resolution, but it is param-
eterized only by the activations of few filter atoms and the pitch 
of the harmonic excitation. The model therefore offers an effi-
cient way to adapt generic harmonic atoms to represent any 
harmonic signals.

The filter part of the excitation-filter model is able to compen-
sate any linear channel effects. Therefore, the excitation-filter 
model can also be applied in a scenario in which the atoms in a 
dictionary that are acquired in specific conditions are viewed as 
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[FIG9] An example of bandwidth extension of the spoken sequence of digits “nine five oh.” (a) The log-scaled spectrogram of the full-
bandwidth signal. (b) The reconstruction of the top half obtained using only the 256 lowest frequency bands. For this reconstruction, an 
exemplar-based, speaker-dependent dictionary of 10,000 atoms was used, randomly extracted from a nonoverlapping data set. We can 
observe that although some fine detail is lost, the overall structure is captured very well.
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excitations, and a filter is learned to accommodate the dictionary 
to a new condition. 

AUDIO DEREVERBERATION
The excitation-filter model discussed in the previous section is 
only able to deal with filters whose length is smaller than one 
audio frame. Audio signals recorded in realistic indoor environ-
ments always contain some reverberation, which can have impulse 
response lengths much longer (typically hundreds of milliseconds 
to seconds) than frame lengths appropriate for audio compos-
itional models (tens of milliseconds). Furthermore, reverberation 
is a commonly used effect in music production since a moderate 
amount of reverberation is found to be perceptually pleasant.

However, too much reverberation decreases the intelligibil-
ity of audio and interferes with many audio analysis algorithms. 
Therefore, there is a need for dereverberation methods and ana-
lysis methods that are robust to reverberations.

Reverberation can be formulated as a compositional process as 
a convolution between the magnitude spectrogram | [ , ] |S f t  of a 
dry, unreverberant signal, and the magnitude response | [ , ] |H f t
of a filter in the magnitude spectrogram domain [59], [60]

| [ , ] | | [ , ] | | [ , ] | ,Y f t S f t H f
M

0
. x x-
x=

/ (20)

| [ , ] | | [ , ] | ,S f t H f t)/ (21)

where M  is the length of the filter (in frames). Blind estimation of 
dry signals and reverberation filters is not feasible since the model 
is ambiguous, and the roles of the source and the impulse response 
can end up swapped if other restrictions are not used. A suitable a 
priori information to regularize the model can be, e.g., sparseness 
[60] or a dictionary-based model [59]. Thus, in practice, we can 
model | ( , ) |S f t  using another compositional model. The model 
parameters can be estimated using the principles explained previ-
ously, i.e., by minimizing a divergence between an observed spec-
trogram and the model. Figure 11 gives an example of a 
reverberant speech spectrogram that is modeled as a convolution 
between a dry speech spectrogram and a spectrogram of filter.

NONNEGATIVE MATRIX DECONVOLUTIONS
The basic unsupervised NMF model in (1) is limited in the sense 
that a random reordering of the frames and columns of the 
observation matrix Y  does not affect the outcome of the result, 
i.e., the resulting X  and A  are just reordered versions of X  and 
A  that would have been obtained without reordering of .Y

Let us illustrate the limitations of the model by the example 
in Figure 12(a), where few frames of the spectrogram are lost, 
e.g., because of packet loss. Even though the sounds in the 
example exhibit clear temporal structure that could be used to 
impute the missing values, the regular NMF cannot be used for 
this purpose since there is no data from which to estimate the 
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[FIG10] Modeling atoms with the excitation-filter model. The 
filter is modeled as the sum of elementary filter atoms (upper 
left), weighted by activations (upper right). The filter is 
pointwise multiplied by a synthetic harmonic excitation (right) 
to get an atom (bottom).
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[FIG11] (a) The magnitude spectrogram of a reverberant signal can be approximated as (b) the convolution between the spectrograms 
of a dry signal and (c) the impulse response of the reverberation.
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activations that correspond to the 
missing frames.

As in the previous example, 
sounds typically have strong tempo-
ral and spectral dependencies. Tem-
poral context can be included in a compositional model by 
simply concatenating a number of adjacent observations to a 
long observation vector [4]. However, this increase of the 
dimensionality of the observations makes the inference of atoms 
more difficult—e.g., in the above example, we would need mul-
tiple atoms to represent all of the temporally shifted variants of 
the bird sounds.

The principles used to model reverberant spectrograms and 
estimate reverberation responses and dry signals can be extended 
to learn temporal and spectral patterns that span more than one 
frame or frequency bin, respectively. These nonnegative matrix 
deconvolution (NMD) [2], [33], [61] methods aim at modeling 
either temporal or spectral context.

When the model is used in the time domain, it represents a 
spectrogram as a sum of temporally shifted and scaled versions of 
atomic spectrogram segments .a ,n x  As before, the atom vectors 

are indexed by ,n  but now also with 
,x  which is the frame index of the 

short-time spectrogram segment. 
An illustration of the model is given 
in Figure 12. Mathematically, the 

model for an individual mixture spectrogram frame yt  is given as

[ ],x ty y a ,t t k

L

k

K

k
01

. x= -x

x==

t // (22)

where L  is the length of atomic spectrogram events. NMD gets its 
name from this formulation, as the contribution of a single atom 
is the convolution between the atom vectors and the activations.

Again, the parameters of the model can be obtained by min-
imizing a divergence between observations and the model while 
constraining the model parameters to nonnegative values. In an 
unsupervised scenario where both the atom vectors and their 
activations are estimated, care must be taken to limit the number 
of atoms and the length of events to avoid overfitting.

Convolution in frequency can be used to model pitch shifting 
of atoms. A limitation of the linear models, at least when a 
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[FIG12] An illustration of the NMD model. (a) The magnitude spectrogram of a signal consisting of three bird sounds (Friedmann’s lark) 
and background noises. The spectrogram is modeled using NMD to decompose the signal into bird sounds (component 1) and 
background noises (component 2). (b) The compositional model represents the spectrogram as the weighted and delayed sum of two 
short event spectrogram segments. (c) The curves show the weights for each delay. The impulses in the curves correspond to the start 
times of bird sound events in the mixture. The events have been correctly found even though some of the frames in the mixture signal 
are missing (black vertical bar). Since NMD models the mixture as a sum of segments longer than the missing-frame segment, the 
model parameters can be used to predict the missing frames.

REVERBERATION
CAN BE FORMULATED AS A
COMPOSITIONAL PROCESS.
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high-frequency resolution feature representation is used, is that a 
distinct atom is required for representing different pitches of a 
sound. However, both in speech and music signal processing, the 
sources to be modeled will be composed of spectra corresponding 
to different pitch values. If a logarithmic frequency resolution is 
used, a translation of a spectrum corresponds to a change in its 
fundamental frequency. Thus, by shifting the entries of a har-
monic atom we can model different fundamental frequencies. In 
the framework of compositional models, we typically not constrain 
ourselves to a single pitch shift, but define a set of allowed shifts 

,L  and estimate activation [ ]x t,k x  for each of the shifts in each 
frame. The model can be expressed as

[ ] .y a x t, , ,f t f k
k

K

k
1 L

=
!

x

x

x+

=

t // (23)

Above, a ,f kx+  is the spectrum of the kth  atom at frequency ,f
shifted by x  frequency bins.

Figure 13 illustrates this model by using a single component 
to represent multiple pitches. The parameters of the model can 
again be estimated using the aforementioned principles. The 
plots illustrate that the resulting activations nicely represent the 
activity of different pitches, which can be useful in music and 
speech processing.

MULTICHANNEL TENSOR FACTORIZATION
When multichannel audio recordings are to be processed, tensor 
factorization of their spectrograms [62] has been found to be 
effective in taking advantage of the spatial properties of sources. In 
this framework, a spectrogram representation of each of the chan-
nels is calculated similarly to one-channel representations. The 
two-dimensional-spectrogram matrices Yc  of each channel c  are 
concatenated to form a three-dimensional-tensor ,Y  which 
entries are indexed as ,Y , ,f t c  i.e., by frequency, time, and channel.

The basic tensor factorization model extends one-channel 
models by associating each atom with a channel gain ,g ,k c  which 
describes the amplitude of the kth  atom in the cth  channel.

The tensor factorization model is given as

[ ] .a g x tY , , , ,f t c f k
k

K

k c k
1

.
=

/ (24)

The model is equivalent to parallel factor analysis (PARAFAC) 
or canonical polyadic decompositions [63], with the exception 
that all the parameters of the model are constrained to non-
negative values. Figure 14 illustrates the model.

In comparison to one-channel modeling, the tensor model is 
most effective in scenarios where the amplitudes of individual 
sources are different in each channel. The level differences 
depend on the way the signals are produced. For example, in 
commercially produced music, especially in music produced 
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[FIG13] An illustration of NMD in frequency. (a) A spectrogram of a violin passage with a logarithmic frequency resolution has been 
decomposed into (c) a weighted sum of shifted versions of a single harmonic atom vector. (b) The activations for each pitch shift and 
each frame are illustrated. The model allows for representing notes of different pitches with a single harmonic spectrum that is shifted 
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between the 1960s and the 1980s, stereo panning was often 
used as a strong effect and sources may have significantly differ-
ent amplitudes. Similarly, if a signal is captured by multiple 
microphones that are far away from each other, sourcewise 
amplitude differences between microphones are large. When a 
signal is captured by a microphone array where the micro-
phones are close to each other, the amplitude differences 
between channels are typically small, but there are clear phase 
differences between the signals. In this scenario, techniques 
[10], [64] that model spectrogram magnitudes with the basic 
NMF model and phase differences between the channels with 
another model have shown potential.

DISCUSSION
Even though compositional models are a fairly new technique 
in the context of audio signal processing, as we have shown in 
this article, they are applicable to many fundamental audio pro-
cessing tasks such as source separation, classification, and dere-
verberation. The compositional nature of the model, the 
modeling of a spectrogram as a nonnegative sum of atoms 

having a fixed spectrum and a time-varying gain, is intuitive and 
offers clear interpretations of the model parameters. This makes 
it easy to analyze representations obtained with the model, both 
algorithmically and manually, e.g., by visualizing the models.

The linear nature of the model also offers other advantages. 
Even when more complex models are used that combine mul-
tiple extensions described earlier, the linearity makes it straight-
forward to derive optimization algorithms for the estimation of 
the model parameters. Unlike some methods conventionally 
used for modeling multiple co-occurring sources (e.g., factorial 
hidden Markov models), the computational complexity of com-
positional model algorithms scales linearly as the function of 
the number of sources.

Compositional models have also some limitations. In the con-
text of audio processing, they are mainly applied on magnitudes of 
time–frequency representations and require additional phase 
information for signal reconstruction. Therefore, the models have 
mainly applications in analyzing or processing existing signals, 
and their applicability in, e.g., sound synthesis is limited. Because 
of the linearity of the models, compositional models are also not 
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well suited for modeling nonlinear 
phenomena. Compositional models 
use iterative algorithms for finding 
the model parameters, and their 
computational complexity is quite 
significant when large dictionaries 
are used. Thus, the accuracy of the 
models may need to be compromised 
in the case of real-time implementations. The optimization prob-
lems involved with compositional models are often nonconvex, 
and therefore, different algorithms and their initializations lead to 
different solutions, which needs to be taken into account when 
results obtained with the models are examined. Even though 
designing algorithms for new compositional models is in general 
rather straightforward, the sensitivity of the algorithms to get 
stuck into a local minimum far away from the global optimum 
increases as the structure of the model becomes more complex, 
and the model order increases. To get more accurate solutions 
with complex models, carefully designed initializations or regular-
izations may be needed.

Compositional models provide a single framework that ena-
bles modeling of several phenomena present in real-world 
audio: additive sources, sources consisting of multiple sound 
objects, convolutive noise, and reverberation. Frameworks that 
combine these in a systematic and flexible way have already 
been presented [57], [58]. Moreover, the ability of the models to 
couple acoustic and other types of information enables audio 
analysis and recognition directly using the model. To be able to 
handle all of this within a single framework is a great advantage 
in comparison to methods that tackle just a specific task since it 
offers the potential of jointly modeling multiple effects that 
affect each other, such as reverberation and source mixing.
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T
he widespread use of multisensor technology and the emergence of big data 
sets have highlighted the limitations of standard flat-view matrix models and 
the necessity to move toward more versatile data analysis tools. We show that 
higher-order tensors (i.e., multiway arrays) enable such a fundamental para-
digm shift toward models that are essentially polynomial, the uniqueness of 

which, unlike the matrix methods, is guaranteed under very mild and natural conditions. 
Benefiting from the power of multilinear algebra as their mathematical backbone, data 
analysis techniques using tensor decompositions are shown to have great flexibility in the 
choice of constraints which match data properties and extract more general latent compo-
nents in the data than matrix-based methods.

A comprehensive introduction to tensor decompositions is provided from a signal process-
ing perspective, starting from the algebraic foundations, via basic canonical polyadic and Tucker 
models, to advanced cause-effect and multiview data analysis schemes. We show that tensor 
decompositions enable natural generalizations of some commonly used signal processing para-
digms, such as canonical correlation and subspace techniques, signal separation, linear regres-
sion, feature extraction, and classification. We also cover computational aspects and point out 
how ideas from compressed sensing (CS) and scientific computing may be used for addressing 
the otherwise unmanageable storage and manipulation issues associated with big data sets. The 
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concepts are supported by illustrative real-world case studies that 
highlight the benefits of the tensor framework as efficient and 
promising tools, inter alia, for modern signal processing, data ana-
lysis, and machine-learning applications; moreover, these benefits 
also extend to vector/matrix data through tensorization.

HISTORICAL NOTES
The roots of multiway analysis can be traced back to studies of 
homogeneous polynomials in the 19th century, with contributors 
including Gauss, Kronecker, Cayley, Weyl, and Hilbert. In the 
modern-day interpretation, these are fully symmetric tensors. 
Decompositions of nonsymmetric tensors have been studied since 
the early 20th century [1], whereas the benefits of using more 
than two matrices in factor analysis (FA) [2] have been apparent in 
several communities since the 1960s. The Tucker decomposition 
(TKD) for tensors was introduced in psychometrics [3], [4], while 
the canonical polyadic decomposition (CPD) was independently 
rediscovered and put into an application context under the names 
of canonical decomposition (CANDECOMP) in psychometrics [5] 
and parallel factor model (PARAFAC) in linguistics [6]. Tensors 
were subsequently adopted in diverse branches of data analysis 
such as chemometrics, the food industry, and social sciences [7], 
[8]. When it comes to signal processing, the early 1990s saw a 
considerable interest in higher-order statistics (HOS) [9], and it 
was soon realized that, for multivariate cases, HOS are effectively 
higher-order tensors; indeed, algebraic approaches to independent 
component analysis (ICA) using HOS [10]–[12] were inherently 
tensor based. Around 2000, it was realized that the TKD repre-
sents a multilinear singular value decomposition (MLSVD) [15]. 
Generalizing the matrix singular value decomposition (SVD), the 
workhorse of numerical linear algebra, the MLSVD spurred the 
interest in tensors in applied mathematics and scientific comput-
ing in very high dimensions [16]–[18]. In parallel, CPD was suc-
cessfully adopted as a tool for sensor array processing and 
deterministic signal separation in wireless communication [19], 
[20]. Subsequently, tensors have been used in audio, image and 
video processing, machine learning, and biomedical applications, 
to name but a few areas. The significant interest in tensors and 
their quickly emerging applications is reflected in books [7], [8], 

[12], [21]–[23] and tutorial papers [24]–[31] covering various 
aspects of multiway analysis.

FROM A MATRIX TO A TENSOR
Approaches to two-way (matrix) component analysis are well estab-
lished and include principal component analysis (PCA), ICA, non-
negative matrix factorization (NMF), and sparse component analysis 
(SCA) [12], [21], [32]. These techniques have become standard tools 
for, e.g., blind source separation (BSS), feature extraction, or classifi-
cation. On the other hand, large classes of data arising from modern 
heterogeneous sensor modalities have a multiway character and are, 
therefore, naturally represented by multiway arrays or tensors (see 
the section “Tensorization—Blessing of Dimensionality”).

Early multiway data analysis approaches reformatted the data 
tensor as a matrix and resorted to methods developed for classical 
two-way analysis. However, such a flattened view of the world and 
the rigid assumptions inherent in two-way analysis are not always a 
good match for multiway data. It is only through higher-order ten-
sor decomposition that we have the opportunity to develop sophis-
ticated models capturing multiple interactions and couplings 
instead of standard pairwise interactions. In other words, we can 
only discover hidden components within multiway data if the ana-
lysis tools account for the intrinsic multidimensional patterns pre-
sent, motivating the development of multilinear techniques.

In this article, we emphasize that tensor decompositions are 
not just matrix factorizations with additional subscripts, multi-
linear algebra is much more structurally rich than linear alge-
bra. For example, even basic notions such as rank have a more 
subtle meaning, the uniqueness conditions of higher-order ten-
sor decompositions are more relaxed and accommodating than 
those for matrices [33], [34], while matrices and tensors also 
have completely different geometric properties [22]. This boils 
down to matrices representing linear transformations and quad-
ratic forms, while tensors are connected with multilinear map-
pings and multivariate polynomials [31].

NOTATIONS AND CONVENTIONS
A tensor can be thought of as a multi-index numerical array, 
whereby the order of a tensor is the number of its modes or 

[TABLE 1] BASIC NOTATION.

, , aa,AA TENSOR, MATRIX, VECTOR, SCALAR

[ , , , ]a a aA R1 2 f= MATRIX A  WITH COLUMN VECTORS ar

(: , , , , )i i ia N2 3 f FIBER OF TENSOR A  OBTAINED BY FIXING ALL BUT ONE INDEX 

(: , : , , , )i iA N3 f MATRIX SLICE OF TENSOR A  OBTAINED BY FIXING ALL BUT TWO INDICES

(: , : , : , , , )i iA N4 f TENSOR SLICE OF A  OBTAINED BY FIXING SOME INDICES

( , , , )A I I IN1 2 f SUBTENSOR OF A  OBTAINED BY RESTRICTING INDICES TO BELONG TO SUBSETS
{ , , , }I1 2In nf3

A R( )n
I I I I I In n n N1 2 1 1! # g g- + MODE- n  MATRICIZATION OF TENSOR RA I I IN1 2! # # #g  WHOSE ENTRY AT ROW in AND

COLUMN ( ) ( )i I I I I i I i1 1n n N N N N1 2 1 1 1g g g- + + - +- + -  IS EQUAL TO ai i iN1 f2

Avec R I I IN N 1 1! g-^ h VECTORIZATION OF TENSOR RA I I IN1 2! # # #g  WITH THE ENTRY AT POSITION
[( ) ]i i I I I1k kk

N
1 1 2 12

g+ - -
=

/  EQUAL TO ai i i1 f N2

( , , , )diagD R1 2 fm m m= DIAGONAL MATRIX WITH drr rm=

( , , , )diagD N R1 2 fm m m= DIAGONAL TENSOR OF ORDER N  WITH drr r rm=g

,AT ,A 1- A@ TRANSPOSE, INVERSE, AND MOORE–PENROSE PSEUDOINVERSE
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dimensions; these may include space, time, frequency, trials, 
classes, and dictionaries. A real-valued tensor of order N  is denoted 
by RA I I IN1 2! # # #g  and its entries by .a , , ,i i iN1 2 f  Then, an N 1#
vector a  is considered a tensor of order one, and an N M#  matrix 
A  a tensor of order two. Subtensors are parts of the original data 
tensor, created when only a fixed subset of indices is used. Vector-
valued subtensors are called fibers, defined by fixing every index but 
one, and matrix-valued subtensors are called slices, obtained by fix-
ing all but two indices (see Table 1). The manipulation of tensors 
often requires their reformatting (reshaping); a particular case of 
reshaping tensors to matrices is termed matrix unfolding or matri-
cization (see Figure 1). Note that a mode-n  multiplication of a ten-
sor A  with a matrix B  amounts to the multiplication of all 
mode-n  vector fibers with ,B  and that, in linear algebra, the ten-
sor (or outer) product appears in the expression for a rank-1 mat-
rix: .ab a bT = %  Basic tensor notations are summarized in Table 1, 
various product rules used in this article are given in Table 2, while 
Figure 2 shows two particular ways to construct a tensor.

INTERPRETABLE COMPONENTS 
IN TWO-WAY DATA ANALYSIS
The aim of BSS, FA, and latent variable analysis is to decompose 
a data matrix X R I J! #  into the factor matrices [ ,A a1=

, , ]a a RR
I R

2 f ! #  and [ , , , ]B b b b RR
J R

1 2 f != #  as

X ADB E Ea bT
r

r

R

r r
T

1
m= + = +

=

/

,Ea br
r

R

r r
1

%m= +
=

/ (1)

where  ( , , , )D diag R1 2 fm m m=  is a scaling (normalizing) matrix, 
the columns of B  represent the unknown source signals (factors or 
latent variables depending on the tasks in hand), the columns of A
represent the associated mixing vectors (or factor loadings), while 
E  is noise due to an unmodeled data part or model error. In other 
words, model (1) assumes that the data matrix X  comprises hidden 
components br , , ,r R1 2 f=^ h that are mixed together in an 
unknown manner through coefficients ,A  or, equivalently, that data 
contain factors that have an associated loading for every data chan-
nel. Figure 3(a) depicts the model (1) as a dyadic decomposition, 
whereby the terms a b a br r r r

T=%  are rank-1 matrices.
The well-known indeterminacies intrinsic to this model are: 

1) arbitrary scaling of components and 2) permutation of the 
rank-1 terms. Another indeterminacy is related to the physical 
meaning of the factors: if the model in (1) is unconstrained, it 
admits infinitely many combinations of A  and .B  Standard 
matrix factorizations in linear algebra, such as QR-factorization, 
eigenvalue decomposition (EVD), and SVD, are only special 

[FIG1] MWCA for a third-order tensor, assuming that the components are (a) principal and orthogonal in the first mode,  
(b) nonnegative and sparse in the second mode, and (c) statistically independent in the third mode. 

[TABLE 2] DEFINITION OF PRODUCTS.

BC A n#= MODE-n PRODUCT OF RA I I IN1 2! # # #g AND B R J In n! #  YIELDS RC I I J I In n n N1 1 1! # # # # # #g g- +  WITH ENTRIES
c a bi i j i i i i i i i j ii

I

1n n n N n n n N n n
n

n

1 1 1 1 1 1=g g g g
=- + - +/ AND MATRIX REPRESENTATION C BA( ) ( )n n=

 ; , , ,B B BC A ( ) ( ) ( )N1 2 f= " , FULL MULTILINEAR PRODUCT, B B BC A ( ) ( ) ( )
N

N
1

1
2

2# # #g=

C A B= % TENSOR OR OUTER PRODUCT OF RA I I IN1 2! # # #g AND RB J J JM1 2! # # #g  YIELDS RC I I I J J JN M1 2 1 2! # # # # # # #g g  WITH 
ENTRIES c a bi i i j j j i i i j j jN N MM1 2 1 2 1 2 1 2=g g g g

a a aX ( ) ( ) ( )N1 2 g= % % % TENSOR OR OUTER PRODUCT OF VECTORS a R( )n In! ( , , )n N1 f=  YIELDS A RANK-1 TENSOR RX I I IN1 2! # # #g

WITH ENTRIES x a a a( ) ( ) ( )
i i i i i i

N1 2
N N1 2 1 2 f=f

C A B7= KRONECKER PRODUCT OF A R I I1 2! # AND B R J J1 2! #  YIELDS C R I J I J1 1 2 2! #  WITH ENTRIES
c a b( ) ,( )i J j i J j i i j j1 11 1 1 2 2 2 1 2 1 2=- + - +

C A B9= KHATRI–RAO PRODUCT OF [ , , ]a aA RR
I R

1 f != # AND [ , , ]b bB RR
J R

1 f != #  YIELDS C R IJ R! #  WITH COLUMNS
c a br r r7=
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cases of (1), and owe their uniqueness to hard and restrictive 
constraints such as triangularity and orthogonality. On the 
other hand, certain properties of the factors in (1) can be repre-
sented by appropriate constraints, making possible the unique 
estimation or extraction of such factors. These constraints 
include statistical independence, sparsity, nonnegativity, expo-
nential structure, uncorrelatedness, constant modulus, finite 
alphabet, smoothness, and unimodality. Indeed, the first four 
properties form the basis of ICA [12]–[14], SCA [32], NMF [21], 
and harmonic retrieval [35].

TENSORIZATION—BLESSING OF DIMENSIONALITY
While one-way (vectors) and two-way (matrices) algebraic struc-
tures were, respectively, introduced as natural representations 
for segments of scalar measurements and measurements on a 
grid, tensors were initially used purely for the mathematical 
benefits they provide in data analysis; for instance, it seemed 
natural to stack together excitation–emission spectroscopy 
matrices in chemometrics into a third-order tensor [7].

The procedure of creating a data tensor from lower-dimen-
sional original data is referred to as tensorization, and we propose 
the following taxonomy for tensor generation:

1) Rearrangement of lower-dimensional data structures:
Large-scale vectors or matrices are readily tensorized to 
higher-order tensors and can be compressed through tensor 
decompositions if they admit a low-rank tensor approxima-
tion; this principle facilitates big data analysis [23], [29], [30] 
[see Figure 2(a)]. For instance, a one-way exponential signal 

( )x k azk=  can be rearranged into a rank-1 Hankel matrix or 
a Hankel tensor [36]

( )
( )
( )

( )
( )
( )

( )
( )
( )

,H b b

x
x
x

x
x
x

x
x
x

a

0
1
2

1
2
3

2
3
4

h h h

g

g

g
= = %

J

L

K
K
K
KK

N

P

O
O
O
OO

(2)

where .[ , , , ]b z z1 T2 f=  Also, in sensor array processing, 
tensor structures naturally emerge when combining snap-
shots from identical subarrays [19].
2) Mathematical construction: Among many such examples, 
the Nth-order moments (cumulants) of a vector-valued random 
variable form an Nth-order tensor [9], while in second-order 
ICA, snapshots of data statistics (covariance matrices) are effect-
ively slices of a third-order tensor [12], [37]. Also, a (channel#
time) data matrix can be transformed into a (channel#time#
frequency) or (channel#time#scale) tensor via time-frequency 
or wavelet representations, a powerful procedure in multi-
channel electroencephalogram (EEG) analysis in brain sci-
ence [21], [38].
3) Experiment design: Multifaceted data can be naturally 
stacked into a tensor; for instance, in wireless communica-
tions the so-called signal diversity (temporal, spatial, spec-
tral, etc.) corresponds to the order of the tensor [20]. In the 
same spirit, the standard eigenfaces can be generalized to 
tensor faces by combining images with different illumina-
tions, poses, and expressions [39], while the common modes 
in EEG recordings across subjects, trials, and conditions are 
best analyzed when combined together into a tensor [28].
4) Natural tensor data: Some data sources are readily gen-
erated as tensors [e.g., RGB color images, videos, three-
dimensional (3-D) light field displays] [40]. Also, in scientific 
computing, we often need to evaluate a discretized multivariate 
function; this is a natural tensor, as illustrated in Figure 2(b) for 
a trivariate function ( , , )f x y z  [23], [29], [30].
The high dimensionality of the tensor format is therefore 

associated with blessings, which include the possibilities to obtain 
compact representations, the uniqueness of decompositions, the 
flexibility in the choice of constraints, and the generality of com-
ponents that can be identified.

CANONICAL POLYADIC DECOMPOSITION

DEFINITION
A polyadic decomposition (PD) represents an Nth-order tensor 

RX I I IN1 2! # # #g  as a linear combination of rank-1 tensors in 
the form

.b b bX ( ) ( ) ( )
r

r

R

r r r
N

1

1 2 gm=
=

% % %/ (3)

Equivalently, X  is expressed as a multilinear product with a 
diagonal core

B B BX D ( ) ( ) ( )
N

N
1

1
2

2# # #g=

,; , , ,B B BD ( ) ( ) ( )N1 2 f= " , (4)

where  ( , , , )diagD N R1 2 fm m m=  [cf. the matrix case in (1)]. 
Figure 3 illustrates these two interpretations for a third-order 
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[FIG2] Construction of tensors. (a) The tensorization of a vector 
or matrix into the so-called quantized format; in scientific 
computing, this facilitates supercompression of large-scale 
vectors or matrices. (b) The tensor is formed through the 
discretization of a trivariate function ( , , ) .f x y z
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tensor. The tensor rank is defined as the smallest value of R  for 
which (3) holds exactly; the minimum rank PD is called canoni-
cal PD (CPD) and is desired in signal separation. The term CPD
may also be considered as an abbreviation of CANDECOMP/
PARAFAC decomposition, see the “Historical Notes” section. The 
matrix/vector form of CPD can be obtained via the Khatri–Rao 
products (see Table 2) as

,X B D B B B B( )
( ) ( ) ( ) ( ) ( )

n
n N n n T1 1 19 9 9 9 9g g= + -^ h

( ) [ ] ,B B B dvec X ( ) ( ) ( )N N 1 19 9 9g= - (5)

where ., , ,[ ]d R
T

1 2 fm m m=

RANK
As mentioned earlier, the rank-related properties are very 
different for matrices and tensors. For instance, the number of 
complex-valued rank-1 terms needed to represent a higher-order 
tensor can be strictly smaller than the number of real-valued 
rank-1 terms [22], while the determination of tensor rank is in gen-
eral NP-hard [41]. Fortunately, in signal processing applications, 
rank estimation most often corresponds to determining the num-
ber of tensor components that can be retrieved with sufficient 
accuracy, and often there are only a few data components present. 
A pragmatic first assessment of the number of components may be 
through inspection of the multilinear singular value spectrum (see 
the “Tucker Decomposition” section), which indicates the size of 
the core tensor in the right-hand side of Figure 3(b). The existing 
techniques for rank estimation include the core consistency diag-
nostic (CORCONDIA) algorithm, which checks whether the core 
tensor is (approximately) diagonalizable [7], while a number of 
techniques operate by balancing the approximation error versus 
the number of degrees of freedom for a varying number of rank-1 
terms [42]–[44].

UNIQUENESS
Uniqueness conditions give theoretical bounds for exact tensor 
decompositions. A classical uniqueness condition is due to Kruskal 
[33], which states that for third-order tensors, the CPD is unique up 
to unavoidable scaling and permutation ambiguities, provided that 

,k k k R2 2B B B( ) ( ) ( )1 2 3 $+ + +  where the Kruskal rank kB  of a matrix 
B  is the maximum value ensuring that any subset of kB  columns is 
linearly independent. In sparse modeling, the term ( )k 1B +  is also 
known as the spark [32]. A generalization to Nth-order tensors is 
due to Sidiropoulos and Bro [45] and is given by

.k R N2 1
n

N

1
B( )n $ + -

=

/ (6)

More relaxed uniqueness conditions can be obtained when one 
factor matrix has full-column rank [46]–[48]; for a thorough 
study of the third-order case, we refer to [34]. This all shows that, 
compared to matrix decompositions, CPD is unique under more 
natural and relaxed conditions, which only require the compo-
nents to be sufficiently different and their number not unreason-
ably large. These conditions do not have a matrix counterpart and 
are at the heart of tensor-based signal separation.

COMPUTATION
Certain conditions, including Kruskal’s, enable explicit computa-
tion of the factor matrices in (3) using linear algebra [essentially, 
by solving sets of linear equations and computing (generalized) 
EVD] [6], [47], [49], [50]. The presence of noise in data means 
that CPD is rarely exact, and we need to fit a CPD model to the 
data by minimizing a suitable cost function. This is typically 
achieved by minimizing the Frobenius norm of the difference 
between the given data tensor and its CP approximation, or, alter-
natively, by least absolute error fitting when the noise is Lapla-
cian [51]. The theoretical Cramér–Rao lower bound and 

[FIG3] The analogy between (a) dyadic decompositions and (b) PDs; the Tucker format has a diagonal core. The uniqueness of these 
decompositions is a prerequisite for BSS and latent variable analysis.
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Cramér–Rao induced bound for the assessment of CPD perform-
ance were derived in [52] and [53].

Since the computation of CPD is intrinsically multilinear, we 
can arrive at the solution through a sequence of linear subprob-
lems as in the alternating least squares (ALS) framework, 
whereby the least squares (LS) cost function is optimized for 
one component matrix at a time, while keeping the other com-
ponent matrices fixed [6]. As seen from (5), such a conditional 
update scheme boils down to solving overdetermined sets of 
linear equations.

While the ALS is attractive for its simplicity and satisfactory 
performance for a few well-separated components and at suffi-
ciently high signal-to-noise ratio (SNR), it also inherits the 
problems of alternating algorithms and is not guaranteed to 
converge to a stationary point. This can be rectified by only 
updating the factor matrix for which the cost function has most 
decreased at a given step [54], but this results in an N-times 
increase in computational cost per iteration. The convergence 
of ALS is not yet completely understood—it is quasilinear close 
to the stationary point [55], while it becomes rather slow for ill-
conditioned cases; for more details, we refer to [56] and [57].

The conventional all-at-once algorithms for numerical optimi-
zation, such as nonlinear conjugate gradients, quasi-Newton, or 
nonlinear least squares (NLS) [58], [59], have been shown to often 
outperform ALS for ill-conditioned cases and to be typically more 
robust to overfactoring. However, these come at the cost of a much 
higher computational load per iteration. More sophisticated ver-
sions use the rank-1 structure of the terms within CPD to perform 
efficient computation and storage of the Jacobian and (approxi-
mate) Hessian; their complexity is on par with ALS while, for ill-
conditioned cases, the performance is often superior [60], [61].

An important difference between matrices and tensors is that 
the existence of a best rank-R  approximation of a tensor of rank 
greater than R  is not guaranteed [22], [62] since the set of ten-
sors whose rank is at most R  is not closed. As a result, the cost 
functions for computing factor matrices may only have an infi-
mum (instead of a minimum) so that their minimization will 
approach the boundary of that set without ever reaching the 
boundary point. This will cause two or more rank-1 terms go to 
infinity upon convergence of an algorithm; however, numerically, 
the diverging terms will almost completely cancel one another 
while the overall cost function will still decrease along the itera-
tions [63]. These diverging terms indicate an inappropriate data 
model: the mismatch between the CPD and the original data ten-
sor may arise because of an underestimated number of compo-
nents, not all tensor components having a rank-1 structure, or 
data being too noisy.

CONSTRAINTS
As mentioned earlier, under quite mild conditions, the CPD is 
unique by itself, without requiring additional constraints. However, 
to enhance the accuracy and robustness with respect to noise, prior 
knowledge of data properties (e.g., statistical independence, spars-
ity) may be incorporated into the constraints on factors so as to 
facilitate their physical interpretation, relax the uniqueness 

conditions, and even simplify computation [64]–[66]. Moreover, the 
orthogonality and nonnegativity constraints ensure the existence of 
the minimum of the optimization criterion used [63], [64], [67].

APPLICATIONS
The CPD has already been established as an advanced tool for sig-
nal separation in vastly diverse branches of signal processing and 
data analysis, such as in audio and speech processing, biomedical 
engineering, chemometrics, and machine learning [7], [24], [25], 
[28]. Note that algebraic ICA algorithms are effectively based on 
the CPD of a tensor of the statistics of recordings; the statistical 
independence of the sources is reflected in the diagonality of the 
core tensor in Figure 3, i.e., in vanishing cross-statistics [11], [12]. 
The CPD is also heavily used in exploratory data analysis, where 
the rank-1 terms capture the essential properties of dynamically 
complex signals [8]. Another example is in wireless communica-
tion, where the signals transmitted by different users correspond 
to rank-1 terms in the case of line-of-sight propagation [19]. Also, 
in harmonic retrieval and direction of arrival type applications, 
real or complex exponentials have a rank-1 structure, for which 
the use of CPD is natural [36], [65].

EXAMPLE 1
Consider a sensor array consisting of K  displaced but otherwise 
identical subarrays of I  sensors, with I KI=u  sensors in total. 
For R  narrowband sources in the far field, the baseband equiva-
lent model of the array output becomes ,X AS ET= +  where 
A C I R! #u  is the global array response, S C J R! #  contains J
snapshots of the sources, and E  is the noise. A single source 

)(R 1=  can be obtained from the best rank-1 approximation of 
the matrix ;X  however, for ,R 12  the decomposition of X  is 
not unique, and, hence, the separation of sources is not possible 
without incorporating additional information. The constraints 
on the sources that may yield a unique solution are, for instance, 
constant modulus and statistical independence [12], [68].

Consider a row-selection matrix J Ck
I I! # u  that extracts the 

rows of X  corresponding to the kth  subarray, , , .k K1 f=  For 
two identical subarrays, the generalized EVD of the matrices 
J X1  and J X2  corresponds to the well-known estimation of sig-
nal parameters via rotational invariance techniques (ESPRIT) 
[69]. For the case ,K 22  we shall consider J Xk  as slices of the 
tensor CX I J K! # #  (see the section “Tensorization—Blessing 
of Dimensionality”). It can be shown that the signal part of 
X  admits a CPD as in (3) and (4), with ,1R1 gm m= = =

 ( , , ),J A B b bdiag( ) ( ) ( )
k k kR

1
1
3 3
f=  and B S( )2 = [19], and the conse-

quent source separation under rather mild conditions—its 
uniqueness does not require constraints such as statistical inde-
pendence or constant modulus. Moreover, the decomposition is 
unique even in cases when the number of sources, ,R  exceeds the 
number of subarray sensors, ,I  or even the total number of sen-
sors, .Iu  Note that particular array geometries, such as linearly 
and uniformly displaced subarrays, can be converted into a con-
straint on CPD, yielding a further relaxation of the uniqueness 
conditions, reduced sensitivity to noise, and often faster 
computation [65].
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C

A

(I1 × I2 × I3)

(R1 × R2 × R3)

(R2 × l2)

(l3 × R3)

(I × R1)

BT=∼

[FIG4] The Tucker decompostion of a third-order tensor. The 
column spaces of ,A ,B  and C  represent the signal subspaces 
for the three modes. The core tensor G  is nondiagonal, 
accounting for the possibly complex interactions among tensor 
components.
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TUCKER DECOMPOSITION
Figure 4 illustrates the principle of TKD, which treats a tensor 

RX I I IN1 2! # # #g  as a multilinear transformation of a (typically 
dense but small) core tensor RG R R RN1 2! # # #g  by the factor 
matrices [ , , , ] ,B b b b R( ) ( ) ( ) ( )n n n

R
n I R

1 2 n
n nf != # , , ,n N1 2 f=  [3], 

[4], given by

,b b bgX ( ) ( ) ( )
r r r r r r

N

r

R

r

R

r

R
1 2

111
N N

N

N

1 2 1 2

2

2

1

1

% % %g g= g

===

^ h/// (7)

or equivalently

B B BX G ( ) ( ) ( )
N

N
1

1
2

2# # #g=

 ; , , , .B B BG ( ) ( ) ( )N1 2 f= " , (8)

Via the Kronecker products (see Table 2), TKD can be expressed 
in a matrix/vector form as

( )X B G B B B B( )
( )

( )
( ) ( ) ( ) ( )

n
n

n
N n n T1 1 17 7 7 7 7g g= + -

.( ) [ ] ( )B B Bvec vecX G( ) ( ) ( )N N 1 17 7 7g= -

Although Tucker initially used the orthogonality and ordering 
constraints on the core tensor and factor matrices [3], [4], we 
can also employ other meaningful constraints.

MULTILINEAR RANK
For a core tensor of minimal size, R1  is the column rank (the 
dimension of the subspace spanned by mode-1 fibers), R2  is the 
row rank (the dimension of the subspace spanned by mode-2 
fibers), and so on. A remarkable difference from matrices is that 
the values of , , ,R R RN1 2 f  can be different for .N 3$  The 
N-tuple ( , , , )R R RN1 2 f  is consequently called the multilinear 
rank of the tensor .X

LINKS BETWEEN CPD AND TUCKER DECOMPOSTION
TKD can be considered an expansion in rank-1 terms (polyadic but 
not necessary canonical), as shown in (7), while (4) represents 
CPD as a multilinear product of a core tensor and factor matrices 
(but the core is not necessary minimal); Table 3 shows various 
other connections. However, despite the obvious interchangeabil-
ity of notation, the CPD and TKD serve different purposes. In gen-
eral, the Tucker core cannot be diagonalized, while the number of 
CPD terms may not be bounded by the multilinear rank. Conse-
quently, in signal processing and data analysis, CPD is typically 
used for factorizing data into easy to interpret components (i.e., 
the rank-1 terms), while the goal of unconstrained TKD is most 
often to compress data into a tensor of smaller size (i.e., the core 
tensor) or to find the subspaces spanned by the fibers (i.e., the col-
umn spaces of the factor matrices).

UNIQUENESS
The unconstrained TKD is in general not unique, i.e., factor matri-
ces B( )n  are rotation invariant. However, physically, the subspaces 
defined by the factor matrices in TKD are unique, while the bases 
in these subspaces may be chosen arbitrarily—their choice is 
compensated for within the core tensor. This becomes clear upon 

realizing that any factor matrix in (8) can be postmultiplied by any 
nonsingular (rotation) matrix; in turn, this multiplies the core 
tensor by its inverse, i.e.,

 ; , , ,B B BX G ( ) ( ) ( )N1 2 f= " ,
 ,; , , ,B R B R B RH ( ) ( ) ( ) ( ) ( ) ( )N N1 1 2 2 f= " ,

, ; , , ,R R RH G ( ) ( ) ( )N1 21 1 1

f=
- - -" , (9)

where the matrices R( )n  are invertible.

MULTILINEAR SVD
Orthonormal bases in a constrained Tucker representation can 
be obtained via the SVD of the mode- n  matricized tensor 
X U V( )n n n n

TR=  (i.e., ,B U( )n
n= , , , ) .n N1 2 f=  Because of the 

orthonormality, the corresponding core tensor becomes

.U U US X T T
N N

T
1 1 2 2# # #g= (10)

[TABLE 3] DIFFERENT FORMS OF CPD AND TUCKER
REPRESENTATIONS OF A THIRD-ORDER TENSOR .RX I J K! # #

CPD  TKD

TENSOR REPRESENTATION, OUTER PRODUCTS

a b cX r r r r
r

R

1

% %m=
=

/ a b cgX r r r r r r
r

R

r

R

r

R

111
1 2 3 1 2 3

3

3

2

2

1

1

% %=
===

///

TENSOR REPRESENTATION, MULTILINEAR PRODUCTS

A B CX D 1 2 3# # #= A B CX G 1 2 3# # #=

MATRIX REPRESENTATIONS

( )X A D C B( )
T

1 9= ( )X A G C B( ) ( )
T

1 1 7=

( )X B D C A( )
T

2 9= ( )X B G C A( ) ( )
T

2 2 7=

( )X C D B A( )
T

3 9= ( )X C G B A( ) ( )
T

3 3 7=

VECTOR REPRESENTATION

( ) (C B A)dvec X 9 9= ( ) ( ) ( )vec vecC B A GX 7 7=

SCALAR REPRESENTATION

x a b cijk ir jr krr
r

R

1

m=
=

/ x g a b cijk ir jr krr r r
r

R

r

R

r

R

111
1 2 3 1 2 3

3

3

2

2

1

1

=
===

///

MATRIX SLICES (: , : , )kX Xk =

( , , , )c c cdiagX A Bk k k kR
T

1 2 f=
(: , : , )c rX A G Bk kr

r

R
T

1
33

3

3

=
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Then, the singular values of X( )n  are the Frobenius norms of 
the corresponding slices of the core tensor :S ( ) ,n r rn nR =

(: , : , , , : , , :) ,rS Fnf f  with slices in the same mode being 
mutually orthogonal, i.e., their inner products are zero. The col-
umns of Un  may thus be seen as multilinear singular vectors, 
while the norms of the slices of the core are multilinear singular 
values [15]. As in the matrix case, the multilinear singular values 
govern the multilinear rank, while the multilinear singular vectors 
allow, for each mode separately, an interpretation as in PCA [8].

LOW MULTILINEAR RANK APPROXIMATION
Analogous to PCA, a large-scale data tensor X  can be approxi-
mated by discarding the multilinear singular vectors and slices of 
the core tensor that correspond to small multilinear singular val-
ues, i.e., through truncated matrix SVDs. Low multilinear rank 
approximation is always well posed; however, the truncation is not 
necessarily optimal in the LS sense, although a good estimate can 
often be made as the approximation error corresponds to the 
degree of truncation. When it comes to finding the best approxi-
mation, the ALS-type algorithms exhibit similar advantages and 
drawbacks to those used for CPD [8], [70]. Optimization-based 
algorithms exploiting second-order information have also been 
proposed [71], [72].

CONSTRAINTS AND TUCKER-BASED 
MULTIWAY COMPONENT ANALYSIS
Besides orthogonality, constraints that may help to find unique 
basis vectors in a Tucker representation include statistical inde-
pendence, sparsity, smoothness, and nonnegativity [21], [73], [74]. 
Components of a data tensor seldom have the same properties in 
its modes, and for physically meaningful representation, different 
constraints may be required in different modes so as to match the 
properties of the data at hand. Figure 1 illustrates the concept of 
multiway component analysis (MWCA) and its flexibility in choos-
ing the modewise constraints; a Tucker representation of MWCA 
naturally accommodates such diversities in different modes.

OTHER APPLICATIONS
We have shown that TKD may be considered a multilinear 
extension of PCA [8]; it therefore generalizes signal subspace 
techniques, with applications including classification, feature 
extraction, and subspace-based harmonic retrieval [27], [39], 
[75], [76]. For instance, a low multilinear rank approximation 
achieved through TKD may yield a higher SNR than the SNR in 
the original raw data tensor, making TKD a very natural tool for 
compression and signal enhancement [7], [8], [26].

BLOCK TERM DECOMPOSITIONS
We have already shown that CPD is unique under quite mild con-
ditions. A further advantage of tensors over matrices is that it is 
even possible to relax the rank-1 constraint on the terms, thus 
opening completely new possibilities in, e.g., BSS. For clarity, we 
shall consider the third-order case, whereby, by replacing the 
rank-1 matrices b b b b( ) ( ) ( ) ( )

r r r r
T1 2 1 2% =  in (3) by low-rank matrices 

,A Br r
T  the tensor X  can be represented as [Figure 5(a)]

( ) .A B cX
r

R

r r
T

r
1

%=
=

/ (11)

Figure 5(b) shows that we can even use terms that are only 
required to have a low multilinear rank (see the “Tucker Decom-
position” section) to give

.A B CX Gr
r

R

r r r
1

1 2 3# # #=
=

/ (12)

These so-called block term decompositions (BTDs) in (11) and 
(12) admit the modeling of more complex signal components 
than CPD and are unique under more restrictive but still fairly 
natural conditions [77]–[79].

EXAMPLE 2 
To compare some standard and tensor approaches for the separa-
tion of short duration correlated sources, BSS was performed on 
five linear mixtures of the sources ( ) ( )sins t t61 r=  and 

( ) ( ) ( ),exp sins t t t10 202 r=  which were contaminated by white 
Gaussian noise, to give the mixtures ,X AS E R5 60!= + #  where 

( ) [ ( ), ( )]S sst t t T
1 2=  and A ! R5 2#  was a random matrix whose 

columns (mixing vectors) satisfy . ,a a 0 1T
1 2 = .a a 11 22 2= =

The 3-Hz sine wave did not complete a full period over the 60 sam-
ples so that the two sources had a correlation degree of 
(| |) / ( ) . .s s s s 0 35T

1 2 1 2 2 2 =  The tensor approaches, CPD, TKD, 
and BTD employed a third-order tensor X  of size 24 #  37 #  5 
generated from five Hankel matrices whose elements obey 

( , , )i j kX = ( , )X k i j 1+ -  (see the section “Tensorization—
Blessing of Dimensionality”). The average squared angular error 
(SAE) was used as the performance measure. Figure 6 shows the 
simulation results, illustrating the following.

■ PCA failed since the mixing vectors were not orthogonal 
and the source signals were correlated, both violating the 
assumptions for PCA.
■ The ICA [using the joint approximate diagonalization of 
eigenmatrices (JADE) algorithm [10]] failed because the sig-
nals were not statistically independent, as assumed in ICA.

A1

(I × J × K ) (I × L1) (L1 × J )

BT
AR

+ ··· +

(I × LR) (LR × J )

c1 cR(K ) (K )

1 BTR=~

(K × N1)

(I × J × K ) (I × L1)
(M1 × J )

+ ··· +

C1
CR

A1 AR

(LR × MR × NR)

BT
1

BTR=~ 1 R

(a)

(b)

[FIG5] BTDs find data components that are structurally more 
complex than the rank-1 terms in CPD. (a) Decomposition into 
terms with multilinear rank ( , , ) .L L 1r r  (b) Decomposition into 
terms with multilinear rank ( , , ) .L M Nr r r
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■ Low-rank tensor approximation via a rank-2 CPD was used 
to estimate A  as the third factor matrix, which was then 
inverted to yield the sources. The accuracy of CPD was com-
promised as the components of tensor X  cannot be repre-
sented by rank-1 terms.
■ Low multilinear rank approximation via TKD for the mul-
tilinear rank (4, 4, 2) was able to retrieve the column space of 
the mixing matrix but could not find the individual mixing 
vectors because of the nonuniqueness of TKD.
■ BTD in multilinear rank-(2, 2, 1) terms matched the data 
structure [78]; it is remarkable that the sources were recov-
ered using as few as six samples in the noise-free case.

HIGHER-ORDER COMPRESSED SENSING (HO-CS)
The aim of CS is to provide a faithful reconstruction of a signal of 
interest, even when the set of available measurements is (much) 
smaller than the size of the original signal [80]–[83]. Formally, we 
have available M  (compressive) data samples ,y RM!  which are 
assumed to be linear transformations of the original signal x R I!

( ) .M I1  In other words, y x,U=  where the sensing matrix 
RM I!U #  is usually random. Since the projections are of a lower 

dimension than the original data, the reconstruction is an ill-posed 
inverse problem whose solution requires knowledge of the physics 

of the problem converted into constraints. For example, a two-
dimensional image X R I I1 2! #  can be vectorized as a long vector 

( )Xx vec R I!= )(I I I1 2=  that admits sparse representation in a 
known dictionary B R I I! #  so that ,Bx g=  where the matrix B
may be a wavelet or discrete cosine transform dictionary. Then, 
faithful recovery of the original signal x  requires finding the spars-
est vector g  such that

,  ,W W B,y g g Kwith 0 # U= = (13)

where · 0  is the 0, -norm (number of nonzero entries) and 
.K I%

Since the 0, -norm minimization is not practical, alternative 
solutions involve iterative refinements of the estimates of vector g
using greedy algorithms such as the orthogonal matching pur-
suit (OMP) algorithm, or the 1, -norm minimization algorithms 
g 1 =^ gii

I

1= j/  [83]. Low coherence of the composite dictionary 
matrix W  is a prerequisite for a satisfactory recovery of g  (and 
hence )x —we need to choose U  and B  so that the correlation 
between the columns of W  is minimum [83].

When extending the CS framework to tensor data, we face 
two obstacles:

■ loss of information, such as spatial and contextual relation-
ships in data, when a tensor RX I I IN1 2! # # #g  is vectorized.
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[FIG6] The blind separation of the mixture of a pure sine wave and an exponentially modulated sine wave using PCA, ICA, CPD, TKD, 
and BTD. The sources s1  and s2  are correlated and of short duration; the symbols s1t  and s2t  denote the estimated sources. (a)–(c) 
Sources ( )ts1  and ( )ts2  and their estimates using  PCA, ICA, CPD, TKD, and BTD; (d) average squared angular errors (SAE) in estimation 
of the sources.
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■ data handling since the size of vectorized data and the 
associated dictionary B R I I! #  easily becomes prohibitively 
large (see the section “Large-Scale Data and the Curse of 
Dimensionality”), especially for tensors of high order.
Fortunately, tensor data are typically highly structured, a per-

fect match for compressive sampling, so that the CS framework 
relaxes data acquisition requirements, enables compact storage, 
and facilitates data completion (i.e., inpainting of missing samples 
due to a faulty sensor or unreliable measurement).

KRONECKER-CS FOR FIXED DICTIONARIES
In many applications, the dictionary and the sensing matrix 
admit a Kronecker structure (Kronecker-CS model), as illustrated 
in Figure 7(a) [84]. In this way, the global composite dictionary 
matrix becomes ,W W W W( ) ( ) ( )N N 1 17 7 7g= -  where each 
term W B( ) ( ) ( )n n nU=  has a reduced dimensionality since 
B R( )n I In n! #  and .R( )n M In n!U #  Denote M M M MN1 2g=  and 

,I I I IN1 2g=  then, since ,M In n# , , , ,n N1 2 f=  this reduces 
storage requirements by a factor of ( ) / ( ) .I M MIn n nR  The compu-
tation of Wg  is affordable since g  is sparse; however, computing 
W yT  is expensive but can be efficiently implemented through a 
sequence of products involving much smaller matrices W( )n  [85]. 
We refer to [84] for links between the coherence of factor matri-
ces W( )n  and the coherence of the global composite dictionary 
matrix .W

Figure 7 and Table 3 illustrate that the Kronecker-CS model 
is effectively a vectorized TKD with a sparse core. The tensor 
equivalent of the CS paradigm in (13) is therefore to find the 
sparsest core tensor G  such that

,W W WY G ( ) ( ) ( )
N

N
1

1
2

2# # #g, (14)

with ,KG 0 #  for a given set of modewise dictionaries B( )n  and 
sensing matrices ( )nU , , ,( ) .n N1 2 f=  Working with several 
small dictionary matrices, appearing in a Tucker representation, 
instead of a large global dictionary matrix, is an example of the 
use of tensor structure for efficient representation; see also the 
section “Large-Scale Data and the Curse of Dimensionality.”

A higher-order extension of the OMP algorithm, referred to as 
the Kronecker-OMP algorithm [85], requires K  iterations to find 
the K  nonzero entries of the core tensor .G  Additional computa-
tional advantages can be gained if it can be assumed that the K
nonzero entries belong to a small subtensor of ,G  as shown in 
Figure 7(b); such a structure is inherent to, e.g., hyperspectral 
imaging [85], [86] and 3-D astrophysical signals. More precisely, if 
the K LN=  nonzero entries are located within a subtensor of size 
( ),L L L# # #g  where ,L In%  then, by exploiting the block-
tensor structure, the so-called N-way block OMP algorithm 
(N-BOMP) requires at most NL  iterations, which is linear in N

[FIG7] CS with a Kronecker-structured dictionary. OMP can 
perform faster if the sparse entries belong to a small subtensor, 
up to permutation of the columns of ,W( )1 ,W( )2  and .W( )3

[FIG8] The multidimensional CS of a 3-D hyperspectral image 
using Tucker representation with a small sparse core in wavelet 
bases. (a) The Kronecker-CS of a 32-channel hyperspectral image. 
(b) The original hyperspectral image-RGB display. (c) The 
reconstruction (SP = 33%, PSNR = 35.51 dB)-RGB display.
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[85]. The Kronecker-CS model has been applied in magnetic res-
onance imaging, hyperspectral imaging, and in the inpainting of 
multiway data [86], [84].

APPROACHES WITHOUT FIXED DICTIONARIES
In Kronecker-CS, the modewise dictionaries B R( )n I In n! #  can be 
chosen so as best to represent the physical properties or prior 
knowledge about the data. They can also be learned from a large 
ensemble of data tensors, for instance, in an ALS-type fashion 
[86]. Instead of the total number of sparse entries in the core ten-
sor, the size of the core (i.e., the multilinear rank) may be used as 
a measure for sparsity so as to obtain a low-complexity represen-
tation from compressively sampled data [87], [88]. Alternatively, a 
CPD representation can be used instead of a Tucker representa-
tion. Indeed, early work in chemometrics involved excitation–
emission data for which part of the entries was unreliable because 
of scattering; the CPD of the data tensor is then computed by 
treating such entries as missing [7]. While CS variants of several 
CPD algorithms exist [59], [89], the oracle properties of tensor-
based models are still not as well understood as for their standard 
models; a notable exception is CPD with sparse factors [90].

EXAMPLE 3
Figure 8 shows an original 3-D (1,024#1,024#32) hyperspectral 
image ,X  which contains scene reflectance measured at 32 differ-
ent frequency channels, acquired by a low-noise Peltier-cooled dig-
ital camera in the wavelength range of 400–720 nm [91]. Within 
the Kronecker-CS setting, the tensor of compressive measure-
ments Y  was obtained by multiplying the frontal slices 
by random Gaussian sensing matrices R( ) M1 10241!U #  and 

R( ) M2 10242!U # ( , , )M M 1 0241 2 1  in the first and second mode, 
respectively, while R( )3 32 32!U #  was the identity matrix [see 
Figure 8(a)]. We used Daubechies wavelet factor matrices 
B B R( ) ( )1 2 1024 1024!= #  and ,B R( )3 32 32! #  and employed the 
N-way block tensor N-BOMP to recover the small sparse core tensor 
and, subsequently, reconstruct the original 3-D image, as shown 
in Figure 8(b). For the sampling ratio SP=33% ( )M M 5851 2= =

this gave the peak SNR (PSNR) of 35.51 dB, while taking 71 min 
for N 841iter =  iterations needed to detect the subtensor which 
contains the most significant entries. For the same quality of 
reconstruction (PSNR=35.51 dB), the more conventional 
Kronecker-OMP algorithm found 0.1% of the wavelet coefficients 
as significant, thus requiring . ( ,N K 0 001 1 024iter # #= =

, ) ,1 024 32 33 555# =  iterations and days of computation time.

LARGE-SCALE DATA AND THE CURSE OF DIMENSIONALITY
The sheer size of tensor data easily exceeds the memory or satu-
rates the processing capability of standard computers; it is, there-
fore, natural to ask ourselves how tensor decompositions can be 
computed if the tensor dimensions in all or some modes are large 
or, worse still, if the tensor order is high. The term curse of 
dimensionality, in a general sense, was introduced by Bellman to 
refer to various computational bottlenecks when dealing with 
high-dimensional settings. In the context of tensors, the curse of 
dimensionality refers to the fact that the number of elements of an 

Nth-order ( )I I I# # #g  tensor, ,IN  scales exponentially with 
the tensor order .N  For example, the number of values of a discre-
tized function in Figure 2(b) quickly becomes unmanageable in 
terms of both computations and storing as N  increases. In addi-
tion to their standard use (signal separation, enhancement, etc.), 
tensor decompositions may be elegantly employed in this context 
as efficient representation tools. The first question is, which type 
of tensor decomposition is appropriate?

EFFICIENT DATA HANDLING
If all computations are performed on a CP representation and not 
on the raw data tensor itself, then, instead of the original IN  raw 
data entries, the number of parameters in a CP representation 
reduces to ,NIR  which scales linearly in N  (see Table 4). This 
effectively bypasses the curse of dimensionality, while giving us the 
freedom to choose the rank, ,R  as a function of the desired accuracy 
[16]; on the other hand, the CP approximation may involve numer-
ical problems (see the section “Canonical Polyadic Decomposition”).

Compression is also inherent to TKD as it reduces the size of a 
given data tensor from the original IN  to ( ),NIR RN+  thus exhib-
iting an approximate compression ratio of .( / )I R N  We can then 
benefit from the well understood and reliable approximation by 
means of matrix SVD; however, this is only useful for low .N

TENSOR NETWORKS
A numerically reliable way to tackle curse of dimensionality is 
through a concept from scientific computing and quantum infor-
mation theory, termed tensor networks, which represents a tensor 
of a possibly very high order as a set of sparsely interconnected 
matrices and core tensors of low order (typically, order 3). These 
low-dimensional cores are interconnected via tensor contractions 
to provide a highly compressed representation of a data tensor. In 
addition, existing algorithms for the approximation of a given ten-
sor by a tensor network have good numerical properties, making it 

[TABLE 4] STORAGE COST OF TENSOR MODELS FOR AN
thN -ORDER TENSOR RX I I I! # # #g FOR WHICH THE STORAGE

REQUIREMENT FOR RAW DATA IS ( ) .IO N

1) CANONICAL POLYADIC DECOMPOSITION ( )NIRO

2) TUCKER ( )NIR RO N+

3) TENSOR TRAIN ( )NIRO 2

4) QUANTIZED TENSOR TRAIN ( ( ))logNR IO 2
2
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possible to control the error and achieve any desired accuracy of 
approximation. For example, tensor networks allow for the 
representation of a wide class of discretized multivariate functions 
even in cases where the number of function values is larger than 
the number of atoms in the universe [23], [29], [30].

Examples of tensor networks are the hierarchical TKD and ten-
sor trains (TTs) (see Figure 9) [17], [18]. The TTs are also known as 
matrix product states and have been used by physicists for more 
than two decades (see [92] and [93] and references therein). The 
PARATREE algorithm was developed in signal processing and fol-
lows a similar idea; it uses a polyadic representation of a data ten-
sor (in a possibly nonminimal number of terms), whose 
computation then requires only the matrix SVD [94].

For very large-scale data that exhibit a well-defined structure, 
an even more radical approach to achieve a parsimonious 
representation may be through the concept of quantized or quan-
tic tensor networks (QTNs) [29], [30]. For example, a huge vector 
x R I!  with I 2L=  elements can be quantized and tensorized 
into a ( )2 2 2# # #g  tensor X  of order ,L  as illustrated in Fig-
ure 2(a). If x  is an exponential signal, ( ) ,x k azk=  then X  is a 
symmetric rank-1 tensor that can be represented by two parame-
ters: the scaling factor a  and the generator z  (cf. (2) in the sec-
tion “Tensorization—Blessing of Dimensionality”). Nonsymmetric 
terms provide further opportunities, beyond the sum-of-exponen-
tial representation by symmetric low-rank tensors. Huge matrices 
and tensors may be dealt with in the same manner. For instance, 
an Nth-order tensor ,RX I IN1! # #g  with ,I qn

Ln=  can be quan-
tized in all modes simultaneously to yield a ( )q q q# # #g

quantized tensor of higher order. In QTN, q  is small, typically 
, , ,q 2 3 4=  e.g., the binary encoding q 2=^ h reshapes an Nth

-order tensor with ( )2 2 2L L LN1 2# # #g  elements into a tensor 
of order ( )L L LN1 2 g+ + +  with the same number of elements. 
The TT decomposition applied to quantized tensors is referred to 
as the quantized TT (QTT); variants for other tensor representa-
tions have also been derived [29], [30]. In scientific computing, 
such formats provide the so-called supercompression—a logarith-
mic reduction of storage requirements: .( ) ( ( ))logI N IO ON

q"

COMPUTATION OF THE 
DECOMPOSITION/REPRESENTATION
Now that we have addressed the possibilities for efficient tensor rep-
resentation, the question that needs to be answered is how these 
representations can be computed from the data in an efficient man-
ner. The first approach is to process the data in smaller blocks 
rather than in a batch manner [95]. In such a divide-and-conquer 
approach, different blocks may be processed in parallel, and their 
decompositions may be carefully recombined (see Figure 10) [95], 
[96]. In fact, we may even compute the decomposition through 
recursive updating as new data arrive [97]. Such recursive tech-
niques may be used for efficient computation and for tracking 
decompositions in the case of nonstationary data.

The second approach would be to employ CS ideas (see the sec-
tion “Higher-Order Compressed Sensing (HO-CS)”) to fit an alge-
braic model with a limited number of parameters to possibly large 
data. In addition to enabling data completion (interpolation of 
missing data), this also provides  a significant reduction of the cost 
of data acquisition, manipulation, and storage, breaking the curse 
of dimensionality being an extreme case.

While algorithms for this purpose are available both for low-
rank and low multilinear rank representation [59], [87], an even 
more drastic approach would be to directly adopt sampled fibers 
as the bases in a tensor representation. In the TKD setting, we 
would choose the columns of the factor matrices B( )n  as 
mode-n fibers of the tensor, which requires us to address the fol-
lowing two problems: 1) how to find fibers that allow us to accurately 
represent the tensor and 2) how to compute the corresponding core 
tensor at a low cost (i.e., with minimal access to the data). The mat-
rix counterpart of this problem (i.e., representation of a large 
matrix on the basis of a few columns and rows) is referred to as 
the pseudoskeleton approximation [98], where the optimal 
representation corresponds to the columns and rows that inter-
sect in the submatrix of maximal volume (maximal absolute 
value of the determinant). Finding the optimal submatrix is 
computationally hard, but quasioptimal submatrices may be 
found by heuristic so-called cross-approximation methods that 
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(1) (k)

(K )

(K )

(1)

(1)
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B(K )T
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[FIG10] Efficient computation of CPD and TKD, whereby tensor decompositions are computed in parallel for sampled blocks. These are 
then merged to obtain the global components A, B, and C,  and a core tensor .G
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only require a limited, partial exploration of the data matrix. 
Tucker variants of this approach have been derived in [99]–[101] 
and are illustrated in Figure 11, while a cross-approximation for 
the TT format has been derived in [102]. Following a somewhat 
different idea, a tensor generalization of the CUR decomposition 
of matrices samples fibers on the basis of statistics derived from 
the data [103].

MULTIWAY REGRESSION—HIGHER-ORDER PARTIAL LS

MULTIVARIATE REGRESSION
Regression refers to the modeling of one or more dependent 
variables (responses), ,Y  by a set of independent data (predic-
tors), .X  In the simplest case of conditional mean square esti-
mation (MSE), whereby ( | ),y E y x=t  the response y  is a linear 
combination of the elements of the vector of predictors ;x  for 
multivariate data, the multivariate linear regression (MLR) uses 
a matrix model, ,Y XP E= +  where P  is the matrix of coeffi-
cients (loadings) and E  is the residual matrix. The MLR solu-
tion gives ( )P X X X YT T1= -  and involves inversion of the 
moment matrix .X XT  A common technique to stabilize the 
inverse of the moment matrix X XT  is the principal component 
regression (PCR), which employs low-rank approximation of .X

MODELING STRUCTURE IN DATA—THE PARTIAL LS
Note that in stabilizing multivariate regression, PCR uses only 
information in the X variables, with no feedback from the Y varia-
bles. The idea behind the partial LS (PLS) method is to account for 
structure in data by assuming that the underlying system is gov-
erned by a small number, ,R  of specifically constructed latent vari-
ables, called scores, that are shared between the X  and Y variables; 
in estimating the number ,R  PLS compromises between fitting X
and predicting .Y  Figure 12 illustrates that the PLS procedure: 
1) uses eigenanalysis to perform contraction of the data matrix X
to the principal eigenvector score matrix [ , , ]T t tR1 f=  of rank R
and 2) ensures that the tr  components are maximally correlated 
with the ur  components in the approximation of the responses ,Y
this is achieved when the r\u s are scaled versions of the .s\tr  The 
Y-variables are then regressed on the matrix [ , , ] .U u uR1 f=

Therefore, PLS is a multivariate model with inferential ability that 
aims to find a representation of X  (or a part of )X  that is relevant 
for predicting ,Y  using the model

,X TP E Et pT
r

r

R

r
T

1
= + = +

=

/ (15)

.Y UQ F Fu qT
r

r

R

r
T

1
= + = +

=

/ (16)

The score vectors tr  provide an LS fit of X-data, while at the 
same time, the maximum correlation between t  and u  scores 
ensures a good predictive model for Y variables. The predicted 
responses Ynew  are then obtained from new data Xnew  and the 
loadings P  and .Q

In practice, the score vectors ,tr  are extracted sequentially, by a 
series of orthogonal projections followed by the deflation of X.  Since 
the rank of Y  is not necessarily decreased with each new ,tr  we may 

continue deflating until the rank of the X-block is exhausted so as to 
balance between prediction accuracy and model order.

The PLS concept can be generalized to tensors in the follow-
ing ways: 

1) Unfolding multiway data. For example, tensors ( )I J KX # #

and ( )I M NY # #  can be flattened into long matrices ( )X I JK#
and ( )Y I MN#  so as to admit matrix-PLS (see Figure 12). 
However, such flattening prior to standard bilinear PLS obscures 
the structure in multiway data and compromises the interpret-
ation of latent components.
2) Low-rank tensor approximation. The so-called N-PLS 
attempts to find score vectors having maximal covariance 
with response variables, under the constraints that tensors X
and Y  are decomposed as a sum of rank-1 tensors [104].
3) A BTD-type approximation. As in the higher-order PLS 
(HOPLS) model shown in Figure 13 [105], the use of block 
terms within HOPLS equips it with additional flexibility, 
together with a more physically meaningful analysis than 
unfolding-PLS and N-PLS. 
The principle of HOPLS can be formalized as a set of sequen-

tial approximate decompositions of the independent tensor 
RX I I IN1 2! # # #g  and the dependent tensor RY J J JM1 2! # # #g

(with )I J1 1=  so as to ensure maximum similarity (correlation) 
between the scores tr  and ur  within the matrices T  and ,U
based on

Entry of Maximum Absolute
Value Within a Fiber in the
Residual Tensor

C(3)

C(1)

C(2)

Two-Way CA:
PCA, ICA,
NMF, . . .

=~

[FIG11] The Tucker representation through fiber sampling and 
cross-approximation: the columns of factor matrices are sampled 
from the fibers of the original data tensor .X  Within MWCA, the 
selected fibers may be further processed using BSS algorithms.
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[FIG12] The basic PLS model performs joint sequential low-rank 
approximation of the matrix of predictors X  and the matrix of 
responses Y  so as to share (up to the scaling ambiguity) the 
latent components—columns of the score matrices T  and .U  The 
matrices P  and Q  are the loading matrices for predictors and 
responses, and E  and F  are the corresponding residual matrices.
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P PtX G( ) ( ) ( )
X
r

r

R

r r N r
N

1
1 2

1 1# # #g,
=

-/ (17)

.Q QuY G( ) ( ) ( )
Y
r

r

R

r r N r
M

1
1 2

1 1# # #g,
=

-/ (18)

A number of data-analytic problems can be reformulated as either 
regression or similarity analysis [analysis of variance (ANOVA),  
autoregressive moving average modeling (ARMA), linear discri-
minant analysis (LDA), and canonical correlation analysis (CCA)], 
so that both the matrix and tensor PLS solutions can be general-
ized across exploratory data analysis.

EXAMPLE 4
The predictive power of tensor-based PLS is illustrated on a real-
world example of the prediction of arm movement trajectory from 
the electrocorticogram (ECoG). Figure 14(a) illustrates the experi-
mental setup, whereby the 3-D arm movement of a monkey was 
captured by an optical motion capture system with reflective 
markers affixed to the left shoulder, elbow, wrist, and hand; for full 
details, see http://neurotycho.org. The predictors (32 ECoG chan-
nels) naturally build a fourth-order tensor X  (time#channel_no
#epoch_length# frequency) while the movement trajectories for 
the four markers (response) can be represented as a third-order 
tensor Y  (time#3D_marker_position#marker_no). The goal of 

the training stage is to identify the HOPLS parameters: 
, , ,P QG G( ) ( ) ( ) ( )r r

r
n

r
n

X Y  (see Figure 13). In the test stage, the move-
ment trajectories, ,Y*  for the new ECoG data, ,X*  are predicted 
through multilinear projections: 1) the new scores, ,t*

r  are found 
from new data, ,X*  and the existing model parameters: 

,, , ,P P PG( ) ( ) ( ) ( )
X
r

r r r
1 2 3  and 2) the predicted trajectory is calculated as 

.Q Q QtY G* ( ) * ( ) ( ) ( )r
r
R

r r r r1 1 2
1

3
2

4
3

Y # # # #.
=
/  In the simulations, 

standard PLS was applied in the same way to the unfolded tensors.
Figure 14(c) shows that although the standard PLS was able 

to predict the movement corresponding to each marker indi-
vidually, such a prediction is quite crude as the two-way PLS 
does not adequately account for mutual information among the 
four markers. The enhanced predictive performance of the BTD-
based HOPLS [the red line in Figure 14(c)] is therefore attrib-
uted to its ability to model interactions between complex latent 
components of both predictors and responses.

LINKED MULTIWAY COMPONENT ANALYSIS 
AND TENSOR DATA FUSION
Data fusion concerns the joint analysis of an ensemble of data 
sets, such as multiple views of a particular phenomenon, where 
some parts of the scene may be visible in only one or a few data 
sets. Examples include the fusion of visual and thermal images 
in low-visibility conditions and the analysis of human electro-
physiological signals in response to a certain stimulus but from 
different subjects and trials; these are naturally analyzed 
together by means of matrix/tensor factorizations. The coupled 
nature of the analysis of such multiple data sets ensures that we 
are able to account for the common factors across the data sets 
and, at the same time, to guarantee that the individual compo-
nents are not shared (e.g., processes that are independent of exci-
tations or stimuli/tasks).

The linked multiway component analysis (LMWCA) [106], 
shown in Figure 15, performs such a decomposition into shared 
and individual factors and is formulated as a set of approxi-
mate joint TKD of a set of data tensors ,RX( )k I I IN1 2! # # #g

( , , , )k K1 2 f=

,B B BX G( ) ( ) ( , ) ( , ) ( , )k k k k
N

N k
1

1
2

2# # #g, (19)

where each factor matrix [ , ]B B B R( , ) ( ) ( , )n k
C
n

I
n k I Rn n!= #  has 

1) components B R( )
C
n I Cn n! #  (with )C R0 n n# #  that are common 

(i.e., maximally correlated) to all tensors and 2) components 
B R( , ) ( )
I
n k I R Cn n n! # -  that are tensor specific. The objective is to esti-

mate the common components ,B( )
C
n  the individual components 

,B( , )
I
n k  and, via the core tensors ,G( )k  their mutual interactions. As 

in MWCA (see the section “Tucker Decomposition”), constraints 
may be imposed to match data properties [73], [76]. This enables a 
more general and flexible framework than group ICA and independ-
ent vector analysis, which also performs linked analysis of multiple 
data sets but assume that 1) there exist only common components 
and 2) the corresponding latent variables are statistically independ-
ent [107], [108]. Both are quite stringent and limiting assumptions. 
As an alternative to TKD, coupled tensor decompositions may be of 
a polyadic or even block term type [89], [109].

[FIG13] The principle of HOPLS for third-order tensors. The core 
tensors GX  and GY  are block-diagonal. The BTD-type structure 
allows for the modeling of general components that are highly 
correlated in the first mode.
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EXAMPLE 5
We employed LWCA for classification based on common and dis-
tinct features of natural objects from the ETH-80 database (http://
www.d2.mpi-inf.mpg.de/Data sets/ETH80) whereby the discrimi-
nation among objects was performed using only the common fea-
tures. This data set consists of 3,280 images in eight categories, 
each containing ten objects with 41 views per object. For each cat-
egory, the training data were organized in two distinct fourth-
order ( )I128 128 3 4# # #  tensors, where . ,I p10 41 0 54 # #=   
where p  denotes the fraction of training data. LMWCA was applied 
to these two tensors to find the common and individual features, 
with the number of common features set to 80% of .I4  In this 
way, eight sets of common features were obtained for each cat-
egory. The test sample label was assigned to the category whose 
common features matched the new sample best (evaluated by 
canonical correlations) [110]. Figure 16 compares LMWCA with 
the standard K-nearest neighbors (K-NNs) and LDA classifiers 
(using 50 principal components as features), all averaged over 50 
Monte Carlo runs. The enhanced classification results for LMWCA 

are attributed to the fact that the classification makes use of only 
the common components and is not hindered by components that 
are not shared across objects or views.

SOFTWARE
The currently available software resources for tensor decompo-
sitions include: 

■ The tensor toolbox, a versatile framework for basic opera-
tions on sparse and dense tensors, including CPD and Tucker 
formats [111].
■ The TDALAB and TENSORBOX, which provide a user-
friendly interface and advanced algorithms for CPD, nonneg-
ative TKD, and MWCA [112], [113].
■ The Tensorlab toolbox builds upon the complex optimiza-
tion framework and offers numerical algorithms for comput-
ing the CPD, BTD, and TKD; the toolbox includes a library of 
constraints (e.g., nonnegativity and orthogonality) and the 
possibility to combine and jointly factorize dense, sparse, and 
incomplete tensors [89].
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[FIG14] The prediction of arm movement from brain electrical responses. (a) The experiment setup. (b) The construction of the 
data and response tensors and training. (c) The new data tensor (bottom) and the predicted 3-D arm movement trajectories 

,,(X Y Z  coordinates) obtained by tensor-based HOPLS and standard matrix-based PLS (top).
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[FIG16] The classification of color objects belonging to different 
categories. By using only common features, LMWCA achieves a 
high classification rate, even when the training set is small. (a) 
Classification based on LMWCA. (b) Performance comparison.

[FIG15] Coupled TKD for LMWCA. The data tensors have
both shared and individual components. Constraints such  
as orthogonality, statistical independence, sparsity, and 
nonnegativity may be imposed where appropriate.
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■ The N-way toolbox, which includes (constrained) CPD, 
TKD, and PLS in the context of chemometrics applications 
[114]; many of these methods can handle constraints (e.g., 
nonnegativity and orthogonality) and missing elements.
■ The TT toolbox, the Hierarchical Tucker toolbox, and the 
Tensor Calculus library provide tensor tools for scientific 
computing [115]–[117].
■ Code developed for multiway analysis is also available from 
the Three-Mode Company [118].

CONCLUSIONS AND FUTURE DIRECTIONS
We live in a world overwhelmed by data, from multiple pictures 
of Big Ben on various social Web links to terabytes of data in 
multiview medical imaging, while we may also need to repeat 
the scientific experiments many times to obtain the ground 
truth. Each snapshot gives us a somewhat incomplete view of 
the same object and involves different angles, illumination, 
lighting conditions, facial expressions, and noise.

We have shown that tensor decompositions are a perfect 
match for exploratory analysis of such multifaceted data sets 
and have illustrated their applications in multisensor and multi-
modal signal processing. Our emphasis has been to show that 
tensor decompositions and multilinear algebra open up com-
pletely new possibilities for component analysis, as compared 
with the flat view of standard two-way methods.

Unlike matrices, tensors are multiway arrays of data samples 
whose representations are typically overdetermined (fewer 
parameters in the decomposition than the number of data 
entries). This gives us an enormous flexibility in finding hidden 
components in data and the ability to enhance both robustness 
to noise and tolerance to missing data samples and faulty 

sensors. We have also discussed multilinear variants of several 
standard signal processing tools such as multilinear SVD, ICA, 
NMF, and PLS and have shown that tensor methods can operate 
in a deterministic way on signals of very short duration.

At present, the uniqueness conditions of standard tensor 
models are relatively well understood and efficient computation 
algorithms do exist. However, for future applications, several 
challenging problems remain to be addressed in more depth.

■ A whole new area emerges when several decompositions 
that operate on different data sets are coupled, as in multi-
view data where some details of interest are visible in, e.g., 
only one mode. Such techniques need theoretical support in 
terms of existence, uniqueness, and numerical properties. 
■ As the complexity of advanced models increases, their 
computation requires efficient iterative algorithms, extend-
ing beyond the ALS class. 
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■ The estimation of the number of components in data and 
the assessment of their dimensionality would benefit from 
automation, especially in the presence of noise and outliers. 
■ Both new theory and algorithms are needed to further 
extend the flexibility of tensor models, e.g., for the con-
straints to be combined in many ways and tailored to the par-
ticular signal properties in different modes. 
■ Work on efficient techniques for saving and/or fast process-
ing of ultra-large-scale tensors is urgent; these now routinely 
occupy terabytes, and will soon require petabytes of memory. 
■ Tools for rigorous performance analysis and rule of thumb 
performance bounds need to be further developed across ten-
sor decomposition models. 
■ Our discussion has been limited to tensor models in which 
all entries take values independently of one another. Probabil-
istic versions of tensor decompositions incorporate prior 
knowledge about complex variable interaction, various data 
alphabets, or noise distributions, and so promise to model 
data more accurately and efficiently [119], [120]. 
■ The future computational, visualization, and interpret-
ation tools will be important next steps in supporting the dif-
ferent communities working on large-scale and big data 
analysis problems.
It is fitting to conclude with a quote from the French novelist 

Marcel Proust: “The voyage of discovery is not in seeking new 
landscapes but in having new eyes.” We hope to have helped to 
bring to the eyes of the signal processing community the multi-
disciplinary developments in tensor decompositions and to have 
shared our enthusiasm about tensors as powerful tools to dis-
cover new landscapes.  
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Cramér–Rao Bound Analog of Bayes’ Rule

T
he estimation of multiple pa-
rameters is a common task in 
signal processing. The Cra-
mér–Rao bound (CRB) sets a 
statistical lower limit on the re-

sulting errors when estimating parameters 
from a set of random observations. It can be 
understood as a fundamental measure of 
parameter uncertainty [1], [2]. As a general 
example, suppose i  denotes the vector of 
sought parameters and that the random ob-
servation model can be written as 

,y x w= +i (1)

where xi  is a function or signal parame-
terized by i  and w  is a zero-mean Gauss-
ian noise vector. Then the CRB for i  has 
the following notable properties: 

1) For a fixed ,i  the CRB for i  decreas-
es as the dimension of y  increases. 
2) For a fixed ,y  if additional parameters 
iu  are estimated, then the CRB for i
increases as the dimension of iu  increases. 
3) If adding a set of observations yu
requires estimating additional param-
eters ,iu  then the CRB for i  decreas-
es as the dimension of yu  increases, 
provided the dimension of iu  does not 
exceed that of yu  [3]. This property 
implies both 1) and 2) above. 
4) Among all possible distributions of w
with a fixed covariance matrix, the CRB 
for i  attains its maximum when w  is 
Gaussian, i.e., the Gaussian scenario is 
the “worst case” for estimating i
[4]–[6].
In this lecture note, we show a general 

property of the CRB that quantifies the 
interdependencies between the parameters 
in .i  The presented result is valid for more 

general models than (1) and also general-
izes the result in [7] to vector parameters. 
It will be illustrated via two examples. 

RELEVANCE
In probability theory, the chain rule and 
Bayes’ rule are useful tools to analyze the 
statistical interdependence between multi-
ple random variables and to derive tractable 
expressions for their distributions. In this 
lecture note, we provide analogs of the 
chain rule and Bayes’ rule for the CRB 
associated with multiple parameters. The 
results are particularly useful when esti-
mating parameters of interest in the pres-
ence of nuisance parameters. 

PREREQUISITIES
The reader needs basic knowledge about 
linear algebra, elementary probability the-
ory, and statistical signal processing. 

PRELIMINARIES
We will consider a general scenario in which 
we observe an n 1#  random vector .y  Its 
probability density function (pdf) ;p y i^ h is 
parameterized by a k 1#  deterministic vec-
tor .i  The goal is to estimate ,i  or subvec-
tors of ,i  given .y

Let ;l pln y_i i^ ^h h denote the log-
likelihood function, and let it  be any unbi-
ased estimator. Then the mean square error 
(MSE) matrix E[( ) ( ) ]P *_ i i i i- -i

t tt  is 
bounded from below by the inverse of 
the Fisher information matrix EJ _-i

,l22 ii ^ h6 @  where 22i  denotes the second-
order differential or Laplacian operator with 
respect to .i  That is, ,P J 1*i i

-
t  assuming 

from hereon that Ji  is nonsingular. This is 
the Cramér–Rao inequality [2], [8], [9]. 

The determinant of the MSE matrix, 
| | ,Pit  is a scalar measure of the error 
magnitude. For unbiased estimators, | |Pit
equals the “generalized variance” of errors 

[10]. By defining ,CRB J 1_i i
-^ h  the 

generalized error variance is bounded by 

.CRBP $ iit ^ h

In the following, we are interested in 
subvectors or elements of .i  Letting i =
[ ] ,a b< <<  we can write the Fisher informa-
tion matrix in block form, 

, ,
, ,

.

l l
l l

EJ

J J
J J

2

2

2 2 2

2 2 2

a b a b

a b a b
=-

=

i
b a b

a a b

ba b

a ab

^

^ ^

^h

h h

h

=

>

G

H

(2)

MAIN RESULT
Let a  and b be two random vectors. Two 
useful rules in probability theory are the 
chain rule 

( ) ( | ) ( )p p p,a b a b b= (3)

and Bayes’ rule 

( ) ( | )
( )

( ) .p p
p

p |a a
b

a b= b (4)

Now consider two parameter vectors 
a  and .b  When both are unknown, their 
joint CRB bound is given by 

, .CRB
J
J

J
J

1

a b =
a

ba

ab

b

-

^ h = G (5)

The bound for a  with known b  is simply 

| ,CRB J 1a b = a
-^ h (6)

and the bound for a  with unknown b  is 

J .CRB J J J1 1
a = -a ab b ba

- -^ ^h h (7)

[Equation (7) follows by evaluating the 
inverse in (5) and extracting the upper-
left block corresponding to .a ] Equations 
(6) and (7) are the respective CRB analogs 
of conditional and marginal distributions 
for random variables. 
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Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
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Data Analysis 
Processing, analysis, and visualization of big data 
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computing 
Signal and information processing for the Internet of 
Things 
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Emerging topics and applications 
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By applying the Schur determinant 
formula [8], [11] 

,

J
J

J
J J J J J J

J J J J J

1

1

= -

= -

a

ba

ab

b
a b ba a ab

b a ab b ba

-

-

= G

along with | | | | ,J J1 1=- -  to (5)–(7), we 
can now state the CRB analogs of the 
chain rule (3), 

, |CRB CRB CRBa b a b b=^ ^ ^h h h (8)

and of Bayes’ rule (4), 

|
| .CRB

CRB
CRB

CRBa
b a

b
a b=^

^

^
^h

h

h
h (9)

The results are, of course, symmetric, i.e., 
one can interchange a  and .b

From (8) we see that the joint error 
bound for a  and b  equals the error bound 
for ,a  when b  is known, multiplied by the 
error bound for .b  More interestingly, (9) 
tells us that the error bound for a  is equal 
to the bound for a  when b  is known, 
multiplied by a factor, viz. /CRB b^ h

| ,1CRB $b a^ h  that quantifies the influ-
ence of b  on one’s ability to estimate .a

REMARK 1
The rules can be applied to cases with any 
number of additional parameters, besides 
a  and .b  Consider, for instance, the case 
of ,a ,b  and ,c  where c  is an unknown 
nuisance parameter. Then applying the 
chain rule twice yields 

, , | ,

|

| ,

| ,

CRB CRB

CRB CRB

CRB

CRB CRB

a b c c a b

a b b

c a b

b a a

=

=

^

^

^

^

^

^

^

h

h

h

h

h

h

h

(10)

where the factors without c  signify that 
the nuisance parameter is unknown.
Combining the two expressions in (10) 
yields the analog of Bayes’ rule (9) for any 
number of additional parameters. 

The joint error bound for a set of param-
eters , , ,1 2 3 fa a a  can be similarly decom-
posed by a recursive application of the chain 
rule to analyze their interdependency and 
its impact on estimation. 

REMARK 2
The CRB analog of Bayes’ rule (9) general-
izes the result in [7], which concerns only 
scalar parameters a  and b  amid a vector 

of nuisance parameters .c  Our proof of (9) 
is also more direct than in [7]. 

REMARK 3
These results are also applicable to the pos-
terior, or Bayesian, CRB (PCRB), in which 
i  is modeled as a random variable with a 
prior distribution. The PCRB is valid for the 
entire class of estimators ,it  whether 
biased or not [2]. The posterior Cramér–
Rao inequality is then ,P J 1*i i

-
t  where 

,plE nJ y22_ i-i i ^ h6 @  is the Bayesian 
Fisher information matrix, ,p y i^ h is the 
joint pdf and the expectation is with respect 
to this pdf. Letting [ ] ,i a b= < <<  the 
matrix can be partitioned correspondingly, 

,J
J
J

J
J=i

a

ba

ab

b
= G

and thereby the results (8)–(10) can be 
applied to the PCRB as well. 

EXAMPLES
Next, we illustrate via two examples how a 
decomposition like (9) can be used for anal-
ysis. The examples show that, by quantify-
ing the impact of nuisance parameters, it is 
possible to study the tradeoff between the 
gain of obtaining them through indepen-
dent side information versus estimating 
them jointly with the parameters of interest. 

LINEAR MIXED MODEL
Consider a linear model 

,y Ax Bz w Rn!= + +

where w  is Gaussian noise with covariance 
matrix ,vI  and x Rkx!  and z Rkz!  are 
unknown parameters. The matrices are 
known and ([ ]) ,k k nrank A B x z 1= +

which implies that the parameters x  and z
are embedded into two distinct range 
spaces, ( )AR  and ( ),BR  respectively. 
Here ( )AR  denotes the linear subspace 
spanned by the columns of .A  Under these 
conditions the joint Fisher information 
matrix equals [9] 

.v
v
n

1

20 0

0
0
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J

J
J
J
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B A

A B
B B

J

x
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From this expression, we see that the 
bound for v  is independent of that 
for x  and .z  That is, ( , )vCRB ,x z =

( ) ( ) .vCRB , CRBx z  This is a CRB analog 
of the independence for random variables. 
Furthermore, we obtain ( )CRB |z x =
| | | ( ) | | |v vJ B B B Bz

k1 1 1z= = <<- - - a n d 
( ) | ( ) | | (vCRB z J J J J B Bz zx x xz

1 1= - = -<- -

( ) ) | | | ,vB A A A A B B Bk1 1 1
A

z P=< < < < =- - -

where AP
=  is the projector onto the 

orthogonal complement of ( ) .AR
The increase in the error bound for x

due to the lack of information about z  can 
now be quantified using (9) 

( )
| |

| |
( ),CRB CRB |x

B B
B B

x z
AP

= < =

<

(11)

where the factor | |B BAP
=<  measures the 

alignment of ( )AR  and ( ) .BR  When the 
range spaces are orthogonal we have that 
| | | | ,B B B BAP == <<  and by (11) the 
bound for x  is unaffected by one’s igno-
rance about .z  In scenarios where it is pos-
sible to obtain z  through additional 
side-information or calibration instead of 
estimation, the cost can be weighed against 
the reduction of the error bound for x  by 
the given factor | | / | | .B B B BAP

= <<

This example has illustrated the inter-
dependencies between the unknown 
parameters ,x ,z  and .v  Next we consider 
an example where the unknown parame-
ters become asympotically independent as 
the number of samples n  grows large. 

SINE-WAVE FITTING
Sine-wave fitting is a problem that arises 
in system testing, e.g., of waveform 
recorders, and IEEE Standard 1057 for-
malizes procedures to do so (see [12] and 
references therein). 

Consider n  uniform samples of a sinu-
soid in noise 

( ) ( ) ( ),siny k k C w ka ~ z= + + +

where ( )w k  is a Gaussian white noise pro-
cess with variance v  and , , .k n0 1f= -

The amplitude a  and phase z  of the sinu-
soidal signal, along with the offset ,C  are of 
interest. In certain cases, the frequency ~
of the test signal may be obtained separately 
from the estimation of ,a z  and .C  For 
simplicity, we first consider an alternative 
parameterization of the sinusoid: 

( ) ( ) ( ),sin cos sink A k B ka ~ z ~ ~+ = +

where ( )sinA a z=  and ( ) .cosB a z=

The parameters are [ ] .A B C vi ~= <
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IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING

The new IEEE Transactions on Computational Imaging seeks original manuscripts for publication. This new 
journal will publish research results where computation plays an integral role in the image formation process. 
All areas of computational imaging are appropriate, ranging from the principles and theory of computational 
imaging, to modeling paradigms for computational imaging, to image formation methods, to the latest innova-
tive computational imaging system designs. Topics of interest include, but are not limited to the following:
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As shown in [12], the Fisher informa-
tion matrix can be decomposed into 

,J J J= +i i ir J  where Jir , shown in the box 
at the bottom of the page, contains the 
dominant terms and JiJ  contains the 
remainder, so that J J1 1-i i

- -r  for large .n
Using this approximation we now analyze 
the bounds for ,A ,B  and C  by applica-
tion of (9). 

First, let [ ]A B C vi = <l  be the 
parameter vector without .~  Then 
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Second, let [ ]B C vi = <m  be the parame-
ter vector without ~  and .A  Then 
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Thus ( ) / ( | ) /A B1 3CRB CRB 2~ ~ = +

( )A B2 2+ [ , ] .1 4!  Note that the domi-
nant terms of Jil  and Jim  are diagonal, 
making their inverses particularly easy to 
compute. Applying (9), we obtain 
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where the bounds for B  and C  are 
derived in a similar manner as for .A  This 
shows that the bound for the offset C
becomes independent of the knowledge of 
the frequency ~  as n  increases, while the 
bounds for A  and B  are inflated by fac-
tors ranging between one and four due to 
one’s ignorance about .~

When considering the original parame-
terization [ ]C vj a z ~= <  there exists an 
invertible relation, A Bg 2 2j i= = +^ h 6

/ .arctan A B C v~ <^ h @  Therefore we have 
that g gJ J1 12 2i i=

<
j i i i
- -^ ^h h  [2], where 

2i  denotes the first-order differential or 
gradient with respect to i  and 
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Exploiting the approximation -J J1 1
i i
- -r

once again, one obtains [12] 
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This shows that, in large samples, the error 
bound for the amplitude a  also becomes 
independent of knowledge about the fre-
quency ,~  whereas not knowing ~ inflates 
the bound for the phase z  by a factor of four. 

For large data records, the cost of pre-
calibrating the frequency can be weighed 
against a reduction of the error bound for 
the phase, while the error bounds for the 
amplitude and offset will not be improved. 

WHAT WE HAVE LEARNED
An analog of Bayes’ rule for the CRB has 
been derived. This analogous rule enables 
a formalized decomposition and quantifi-
cation of the mutual dependencies 
between multiple unknown parameters. 

The use of the rule was illustrated in two 
estimation problems. 
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Architecture and Implementation
Array Signal Processing
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MIMO Communications and Signal Processing
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Speech, Image and Video Processing

    49th Annual Asilomar Conference 
on Signals, Systems, and Computers

November 8-11, 2015

www.asilomarssc.org

General Chair: Erik G. Larsson, Linköping University, Sweden
Technical Program Chair: Tim Davidson, McMaster University, Canada

Conference Coordinator: Monique P. Fargues, Naval Postgraduate School
Publication Chair: Michael Matthews, ATK Space Systems

Publicity Chair: Linda S. DeBrunner, Florida State University
Finance Chair: Ric Romero, Naval Postgraduate School

Electronic Media Chair: Marios S. Pattichis, University of New Mexico

The Conference is organized by the non-profit Signals, Systems and 
Computers Conference Corporation.  

The conference will be held at the Asilomar Conference Grounds, in Pacific Grove, 
CA. The grounds border the Pacific Ocean and are close to Monterey, Carmel, and 

the Seventeen Mile Drive in Pebble Beach. 

Photo Credit: L. S. DeBrunner, Asilomar Conference Grounds
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ERRATA

In the article “Image Processing and Analysis for Single-Molecule Localization Microscopy” by B. Rieger et al. in the January 2015 
issue of IEEE Signal Processing Magazine [1], the two white circles in the gray boxes in Figure 4 were displaced due to a produc-
tion error.

The correct FIgure 4 appears below. We apologize for the errors and any confusion they may have caused.
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[1] B. Rieger, R. P. J. Nieuwenhuizen, and S. Stallinga, “Image processing and analysis for single-molecule localization microscopy,” IEEE Signal Process-
ing Mag., vol. 32, no. 1 pp. 49–57, Jan. 2015.

Digital Object Identifier 10.1109/MSP.2015.2389292

[FIG4] A schematic illustration of FRC resolution computation. The localizations are divided into two halves, and their 
Fourier transforms are correlated over the perimeters of circles in Fourier space of radius .q  The resulting FRC curve 
decays with spatial frequency, and the image resolution is taken to be the inverse of the spatial frequency qR  where the 
FRC curve drops below the threshold 1/7.

sigView
The IEEE Signal Processing Society Online Video Library  

http://www.sigview.org

Features multimedia tutorials created by
leading signal processing experts.

Enables members to create, host, and share
videos of talks, lectures, and tutorials. 

No special software needed to create sigView material from 
Power Point or PDF slide decks, audio and video, and webpages

Interested in contributing?  

Check out guidelines online at

http://www.signalprocessingsociety.org/community/online-tutorial-library/
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to have access to the information that will put them on the path to career success. Now,

smaller colleges can subscribe to the same IEEE collections that large universities receive,

but at a lower price, based on your full-time enrollment and degree programs.

Find out more–visit www.ieee.org/learning
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Siwei Ma, Tiejun Huang, Cliff Reader, and Wen Gao
[standards IN A NUTSHELL]
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VS2 is a new generation of
video coding standard devel-
oped by the IEEE 1857 

Working Group under 
project 1857.4. AVS2 is 

also the second-generation video coding 
standard established by the Audio and 
Video Coding Standard (AVS) Working 
Group of China; the first-generation 
AVS1 was developed by the AVS Working 
Group and issued as Chinese national 
standard GB/T 20090.2-2006 in 2006. 
The AVS Working Group was founded in 
2002 and is dedicated to providing the 
digital audio-video industry with highly 
efficient and economical coding/decod-
ing technologies. So far, the AVS1 video 
coding standard is widely implemented 
in regional broadcasting, communica-
tion, and digital video entertainment sys-
tems. As the successor of AVS1, AVS2 is 
designed to achieve significant coding 
efficiency improvements relative to the 
preceding H.264/MPEG4-AVC and AVS1 
standards. The basic coding framework 
of AVS2 is similar to the conterminous 
HEVC/H.265, but AVS2 can provide more 
efficient compression for certain video 
applications such as surveillance as well 
as low-delay communication such as vid-
eoconferencing. AVS2 is making video 
coding smarter by adopting intelligent 
coding tools that not only improve cod-
ing efficiency but also help with com-
puter vision tasks such as object 
detection and tracking.

BACKGROUND
The AVS Working Group was established 
in March 2002 in China. The mandate of 
the group is to establish generic techni-
cal standards for the compression, 

decoding, processing, and representation 
of digital audio-video content, thereby 
enabling digital audio-video equipment 
and systems with highly efficient and 

economical coding/decoding technolo-
gies. After more than a decade, the work-
ing group has published a series of 
standards, including AVS1, which is the 
culmination of the first stage of work.

Table 1 shows the time line of the AVS1 
video coding standard (for short, AVS1). In 
AVS1, six profiles were defined to meet the 
requirements of various applications. The 
Main Profile focuses on digital video 

applications like commercial broadcasting 
and storage media, including high-defini-
tion video applications. It was approved as 
a national standard in China: GB/T 
20090.2-2006. It was followed by the 
Enhanced Profile, an extension of the 
Main Profile with higher coding efficiency, 
targeting the needs of multimedia enter-
tainment, such as movie compression for 
high-density storage. The Surveillance 
Baseline and Surveillance Profiles focus 
on video surveillance applications, consid-
ering in particular the characteristics of 
surveillance videos, i.e., high noise levels, 
relatively low encoding complexity, and 
requirements for easy event detection and 
search. The Portable Profile targets mobile 
video applications with lower resolution, 
low computational complexity, and robust 
error resiliency to meet the wireless envi-
ronment. The latest Broadcasting Profile 
is also an improvement of the Main Profile 
and targets high-quality, high-definition 
TV (HDTV) broadcasting. It was approved 
and published as an industry standard by 
the State of China Broadcasting Film and 
Television Administration in July 2012.

AVS standards are also being recog-
nized internationally. In 2007, the Main 

AVS2—Making Video Coding Smarter

Digital Object Identifier 10.1109/MSP.2014.2371951

Date of publication: 12 February 2015

[TABLE 1] TIME LINE OF AVS1 VIDEO CODING STANDARD.

TIME PROFILE TARGET APPLICATION(s) MAJOR CODING TOOLS

DECEMBER
2003

MAIN TV BROADCASTING 8# 8 BLOCK-BASED INTRAPREDICTION, 
TRANSFORM AND DEBLOCKING FILTER; 
VARIABLE BLOCK SIZE MOTION 
COMPENSATION (16 # 16+8# 8)

JUNE 2008 SURVEILLANCE
BASELINE

VIDEO SURVEILLANCE BACKGROUND-PREDICTIVE PICTURE
FOR VIDEO CODING, ADAPTIVE
WEIGHTING QUANTIZATION (AWQ),
CORE FRAME CODING

SEPTEMBER
2008

ENHANCED DIGITAL CINEMA CONTEXT BINARY ARITHMETIC
CODING (CBAC), AWQ

JULY 2009 PORTABLE MOBILE VIDEO COMMUNICATION 8 # 8/4 # 4 BLOCK TRANSFORM

JULY 2011 SURVEILLANCE VIDEO SURVEILLANCE BACKGROUND MODELING BASED
CODING

MAY 2012 BROADCASTING HDTV AWQ, ENHANCED FIELD CODING

A
AVS2 IS MAKING
VIDEO CODING

SMARTER BY ADOPTING
INTELLIGENT CODING

TOOLS THAT NOT ONLY 
IMPROVE CODING

EFFICIENCY, BUT ALSO
HELP WITH COMPUTER

VISION TASKS SUCH 
AS OBJECT DETECTION

AND TRACKING.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE GlobalSIP’15—Call for Papers
2015 IEEE Global Conference on Signal and Information Processing – Orlando, Florida

Digital Object Identifier 10.1109/MSP.2015.2396712

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.qmags.com/clickthrough.asp?url=http://edas.info&id=19273&adid=P173A1


[standards IN A NUTSHELL]continued

IEEE SIGNAL PROCESSING MAGAZINE [174] MARCH 2015

Profile was accepted as an option of video 
codecs for Internet Protocol Television 
(IPTV) applications by the International 
Telecommunication Union–Telecommu-
nication Standardization Sector (ITU-T) 
Focus Group on IPTV standardization [1]. 
The IEEE 1857 Working Group was 
established in 2012 to work on IEEE 
standards for advanced audio and video 
coding, based on individual members of 
the IEEE Standards Association from the 
AVS Working Group. The IEEE 1857 
Working Group meets three to four 
times annually to discuss the standard 
technologies, syntax, and so on. Until 
now, the IEEE 1857 Working Group has 
finished three parts of IEEE 1857 stan-
dards, including IEEE 1857-2013 for 
video, IEEE 1857.2-2013 for audio, and 
IEEE 1857.3-2013 for system [2]. 

AVS standards have been developed in 
compliance with the AVS intellectual prop-
erty rights (IPR) policy. This policy 
includes up-front commitment by partici-
pants to license essential patents with 
declaration of default licensing terms—roy-
alty-free without compensation [(RAND-
RF) and otherwise under reasonable and 
nondiscriminatory terms], or participation 
in the AVS patent pool, or RAND. The dis-
closure of published patent applications 
and granted patents is required, and the 
existence of unpublished applications is 
also required if the RAND option is taken. 
The licensing terms are also considered in 
the adoption of proposals for AVS stan-
dards when all technical factors are equal. 

Reciprocity in licensing is required. The 
protection of participants’s IPR is provided 
to guard against the situation in which the 
IPR of a participant are disclosed by 
another party. AVS has encouraged the 
establishment of a Patent Pool Administra-
tion (PPA) that is independent from the 

AVS Working Group, which only focuses 
on the standards. The AVS standards are 
also fully compliant with the IPR policy of 
IEEE standards.

Based on the success of AVS1 and the 
recent research and standardization works, 
AVS has been working on a new generation 
of video coding technologies called AVS2 
(or more specifically, Part 2 in the AVS2 
series standards). In fact, since 2005 and 
before the AVS2 project officially started, 
AVS has been continuously working on an 
AVS-X project to explore more efficient 
coding techniques. AVS2 was started for-
mally by issuing a call for platforms in 
March 2012. By October 2012, a reference 

platform (RD 1.0) based on the AVS1 refer-
ence software was developed for AVS2 [3]. 
After that, AVS2 continued to improve its 
coding efficiency, and the standard in com-
mittee draft 2.0 was finalized in June 2014. 
It has been approved as a project of IEEE 
standard, IEEE 1857.4, and a project of 
Chinese national standard, both of which 
are expected to be finished by the end of 
2014 at the time of this writing.  

As a successor of AVS1, AVS2 is designed 
to improve coding efficiency for higher-res-
olution videos and provide efficient com-
pression solutions for various kinds of video 
applications. Compared to the preceding 
coding standards, AVS2 adopts smarter cod-
ing tools that are adapted to satisfy the new 
requirements identified from emerging 
applications. First, more flexible prediction 
block partitions are used to further improve 
prediction accuracy, e.g., square and non-
square partitions, which are more adaptive 
to the image content especially in edge 
areas. Related to the prediction structure, 
transform block size is more flexible and 
can be up to 64 # 64 pixels. After transfor-
mation, context adaptive arithmetic coding 
is used for the entropy coding of the trans-
formed coefficients. A two-level coefficient 
scan and coding method can encode the 
coefficients of large blocks more efficiently. 
Moreover, for low-delay communication 
applications, e.g., video surveillance, video 
conference, etc., where the background 
usually does not often change, a back-
ground picture model-based coding 
method is  developed in AVS2. 
The background picture constructed from 
original pictures or decoded pictures is used 
as a reference picture to improve prediction 
efficiency. Test results show that this back-
ground picture-based prediction coding can 
improve coding efficiency significantly. Fur-
thermore, the background picture can also 
be used for object detection and tracking 
for intelligent surveillance. In addition, to 
support object tracking among multiple 
cameras in surveillance applications, navi-
gation information such as those from the 
global positioning system and BeiDou Navi-
gation Satellite System of China is also 
defined, which mainly includes timing, 
location, and movement information. 
Finally, aiming at more intelligent surveil-
lance video coding, AVS2 also started a [FIG1] The coding framework of an AVS2 encoder.
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digital media content description project in 
which visual objects in the images or videos 
are described with multilevel features for 
facilitating visual object based storage, 
retrieval, and interactive applications, etc. 

This column will provide a short 
overview of AVS2 video coding technol-
ogy and a performance comparison with 
other video coding standards.

TECHNOLOGY AND KEY FEATURES
Similar to previous coding standards, 
AVS2 adopts the traditional prediction/
transform hybrid coding framework, as 
shown in Figure 1. Within the framework, 
a more flexible coding structure is 
adopted for efficient high-resolution video 
coding, and more efficient coding tools 
are developed to make full use of the tex-
tual information and temporal redundan-
cies. These tools can be classified into 
four categories: 1) prediction coding 

(including intraprediction and interpre-
diction), 2) transform, 3) entropy coding, 
and 4) in-loop filtering. We will give a 
brief introduction to the coding frame-
work and coding tools. 

CODING FRAMEWORK
In AVS2, a coding unit (CU)-, prediction 
unit (PU)-, and transform unit (TU)-based 
coding/prediction/transform structure is 
adopted to represent and organize the 
encoded data [3]. First, pictures are split 
into largest coding units (LCUs), which 
consist of N N2 2#  samples of a lumi-
nance component and associated chromi-
nance samples with , ,N 8 16= or 32. One 
LCU can be a single CU or can be split into 
four smaller CUs with a quad-tree parti-
tion structure; a CU can be recursively 
split until it reaches the smallest CU size 
limit, as shown in Figure 2(a). Once the 
splitting of the CU hierarchical tree is 

finished, the leaf node CUs can be further 
split into PUs. PU is the basic unit for 
intra- and interprediction and allows mul-
tiple different shapes to encode irregular 
image patterns, as shown in Figure 2(b). 
The size of a PU is limited to that of a CU 
with various square or rectangular shapes. 
More specifically, both intra- and interpre-
diction partitions can be symmetric or 
asymmetric. Intraprediction partitions 
vary in the set { , ,N N N N N2 2 2# # #

. , . },N N N0 5 0 5 2#  while inter-prediction 
partitions vary in the set { ,N N N2 2 2# #

, , , , ,N N N N nU N nD nL N2 2 2 2# # # #

},nR N2#  where , , ,U D L and R  are the 
abbreviations of “Up,” “Down,” “Left,” and 
“Right,” respectively. Besides CU and PU, 
TU is also defined to represent the basic 
unit for transform coding and quantiza-
tion. The size of a TU cannot exceed that 
of a CU, but it is independent of the 
PU size.

CU Partition
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N1 = 16
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[FIG2] (a) The maximum possible recursive CU structure in AVS2. (LCU size =  64, maximum hierarchical depth =  4). (b) Possible 
PU splitting for skip, intramodes, and intermodes in AVS2, including symmetric and asymmetric prediction (d=1, 2 for 
intraprediction, and d= 0,1,2 for interprediction).
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INTRAPREDICTION
Intraprediction is used to reduce the 
redundancy existing in the spatial domain 
of the picture. Block partition-based direc-
tional prediction is used for AVS2 [5]. As 
shown in Figure 2, besides the square PU 
partitions, nonsquare partitions, called 
short distance intra prediction (SDIP), are 
adopted by AVS2 for more efficient intralu-
minance prediction [4], where the nearest 
reconstructed boundary pixels are used as 
the reference sample in intraprediction. 
For SDIP, a N N2 2#  PU is horizontally/

vertically partitioned into four prediction 
blocks. SDIP is more adaptive to the image 
content, especially in edge area. But for the 
complexity reduction, SDIP is used in all 
CU sizes except a 64 #  64 CU. For each 
prediction block in the partition modes, a 
total of 33 prediction modes are supported 
for luminance, including 30 angular 
modes [5], a plane mode, a bilinear mode, 
and a DC mode. Figure 3 shows the distri-
bution of the prediction directions associ-
ated with the 30 angular modes. Each 
sample in a PU is predicted by projecting 

its location to the reference pixels applying 
the selected prediction direction. To 
improve the intraprediction accuracy, the 
subpixel precision reference samples must 
be interpolated if the projected reference 
samples locate on a noninteger position. 
The noninteger position is bounded to 1/32 
sample precision to avoid floating point 
operation, and a four-tap linear interpola-
tion filter is used to get the subpixel. 

For the chrominance component, the 
PU size is always ,N N#  and five prediction 
modes are supported, including vertical pre-
diction, horizontal prediction, bilinear pre-
diction, DC prediction, and the prediction 
mode derived from the corresponding lumi-
nance prediction mode [6]. 

INTERPREDICTION
Compared to the spatial intraprediction, 
interprediction focuses on exploiting the 
temporal correlation between the consec-
utive pictures to reduce the temporal 
redundancy. Multireference prediction has 
been used since the H.264/AVC standard, 
including both short-term and long-term 
reference pictures. In AVS2, long-term ref-
erence picture usage is extended further, 
which can be constructed from a sequence 
of long-term decoded pictures, e.g., back-
ground picture used in surveillance cod-
ing, which will be discussed separately 
later. For short-term reference prediction 
in AVS2, F frames are defined as a special 
P frame [7], in addition to the traditional P 
and B frames. More specifically, a P frame 
is a forward-predicted frame using a single 
reference picture, while a B frame is a 
bipredicted frame that consists of forward, 
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[FIG3] An illustration of directional prediction modes.
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[FIG4] (a) Temporal multihypothesis mode. (b) Spatial multihypothesis mode.
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backward, biprediction, and symmetric 
prediction, using two reference frames. 

In a B frame, in addition to the 
conventional forward, backward, bi-
directional, and skip/direct prediction 
modes, symmetric prediction is defined as a 
special biprediction mode, wherein only 
one forward motion vector (MV) is coded 
and the backward MV is derived from the 
forward MV. For an F frame, besides the 
conventional single hypothesis prediction 
mode in a P frame, multihypothesis tech-
niques are added for more efficient predic-
tion, including the advanced skip/direct 
mode [8], temporal multihypothesis predic-
tion mode [9], and spatial directional multi-
hypothesis (DMH) prediction mode [10]. 

In an F frame, an advanced skip/direct 
mode is defined using a competitive 
motion derivation mechanism. Two deri-
vation methods are used: one is temporal 
and the other is spatial. Temporal multihy-
pothesis mode combines two predictors 
along the predefined temporal direction, 
while spatial multihypothesis mode com-
bines two predictors along the predefined 
spatial direction. For temporal derivation, 
the prediction block is obtained by an aver-
age of the prediction blocks indicated by 
the MV  prediction (MVP) and the scaled 
MV in a second reference. The second ref-
erence is specified by the reference index 
transmitted in the bit stream. For tempo-
ral multihypothesis prediction, as shown 
in Figure 4, one predictor ref_blk1 is gen-
erated with the best MV MV and a refer-
ence frame ref1 is searched by motion 
estimation, and then this MV is linearly 
scaled to a second reference to generate 
another predictor ref_blk2. The second 
reference ref2 is specified by the reference 
index transmitted in the bit stream. In 
DMH mode, as specified in Figure 4, the 
seed predictors are located on the line 
crossing the initial predictor obtained 
from motion estimation. The number of 
seed predictors is restricted to eight. If one 
seed predictor is selected for combined 
prediction, for example “Mode 1,” then the 
index of the seed predictor “1” will be sig-
naled in the bit stream. 

For spatial derivation, the prediction 
block may be obtained from one or two 
prediction blocks specified by the motion 
copied from its spatial neighboring 

blocks. The neighboring blocks are illus-
trated in Figure 5. They are searched in a 
predefined order F, G, C, A, B, D, and the 
selected neighboring block is signaled in 
the bit stream. 

MOTION VECTOR PREDICTION 
AND CODING
MVP plays an important role in interpre-
diction, which can reduce the redundancy 
among MVs of neighboring blocks and 
thus save large numbers of coding bits for 
MVs. In AVS2, four different prediction 
methods are adopted, as tabulated in 
Table  2. Each of them has its unique 
usage. Spatial MVP is used for the spatial 
derivation of Skip/Direct mode in F frames 
and B frames. Temporal MVP is used for 
temporal derivation of Skip/Direct mode 
in P frames and F frames. Spatial-tempo-
ral-combined MVP is used for the joint 
temporal and spatial derivation of Skip/
Direct mode in B frames. For other cases, 
median prediction is used. 

In AVS2, the MV is in quarter-pixel 
precision for the luminance component, 
and the subpixel is interpolated with an 
eight-tap DCT interpolation filter (DCT-
IF) [11]. For the chrominance compo-
nent, the MV derived from luminance 
with 1/8 pixel precision and a four-tap 
DCT-IF is used for subpixel interpolation 
[12]. After the MVP, the MV difference 

(MVD) is coded in the bit stream. How-
ever, redundancy may still exist in MVD, 
and to further save coding bits of MVs, a 
progressive MV resolution adaptation 
method is adopted in AVS2 [13]. In this 
scheme, the MVP is firstly rounded to the 
nearest integer sample position, and then 
the MV is rounded to a half-pixel preci-
sion if its distance from MVP is larger 
than a by a threshold. Finally, the resolu-
tion of the MVD is decreased to half-pixel 
precision if it is larger than a threshold.

TRANSFORM
Two-level transform coding is utilized to 
further compress the predicted residual. 
For a CU with symmetric prediction unit 
partition, the TU size can be N N2 2#  or 
N N#  signaled by a transform split flag. 
Thus, the maximum transform size is 
64 #  64, and the minimum transform 
size is 4 #  4. For the TU size 4 #  4 to 32 
#  32, an integer transform (IT) that 
closely approximates the performance of 
the discrete cosine transform (DCT) is 
used; while for the 64 #  64 transform, a 
logical transform (LOT) [14] is applied to 
the residual. A five-three-tap integer wave-
let transform is first performed on a 64 #
64 block discarding the low-high (LH), 
high-low (HL), and (high-high) HH-
bands, and then a normal 32 #  32 IT is 
applied to the low-low (LL)-band. For a CU 
that has an asymmetric PU partition, a 

N N2 2#  IT is used in the first level and a 
nonsquare transform [15] is used in the sec-
ond level, as shown in Figure 6. Moreover, 
in the latest AVS2 standard, a secondary 
transform was adopted for intraprediction 
residual (for more details see the latest AVS 
specification document N2120 on the AVS 
FTP Web site [21]).

ENTROPY CODING
After transform and quantization, a two-
level coding scheme is applied to the 

A

F

Current PU

D B G C

[FIG5] An illustration of neighboring 
blocks A, B, C, D, F, and G for MVP.

[TABLE 2] MV PREDICTION METHODS IN AVS2.

METHOD DETAILS

MEDIAN USING THE MEDIAN MV VALUES OF THE NEIGHBORING BLOCKS.

SPATIAL USING THE MVs OF SPATIAL NEIGHBORING BLOCKS.

TEMPORAL USING THE MVs OF TEMPORAL COLLOCATED BLOCKS. 

SPATIAL-TEMPORAL COMBINED USING THE TEMPORAL MVP FIRST IF IT IS AVAILABLE, AND SPATIAL
MVP IS USED INSTEAD IF THE TEMPORAL MVP IS NOT AVAILABLE.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


[standards IN A NUTSHELL]continued

IEEE SIGNAL PROCESSING MAGAZINE [178] MARCH 2015

transform coefficient blocks [16]. A coeffi-
cient block is partitioned into 4 #  4 coef-
ficient groups (CGs), as shown in 
Figure 7. Then zig-zag scanning and con-
text-adaptive binary arithmetic coding 
(CABAC) is performed at both the CG 
level and coefficient level. At the CG level 
for a TU, the CGs are scanned in zig-zag 
order, and the CG position indicating the 
position of the last nonzero CG is coded 
first, followed by a bin string of significant 
CG flags indicating whether the CG 
scanned in zig-zag order contains non-
zero coefficients. At the coefficient level, 
for each nonzero CG, the coefficients are 
further scanned into the form of (run,
level) pair in zig-zag order. Level and run 
refer to the magnitude of a nonzero coeffi-
cient and the number of zero coefficients 
between two nonzero coefficients, respec-
tively. For the last CG, the coefficient posi-
tion that denotes the position of the last 
nonzero coefficient in scan order is coded 
first. For a nonlast CG, a last run is coded 
that denotes number of zero coefficients 
after the last nonzero coefficient in zig-
zag scan order. And then the (level, run)
pairs in a CG are coded in reverse zig-zag 
scan order. 

For the context modeling used in the 
CABAC, AVS2 employs a mode-depen-
dent context selection design for intra-
prediction blocks [17]. In this context 
design, 34 intraprediction modes are 
classified into three prediction mode 
sets: vertical, horizontal, and diagonal. 
Depending on the prediction mode set, 
each CG is divided to two regions, as 
shown in Figure 8. The intraprediction 
modes and CG regions are applied in the 
context coding of syntax elements 
including the last CG position, last coef-
ficient position, and run value.

IN-LOOP FILTERING 
Artifacts such as blocking artifacts, ring-
ing artifacts, color biases, and blurring 
artifacts are quite common in com-
pressed video, especially at medium and 
low bit rate. To suppress those artifacts, 
deblocking filtering, sample adaptive off-
set (SAO) filtering [18], and adaptive 
loop filter (ALF) [19] are applied to the 
reconstructed pictures sequentially. 

(a) (b) (c)

[FIG7] A subblock scan for transform blocks of size (a) 8 #  8, (b) 16 #  16, and (c) 32 #

32 transform blocks; each subblock represents a 4 #  4 CG.
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[FIG8] A subblock region partitions of 4 #  4 CG in an intraprediction block.
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[FIG6] A PU partition and two-level transform coding.
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Deblocking filtering aims to remove 
the blocking artifacts caused by block 
transform and quantization. The basic unit 
for the deblocking filter is an 8 #  8 block. 
For each 8 #  8 block, the deblocking filter 
is used only if the boundary belongs to 
either of the CU, PU, or TU boundaries. 

After the deblocking filter, an SAO fil-
ter is applied to reduce the mean sample 
distortion of a region, where an offset is 
added to the reconstructed sample to 
reduce ringing artifacts and contouring 
artifacts. There are two kinds of offset: 
edge offset (EO) and band offset (BO) 
mode. For the EO mode, the encoder can 
select and signal a vertical, horizontal, 
downward-diagonal, or upward-diagonal 
filtering direction. For BO mode, an off-
set value that directly depends on the 
amplitudes of the reconstructed samples 
is added to the reconstructed samples. 

ALF is the last stage of in-loop filtering. 
There are two stages in this process. The 
first stage is filter coefficient derivation. To 
train the filter coefficients, the encoder 
classifies reconstructed pixels of the lumi-
nance component into 16 categories, and 
one set of filter coefficients is trained for 
each category using Wiener–Hopf equa-
tions to minimize the mean squared error 
between the original frame and the recon-
structed frame. To reduce the redundancy 
between these 16 sets of filter coefficients, 
the encoder will adaptively merge them 
based on the rate-distortion performance. 
At its maximum, 16 different filter sets can 
be assigned for the luminance component 
and only one for the chrominance compo-
nents. The second stage is a filter decision, 

which includes both the frame level and 
LCU level. First, the encoder decides 
whether frame-level adaptive loop filtering 
is performed. If frame level ALF is on, then 
the encoder further decides whether the 
LCU level ALF is performed. 

SMART SCENE VIDEO CODING
More and more videos being captured in 
specific scenes (such as surveillance video 
and videos from the classroom, home, 
courthouse, etc.) are characterized by a 
temporally stable background. The redun-
dancy originating from the background 
could be further reduced. AVS2 developed 
a background picture model-based coding 
method [20], which is illustrated in 

Figure 9. G-pictures and S-pictures are 
defined to further exploit the temporal 
redundancy and facilitate video event gen-
eration such as object segmentation and 
motion detection. The G-picture is a spe-
cial I-picture, which is stored in a separate 
background memory. The S-picture is a 
special P-picture, which can be only pre-
dicted from a reconstructed G-picture or a 
virtual G-picture, which does not exist in 
the actual input sequence but is modeled 
from input pictures and encoded into the 
stream to act as a reference picture.

The G-picture is initialized by back-
ground initialization and updated by 
background modeling with methods such 
as median filtering, fast implementation 

Raw
Video

DCT&Q
Entropy
Coding

Bit
Stream

G-Picture
Initialization

Background
Modeling
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Buffer
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[FIG9] A background picture-based scene coding in AVS2.

[FIG10] Examples of the background picture and the difference frame between the original picture and the background picture: 
(a) original picture, (b) difference frame, and (c) background picture.

(a) (b) (c)
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of a Gaussian mixture model, etc. In this 
way, the selected or generated G-picture 
can well represent the background of a 
scene with rare occluding foreground 
objects and noise. Once a G-picture is 
obtained, it is encoded and the recon-
structed picture is stored into the back-
ground memory in the encoder/decoder 
and updated only if a new G-picture is 
selected or generated. After that, 
S-pictures can be involved in the encod-
ing process by an S-picture decision. 
Except that it uses a G-picture as a refer-
ence, the S-picture owns similar properties 
as the traditional I-picture such as error 
resilience and random access (RA). There-
fore, the pictures that should be coded as 
traditional I-pictures can be candidate 
S-pictures, such as the first picture of one 
group of pictures, or scene change, etc. 
Besides bringing about more prediction 
opportunity for those background blocks 
that normally dominate a picture, an 
additional benefit from the background 
picture is a new prediction mode called 
background difference prediction, as 
shown in Figure 10, which can improve 
foreground prediction performance by 
excluding the background influence. It 
can be seen that, after background differ-
ence prediction, the background redun-
dancy is effectively removed. Furthermore, 
according to the predication modes in the 
AVS2 compression bit stream, the blocks of 
an AVS2 picture could be classified as back-
ground blocks, foreground blocks, or 
blocks on the edge area. Obviously, this 

information is very helpful for possible 
subsequent vision tasks such as object 
detection and tracking. Object-based cod-

ing has already been proposed in MPEG-4; 
however, object segmentation remains a 
challenging problem, which constrains 
the application of object-based coding. 
Therefore AVS2 uses simple background 
modeling instead of accurate object seg-
mentation, which is easier and provides a 

good tradeoff between coding efficiency 
and complexity. 

To provide convenience for applica-
tions like event detection and searching, 
AVS2 added some novel high-level syntax 
to describe the region of interest (ROI). In 
the region extension, the region number, 
event ID, and coordinates for top left and 
bottom right corners are included to show 
what number the ROI is, what event hap-
pened, and where it lies. 

PERFORMANCE COMPARISON
The major target applications of AVS2 are 
high-quality TV broadcasting and scene 
videos. For high-quality broadcasting, RA 
is necessary and may be achieved by 
inserting intraframes at a fixed interval, 
e.g, 0.5 s. And for high-quality video cap-
ture and editing, all intracoding (AI) is 
required. For scene video applications, 
e.g., video surveillance or videoconference, 
low delay (LD) needs to be guaranteed. 
According to the applications, we tested 

[FIG11] A performance comparison between AVS2 and HEVC for surveillance videos: (a) main road and (b) over a bridge.
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[TABLE 3] BIT RATE SAVING OF AVS2 PERFORMANCE COMPARISON
WITH AVS1 AND HEVC.

SEQUENCES

AI
CONFIGURATION

RA  
CONFIGURATION

LD
CONFIGURATION

AVS2 VERSUS
AVS1

AVS2 VERSUS
HEVC

AVS2 VERSUS
AVS1

AVS2 VERSUS
HEVC

AVS2 VERSUS
HEVC

UHD 31.2% 2.4% 50.3% −0.4%

1080P 33% 0.8% 50.3% 0.3%

1200P 37.9%

SD 26.2%

OVERALL 32.1% 1.6% 50.3% −0.1% 32.1%

AVS2 HAS BEEN
DEVELOPED IN

ACCORDANCE WITH 
AVS AND IEEE IPR 

POLICIES TO ENSURE 
RAPID LICENSING OF 
ESSENTIAL PATENTS

AT COMPETITIVE 
ROYALTY RATES.
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the performance of AVS2 with three different 
coding configurations AI, RA, and LD, simi-
lar to the high-efficiency video coding 
(HEVC) common test conditions and Bjøn-
tegaard delta bit rate is used for bit rate sav-
ing evaluation. The ultrahigh-definition 
(UHD) and 1080p test sequences are the 
common test sequences used in AVS, includ-
ing partial test sequences used in HEVC, 
such as Traffic (UHD) and Kimono1(1080P), 
etc. All of these sequences and the sur-
veillance/videoconference sequences 
used for LD testing are available on the 
AVS Web site [21]. 

Table 3 summarizes the rate distortion 
performance of AVS2 for three test cases. 
As shown in the table, for RA and AI con-
figurations, AVS2 shows comparable per-
formance as HEVC and outperforms AVS1 
with significant bits saving, up to 50% for 
RA. For surveillance and videoconference 
video coding, AVS2 outperforms HEVC by 
32.1%, and the curves in Figure 11 show 
the results on two surveillance video 
sequences. For the coding configurations 
more reasonable for scene video coding, 
AVS2’s gain is more significant. It should 
be pointed out that the results are tested 
with the current AVS2 reference software 
RD9.2, which is still under optimization, 
and the performance of AVS2 may be 
improved further. 

CONCLUSIONS
This column gives an overview of the 
upcoming AVS2 standard. AVS2 is an 
application-oriented coding standard, and 
different coding tools have been developed 
according to various application charac-
teristics and requirements. For high-qual-
ity broadcasting, flexible prediction and 
transform coding tools have been incorpo-
rated. For surveillance video and video-
conferencing applications, AVS2 bridges 
video compression with machine vision by 
incorporating smart coding tools, e.g., 
background picture modeling and loca-
tion/time information etc., thereby mak-
ing video coding smarter and more 
efficient. Compared to the previous AVS1 
coding standards, AVS2 achieves signifi-
cant improvement in coding efficiency 

and flexibility. AVS2 has been developed in 
accordance with AVS and IEEE IPR poli-
cies to ensure rapid licensing of essential 
patents at competitive royalty rates. In the 
development of AVS2, the favorability of 
licensing terms was also considered in the 
adoption of proposals for AVS standards, 
and the formation of a patent pool is 
expected in the near future.

Several directions are currently being 
explored for future extensions of AVS2, 
including three-dimensional video cod-
ing and media description for smarter 
coding. Related standardization work has 
started in the AVS Working Group. 

RESOURCES
AVS documents and reference software 
can be found in [21]. AVS products infor-
mation can be found in [22].
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[dates AHEAD]

Please send calendar submissions to:  
Dates Ahead, c/o Jessica Barragué  
IEEE Signal Processing Magazine  
445 Hoes Lane  
Piscataway, NJ 08855 USA  
e-mail: j.barrague@ieee.org
(Colored conference title indicates 
SP-sponsored conference.)

2015
[APRIL]
Data Compression Conference (DCC)
7–9 April, Snowbird, Utah, United States.
URL: http://www.cs.brandeis.edu/~dcc/index.
html

14th IEEE International Conference  
on Information Processing in Sensor 
Networks (IPSN)
13–17 April, Seattle, Washington, 
United States.
General Chair: Suman Nath 
URL: http://ipsn.acm.org/2015

First IEEE Conference on Network 
Softwarization (NetSoft)
13–17 April, London, United Kingdom.
General Cochairs: Prosper Chemouil 
and George Pavlou
URL: http://sites.ieee.org/netsoft/

12th IEEE International Symposium  
on Biomedical Imaging (ISBI)
16–19 April, Brookyln, New York, 
United States.
General Chairs: Elsa Angelini and 
Jelena Kovacevic 
URL: http://biomedicalimaging.org/2015/

IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
19–24 April, Brisbane, Australia.
General Cochairs: Vaughan Clarkson 
and Jonathan Manton
URL: http://icassp2015.org/

[MAY]
31st Picture Coding Symposium (PCS)
31 May–3 June, Cairns, Australia. 
General Chairs: David Taubman 
and Mark Pickering
URL: http://www.pcs2015.org

[JUNE]
Third IEEE International Workshop on 
Compressed Sensing Theory and Its 
Applications to Radar, Sonar, and 
Remote Sensing (CoSeRa)
22–24 June, Pisa, Italy.
General Chairs: Fulvio Gini 
and Joachim Ender
URL: http://www.cosera2015.iet.unipi.it/

16th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC)
28 June–1 July, Stockholm, Sweden.
General Chairs: Joakim Jaldén and 
Björn Ottersten
URL: http://www.spawc2015.org/

IEEE International Conference on 
Multimedia and Expo (ICME)
29 June–3 July, Turin, Italy.
General Chairs: Enrico Magli, 
Stefano Tubaro, and Anthony Vetro
URL: http://www.icme2015.ieee-icme.org/
index.php

[JULY]
Third IEEE China Summit and 
International Conference on Signal and 
Information Processing (ChinaSIP)
12–15 July, Chengdu, China. 
General Chairs: Yingbo Hua and Dezhong Yao 
URL: http://www.chinasip2015.org/

[AUGUST]
IEEE Signal Processing and SP 
Education Workshop (SPW)
9–12 August, Salt Lake City, Utah, 
United States.
General Chair: Todd Moon
URL: http://spw2015.coe.utah.edu

12th IEEE International Conference  
on Advanced Video- and Signal-Based 
Surveillance (AVSS)
25–28 August, Karlsruhe, Germany.
General Chairs: Jürgen Beyerer 
and Rainer Stiefelhagen
URL: http://avss2015.org

[SEPTEMBER]
Sensor Signal Processing  
for Defence (SSPD)
9–10 September, Edinburgh, 
United Kingdom. 
http://www.see.ed.ac.uk/drupal/udrc/sspd/

IEEE International Conference  
on Image Processing (ICIP)
28 September–1 October, Quebec City, 
Quebec, Canada. 
URL: http://www.icip2015.org/

[OCTOBER]
IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
19–21 October, Xiamen, China.
General Chairs: Xiao-Ping Zhang, 
Oscar C. Au, and Jonathan Li 
URL: http://www.mmsp2015.org/

[DECEMBER]
IEEE 6th International Workshop  
on Computational Advances
in Multisensor Adaptive
Processing (CAMSAP)
13–16 December, Cancun, Mexico.

IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU)
13–17 December, Scottsdale, Arizona, 
United States.
URL: http://www.asru2015.org/

IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
14–16 December, Orlando, Florida, 
United States. 
General Chairs: José M.F. Moura 
and Dapeng Oliver Wu

2016
[MARCH]
41st IEEE International Conference on 
Acoustics, Speech, and Signal 
Processing (ICASSP)
21–25 March, Shanghai, China.
URL: http://dmlab.sjtu.edu.cn/icassp/
icassp2016.html
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*The mechanical switches within each model are offered with an optional 10 year extended warranty. 
Agreement required. See data sheets on our website for terms and conditions. Switches protected by 
US patents 5,272,458; 6,650,210; 6,414,577; 7,633,361; 7,843,289; and additional patents pending.

†See data sheet for a full list of compatible software.

DC to18 GHz from
$385 ea.

We’re adding more models and more functionality to our line of RF 
switch matrices. All models now feature switch cycle counting 
with automatic calibration interval alerts based on actual usage, 
an industry first! This function improves test reliability and saves 
you money. Our new RC-series models feature both USB and 
Ethernet control, so you can run your test setup from anywhere 
in the world!  Rugged aluminum cases on all models house our 
patented mechanical switches with extra-long life of 10 years/100 
million cycles of guaranteed performance!*  

Our easy-to-install, easy-to-use GUI will have you up and 
running in minutes for step-by-step control, full automation, 
or remote operation. They’re fully compatible with most 
third-party lab software,† adding capabilities and efficiency 
to existing setups with ease!  Visit minicircuits.com today 
for technical specifications, performance data, quantity 
pricing, and real time availability – or call us to discuss your 
custom programming needs – and think how much time 
and money you can save! 

USB & ETHERNET 

Model # Switches IL VSWR Isolation RF PMAX Price $
(SPDT) (dB) (:1) ( dB) ( W) (Qty. 1-9)

USB-1SP4T-A18 1 (SP4T) 0.25 1.2 85 2 795.00
USB-1SPDT-A18 1 0.25 1.2 85 10 385.00
USB-2SPDT-A18 2 0.25 1.2 85 10 685.00

USB-3SPDT-A18 3 0.25 1.2 85 10 980.00
USB-4SPDT-A18 4 0.25 1.2 85 10 1180.00
USB-8SPDT-A18 8 0.25 1.2 85 10 2495.00

NEW

USB Control Switch Matrices

Switch position
  indicator lights

USB and Ethernet Control Switch Matrices
Model # Switches IL VSWR Isolation RF PMAX Price $

(SPDT) (dB) (:1) ( dB) ( W) (Qty. 1-9)

RC-1SP4T-A18 1 (SP4T) 0.25 1.2 85 2 895.00
RC-2SP4T-A18 2 (SP4T) 0.25 1.2 85 2 2195.00
RC-1SPDT-A18 1 0.25 1.2 85 10 485.00
RC-2SPDT-A18 2 0.25 1.2 85 10 785.00

RC-3SPDT-A18 3 0.25 1.2 85 10 1080.00
RC-4SPDT-A18 4 0.25 1.2 85 10 1280.00
RC-8SPDT-A18 8 0.25 1.2 85 10 2595.00
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IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING

The new IEEE Transactions on Computational Imaging seeks original manuscripts for publication. This new 
journal will publish research results where computation plays an integral role in the image formation process. 
All areas of computational imaging are appropriate, ranging from the principles and theory of computational 
imaging, to modeling paradigms for computational imaging, to image formation methods, to the latest innova-
tive computational imaging system designs. Topics of interest include, but are not limited to the following:

Imaging Models and 
Representation

Statistical-model based methods
System and image prior models
Noise models
Graphical and tree-based models
Perceptual models

Computational Sensing

Coded source methods
Structured light
Coded aperture methods
Compressed sensing
Light-field sensing
Plenoptic imaging
Hardware and software systems

Computational Image Creation

Sparsity-based methods
Statistically-based inversion methods, 
Bayesian regularization
Super-resolution, multi-image fusion
Learning-based methods, Dictionary-
based methods
Optimization-based methods; proximal 
iterative methods, ADMM

Computational Photography

Non-classical image capture, General-
ized illumination
Time-of-flight imaging
High dynamic range imaging
Focal stacks

Computational Consumer 
Imaging

Cell phone imaging
Camera-array systems
Depth cameras

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopic 
Imaging

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic imaging
Terahertz imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

Editor-in-Chief: W. Clem Karl, Boston University. 
To submit a paper go to: https://mc.manuscriptcentral.com/tci-ieee
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IEEE GlobalSIP'15-Call for Papers

2015 IEEE Global Conference on Signal and Information Processing Orlando Florida
General Chairs: Jose Moura and Dapeng Oliver Wu
Technical Program Chairs: Mihaela van der Schaar, Xiaodong Wang, and Hsiao-Chun Wu

The IEEE Global Conference on Signal and Information Processing (GlobalSIP) is a recently launched
flagship conference of the IEEE Signal Processing Society. GlobalSIP' 15 will be held in Orlando, Florida,
USA, December 14-16, 2015. The conference will focus broadly on signal and information processing with an
emphasis on up-and-coming signal processing themes. The conference will feature world-class speakers,
tutorials, exhibits, and technical sessions consisting of poster or oral presentations. GlobalSIP' 15 technical 
program will be comprised of a main program and several co-located symposia on special topics. Technical paper 
submissions are solicited in the interest topics which may include, but are not limited to:

Signal processing in communications and networks, including green communication and Signal processing 
in optical communication
Image and video processing
Selective topics in speech and language processing
Signal processing in security applications
Signal processing in finance
Signal processing in energy and power systems
Signal processing in  genomics and bioengineering (physiological, pharmacological and behavioral)
Signal processing for social media networks
Neural signal processing
Seismic signal processing
Selective topics in statistical signal processing
Graph-theoretic signal processing
Machine learning
Compressed sensing, sparsity analysis, and applications
Big data processing, heterogeneous information processing and informatics
Human machine interfaces
Multimedia transmission, indexing and retrieval, and playback challenges
Hardware and real-time implementations
Other novel and significant Applications of selected areas of signal processing

Submission of Papers: Prospective authors are invited to submit full-length papers, with up to four pages for technical 
content including figures and possible references, and with one additional optional 5th page containing only references. 
Manuscripts should be original (not submitted/published anywhere else) and written in accordance with the standard IEEE 
double-column paper template. All paper submissions should be carried out through EDAS system (http://edas.info). A
selection of best papers and best student papers will be made by the GlobalSIP 2015 best paper award committee upon 
recommendations from Technical Committees.

Notice: The IEEE Signal Processing Society enforces a “no-show” policy. Any accepted paper included in the final program 
is expected to have at least one author or qualified proxy attend and present the paper at the conference. Authors of the 
accepted papers included in the final program who do not attend the conference will be subscribed to a “No-Show List”, 
compiled by the Society. The “no-show” papers will not be published by IEEE on IEEEXplore or other public access forums, 
but these papers will be distributed as part of the on-site electronic proceedings and the copyright of these papers will belong 
to the IEEE.

Timeline for paper submission:
May 15, 2015:
June 30, 2015:

September 5, 2015:

Paper submission deadline
Review results announced
Camera-ready papers due
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JANUARY 2015 VOLUME 17 NUMBER 1 ITMUF8 (ISSN 1520-9210)

EDITORIAL

Message From the Editor-in-Chief http://dx.doi.org/10.1109/TMM.2014.2377871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. W. Chen 1

PAPERS

3-D Audio/Video Processing

Spatio-Temporal Video Segmentation of Static Scenes and Its Applications http://dx.doi.org/10.1109/TMM.2014.2368273 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Jiang, G. Zhang, H. Wang, and H. Bao 3

Sparse Signal Processing

Hessian Semi-Supervised Sparse Feature Selection Based on -Matrix Norm http://dx.doi.org/10.1109/TMM.2014.2375792 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Shi, Q. Ruan, G. An, and R. Zhao 16

Multimodal Human-Machine Interfaces and Interaction

Superpixel-Based Hand Gesture Recognition With Kinect Depth Camera http://dx.doi.org/10.1109/TMM.2014.2374357 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Wang, Z. Liu, and S.-C. Chan 29

Quality Assessment and User Experience

Probabilistic Skimlets Fusion for Summarizing Multiple Consumer Landmark Videos http://dx.doi.org/10.1109/TMM.2014.2370257 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhang, Y. Gao, R. Hong, Y. Hu, R. Ji, and Q. Dai 40

Using Free Energy Principle For Blind Image Quality Assessment http://dx.doi.org/10.1109/TMM.2014.2373812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Gu, G. Zhai, X. Yang, and W. Zhang 50

Content Description and Annotation

Cross-Domain Feature Learning in Multimedia http://dx.doi.org/10.1109/TMM.2014.2375793 . . . . . . . . . . . . . . . . . . X. Yang, T. Zhang, and C. Xu 64
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Multimedia Search and Retrieval

http://dx.doi.org/10.1109/TMM.2014.2368714 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Tian, Q. Jia, and T. Mei 79

Transport and Automotive

CPCDN: Content Delivery Powered by Context and User Intelligence http://dx.doi.org/10.1109/TMM.2014.2365364 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Wang, W. Zhu, M. Chen, L. Sun, and S. Yang 92

Immersive Communication and Networking

Beyond Multimedia Adaptation: Quality of Experience-Aware Multi-Sensorial Media Delivery
http://dx.doi.org/10.1109/TMM.2014.2371240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Yuan, G. Ghinea, and G.-M. Muntean 104

Wireless/Mobile Multimedia

Barcode Modulation Method for Data Transmission in Mobile Devices http://dx.doi.org/10.1109/TMM.2014.2366601 . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Motahari and M. Adjouadi 118

CORRESPONDENCES

3-D Audio/Video Processing

Auxiliary Metadata Delivery in View Synthesis Using Depth No Synthesis Error Model http://dx.doi.org/10.1109/TMM.2014.2368255 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-C. Pei and Y.-Y. Wang 128

Quality Assessment and User Experience
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http://dx.doi.org/10.1109/TMM.2014.2368272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Xue, B. Erkin, and Y. Wang 134
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FEBRUARY 2015 VOLUME 9 NUMBER 1 IJSTGY (ISSN 1932-4553)

ISSUE ON VISUAL SIGNAL PROCESSING FOR WIRELESS NETWORKS

EDITORIAL

Introduction to the Issue on Visual Signal Processing for Wireless Networks http://dx.doi.org/10.1109/JSTSP.2014.2355305 . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Velisavljević, B. Pesquet-Popescu, B. Vucetić, A. R. Reibman, and C. Yang 3

PAPERS

Video Transmission Over Lossy Wireless Networks: A Cross-Layer Perspective http://dx.doi.org/10.1109/JSTSP.2014.2342202 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Pudlewski, N. Cen, Z. Guan, and T. Melodia 6

Rate Adaptation and Admission Control for Video Transmission With Subjective Quality Constraints
http://dx.doi.org/10.1109/JSTSP.2014.2337277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Chen, X. Zhu, G. de Veciana, A. C. Bovik, and R. W. Heath 22

QoE Enhancement of SVCVideo Streaming Over Vehicular Networks Using Cooperative LTE/802.11p Communications
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Xiamen, China, October 19 – October 21, 2015
http://www.mmsp2015.org

Tentative Call for Papers

MMSP 2015 is the 17th International Workshop on Multimedia Signal Processing. The workshop is
organized by the Multimedia Signal Processing Technical Committee of the IEEE Signal Processing
Society. This year’s event has a Heterogeneous Big Data Analytics in Multimedia theme. The workshop
will bring together researchers and developers in multimedia signal processing and applications to share
their latest achievements and explore future directions and synergies in these exciting areas.

Papers are solicited in (but not limited to) the following topics, covering this year’s theme and the
general scope of multimedia signal processing:

Theories and applications for heterogeneous big media data analytics

Semantic extraction and knowledge mining from heterogeneous big media data

Massive-scale media detection and recognition

Content-based analysis, retrieval and annotation for big media data

Feature learning for heterogeneous big media data representation

Multimedia security, forensic, privacy for big data

Multimedia quality assessment and enhancement

Affective computing and cross-media sentiment analysis

Media algorithm optimization and complexity analysis

Multimedia in economics, finance, business analytics

Multimedia signals in geomatics

Image/video coding and processing

Speech/audio recognition and processing

Multimedia communications and interactions

Top 10% Paper Award
This award is granted to as many as 10% of the total paper submissions, and is open to all accepted
papers. Papers will be evaluated based on originality, technical contribution, and presentation quality
during the workshop.

Paper Submission
Prospective authors should submit full-length papers of 6 pages in two-column IEEE format, including
author affiliation and address, figures, tables and references, to the submission website. Only electronic
submissions are accepted. Paper submission implies the intent of at least one of the authors to register and
present the paper, if accepted.

Important Dates
Proposals for Special Sessions: March 20, 2015
Submission of Paper: May 28, 2015
Notification of acceptance: July 6, 2015

General Chairs

Xiao-Ping Zhang – Ryerson U, Canada

Oscar C. Au – HKUST, Hong Kong

Jonathan Li – Xiamen U, China

Technical Chairs

Tao Mei – Microsoft Research Asia

Gene Cheung – NII, Japan

Special Session Chairs

John Paisley – Columbia U, USA

Yap-Peng Tan – NTU, Singapore

Overview Chairs

Homer Chen–NTU, Taiwan

Anthony Vetro – MERL, USA

Local Arrangement Chair

Xinghao Ding –Xiamen U, China

Rongrong Ji – Xiamen U, China

Finance Chairs

Chia-Wen Lin – NTHU, Taiwan

Yue Huang – Xiamen U, China

Publications Chairs

Vicky Zhao – U. Alberta, Canada

Delu Zeng – Xiamen U, China

Publicity Chairs

Lina Stankovic – U. Strathclyde, UK

Ivan Bajic – Simon Fraser U,. Canada

Registration Chair

Liujuan Cao – Xiamen U, China

Demo Chair

Wenxin Hong – Xiamen U, China

Industry Liaison

Alexander Loui – Kodak, USA

North America Liaison

Antonio Ortega, USC, USA

Asia Liason

Feng Wu – USTC, China

Europe Liaison

Fernando Pereira – IST-IT, Portugal
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FREE SPS STUDENT MEMBERSHIP FOR 2015
You’re in the beginning stages of your career. Membership in the IEEE Signal Processing Society can help you 
lay the groundwork for many years of success. You can have it all in 2015 - and for free! Membership includes:

Discounts on conference registration fees;
Eligibility to apply for travel grants to attend SPS flagship conferences including the IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) and IEEE International Conference on 
Image Processing (ICIP);
Networking and job opportunities at the ICASSP Student Career Luncheon;
Eligibility to enter our student competition, the Signal Processing Cup, for a US$5,000 grand prize;
Involvement opportunities through SPS’s local Chapters - more than 130 worldwide;
Free electronic and digital subscriptions to IEEE Signal Processing Magazine, Inside Signal Processing 
eNewsletter, and the IEEE Signal Processing Society Content Gazette;
Access to cutting-edge educational resources, including SigView, SPS’s online video tutorial portal.

See everything Signal Processing Society membership can do for you:
http://signalprocessingsociety.org

Already an IEEE member? Join SPS for free now!
(You must have already renewed your IEEE member-
ship for 2015 to use this offer)

Visit http://ieee.org/join
On the left side, click “Societies and Special In-
terest Groups”
Click “IEEE Signal Processing Society,” then 
“Join the IEEE Signal Processing Society”
When you reach the catalog page, click “Add 
Item(s)” and sign in with your IEEE account Note: 
Free offer applies only to basic membership. For 
US$8.00, enhance your membership for more 
great benefits!
Once logged in, click “Proceed to Checkout”
When you reach the shopping cart, enter the pro-
motion code SP15STUAD and click “Apply”
Complete check out and congratulations! Wel-
come to SPS!

Not yet an IEEE Student Member?
Get a free SPS membership with the purchase of an 
IEEE Student membership!

Visit http://ieee.org/join
Click “Join as a student” on the bottom right to 
create your new IEEE Student member account
After your IEEE account is created, complete the 
membership application and proceed to “Do you 
want to add any memberships and subscrip-
tions?”
Select “Signal Processing Society membership” 
and click “add selected item”
Click “Proceed to Checkout”
When you reach the shopping cart, enter the pro-
motion code SP15STUNW and click “Apply”
Complete check out and congratulations! Wel-
come to SPS!

Note: Must be an active IEEE Student or Graduate Student member. This offer does not apply to SPS Students or 
Graduate Students  renewing for 2015.
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.    
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2015 IEEE MEMBERSHIP APPLICATION  

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address  City State/Province

Postal Code Country

Secondary Phone  

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  
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Information for Authors
(Updated/Effective September 17, 2014)

The IEEE TRANSACTIONS ON SIGNAL PROCESSING is published online twice per month
(semimonthly) covering advances in the theory and application of signal processing. The
scope is re ected in the EDICS: the Editor’s Information and Classi cation Scheme.
Please consider the journal with the most appropriate scope for your submission.
Authors are encouraged to submit manuscripts of Regular papers (papers which pro-

vide a complete disclosure of a technical premise), or Comment Correspondences (brief
items that provide comment on a paper previously published in the TRANSACTIONS).
Submissions/resubmissions must be previously unpublished and may not be under con-
sideration elsewhere.
Every manuscript must (a) provide a clearly de ned statement of the problem being

addressed, (b) state why it is important to solve the problem, and (c) give an indica-
tion as to how the current solution ts into the history of the problem, including bib-
liographic references to related work rather than restating established algorithms and
scienti c principles.
In order to be considered for review, a paper must be within the scope of the journal

and represent a novel contribution. A paper is a candidate for an Immediate Rejection
if it is of limited novelty, e.g. a straightforward combination of theories and algorithms
that are well established and are repeated on a known scenario, no new experimental
data or new application. Experimental contributions will be rejected without review if
there is insuf cient experimental data. The TRANSACTIONS are published in English.
Papers that have a large number of typographical and/or grammatical errors will also be
rejected without review.
By submission/resubmission of your manuscript to this TRANSACTIONS, you are ac-

knowledging that you accept the rules established for publication of manuscripts, in-
cluding agreement to pay all overlength page charges, color charges, and any other
charges and fees associated with publication of the manuscript. Such charges are not
negotiable and cannot be suspended.
New and revised manuscripts should be prepared following the “Manuscript Sub-

mission” guidelines below, and submitted to the online manuscript system ScholarOne
Manuscripts. After acceptance, nalized manuscripts should be prepared following the
“Final Manuscript Submission Guidelines” below. Do not send original submissions or
revisions directly to the Editor-in-Chief or Associate Editors; they will only access your
manuscript electronically via the ScholarOne Manuscripts system.

Manuscript Submission. Please follow the next steps.
1. Account in ScholarOne Manuscripts. If necessary, create an account in the on-line
submission system ScholarOne Manuscripts. Please check rst if you already have
an existing account which is based on your e-mail address and may have been
created for you when you reviewed or authored a previous paper.

2. Electronic Manuscript. Prepare a PDF le containing your manuscript in double-
column, single-spaced format using a font size of 10 points or larger, having a
margin of at least 1 inch on all sides. For a regular paper, the manuscript may not
exceed 13 double-column pages, including title; names of authors and their com-
plete contact information; abstract; text; all images, gures and tables, appendices
and proofs; and all references.
Upload this version of the manuscript as a PDF le “double.pdf” to the Schol-

arOneManuscripts site. You are encouraged to also submit a single-column, double-
spaced version (11 point font or larger), but page length restrictions will be deter-
mined by the double-column version.
For regular papers, the revised manuscript may not exceed 16 double-column

pages (10 point font), including title; names of authors and their complete contact
information; abstract; text; all images, gures and tables, appendices and proofs;
and all references.
Proofread your submission, con rming that all gures and equations are visible

in your document before you “SUBMIT” your manuscript. Proofreading is critical;
once you submit your manuscript, the manuscript cannot be changed in any way.
You may also submit your manuscript as a PostScript or MSWord le. The system
has the capability of converting your les to PDF, however it is your responsibility
to con rm that the conversion is correct and there are no font or graphics issues
prior to completing the submission process.

3. Additional Documents for Review. Please upload pdf versions of all items in the
reference list which are not publicly available, such as unpublished (submitted)
papers. Other materials for review such as supplementary tables and gures may
be uploaded as well. Reviewers will be able to view these les only if they have
the appropriate software on their computers. Use short lenames without spaces
or special characters. When the upload of each le is completed, you will be asked
to provide a description of that le.

4. Multimedia Materials. IEEE Xplore can publish multimedia les (audio, images,
video) and Matlab code along with your paper. Alternatively, you can provide
the links to such les in a README le that appears on Xplore along with

Digital Object Identi er 10.1109/TSP.2014.2358875

your paper. For details, please see http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect6 under “Multimedia.” To make
your work reproducible by others, the TRANSACTIONS encourages you to submit
all les that can recreate the gures in your paper. Files that are to be included
with the nal paper must be uploaded for consideration in the review process.

5. Submission. After uploading all les and proofreading them, submit your manu-
script by clicking “Submit.” A con rmation of the successful submission will open
on screen containing the manuscript tracking number and will be followed with an
e-mail con rmation to the corresponding and all contributing authors. Once you
click “Submit,” your manuscript cannot be changed in any way.

6. Copyright Form and Consent Form. By policy, IEEE owns the copyright to the
technical contributions it publishes on behalf of the interests of the IEEE, its au-
thors, and their employers; and to facilitate the appropriate reuse of this material
by others. To comply with the IEEE copyright policies, authors are required to sign
and submit a completed “IEEE Copyright and Consent Form” prior to publication
by the IEEE.
The IEEE recommends authors to use an effective electronic copyright form

(eCF) tool within the ScholarOne Manuscripts system. You will be redirected to
the “IEEE Electronic Copyright Form” wizard at the end of your original submis-
sion; please simply sign the eCF by typing your name at the proper location and
click on the “Submit” button.

Comment Correspondence.Comment Correspondences provide brief comments on
material previously published in the TRANSACTIONS. A comment correspondence may
not exceed 2 pages in double-column, single double-spaced format, using 9 point type,
with margins of 1 inch minimum on all sides, and including: title, names and contact
information for authors, abstract, text, references, and an appropriate number of illus-
trations and/or tables. Comment Correspondences are submitted in the same way as
regular manuscripts (see “Manuscript Submission” above for instructions).
Manuscript Length. Papers published on or after 1 January 2007 can now be up to 10

pages, and any paper in excess of 10 pages will be subject to over length page charges.
The IEEE Signal Processing Society has determined that the standard manuscript length
shall be no more than 10 published pages (double-column format, 10 point type) for
a regular submission. Manuscripts that exceed these limits will incur mandatory over
length page charges, as discussed below. Since changes recommended as a result of
peer review may require additions to the manuscript, it is strongly recommended that
you practice economy in preparing original submissions.
Exceptions to manuscript length requirements may, under extraordinary circum-

stances, be granted by the Editor-in-Chief. However, such exception does not obviate
your requirement to pay any and all over length or additional charges that attach to the
manuscript.
Resubmission of Previously Rejected Manuscripts. Authors of manuscripts re-

jected from any journal are allowed to resubmit their manuscripts only once. At the time
of submission, you will be asked whether your manuscript is a new submission or a re-
submission of an earlier rejected manuscript. If it is related to a manuscript previously
rejected by any journal, you are expected to submit supporting documents identifying
the previous submission and detailing how issues raised in the previous reviews have
been addressed. Papers that do not disclose connection to a previously rejected paper or
that do not provide documentation as to changes made may be immediately rejected.
Full details of the resubmission process can be found in the Signal Processing So-

ciety “Policy and Procedures Manual” at http://www.signalprocessingsociety.org/
about/governance/policy-procedure/.
Author Misconduct.
Author Misconduct Policy: Plagiarism includes copying someone else’s work without

appropriate credit, using someone else’s work without clear delineation of citation, and
the uncited reuse of an authors previously published work that also involves other au-
thors. Plagiarism is unacceptable.
Self-plagiarism involves the verbatim copying or reuse of an authors own prior work

without appropriate citation; it is also unacceptable. Self-plagiarism includes duplicate
submission of a single journal manuscript to two different journals, and submission of
two different journal manuscripts which overlap substantially in language or technical
contribution.
Authors may only submit original work that has not appeared elsewhere in a journal

publication, nor is under review for another journal publication. Limited overlap with
prior journal publications with a common author is allowed only if it is necessary for the
readability of the paper. If authors have used their own previously published work as a
basis for a new submission, they are required to cite the previous work and very brie y
indicate how the new submission offers substantively novel contributions beyond those
of the previously published work.
It is acceptable for conference papers to be used as the basis for a more fully devel-

oped journal submission. Still, authors are required to cite related prior work; the papers
cannot be identical; and the journal publication must include novel aspects.
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Author Misconduct Procedures: The procedures that will be used by the Signal Pro-
cessing Society in the investigation of author misconduct allegations are described in
the IEEE SPS Policies and Procedures Manual.
Author Misconduct Sanctions: The IEEE Signal Processing Society will apply the

following sanctions in any case of plagiarism, or in cases of self-plagiarism that involve
an overlap of more than 25% with another journal manuscript:
1) immediate rejection of the manuscript in question;
2) immediate withdrawal of all other submitted manuscripts by any of the authors,
submitted to any of the Society’s publications (journals, conferences, workshops),
except for manuscripts that also involve innocent co-authors; immediate with-
drawal of all other submitted manuscripts by any of the authors, submitted to
any of the Society’s publications (journals, conferences, workshops), except for
manuscripts that also involve innocent co-authors;

3) prohibition against each of the authors for any new submissions, either individually,
in combination with the authors of the plagiarizing manuscript, or in combination
with new co-authors, to all of the Society’s publications (journals, conferences,
workshops). The prohibition shall continue for one year from notice of suspension.

Further, plagiarism and self-plagiarism may also be actionable by the IEEE under the
rules of Member Conduct.

Submission Format.
Authors are encouraged to prepare manuscripts employing the on-line style les

developed by IEEE. All manuscripts accepted for publication will require the authors
to make nal submission employing these style les. The style les are available on the
web at http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect2 under “Template for all TRANSACTIONS.” (LaTeX and MS Word).
Authors using LaTeX: the two PDF versions of the manuscript needed for

submission can both be produced by the IEEEtran.cls style le. A double-spaced
document is generated by including \documentclass[11pt,draftcls,onecolumn]
{IEEEtran} as the rst line of the manuscript source le, and a single-spaced
double-column document for estimating the publication page charges via
\documentclass[10pt,twocolumn,twoside]{IEEEtran} for a regular submission, or
\documentclass[9pt,twocolumn,twoside]{IEEEtran} for a Correspondence item.

Title page and abstract: The rst page of the manuscript shall contain the title,
names and contact information for all authors (full mailing address, institutional
af liations, phone, fax, and e-mail), the abstract, and the EDICS. An asterisk *
should be placed next to the name of the Corresponding Author who will serve
as the main point of contact for the manuscript during the review and publication
processes.
An abstract must be a well-written stand-alone paragraph 150-250 words long,

with no displayed equations, footnotes, references or tabular material. The abstract
should indicate the scope of the paper and summarize the author’s conclusions,
making it a useful tool for information retrieval. Visit http://www.signalprocess-
ingsociety.org/publications/periodicals/tsp/tsp-author-info/ for speci cations and
description.
EDICS:All submissionsmustbeclassi edby theauthorwith anEDICS(Editors’ In-
formationClassi cationScheme) selected from the list ofEDICSpublishedonlineat
http://www.signalprocessingsociety.org/publications/periodicals/tsp/TSP-EDICS/

newmanuscript, please choose the EDICS categories that best suit yourmanuscript.
Failure to do so will likely result in a delay of the peer review process.

rst page—i.e., the title and abstract
page—of the manuscript.
Illustrations and tables: Each gure and table should have a caption that is intel-
ligible without requiring reference to the text. Illustrations/tables may be worked
into the text of a newly-submitted manuscript, or placed at the end of the manu-
script. (However, for the nal submission, illustrations/tables must be submitted
separately and not interwoven with the text.)
Illustrations in color may be used but, unless the nal publishing will be in color,

the author is responsible that the corresponding grayscale gure is understandable.
In preparing your illustrations, note that in the printing process, most illustrations

are reduced to single-column width to conserve space. This may result in as much
as a 4:1 reduction from the original. Therefore, make sure that all words are in a
type size that will reduce to a minimum of 9 points or 3/16 inch high in the printed
version. Only the major grid lines on graphs should be indicated.
Abbreviations: This TRANSACTIONS follows the practices of the IEEE on
units and abbreviations, as outlined in the Institute’s published standards. See
http://www.ieee.org/portal/cms_docs_iportals/iportals/publications/authors/
transjnl/auinfo07.pdf for details.
Mathematics: All mathematical expressions must be legible. Do not give deriva-
tions that are easily found in the literature; merely cite the reference.

Final Manuscript Submission Guidelines.

nalmaterials required for publicationwill be sent to theCorrespondingAuthor. Finalized
manuscripts should be prepared in LaTeX or MS Word, and are required to use the
style les established by IEEE, available at http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect2.

Instructions for preparing les for electronic submission are as follows:
nal manuscript may not exceed 16 double-column pages

(10 point font), including title; names of authors and their complete contact infor-
mation; abstract; text; all images, gures and tables, appendices and proofs; and
all references. Without expressed approval from the Editor-in-Chief, papers that
exceed 16 pages in length will not publish.

RANSACTIONS, the name of the author,
and the software used to format the manuscript.

les into the text le of your nalized manuscript (although
this is acceptable for your initial submission). If submitting on disk, use a separate
disk for graphics les.

les of the text.

les should be separate from the text, and not contain the caption text,
but include callouts like “(a),” “(b).”

le names should be lower case and named g1.eps, g2.tif, etc.

needs to be at least 600 dpi (400 dpi for color).

this will be at the expense of the author. Without other indications, color graphics
will appear in color in the online version, but will be converted to grayscale in the
print version.

IEEE supports the publication of author names in the native language alongside the
English versions of the names in the author list of an article. For more information,

org/publications_standards/publications/authors/auth_names_native_lang.pdf
Additional instructions for preparing, verifying the quality, and submitting graphics

and multimedia les are available via http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html.

Open Access.
This publication is a hybrid journal, allowing either Traditionalmanuscript submission

to have your manuscript be an Open Access article, you commit to pay the discounted
$1,750OAfee ifyourmanuscript isaccepted forpublication inorder toenableunrestricted
public access. Any other application charges (such as over-length page charge and/or
charge for theuseof color in theprint format)will bebilled separately once themanuscript
formatting is complete but prior to the publication. If you would like your manuscript to
be a Traditional submission, your article will be available to quali ed subscribers and
purchasers via IEEE Xplore. No OA payment is required for Traditional submission.

Page Charges.
Voluntary Page Charges.

thor(s) or his/her/their company or institution will be asked to pay a charge of $110 per
page to cover part of the cost of publication of the rst ten pages that comprise the stan-
dard length (six pages, in the case of Technical Correspondences until their publication
will be discontinued).
Mandatory Page Charges. The author(s) or his/her/their company or institution will

be billed $220 per each page in excess of the rst ten published pages for regular papers
and six published pages for technical correspondence until their publication will be dis-
continued. These are mandatory page charges and the author(s) will be held responsible
for them. They are not negotiable or voluntary. The author(s) signi es his willingness to
pay these charges simply by submitting his/her/their manuscript to the TRANSACTIONS.
The Publisher holds the right to withhold publication under any circumstance, as well as
publication of the current or future submissions of authors who have outstanding manda-
tory page charge debt.
Color Charges. Color gures which appear in color only in the electronic (Xplore)

version can be used free of charge. In this case, the gure will be printed in the hardcopy
version in grayscale, and the author is responsible that the corresponding grayscale gure
is intelligible. Color reproduction in print is expensive, and all charges for color are the
responsibility of the author. The estimated costs are as follows. There will be a charge
of $62.50 for each gure; this charge may be subject to change without noti cation. In
addition, there are printing preparation charges whichmay be estimated as follows: color
reproductions on four or fewer pages of the manuscript: a total of approximately $1045;
color reproductions on ve pages through eight pages: a total of approximately $2090;
color reproductions on nine through 12 pages: a total of approximately $3135, and so on.
Payment of fees on color reproduction is not negotiable or voluntary, and the author’s
agreement to publish the manuscript in the TRANSACTIONS is considered acceptance of
this requirement.
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Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 

IEEE TRANSACTIONS ON

SIGNAL AND INFORMATION PROCESSING OVER 
NETWORKS

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

Now accepting paper submissions

_________________________________
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