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[from the EDITOR]
Abdelhak Zoubir

Editor-in-Chief 
zoubir@spg.tu-darmstadt.de

http://signalprocessingsociety.org/
publications/periodicals/spm 

t the time of this writing, I had 
just received the electronic 
version of the July 2014 
issue of IEEE Spectrum.
On the cover page, the 

headline reads, “Where Are the Heroes? 
Engineers Created Our Modern World. 
And Yet Nobody Knows Who They Are.” 
By clicking on that title, I was taken to 
page 36, where I found the article titled 
“Engineering Needs More Heroes: There’s 
No Lack of Worthy Characters, So Why 
Doesn’t the Profession Celebrate Them?” 
[1]. The author of the article is G. Pascal 
Zachary, a former reporter for The Wall 
Street Journal and a professor at Arizona 
State University’s Walter Cronkite School 
of Journalism and Mass Communication. 

By just reading the title, I immediately 
thought of my editorial in the July 2014 
issue of IEEE Signal Processing Magazine
(SPM) [2], which discusses, in relation to 
the suggested Society’s name change, the 
means as to how to raise awareness about 
our profession among the lay people. This 
is a topic that is gaining much attention 
within the signal processing community, 
and it is not surprising that several editori-
als and articles have addressed this very 
important topic over the last decade.

I was quite pleased to see the article in 
IEEE Spectrum [1]. Not only is it nice 
reading, but it in fact also suggests what 
we urgently need to address in signal pro-
cessing to achieve our goal mentioned 
above. As the author of [1] states, “Cele-
brating heroes is a good way to inspire 
young people and inform the public, of 
course…. The hero deficit is in fact bad 
for engineering because it diminishes the 
enterprise in the eyes of the public, and it 
constricts the flow of talent into the field.” 

The article [1] also appears in [3], 
where one can find readers’ comments. In 
my view, the question is not whether one 
agrees with the author of [1] on who is a 
hero and who is not. Ultimately, each of 
us decides for himself or herself who the 
heroes are, and we have our own reasons 
to believe it. My personal signal process-
ing hero is not a contemporary one; he is 
Al-Khwarizmi  (c. 780–c. 850), earlier 
transliterated as Algorismi. He introduced 
the beginnings of algebra, which was rev-
olutionary, moving away from the Greek 
concept of mathematics that was essen-
tially based on geometry. His contribution 
is a cornerstone of both science and engi-
neering disciplines and is the foundation 
of many of contemporary theorems and 
algorithms, underlying information theo-
ry  and communications. The term algo-
rithm is derived from a Latin corruption 
of the name Al-Khwarizmi, which was the 
technique of performing arithmetic with 
Hindu–Arabic numerals developed by Al-
Khwarizmi [4]. In essence, it is difficult to 
imagine a special issue of SPM without 
the use of algorithms.  (A portrait of Al-
Khwarizmi can be downloaded from Don 
Knuth’s home page [5].) The reason why I 
see him as a signal processing hero is 
because algorithms development is my 
profession and passion.

In [1], IEEE Spectrum invites its read-
ers to identify today’s unsung heroes—
exemplars of engineering excellence who, 
for whatever reason, have not received the 
recognition they deserve. The invitation 
also includes the criteria of what makes a 
hero [1]. The online form can be found in 
[6]. I encourage you to open the online 
form and suggest names of signal pro-
cessing heroes. As mentioned above, it is 
what you believe that matters, and surely 
you have good reasons for it.

This special issue of SPM is on a high-
ly relevant and timely topic, i.e., signal 
processing for big data. I would like to 
thank the guest editors and authors for 
their contributions. Special thanks go to 
the lead guest editor, Georgios Gianna-
kis, who, under a very tight deadline, 
ensured that all articles were secured for 
a timely production. 

I also wish to thank the members of 
the senior editorial board who support 
Special Issues Area Editor Fulvio Gini and 
me in identifying timely and important 
topics and assessing white proposals for 
special issues. Their support is instru-
mental for ensuring that high-quality 
articles are published in SPM. It gives me 
great pleasure to introduce the new class 
of 2016 Editorial Board members: Mounir 
Ghogho, Lina Karam, Stephen McLaugh-
lin, and Erchin Serpedin. With these 
energetic and dedicated professionals, we 
shall move SPM to an even higher level 
with more innovations to come.

REFERENCES
[1] IEEE Spectr. (2014, July). [Online]. Available: http://
online.qmags.com/IEEESM12818947?sessionID=825
34985BEF39CF494026C73A&cid=780937&eid=1894
7#pg1&mode2

[2] A. M. Zoubir, “Signal processing: Is it time to 
change the name?” IEEE Signal Processing Mag.,
vol. 31, no. 4, p. 4, July 2014.

[3] G. Pascal Zachary, “Where are today’s engineer-
ing heroes?” IEEE Spectr. [Online]. Available: http://
spectrum.ieee.org/geek-life/profiles/where-are-todays-
engineering-heroes 

[4] C. B. Boyer, “The Arabic hegemony,” in A History 
of Mathematics, 2nd ed. New York: Wiley, 1991, ISBN: 
0-471-54397-7.

[5] D. Knuth. Home page. [Online]. Available: http://
www-cs-faculty.stanford.edu/~uno/graphics.html
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

Where Does Your Conference Registration Fee Go?

C
onferences are a great way 
to connect with others who 
share your interests [1]. Many 
IEEE Signal Processing Soci-
ety members may wonder 

how the registration fees to attend one of 
the Society’s conferences are used. Well, 
they are used for direct expenses, indirect 
expenses, and membership services. Over-
all, we strive for a balanced budget since 
the IEEE is a nonprofit organization with 
the goal of serving our members. 

The direct expenses include the con-
vention center, management company, 
food and beverages, and Wi-Fi. Convention 
centers have rental fees for their facilities 
and require us to use their personnel to 
support audio/video services. Large con-
ferences such as the IEEE International 
Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP) or IEEE Interna-
tional Conference on Image Processing 
(ICIP) are so much work that the organiz-
ing committee often hires the services of 
a professional conference organizer com-
pany, which takes care of processing the 
registrations, credit card expenses, man-
ning the registration desk, developing the 
conference’s Web site, handling the paper 
submissions, assembling the proceed-
ings, producing the USB drives, paying 
invoices, providing letters to attendees 
requiring visas, and much more. Confer-
ences often provide Wi-Fi access; a copy of 
the proceedings, and refreshments during 
the welcome reception, breakfasts, and 
coffee breaks.

We ask conference organizers that 
they budget 80% of the conference reg-
istration revenue to cover these direct 
expenses. The remaining 20% is used to 

cover Society personnel salaries, travel 
costs for senior volunteers, student 
grants, and other membership services 
including Distinguished Lecturers, edu-
cational materials, and awards.

The Society has 2.5 full-time staff 
members in Piscataway, New Jersey who 
oversee budgets, negotiate contracts with 
hotels and convention centers, process 
travel grants, and support the conference 
organizers and volunteer committees.

We are fortunate to have many of our 
members volunteer their time to the Soci-
ety. They serve on many of our boards, 
including the Society’s Board of Governors, 
Conference Board, Publications Board, 
Membership Board, Technical Directions 
Board, and Awards Board. In addition to 
numerous conference calls and countless 
e-mails, these boards meet face to face dur-
ing ICASSP, and some also meet during the 
fall meeting (at IEEE Global Conference on 
Signal and Information Processing (Global-
SIP) or ICIP) in North America. This is a 
significant time commitment that is highly 
appreciated, so the Society covers their 
hotel cost and (coach) airfare.

We also use some of the conference 
registration fees to provide services to 
our student members. We provide travel 
grants for students with accepted papers 
at ICASSP, ICIP, and the IEEE Global-
SIP. We also provide grants to students 
attending our summer schools. The 
Society allocates travel and prize money 
to the student finalists in our Signal 
Processing Cup.

The Society prepares a balanced 
budget for an estimated number of 
conference attendees based on histori-
cal trends. Convention center costs are 
mostly independent of the number of 
attendees. If the conference has fewer 
attendees than planned, it incurs a 

net loss to the Society. The majority 
of attendees typically register by the 
author registration deadline about two 
months prior to the conference, oth-
ers by the early registration deadline a 
month before, and usually less than 10% 
after that or onsite. If a week or so prior 
to the conference we believe that we will 
have more attendees than forecast, we 
encourage the organizing committee 
to upgrade the food and drink options 
(possibly offering complimentary bever-
ages during the welcome reception). 

Many of the Society’s conferences 
thus result in a balanced budget. Some 
workshops lose money. A few large con-
ferences produce a small surplus. Over-
all, any surplus from conferences goes 
to the Society’s reserves as a “rainy day” 
fund in case we experience poor eco-
nomic times, like what we faced in 
2007–2009, or unexpected events 
(ICASSP 2003 in Hong Kong was can-
celed due to the SARS epidemic), and to 
fund membership initiatives.

Conferences provide an excellent 
opportunity for attendees to present their 
work, learn about the latest trends, and 
network with each other. The Society is 
always looking to provide a balance 
between a good attendee experience and 
good value. I welcome any suggestions 
you may have on how to improve the con-
ference experience.

REFERENCE
[1] IEEE.Tv. [Online]. Available: https://ieeetv.ieee.
org/player/html/viewer?dl=#why-conferences-matter-
the-global-technical-community
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Top Downloads in IEEE Xplore

T
he “Reader’s Choice” col-
umn in IEEE Signal Pro-
cessing Magazine contains 
a list of articles published 
by the IEEE Signal Process-

ing Society (SPS) that ranked among 

the top 100 most downloaded IEEE 
Xplore articles. This issue’s column is 
based on download data through March 
2014. The table below contains the cita-
tion information for each article and 
the rank obtained in IEEE Xplore. The 

highest rank obtained by an article in 
this time frame is indicated in bold. 
Your suggestions and comments are 
welcome and should be sent to Associ-
ate Editor Michael Gormish (gormish@
ieee.org).

Digital Object Identifier 10.1109/MSP.2014.2329991

Date of publication: 19 August 2014

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 N TIMES
IN TOP
100 (SINCE  
JAN 2011)

MAR
2014

FEB 
2014

JAN 
2014

DEC 
2013

NOV 
2013

OCT 
2013

A TUTORIAL ON PARTICLE FILTERS FOR 
ONLINE NONLINEAR/NON-GAUSSIAN-
BAYESIAN TRACKING
Arulampalam, M.S.; Maskell,S.; 
Gordon, N.; Clapp, T. 
IEEE Transactions on Signal Processing
vol. 50, no. 2, 2002, pp. 174–188

This paper reviews optimal and suboptimal 
Bayesian algorithms for nonlinear/
non-Gaussian tracking problems, with a 
focus on particle filters. Variants of the 
particle filter are introduced within a 
framework of the sequential importance 
sampling algorithm and compared with 
the standard EKF.

9 10 31 8 6 25 36

AN INTRODUCTION TO COMPRESSIVE
SAMPLING
Candes, E.J.; Wakin, M.B.
IEEE Signal Processing Magazine
vol. 25, no. 2, Mar. 2008, pp. 21–30

This article surveys the theory of 
compressive sampling, also known as 
compressed sensing or CS, a novel 
sensing/sampling paradigm that goes 
against the common wisdom in data 
acquisition.

21 19 14 10 11 10 38

IMAGE QUALITY ASSESSMENT: FROM
ERROR VISIBILITY TO STRUCTURAL
SIMILARITY
Zhou W.; Bovik, A.C.; Sheikh, H.R.; 
Simoncelli, E.P.
IEEE Transactions on Image Processing  
vol. 13, no. 4, 2004, pp. 600–612

This paper introduces a framework for 
quality assessment based on the 
degradation of structural information. 
Within this framework a structure 
similarity index is developed and 
evaluated. MATLAB code available. 

31 42 24 28 24 33 18

VECTOR-VALUED IMAGE PROCESSING
BY PARALLEL LEVEL SETS
Ehrhardt, M.J.; Arridge, S.R.
IEEE Transactions on Image Processing
vol. 23, no. 1, pp 8–9

This paper considers the components of 
an image as a vector. By minimizing large 
angles parallel level sets are obtained and 
used for demosaicking.

50 58 22 98 4

IMAGE SUPER-RESOLUTION
VIA SPARSE REPRESENTATION
Yang, J.; Wright, J.; Huang, T.S.; Ma, Y.
IEEE Transactions on Image Processing
vol. 19, no. 11, 2010, pp. 2861–2873

This paper presents an approach to 
single-image super-resolution, based upon 
sparse signal representation of low and 
high-resolution patches.

55 92 27 31 44 51 10
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 N TIMES
IN TOP
100 (SINCE  
JAN 2011)

MAR
2014

FEB 
2014

JAN 
2014

DEC 
2013

NOV 
2013

OCT 
2013

SCALING UP MIMO:
OPPORTUNITIES AND CHALLENGES
WITH VERY LARGE ARRAYS
Rusek, F.; Persson, D.; Lau, B.K.;  
Larsson, E.G.; Marzetta, T.L.; Edfors, O.; 
Tufvesson, F. 
IEEE Signal Processing Magazine 
vol. 30, no. 1, 2013, pp. 40–60

The more antennas the transmitter/
receiver is equipped with, and the more 
degrees of freedom that the propagation 
channel can provide, the better the perfor-
mance in terms of data rate or link 
reliability. This article quantifies the 
reliability and achievable rates.

78 82 43 75 12

K-SVD: AN ALGORITHM FOR DESIGNING
OVERCOMPLETE DICTIONARIES FOR
SPARSE REPRESENTATION
Aharon, M.; Elad, M.; Bruckstein, A.
IEEE Transactions on Signal Processing
vol. 54, no. 11, 2006, pp. 4311–4322

K-SVD is an iterative method that 
alternates between sparse coding of the 
training examples based on the current 
dictionary and a process of updating the 
dictionary atoms to better fit the data and 
can be used with any pursuit method.

87 1

IMAGE QUALITY ASSESSMENT
FOR FAKE BIOMETRIC DETECTION:
APPLICATION TO IRIS, FINGERPRINT,
AND FACE RECOGNITION
Galbally, J.; Marcel, S; Fierrez, J.
IEEE Transactions on Image Processing
vol. 23, no. 2, 2014, pp. 710–724

This paper uses 25 general image-quality 
features extracted from the authentication 
image to distinguish between legitimate 
and imposter samples for fingerprint, iris, 
and two-dimensional face biometrics.

74 50 2

SUPER-RESOLUTION
IMAGE RECONSTRUCTION:
A TECHNICAL OVERVIEW
Cheol Park, S; Kyu Park, M.; Gi Kang, M.
IEEE Signal Processing Magazine
vol. 20, no. 3, 2003, pp. 21–36

This article introduces the concept of 
super-resolutions (SR) algorithms and 
presents a technical review of various 
existing SR methodologies and models the 
low-resolution image acquisition process.

43 34 45 90 4

IMAGE PROCESSING USING SMOOTH
ORDERING OF ITS PATCHES 
Ram, I.; Elad, M.; Cohen, I.
IEEE Transactions on Image Processing
vol. 22, no. 7, 2013, pp. 2764–2774

This paper extracts overlapping image 
patches, orders these patches, and applies 
one-dimensional filtering to the reordered 
set of pixels. These techniques are applied 
to denoising and inpainting.

60 63 90 36 8

FINGERPRINT COMPRESSION BASED ON
SPARSE REPRESENTATION
Guangqui, S; Wu, Y; Yong, A., Liu, X.;  
Guo, T.
IEEE Transactions on Image Processing
vol. 23, no. 2, 2014, pp. 489–501

Compression using a sparse linear 
combination of dictionary atoms are used 
to compress three groups of finger print 
images and compared with JPEG, 
JPEG2000, and WSQ.

66 1

GLOBAL IMAGE DENOISING
Talebi, H.; Milanfar, P.
IEEE Transactions on Image Processing
vol. 23, no. 2, 2014, pp. 755–768

This paper improves on patch similarity 
denoising methods by using spectral 
components from all pixels in an image. 
This global filter can be approximated by 
sampling a small percentage of pixels in 
the image.

67 1

COMPRESSIVE SENSING
[LECTURE NOTES]
Baraniuk, R.G.
IEEE Signal Processing Magazine 
vol. 24, no. 4, 2007, pp. 118–121

This lecture note presents a new method 
to capture and represent compressible 
signals at a rate significantly below the 
Nyquist rate. This method, called 
compressive sensing, employs nonadaptive 
linear projections that preserve the 
structure of the signal; the signal is then 
reconstructed from these projections using 
an optimization process.

73 39 58 60 10
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By John Edwards
[special REPORTS]
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Signal Processing Leads to New Wireless Technologies

I
f wireless technology seems to be 
everywhere and with everyone 
these days, we can thank (or 
blame) signal processing for 
much of what’s happened within 

the wireless industry over the past 
several years. From mobile phones to 
network routers to geolocation 
devices to an array of different wire-
less sensors, signal processing has 
revolutionized the way people and 
machines communicate and, in the 
process, changed the world.

Now, as researchers strive to cre-
ate a fresh generation of wireless 
technologies as well as refine and 
improve existing systems, signal pro-
cessing techniques continue to play 
a major role in helping designers 
create innovative features, enhance 
performance, shrink form factors, 
and lower costs. Researchers have 
recently turned to signal processing 
for assistance in projects aimed at 
developing an enhanced radio frequency 
identification (RFID) system, shrinking a 
frequency modulation (FM) radio trans-
mitter down to atomic size, and replacing 
conventional space radio communication 
with a faster and more efficient optical 
wireless technology.

IMPROVED RFID
RFID is widely used to track everything 
from global food shipments to components 
moving down a production line to travel-
ers’ passports. Researchers at the Univer-
sity of Cambridge now want to make 
ultrahigh frequency (UHF) RFID even 
more ubiquitous by improving the tech-
nology’s accuracy and increasing its range. 

Enhancing today’s RFID technology 
promises to create an almost endless array 
of new location-oriented applications, 
such as continuous monitoring of sick 
and elderly people in their homes and 
elsewhere, real-time environmental moni-
toring in areas prone to natural disasters, 
or paying for goods without the need to 
visit a conventional point-of-sale system.

Most UHF RFID systems in place today 
use a reader to interrogate data that’s 
stored on a passive (unpowered) tag. Yet 
many existing RFID deployments are 
plagued by dead spots created by various 
types of obstacles, such as walls and indus-
trial equipment. “Tag detection accuracy 
typically degrades at a distance of approxi-
mately 2–3 m, and interrogating signals 
can be canceled due to reflections leading 
to dead spots within the radio environ-
ment,” says Sithamparanathan Sabesan 

(Figure 1), a research fellow at the 
University of Cambridge’s Depart-
ment of Engineering’s Center for 
Photonic Systems.

A new system created by Sabesan, 
in collaboration with colleague 
Michael Crisp, Prof. Richard Penty, 
and Prof. Ian White, promises to 
increase the accuracy of passive UHF 
RFID tag detection from roughly 
50% to nearly 100% while boosting 
the reliable detection range from 
2–3 m to approximately 20 m. The 
technology makes use of a distrib-
uted antenna system (DAS), which is 
similar to the type commonly used 
to improve Wi-Fi communications 
within a building.

By multicasting RFID signals 
over several different transmitting 
antennas, the researchers say they 
were able to dynamically move dead 
spots to nonessential areas to 
achieve an effectively error-free sys-

tem. By grouping four transmitting and 
receiving antenna pairs, the team was 
able to shrink the number of dead spots 
in the system from nearly 50% to 0% 
over a 20×15-m area. Several other meth-
ods of expanding passive RFID coverage 
have been developed over the past few 
years, but none address the issues of dead 
spots, Sabesan notes.

The new system actually requires 
fewer antennas than existing configura-
tions. Most current RFID deployments 
attempt to ensure accurate tag interroga-
tions by shortening the distance between 
the antennas and the tags. Such arrange-
ments demand a large number of anten-
nas to reach an acceptable accuracy rate 
yet still fail to achieve completely accu-
rate detection. “To respond to these chal-
lenges, we have developed novel 
technologies relating to wide-area RFID 

Digital Object Identifier 10.1109/MSP.2014.2330005

Date of publication: 19 August 2014

[FIG1] Sithamparanathan Sabesan, a research fellow 
at the University of Cambridge's Department of 
Engineering's Center for Photonic Systems, is 
collaborating with colleague Michael Crisp, Prof. 
Richard Penty, and Prof. Ian White on a longer range 
and more accurate RFID system.
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[special REPORTS]continued

using a DAS and analog signal processing 
techniques,” Sabesan says. “In our work, 
we did not attempt to remove the nulls; 
instead, we varied the location of the 
nulls, moving them away from the tag 
and facilitating a successful reading.”

Sabesan says the researchers were able 
to nudge the nulls by manipulating the 
phase between the radio-frequency (RF) 
signals transmitted at each antenna over a 
range of RF carrier frequencies in the DAS. 
“By making a number of read attempts 
with different combinations of carrier fre-
quency and phase difference between the 
antennas, the physical locations of con-
structive and destructive interference 
between the antennas can be varied,” he 
remarks. “Over a number of read attempts, 
all locations will experience constructive 
interference resulting in a 100% probabil-
ity that all the RFID tags can be read.”

A prototype DAS RFID system created 
by the researchers consisted of a base 
station containing a reader chip, an RF 
processing unit, RFID patch antennas, 
and passive tags. The antennas were dis-
tributed over the interrogation area using 
coaxial cable.

The DAS RFID controller was con-
nected to a centralized server via an Ether-
net interface, allowing tag information to 
be uploaded to the server for processing, 
analysis, and display. The RF processing 
unit consisted of phase shifters, switches, 
splitters, and combiners to perform the 
frequency and phase shifts, closely 

synchronized with the tag interrogation 
attempts by the RFID controller. The RF 
processing unit was designed to switch 
antennas so each could perform either 
transmit or receive operations in succes-
sive tag interrogations. Since the number 
of tags and their locations was unknown 
and the RF environment (the number and 
location of nulls) was also unknown, the 
relative phase and absolute frequency were 
randomly dithered. Over time, the ran-
domization of the null locations allowed a 
tag at any location to be read.

According to the researchers, coverage 
can be further improved by phase hopping 
the received backscattered signals from 
each antenna to give constructive interfer-
ence. Over a number of read attempts, all 
locations will experience constructive 
interference resulting in a high probability 
that all the RFID tags may be read.

Some difficult challenges remain 
unmet, Sabesan says. “These include 
high-quality sensing, such as precise 
three-dimensional tag location and speed/
velocity measurement.” Sabesan is look-
ing forward to resolving the challenges. 
“This new RFID system can then be used 
in many future advanced applications 
such as intelligent traffic congestion 
management through real-time RFID-
enabled vehicle tracking,” he notes.

TINY TRANSMITTER
The world’s smallest FM radio transmit-
ter won’t directly benefit broadcasters or 

two-way radio users, but the device does 
promise to lead to multiple signal pro-
cessing applications.

Developed by Columbia University 
researchers, led by Kenneth Shepard, pro-
fessor of electrical engineering (Figure 2), 
and James Hone, professor of mechanical 
engineering, the graphene-based transmit-
ter takes advantage of the substance’s 
unique properties—mechanical strength 
and electrical conduction—to form a 
nanomechanical system capable of gener-
ating FM signals. 

Graphene, a single atomic layer of car-
bon, is the strongest known material. It 
also has electrical properties that are supe-
rior to the silicon used in chip manufac-
turing. This combination makes graphene 
a potentially ideal material for nanoelectro-
mechanical systems (NEMS), scaled-down 
versions of the microelectromechanical 
systems (MEMS), widely used as vibration 
and acceleration sensors. “Our devices are 
significantly smaller than other radio-sig-
nal sources and can be put on the same 
chip that’s used for data processing,” 
Shepard says.

The researchers leveraged graphene’s 
mechanical stretchability to tune the out-
put frequency of their custom oscillator, 
creating a nanomechanical version of a 
voltage controlled oscillator (VCO). The 
team built a graphene NEMS (GNEMS) 
with a frequency tuned to 100 MHz—near 
the center of the U.S. FM broadcast radio 
band (87.7–108 MHz). The team used low-
frequency musical signals to modulate the 
carrier signal and retrieved the signals 
with an ordinary FM radio receiver.

The atomically thin resonators can be 
tuned to within a 14% tolerance. The 
device was fabricated using a small gra-
phene element suspended within a clamp 
formed from an SU-8 photoresist. SU-8 is 
a viscous polymer that can be processed 
with standard contact lithography and pat-
terned into high-aspect-ratio structures.

The device operates as a resonant chan-
nel transistor in which the effect of the 
oscillating capacitance is amplified by the 
transistor action of the graphene channel. 
According to the researchers, such a struc-
ture is similar to both the resonant gate 
transistor, which utilizes an oscillating 
metallic gate electrode, as well as the 

[FIG2] Kenneth Shepard, Columbia University professor of electrical engineering, 
collaborated with James Hone, professor of mechanical engineering, also of Columbia 
University, to develop the world’s smallest FM radio transmitter.
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recently demonstrated resonant body tran-
sistor, in which the entire transistor struc-
ture oscillates. Graphene devices differ 
from these CMOS-based structures in that 
they are orders of magnitude lower in 
mass and have gate-tunable resonant fre-
quencies. The researchers note that fur-
ther scaling down of graphene device size 
and optimization of the structure for lower 
parasitic capacitance and higher transcon-
ductance may enable readout of graphene 
NEMS in the gigahertz range for use in 
wireless communication and studies of 
fundamental physics.

While GNEMS aren’t likely to ever re-
place conventional radio transmitters, 
they have significant potential applica-
tions in wireless signal processing. “Cell 
phones are becoming smaller, but some 
devices, particularly components involved 
in creating and processing RF signals, are 
very hard to miniaturize,” Shepard says. 
Such “off-chip” components require a 
great deal of space and power. “Most of 
these components also can’t be easily 
tuned, requiring multiple copies to cover 
the range of frequencies used for wireless 
communication.”

Since GNEMs are highly compact, eas-
ily integrated, and, thanks to their great 
mechanical strength, capable of being 
tuned to a wide range of frequencies, they 
provide a potential solution to the size/

power and tuning challenges. “When you 
have to do stuff with off-chip components, 
that adds to the size and it adds cost, and 
that’s been the story of electronics for the 
last 30 years,” Shepard explains. “If you 
can bring things onto an integrated cir-
cuit, it brings you significant advantages 
in reducing overall system cost but also in 
overall performance.”

The researchers are now working to 
improve the noise performance of graphene 
oscillators. They are also planning to dem-
onstrate integration of graphene NEMS 
with silicon integrated circuits, making the 
oscillator design even more compact.

OPTICAL IN SPACE
Radio-based communication has been a 
mainstay of space programs for more 
than a half-century. Yet today’s sophisti-
cated space missions require signifi-
cantly higher data rates without the drag 
of extra mass or power demands.

NASA believes that the answer lies in 
optical communication. Recent advances 
in optical frequency links promise to 
make radioless links viable in near-term 
space applications. “Optical is getting 
ready to become the next generation of 
space communications,” says researcher 
Andrew Fletcher (Figure 3) of the Massa-
chusetts Institute of Technology (MIT) 
Lincoln Laboratory in Lexington. MIT 
researchers are working with counter-
parts at several other research facilities on 
the Laser Communications Relay Demon-
stration Project (LCRD) to develop a prac-
tical optical communications system for 
space missions. The LCRD program is 
being led by NASA’s Goddard Space Flight 
Center in Greenbelt, Maryland.

Since laser-light wavelength is far 
shorter than radio signals, its energy 
remains much more concentrated as it 
travels through space. A typical Ka-Band 
radio signal from Mars, for example, 

[FIG3] Andrew Fletcher of the MIT
Lincoln Laboratory is working with 
counterparts at MIT and several other 
research facilities to develop a practical 
optical communications system for 
space missions.

The Norwegian University of Science and Technology (NTNU) in Trondheim represents 
academic eminence in technology and the natural sciences as well as in other academic 
disciplines ranging from the social sciences, the arts, medicine, teacher education, 
architecture to fine art. Cross-disciplinary cooperation results in innovative 
breakthroughs and creative solutions with far-reaching social and economic impact.
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The Faculty of Information Technology,   
Mathematics and Electrical Engineering 
Department of electronics and Telecommunications 

Professor/Associate    
Professor in Signal Processing 
We invite applications for a full-time professorship/associate professorship in 
Signal Processing affiliated with the Department of Electronics and  
Telecommunications (http://www.iet.ntnu.no/en). The professor is expected to 
play a leading role in research and research-based education in signal  
processing in collaboration with the existing staff. Furthermore, the professor 
will have a particular responsibility for fundamental signal processing,  
more specifically statistical signal theory and machine learning for  
signal processing. 
Further details about the professorship/associate professorship can be  
obtained from professor Torbjørn Svendsen, phone (+47) 735 92 674 or  
e-mail: torbjorn@iet.ntnu.no, or head of Department, Ragnar Hergum,  
phone (+47) 735 92 023 or e-mail: ragnar.hergum@iet.ntnu.no
Applications are to be submitted electronically through jobbnorge.no.  
Reference no: IME-032/2014. Application deadline: 2014-09-30.

See full announcement at www.jobbnorge.no (ID 104272)
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[special REPORTS]continued

spreads out so much that its diameter 
when it reaches Earth is actually larger 
than the Earth’s diameter. An equivalent 
optical signal, however, would have a 
footprint equivalent to only a small por-
tion of the continental United States.

According to LCRD researchers, opti-
cal communications technology has the 
ability to achieve bidirectional near-Earth 
data links at speeds of 10 Gb/s and beyond 
utilizing differential phase shift keying 
(DPSK) modulation. Similarly, deep space 
links with downlinks of up to 1 Gb/s and 
uplinks up to 100 Mb/s are potentially 
achievable using photon counting and 
pulse position monitoring (PPM) modula-
tion techniques. Photon counting PPM is 
highly photon efficient, but the ultimate 
data rate is limited due to detector limita-
tions and the need for speedier electron-
ics. LCRD will use both DPSK at 
1.25 Gb/s and PPM at 311 Mb/s data rates.

Besides facing the challenge of creat-
ing an optical communication system’s 
mechanical design and developing vari-
ous optical subsystems, the researchers 
also need to address some serious com-
munication challenges. One major issue 
is the fact that free-space optical signals 
are likely to encounter propagation envi-
ronments far more extreme than the 
types of RF signals typically experienced.

“What happens when you shine your 
light through the atmosphere is that it 
gets bothered by the turbulence,” Fletcher 
remarks. The atmosphere is far from a 
homogeneous medium, and as light passes 

through, it goes through varying indexes 
of refraction, which distorts the beam. 
“One of the results of that is a fading chan-
nel on the receiving end,” Fletcher says.

Various techniques have been devel-
oped to deal with the challenge posed by 
optical signal fading. “The approach we 
use, which can be quite powerful, is for-
ward error correction with some signifi-
cant data interleaving,” Fletcher says. 
“There’s been some real advances over the 
last 20 years or so in our capabilities to do 
forward error correction, but it’s still hard 
to do really advanced forward error cor-
rection at very high data rates, and it’s 
particularly challenging to be able to do 
that on a space platform,” Fletcher notes.

The project addressed this concern 
with a DPSK receiver that features an op-
tical preamplifier stage and an optical fil-
ter where the light is split between a clock 
recovery unit and a communications re-
ceiver. The receiver uses a delay-line 
interferometer followed by balanced pho-
todetectors to compare the phases of con-
secutive pulses, making a hard decision on 
each channel bit. While coding and inter-
leaving will be applied in the ground ter-
minal to mitigate noise and atmospheric 
fading, the DPSK receiver does not decode 
nor de-interleave. The modems instead 
support a relay architecture where uplink 
and downlink errors are corrected togeth-
er in a decoder located at the destination 
ground station.

“What this allows us to do is have 
very high-performance signal processing 

that can happen at the two end points at 
the ground stations and not have to do it 
on the relay itself,” Fletcher says. “The 
whole relay architecture is designed with 
this in mind to be able to leverage the 
really high-performance error correction 
that has been developed over the past 
few decades.”

The researchers are looking toward 
flying and validating a reliable, capable 
and cost-effective optical communica-
tions technology directly applicable to 
the next generation of NASA’s space 
communications network, serving both 
near-Earth and deep-space mission 
requirements. The completed payload 
will be flown into orbit on a commercial 
satellite. Mission operators at ground 
stations in New Mexico and California 
will test its invisible, near-infrared lasers, 
beaming data to and from the satellite as 
they refine the transmission process, 
studying different encoding techniques 
and perfect tracking systems. 

The researchers also will study the 
effects of clouds and other disruptions on 
communications and evaluate mitigating 
solutions. Ground technology validation 
testing is set for this year. The satellite 
payload is scheduled to fly in 2017.

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona, area.
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Signal Processing for Big Data

T
he information explosion pro-
pelled by the advent of online 
social media, the Internet, and 
global-scale communications 
has rendered learning from 

data increasingly important. At any given 
time around the globe, large volumes of 
data are generated by today’s ubiquitous 
communication, imaging, and mobile 
devices such as cell phones, surveillance 
cameras, medical and e-commerce plat-
forms, as well as social networking sites. 
While many find this intrusive and raise 
legitimately “Big Brother” concerns, there 
is no denying that tremendous economic 
growth and improvement in quality of life 
hinge upon harnessing the potential bene-
fits of analyzing massive data.

The term big data was coined to 
describe this information deluge, and sig-
nal processing (SP) tools and applications 
are clearly well seasoned to play a major 
role in this data science endeavor. Quot-
ing a recent article published in The 
Economist, “The effect (of Big Data) is 
being felt everywhere, from business to 
science, and from government to the arts” 
[1]. Mining information from unprece-
dented volumes of data promises to pre-
vent or limit the spread of epidemics and 
diseases, identifying trends in financial 
markets, learning the dynamics of emer-
gent social-computational systems, and 
also protect critical infrastructure includ-
ing the smart grid and the Internet’s 
backbone network. But great promises 
come with formidable research chal-
lenges; as Google’s chief economist 
explains in the same article, “Data are 
widely available, what is scarce is the abil-
ity to extract wisdom from them.” While 
significant progress has been made in the 

last decade toward achieving the ultimate 
goal of “making sense of it all,” the con-
sensus is that we are still not quite there.

In this context, this special issue (SI) 
of IEEE Signal Processing Magazine
(SPM) aims to 1) delineate the theoretical 
and algorithmic underpinnings along 
with the relevance of SP tools to the 
emerging field of big data and 2) introduce 
readers to the challenges and opportunities 
for SP research on (massive-scale) data an-
alytics. The latter entails an extended and 
continuously refined technological wish 
list, which is envisioned to encompass 
high-dimensional, decentralized, parallel, 
online, and robust statistical SP, as well as 
large, distributed, fault-tolerant, and in-
telligent systems engineering. The goal of 
this SI is to selectively sample a diverse 
gamut of big data challenges and oppor-
tunities through surveys of methodologi-
cal advances, as well as more focused- and 
application-oriented contributions chosen 
on the basis of timeliness, importance, 
and relevance to SP.

The interest in big data-related re-
search from the SP community is evident 
from the increasing number of papers 
submitted on this topic to SP-oriented 
publications, workshops, and conferences. 
In terms of funding programs, the impor-
tance of big data research is also apparent. 
The White House Office of Science and 
Technology Policy in concert with several 
federal departments and agencies an-
nounced the Big Data Research and De-
velopment Initiative in 2012 [2]. The 
launch included generous funding in new 
commitments through the National Sci-
ence Foundation, National Institutes of 
Health, Defense Advanced Research Proj-
ects Agency, and U.S. Department of De-
fense (DoD) at large, U.S. Department of 
Energy (DoE), and the U.S. Geological 
Survey. The DoD is placing a “Big Bet on 

Big Data,” with two dozen open solicita-
tions. Likewise, the European Union 
Commission shows increasing interest in 
big data analytics, e.g., under the Seventh 
Framework Programme for Research. All 
these provide ample testament that the 
theme of this SI is timely, and we hope 
that it offers something from which the 
SP readership will benefit.

Our opening article by Slavakis, 
Giannakis, and Mateos begins with a 
fairly rich family of models capturing a 
wide range of SP-relevant data analytic 
tasks. These include principal compo-
nent analysis, nonnegative matrix factor-
ization, dictionary learning, compressive 
sampling, and subspace clustering. 
Building on these models, the article 
further offers scalable inference and opti-
mization algorithms for decentralized 
and online learning problems, while 
revealing fundamental insights into the 
various analytic and implementation 
tradeoffs involved. Generalizations of 
these encompassing models to timely 
data-sketching and tensor- and kernel-
based learning tasks are also provided. 
The contribution finally demonstrates 
how the presented framework applies to 
several big data tasks, such as network 
visualization, decentralized and dynamic 
estimation, prediction, and imputation 
of network link load traffic, as well as 
imputation in tensor-based magnetic 
resonance imaging.

The second article, by Cevher, Becker, 
and Schmidt, places particular emphasis 
on recent advances in convex optimization 
algorithms tailored for big data, having as 
ultimate goal to markedly reduce the 
computational, storage, and communica-
tion bottlenecks. The valuable overview of 
this emerging field comprises contempo-
rary approximation techniques such as 
first-order methods and randomization for 
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scalability, as well as parallel and distrib-
uted schemes that play an increasingly 
instrumental role in large-scale computa-
tion. The new big data algorithms out-
lined are based on surprisingly simple 
principles and attain impressive accelera-
tions even on classical optimization tasks.

As the size of data grows, so does the 
chance to involve outlying observations. 
This in turn motivates the need for out-
lier-resilient learning algorithms scaling 
to large-scale application settings. In this 
context, the article by Tajer, Veeravalli, and 
Poor deals with robust, sequential detec-
tion schemes for big data. Outlying 
sequence detection is particularly impor-
tant in health, the Internet, energy, tele-
communications, and related large-scale 
problems. The article demonstrates how 
outlying sequence detection algorithms 
can be analyzed by viewing them as strate-
gies for hypothesis testing with different 
outlying recovery objectives. Using this 
approach allows the effectiveness of outly-
ing sequence detection strategies to be 
evaluated in the big data regime.

The acquisition modality, information 
processing, and inference from observa-
tions often dictates the need to deal with 
tensors—often big arrays of data collected 
in (hyper)cubes, thus generalizing the 
notion of data matrices. The growth of big 
data platforms makes it possible to solve 
large-scale tensor problems, which are 
encountered in various applications rang-
ing from multiantenna communication 
transceivers to speech and audio, as well 
as machine learning from Internet data, to 
name a few. Sidiropoulos, Papalexakis, and 
Faloutsos introduce, in their article, inter-
esting identifiability results and a parallel 
decomposition approach for tensors hav-
ing low rank. This allows the resultant 
algorithms to scale nicely to sizes growing 
inversely proportional to the tensor rank.

High-order tensors and their decompo-
sitions are abundantly present in domains 
such as statistical SP (e.g., high-order mo-
ments and sensor arrays), scientific com-
puting (e.g., discretized multivariate 
functions), and quantum information the-
ory (e.g., for quantum many-body states). 

Representing the full tensor quickly be-
comes impractical for modern practical 
problems as the tensor’s order increases. 
The article by Vervliet, Debals, Sorber, and 
De Lathauwer focuses on compact multi-
linear models that enable computational 
manipulation and estimation of such mod-
els from incomplete information. 

After overviewing pertinent models and 
algorithms, two case studies are presented 
in multidimensional harmonic retrieval 
and material science to illustrate the 
potential of these approaches. In addition 
to matrices and tensors, big data emerge 
often from large-scale networks and gener-
ally graphs that are abundant in SP-
relevant applications. The article by 
Sandryhaila and Moura highlights recent 
work on developing a paradigm for the 
analysis of graph-based data based on the 
so-called discrete signal processing on 
graphs (DSPG) approach—an effort to 
extend classical SP notions and techniques 
to data indexed by general graphs. The 
motivation should be clear: large data sets 
that are naturally modeled as graphs are 
generated and analyzed in a wide range of 
applications, and extracting valuable infor-
mation from these data requires innovative 
approaches. Not surprisingly, some DSPG 
methods result from a straightforward 
mapping of time series to spectral graphs, 
which allows for drawing parallels from 
the former to the latter in notions as classi-
cal as filtering, spectral analysis, and trans-
form theory. Interestingly, this is just the 
tip of the iceberg, since there are many 
subtle and fundamental issues that arise in 
DSPG, as articulated in this article. The 
discrete Fourier transform (DFT) is one of 
SP’s “workhorses,” and its popular imple-
mentation relies on the celebrated fast 
Fourier transform (FFT). The article by 
Gilbert, Indyk, Iwen, and Schmidt 
describes recent developments in an alter-
native, so-called sparse Fourier transform 
(SFT) implementation, which offers prom-
ises in certain large-scale data tasks involv-
ing sparse signals. The SFT can compute a 
compressed Fourier transform using only 
a subset of the input data in time, consid-
erably shorter than the original data set 

size. SFT can thus be faster than the FFT 
when it is hard in large-scale applications 
to acquire enough data to run the FFT, 
and/or it is desirable to run DFT in time 
sublinear in the input size—a welcome 
attribute in medical imaging, when it is 
important to reduce the time that the 
patient spends in the magnetic resonance 
imaging machine. In addition to an over-
view of SFT, the article outlines the basic 
techniques and tradeoffs involved, as well 
as the connections between the SFT and 
related methods such as streaming algo-
rithms and compressive sampling.

 Given the deluge we experience from 
video, audio, medical imagery, spectro-
scopic, geophysical, and seismic data, the 
models and SP-related tools exposed in 
this SI promise a significant impact on 
many traditional but also in various 
emerging large-scale applications. One 
such innovative application wraps up this 
SI and deals with collaborative bike sens-
ing for automatic geographic enrichment. 
Verstockt, Slavkovikj, De Potter, and Van 
de Walle put forth in their article a system 
for automatic annotation of geographical 
data from cyclists’ smartphones. The arti-
cle describes the effectiveness of this 
system with large-scale data sets in real-
world conditions. 

In closing, we would like to express 
our appreciation to the Editorial Board 
and staff of IEEE SPM (especially SI Area 
Editor Fulvio Gini) for encouraging, 
reviewing, welcoming, and facilitating the 
processing of this SI. And of course, this 
issue would have not been possible with-
out the high-quality feedback received 
from the conscientious reviewers whom 
we wish to thank for their volunteer 
efforts and timely responses.
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ith pervasive sensors continuously collect-
ing and storing massive amounts of infor-

mation, there is no doubt this is an era of 
data deluge. Learning from these large vol-

umes of data is expected to bring significant 
science and engineering advances along with improvements in 
quality of life. However, with such a big blessing come big chal-
lenges. Running analytics on voluminous data sets by central pro-
cessors and storage units seems infeasible, and with the advent of 
streaming data sources, learning must often be performed in real 

time, typically without a chance to revisit past entries. “Work-
horse” signal processing (SP) and statistical learning tools have to 
be re-examined in today’s high-dimensional data regimes. This 
article contributes to the ongoing cross-disciplinary efforts in 
data science by putting forth encompassing models capturing a 
wide range of SP-relevant data analytic tasks, such as principal 
component analysis (PCA), dictionary learning (DL), compressive 
sampling (CS), and subspace clustering. It offers scalable archi-
tectures and optimization algorithms for decentralized and 
online learning problems, while revealing fundamental insights 
into the various analytic and implementation tradeoffs involved. 
Extensions of the encompassing models to timely data-sketching, 
tensor- and kernel-based learning tasks are also provided. Finally, 
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the close connections of the presented framework with several big 
data tasks, such as network visualization, decentralized and 
dynamic estimation, prediction, and imputation of network link 
load traffic, as well as imputation in tensor-based medical imaging 
are highlighted. 

INTRODUCTION
The information explosion propelled by the advent of online social 
media, Internet, and global-scale communications has rendered 
data-driven statistical learning increasingly important. At any 
time around the globe, large volumes of data are generated by 
today’s ubiquitous communication, imaging, and mobile devices 
such as cell phones, surveillance cameras and drones, medical and 
e-commerce platforms, as well as social networking sites. The 
term big data is coined to describe this information deluge and, 
quoting a recent press article, “their effect is being felt everywhere, 
from business to science, and from government to the arts” [18]. 
Large economic growth and improvement in the quality of life 
hinge upon harnessing the potential benefits of analyzing massive 
data [18], [55]. Mining unprecedented volumes of data promises to 
limit the spread of epidemics and maximize the odds that online 
marketing campaigns go viral [35]; to identify trends in financial 
markets, visualize networks, understand the dynamics of emer-
gent social-computational systems, as well as protect critical infra-
structure including the Internet’s backbone network [48], and the 
power grid [26]. 

BIG DATA CHALLENGES AND SP OPPORTUNITIES
While big data come with “big blessings,” there are formidable 
challenges in dealing with large-scale data sets. First, the sheer 
volume and dimensionality of data make it often impossible to 
run analytics and traditional inferential methods using stand-
alone processors, e.g., [8] and [31]. Decentralized learning with 
parallelized multicores is preferred [9], [22], while the data 
themselves are stored in the cloud or distributed file systems as 
in MapReduce/Hadoop [19]. Thus, there is an urgent need to 
explicitly account for the storage, query, and communication 
burden. In some cases, privacy concerns prevent disclosing the 
full data set, allowing only preprocessed data to be communi-
cated through carefully designed interfaces. Due to their possi-
bly disparate origins, big data sets are often incomplete and a 
sizable portion of them is missing. Large-scale data inevitably 
contain corrupted measurements, communication errors, and 
even suffer from cyberattacks as the acquisition and transporta-
tion cost per entry is driven to the minimum. Furthermore, as 
many of the data sources continuously generate data in real 
time, analytics must often be performed online subject to time 
constraints so that a high-quality answer obtained slowly can be 
less useful than a medium-quality answer that is obtained 
quickly [46], [48], [75]. 

Although past research on databases and information 
retrieval is viewed as having focused on storage, look-up, and 
search, the opportunity now is to comb through massive data 
sets, to discover new phenomena, and to “learn” [31]. Big data 
challenges offer ample opportunities for SP research [55], 

where data-driven statistical learning algorithms are envisioned 
to facilitate distributed and real-time analytics (cf. Figure 1). 
Both classical and modern SP techniques have already placed 
significant emphasis on time/data adaptivity, e.g., [69], robust-
ness [32], as well as compression and dimensionality reduction 
[43]. Testament to this fact is the recent “rediscovery” of sto-
chastic approximation and stochastic-gradient algorithms for 
scalable online convex optimization and learning [65], often-
times neglecting Robbins–Monro and Widrow’s seminal works 
that go back half a century [60], [69], [79]. While the principal 
role of computer science in big data research is undeniable, the 
nature and scope of the emerging data science field is certainly 
multidisciplinary and welcomes SP expertise and its recent 
advances. For example, Web-collected data are often replete 
with missing entries, which motivates innovative SP imputation 
techniques that leverage timely (low-rank) matrix decomposi-
tions [39], [52], or, suitable kernel-based interpolators [6]. Data 
matrices gathering traffic values observed in the backbone of 
large-scale networks can be modeled as the superposition of 
unknown “clean” traffic, which is usually low-rank due to tem-
poral periodicities as well as network topology-induced correla-
tions, and traffic volume anomalies that occur sporadically in 
time and space, rendering the associated matrix component 
sparse across rows and columns [38]. Both quantity and richness 
of high-dimensional data sets offer the potential to improve sta-
tistical learning performance, requiring however innovative 
models that exploit latent low-dimensional structure to effec-
tively separate the data “wheat from the chaff.” To learn these 
models however, there is a consequent need to advance online, 
scalable optimization algorithms for information processing 
over graphs (an abstraction of both networked sources of decen-
tralized data, and multiprocessor, high-performance computing 
architectures); see, e.g., GraphLab [42] and the alternating direc-
tion method of multipliers (ADMM) [9], [10], [51] that enjoy 
growing popularity for distributed machine learning tasks.

ENCOMPASSING MODELS FOR SUCCINCT 
BIG DATA REPRESENTATIONS
This section introduces a versatile model to fit data matrices as 
a superposition of a low-rank matrix capturing correlations and 
periodic trends, plus a linearly compressed sparse matrix 
explaining data innovations parsimoniously through a set of 
(possibly latent) factors. The model is rich enough to subsume 
various statistical learning paradigms with well-documented 
merits for high-dimensional data analysis, including PCA [28], 
DL [56], compressive sampling CS [11], and principal compo-
nents pursuit (PCP) [12], [14], [52], to name a few. 

THE “BACKGROUND” PLUS “PATTERNS AND 
INNOVATIONS” MODEL FOR MATRIX DATA
Let L RN T! #  denote a low-rank matrix ( ( ) { , }),min N Trank L %
and S RM T! #  a sparse matrix with support size considerably 
smaller than .MT  Consider also the large-scale data set 
Y RN T! #  generically modeled as a superposition of 1) the low-
rank matrix ;L  the “data background or trend,” e.g., nominal 
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load curves across the power grid or the background scene cap-
tured by a surveillance camera, plus, 2) the “data patterns, (co)
clusters, innovations, or outliers” expressed by the product of a 
(possibly unknown) dictionary D RN M! #  times the sparse 
matrix ,S  and 3) a matrix ,V RN T! #  which accounts for mode-
ling and measurement errors; in short, .Y L DS V= + +  Matrix 
D  could be an overcomplete set of bases or a linear compression 
operator with .N M#  The aforementioned model offers a parsi-
monious description of ,Y  that is welcomed in big data analytics 
where data sets involve numerous features. Such parsimony facil-
itates interpretability, model identifiability, and it enhances the 
model’s predictive performance by discarding “noisy” features 
that bear little relevance to the phenomenon of interest [49]. 

To explicitly account for missing data in Y  introduce 1) the 
set { , , } { , , }N T1 1#f f3X  of index pairs ( , ),n t  and 2) the 
sampling operator P ( ),$X  which nulls entries of its matrix argu-
ment not in ,X  leaving the rest unchanged. This way, one can 
express incomplete and (possibly noise-)corrupted data as 

P P( ) ( ) .Y L DS V= + +X X (1)

Given P ( ),YX  the challenging goal is to estimate the matrix 
components L  and S (and D  if not given), which further entails 
denoising the observed entries and imputing the missing ones. 

An estimator leveraging the low-rank property of L  and the 
sparsity of S  will be sought to fit the data P ( )YX  in the least-
squares (LS) error sense, as well as minimize the rank of ,L  and 

the number of nonzero entries of : [ ]sS ,m t=  measured by its 
0, -(pseudo) norm. Unfortunately, albeit natural both rank and 
0, -norm criteria are in general NP-hard to optimize [53]. With 

( )Lkv  denoting the kth singular value of ,L  the nuclear norm 
: ( ),L L* kk

v=/  and the 1, -norm : sS ,, m tm t1 =/  are 
adopted as surrogates, as they are the closest convex approxim-
ants to ( )Lrank  and ,S 0  respectively, e.g., [14] and [48]. 
Accordingly, assuming known D  for now, one solves 

P ,( )min 2
1 Y L DS L S

{ , }
* *

2
1 1FL S

m m- - + +X (P1) 

where , 0* 1 $m m  are rank- and sparsity-controlling parameters. 
Being convex, (P1) is computationally appealing as elaborated in 
the section “Algorithms,” in addition to being widely applicable as 
it encompasses a gamut of known paradigms. Notice however 
that when D  is unknown, one obtains a bilinear model that gives 
rise to nonconvex estimation criteria. The approaches highlighted 
next can in fact accommodate more general models than (P1), 
where data-fitting terms other than the Frobenius-norm one and 
different regularizers can be utilized to account for various types 
of a priori knowledge, e.g., structured sparsity or smoothness. 

APPLICATION DOMAINS AND SUBSUMED PARADIGMS
Model (1) emerges in various applications, such as 1) network
anomaly detection outlined in the section “Inference and Imputa-
tion,” where Y RN T! #  represents traffic volume over N  links 
and T  time slots; L  captures the nominal link-level traffic (which 

[FIG1] SP-relevant big data themes.
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is low-rank due to temporal periodicities and topology-induced 
correlations on the underlying flows); D  represents a link # flow
binary routing matrix; and S  sparse anomalous flows [47], [48]; 
2) medical imaging, where dynamic magnetic resonance imaging 
separates the background L  from the motion component (e.g., a 
heart beating) modeled via sparse dictionary representation DS
[25] (see also the section “Inference and Imputation”); 3) face 
recognition in the presence of shadows and specularities [12]; 
and 4) acoustic SP for singing voice separation from its music 
accompaniment [71], to name a few. 

In the absence of L  and missing data ( ,0L = { , , }N1 #fX =
{ , , }),T1 f  model (1) describes an underdetermined sparse signal 
recovery problem typically encountered with CS [11]. If in addi-
tion D  is unknown, (P1) boils down to DL [2], [46], [56], [67], or, 
to nonnegative matrix factorization (NNMF) if the entries of D
and S  are nonnegative [39]. For ,0L = { , , }N1 #fX =
{ , , },T1 f  and if the columns of Y  lie close to a union of a small 
number of unknown low-dimensional linear subspaces, then 
looking for a sparse S  in (1) with TM %  amounts to subspace 
clustering [78]; see also [70] for outlier-robust variants with 
strong performance guarantees. Without D  and with ,0V =
decomposing Y  into L S+  corresponds to PCP, also referred to 
as robust PCA (R-PCA) [12], [14]. Even when L  is nonzero, one 
could envision a variant where the measurements are corrupted 
with correlated (low-rank) noise [15]. Last but not least, when 

0S =  and ,0V !  recovery of L  subject to a rank constraint is 
nothing else than PCA—arguably, the workhorse of high-dimen-
sional big data analytics [28]. This same formulation is adopted for 
low-rank matrix completion—the basic task carried out by recom-
mender systems—to impute the missing entries of a low-rank 
matrix observed in noise, i.e., P P( ) ( )Y L V= +X X  [13]. Based on 
the maximum likelihood principle, an alternative approach for 
missing value imputation by expectation-maximization can be 
found in [73]. 

ALGORITHMS
As (P1) is jointly convex with respect to (w.r.t.) both L  and ,S
various iterative solvers are available, including interior point 
methods and centralized online schemes based on (sub)gradient-
based recursions [65]. For big data however, off-the-shelf interior 
point methods are computationally prohibitive, and are not 
amenable to decentralized or parallel implementations. Sub-
gradient-based methods are structurally simple but are often 
hindered by slow convergence due to restrictive step size selec-
tion rules. The desiderata for large-scale problems are low-
complexity, real-time algorithms capable of processing massive 
data sets in a parallelizable and/or fully decentralized fashion. 
The few such algorithms available can be classified as decen-
tralized or parallel schemes, splitting, sequential, and online 
or streaming. 

DECENTRALIZED AND PARALLEL ALGORITHMS
In these divide-and-conquer schemes, multiple agents operate 
in parallel on disjoint or randomly subsampled subsets of the 
massive-scale data, and combine their outputs as iterations 

proceed to accomplish the original learning or inference task 
[34], [44]. Unfortunately, the nuclear-norm L *  in (P1) cannot 
be easily distributed across multiple learners, since the full sin-
gular value decomposition (SVD) of L  has to be computed cen-
trally, prior distributing its set of singular values to each node. 
In search of a nuclear-norm surrogate amenable to decentral-
ized processing, it is useful to recall that minimizing L *  is 
tantamount to minimizing ( ) / ,2P Q2 2

F F+  where ,L PQ= <

with P RN! #t  and ,Q RT! #t  for some { , },min N T%t  is a bilin-
ear decomposition of the low-rank component L  [47], [72]. In 
other words, each column vector of L  is assumed to lie in a low 
t-dimensional range space spanned by the columns of .P  This 
gives rise to the following problem: 

P ( ) ( ) .min 2
1

2Y PQ DS P Q S
{ }

*2 2 2
1 1

, , F F FP Q S

m m- - + + +<
X

(P2)

Unlike (P1), the bilinear term PQ<  renders (P2) nonconvex,
even if D  is known. Interestingly, [47, Prop. 1] offers a certifi-
cate for stationary points of (P2), qualifying them as global 
optima of (P1). 

Thanks to the decomposability of · 2
F  and · 1  across 

rows, and ignoring for a moment the operator P ,X  (P2) can be 
distributed over a number V  of nodes or processing cores V
with cardinality V V| | ,=  where each node V!o  learns 
from a subset of rows R { , , } .N1 f1o  In other words, the N
rows of Y  are distributed over a partition of rows R{ ,}V 1o o=

where by definition R { , , },N1
V

1
f=

o
o

=
'  and R R ,0i j+ =o o Y

if .i j!  Naturally, (P2) is equivalent to this (modulo P )X task:

,

min 2
1

2 2

Y P Q D S

P Q S

V

V

{{ } , , }

* *

2

1

2 2
1 1

1

F

F F

P Q SV
1

m m m

- -

+ + +

<
o o o

o

o

o

=

=

o o=

/

/ (2)

where , ,Y Po o  and Do  are submatrices formed by keeping only 
the Ro  rows of , ,Y P  and ,D  respectively. 

An obstacle in (2) is the coupling of the data-fitting term 
with the regularization terms via { , , } .P Q So  Direct utilization 
of iterative subgradient-type methods, due to the nonsmooth 
loss function, are able to identify local minimizers of (2), at the 
cost of slow convergence and meticulous choice of step sizes. 
In the convex analysis setting, successful optimization ap-
proaches to surmount this obstacle include the ADMM [10] 
and the more general Douglas–Rachford (DR) algorithm [5] 
that split or decouple variables in the nuclear-, 1, -, and Frobe-
nius-norms. The crux of splitting methods, such as ADMM and 
DR, lies on computing efficiently the proximal mapping of 
regularizing functions, which for a (non)differentiable lower-
semicontinuous convex function g  and ,02c  is defined as 

( ) : ( / ) ( ),arg min g1 2Prox A A A Ag
2
FA c= - +c l ll A6  [5]. The 

computational cost incurred by Prox gc  depends on .g  For exam-
ple, if g  is the nuclear-norm, then ( )Prox A· * =c ( ) ,SoftU VR <

c

where A U VR= <  is the computationally demanding SVD of ,A
and ( )Soft Rc  is the soft-thresholding operator whose th( , )i j

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [22] SEPTEMBER 2014

entry is ( )] ([ ] ) { , |max 0[Soft sgn ,ij i jR R=c [ ] | } .,i j cR -  On the 
contrary, if ,·g 1=  then ( )Prox A· 1 =c ( ),Soft Ac  which is a 
computationally affordable, parallelizable operation. 

Even if (2) is a nonconvex task, a splitting strategy mimicking 
ADMM and DR is promising also in the current context. If the 
network nodes or cores can also exchange messages, then (2) can 
be decentralized. This is possible if e.g., V!o  has a neighbor-
hood N V,1o  where N!o o  and all members of No  exchange 
information. The decentralized rendition of (P2) becomes

V
N

V

P

:
:

,
,

( )

( ) ,

,

min 2
1

2

s.to
Q Q S S
Q Q S S

P P

Y P Q D S

P Q S

, ,
, ,

*

2

2 2
1 1

F

F F

P Q S
P Q S

6
6

6

!
!

!

o
o

m m o

= =

= =

=

- -

+ + +

<

o
o o o o

o o o o

o o

o o o o o

o o o

X

o o o

o o o
o

l
l l l l

l

l l l

l l l

l l

l l
)*

' 1

(P3) 

where consensus constraints are enforced per neighborhood 
N ,o  and { , , }P Q So o ol l l  are utilized to split the LS cost from the 
Frobenius- and 1, -norms. Typically, (P3) is expressed in uncon-
strained form using the (augmented) Lagrangian framework. 
Decentralized inference algorithms over networks, implement-
ing the previous splitting methodology, can been found in [22], 
[47], [51], and [62]. ADMM and DR are convergent for convex 
costs, but they offer no convergence guarantees for the noncon-
vex (P3). There is, however, ample experimental evidence in the 
literature that supports empirical convergence of ADMM, espe-
cially when the nonconvex problem at hand exhibits “favorable” 
structure [10], [47]. 

Methods offering convergence guarantees for (P3), after 
encapsulating consensus constraints into the loss function, are 
sequential schemes, such as the block coordinate descent 
methods (BCDMs) [59], [77]. BCDMs minimize the underlying 
objective sequentially over one block of variables per iteration, 
while keeping all other blocks fixed to their most up-to-date val-
ues. For example, a BCDM for solving the DL subtask of (2), 
that is when { , }P Qo  are absent from the optimization problem, 
is the K-SVD algorithm [2]. Per iteration, K-SVD alternates 
between sparse coding of the columns of Y  based on the cur-
rent dictionary and updating the dictionary atoms to better fit 
the data. For a consensus-based decentralized implementation 
of K-SVD in the cloud, see [58]. 

It is worth stressing that (P3) is convex w.r.t. each block 
among { , , , , , },P Q S P Q So o o o o ol l l  whenever the rest are held con-
stant. Recent parallel schemes with convergence guarantees 
take advantage of this underlying structure to speed-up decen-
tralized and parallel optimization algorithms [33], [64]. Addi-
tional BCDM examples will be given next in the context of 
online learning. 

ONLINE ALGORITHMS FOR STREAMING ANALYTICS
So far, Y  has been decomposed across its rows corresponding to 
network agents or processors; in what follows, Y  will be split 
across its columns. Aiming at online solvers of (P2), with t

indexing the columns of : [ , , ],Y y yt1 f=  and { } t
1Xx x=  indicat-

ing the locations of known data values across time, consider the 
analytics engine acquiring a stream of vectors P ( ),yttX .t6  An 
online counterpart of (P2) is the following exponentially 
weighted LS estimate [48] 

P ( )

,

min 2
1

2 2

y Pq D s

P q s

{ , }

* *

t
t

tt

1

2

1

2 2
1 1F

q s
P

t
1

d

d

m m m

- -

+ + +

x

x

x x x x

x

x

x x

X
-

=

-

=

x x x

x

=

l

l

=
G

' 1
/

/ (P4)

where ,P RN! #t { } ,q Rt
1 1x x

t
= { } ,s RM1x  and ( , ]0 1!d

denotes the so-termed forgetting factor. With ,11d  past data 
are exponentially discarded to track nonstationary features. 
Clearly, P tX  can be represented by a matrix ,tX  whose rows are 
a subset of the rows of the N-dimensional identity matrix. 

A provably convergent BCDM approach to efficiently solve a 
simplified version of (P4) was put forth in [48]. Each time t  a new 
datum is acquired, only qt  and st  are jointly updated via Lasso for 
fixed ,P Pt 1= -  and then (P4) is solved w.r.t. P  to update Pt 1-  us-
ing recursive LS (RLS). The latter step can be efficiently split across 
r o w s ( )arg min yp p q d s, , , ,

t
nn t

t
n n1

2
p d ~= - - +<<x

x
x x x x x

-

=
/

( / )2 p*
2m —an attractive feature facilitating parallel processing, 

which nevertheless entails a matrix inversion when .11d  Since 
first introduced in [48], the idea of performing online rank-mini-
mization leveraging the separable nuclear-norm regularization in 
(P4) has gained popularity in real-time NNMF for audio SP [71], 
and online robust PCA [21], to name a few examples. In the case 
where , { }P q t

1x x=  are absent from (P4), an online DL method of 
the same spirit as in [48] can be found in [46], [67]. 

Algorithms in [48] are closely related to timely robust sub-
space trackers, which aim at estimating a low-rank subspace P
from grossly corrupted and possibly incomplete data, namely 
P P( ) ( ), , , .t 1 2y Pq s vt t t tt t f= + + =X X  In the absence of 
sparse outliers { } ,st t 1

3
=  an online algorithm based on incremental 

gradient descent on the Grassmannian manifold of subspaces was 
put forth in [4]. The second-order RLS-type algorithm in [16] 
extends the seminal projection approximation subspace tracking 
(PAST) algorithm to handle missing data; see also [50]. When 
outliers are present, robust counterparts can be found in [15] and 
[29]. Relative to all aforementioned works, the estimation prob-
lem (P4) is more challenging due to the presence of the (com-
pression) dictionary .Dt

Reflecting on (P1)–(P4), all objective functions share a com-
mon structure: they are convex w.r.t. each of their variable 
blocks, provided the rest are held fixed. Naturally, this calls for 
BCDMs for minimization, as in the previous discussion. How-
ever, matrix inversions and solving a batch Lasso per slot t  may 
prove prohibitive for large-scale optimization tasks. Projected or 
proximal stochastic (sub)gradient methods are attractive low-
complexity online alternatives to BCDMs mainly for optimizing 
convex objectives [65]. Unfortunately, due to their diminishing 
step-sizes, such first-order solutions exhibit slow convergence 
even for convex problems. On the other hand, accelerated vari-
ants for convex problems offer quadratic convergence of the 
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objective function values, meaning they are optimally “fast” 
among first-order methods [54], [80]. Although quadratic con-
vergence issues for nonconvex and time-varying costs as in (P4) 
are largely unexplored, the online, accelerated, first-order 
method outlined in Figure 2 offers a promising alternative for 
generally nonsmooth and nonconvex minimization tasks [68].

Let x( )i  be a block of variables, which in (P4) can be ,P  or 
{ } ,q t

1x x=  or { } ;s t
1x x=  that is, { , , };i 1 2 3!  and let x( )i-  denote all

blocks in : ( , , )x x x( ) ( )I1 f=  except for .x( )i  Consider the 
sequence of loss functions ( ) : ( ) ( ),F f gx x x( )

i
I

t t i
i

1
= +

=
/  where 

ft  is nonconvex, and Lipschitz continuously differentiable but 
convex w.r.t. each ,x( )i  whenever { }x( )j

j i!  are held fixed; { }gi i
I

1=

are convex and possibly nondifferentiable; hence, Ft  is nons-
mooth. Clearly, the data fit term in (P4) corresponds to ,ft

( ) : ( / ) ,g 2x P( )
*1

1 2
Fm=  while g2  and g3  describe the other two 

regularization terms. 
The acceleration module Accel of [80], developed originally 

for offline convex analytic tasks, is applied to Ft  in a sequential, 
per-block (Gauss–Seidel) fashion. Having x( )i-  fixed, unless 

( ) ( )min f gx x xH
( ) ( ) ( )

t
i

t
i

i
i

x( )i
i ; +!

-  is easily solvable, Accel is 
employed for R 1i $  times to update .x( )i  The same procedure 
is carried over to the next block ,x( )i 1+  until all blocks are 
updated, and subsequently to the next time instant t 1+
(Figure 2). Unlike ADMM, this first-order algorithm requires no 
matrix inversions, and can afford inexact solutions of minimiza-
tion subtasks. Under several conditions, including (statistical) 

stationarity of { } ,Ft t 1
3
=  it also guarantees quadratic-rate conver-

gence to a stationary point of { },FE t  where {·}E  denotes expec-
tation over noise and input data distributions [68]. An 
application of this method to the dictionary-learning context 
can be found in the “Inference and Imputation” section. 

DATA SKETCHING, TENSORS, AND KERNELS
The scope of the “Algorithms” section can be broadened to 
include random subsampling schemes on Y  (also known as 
data sketching), as well as multiway data arrays (tensors) and 
nonlinear modeling via kernel functions. 

DATA SKETCHING
Catering to decentralized or parallel solvers, all variables in (P3) 
should be updated in parallel across learners of individual net-
work nodes. However, there are cases where solving all learning 
subtasks simultaneously may be prohibitive or inefficient for two 
main reasons. First, the data size might be so large that comput-
ing function values or first-order information over all variables is 
impossible. Second, the nature and structure of data may prevent 
a fully parallel operation; e.g., when data are not available in their 
entirety, but are acquired either in batches over time or where 
not all of the network nodes are equally responsive or functional. 

A recent line of research aiming at obtaining informative subsets 
of measurements for asynchronous and reduced-dimensionality 
processing of big data sets is based on (random) subsampling or data 

[FIG2] The online, accelerated, sequential (Gauss–Seidel) optimization scheme for asymptotically minimizing the sequence ( )Ft t N!  of 
nonconvex functions.
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sketching (via P )X  of the massive Y  [45]. The basic principles of 
data sketching will be demonstrated here for the overdetermined 
( )N & t  LS : arg minq P y* q R!= @

! t y Pq 2-  [a task sub-
sumed by (P2) as well], where @  denotes pseudo-inverse, and 

( ) ,P P P P1=@ << -  for P  full column-rank. Popular strategies to 
obtain q*  include the expensive SVD; the Cholesky decomposition if 
P  is full column-rank and well conditioned; and the slower but 
more stable QR decomposition [45]. 

The basic premise of the subsampling or data sketching tech-
niques is to largely reduce the number of rows of Y  prior to solving 
the LS task [45]. A data-driven methodology of keeping only the 
“most” informative rows relies on the so-termed (statistical) lever-
age scores and is outlined next as a three-step procedure. Given the 
(thin) SVD :P U VR= <  (S1) find the normalized leverage scores 
{ } ,ln n

N
1=  where :l e UU en n n

1t= =<<- ,e PP en n
1t < @-  with e Rn

N!

being the nth canonical vector. Clearly, ln equals the (normalized) 
nth diagonal element of ,PP@  and since PP UU=@ <  is the orthog-
onal projector onto the linear subspace spanned by the columns of 

,P  it follows that PP y@  offers the best approximation to y  within 
this subspace. Then, (S2) for an arbitrarily small ,02e  and by us-
ing { }ln n

N
1=  as an importance sampling distribution, randomly 

sample and rescale by ( )rln
1-  a number of O ( )logr 2e t t= -

rows of ,P  together with the corresponding entries of .y  Such a 
sampling and rescaling operation can be expressed by a matrix 

.Rr N!W #  Finally, (S3) solve the reduced-size LS problem 
.( )arg minq y Pq*

2
q R! W -! tu  With ( )$l  denoting condition 

number and : ,y UU y1c = <-  it holds that [45] 

( )1y Pq y Pq* *# e- + -u (3a) 

( ) 1q q P q*
2# l ce- --* *u (3b) 

so that performance degrades gracefully after reducing the
number of equations.

Similar to the nuclear-norm, a major difficulty is that lever-
age scores are not amenable to decentralized computation [cf. 
discussion prior (P2)], since the SVD of P  is necessary prior to 
decentralizing the original learning task. To avoid computing 
the statistical leverage scores, the following data-agnostic strat-
egy has been advocated [45]: 1) Premultiply P  and y  with the 
N N# random Hadamard transform ,HND  where HN  is 
defined inductively as

, : ,
N
1

2
1 1

1
1
1

H
H
H

H
H H

/

/

/

/
N

N

N

N

N

2

2

2

2
2=

-
=

+

+

+

-
= =G G

and D  is a diagonal matrix whose nonzero entries are drawn inde-
pendently and uniformly from { , },1 1- +  2) uniformly sample 
and rescale a number of O ( · )log log logr N N1t t e t= + -  rows 
from H PND  together with the corresponding components from 

,H yND  and 3) find ,( )arg minq H y Pq* N
2

q R! W D -! tu  where 
W  stands again for the sampling and rescaling operation. Error 
bounds similar to those in (1) can be also derived for this precondi-
tioning strategy [45]. Key to deriving such performance bounds is 

the Johnson–Lindenstrauss lemma, which loosely asserts that for 
any ( , ),0 1!e  any set of t  points in N  dimensions can be (lin-
early) embedded into ( ) lnr 4 2 31 2 1 3 1$ e e t-- - -  dimensions, 
while preserving the pairwise Euclidean distances of the original 
points up to a multiplicative factor of ( ) .1 ! e

Besides the previous overdetermined LS task, data sketching 
has been employed to ease the computational burden of several 
large-scale tasks ranging from generic matrix multiplication, 
SVD computation, to k -means clustering and tensor approxi-
mation [20], [45]. In the spirit of ,HND  methods utilizing 
sparse embedding matrices have been also developed for over-
constrained LS and p, -norm regression, low-rank and leverage 
scores approximation [17]; in particular, they exhibit complexity 
O O(| ( ) |) ( ( ))logsupp P l3 2 3 2e et t+ - -  for solving the LS task 
satisfying (3a), where | ( ) |supp P  stands for the cardinality of 
the support of ,P  and .l N*!  Viewing the sampling and rescal-
ing operator W  as a special case of a (weighted) PX  allows car-
rying over the algorithms outlined in the “Encompassing 
Models for Succinct Big Data Representations” and “Algo-
rithms” sections to the data sketching setup as well. 

BIG DATA TENSORS
Although the matrix model in (1) is quite versatile and can sub-
sume a variety of important frameworks as special cases, the 
particular planar arrangement of data poses limitations in cap-
turing available structures that can be crucial for effective inter-
polation. In the example of movie recommender systems, matrix 
models can readily handle two-dimensional structures of people
# movie ratings. However, movies are classified in various gen-
res and one could explicitly account for this information by 
arranging ratings in a sparse person # genre # title three-way 
array or tensor. In general, various tensor data analytic tasks for 
network traffic, social networking, or medical data analysis aim 
at capturing an underlying latent structure, which calls for 
high-order factorizations even in the presence of missing data 
[1], [50]. 

A rank-one three-way array [ ] ,yY Ri i i
I I I

a b c
a b c!= # #  where 

the underline denotes tensors, is the outer product a b c% %  of 
three vectors , , :a b cR RR I I Ia b c! ! ! .y a b ci i i i i ia b c a b c=  One 
can interpret ,aia ,bib  and cic  as corresponding to the people, 
genre, and title components, respectively, in the previous exam-
ple. The rank of a tensor is the smallest number of rank-one ten-
sors that sum up to generate the given tensor. These notions 
readily generalize to higher-way tensors, depending on the appli-
cation. Notwithstanding, this is not an incremental extension 
from low-rank matrices to low-rank tensors, since even comput-
ing the tensor rank is an NP-hard problem in itself [36]. Defining 
a convex surrogate for the rank penalty such as the nuclear norm 
for matrices is not obvious either, since singular values when 
applicable, e.g., in the Tucker model, are not related to the rank 
[74]. Although a three-way array can be “unfolded” to obtain a 
matrix exhibiting latent Kronecker product structure, such an 
unfolding typically destroys the structure that one looks for. 

These considerations, motivate forming a low-rank approxi-
mation of tensor Y  as 
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.Y a b cr
r

r r
1
% %.

t

=

/ (4) 

Low-rank tensor approximation is a relatively mature topic in 
multilinear algebra and factor analysis, and when exact, the 
decomposition (4) is called parallel factor analysis (PARAFAC) 
or canonical decomposition (CANDECOMP) [36]. PARAFAC is 
the model of choice when one is primarily interested in reveal-
ing latent structure. Unlike the matrix case, low-rank tensor 
decomposition can be unique. There is deep theory behind this 
result, and algorithms recovering the rank-one factors [37]. 
However, various computational and big data-related chal-
lenges remain. Missing data have been handled in rather ad 
hoc ways [76]. Parallel and decentralized implementations have 
not been thoroughly addressed; see, e.g., ParCube and GigaTen-
sor algorithms for recent scalable approaches [57]. 

With reference to (4), introduce the factor matrix :A =
[ , , ] ,a a R I

1
af ! #

t
t  and likewise for B R Ib! #t  and .C R Ic! #t

Let , , ,i I1Yi c cc f=  denote the i thc  slice of Y  along its third 
(tube) dimension, such that ( , ) .i i yYi a b i i ic a b c=  It follows that 
(4) can be compactly represented in matrix form, in terms of 
slice factorizations ( ) , .idiagY A e C Bi i cc c 6= <<  Capitalizing on 
the Frobenius-norm regularization (P2), decentralized algo-
rithms for low-rank tensor completion under the PARAFAC 
model can be based on the optimization task:

P ( ( ) )

.

min diagY A e C B

A B C

{ }

*

i i
i

I

1

2

2 2 2

F

F F F

A,B,C
i c c

c

c

c

m

-

+ + +

< <
X

=

6 @
/

(5)

Different from the matrix case, it is unclear whether the regu-
larization in (5) bears any relation with the tensor rank. Inter-
estingly, [7] asserts that (5) provably yields a low-rank Yt  for 
sufficiently large ,*m  while the potential for scalable BCDM-
based interpolation algorithms is apparent. For an online algo-
rithm, see also (9) in the section “Big Data Tasks” and [50] for 
further details. 

KERNEL-BASED LEARNING
In imputing random missing entries, prediction of multiway 
data can be viewed as a tensor completion problem, where an 
entire slice (say, the one orthogonal to the tube direction repre-
senting time) is missing. Notice that since (5) does not specify a 
correlation structure, it cannot perform this extrapolation task. 
Kernel functions provide the nonlinear means to infuse correla-
tions or side information (e.g., user age range and educational 
background for movie recommendation systems) in various big 
data tasks spanning disciplines such as 1) statistics, for inference 
and prediction [28], 2) machine learning, for classification, 
regression, clustering, and dimensionality reduction [63], and 3) 
SP, as well as (non)linear system identification, sampling, inter-
polation, noise removal, and imputation; see, e.g., [6] and [75]. 

In kernel-based learning, processing is performed in a high-, 
possibly infinite-dimensional reproducing kernel Hilbert space 
(RKHS) H,  where function Hf !  to be learned is expressed as 

a superposition of kernels; i.e., ( ) : ( , ),f x x xi ii 1
{ l=

3

=
/  where 

X X: R"#l  is the kernel associated with H, { }i i 1{ 3
=

denote the expansion coefficients, and X, ,x xi ! i6  [63]. 
Broadening the scope of (5), a kernel-based tensor completion 
problem is posed as follows. With index sets X : { , , },I1a af=

X : { , , },I1b bf=  and X : { , , },I1c cf=  and associated kernels 
( , ),i iX a aal l ( , )i iX b bbl l  and ( , ),i iX c ccl l  tensor entry yi i ia b c  is 

approximated using functions from the set F : { ( , , )f i i ia b c= =

H H H( ) ( ) ( ) , , },a i b i c i a b cX X Xrr a r b r c r r r1 a b c; ! ! !t

=
/  where 
t  is an upper bound on the rank. Specifically, with binary 
weights { }i i ia b c~  taking value 0 if yi i ia b c  is missing (and 1 other-
wise), fitting low-rank tensors is possible using 

[ ( , , )]

.

arg minf y f i i i

a b cH H H

F , ,

*

f
i i i

i i i
i i i a b c

r r r
r

2

1

2 2 2
X X X

a b c

a b c

a b c

a b c

~

m

= -

+ + +

!

t

=

t

8 B
/

/ (6)

If all kernels are selected as Kronecker deltas, (6) reverts back to
(5). The separable structure of the regularization in (6) allows 
application of Representer’s theorem [63], which implies that 

,ar ,br  and cr  admit finite dimensional representations given 
by ( ) ( , ),a i i iXr a rii

I
a a1 a

a

a
aa l=

=
lll

/ ( ) ( , ),b i i iXr b rii

I
b b1 b

b

b
bb l=

=
lll

/
and ( ) ( , ),c i i iXr c rii

I
c c1 c

c

c
cc l=

=
lll

/  respectively. Coefficients 
: [ ],A riaa= l
t t : [ ],B ribb= l

t t  and : [ ]C ricc= l
t t  turn out to be solutions 

of [cf. (5)] 

P( ) : (

( ) )

arg min, ,

diag

A B C Y

K A e K C B KX X X

{ }
i

i

I

i

1
2

, ,

F

A B C
i c

c

c

a c c b

c=

- < <

X
=

t t t /

[ ],trace A K A B K B C K CX X X* a b cm+ + +< << (P5) 

where : [ ( , )],i iK XX a aa al= l  and likewise for KXb  and ,KXc

stand for kernel matrices formed using (cross-)correlations esti-
mated from historical data as detailed in, e.g., [7]. Remarkably, 
the cost in (P5) is convex w.r.t. any of { , , },A B C  whenever the 
rest of them are held fixed. As such, the low-complexity online 
accelerated algorithms of the “Algorithms” section carry over to 
tensors too. Having At  available, the estimate riaa lt  is obtained, 
and likewise for ribb l

t  and .ribc lt  The latter yield the desired pre-
dicted values as : ( ) ( ) ( ) .y a i b i c i yi i i rr a r b r c i i i1a b c a b c.= t

=
t t t t/

BIG DATA TASKS
The tools and themes outlined so far will be applied in this sec-
tion to a sample of big data SP-relevant tasks. 

DIMENSIONALITY REDUCTION

NETWORK VISUALIZATION
The rising complexity and volume of networked (graph-valued)
data presents new opportunities and challenges for visualization 
tools that capture global patterns and structural information 
such as hierarchy, similarity, and communities [3], [27]. Most 
visualization algorithms tradeoff the clarity of structural char-
acteristics of the underlying data for aesthetic requirements 
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such as minimal edge crossing and fixed internode distance. 
Although efficient for relatively small networks or graphs 
(hundreds of nodes), embeddings
for larger graphs using these tech-
niques are seldom structurally 
informative. The growing interest 
in analysis of big data networks has 
prioritized the need for effectively 
capturing structure over aesthetics 
in visualization. For instance, lay-
outs of metro-transit networks that 
show hierarchically the bulk of traf-
fic convey a lucid picture about the 
most critical nodes in the event of a 
terrorist attack. To this end, [3] cap-
tures hierarchy in networks or graphs through well-defined 
measures of node importance, collectively known as centrality
in the network science community. Examples are the between-
ness centrality, which describes the extent to which information 
is routed through a specific node by measuring the fraction of 
all shortest paths traversing it, as well as closeness, eigenvalue, 
and Markov centrality [3]. 

Consider an undirected graph G V E( , ),  where V  denotes 
the set of vertices (nodes, agents, or processing cores) with car-

dinality V V| | ,=  and E  stands for 
edges (links) that represent pairs of 
nodes that can communicate. Fol-
lowing (P3), node V!o  commu-
nicates with its single- or multihop 
neighboring peers in N V.1o

Given a set of observed feature vec-
tors { } ,y RV

P1!o o  and a pre-
scribed embedding dimension 
p P% (typically { , }p 2 3!  for visu-
alization), the graph embedding 
amounts to finding a set of 
{ }z RV

p1!o o  vectors that preserve 
in the very low-dimensional R p  the network structure observed 
via { } .y V!o o  The dimensionality reduction module of [3] is 
based on local linear embedding (LLE) principles [61], which 
assume that the observed { }y V!o o  live on a low-dimensional, 
smooth, but unknown manifold, with the objective of seeking 
an embedding that preserves the local structure of the manifold 
in the lower dimensional .R p  In particular, LLE accomplishes 
this by approximating each data point via an affine combination 
(real weights summing up to 1) of its neighbors, followed by 
construction of a lower-dimensional embedding that best pre-
serves the weights. If 1: [ , , ]Y y y R N| |P

N| |f != #
o o o

o

ol l  gathers all 
the observed data within the neighborhood of node ,o  and 
along the lines of LLE, the centrality constrained (CC-)LLE 
method comprises the following two steps: 

V

V

: ,

( )

:

( ), ,

arg min

min

h c
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h c
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(7)

where { }c RV 1!o o  are centrality metrics, (·)h  is a monotone 
decreasing function that quantifies the centrality hierarchy, e.g., 

( ) ( ),exph c c= -o o  and 11s =<  enforces the local affine 
approximation of yo  by { } .y N!o o ol l  In other words, and in the 
spirit of (P3), yo  is affinely approximated by the “local” diction-
ary : .D Y=o o  It is worth stressing that both objective and con-
straints in step 1 of (7) can be computed solely by means of the 
inner-products or correlations .{ , }Y y Y Y V

<<
!o o o o o  Hence, knowl-

edge of { }y V!o o  is not needed in CC-LLE, and only a given set of 
dissimilarity measures { } V( , ) 2d !oo o ol l  suffices to formulate (7), 
where ,R 0!d $ool ,d d=oo o ol l  and ,0d =oo V( , ) ;26 !o ol  e.g., 

: | |1 y y y y1 1d = - <
oo o o o o

- -
l l l  in (7). 
After relaxing the nonconvex constraint ( )h cY s 2 2=o o  to 

the convex ( )h cY s 2 2#o o  one, a BCDM approach is followed to 
solve (7) efficiently, with computational complexity that scales lin-
early with the network size [3]. Figure 3 depicts the validation of 
CC-LLE on large-scale degree visualizations of snapshots of the 
Gnutella peer-to-peer file-sharing network V(| | , ,26 518=

−1.0
−1.0

−0.5

−0.5 0.0 0.5 1.0
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−1.0
−1.0
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[FIG3] The visualization of two snapshots of the large-scale 
network Gnutella [40] by means of the CC-LLE method. The 
centrality metric is defined by the node degree. Hence, nodes 
with low degree are placed far from the center of the embedding.  
(a) Gnutella-04 (08/04/2012). (b) Gnutella-24 (08/24/2012).

THE RISING COMPLEXITY 
AND VOLUME OF NETWORKED 

(GRAPH-VALUED) DATA PRESENTS 
NEW OPPORTUNITIES AND 

CHALLENGES FOR VISUALIZATION TOOLS 
THAT CAPTURE GLOBAL PATTERNS 
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SUCH AS HIERARCHY, SIMILARITY, 
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E| | , )65 369=  [40]. Snapshots of this directed network were cap-
tured on 4 and 24 August 2002, respectively, with nodes represent-
ing hosts. For convenience, undirected renditions of the two 
networks were obtained by symmetrization of their adjacency 
matrices. Notice here that the method can generalize to the 
directed case too, at the price of increased computational com-
plexity. The centrality metric of interest was the node degree, and 
dissimilarities were computed based on the number of shared 
neighbors between any pair of hosts. It is clear from Figure 3 that 
despite the dramatic growth of the network over a span of 20 days, 
most new nodes had low degree, located thus far from the center 
of the embedding. The CC-LLE efficiency is manifested by the low 
running times for obtaining embeddings in Figure 3; 1,684 s for 
Gnutella-04, and 5,639 s for Gnutella-24 [3]. 

INFERENCE AND IMPUTATION

DECENTRALIZED ESTIMATION
OF ANOMALOUS NETWORK TRAFFIC
In the backbone of large-scale networks, origin-to-destination 
(OD) traffic flows experience abrupt changes that can result in 
congestion and limit the quality of service provisioning of the 
end users. These traffic “anomalies” could be due to external 
sources such as network failures, denial of service attacks, or 
intruders [38]. Unveiling them is a crucial task in engineering 
network traffic. This is challenging however, since the available 
data are high-dimensional noisy link-load measurements, which 
comprise the superposition of “clean” and anomalous traffic.

Consider as in the section “Dimensionality Reduction” an 
undirected, connected graph G V E( , ) .  The traffic ,Y RN T! #

carried over the edges or links E E(| | )N=  and measured at 
time instants { , , }t T1 f!  is modeled as the superposition of 
unknown “clean” traffic flows ,L*  over the time horizon of 
interest, and the traffic volume anomalies S*  plus noise ;V

.Y L S V* *= + +  Common temporal patterns among the traf-
fic flows in addition to their periodic behavior render most 
rows (respectively columns) of L*  linearly dependent, and 
thus L*  typically has low rank [38]. Anomalies are expected 
to occur sporadically over time, and only last for short peri-
ods relative to the (possibly long) measurement interval. In 
addition, only a small fraction of the flows is anomalous at 
any time slot. This renders matrix S*  sparse across rows and 
columns [48]. 

In the present context, real data including OD flow traffic levels 
and end-to-end latencies are collected from the operation of the 
Internet2 network (Internet backbone network across the United 
States) [30]. OD flow traffic levels were recorded for a three-week 
operation (sampled per 5 min) of Internet2-v1 during 8–28 
December 2003 [38]. To better assess performance, large spikes of 
amplitude equal to the largest recorded traffic across all flows and 
time instants were injected into 1% randomly selected entries of 
the ground-truth matrix .L*  Along the lines of (P3), where the 
number of links ,N 121=  and ,T 504=  the rows of the data 
matrix Y  were distributed uniformly over a number of V 11=

nodes. (P3) is solved using ADMM, and a small portion ( )50 50#

of the estimated anomaly matrix St  is depicted in Figure 4(a). 

[FIG4] Decentralized estimation of network traffic anomalies measured in byte units over 5 min time intervals: (a) only a small 
portion ( )50 50#  of the sparse matrices S*  and St  entries are shown; (b) relative estimation error versus ADMM iteration index 
and central processing unit (CPU) time over networks with V  number of nodes. The curve obtained by the centralized R-PCA
method [12] is also depicted.
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As a means of offering additional design insights, further valida-
tion is provided here to reveal the tradeoffs that become relevant as 
the network size increases. Specifically, comparisons in terms of 
running time are carried out w.r.t. its centralized counterpart. 
Throughout, a network modeled as a square grid (uniform lattice) 
with agents per row/column is adopted. To gauge running times as 
the network grows, consider a fixed size data matrix 

.Y R , ,2 500 2 500! #  The data are synthesized according to the previ-
ous model of ,Y L S V* *= + +  details for which can be found in 
[47, Sec. V]. Rows of Y  are uniformly split among the network 
nodes. Figure 4(b) illustrates the relative estimation error 

/S S S* *F F-t (St  stands for the estimate of )S*  versus both iter-
ation index of the ADMM and CPU time over various network sizes. 

DYNAMIC LINK LOAD TRAFFIC
PREDICTION AND IMPUTATION
Consider again the previous undirected graph G V E( , ) .  Connec-
tivity and edge strengths of G  are described by the adjacency 

matrix ,W RV V! #  where [ ] 0W 2ool  if nodes o  and ol are con-
nected, while [ ] 0W =ool  otherwise. At every ,t N 0! 2  a variable 

,Rt !| o  which describes a network-wide dynamical process of 
interest, corresponds to a node V.!o  All node variables are col-
lected in : [ , , ] .RV

Vt t t1 f !| | |= <  A sparse representation of 
the process over G  models t|  as a linear combination of “few” 
atoms in an N M#  dictionary ,D  with ;M N$  and ,Dst t| =

where s Rt
M!  is sparse. Further, only a portion of t|  is observed 

per time slot .t  Let now ,Rt
N N!X #l ,N N#l  denote a binary 

measurement matrix, with each row of tX  corresponding to the 
canonical basis vector for ,RN  selecting the measured compo-
nents of .y Rt

N!  In other words, the observed data per slot t  are 
,y vt t t t|X= +  where vt  denotes noise. To impute missing 

entries of t|  in ,yt  the topology of G  will be utilized. The spatial 
correlation of the process is captured by the (unnormalized) graph 
Laplacian matrix : ( ) ,diag W1 WNK = -  where 1 RN

N!  is the 
all-ones vector. Following Figure 2 and given a “forgetting factor” 

( , ],0 1!d  to gradually diminish the effect of past data (and thus 
account for nonstationarity), define 

( , ) :

( )

F 2
1

2s D

s D

y Ds s D Ds

D

( )

( ) ( )

t
t

t
t

f

g g

1

1 1

2

,s D

s D

t

1 2

d

m k

m
D

X K= - + < <x

x

x x
K-

=

,+ +

6 7 844444444444 44444444444

H F
/

(8)

where : ,t
t

t
1
dD = x

x

-

=
/  and Dk  stands for the indicator function 

of D : { [ , , ] , { , , }},m M1 1D d d dRM
N M

m1 f f! # !;= = #

i.e., ( ) 0DDk =  if D,D !  and ( )DD 3k =+  if DD "  (note that 
,06 2c ProxckD  is the metric projection onto the closed convex 

D  [5]). The term including the known K  quantifies the a priori 
information on the topology of G,  and promotes “smooth” solu-
tions over strongly connected nodes of G  [23]. This term is also 
instrumental for accommodating missing entries in ( ) .t t N 0| ! 2

The algorithm of Figure 2 was validated on estimating and 
tracking network-wide link loads taken from the Internet2 
measurement archive [30]. The network consists of N 54=

links and nine nodes. Using the network topology and routing 
information, network-wide link loads ( ) Rt t

N
N 0 1| ! 2  become 

available (in gigabits per second). Per time slot ,t  only N 30=l

of the t|  components, chosen randomly via ,tX  are observed in 
.y Rt

N! l  Cardinality of the time-varying dictionaries is set to 
,M 80= .t6  To cope with pronounced temporal variations of 

the Internet2 link loads, the forgetting factor d  in (8) was set 
equal to 0.5. Figure 5 depicts estimated values of both observed 
(dots) and missing (crosses) link loads, for a randomly chosen 
link of the network. The normalized squared estimation error 
between the true t|  and the inferred ,t|t  specifically 

,t t t
2 2| | |- -t  is also plotted in Figure 5 versus time .t  The 

accelerated algorithm was compared with the state-of-the-art 
scheme in [23] that relies on ADMM, to minimize a cost closely 
related to (8) w.r.t. ,s  and uses BCD iterations requiring matrix 
inversion to optimize (8) w.r.t. .D  On the other hand, R 11 =

and R 102 =  in the algorithm of Figure 2. It is worth noticing 
here that ADMM in [23] requires multiple iterations to achieve a 
prescribed estimation accuracy, and that no matrix inversion 

[FIG5] Link load tracking (dots and triangles) and imputation 
(crosses and circles) on Internet2 [30]. The proposed method is 
validated versus the ADMM-based approach of [23].
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was incorporated in the realization of the proposed scheme. 
Even if the accelerated first-order method operates under lower 
computational complexity than the ADMM approach, estimation 
error performance both on observed and missing values is 
almost identical. 

CARDIAC MRI
Cardiac magnetic resonance imaging (MRI) is a major imag-
ing tool for noninvasive diagnosis of heart diseases in clinical 
practice. However, time limitations posed by the patient’s 
breath-holding time, and thus the need for fast data acquisition 
degrade the quality of MRI images, resulting often in missing 
pixel values. In the present context, imputation of the missing 
pixels utilizes the fact that cardiac MRI images intrinsically con-
tain low-dimensional components. 

The FOURDIX data set is considered, which contains 263 car-
diac scans with ten steps of the entire cardiac cycle [24]. Each 
scan is an image of size 512 512#  pixels, which is divided into 
64 ( )32 32# -dimensional patches. Placing one after the other, 
patches form a sequence of slices of a tensor .Y R ,32 32 67 328! # #

Randomly chosen 75% of the Y  entries are dropped to simulate 

missing data. Operating on such a tensor via batch algorithms is 
computationally demanding, due to the tensor’s size and the 
computer’s memory limitations. Motivated by the batch formula-
tion in (5), a weighted LS online counterpart is [50] 

P ( ( ) )

( ) ,

min diagY A e C B

A B e C

{ }

*
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t
t

t
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2
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2 2 2

, , F

F F
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d

d

m m

-

+ + +

< <

<

x
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x

x

x

X
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=
E

/

/ (9)

where 02d  is a forgetting factor, and ex  is the xth t-dimensional 
canonical vector. The third dimension t  of Y  in (9) indicates the 
slice number. To solve (9), the variables { , , }A B C  are sequentially 
processed; fixing { , },A B  (9) is minimized w.r.t. ,C  while gradient 
steepest descent steps are taken w.r.t. each one of A  and ,B  having 
the other variables held constant. The resultant online learning 
algorithm is computationally light, with 256 2t  operations (on 
average) per .t  The results of its application to a randomly chosen 
scan image, for different choices of the rank ,t  are depicted in 
Figure 6 with relative estimation errors, ,/Y Y YF F-x x x

t  equal 
to 0.14 and 0.046 for 10t =  and 50, respectively. 

[FIG6] The imputation of missing functional MRI cardiac images by using the PARAFAC tensor model and the online framework of (9). 
The images were artificially colored to highlight the differences between the obtained recovery results. (a) The original image. 
(b) The degraded image (75% missing values). (c) The recovered image )( 10t =  with relative estimation error 0.14. (d) The recovered 
image )( 05t =  with relative estimation error 0.046.
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Additional approaches for batch tensor completion of both vis-
ual and spectral data can be found in [41] and [66], whereas the 
algorithms in [1] and [7] carry out low-rank tensor decompositions 
from incomplete data and perform imputation as a by-product. 
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his article reviews recent advances in convex opti-
mization algorithms for big data, which aim to 
reduce the computational, storage, and communica-
tions bottlenecks. We provide an overview of this 
emerging field, describe contemporary approxima-

tion techniques such as first-order methods and randomization 
for scalability, and survey the important role of parallel and dis-
tributed computation. The new big data algorithms are based on 
surprisingly simple principles and attain staggering accelera-
tions even on classical problems. 

CONVEX OPTIMIZATION IN THE WAKE OF BIG DATA
Convexity in signal processing dates back to the dawn of the 
field, with problems like least squares (LS) being ubiquitous 
across nearly all subareas. However, the importance of convex 
formulations and optimization has increased even more dra-
matically in the last decade due to the rise of new theory for 
structured sparsity and rank minimization, and successful sta-
tistical learning models such as support vector machines. These 
formulations are now employed in a wide variety of signal pro-
cessing applications including compressive sensing, medical 
imaging, geophysics, and bioinformatics [1]–[4]. 

There are several important reasons for this explosion of 
interest, with two of the most obvious being the existence of 
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efficient algorithms for computing globally optimal solutions 
and the ability to use convex geometry to prove useful proper-
ties about the solution [1], [2]. A unified convex formulation 
also transfers useful knowledge across different disciplines, such 
as on sampling and computation, that focus on different aspects 
of the same underlying mathematical problem [5]. 

However, the renewed popularity of convex optimization 
places convex algorithms under tremendous pressure to accom-
modate increasingly large data sets and to solve problems in 
unprecedented dimensions. Internet, text, and imaging prob-
lems, among a myriad of other examples, no longer produce 
data sizes from megabytes to gigabytes, but rather from tera-
bytes to exabytes. Despite the progress in parallel and distrib-
uted computing, the practical utility of classical algorithms like 
interior point methods may not go beyond discussing the theo-
retical tractability of the ensuing optimization problems [3]. 

In response, convex optimization is reinventing itself for big 
data, where the data and parameter sizes of optimization prob-
lems are too large to process locally, and where even basic linear 
algebra routines like Cholesky decompositions and matrix–
matrix or matrix–vector multiplications that algorithms take 
for granted are prohibitive. In stark contrast, convex algorithms 
also no longer need to seek high-accuracy solutions since big 
data models are necessarily simple or inexact [6]. 

THE BASICS
We describe the fundamentals of big data optimization via the 
following composite formulation 

( ) : ( ) ( ) : ,minF F x f x g x x R*
x

pdef
!= = +" , (1)

where f  and g  are convex functions. We review efficient 
numerical methods to obtain an optimal solution x)  of (1) as 
well as required assumptions on f  and .g  Such composite con-
vex minimization problems naturally arise in signal processing 
when we estimate unknown parameters x R p

0 !  from data 
.y Rn!  In maximum a posteriori estimation, for instance, we 

regularize a smooth data likelihood function as captured by f
typically with a nonsmooth prior term g  that encodes parame-
ter complexity [1]. 

A basic understanding of big data optimization algorithms 
for (1) rests on three key pillars: 

■ First-order methods: First-order methods obtain low- or 
medium-accuracy numerical solutions by using only first-
order oracle information from the objective, such as gradient 
estimates. They can also handle the important nonsmooth 
variants of (1) by making use of the proximal mapping prin-
ciple. These methods feature nearly dimension-independent 
convergence rates, they are theoretically robust to the 
approximations of their oracles, and they typically rely on 
computational primitives that are ideal for distributed and 
parallel computation. 
■ Randomization: Randomization techniques particularly 
stand out among many other approximation techniques to 
enhance the scalability of first-order methods since we can 

control their expected behavior. Key ideas include random 
partial updates of optimization variables, replacing the deter-
ministic gradient and proximal calculations with cheap statis-
tical estimators, and speeding up basic linear algebra routines 
via randomization. 
■ Parallel and distributed computation: First-order methods 
naturally provide a flexible framework to distribute optimiza-
tion tasks and perform computations in parallel. Surpris-
ingly, we can further augment these methods with 
approximations for increasing levels of scalability, from ideal-
ized synchronous parallel algorithms with centralized com-
munications to enormously scalable asynchronous 
algorithms with decentralized communications.
The three concepts above complement each other to offer 

surprising scalability benefits for big data optimization. For 
instance, randomized first-order methods can exhibit signifi-
cant acceleration over their deterministic counterparts since 
they can generate a good quality solution with high probability 
by inspecting only a negligibly small fraction of the data [3]. 
Moreover, since the computational primitives of such methods 
are inherently approximate, we can often obtain near linear 
speed-ups with a large number of processors [7], [8], which is a 
difficult feat when exact computation is required. 

MOTIVATION FOR FIRST-ORDER METHODS
A main source of big data problems is the ubiquitous linear 
observation model in many disciplines: 

,y x z0U= + (2)

where x0  is an unknown parameter, Rn p!U #  is a known 
matrix, and z Rn!  encodes unknown perturbations or noise—
modeled typically with zero-mean independent and identically 
distributed (i.i.d) Gaussian entries with variance .2v  Linear 
observations sometimes arise directly from the basic laws of 
physics as in magnetic resonance imaging and geophysics prob-
lems. Other times, (2) is an approximate model for more com-
plicated nonlinear phenomena as in recommender systems and 
phase retrieval applications. 

The linear model (2) along with low-dimensional signal mod-
els on ,x0  such as sparsity, low total-variation, and low-rankness, 
has been an area of intense research activity in signal processing. 
Hence, it is instructive to first study the choice of convex formu-
lations and their scalability implications here. The classical con-
vex formulation in this setting has always been the LS estimator 

( ) : ,argminx F x y x2
1

x
2
2

LS
Rp

U= = -
!

t ' 1 (3)

which can be efficiently solved by Krylov subspace methods 
using only matrix–vector multiplications. An important variant 
to (3) is the 1, -regularized least absolute shrinkage and selec-
tion operator (LASSO), which features the composite form (1) 

( ) : ,argminx F x y x x2
1

x
2
2

1LASSO
Rp

mU= = - +
!

t ' 1 (4)
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where m  controls the strength of the regularization. Compared 
to the LS estimator, the LASSO estimator has the advantage of 
producing sparse solutions (i.e., xLASSOt  has mostly zero entries), 
but its numerical solution is essentially harder since the regu-
larizing term is nonsmooth. 

It turns out that the 1, -regularization in sparse signal recov-
ery with the linear model (2) is indeed critical when we are data 
deficient (i.e., ) .n p1  Otherwise, the LASSO formulation 
imparts only a denoising effect to the solution when .n p$
Theoretical justifications of the LASSO (4) over the LS estima-
tion (3) come from statistical analysis and the convex geometry 
of (4), and readily apply to many other low-dimensional signal 
models and their associated composite formulations [1]–[3]. 

Table 1 illustrates key hallmarks of the first-order methods 
with the LASSO problem against the classical interior point 
method: nearly dimension-independent convergence and the 
ability to exploit implicit linear operators [e.g., the discrete 
cosine transform (DCT)]. In contrast, interior point methods 

require much larger space and have near cubic dimension 
dependence due to the application of dense matrix–matrix mul-
tiplications or Cholesky decompositions in finding the Newton-
like search directions. Surprisingly, the LASSO formulation 
possesses additional structures that provably enhance the con-
vergence of the first-order methods [1], making them competi-
tive in accuracy even to the interior point method. 

Figure 1 shows that we can scale radically better than 
even the conjugate gradients (CG) for the LS formulation 
when n p&  if we exploit stochastic approximation within 
first-order methods. We take the simplest optimization 
method, specifically gradient descent with fixed step-size, 
and replace its gradient calculations with their cheap statisti-
cal estimates (cf. the section “Big Data Scaling via Random-
ization” for the recipe). The resulting SG algorithm already 
obtains a strong baseline performance with access to only a 
fraction of the rows of U  while the CG method requires 
many more full accesses. 

[TABLE 1] A NUMERICAL COMPARISON OF THE DEFAULT FIRST-ORDER METHOD IMPLEMENTED IN TEMPLATES FOR FIRST-
ORDER CONIC SOLVERS (TFOCS) (HTTP://CVXR.COM/TFOCS) VERSUS THE INTERIOR POINT METHOD SDPT3 IMPLEMENTED IN 
CVX (HTTP://CVXR.COM/CVX) FOR THE LASSO PROBLEM (4) WITH .logp2 2m v= IN THE LINEAR OBSERVATION MODEL (2), 
THE MATRIX U  IS A RANDOMLY SUBSAMPLED DCT MATRIX WITH / ,n p 2= THE SIGNAL x0  HAS /25s p=  NONZERO 
 COEFFICIENTS WITH NORM ,x s0 2

2 .  AND THE NOISE z  HAS VARIANCE .102 4v = -

DIMENSION TIME ERROR /x x0
2 2v-t ITERATIONS

SDPT3 TFOCS SDPT3 TFOCS SDPT3 TFOCS
128 0.3 s 0.3 s 1.2 1.2 10 94
512 2.2 s 0.3 s 2.3 2.3 11 121
1,024 16.0 s 0.5 s 2.4 2.4 12 157
2,048 145.0 s 0.7 s 2.8 2.8 12 234
4,096 N/A 1.0 s N/A 3.3 N/A 281
16,384 N/A 2.9 s N/A 3.7 N/A 527
131,072 N/A 40.2 s N/A 4.4 N/A 1,265
1,048,576 N/A 838.5 s N/A 5.1 N/A 3,440

[FIG1] A numerical comparison of the CG method versus the stochastic gradient (SG) method and the weighted averaged SG (WASG) 
method for the LS problem (3), showing the objective (a) and the normalized estimation error (b). The matrix U  has standard normal 
entries with dimensions n 105=  and .p 103=  The noise variance is 102 2v = -  whereas .x p0 2

2 . At a fractional access to the matrix 
,U  the stochastic methods obtain a good relative accuracy on the signal estimate. Finally, the SG method has an optimization error due 

to our step-size choice; cf. the section “Stochastic Gradient Methods” for an explanation.
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FIRST-ORDER METHODS FOR SMOOTH 
AND NONSMOOTH CONVEX OPTIMIZATION
As the LASSO formulation highlights, nonsmooth regularization can 
play an indispensable role in solution quality. By using the powerful 
proximal gradient framework, we will see that many of these nons-
mooth problems can be solved nearly as efficiently as their smooth 
counterparts, a point not well understood until the mid-2000s. To 
this end, this section describes first-order methods within this con-
text, emphasizing specific algorithms with global convergence guar-
antees. In the sequel, we will assume that the readers have some 
familiarity with basic notions of convexity and complexity. 

SMOOTH OBJECTIVES
We begin our exposition with an important special case of (1), 
where the objective F  only consists of a differentiable convex 
function .f  The elementary first-order technique for this case is 
the gradient method, which uses only the local gradient ( )f xd

and iteratively performs the following update:  

( ),x x f xk k
k

k1 da= -+ (5)

where k  is the iteration count and ka  is an appropriate step-
size that ensures convergence. 

For smooth minimization, we can certainly use several other 
faster algorithms such as Newton-like methods. By faster, we 
mean that these methods require fewer iterations than the gra-
dient method to reach a target accuracy: i.e., ( ) .F x F*k # f-

However, we do not focus on these useful methods here since 
they either require additional information from the function ,F
more expensive computations, or do not generalize easily to 
constrained and nonsmooth problems. 

Fortunately, the low per-iteration cost of the gradient method 
can more than make up for its drawbacks in iteration count. For 
instance, computing the gradient dominates the per-iteration cost 
of the method, which consists of matrix–vector multiplications 
with U  and its adjoint TU  when applied to the LS problem (3). 
Hence, we can indeed perform many gradient iterations for the 
cost of a single iteration of more complicated methods, potentially 
taking a shorter time to reach the same level of accuracy .f

Surprisingly, by making simple assumptions about ,f  we can 
rigorously analyze how many iterations the gradient method 
will in fact need to reach an f-accurate solution. A common 
assumption in the analysis that holds in many applications is 
that the gradient of f  is Lipschitz continuous, meaning that 

, , ( ) ( ) ,x y f x f y L x yR p
2 26 d d! #- -

for some constant .L  When f  is twice-differentiable, a suffi-
cient condition is the eigenvalues of its Hessian ( )f x2d  are 
bounded above by .L  Hence, we can trivially estimate L 2

2U=
for (3). 

If we simply set the step-size /L1ka =  or alternatively use a 
value that decreases f  the most, then the iterates of the gradi-
ent method for any convex f  with a Lipschitz-continuous gradi-
ent obey 

( ) ,f x f k
L d4

2k
0
2#-

+
) (6)

where d x x0
0

2= - )  is the distance of the initial iterate x0  to 
an optimal solution x)  [9, Cor. 2.1.2]. Hence, the gradient 
method needs ( / )1O f -iterations for an f-accurate solution in 
the worst case. 

Unfortunately, this convergence rate does not attain the 
known complexity lower-bound 

( )
( )

,f x f
k
Ld

32 1
3k

2
0
2

$-
+

)

which holds for all functions f  with a Lipschitz-continuous gra-
dient. That is, in the worst case any iterative method based only 
on function and gradient evaluations cannot hope for a better 
accuracy than ( / )k1 2X  at iteration k  for k p1  [9]. Amazingly, 
a minor modification by Nesterov achieves this optimal conver-
gence by the simple step-size choice /L1ka =  and an extra-
momentum step with a parameter / ( )k k 3kb = +  [9]: 

The accelerated gradient method in Algorithm 1 achieves 
the best possible worst-case error rate, and hence, it is typically 
referred to as an optimal first-order method. 

Many functions also feature additional structures useful for 
numerical optimization. Among them, strong convexity deserves 
special attention since this structure provably offers key benefits 
such as the existence of a unique minimizer and improved opti-
mization efficiency. A function f  is called strongly convex if the 
function ( ) /x f x x2 2

27 n-  is convex for some positive value 
.n  Perhaps not so obvious is the fact that even nonsmooth func-

tions can have strong convexity (i.e., ( ) / ) .f x x x21 2
2n= +

Indeed, we can transform any convex problem into a 
strongly convex problem by simply adding a squared 2, -regular-
ization term. For instance, when we have n p1  in (3), then the 
classic Tikhonov regularization results in a strongly convex 
objective with :n m=

( ) : .argminx F x y x x
2
1

2x
2
2

2
2

ridge
Rp

mU= = - +
!

t ' 1
The solution above is known as the ridge estimator and offers 
statistical benefits [1]. When f  is twice-differentiable, a suffi-
cient condition for strong convexity is that the eigenvalues of its 
Hessian ( )f x2d  are bounded below by n  for all x . For the LS 
problem (3), strong convexity simply requires U  to have inde-
pendent columns. 

For strongly convex problems with Lipschitz gradient, such 
as the ridge estimator, the gradient method geometrically con-
verges to the unique minimizer when the step-size is chosen as 

/ :L1ka =

.x x L x x1k
k

2
0

2#
n

- - - )) c m (7)

Algorithm 1: Nesterov’s accelerated gradient method for 
unconstrained minimization )(v x0 0=  [9].

1) ( )x v f vk k
k

k1 da= -+

2) ( )v x x xk k
k

k k1 1 1b= + -+ + +
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This convergence improves slightly when we instead use 
/ ( )L2ka n= +  [9]. Beside the obvious convergence rate differ-

ence, we highlight a subtlety between (6) and (7): guarantees 
due to the Lipschitz assumption such as (6) does not necessarily 
imply convergence in iterates ,xk  while for strongly convex 
functions we obtain guarantees on the convergence of both 

( )f xk  and .xk

It turns out that the accelerated-gradient method can also bene-
fit from strong convexity with an appropriate choice of the momen-
tum term .kb  For example, if we set ( ) / ( ),L Lkb n n= - +  the 
accelerated gradient method obtains a near-optimal convergence 
rate given its assumptions [9, Th. 2.2.3]. In contrast, the gradient 
method automatically exploits strong convexity without any 
knowledge of .n

Table 2 summarizes the number of iterations to reach an 
accuracy of e  for the different configurations discussed in this 
section. Note, however, that there are numerous practical 
enhancements, such as step-size selection rules for ka  and adap-
tive restart of the momentum parameter kb  [10] that add only a 
small computational cost and do not rely on knowledge of the 
Lipschitz constant L  or the strong-convexity parameter .n  While 
such tricks of the trade do not rigorously improve the worst-case 
convergence rates, they often lead to superior empirical conver-
gence (cf. Figure 2) and similarly apply to their important proxi-
mal counterparts for solving (1) that we discuss next. 

Finally, the fast gradient algorithms described here also apply 
to nonsmooth minimization problems using Nesterov’s smooth-
ing technique [9]. In addition, rather than assuming Lipschitz-
continuity of the gradient of the objective function, recent 
work has considered efficient gradient methods for smooth self-
concordant functions, which naturally emerge in Poisson imag-
ing, graph learning, and quantum tomography problems [11]. 

COMPOSITE OBJECTIVES
We now consider the canonical composite problem (1), where 
the objective F  consists of a differentiable convex function f
and a nonsmooth convex function g  as in (4). 

In general, the nondifferentiability of g  seems to substan-
tially reduce the efficiency of first-order methods. This was 

[TABLE 2] THE TOTAL NUMBER OF ITERATIONS TO REACH
f -ACCURATE SOLUTIONS FOR FIRST-ORDER OPTIMIZATION
METHODS. L  AND n  DENOTE THE LIPSCHITZ AND STRONG
CONVEXITY CONSTANTS AND .d x x0

0
2-= )

ALGORITHM CONVEX STRONGLY CONVEX 

[PROXIMAL]-GRADIENT ( / )LdO 0
2 f ( / )logL dO 0

2

n
fc m

ACCELERATED-
[PROXIMAL]-GRADIENT

( / )LdO 0
2 f ( / )logL dO 0

2

n
fc m

[FIG2] The performance of first-order methods can improve significantly with practical enhancements. We demonstrate how the 
objective ( )F xk  progresses as a function of iterations k  for solving (a) the LS formulation (3) and (b) the LASSO formulation (4), both 
with ,p 5 000=  and , ,n 2 500=  for four methods: (proximal)-gradient descent with fixed step-size /L1a =  and adaptive step-size, 
accelerated (proximal)-gradient descent with fixed step-size, and accelerated (proximal)-gradient descent with the adaptive step-size 
and restart scheme in TFOCS. For the LS formulation, the basic methods behave qualitatively the same as their theoretical upper-
bounds predict but dramatically improve with the enhancements. In the LASSO formulation, gradient descent automatically benefits 
from sparsity of the solution and actually outperforms the basic accelerated method in high-accuracy regime, but adding the adaptive 
restart enhancement allows the accelerated method to also benefit from sparsity. 
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indeed the conventional wisdom since generic nonsmooth opti-
mization methods, such as subgradient and bundle methods, 
require ( / )1O 2f  iterations to reach f-accurate solutions [9]. 
While strong convexity helps to improve this rate to ( / ),1O f

the resulting rates are slower than first-order methods for a 
smooth objective. 

Fortunately, composite objectives are far from generic nons-
mooth convex optimization problems. The proximal-gradient
methods specifically take advantage of the composite structure 
to retain the same convergence rates of the gradient method for 
the smooth problem classes in Table 2 [12]. It becomes apparent 
that these algorithms are in fact natural extensions of the gradi-
ent method when we view the gradient method’s iterations (5) 
as an optimization problem: 

( ) ( ) ( ) ,argminx f x f x y x y x2
1k k k T k

k

k1 2

y Rp
d

a
= + - + -+

!

' 1
  (8)

which is based on a simple local quadratic approximation of .f
Note that when / ,L1k #a  the objective function above is a qua-
dratic upper bound on .f  Proximal-gradient methods use the 
same approximation of ,f  but simply include the nonsmooth 
term g  in an explicit fashion: 

( ) ( ) ( )

( ) .

argminx f x f x y x

y x g y2
1

k

y

k k T k

k

k

1

2

Rp
d

a

= + -

+ - +

!

+ $
1 (9)

For / ,L1k #a  the objective is an upper bound on F  in (1). 
The optimization problem (9) is the update rule of the proxi-

mal-gradient method: 

( ( )),x x f xproxk
g

k
k

k1
k da= -a

+

where the proximal map or proximal operator is defined as 

( ) ( ) .argminy g x x y2
1prox

x
g 2

2 def
= + -' 1 (10)

The accelerated proximal-gradient method is defined analogously: 

An interesting special case of the proximal-gradient algorithm 
arises if we consider the indicator function on a convex set ,C
which is an elegant way of incorporating constraints into (1) 

( ) .g x
x
x

0 C
C3 "

!
= '

Then, the proximal-gradient method yields the classic pro-
jected-gradient method for constrained optimization. 

These methods’ fast convergence rates can also be preserved 
under approximate proximal maps [12]. Proximal operators offer a 

flexible computational framework to incorporate a rich set of sig-
nal priors in optimization. For instance, we can often represent a 
signal x0  as a linear combination of atoms a A!  from some 
atomic set RA p3  as ,ax caa0 A

=
!

/  where ca  are the repre-
sentation coefficients. Examples of atomic sets include structured 
sparse vectors, sign-vectors, low-rank matrices, and many more. 
The geometry of these sets can facilitate perfect recovery even 
from underdetermined cases of the linear observations (2) with 
sharp sample complexity characterizations [2]. 

To promote the structure of the set A  in convex optimization, 
we can readily exploit its gauge function: ( ) {infg x 0

 def
A 2 ;t=

( )},x · conv A! t  where ( )conv A  is the convex hull of the set 
.A  The corresponding proximal operator of the gauge function 

has the following form: 

( ) ,: , ,argminu u u v a v aprox Ag
v

2
2

Rd
A 6# !G H c= - -

!

c " , (11)

[FIG 3] Choosing the correct smoothness structure on f  in 
composite minimization is key to the numerical efficiency of the 
first-order methods. The convergence plot here simply 
demonstrates this with a composite objective, called the 
heteroskedastic LASSO (hLASSO) from [11], where .n 1 5 104#=
and p 5 104#= . hLASSO features a self-concordant but not 
Lipschitz gradient smooth part ,f  and obtains sparse solutions 
while simultaneously estimating the unknown noise variance 

2v  in the linear model (2). The simplest first-order method, 
when matched to correct self-concordant smoothness structure, 
can calculate its step-sizes optimally, and hence significantly 
outperforms the standard first-order methods based on the 
Lipschitz gradient assumption even with the enhancements we 
discussed. Surprisingly, the accelerated gradient method takes 
longer than the gradient method to reach the same accuracy 
since it relies heavily on the Lispchitz gradient assumption in its 
momentum steps, which lead to costlier step-size adaptation.
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Algorithm 2: Accelerated proximal gradient method to solve (1)
[9], and [13] v x0 0= .

1) ( )x v f vproxk
g

k
k

k1
k da= -a

+ ^ h
2) ( )v x x xk k

k
k k1 1 1b= + -+ + +
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which involves a quadratic program in general but can be explic-
itly calculated in many cases [2]. Intriguingly, (11) also has mathe-
matical connections to discrete submodular minimization. 

By and large, whenever the computation of the proximal map is 
efficient, so are the proximal-gradient algorithms. For instance, 
when ( )g x x 1m=  as in the LASSO formulation (4), the proximal 
operator is the efficient soft thresholding operator. Against intu-
ition, a set with an infinite number of atoms can admit an efficient 
proximal map, such as the set of rank-1 matrices with unit Froben-
ius norm whose proximal map is given by singular value threshold-
ing. On the other hand, a set with a finite number of atoms need 
not, such as rank-1 matrices with 1!  entries whose proximal oper-
ator is intractable. Numerous other examples exist [2], [4].

When g  represents the indicator function of a compact set, the 
Frank–Wolfe method solves (9) without the quadratic term and 
can achieve an /O 1 e^ h convergence rate in the convex case [19]. 
This linear subproblem may be easier to solve, and each iteration 
of the Frank–Wolfe method typically only modifies a single ele-
ment of the atomic set leading to iterations with a controlled 
degree of sparsity.

Finally, proximal-gradient methods that optimally exploit the 
self-concordance properties of f  are also explored in [11] (c.f., 
Figure 3 for an example). Interestingly, many self-concordant 
functions themselves have tractable proximity operators as well—
a fact that proves useful next. 

PROXIMAL OBJECTIVES
For many applications, the first-order methods we have covered so 
far are not directly applicable. As a result, we will find it useful 
here to view the composite form (1) in the following guise: 

( , ): ( ) ( ) : ,min F x z h x g z z x
,x z Rp

U= + =
!
" , (12)

and only posit that the proximity operators of h  and g  are both 
efficient. For instance, the LASSO problem (4) and many of its 
generalizations can be written in this fashion via the convex 
(splitting) technique [4].

This seemingly innocuous reformulation can simultaneously 
enhance our modeling and computational capabilities. First, (12) 
can address nonsmooth and non-Lipschitz objective functions 
that commonly occur in many applications [11], [14], such as 
robust principal component analysis (RPCA), graph learning, and 
Poisson imaging, in addition to the composite objectives we have 
covered so far. Second, we can apply a simple algorithm, called the 
alternating direction method of multipliers (ADMM) for its solu-
tions, which leverages powerful augmented Lagrangian and dual 
decomposition techniques [4], [15]: 

Algorithm (3) is well suited for distributed optimization and 
turns out to be equivalent or closely related to many other algo-
rithms, such as Douglas–Rachford splitting and Bregman itera-
tive algorithms [15]. ADMM requires a penalty parameter c  as 
input and produces a sequence of iterates that approach feasibil-
ity and produce the optimal objective value in the limit. An 
overview of ADMM, its convergence, enhancements, parameter 
selection, and stopping criteria can be found in [15]. 

We highlight two caveats for ADMM. First, we have to 
numerically solve step 2 in Algorithm 3 in general except when 

TU U  is efficiently diagonalizable. Fortunately, many notable 
applications support these features, such as matrix completion 
where U  models subsampled matrix entries, image deblurring 
where U  is a convolution operator, and total variation regular-
ization where U  is a differential operator with periodic bound-
ary conditions. Second, the naïve extension of ADMM to 
problems with more than two objective terms no longer has 
convergence guarantees. 

Several solutions address the two drawbacks above. For the 
former, we can update zk 1+  inexactly by using a single step of 
the proximal gradient method, which leads to the method 
shown in Algorithm 4 which was motivated in [16] as a precon-
ditioned variant of ADMM and then analyzed in [17] in a more 
general framework. Interestingly, when ( )h x  has a difficult 
proximal operator in Algorithm 3 but also has a Lipschitz gradi-
ent, we can replace ( )h x  in step 1 with its quadratic surrogate 
as in (8) to obtain the linearized ADMM [18]. Surprisingly, these 
inexact update steps can be as fast to converge as the full ADMM 
in certain applications [16]. We refer the readers to [15], [17], 
and [18] for the parameter selection of these variants as well as 
their convergence and generalizations. 

For the issue regarding objectives with more than two 
terms, we can use dual decomposition techniques to treat the 
multiple terms in the objective of (12) as separate problems and 
simultaneously solve them in parallel. We defer this to the sec-
tion “The Role of Parallel and Distributed Computation” and 
Algorithm 8. 

BIG DATA SCALING VIA RANDOMIZATION
In theory, first-order methods are well-positioned to address very 
large-scale problems. In practice, however, the exact numerical 
computations demanded by their iterations can make even these 
simple methods infeasible as the problem dimensions grows. For-
tunately, it turns out that first-order methods are quite robust to 
using approximations of their optimization primitives, such as 
gradient and proximal calculations [12]. This section describes 
emerging randomized approximations that increase the reach of 
first-order methods to extraordinary scales. 

Algorithm 3: ADMM to solve (12); , .z u0 00 02c = =

1) ( )

( )

argminx h x x z u

z u
2
1

prox

k
x

k k

h
k k

1
2
2

c U

U

= + - +

= -c

+

2) ( )argminz g z x z u2
1k

z
k k1 1

2
2

c U= + - ++ +

3) u u x zk k k k1 1 1U= + -+ + +

Algorithm 4: Primal-dual hybrid gradient algorithm to solve 
(12); 02c  and /1 2#x U .

1) ( )x z uproxk
h

k k1 U= -c
+

2) ( ( ))z z x z uproxk
g

k T k k k1 1xU U= + - +cx
+ +

3) u u x zk k k k1 1 1U= + -+ + +
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To deliver an example of the key ideas, we will focus only on 
the smooth and strongly convex F  as objectives and point out 
extensions when possible. Many notable big data problems 
indeed satisfy this assumption. For instance, Google’s PageRank 
problem measures the importance of nodes in a given graph via 
its incidence matrix M R p p! #  and p  is on the order of tens of 
billions. Assuming that more important nodes have more con-
nections, the problem in fact aims to find the top singular vec-
tor of the stochastic matrix ( ) ,M M 1diag T

p
1U = -  where 

1 Rp
p!  is the vector of all 1s. 

The PageRank algorithm simply solves this basic linear algebra 
problem (i.e., find x 0* $  such that x x* *U =  and )x 11 *

p
T =

with the power method. However, we can well approximate this 
goal using a least squares problem when we relax the constraints 
with a penalty parameter 02c  [20]: 

( ) .min F x x x x
2
1

2
11

x
p
T

2
2 2def

Rp

c
U= - + -

!
^ h' 1 (13)

Note that we can work with a constrained version of this prob-
lem that includes positivity, but since the PageRank formula-
tion itself is not exact model of reality, the simpler problem can 
be preferable for obvious computational reasons. Clearly, we 
would like to minimize the number of operations involving the 
matrix U  in any solution method. 

COORDINATE DESCENT METHODS
Calculating the full gradient for the PageRank problem formulation 
requires a matrix–vector operation at each iteration. A cheaper vec-
tor-only operation would be to pick a coordinate i  of x  and only 
modify the corresponding variable xi  to improve the objective func-
tion. This idea captures the essence of coordinate descent methods,
which have a long history in optimization [21] and are related to 
classic methods like the Gauss–Seidel cyclic reduction strategy for 
solving linear systems. The general form of coordinate descent 
methods is illustrated in Algorithm 5, where ei  is the ith  canonical 
coordinate vector and (·)Fid  is the ith  coordinate of the gradient. 

The key design consideration across all coordinate descent 
methods is the choice of the coordinate i  at each iteration. A 
simple strategy amenable to analysis is to greedily pick the 
coordinate with the largest directional derivative .Fid  This 
selection with /L1 maxa =  or optimizing the variable exactly 
leads to a convergence rate of 

( ) ( ) ( ( ) ( )),F x F x pL F x F x1*

max

k
k

0#
n

- - - )c m (14)

where : maxL Lmax i i=  is the maximum across the Lipschitz 
constants of ( )F xid  [20]. This configuration indeed seeks the 
best reduction in the objective per iteration we can hope for 
under this setting. 

The example above underlines the fundamental difficulty in 
coordinate descent methods. Finding the best coordinate to 
update, the maximum of the gradient element’s magnitudes, can 
require a computational effort as high as the gradient calculation 
itself. However, the incurred cost is not justified since the meth-
od’s convergence is provably slower than the gradient method 
due to the basic relationship .L L pLi i# #  An alternative pro-
posal is to cycle through all coordinates sequentially. This is the 
cheapest coordinate selection strategy for which we can hope but 
it results in a substantially slower convergence rate. 

Surprisingly, randomization of the coordinate choice can 
achieve the best of both worlds. Suppose we choose the coordinate 
i  uniformly at random among the set { , , , } .p1 2 f  This selection 
can be done with a cost independent of ,p  but surprisingly never-
theless achieves the same convergence rate (14) in expectation 
[20]. The randomized algorithm’s variance around its expected 
performance is well-controlled. 

We also highlight two salient features of coordinate descent 
methods. First, they are perhaps most useful for objectives of 
the form ( )F Ax  with ,A Rn p! #  where evaluating the (not 
necessarily smooth) F  costs ( ) .nO  By tracking the product 
Axk  with incremental updates, we can then perform coordi-
nate descent updates in linear time. Second, if we importance 
sample the coordinates proportional to their Lipschitz con-
stants ,Li  then the convergence rate of the randomized 
method improves to 

( ) ( ) ( ( ) ( )),F x F x pL F x F x1k
k

0

mean
#

n
- - - )) c m (15)

where Lmean  is the mean across the .Li  Hence, this nonuniform 
random sampling strategy improves the speed by only adding an 

( ( ))log pO  importance sampling cost to the algorithm [20]. 
Finally, accelerated and composite versions of coordinate 

descent methods have also recently been explored, although accel-
erated methods often do not preserve the cheap iteration cost of 
the nonaccelerated versions [3]: cf. [20] for a numerical example of 
these methods on the PageRank problem (13). 

STOCHASTIC GRADIENT METHODS
In contrast to randomized coordinate descent methods, which 
update a single coordinate at a time with its exact gradient, SG 
methods update all coordinates simultaneously but use approxi-
mate gradients. They are best suited for minimizing decomposable 
objective functions 

( ) : ( ) ,min F x
n

F x1
j

j

n

1
x Rp

=
=

!
) 3/ (16)

where each Fj  measures the data misfit for a single data point. 
This includes models as simple as least squares and also more 
elaborate models like conditional random fields. 

Algorithm 6: SG descent to minimize F  over R p .

1) Choose an index { , , , }j n1 2k f!  uniformly at random
2) ( )x x F xk k

k j
k1

kda= -+

Algorithm 5: Coordinate descent to minimize F  over R p .

1) Choose an index { , , , }i p1 2k f! (see the main text for 
possible selection schemes)

2) ( )x x F x ek k
i

k
i

1
k kda= -+
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SG iterations heavily rely on the decomposability of (16) as 
shown in Algorithm 6. Similar to the coordinate descent meth-
ods, the crucial design problem in the SG methods is the selec-
tion of the data points j  at each iteration. Analogously, we obtain 
better convergence rates by choosing the j  uniformly at random 
rather than cycling through the data [22]. In contrast, the per 
iteration cost of the algorithm now depends only on p  but not .n

Interestingly, a random data point selection results in an 
unbiased gradient estimate when we view (16) as the empirical 
observation of an expected risk function that governs the opti-
mization problem 

( ) : ,[ ( )]min F x F xE
x Rp

=
!

p p" , (17)

where the expectation is taken over the sampling distribution for 
the indices .p  Indeed, if we can sample from the true underlying 
distribution, then SG methods directly optimize the expected risk 
minimization problem and result in provable generalization capa-
bilities in machine learning applications [6]. The unbiased gradient 
estimation idea enables the SG descent method to handle convex 
objectives beyond the decomposable form (16) [3]. 

The general SG method has classically used a decreasing 
sequence of step-sizes { } .ka  However, this unfortunately leads to 
the same slow ( / )1O e  and ( / )1O e  convergence rates of the sub-
gradient method. But interestingly, if we still use a constant 
step-size at each iteration for the SG method, the algorithm is 
known to quickly reduce the initial error, even if it has a non-
vanishing optimization error [22]. We have observed this for the 
SG descent example in Figure 1. Indeed, while SG descent 
methods have historically been notoriously hard to tune, recent 
results show that using large step-sizes and weighted averaging 
of the iterates (cf. Figure 1) allows us to achieve optimal conver-
gence rates while being robust to the setting of the step-size and 
the modeling assumptions [22], [23]. For example, recent work 
has shown [23] that an averaged SG iteration with a constant 
step-size achieves an ( / )1O f  convergence rate even without 
strong convexity under joint self-concordance-like and Lip-
schitz gradient assumptions. Another interesting recent devel-
opment has been stochastic algorithms that achieve linear 
convergence rates for strongly convex problems of the form (16) 
in the special case where the data size is finite [24]. 

RANDOMIZED LINEAR ALGEBRA
For big data problems, basic linear algebra operations, such as 
matrix decompositions (e.g., eigenvalue, singular value, and Cho-
lesky) and matrix–matrix multiplications can be major computa-
tional bottlenecks due to their superlinear dependence on 
dimensions. However, when the relevant matrix objects have low-
rank representations (i.e., M LRT=  with L R p r! #  and 
R R p r! #  where ),r p%  the efficiency of these methods uni-
formly improves. For instance, the corresponding singular value 
decomposition (SVD) of M  would only cost ( )pr rO 2 3+  flops. 

The idea behind randomized linear algebra methods is either 
to approximate ( )M Q Q MT.  with ,Q R p r! #  or to construct a 
low-rank representation by column or row subset selection to 

speedup computation. And indeed, doing this in a randomized
fashion gives us control over the distribution of the errors [25], 
[26]. This idea generalizes to matrices of any dimensions and has 
the added benefit of exploiting mature computational routines in 
nearly all programming languages. Hence, they immediately lend 
themselves well to modern distributed architectures. 

We describe three impacts of randomizing linear algebra 
routines in optimization here. First, we can accelerate computa-
tion of the proximity operators of functions that depend on 
spectral values of a matrix. For instance, the proximity operator 
of the nuclear norm, used in matrix completion and R PCA 
problems, requires a partial SVD. This is traditionally done with 
the Lanczos algorithm which does not parallelize easily due to 
synchronization and reorthogonalization issues. However, with 
the randomized approach, the expected error in the computa-
tion is bounded and can be used to maintain rigorous guaran-
tees for the convergence of the whole algorithm [27]. 

Second, the idea also works in obtaining unbiased gradient 
estimates for matrix objects, when randomization is chosen 
appropriately, and hence applies to virtually all SG algorithms. 
Finally, the randomized approach can be used to sketch objec-
tive functions, i.e., to approximate them to obtain much 
cheaper iterations with exact first-order methods while retain-
ing accuracy guarantees for the true objective [26]. 

Algorithm 7 is an example of a randomized low-rank approx-
imation, which is simply a single step of the classical QR itera-
tion, using a random initial value. Surprisingly, the error in 
approximating M  is nearly as good as the best rank- r  approxi-
mation, where r, t= +  and t  is small. Specifically, for 

,r 2 2$ $t  and ,p, #  [25] provides the bound 

M M r M M1 1E ( ) ( )F r F#
t

- +
-

-,
t ,

where the expectation is taken with respect to the randomization, 
and M( )r  is the best rank- r  approximation of ,M  which only 
keeps the first r  terms in the SVD and sets the rest to zero; fur-
thermore, [25] shows a deviation bound showing that the error 
concentrates tightly around the expectation. Thus, the approxi-
mation can be very accurate if the spectrum of the matrix decays 
to zero rapidly. For additional randomized linear algebra schemes 
and their corresponding guarantees, including using a power 
iteration to improve on this bound, we refer the readers to [25]. 

Figure 4 illustrates the numerical benefits of such random-
ization over the classical Lanczos method. Since the random-
ized routine can perform all the multiplications in blocks, it 
benefits significantly from parallelization. 

Algorithm 7: Randomized low-rank approximation. 

Require: ,M R p p! #  integer r
1) Draw R p r!X #  iid ( , )0 1N
2) W MX= //Matrix multiply, cost is ( )p rO 2

3) QR W= //QR algorithm, e.g., Gram-Schmidt, cost is ( )prO 2

4) U M QT= //Matrix multiply, cost is ( )p rO 2

5) return M QU( )r
T=t //Rank r  approximation 
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THE ROLE OF PARALLEL AND 
DISTRIBUTED COMPUTATION
Thanks to Moore’s law of scaling sili-
con density, raw computational 
throughput and storage capacity 
have increased at exponential rates 
up until the mid-2000s, thereby giv-
ing convex optimization algorithms 
commensurate performance boosts. 
However, while Moore’s law is 
expected to continue for years to 
come, transistor efficiencies have plateaued. As dictated by 
Dennard’s law, scaling silicon density now results in unprece-
dented levels of power consumption. To handle the massive com-
putational and storage resources demanded by big data at 
reasonable power costs, we must hence increasingly rely on paral-
lel and distributed computation. 

While first-order methods seem ideally suited for near-opti-
mal performance speed-ups, two issues block us when using 
distributed and heterogeneous hardware: 

■ Communication: Uneven or faulty communication links 
between computers and within the local memory hierarchy 
can significantly reduce the overall numerical efficiency of 
first-order methods. Two approaches broadly address such 
drawbacks. First, we can specifically design algorithms that 
minimize communication. Second, we can eliminate a mas-
ter vector xk  and instead work with a local copy in each 
machine that each lead to a consensus x)  at convergence. 
■ Synchronization: To exactly perform the computations 
in a distributed fashion, first-order methods must coordi-
nate the activities of different computers whose numerical 
primitives depend on the same vector xk  at each iteration. 
However, this procedure slows down when even a single 
machine takes much longer than the others. To alleviate 
this quintessential synchronization problem, asynchro-
nous algorithms allow updates using outdated versions of 
their parameters.
In this section we describe several key developments related 

to first-order methods within this context. Due to lack of space, 
we will gloss over many important issues that impact the practi-
cal performance of these methods, such as latency and multihop 
communication schemes. 

EMBARRASSINGLY PARALLEL FIRST-ORDER METHODS
First-order methods can significantly benefit from parallel com-
puting. These computing systems are typified by uniform pro-
cessing nodes that are in  close proximity and have reliable 
communications. Indeed, the expression embarrassingly paral-
lel refers to an ideal scenario for parallelization where we split 
the job into independent calculations that can be simultane-
ously performed in a predictable fashion. 

In parallel computing, the formulation of the convex prob-
lem makes a great deal of difference. An important embarrass-
ingly parallel example is the computation of the gradient vector 
when the objective naturally decomposes as in (16). Here, we 

can process each Fi  with one of m
computers using only ( / )n mO
local computation. Each machine 
also stores data locally with the 
corresponding ( / )n mO -data sam-
ples since each Fi  directly corre-
sponds to a data point. Each 
processor then communicates with 
the central location to form the 
final gradient and achieve the ideal 
linear speed-up. 

Beyond parallelizing the basic gradient method for smooth 
problems, an embarrassingly parallel distribute-and-gather
framework for nonsmooth problems results from an artificial 
reformulation of (16) so that we can apply decomposition tech-
niques, such as Algorithm 8: 

( ) : , , , .min n F x x x i n1 1
, : , ,

( ) ( )
x x i n

i
i

n

i i
1 1( )i

f= =
f=

=

' 1/ (18)

[FIG4] Computing the top five singular vectors of a 109 entry 
matrix using varying number of computer cores. The matrix is a 
dense , ,61 440 17 784#  matrix (8.1-GB RAM) generated from 
video sequences from http://perception.i2r.a-star.edu.sg/bk_
model/bk_index.html. Such partial SVDs are used in the proximity 
operator for the nuclear norm term that arises in robust PCA
formulations of video background subtraction. The randomized 
factorization happens to be faster than the Lanczos-based SVD
from the PROPACK software even with a single core, but more 
importantly, the randomized method scales better as the 
parallelism increases. The accuracies of the two methods are 
indistinguishable.
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Algorithm 8: Decomposition algorithm (aka, consensus ADMM) 
[28] to solve (18); , for , ,ix n0 0 1> i

0 fc = = .

1) ( / ) ( )nz x1 prox ( )i
nk

F i
k1

1 i= c
+

=
/

2) for i 1= to n do
3) ( )x z z x x2 prox( ) ( ) ( )i

k k k
i

k
F i

k1 1
i= - + - c

+ +

4) end for
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Indeed, the decomposition idea above forms the basis of the 
massively parallel consensus ADMM algorithm, which provides 
an extremely scalable optimization framework for .n 22  See 
[15], [18], and [28] for convergence analysis and further vari-
ants that include additional linear operators. 

Fortunately, we have access to many computer program-
ming models to put these ideas immediately into action. Soft-
ware frameworks, such as MapReduce, Hadoop, Spark, Mahout, 
MADlib, SystemML, and BigIn-
sights, and corresponding high-
level languages such as Pig, Hive, 
and Jaql, can govern the various 
optimization tasks in parallel while 
managing all communications and 
data transfers within the computing 
system, and seamlessly provide for 
redundancy and fault tolerance in 
communications. 

FIRST-ORDER METHODS WITH REDUCED 
OR DECENTRALIZED COMMUNICATIONS
In large systems, communicating the gradient or its elements to 
a central location may create a communication bottleneck. In 
this setting, coordinate descent methods provide a principled 
approach to reduce communications. There is indeed substan-
tial work on developing parallel versions of these methods, dat-
ing back to work on the Jacobi algorithm for solving linear 
systems. The basic idea is simply to apply several coordinate 
descent updates at the same time in parallel. The advantage of 
this strategy in terms of communication is that each processor 
only needs to communicate a single coordinate update, while it 
only needs to receive the updates from the coordinates that 
have changed. 

When the objective is decomposable, this is simply an 
embarrassingly parallel version of the serial algorithm. Further-
more, classical work shows that this strategy is convergent, 
although it may require a smaller step-size than the serial vari-
ant. However, it does not necessarily lead to a speed increase for 
nonseparable functions. Recent work has sought to precisely 
characterize the conditions under which parallel coordinate 
descent methods still obtain a large speed-up [8]. 

Surprisingly, we can also decentralize the communication 
requirements of gradient methods for decomposable objectives 
with only minor modifications [29]. The resulting algorithm 
performs a modified gradient update to the average of the 
parameter vectors only among the neighbors with which it 
communicates. This strategy in fact achieves similar conver-
gence rates to the gradient method with central communica-
tions, where the rate degradation depends on the graph 
Laplacian of the underlying communication network. 

ASYNCHRONOUS FIRST-ORDER METHODS 
WITH DECENTRALIZED COMMUNICATIONS
The gradient and the decomposition methods above still require 
a global synchronization to handle decomposable problems 

such as (16). For instance, the gradient algorithm computes the 
gradient exactly with respect to one (or more) examples at xk

and then synchronizes in sequence to update xk 1+  in a standard 
implementation. In contrast, SG algorithms that address (16) 
only use a crude approximation of the gradient. Hence, we 
expect these algorithm to be robust to outdated information, 
which can happen in asynchronous settings. 

A variety of recent works have shown that this is indeed the 
case. We highlight the work [7], 
which models a lock-free shared-
memory system where SG updates 
are independently performed by each 
processor. While the lock-free SG 
still keeps a global vector ,x  proces-
sors are free to update it without any 
heed to other processors and con-
tinue their standard motions using 
the cached .x  Under certain condi-

tions this asynchronous procedure preserves the convergence of 
SG methods, and results in substantial speed-ups when many 
cores are available. The same memory lock-free model also applies 
to stochastic parallel coordinate descent methods [8]. Finally, first-
order algorithms with randomization can be effective even in 
asynchronous and decentralized settings with the possibility of 
communication failures [30]. 

OUTLOOK FOR CONVEX OPTIMIZATION
Big data problems necessitate a fundamental overhaul of how 
we design convex optimization algorithms, and suggest uncon-
ventional computational choices. To solve increasingly larger 
convex optimization problems with relatively modest growth in 
computational resources, this article makes it clear that we 
must identify key structure-dependent algorithmic approxima-
tion tradeoffs. 

Since the synchronization and communication constraints of 
the available hardware naturally dictates the choice of the algo-
rithms, we expect that new approximation tools will continue to 
be discovered that ideally adapt convex algorithms to the hetero-
geneity of computational platforms. We also predict an increased 
utilization of composite models and the corresponding proximal 
mapping principles in parallel and distributed architectures for 
nonsmooth big data problems in order to cope with noise and 
other constraints. For example, the LASSO formulation in (4) has 
estimation guarantees that are quantitatively stronger than the 
guarantees of the LS estimator when the signal x0  has at most k
nonzero entries and U  obeys certain assumptions [1]. That is to 
say, to get more out of the same data, we must use composite 
models. This also invites the question of whether we can use com-
posite models to get the same information out but do it faster, an 
issue which has been discussed [5], [6] but not yet had an impact 
in practice. 
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O
utliers refer to observations that do not conform 
to the expected patterns in high-dimensional 
data sets. When such outliers signify risks (e.g., 
in fraud detection) or opportunities (e.g., in 
spectrum sensing), harnessing the costs associ-

ated with the risks or missed opportunities necessitates mecha-
nisms that can identify them effectively. Designing such 
mechanisms involves striking an appropriate balance between 
reliability and cost of sensing, as two opposing performance 
measures, where improving one tends to penalize the other. 

This article poses and analyzes outlying sequence detection in a 
hypothesis testing framework under different outlier recovery 
objectives and different degrees of knowledge about the under-
lying statistics of the outliers. 

INTRODUCTION

MOTIVATION
Advances in data acquisition and high-dimensional information pro-
cessing are rapidly transforming various technological, social, and 
economic domains, including the Internet, telecommunication, 
energy grids, social networks, and the health industries, to name a 
few. Empowered by these advances, such domains are evolving into 
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complex networked platforms in which high-dimensional and com-
plex data is routinely generated, communicated, stored, and pro-
cessed for various monitoring, inference, and resource 
management purposes. Due to the inherent scale of data and 
complexity of the processes involved, the challenges associated 
with capturing, curating, searching, and sharing the information 
are also expected to grow well into the future. Hence, benefiting 
from the full extent of such enabling technologies is feasible only 
when appropriate measures are implemented that address these 
growing challenges while recognizing constraints pertinent to 
the physical limits of the application domains of interest. 

Analyzing large-scale and complex data sets involves multifa-
ceted phases, each of which introduces its own set of challenges. 
These phases include data acquisition and storage, information 
extraction, data aggregation, data modeling, and query process-
ing, and the associated challenges include information hetero-
geneity, processing timeliness, data security and privacy, and 
human interactions. By capitalizing on the promises of data-
driven information processing theories for understanding and 
addressing these challenges, this article focuses on a particular 
class of challenges related to information extraction and its 
associated timeliness requirements. 

Extracting information and knowledge from data sets has been 
studied extensively over the past decade through developing pow-
erful data mining and statistical learning methods. These methods 
are primarily focused on discovering (inferring) patterns in data 
sets and have widespread applications. In addition to the ongoing 
developments in discovering patterns in large data sets, there has 
also been a growing interest in uncovering outlying observations, 
which are observations that do not conform to expected patterns 
in large data sets. Such outlying observations generally refer to 
observations that are significantly different from the other data set 
constituents. While defining and identifying outliers are subjective 
exercises, outlier observations are often abstracted as deviations in 
the nature of a data set population and are considered to be caused 
by transient disruptions during data acquisition due to, for 
instance, a malfunctioning measurement apparatus, noisy data 
transmission media, or abrupt changes in the nature or behavior 
of the population. There exists a rich literature on outlier detec-
tion for the setting in which outliers are candidates for aberrant 
data that lead to biased or incorrect inferences. The general 
approach to cope with outliers in such circumstances is to clean 
up the data prior to modeling and performing the attendant statis-
tical analysis [1]. Relevant outlier detection methods can be cate-
gorized under different taxonomies, the major ones being 
univariate versus multivariate methods and parametric versus 
nonparametric methods. Some popular approaches for such out-
lier detection approaches include Pierce’s criterion [2], Chau-
venet’s criterion [3], and Dixon’s test [4]. 

In contrast to the aforementioned notion of outlier detection 
that aims to render disturbance-free data, a less-investigated 
aspect of identifying outliers pertains to searching for rare and 
at the same time significant anomalies that do not conform to 
expected patterns and are often manifested as opportunities to 
be exploited (arising, e.g., in spectrum sensing) or risks to be 

ameliorated (e.g., network intrusion or fraud detection). In 
these settings, we can consider the outlying sequence detection 
problem as one in which a large number of sequences are being 
monitored simultaneously and the goal is to choose a small sub-
set of sequences that are outliers. We refer to such problems as 
outlying sequence detection problems to distinguish them from 
the setting described in the previous paragraph in which a few 
outlier observations are winnowed out from a single set of data. 

Detecting the outliers, especially in large data sets, is often 
very time-sensitive due to the transient nature of the opportuni-
ties that are attractive only when detected quickly, or due to the 
substantial costs that risks can incur if not managed swiftly. In 
this article, we focus on the fundamental problems in quick 
detection of outliers while recognizing different system- and 
physical-level constraints imposed by various contexts.

BACKGROUND
Outlier detection has immediate application in a broad range of 
contexts in which large volumes of data are constantly gener-
ated and processed. Some of these contexts and their applica-
tion domains will be reviewed briefly in the section “Application 
Domains.” While outlier observations in all contexts conform in 
representing unusual changes of the behavior of the underlying 
physical phenomena over one or more dimensions (e.g., time or 
space), the broad diversity in the range of the relevant applica-
tions necessitates diverse formulations that are customized to 
capture the specifics of each application domain. The remainder 
of this subsection focuses on reviewing some of the widespread 
models for abstracting the outlier detection problem in large 
data sets. The three major components for modeling the outli-
ers and abstracting the outlier detection problem are the level 
of available information about the normal and outlying data 
streams, the type of the outliers, and the figure of merit for 
identifying the outliers. A comprehensive review of all such 
abstractions can be found in [5] and [6].

SUPERVISION LEVEL
Availability of information about the models for the data 
streams governs the modes and approaches for performing out-
lier detection in large data sets. Specifically, the existing 
approaches to outlier detection can be broadly categorized into 
four classes: supervised, semisupervised, unsupervised, and uni-
versal approaches, which are distinguished based on the availa-
bility of information about the structure of the data streams. 

■ Supervised: In the presence of prior information about the 
data streams (often acquired through training data) the mod-
els of both normal and abnormal (outlying) observations are 
known, which enables supervised outlier detection. These 
approaches are appropriate for static data or data models that 
evolve slowly enough so that tracking and learning the 
changes in the model are viable. In the statistics and com-
puter science literature, the class of supervised outlier detec-
tion is studied extensively under classification-based 
approaches [7], [8], neural networks [9]–[11], Elman net-
works [12], naïve Bayes, and support vector machines [13]. 
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■ Semisupervised: In many practical circumstances acquir-
ing models for both normal and outlying data streams is 
often infeasible. Based on the availability of information 
about a model for either normal or outlying sequences, sem-
isupervised outlier detection approaches are developed, 
which capitalize on the known structure of normal (outly-
ing) data streams to be robust against uncertainty about the 
structure of outlying (normal) data streams. While there 
exist scenarios that assume availability of information about 
the outlying sequences and lack of information about nor-
mal data streams [9], [14], these scenarios do not often arise. 
This is primarily due to the fact that outliers typically have 
an unpredictable nature and designing learning algorithms 
that can cover all possible outlying events is difficult. On the 
other hand, normal behavior is often well defined and thus it 
is more viable to construct models for normal data streams. 
Hence, in the majority of the existing literature on semisu-
pervised outlier detection, the normal data streams are 
assumed to have known models while those of the outliers 
are unknown. 
■ Unsupervised: Under this category no assumption is made 
about models for the normal or outlying data streams and, 
instead, some other assumptions (e.g., parametric) are made 
about the models. In these approaches the normal observation 
are those that share a pattern occurring frequently and the 
outliers are those with rare and distinct patterns. Some repre-
sentative unsupervised approaches include discriminative 
approaches [15]–[19], parametric approaches [18], [20]–[24], 
and online analytical processing (OLAP) approaches [25]. 
■ Completely universal: Unlike in the supervised, semisuper-
vised and unsupervised approaches, in the completely univer-
sal approach, no training data is available for either the 
typical or outlier distributions. As we discuss in the section 
“Universal Outlying Sequence Detection,” it is possible to 
construct decision rules under this completely universal set-
ting, with only the assumption that the typical and outlier 
distributions are different.

TYPES OF OUTLIERS
A pivotal step toward formulating any outlier detection 
approach is an abstraction for modeling the outliers. Here we 
review some of the more common categories of outliers, which 
are distinguished based on their composition and their rele-
vance to normal observations. 

■ Outlying points within a data stream: This type of outlier 
occurs in circumstances when we are dealing with one data 
stream (often modeled as a time series) and one or more iso-
lated elements of the stream do not conform to the common 
pattern of the data stream. Depending on whether the objec-
tive is to perform real-time or in-retrospect (offline) outlier 
detection, there are two different types of detection proce-
dures. In real-time scenarios, the existing approaches often 
dynamically provide forecasts for the upcoming observations 
and, upon collecting the actual observations, a similarity 
measure between the actual observations and their forecast is 

computed. This measure determines whether the observation 
deviates from the expected pattern, and consequently 
whether it is an outlier or a normal observation [26]. In the 
offline outlier detection approaches, on the other hand, one 
popular approach is to cast the outlier detection problem as 
an in-retrospect change point detection problem [27]. 
■ Outlying subsequences within a data stream: In contrast to 
outlying points, which appear sporadically and in isolation in 
one data stream, outlying subsequences appear in the form of 
consecutive outlying points. Similar to outlying points, detect-
ing such outliers can be studied under real-time and offline set-
tings. For the former there exist a body of window-based 
prediction approaches that form similarity measures for identi-
fying outlying subsequences, and, for the latter, in-retrospect 
change point detection approaches are applicable. 
■ Outlying data streams: The previous two types of outliers 
occur within a data stream. Outlying data streams occur when 
we are given a large group of data streams, most of which fol-
low a common pattern, but a few of which do not conform to 
this common pattern. Hence, there is no notion of outliers 
occurring within a stream anymore, but rather, each entire 
data stream is either normal or outlying. In such circum-
stances, the objective is to identify a group of sequences that 
exhibit behaviors different from the common pattern. This set-
ting has been studied extensively in the statistics literature in 
which several approaches based on autoregression, moving 
average, and cumulative sum tests have been proposed with 
details reviewed in depth in [1], [5], and [28].

DECISION MECHANISM
Upon designing the information-gathering process and collecting 
observations, there are two broad schemes for forming a decision 
on individual observations or sets of observations and categorizing 
them as normal or outlying. In one approach, often termed the 
labeling technique, a binary decision about each individual obser-
vation is made. The outcome in this approach is a classification of 
the observations into two sets. The advantage of this approach is 
its accuracy in labeling every observation with a decision, while its 
drawback is that when the data volume increases, forming an 
accurate decision for every single observation is computationally 
prohibitive. In an alternative approach, often referred to as a sort-
ing technique, each observation receives a score that indicates the 
likelihood of that observation being an outlier. The advantage of 
this technique is that it is less stringent in reaching an accurate 
decision for all observations in favor of enhancing the speed of the 
detection procedure, which makes it more suited for analyzing 
large data sets. The drawback of this approach, on the other hand, 
is that there should be a supplementary mechanism deciding 
about a threshold on the scores to delineate the normal and outly-
ing regions. 

APPLICATION DOMAINS
Different combinations of the different types of outliers, super-
vision level, and decision mechanisms (and other details 
reviewing, which is not relevant to the scope of this article) 
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create different abstractions for the outlier detection problem, 
each of which is relevant in certain application domains. Spe-
cifically, there exist a wide range of applications in which large 
volumes of data are constantly generated and the goal is to 
search for features or to identify anomalies that signify risks or 
opportunities. These goals can often be cast as outlier detection 
where the nature of the outliers, supervision level, the atten-
dant decision mechanism, and other assumptions and con-
straints collectively formulate the underlying outlier detection 
problem. Examples of the application domains that involve 
detecting outliers in large data sets include credit card fraud 
detection [29], clinical trials [30], high-frequency trading [31], 
voting irregularity analysis [32], spectrum sensing [33], net-
work intrusion [34], severe weather prediction [35], and seis-
mic data analysis [36]. In this subsection we review a few 
application domains in which the problem of outlying 
sequence detection has important physical implications. 

NETWORK INTRUSION
Network intrusion detection refers to detecting malicious pene-
trations to data networks. Intrusions exhibit behaviors different 
from the normal patterns in the network and the measurements 
associated with them can be modeled as outliers. The major 
impediment for identifying intrusions in this setting is the large 
volume of data, which makes the intrusion detection process 
computationally costly and time-consuming, while agile 
response to the presence of the intruders is crucial as any delay 
in detecting them leads to recovery costs for the system. Intru-
sions can often be modeled as outlying subsequences or 
sequences for which an observation model is unknown and, 
consequently, semisupervised or unsupervised approaches are 
best suited for identifying them. A comprehensive review of the 
literature on outlier detection approaches for network intrusion 
detection is available in [37]. 

FRAUD DETECTION
Fraud detection, which is the practice of identifying deliberately 
unlawful gains, is widely deployed by commercial entities 
including financial institutions, telecommunication companies, 
and insurance agencies. The pivotal step in designing fraud 
detection algorithms is creating profiles for usage activities of 
legitimate users and flagging any activity deviant from these 
profiles as a potential fraud. Hence, fraudulent activities can be 
modeled as outlying activities that should be identified swiftly to 
minimize the associated financial losses. A survey of different 
outlier detection approaches suited for credit card, mobile 
phone, insurance claim, and insider trading fraud detection is 
available in [37]. 

SPECTRUM SENSING
Wireless connectivity is ubiquitous and is constantly growing in
scale and complexity to cope with the existing demands (e.g., 
data communication and sensor networks) and to accommodate 
the emerging ones (e.g., wireless health and smart grids). All such 
enabling technologies are viable at the expense of increasing 

demands for radio spectrum, which is the major commodity in 
the wireless industry. As reported by the U.S. Federal Communi-
cations Commission (FCC), exclusive spectrum access rights 
lead to underutilization of the spectrum. Driven by this observa-
tion and the urgency for higher spectral efficiency, future spec-
trum access policies are envisioned to provide the flexibility of 
dynamically granting spectrum access to unlicensed wireless 
services when the spectrum is underutilized by the license-
holding services. Under such envisioned spectrum access pol-
icies, unlicensed services compete to make use of shared 
spectrum opportunities. The underutilized segments of the 
spectrum, hence, will not be as abundant as they otherwise 
should be and such reduction in their availability becomes even 
more severe as wireless sensing and networking grows in size 
and services. Hence, spectrum holes across wideband spectrum 
can be modeled as outliers in terms of their occupancy status 
and the problem of spectrum sensing in congested wideband 
spectrum can be abstracted as an outlier detection problem [33]. 

ENVIRONMENTAL MONITORING
The applications of outlier detection in environmental monitor-
ing are multifaceted. Different forms of outlier detection are
being used across the globe, e.g., for determining locations with 
constantly different temperatures from their neighbors, discov-
ering drought areas, positioning fertility loss areas, and detect-
ing hurricanes. A detailed overview of these application domains 
is available in [6]. 

DATA-ADAPTIVE OUTLYING SEQUENCE DETECTION
We introduce a general dichotomous hypothesis testing model 
for the outlying sequence detection problem of interest. This 
will be a unifying theme for investigating the problem under 
different settings. In this dichotomous model, we assume that 
the data set consists of M  data streams, each being either a typ-
ical or an outlying sequence. Typical sequences exhibit identical 
statistical behavior, with which the outliers do not comply by 
exhibiting arbitrarily different known or unknown behaviors. 
The data volume increases as the number of data streams M
increases, and in this article the focus is placed on high-dimen-
sional data by performing the analysis in the asymptote of large 
values of M  (i.e., ) .M " 3  Furthermore, to emphasize the rar-
ity of the outliers, we assume that the number of outliers grows 
sublinearly as M  increases. 

The above dichotomous model is adopted to mainly focus 
the attention on the discrepancy between the outliers and the 
typical observations and can be generalized to models that 
involve multiple statistical behaviors for the typical sequences. 
Each data stream generates independent and identically distrib-
uted (i.i.d.) real observations { , , }Y Y( ) ( )i i

1 2 f  obeying one of the 
two models 

:
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where F  denotes a cumulative distribution function (cdf), mode-
ling the statistical behavior of the typical sequences. Designing an 
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optimal outlying sequence detector rests fundamentally on deline-
ating the inherent interplay between two opposing performance 
measures, one being the frequency of erroneous decisions and the 
other being the cost of sensing (e.g., the number of measurements 
taken). To this end, we consider the most general structure for the 
information-gathering process, which either sequentially, or based 
on a prespecified rule selects and takes measurements from a sub-
set of the data streams at each time. By denoting the subset of data 
streams selected at time t  by { , , },M1Lt f3  upon collecting the 
measurements at time ,t  the outlier detection process takes one of 
the following actions: 

1) Observation: due to lack of sufficient information making 
any decision is deferred and the same set of data streams is 
retained for more scrutiny, i.e., L Lt t1 =+

2) Exploration: the information accumulated is insufficient 
to identify the outliers, but provides partial information that 
is sufficient for updating the set of data streams that should 
be measured more carefully, or possibly ruling out some of 
the data streams as typical ones, i.e., L Lt t 1" +

3) Detection: the information gathering process is termi-
nated and the outliers are identified.
The stopping time of the procedure, i.e., the time after which 

detection is performed, is denoted by .x  Furthermore, a switching 
function : { , , } { , }1 0 1"f} x  is devised to distinguish between 
observation and exploration actions at time .t  The switch is set to 

( )t 0} =  if it is decided in favor of performing observation at time 
,t  while ( )t 1} =  indicates a decision in favor of performing 

exploration. The sequential information-gathering procedure is 
uniquely determined by its stopping time ,x  the sequence of 
switching functions [ ( ), , ( )],1 f} } } x=xr  and the ordered col-
lection { , , } .L LL 1 1f=

9
x x-

The quality of the ultimate decision, which is the output of 
the detection action, is captured by the frequency of erroneous 
decisions. To formalize the dependence of such decision quality, 
on the given set of stopping time ,x  switching sequence ,}xr
and observation order Lx , we denote the frequency of errone-
ous decisions by ( , , ) .P LM x }x xr  An optimal outlying sequence 
detection approach can be characterized as a strategy that opti-
mizes a desired balance between this decision quality and the 
aggregate cost of sensing ,Ltt 1

x

=
/  which incorporates the 

stopping time and the number of samples taken during the 
exploration cycles. Such a balance often can be cast as minimiz-
ing one of these measures, within a desired constraint on the 
other, e.g., 

}

}

( , , ) ,

min

s.t. P

E

L

L, , tt

M

1L

#x t

x

x x

x

=x x ; E/
(2)

where t  controls the decision reliability. In the following sec-
tions, we discuss several important topics under which the out-
lying sequence detection problem has different interpretations 
and can be cast as a balance between these measures.

Obtaining the optimal strategies for observation, explora-
tion, and detection that strike a desired balance between deci-
sion quality and cost of sensing, in its most general form, is an 

open problem. By imposing certain structures on data or sam-
pling models, however, one can delineate optimal strategies. In 
the remainder of the article, we discuss different outlying 
sequence detection approaches with different structures rang-
ing from fully sequential to fully prespecified sampling strate-
gies, and different objectives, ranging from identifying only one 
outlier to identifying all. 

DATA-ADAPTIVE SAMPLING
In this section, we concretize the generic outlying sequence 
detection problem by focusing the attention on the closed-loop 
(adaptive) aspects of the sampling process. The extent of data 
adaptivity of the data-gathering process leads to a wide range of 
structures for the outlying sequence detection problem. Adap-
tivity is embedded in the sequential selection of the subset of 
data streams to be measured at each time, i.e., { , , } .LL1 f x

Besides adaptivity in sensing, identifying the outliers can also be 
performed in either sequential or nonsequential fashion, where 
in the former the data collected is processed altogether to iden-
tify the outliers, whereas in the latter one could identify and 
remove an outlier and then search for other outliers among the 
remaining data streams. 

QUICKEST SEARCH FOR ALL OUTLIERS
When the objective is to identify all outliers with minimum 
expected number of aggregate measurements and subject to 
controlled reliability, the problem is equivalent to forming a 
decision about the underlying model of all the sequences. 
Hence, the optimal sampling and decision-making problem can 
be decomposed into M  independent hypothesis testing prob-
lems corresponding to the M  sequences. The optimal solution 
to these latter subproblems is the sequential probability ratio 
test (SPRT), which minimizes the expected number of measure-
ments required for forming a decision for each sequence with 
prespecified reliability [38] when the underlying distributions 
for normal and outlying observations are known. 

These independent SPRTs can be performed either in paral-
lel or sequentially. When performed in parallel, the sampling 
procedure is initiated by setting { , , }M1Lt f=  and after tak-
ing measurements at time t , the set Lt  is refined by discard-
ing the indices of the sequences for which their associated 
SPRT has reached a decision. In contrast, when the SPRTs are 
performed sequentially, the sampling strategy focuses on the 
sequences one at a time. While being effective in forming accu-
rate decisions for individual data streams, performing inde-
pendent SPRTs becomes computationally prohibitive as the 
size of the data set grows, and is not a suitable approach for 
large data sets. 

QUICK SEARCH FOR A SUBSET OF OUTLIERS
In certain scenarios, one might be interested in recovering only 
a fraction of the outliers, especially when the outliers represent 
rare opportunities of interest, while in certain other scenarios, 
especially when the outliers model risks, it is imperative to 
identify all of the outliers. 
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Shifting the objective from recovering all the outliers to 
identifying only a fraction of them allows for missing some of 
the outliers in favor of quickly identifying the fraction of inter-
est. Under this objective, performing SPRTs on all sequences is 
clearly not optimal as it tends to identify all sequences and does 
not take advantage of the more relaxed objective. Such a shift of 
objective and its ensuing flexibility leads to significant reduction 
in the sensing cost and the delay in reaching a decision. 

Obtaining optimal structures of such sequential and data-
adaptive experimental designs and finding associated nontrivial 
performance bounds for the such design are open for most sce-
narios, with some exceptions discussed in [39]–[41]. Neverthe-
less, by imposing certain structures on the refinement action, 
one can ascertain certain optimality properties with provable 
gains over nonadaptive approaches. 

In this subsection, we focus on a specific structure studied in 
[33] and [42]–[45,] which consists of consecutive rounds of obser-
vations and exploration actions, followed by consecutive cycles of 
observations and satisfies certain optimality properties [45]. 
Driven by the premise that the outliers (anomalies) occur rarely, 
this adaptive structure starts by spending the sampling resources 
conservatively, and as more information about different data 
streams is accumulated, the sensing resources are progressively 
allocated to the data streams that are more likely outliers. The 
central motivation for such progressive allocation of the sensing 
resources is that while conservative (rough) observations are not 
accurate enough to identify the outliers, they can be informative 
enough to discard a considerable fraction of the typical streams. 
Consecutive cycles of rough observations and exploration, there-
fore, lead to substantial reduction in the search space, which 
facilitates using the sensing resources more effectively. Careful 
design of the exploration actions and the number of exploration 
actions, can provide sufficient guarantees that the discarded data 
streams are almost surely typical ones. 

In this approach, more specifically, the sampling strategy is 
initiated by including all the streams for sampling and K  con-
secutive cycles of exploration are performed, where K  is deter-
mined by the amount of sampling resources and the fraction of 
the outliers one seeks to identify. The detailed steps of this pro-
cedure for identifying T  outliers are provided in Table 1. In this 
procedure the exploration actions are designed such that at 
least T  data streams will be retained after the exploration cycles 
for the final detection decision. 

To assess adaptation gains, we formalize the adaptive experi-
mental design problem as the minimizer of the decision quality 
under a hard constraint on the sampling budget, i.e., 

}}

( ) .

( , , )

,

inf
S

M S1
P

s.tP
L

L

, ,

t
M

M

t1

L

#

x
=
9

x

x

x x

=

x x* / (3)

where S  controls the sensing budget. Addressing the sensing prob-
lem in this setting sheds light on the ratio of the sensing resources 
to be allocated to the observation and exploration actions. 

To assess the gains of adaptation we investigate the following 
two settings in which the typical distribution F  is Gaussian with 

known mean and variance and the outliers are also Gaussian with 
either different mean or different variance values. Specifically, 
sequence i  is generated according to ( , ) .N i i

2n v  If sequence i  is a 
typical sequence then in n=  and ,iv v=  where n  and v  are 
known, and if it is an outlier sequence we consider two settings: 

,
, .

mean testing:
variance testing:

and
and

i

i

i

i

!

!

n n

n n

v v

v v=

=

(4)

By defining F  as the outlier cdf that exhibits the smallest Kull-
back–Leibler (KL) divergence from ,F  a necessary and sufficient 
condition for ( )S 0PM

M"3  to successively identify a small 
fraction of the outliers is presented in the following theorem.  
Here, a small fraction refers to a fraction that grows with M  at 
a rate dominated by the growth rate of ,M Mi  where Mi  is the 
probability that a stream is an outlier. 

THEOREM 1 
The decision error probability ( )SPM  tends to zero in the 
asymptote of large M  if and only if [43]

mean testing:
( ( ) ,

)
ln M

D F F
S K

1 M
2

2
< f

+

-
t (5)

variance testing:
( ( ) ,

)
ln M

D F F
S K

2 1 M2
< f

+

-
t (6)

where ( )D $ $<  denotes the KL divergence, and St  is a constant 
independent of M  and determined by the constraints on the 
cost of sensing ( ) .S S · K. g-t  Also ( , )0 1M !f  is defined as 

,ln
ln

M
M

M
Mf
i=

9 (7)

where Mi  is the prior probability that a stream is an outlier.
The necessary and sufficient conditions on ( )D F F<  in The-

orem 1 partition the ( , )D Mf  plane into two regions separated 
by sharp boundaries, as shown in Figure 1. This figure also 
compares the regions over which the adaptive and nonadaptive 
procedures are guaranteed to make error-free decisions. Specifi-
cally, the diagonally shaded region is the region in which both 
schemes succeed to detect the T  outliers. In the vertically 
dashed region, however, only the adaptive procedure succeeds 
and the nonadaptive procedure makes an erroneous decision 
almost surely, and finally both schemes fail in the horizontally 
shaded region. It is observed that, depending on the choice of 

,S  the detectability region corresponding to the adaptive 

[TABLE 1] THE ADAPTIVE OUTLYING SEQUENCE
DETECTION ALGORITHM.

1) SET { , , }M1L1 f=

2) FOR t 1= TO K

3) TAKE ONE SAMPLE FROM EACH STREAM IN Lt

4) SET ( ) (| | )T1 Lt tb g= - -  FOR A PRESPECIFIED CONSTANT 0 11 1g

5) DISCARD tb  STREAMS THAT ARE MOST LIKELY TYPICAL
6) END FOR 

7) SET / | |s S L Ltt

K
K1

= -
=

` j8 B/
8) TAKE s  SAMPLES FROM THE SURVIVING STREAMS

9) OUTPUT THE T  SEQUENCES THAT ARE LEAST LIKELY TYPICAL
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procedure can be substantially larger than that corresponding 
to the nonadaptive procedure. 

It is noteworthy that as long as the objective is to identify a 
small but prominent fraction of the outliers, the conditions 
given in (5) and (6) do not depend on the exact number of 
streams to be identified. This is due to the asymptotic nature of 
the results, which is dominantly shaped by the regime of inter-
est (small fraction) and the precise number of the outliers has a 
vanishing effect as M  grows. More general necessary and suffi-
cient conditions for identifying any desired fraction of the outli-
ers and with arbitrary distributions for the typical and outlier 
data streams are provided in [46]. 

QUICKEST SEARCH FOR ONE OUTLIER
In this subsection we discuss a special scenario of partial recovery 
of the outliers, in which the objective is to identify only one outlier. 
While the optimal sequential strategy for solving this problem, as 
discussed in the section “Data-Adaptive Sampling,” is known, by 
imposing reasonable structures in sensing, some optimality prop-
erties can be ensured as .M " 3  Specifically, when the sampling 
strategy is constrained to 

1) observe only one data stream at a time, i.e., | | 1Lt =  for 
all { , , }t 1 f! x

2) once a data stream is discarded after an exploration action, it 
will be discarded permanently, and the next stream to be exam-
ined will be selected randomly from the ones that remain 
3) outliers have identical distributions denoted by ,F

the quickest search for detecting an outlier can be restated as 

}

}

. ( , , ) .
[ ]min

s.t P
E

L
, ,

M

L

#x t

xx

x x

x x

(8)

The sequential and data-adaptive sampling strategy that 
optimizes the above tradeoff between the average number of 
measurements and the decision quality (false alarm probabil-
ity) is the cumulative sum (CUSUM) test [47]. In this test, one 
of the sequences is selected at random and measurements are 
taken from this sequence sequentially. After taking each sam-
ple and given all the information accumulated, the likelihood 
that the sequence under scrutiny is an outlier is updated. If 
this likelihood exceeds a certain threshold ,Ur  the sequence is 
declared an outlier; if it falls below a certain threshold Lr  it is 
discarded permanently and another sequences will be selected 
to test; and if the likelihood remains within the interval 
[ , ]L Ur r  another sample is taken from the same sequence. By 
defining tr  as the likelihood that the sequence observed at 
time t  is an outlier given the information accumulated up to 
time ,t  the details of the optimal sampling strategy are 
presented in Table 2 with its optimality established by the 
following theorem. 

THEOREM 2
The optimal stopping time for the quickest search problem in 
(8) is [48]

{ : } ,inf t t U2x r r=

and the optimal sampling strategy at time t  switches to a new 
sequence if .t L1r r  The thresholds Lr  and Ur  are deter-
mined uniquely as functions of g  and the observation cdfs. 

GROUP SAMPLING
Motivated by the insights gained from partial recovery of outli-
ers, i.e., rough measurements can be sufficient for eliminating 
a substantial fraction of the typical streams through the explo-
ration process, we next discuss the idea of group sampling, aim-
ing at basing some of the decisions on even rougher 
measurements. Group sampling is facilitated by the possibility 
of taking samples that are combined measurements from multi-
ple sequences. The ultimate objective of such measurements is 
to expedite the process of exploration and reduce the dimension 
of the search space with fewer measurements. 

A central principle in designing the observation action in the 
previous section was that at any given time ,t  one measurement 
is taken from each data stream included in .Lt  In this section, in 
contrast, we consider two types of samples: coarse and fine sam-
ples, which bear information with different qualities. Coarse sam-
ples are constructed by linearly combining simultaneous 
measurements from a group of data streams. While such coarse 

0 1

0 1

D(F ⎜⎜F )¯

ln M

D(F ⎜⎜F )¯

ln M

S

Ŝ + K

Ŝ + K

2(1 − εM)

S

2(1 − εM)

√εM(1 – )2

√εM(1 – )2

εM

εM

(a)

(b)

[FIG1] ( )D F F<  versus the prior likelihood Mf  for Gaussian
distributions with (a) a different mean and (b) different 
variance values.
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measurements are not informative for identifying the outliers, 
they can often be informative enough to discard a group of typical 
data streams altogether, especially when M  is very large and the 
outliers occur very rarely. When such coarse samples are not suf-
ficient to discard a block, or the block is deemed to contain an 
outlier, then the data streams constituting the blocks are meas-
ured individually via fine samples to refine the information about 
the status of the data streams within the block. Inclusion of 
coarse measurements reduces the required sampling budget. 

Taking such coarse samples in some applications has a natu-
ral interpretation. For instance, in wideband spectrum sensing 
in which the majority of the channels are occupied and a mobile 
radio is interested in identifying rare spectrum opportunities 
(abstracted as outliers), due to the broadcast nature of the wire-
less channels, any measurement taken by the interested party is 
a linear superposition of the measurements that it can take 
from the channels individually via appropriate filtration. 

For this purpose, we divide the data streams into blocks of size 
,  and take one sample that is a linear combination of ,  measure-
ments from the data streams. Such block sampling has, broadly, a 
twofold effect. On one hand, it takes only one sample for accumu-
lating information about the ,  sequences and is substantially 
smaller than the resources needed by the existing approaches 
that devote at least one sample to each sequence. On the other 
hand, one combined and aggregated sample is less informative 
about the status of the individual sequences in comparison to 
having ,  different samples. To benefit from the advantage (reduc-
tion in sampling rate) and avoid its undesired effects (inaccurate 
information) these combined samples are used only to obtain 
some rough confidence about whether the block of data streams 
include outliers. When a block is deemed to include only typical 
data streams the entire block is discarded. Alternatively, if the 
block is deemed to include an outlier, then the block is retained 
for further scrutiny through more refined (fine) measurements. 

QUICK SEARCH FOR A SUBSET 
OF OUTLIERS VIA GROUP SAMPLING 
We define /r M ,_  to be the number of blocks and without loss of 
generality we define 

{( ) , , }i i1 1Gi f, ,_ - + (9)

to be the set of the data streams grouped in the ith  block for 
{ , , } .i r1 f!  With the ultimate objective of identifying T  outli-

ers the proposed sampling procedure is initiated by taking 
coarse samples from all groups ., ,G Gr1 f  Based on these 
coarse observations a fraction of the groups that are least likely 
to contain outliers are discarded and the rest are retained for 
more accurate scrutiny. Repeating this procedure successively 
refines the search support and progressively focuses the obser-
vations on the more promising blocks. More specifically, at each 
time the sampling procedure selects a subset of the blocks 
{ , , }GG r1 f  and takes one coarse sample from each of these 
blocks. Upon collecting these measurements, it takes one of the 
following actions: 

■ Observation: Following the spirit of the generic observation 
action defined earlier, this action is taken in case of lack of suf-
ficient confidence for deciding whether the blocks under scru-
tiny contain outliers. 
■ Exploration: There is sufficient confidence that some of the 
blocks are very unlikely to contain an outlier; discard a portion 
of the groups with the highest likelihoods of containing only 
typical data streams. This step can be designed similarly to the 
adaptive sampling procedure in Table 1. 
■ Coarse sampling termination: There is sufficient confidence 
that the blocks retained contain outliers; stop coarse sampling 
and start taking fine samples and perform SPRTs on individual 
sequences until an outlier is identified. If, after performing 
SPRTs on all sequences in the block, none is identified as an 
outlier, the sampling procedure resets by moving to the next 
block and starts taking coarse samples.
After terminating coarse sampling, the retained data streams 

contain a substantially more condensed proportion of outliers to 
typical data streams. When the block length 1, 2  and the explo-
ration action are designed carefully, while enjoying the same sens-
ing budgets, adaptive group sampling yields a more reduced 
dimension for the search space compared with the adaptive proce-
dure of the section “Quick Search for a Subset of Outliers” (i.e., 

) .1, =  Similar to the mean and variance testing problems for 
partial recovery of the outliers presented in the section “Quick 
Search for a Subset of Outliers,” the following theorem presents a 
necessary and sufficient condition for ( ) ,S 0PM

M"3  for 
( )SPM  defined in (3), to successively identify a small fraction of 

the outliers. F  denotes the outlier cdf that minimizes the KL 
divergence from .F

THEOREM 3 
For fixed block size ,,  the decision error probability ( )SPM  tends 
to zero in the asymptote of large M  if and only if [49] 

mean testing:
(

( )
( ) ,

)
ln M

D F F
S K

1 M
2

,
2

< f

+

-
t

variance testing:
(

( )
( ) ,

)
ln M

D F F
S K

2 1 M

,
2

< f

+

-
t

where St  and ( , )0 1M !f  are defined in Theorem 1.
This result indicates that as ,M " 3  the region of outliers that 

are undetectable by the adaptive procedure delineated by (5) and 

[TABLE 2] THE QUICKEST SEARCH FOR ONE OUTLIER.

1) INITIALIZE ,t 0= ,11z = ,Lr AND Ur

2) t t 1! +

3) SET { }Lt tz=

4) TAKE ONE SAMPLE FROM Lt

5) UPDATE tr

6) IF t L#z r

7) ;1t t1z z= ++  GO TO 2 

8) ELSE IF L t U1 1r r r

9) ;t t1z z=+  GO TO 2 
10) END IF 

11) SET ;tx =  OUTPUT THE SEQUENCE tz
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(6) and depicted in Figure 1 is further shrunk by a factor of ,
through group sampling. 

QUICKEST SEARCH FOR ONE 
OUTLIER VIA GROUP SAMPLING
Similarly to the partial outlier recovery scenario, the quickest 
search approach of the section “Quickest Search for One Outlier” 
for identifying one outlier can be further extended by accommo-
dating group sampling into the sampling strategy. 

In the simplest scenario, the sequences can be bundled into 
groups of size 2, =  and the combined measurements taken will 
be the sum of two independent samples from each sequence. This 
leads to three possibilities for the distribution of the combined 
measurement. The sampling strategy is initiated by selecting a 
bundle at random and taking a mixed measurement from that 
sample and follows, in spirit, the same steps as the quickest search 
procedure in the section “Quickest Search for One Outlier.” Spe-
cifically, when there is sufficient confidence that the group does 
not contain an outlier, the block is discarded; when there is a lack 
of confidence for making any reliable inference about the block, 
one more mixed sample is taken; and when there exists sufficient 
confidence that the block contains an outlier, taking combined 
measurements is terminated, and then the sequences contained in 
the block are examined individually to identify an outlier. 

Designing the optimal sampling strategy involves characteriz-
ing two optimal stopping times, one corresponding to the termi-
nal time of taking combined measurements, and the second one 
corresponding to reaching a decision for individual sequences 
after taking combined measurements is terminated. An effective 
approach for identifying these stopping times is proposed in [50], 
where a CUSUM test is applied to the sequence blocks to find a 
promising block, and then SPRTs are applied on the individual 
sequences to reach decisions about their underlying distributions. 

UNIVERSAL OUTLYING SEQUENCE DETECTION
Depending on the underlying application, the underlying statisti-
cal models of the data streams might or might not be known. 
Whether the distributions of both typical and outlier sequences 
are known, only one is known, or both are unknown, outlier 
detection approaches can take drastically different structures. Rep-
resentative examples are spectrum sensing in congested wideband 
channels as a case in which both distributions can be known 
(spectrum holes are the outliers) and fraud detection as a case in 
which either the outlier (fraud) or both distributions are 
unknown. When the statistics are fully known strategies that bal-
ance the interplay among different measures optimally can be 
characterized optimality according to the abstraction given in (2). 
These optimal strategies can be shown to be exponentially consist-
ent and all the observation, exploration, and detection actions 
have likelihood-ratio-like structures [43]. 

When there exist uncertainties associated with the descriptions 
of the statistical models, the outlying sequence detection problem 
is related to general composite hypothesis testing problems, for 
which the generalized likelihood principle, which exhibits certain 
asymptotic optimality properties [51]–[53], is a popular solution. 

Universal outlying sequence detection is also closely related to 
homogeneity testing and classification [51], [54]–[58]. In homoge-
neity testing, one wishes to decide whether or not two samples 
come from the same probability law. In classification problems, a 
set of test data is classified to one of multiple streams of training 
data with distinct labels. 

In this section, we investigate the effects of uncertainties about 
the statistics of the outliers and discuss a universal approach for 
identifying outliers in which, besides the premise that the outliers 
follow a distribution distinct from that governing the typical data 
streams, no knowledge of their statistics is assumed [59]. To focus 
the attention on the effects of unknown statistics, we mainly con-
sider a simple setting in which it assumed that 

1) only one data stream is an outlier and the remaining M 1-
ones are typical 
2) we have access to n  samples from each data stream 
3) the samples belong to a finite set .Y
Under the hypothesis that the ith  coordinate is the outlier, the 

joint distribution of all the observations (i.e., the likelihood func-
tion) is 
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where 

, , , , , ,y y y i M1( ) ( ) ( )i i
n
i

1 f f= =^ h
and fr  and f  denote the probability mass functions (pmfs) of the 
outlier and typical streams, respectively. 

For a universal detection rule : { , , },M1YMn " fd  which is 
not allowed to depend on f  and ,fr  the maximal error probability, 
which will be a function of the test and ( , ),f fr  is 

( , , ) ( ) ,maxe f f p y
: ( )

i

y y i

Mn
, ,i M

Mn Mn
1

d =
9

!d
f=

r / (11)

with the corresponding error exponent, denoted by 

( , , ) ( , , ) .lim logf f n e f f1
n

a d d= -
"3

9r r (12)

We consider the error exponent as n  goes to infinity, while ,M
and hence the number of hypotheses, is kept fixed. Consequently, 
the error exponent in (12) also coincides with the one for the aver-
age probability of error. 

A test is termed universally consistent if ( , , )e f f 0"d r  for any 
( , ),f fr f f!r  as .n " 3  It is termed universally exponentially 
consistent if ( , , ) .f f 02a d r

UNIVERSAL TEST
For each , , ,i M1 f=  denote the empirical distribution of y( )i  by 

.ic  When f  is known and fr  is unknown, we compute the likeli-
hood for outlier hypothesis i  by replacing fr  in (10) with its maxi-
mum likelihood (ML) estimate ,f i i_ crU  as 

( ) { ( ) ( )} .L y f y f y( ) ( )
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Similarly, when neither fr  nor f  is known, we compute the like-
lihood for outlier hypothesis i  by replacing the fr  and f  in (10) 
with their ML estimates ,f i i_ crU  and / ( ),f M 1i jj i

_ c -
!

t ` j/  as 

( ) { ( ) ( )} .L y f y f y( ) ( )
i

Mn

t

n

i t
i

i
j i

t
j

1

univ =
!=

r tU% % (14)

Finally, we decide upon the coordinate with the largest likeli-
hood to be the outlier. Using (13) and (14), our universal tests in 
the two cases can be described respectively as 

( ) ( ),argmaxy L y
, ,

Mn

i M
i

Mn

1

typ typ
d =

f=
(15)

when only f  is known, and 

( ) ( ),argmaxy L y
, ,

Mn

i M
i

Mn

1

univunivd =
f=

(16)

when neither fr  nor f  is known. 

RESULTS
Our results will be stated in terms of a distance metric between a 
pair of pmfs ,p q P Y! ^ h called the Bhattacharyya distance,
which is related to the Chernoff information (see, e.g., [60]), 
defined as 

( , ) ( ) ( ) .logB p q p y q y
y

2
1

2
1

Y

_-
!
c m/ (17)

Our first theorem for models with one outlier characterizes the 
optimal exponent for the maximal error probability when both fr

and f  are known, and when only f  is known. 

THEOREM 4
When fr  and f  are both known, the optimal exponent for the 
maximal error probability is equal to [59]

( , ) .B f f2 r (18)

Furthermore, the error exponent in (18) is achievable by a test 
that uses only the knowledge of .f  In particular, such a test is our 
proposed test in (15).

Consequently, in the completely universal setting, when noth-
ing is known about fr  and f  except that ,f f!r  and both fr  and f
have full supports, it holds that for any universal test ,d

( , , ) ( , ) .f f B f f2#a d r r (19)

Given the second assertion in Theorem 4, it might be tempting 
to think that it would be possible to design a test to achieve the 
optimal error exponent of ,B f f2 r^ h universally when neither fr

nor f  is known. A counterexample given in [59] shows that this is 
not possible. This motivates us to seek instead a test that yields 
just a positive (no matter how small) error exponent 

, , )f f 02a d r^ h  for every fr  and ,f ,f f!r  i.e., a test that achieves 
universally exponential consistency. Without knowing either fr  or 
,f  it is not clear at the outset that even this lesser objective can be 

met. One of the main contributions in [59] is to show that the 

proposed universal test in (16) is indeed universally exponentially 
consistent for every fixed .M

THEOREM 5
For every pair f f!r

( , , ) ,minf f D q f D q f
, ,q q M1

univ
M1

f <<a d = + +
f

r r^ ^h h
where the minimum is over the set of , ,q qM1 f^ h such that 
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(20)

It can be shown that the solution ( , , )f f 0univ 2a d r  [59].
Note that for any fixed M 3$  and ,02i  regardless of which 

coordinate is the outlier, it holds that the random empirical distri-
butions , , M1 fc c^ h satisfy 

,lim M M f M
M f1 1 1 0P jj

M

n i 1 1
2c i- + - =

"3 =
r` j$ ./ (21)

where · 1  denotes the 1-norm of the argument distribution. 
Since ( / ) ( )/M Mf M f f1 1 "+ -r  as ,M " 3  heuristically speak-
ing, a consistent estimate of the typical distribution can readily be 
obtained asymptotically in M  at the outset from the entire obser-
vation set before deciding upon which coordinate is the outlier. 
This observation and the second assertion of Theorem 4 motivate 
a study of the asymptotic performance (achievable error expo-
nent) of univd  when M " 3  (after having taken the limit as n
goes to infinity). 

THEOREM 6
For each M 3$

( , , ) ( , ),minf f B f q2
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D q f M B f f C1
1 2
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where ( ( ))log minC f yf
y Y

31_-
!

 by the fact that f  has a full 
support [59].

The lower bound on the error exponent in (22) is nondecreas-
ing in .M 3$  Furthermore, as ,M " 3  this lower bound con-
verges to the optimal error exponent ( , );B f f2 r  hence, our test is 
asymptotically optimal:

( , , ) ( , ),lim f f B f f2
M

univa d =
"3

r r (23)

which from Theorem 4 is equal to the optimal error exponent 
when both fr  and f  are known.

Example 1
We now provide some numerical results for an example with 

{ , } .0 1Y =  Specifically, the three plots in Figure 2 are for three 
pairs of outlier and typical distributions being ( ( ) . ,f p 0 0 3= =r

( ) . ), ( . , . ); ( . , . ),p f f1 0 7 0 7 0 3 0 35 0 65= = =r ( . , . );f 0 65 0 35=  and 
( . , . ), ( . , . ),f f0 4 0 6 0 6 0 4= =r  respectively. Each horizontal line 

corresponds to ( , ),B f f2 r  and each curved line corresponds to the 
lower bound in (22) for the error exponent achievable by .univd  As 
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shown in these plots, the lower bounds converge to ( , )B f f2 r  as 
,M " 3  i.e., univd  is asymptotically optimal for all three pairs , .f fr

MODELS WITH AT MOST ONE OUTLIER
A natural question that arises at this point is what would happen if 
it is also possible that no outlier is present? To answer this question, 
we now consider models that append an additional null hypothesis 
with no outlier to the set of possible hypotheses. In particular, 
under the null hypothesis, the likelihood function is given by 

( ) ( ) .p y f y( )Mn

i

M

t

n

t
i

0
11

=
==

%%

A universal test : { , , , }M0 1YMn " fd  will now also accommo-
date an additional decision for the null hypothesis. Correspond-
ingly, the maximal error probability is now computed with the 
inclusion of the null hypothesis according to 

( , , ) ( ) .maxe f f p y
, , ,

: ( )
i M

i

y y i

Mn

0 1 Mn Mn

_d
f

!d
=

r /

With just one additional null hypothesis, contrary to the previ-
ous models with one outlier, it becomes impossible to achieve uni-
versal exponential consistency even with the knowledge of the 
typical distribution. This pessimistic result reaffirms that our pre-
vious finding that universal exponential consistency is attained for 
the models with one outlier is indeed quite surprising. 

PROPOSITION 1
For the setting with the additional null hypothesis, there cannot 
exist a universally exponentially consistent test even when the 
typical distribution is known [59].

In typical applications such as environment monitoring and 
fraud detection, the consequence of a missed detection of the out-
lier can be much more catastrophic than that of a false positive. In 
addition, Proposition 1 tells us that there cannot exist a universal 
test that yields exponential decays for both the conditional 

probability of false positive (under the null hypothesis) and the 
conditional probabilities of missed detection (under all nonnull 
hypotheses). Consequently, it is natural to look for a universal test 
fulfilling a lesser objective: attaining universal exponential consist-
ency for conditional error probabilities under only all the nonnull
hypotheses, while seeking only universal consistency for the con-
ditional error probability under the null hypothesis. We now show 
that such a test can be obtained by slightly modifying our earlier 
test. Furthermore, in addition to achieving universal consistency 
under the null hypothesis, this new test achieves the same expo-
nent as in (20) in Theorem 5 for the conditional error probabilities 
under all nonnull hypotheses. 

In particular, we modify our previous test in (16) to allow for 
the possibility of deciding for the null hypothesis as: 
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arg max max
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L y
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j k k
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2
d
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(24)

where ( ) .O nnm =

THEOREM 7
For every pair of distributions , , ,f f f f!r r  the test in (24) yields a 
positive exponent for the conditional probability of error under 
every nonnull hypothesis , , ,i M1 f=  and a vanishing condi-
tional probability of error under the null hypothesis [59]. In 
particular, the achievable error exponent under every nonnull 
hypothesis is the same as that given in (20).

Furthermore, as ,M " 3  the test in (24) is asymptotically 
optimal under each of the nonnull hypotheses, i.e., 

( , ),lim lim logn i B f f1 2P
M n i !d- =
" "3 3

r^ h" , (25)

while also yielding that 

.lim 0 0P
n 0 !d =
"3

" ,
EXTENSION TO MULTIPLE OUTLIERS
The aforementioned results on universal outlying sequence 
detection can be extended to the setting with more than one 
outlier [59]: 

■ For the setting with a known number of distinctly distrib-
uted outliers, we can construct a universally exponentially 
consistent test using the generalized likelihood principle as 
in the section “Universal Test.” A key difference from the sin-
gle outlier case is that the error exponent when both the out-
lier and typical distributions are known can be larger than 
that when only the typical distribution is known. 
■ For the setting with a known number of identically distrib-
uted outliers, the error exponent when both the outlier and 
typical distributions are known is equal to that when only the 
typical distribution is known, which is equal to ( , )B f f2 r  (the 
same as for the case of a single outlier). Furthermore, the uni-
versally exponentially consistent test when both the outlier 
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[FIG2] An illustration of the asymptotic optimality of .univd
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and typical distributions are unknown is asymptotically opti-
mum as M " 3  (with the number of outliers fixed) in that its 
error exponent is also equal to ( , ) .B f f2 r

■ For the setting with an unknown number of identically 
distributed outliers, we construct a test based on modified 
application of the generalized likelihood principle to achieve 
a positive error exponent under each nonnull hypothesis, and 
also consistency under the null hypothesis universally. 
■ When the outliers can be distinctly distributed (with their 
total number being unknown), it can be shown that a uni-
versally exponentially consistent test cannot exist, even 
when the typical distribution is known and the null hypothe-
sis is excluded.

CONCLUDING REMARKS
In this article, we have discussed the problem of identifying outly-
ing sequences from a large pool of sequences that is populated by 
typical sequences. By crafting the problem as a natural dichoto-
mous hypothesis testing problem, we have discussed three gen-
eral classes of strategies for outlying sequence detection based on 
different detection objectives and available information about the 
statistics of the outliers. In this class, we have discussed sequen-
tial data-adaptive approaches in which there is no prespecified 
order for making measurements from the sequences, and the 
sampling decisions are made dynamically at each time and based 
on the information accumulated up to that time. Depending on 
whether one is interested in identifying all outlying sequences, a 
fraction of them, or only one of them, the data-adaptive sampling 
strategies exhibit different structures. An important insight one 
gains from these approaches is that if the objective is not identify-
ing all outliers, incorporating an exploration stage, which uses 
rough observations to reduce the dimension of the data set with 
more condensed proportion of outliers, translates into substantial 
reduction in the cost of sensing. Motivated by this insight, in the 
second class of approaches we have discussed the notion of group 
sampling, in which the sequences are split into groups and in the 
exploration stage the sequences are not measured individually, 
but instead, rough observations in the form of combined meas-
urements from sequence groups are made. Finally, in the third 
class, we have investigated the effects of uncertainties about the 
statistics of the outliers and have discussed a universal approach 
for identifying outliers, in which besides the premise that the out-
liers follow a distribution distinct from that governing the typical 
data streams, no knowledge of their statistics is assumed. Our 
generalized likelihood approach was based on using the empirical 
distributions of the data streams. A recent study [61] adopts an 
alternative kernel-based test, which applies the metric of maxi-
mum mean discrepancy that measures the distance between 
embeddings of distributions into a reproducing kernel Hilbert 
space. We further note that in our discussion of universal outly-
ing sequence detection, we have restricted attention to the fixed 
sample size setting in which every sequence is sampled at every 
time step. Extending the study of universal outlying sequence 
detection to the sequential and adaptive sampling settings is a 
challenging open area of research that is worthy of pursuit. 
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T
his article combines a tutorial on state-of-the-art ten-
sor decomposition as it relates to big data analytics, 
with original research on parallel and distributed 
computation of low-rank decomposition for big ten-
sors, and a concise primer on Hadoop–MapReduce. A 

novel architecture for parallel and distributed computation of 
low-rank tensor decomposition that is especially well suited for 
big tensors is proposed. The new architecture is based on parallel 
processing of a set of randomly compressed, reduced-size replicas 
of the big tensor. Each replica is independently decomposed, and 
the results are joined via a master linear equation per tensor 
mode. The approach enables massive parallelism with guaranteed 

identifiability properties: if the big tensor is of low rank and the 
system parameters are appropriately chosen, then the rank-one 
factors of the big tensor will indeed be recovered from the analy-
sis of the reduced-size replicas. Furthermore, the architecture 
affords memory/storage and complexity gains of order /IJ F^ h for 
a big tensor of size I J K# #  of rank F with .F I J K# # #  No 
sparsity is required in the tensor or the underlying latent factors, 
although such sparsity can be exploited to improve memory, stor-
age, and computational savings. 

INTRODUCTION
Tensors are data structures indexed by three or more indices, 
say ( , , , )i j k g , a generalization of matrices, which are data 
structures indexed by two indices, say ( , )r c  for (row, column). 
The term tensor has a different meaning in physics, however, it 

[Nicholas D. Sidiropoulos, Evangelos E. Papalexakis, and Christos Faloutsos]

[A scalable distributed architecture for big tensor decomposition]

Parallel Randomly 
Compressed Cubes
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has been widely adopted across various disciplines in recent 
years to refer to what was previously known as a multiway 
array. Matrices are two-way arrays, and there are three- and 
higher-way (or higher-order) tensors. 

Tensor algebra has many similarities to but also many strik-
ing differences from matrix algebra, e.g., determining tensor 
rank is NP-hard, and low-rank tensor factorization is unique 
under mild conditions. Tensor factorizations have already found 
many applications in signal processing (speech, audio, commu-
nications, radar, signal intelligence, and machine learning) and 
well beyond. For example, tensor factorization can be used to 
blindly separate unknown mixtures of speech signals in reverber-
ant environments [2], untangle audio sources in the spectro-
gram domain [3], unravel mixtures of code-division 
communication signals without knowledge of their spreading 
codes [4], localize emitters in radar and communication applica-
tions [5], detect cliques in social networks [6], and analyze fluo-
rescence spectroscopy data [7], to name a few (see [8] for 
additional machine-learning applications). 

Tensors are becoming increasingly important, especially for 
analyzing big data, and tensors easily turn really big, e.g., 

, , ,1 000 1 000 1 000 1# # =  billion entries. Memory issues related 
to tensor computations with large but sparse tensors have been 
considered in [9] and [10] and incorporated in the sparse tensor 
toolbox (http://www.sandia.gov/~tgkolda/TensorToolbox). The 
main idea in those papers is to avoid intermediate product explo-
sion when computing sequential tensor–matrix (mode) products, 
but the assumption is that the entire tensor fits in memory (in 
coordinate-wise representation), and the mode products expand 
(as opposed to reduce) the size of the core array that they multiply. 
Adaptive tensor decomposition algorithms for cases where the 
data is serially acquired (or elongated) along one mode have been 
developed in [11], but these assume that the other two modes are 
relatively modest in size. More recently, a divide-and-conquer 
approach for decomposing big tensors has been proposed in [12]. 
The idea of [12] is to break the data into smaller boxes that can be 
factored independently, and the results subsequently concatenated 
using an iterative process. This assumes that each smaller box 
admits a unique factorization (which cannot be guaranteed from 
global uniqueness conditions alone), requires reconciling the dif-
ferent column permutations and scalings of the different blocks, 
and entails significant communication and signaling overhead. 

All of the aforementioned techniques require that the full data 
be stored in (possibly distributed) memory. Realizing that this is a 
showstopper for truly big tensors, [6] proposed a random sam-
pling approach, wherein judiciously sampled significant parts of 
the tensor are independently analyzed, and a common piece of 
data is used to anchor the different permutations and scalings. The 
downside of [6] is that it only works for sparse tensors, and it offers 
no identifiability guarantees—although it usually works well for 
sparse tensors. A different approach was taken in [13], which pro-
posed randomly compressing a big tensor down to a far smaller 
one. Assuming that the big tensor admits a low-rank decomposi-
tion with sparse latent factors, such a random compression guar-
antees identifiability of the low-rank decomposition of the big 

tensor from the low-rank decomposition of the small tensor. This 
result can be viewed as a generalization of compressed sensing 
ideas from the linear to the multilinear case. Still, this approach 
works only when the latent low-rank factors of the big tensor are 
known to be sparse, and this is often not the case. 

This article considers appropriate compression strategies for 
big (sparse or dense) tensors that admit a low-rank decomposi-
tion/approximation, whose latent factors need not be sparse. 
Latent sparsity is usually associated with membership problems 
such as clustering and coclustering [14]. A novel architecture for 
parallel and distributed computation of low-rank tensor decom-
position that is especially well suited for big tensors is proposed. 
The new architecture is based on parallel processing of a set of 
randomly compressed, reduced-size replicas or the big tensor. 
Each replica is independently decomposed, and the results are 
joined via a master linear equation per tensor mode. The 
approach enables massive parallelism with guaranteed identifia-
bility properties: if the big tensor is indeed of low rank and the 
system parameters are appropriately chosen, then the rank-one 
factors of the big tensor will indeed be recovered from the analy-
sis of the reduced-size replicas. Furthermore, the architecture 
affords memory/storage and complexity gains of order /IJ F^ h for 
a big tensor of size I J K# #  of rank F with .F I J K# # #  No 
sparsity is required in the tensor or the underlying latent factors, 
although such sparsity can be exploited to improve memory, stor-
age, and computational savings. 

This article combines 1) a short tutorial on state-of-the-art 
tensor decomposition as it relates to big data analytics, 2) novel 
research results on tensor compression and parallel and distrib-
uted tensor decomposition, and 3) a concise primer on Hadoop–
MapReduce, starting from a toy signal processing problem, and 
going up to sketching a Hadoop implementation of a proposed 
algorithm for tensor decomposition in the cloud. The combina-
tion is timely and well motivated given the emerging interest in 
(and relative scarcity of literature on) signal processing for big 
data analytics, and in porting/translating and developing new 
signal processing algorithms for cloud computing platforms. 

NOTATION
A scalar is denoted by an italic letter, e.g., a. A column vector is 
denoted by a bold lowercase letter, e.g., a, whose ith entry is ( ) .ia
A matrix is denoted by a bold uppercase letter, e.g., A, with 

,i j th^ h  entry , ;i jA^ h (: , )jA , :iA^^ hh denotes the jth  column 
(respectively, ith  row) of .A  A tensor (three-way array) is 
denoted by an underlined bold uppercase letter, e.g., ,X  with 

, ,i j k th^ h  entry , , .ki jX^ h : , : , kX^ h denotes the kth frontal 
I J#  matrix slab of ,X  and similarly for the slabs along the 
other two modes. Vector, matrix, and three-way array size 
parameters (mode lengths) are denoted by uppercase letters, e.g., 

.I &  stands for the vector outer product; i.e., for two vectors a
I 1#^ h and b ,J 1#^ h a b&  is an I J#  matrix with ( , )i j th  ele-

ment ;i ja b^ ^h h  i.e., a b& = .abT  For three vectors, a ,I 1#^ h b
,J 1#^ h c ,K 1#^ h a b c& &  is an I J K# #  three-way array 

with , ,i j k th^ h  element .i j ka b c^ ^ ^h h h  The vec :^ h operator 
stacks the columns of its matrix argument in one tall column; 7
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stands for the Kronecker product; 9  stands for the Khatri–Rao 
(column-wise Kronecker) product: given A I F#^ h and B

,J F#^ h A B9  is the JI F#  matrix 

(: , ) (: , ) (: , ) (: , )F F1 1A B A B A B9 7 7g= 6 @.
For a square matrix ,S ( )Tr S  denotes its trace, i.e., the sum of 
elements on its main diagonal. x 2

2  is the Euclidean norm 
squared, and ,A F

2
F
2X  the Frobenious norm squared–the sum 

of squares of all elements of the given vector, matrix, or tensor. 

TENSOR DECOMPOSITION PRELIMINARIES
There is no comprehensive tutorial on tensor decompositions 
and applications from a signal processing point of view as of this 
writing, albeit there are several signal processing papers dealing 
with topics in tensor decomposition that have significant tuto-
rial value. The concise introduction in [15] is still useful, 
although outdated. An upcoming IEEE Signal Processing Mag-
azine tutorial article [8] covers the basic concepts and models 
well, and touches upon numerous applications. We also refer 
the reader to [16]–[18] for gentle introductions to tensor 
decompositions and applications from the viewpoint of compu-
tational linear algebra, chemistry, and the social sciences, 
respectively. Due to space limitations, here we only review 
essential concepts and results that directly relate to the core of 
our article. 

RANK DECOMPOSITION
The rank of an I J#  matrix X  is the smallest number of rank-
one matrices (vector outer products of the form )a b&  needed 
to synthesize X  as 

,X a b ABf
f

F

f
T

1
&= =

=

/

where : , , ,A a aF1 g= 6 @  and : , , .B b bF1 g= 6 @  This relation can 
be expressed element-wise as 

( , ) ( ) ( ) .i j i jX a bf
f

F

f
1

=
=

/

The rank of an I J K# #  three-way array X  is the smallest 
number of outer products needed to synthesize X  as 

.X a b cf
f

F

f f
1

& &=
=

/

This relation can be expressed element-wise as 

( , , ) ( ) ( ) ( ) .i j k i j kX a b cf
f

F

f f
1

=
=

/

In the sequel we will assume that F  is minimal, i.e., 
( ),F rank X=  unless otherwise noted. The tensor X  comprises 

K  frontal slabs of size ;I J#  denote them ,Xk k
K

1=" ,  with 
: (: , : , ) .kX Xk =  Rearranging the elements of X  in a tall matrix 

X := ( ), , ( ) ,vec vecX XK1 g6 @  it can be shown that 

( ) : ( ) ,1vecX B A C x X C B AT +9 9 9= = = ^ h

where, A B are as defined for the matrix case, : , , ,C c cF1 g= 6 @ 1
is a vector of all 1s, and we have used the vectorization property 
of the Khatri–Rao product ( ( ) )vec AD d BT = ,B A d9^ h  where 

( )D d  is a diagonal matrix with the vector d  as its diagonal. 

CANDECOMP-PARAFAC
The above rank decomposition model for tensors is known as 
parallel factor analysis (PARAFAC) [19], [20] or canonical 
decomposition (CANDECOMP) [21], or CP (and CPD) for CAN-
DECOMP-PARAFAC (decomposition), or canonical polyadic 
decomposition (CPD, again). CP is usually fitted using an alter-
nating least squares procedure based on the model equation 

( ) .X B A CT9=  In practice we will have ( ) ,X B A CT9.  due 
to measurement noise and other imperfections, or simply 
because we wish to approximate a higher-rank model with a 
lower-rank one. Fixing A  and ,B  we solve 

| | ( ) | | ,min X B A C
C

T
F
29-

which is a linear least squares problem. We can bring any of the 
matrix factors to the right by reshuffling the data, yielding corre-
sponding conditional updates for A  and .B  We can revisit each 
matrix in a circular fashion until convergence of the cost func-
tion, and this is the most commonly adopted approach to fitting 
the CP model, in good part because of its conceptual and pro-
gramming simplicity, plus the ease with which one can incorpo-
rate additional constraints on the columns of ,A ,B C  [7]. 

TUCKER3
CP is in a way the most basic tensor model, because of its direct 
relationship to tensor rank and the concept of rank decomposi-
tion; but other algebraic tensor models exist, and the most nota-
ble one is known as Tucker3. Like CP, Tucker3 is a sum of outer 
products model, involving outer products of columns of three 
matrices, ,A ,B .C  Unlike CP however, which restricts interac-
tions to corresponding columns (so that the first column of A
only appears in one outer product involving the first column of 
B  and the first column of ),C  Tucker3 includes all outer prod-
ucts of every column of A  with every column of B  and every 
column of .C  Each such outer product is further weighted by 
the corresponding entry of a so-called core tensor, whose dimen-
sions are equal to the number of columns of ,A ,B .C

Consider again the I J K# #  three-way array X  comprising 
K matrix slabs ,Xk k

K
1=" ,  arranged into the tall matrix X :=

( ), , ( ) .vec vecX XK1 g6 @  The Tucker3 model can be written in 
matrix form as 

( ) ,X B A GCT7.

where G  is the core tensor in matrix form, and ,A ,B C  can be 
assumed orthogonal without loss of generality, because linear 
transformations of ,A ,B C  can be absorbed in .G  The nonzero 
elements of the core tensor determine the interactions between 
columns of ,A ,B .C  The associated model-fitting problem is 

| | ( ) | | ,min X B A GCT
F
2

A,B,C,G
7-
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which is usually solved using an alternating least squares proce-
dure. The Tucker3 model can be fully vectorized as ( )vec X .

( ) .vecC B A G7 7^ h
IDENTIFIABILITY
The distinguishing feature of the CP model is its essential 
uniqueness: under certain conditions, ,A ,B C  can be identi-
fied from X  up to a common permutation and scaling/counter-
scaling of columns [19]–[26]. In contrast, Tucker3 is highly 
nonunique; the inclusion of all possible outer products of col-
umns of ,A ,B C  results in overparametrization that renders it 
unidentifiable in most cases of practical interest. Still, Tucker3 
is useful as an exploratory tool and for data compression/inter-
polation; we will return to this shortly. 

Consider an I J K# #  tensor X  of rank .F In vectorized 
form, it can be written as the IJK 1#  vector ,1x A B C9 9= ^ h
for some A ,I F#^ h B ,J F#^ h  and C K F#^ h—a CP model of 
size I J K# #  and order F  parameterized by ) .( , ,A B C  (Notice 
the slight abuse of notation: we switched from 1x C B A9 9= ^ h
to .1x A B C9 9= ^ h  The two are related via a row permutation, 
or by switching the roles of ,A ,B .)C  The Kruskal-rank of ,A
denoted ,kA  is the maximum k such that any k columns of A
are linearly independent : ( ) .rankk r AA A# =^ h
THEOREM 1 
Given X ,x+^ h ( )A,B,C  are unique up to a common column per-
mutation and scaling (e.g., scaling the first column of A  and coun-
terscaling the first column of B  and/or ,C  so long as their product 
remains the same), provided that [ ] .k k k F2 2 22A B C $+ + +  An 
equivalent and perhaps more intuitive way to express this is that 
the outer products a b cf f f& &  (i.e., the rank-one factors of )X
are unique. 

Note that we can always reshuffle the order of these rank-one 
factors (e.g., swap a b c1 1 1& &  and )a b c2 2 2& &  without changing 
their sum ,X a b cf f ff

F

1
& &=

=
/  but this is a trivial and inherently 

unresolvable ambiguity that we will ignore in the sequel. Theorem 1 
is Kruskal’s celebrated uniqueness result [22], see also follow-up 

work in [23]–[25]. Kruskal’s result applies to given ( , , ),A B C  i.e., it 
can establish uniqueness of a given decomposition. Recently, more 
relaxed uniqueness conditions have been obtained, which only 
depend on the size and rank of the tensor, albeit they cover almost
all tensors of the given size and rank, i.e., except for a set of meas-
ure zero. Two such conditions are summarized next. 

THEOREM 2  
Consider an I J K# #  tensor X  of rank .F If 

 (  )r F K Fwhich impliesC $=

and 

( ) ( ) ( ),I I J J F F1 1 2 1$- - -

then the rank-one factors of X  are almost surely unique [27] 
(see also [24]). 

THEOREM 3 
Consider an I J K# #  tensor X  of rank .F  Order the dimensions 
so that .I J K# #  Let i  be maximal such that ,I2i #  and like-
wise j  maximal such that .J2 j #  If ,F 2i j 2# + -  then the rank-
one factors of X  are almost surely unique [26]. For ,I J  powers of 
2, the condition simplifies to ( / ) .IJF 4#  More generally, the con-
dition implies that if (( ) ( ) / ),F I J1 1 16# + +  then X  has a 
unique decomposition almost surely. Before we proceed to discuss 
big data and cloud computing aspects of tensor decomposition, we 
state two lemmas from [13], which we will need in the sequel. 

LEMMA 1 
Consider : ,A U AT=u  where A  is ,I F#  and let the I L#  matrix 
U  be randomly drawn from an absolutely continuous distribution 
(e.g., multivariate Gaussian with a nonsingular covariance matrix). 
Then ( , )mink L kA A=u  almost surely (with probability 1) [13]. 

LEMMA 2  
Consider ,A U AT=u  where A ( )I F#  is deterministic, tall/square 

I F$^ h and full column rank ,r FA =  and the elements of U
I L#^ h are independent and identically distributed (i.i.d.) Gauss-

ian zero mean, unit variance random variables. Then the distribu-
tion of Au  is absolutely continuous (nonsingular multivariate 
Gaussian) [13]. 

TENSOR COMPRESSION
When dealing with big tensors X  that do not fit in main memory, 
a reasonable idea is to try to compress X  to a much smaller tensor 
that somehow captures most of the systematic variation in .X  The 
commonly used compression method is to fit a low-dimensional 
orthogonal Tucker3 model (with low mode-ranks) [17], [18], then 
regress the data onto the fitted mode-bases. This idea has been 
exploited in existing CP model-fitting software, such as COMFAC 
[28], as a useful quick and dirty way to initialize alternating least 
squares computations in the uncompressed domain, thus acceler-
ating convergence. A key issue with Tucker3 compression of big 
tensors is that it requires computing singular value decomposi-
tions of the various matrix unfoldings of the full data, in an 

Lp
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T

Wp
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[FIG1] A schematic illustration of tensor compression: going from 
an I J K# #  tensor X to a much smaller L M Np p p# #  tensor Yp
via multiplying (every slab of) X from the I -mode with ,Up

T  from 
the J-mode with ,Vp

T  and from the K-mode with ,Wp
T  where Up  is 

,I Lp# Vp  is ,J Mp#  and Wp  is .K Np#
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alternating fashion. This is a serious bottleneck for big data. Another 
issue is that Tucker3 compression is lossy, and it cannot guarantee 
that identifiability properties will be preserved. Finally, fitting a CP 
model to the compressed data can only yield an approximate model 
for the original uncompressed data, and eventually decompression 
and iterations with the full data are required to obtain fine estimates. 

Consider compressing x  into ,y Sx=  where S  is ,d IJK#

.d IJK%  Sidiropoulos and Kyrillidis [13] proposed using a spe-
cially structured compression matrix ,S U V WT T T7 7=  which 
corresponds to multiplying (every slab of) X  from the I -mode 
with ,UT  from the J -mode with ,VT  and from the K -mode with 

,WT  where U  is ,I L# V  is ,J M#  and W  is ,K N#  with ,L I#
,M J# N K#  and ;LMN IJK%  see Figure 1. Such an S  corre-

sponds to compressing each mode individually, which is often nat-
ural, and the associated multiplications can be efficiently 
implemented; see “Complexity of Multiway Compression?” and 
“Complexity of Multiway Compression–Redux.” Due to a fortui-
tous property of the Kronecker product [29], 

( ) ( ) ( ) ,U V W A B C U A V B W CT T T T T T7 7 9 9 9 9=^ ^ ^h h h
from which it follows that

( ) ( ) ( ) .1 1y U V B W C A B CAT T T9 9 9 9= = u u u^ ^h h

i.e., the compressed data follow a CP model of size L M N# #  and 
order F  parameterized by , , ,A B Cu u u^ h  with :A U AT=u : ,B V BT=u

: .C W CT=u

This is nice to know, but we are really, naturally, interested in 
obtaining answers to the following two questions: 

1) Under what conditions on ,A ,B C  and ,U ,V W  are 
, , ,A B Cu u u^ h  identifiable from ?y

2) Under what conditions, if any, are ,A ,B C  identifiable from 
, , ?A B Cu u u^ h

We start by answering the first question in the next section. 

STEPPING-STONE RESULTS
The following result is a direct consequence of Lemma 1 and 
Kruskal’s uniqueness condition in Theorem 1. 

THEOREM 4
Let ,1x A B C R IJK9 9 != ^ h  where A  is ,I F# B  is ,J F# C
is ,K F#  and consider compressing it to y U V WT T T7 7= ^ h

( ) ( ) ( ) 1x U A V B W C A B C 1T T T9 9 9 9== u u u^ ^h h ,RLMN!  where 
the mode-compression matrices , ,I L L IU # #^ h ,(J MV #

,)M J#  and W ,K N N K# #^ h are independently drawn from 
an absolutely continuous distribution. If 

( , ) ( , ) ( , ) ,min min minL k M k N k F2 2A B C $+ + +

then , ,A B Cu u u  are almost surely identifiable from the compressed 
data y  up to a common column permutation and scaling. 

More relaxed conditions for identifiability of , ,A B Cu u u  can be 
derived from Lemma 2, and Theorems 2 and 3. 

THEOREM 5
For , , , , , , ,x A B C U V W  and y  as in Theorem 4, if ( , , ),minF I J K#

,A ,B C  are all full column rank ,F^ h ,N F$  and 

( ) ( ) ( ),L L M M F F1 1 2 1$- - -

then , ,A B Cu u u  are almost surely identifiable from the compressed 
data y  up to a common column permutation and scaling.

REMARK 1
( , , )minF I J K# &  full column rank ,A ,B C  almost surely, 

i.e., tall matrices are full column rank except for a set of mea-
sure zero. In other words, if ( , , )minF I J K#  and ,A ,B C  are 
themselves considered to be independently drawn from an abso-
lutely continuous distribution with respect to the Lebesgue 
measure in ,R IF ,R JF  and ,RKF  respectively, then they will all 
be full column rank with probability 1. 

THEOREM 6
For ,, , , , , ,x A B C U V W  and y as in Theorem 4, if ( , , ),minF I J K#

,A ,B C  are all full column rank ,F^ h ,L M N# #  and 

( ) ( ) ,L M F1 1 16$+ +

then , ,A B Cu u u  are almost surely identifiable from the compressed 
data y  up to a common column permutation and scaling. 

COMPLEXITY OF MULTIWAY COMPRESSION?
Multiplying a dense L I#  matrix UT  with a dense vector a
to compute U aT  has complexity .LI Taking the product of 
UT  and the first I J#  frontal slab (: , : , )1X  of the I J K# #

tensor X  has complexity .LIJ Premultiplying from the left 
all frontal slabs of X  by UT  (computing a mode product)
therefore requires LIJK  operations, when all operands are 
dense. Multiway compression as in Figure 1 comprises 
three mode products, suggesting a complexity of 

,LIJK MLJK NLMK+ +  if the first mode is compressed first, 
followed by the second, and then the third mode. Notice 
that the order in which the mode products are computed 
affects the complexity of the overall operation; but order-
wise, this is ( ( , , ) ) .minO L M N IJK  Also notice that if , ,I J K
are of the same order, and so are , , ,L M N  then the overall 
complexity is ( ) .O LI3  If a  is sparse with ( )NZ a  nonzero 
elements, we can compute U aT  as a weighted sum of the 
columns of UT  corresponding to the nonzero elements of 

.a  This reduces matrix-vector multiplication complexity to
( ) .LNZ a  It easily follows that if X  has NZ X^ h nonzero 

elements, the complexity of premultiplying from the left 
all frontal slabs of X  by UT  can be reduced to .LNZ X^ h
The problem is that, after computing the first mode prod-
uct, the resulting tensor will be dense, hence subsequent 
mode products cannot exploit sparsity to reduce complex-
ity. Note that, in addition to computational complexity, 
memory or secondary storage to save the intermediate 
results of the computation becomes an issue, even if the 
original tensor X  is sparse.
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MAIN RESULTS
Theorems 4–6 can establish uniqueness of , , ,A B Cu u u  but we are 
ultimately interested in ., ,A B C  We know that ,A U AT=u  and we 
know ,UT  but, unfortunately, it is a fat matrix that cannot be 
inverted. To uniquely recover ,A  one needs additional structural 
constraints. Sidiropoulos and Kyrillidis [13] proposed exploiting 
column-wise sparsity in A  (and likewise ),,B C  which is often 
plausible in practice. A need only be sparse with respect to (when 
expressed in) a suitable basis, provided the sparsifying basis is 
known a priori. Sparsity is a powerful constraint, but it is not 
always valid (or a sparsifying basis may be unknown). For this rea-
son, we propose here a different solution, based on creating and 
factoring a number of randomly reduced replicas of the full data.

Consider spawning P  randomly compressed reduced-size 
replicas Yp p

P
1=" ,  of the tensor ,X  where Yp  is created using 

mode compression matrices , ,U V Wp p p^ h; see Figure 2. Assume 
that identifiability conditions per Theorem 5 or Theorem 6 
hold, so that , ,A B Cp p pu u u  are almost surely identifiable (up to 
permutation and scaling of columns) from .Yp  Then, upon fac-
toring Yp  into F  rank-one components, we obtain 

,A U Ap p
T

p pP K=u (1)

where pP  is a permutation matrix, and pK  is a diagonal scal-
ing matrix with nonzero elements on its diagonal. Assume that 
the first two columns of each U p  (rows of )U p

T  are common, 

and let U  denote this common part, and A p  denote the first 
two rows of .A pu  We therefore have 

.Ap
T

p pP K=A U

Dividing each column of pA  by the element of maximum 
modulus in that column, and denoting the resulting F2 #  mat-
rix ,A p
|  we obtain

.A Ap
T

pKP= U|

Notice that K  does not affect the ratio of elements in each 2 1#
column. If these ratios are distinct (which is guaranteed almost 
surely if U  and A  are independently drawn from absolutely con-
tinuous distributions), then the different permutations can be 
matched by sorting the ratios of the two coordinates of each 
2 1#  column of .A p

|

In practice, using a few more anchor rows will improve the 
permutation-matching performance, and is recommended in dif-
ficult cases with high noise variance. When S anchor rows are 
used, the optimal permutation matching problem can be cast as 

| | | | ,min A A p F1
2P-

P

| |

where optimization is over the set of permutation matrices. 
This may appear to be a hard combinatorial problem at first 
sight; but it is not. Using 

COMPLEXITY OF MULTIWAY COMPRESSION–REDUX
In scalar form, the ( , , )m n th,  element of the tensor Y  after 
multiway compression can be written as 

( , , ) ( , ) ( , ) ( , ) ( , , ) .m n i j m k n i j kY U V W X
k

K

j

J

i

I

111
, ,=

===

///

Claim S1 
Suppose that X  is sparse, with NZ X^ h nonzero elements, 
and suppose that it is stored as a serial list with entries for-
matted as [ , , , ],i j k v  where v  is the nonzero value at tensor 
position ( , , ) .i j k  Suppose that the list is indexed by an inte-
ger index ,s i.e., [ ( ), ( ), ( ), ( )]i s j s k s v s  is the record corre-
sponding to the sth  entry of the list. Then the following 
simple algorithm will compute the multiway compressed 
tensor Y  in only NZLMN X^ h  operations, requiring only 
LMN  cells of memory to store the result, and IL JM KN+ +

cells of memory to store the matrices ,U ,V .W
Algorithm S1: Efficient multiway compression pseudocode 
Y=zeros(L,M,N); 
for s=1:NZX, 
 for ell=1:L, 
for m=1:M, 
for n=1:N, 

  Y(ell,m,n) = Y(ell,m,n)+ U(i(s),ell)*V(j(s),m)*W(k(s),n)*v(s); 
end 

end 
 end
end

Notice that, even if X  is dense (i.e., ),IJKNZ X =^ h  the above 
algorithm only needs to read each element of X  once, so com-
plexity will be LMNIJK but memory will still be very modest: 
only LMN cells of memory to store the result, and IL JM KN+ +

cells of memory to store the matrices ,U ,V .W  Contrast this to 
the naive way of serially computing the mode products, whose 
complexity order is ( ( , , ) )minO L M N IJK  but whose memory 
requirements are huge for dense ,U ,V ,W  due to intermediate 
result explosion—even for sparse .X  We see a clear complexity-
memory tradeoff between the two approaches for dense data, 
but Algorithm S1 is a clear winner for sparse data, because spars-
ity is lost after the first mode product. Notice that the above 
algorithm can be fully parallelized in several ways—by splitting 
the list of nonzero elements across cores or processors (paying in 
terms of auxiliary memory replications to store partial results for 
Y  and the matrices ,U ,V ,W  locally at each processor), or by 
splitting the ( , , )m n,  loops—at the cost of replicating the data 
list. As a final word, the memory access pattern (whether we 
read and write consecutive memory elements in blocks, or make 
wide strides) is the performance-limiting factor for truly big data, 
Algorithm S1 makes strides in reading elements of ,U ,V ,W
and writing elements of .Y  There are ways to reduce these 
strides, at the cost of requiring more memory and more floating 
point operations.
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|| | | ( ) ( )

| | | | | | | | ( )

| | | | | | | | ( ) .

2

2

Tr

Tr

Tr

A A A A A A
A A A A
A A A A

p F p
T

p

F p F
T

p

F p F
T

p

1
2

1 1

1
2 2

1

1
2 2

1

P P P

P P

P

- = - -

= + -

= + -

| | | | | |

| | | |

| | | |

^ h

It follows that we may instead

( ),max Tr A AT
p1 P

P

| |

over the set of permutation matrices. This is what is known as 
the linear assignment problem (LAP), and it can be efficiently 
solved using the Hungarian algorithm.

After this column permutation-matching process, we go 
back to (1) and permute its columns to obtain A p

˘  satisfying 

.A U Ap p
T

p
˘ PK=

It remains to get rid of .pK  For this, we normalize each col-
umn by dividing it with its norm. This finally yields 

.A U Ap p
Tˇ PK=

For recovery of A  up to permutation and scaling of its columns, 
we then require that the matrix of the linear system

A

A

U

U
A

P

T

P
T

1 1
ˇ

ˇ
h h PK=> >H H (2)

be full column rank. This implies that 

( )L I2 2
p

P

p
1

$+ -
=

/

i.e., 

( ) .L I2 2
p

P

p
1

$- -
=

/

Note that every submatrix contains the two anchor rows that are 
common, and duplicate rows clearly do not increase the rank. Also 
note that once the dimensionality requirement is met, the matrix 
will be full rank with probability 1, because its nonredundant 
entries are drawn from a jointly continuous distribution (by design). 

Assuming ,L Lp = , ,p P16 g! " , for simplicity (and sym-
metry of computational load), we obtain ( ) ,P L I2 2$- -  or, 
in terms of the number of threads

.P L
I

2
2$
-
-

Likewise, from the corresponding full column rank require-
ments for the other two modes, we obtain 

, .P M
J P N

Kand$ $

Notice that we do not subtract two from numerator and denom-
inator for the other two modes, because the permutation of col-
umns of , ,A B Cp p pu u u  is common, so it is enough to figure it out 
from one mode, and apply it to other modes as well. In short,

, ,maxP L
I

M
J

N
K

2
2$
-
-e o.

REMARK 2
Note that if, say, A  can be identified and it is full column rank, 
then B  and C  can be identified by solving a linear least squares 
problem—but this requires access to the full big tensor data. In 
the same vein, if A  and B  are identified, then C  can be identi-
fied from the full big tensor data even if A  and B  are not full 
column rank individually—it is enough that A B9  is full col-
umn rank, which is necessary for identifiability of C  even from 
the big tensor, hence not restrictive. Parallel randomly com-
pressed (PARACOMP)-based identification, on the other hand, 
only requires access to the factors derived from the small 

I

J

X

K
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N2
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MP
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, W 1
)
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(U
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, C P
)

~
~

~

(A, B, C)

. .
 .

. .
 .

. .
 .

[FIG2] A schematic illustration of the PARACOMP fork-join architecture. The fork step creates a set of P randomly compressed reduced-
size replicas p p 1= .PY" , Each Yp  is obtained by applying , ,U V Wp p p^ h to ,X  as detailed in Figure 1. Each Yp  is then independently 
factored (all P  threads can be executed in parallel). The join step collects the estimated mode loading submatrices , , CA Bp p pu u u^ h from the 
P  threads, and, after anchoring all to a common permutation and scaling, solves a master linear least squares problem per mode to 
estimate the full mode loading matrices , , .A B C^ h
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replicas. This is clearly advantageous, as the raw big tensor data 
can be discarded after compression, and there is no need for 
retrieving huge amounts of data from cloud storage. 

One can pick the mode used to figure out the permutation 
ambiguity, leading to the symmetrized condition 

, ,minP P P P1 2 3$ " , with 

, ,maxP L
I

M
J

N
K

2
2

1 = -
-e o
, ,maxP L

I
M
J

N
K

2
2

2 = -
-e o

, , .maxP
L
I

M
J

N
K

2
2

3 =
-
-e o

If the compression ratios in the different modes are similar, it 
makes sense to use the longest mode for this purpose; if this is 
the last mode, then 

, , .maxP
L
I

M
J

N
K

2
2$
-
-e o

We have thus established the following result. 

THEOREM 7
In reference to Figure 2, assume : 1vecx X A B C9 9 != =^ ^h h

,R IJK  where A  is ,I F# B  is ,J F#  and C  is K F#  (i.e., the rank 
of X  is at most ) .F  Assume that ,F I J K# # #  and ,A ,B C  are 
all full column rank ( ) .F  Further assume that ,L Lp = ,M Mp =

,N Np = , , ,p P16 g! " , ,L M N# # ( ) ( ) ,L M F1 1 16$+ +

the elements of U p p
P

1=" ,  are drawn from a jointly continuous dis-
tribution, and likewise for ,Vp p

P
1=" ,  while each W p  contains two 

common anchor columns, and the elements of W p p
P

1=" ,  (except 
for the repeated anchors, obviously) are drawn from a jointly con-
tinuous distribution. Then the data for each thread : vecy Yp p= ^ h
can be uniquely factored, i.e., , ,A B Cp p pu u u^ h is unique up to column 
permutation and scaling. If, in addition to the above, we also have 

/ , / , ( ) / ( )max I L J M K NP 2 2$ - -^ h  parallel threads, then 
, ,A B C^ h are almost surely identifiable from the thread outputs 

, ,A B Cp p p p
P

1=
u u u^ h" ,  up to a common column permutation and scaling. 
The above result is indicative of a family of results that can 

be derived, using different CP identifiability results. Its signifi-
cance may not be immediately obvious, so it is worth elaborat-
ing further at this point. On one hand, Theorem 7 shows that 
fully parallel computation of the big tensor decomposition is 
possible—the first such result, to the best of our knowledge, 
that guarantees identifiability of the big tensor decomposition 
from the intermediate small tensor decompositions, without 
placing stringent additional constraints. On the other hand, the 
conditions appear convoluted, and the memory/storage and 
computational savings, if any, are not necessarily easy to see. 
The following claim nails down the take-home message. 

CLAIM 1 
Under the conditions of Theorem 7, if ) / (K N2 2- - =^ h

/ , / , ( ) / ( ) ,max I L J M K N2 2- -^ h  then the memory/storage and 
computational complexity savings afforded by the architecture shown 
in Figure 2 relative to brute-force computation are of order / .IJ F^ h

Proof 1
Each thread must store LMN  elements, and we have 

) / (K NP 2 2= - -^ h threads in all, leading to a total data size of 
order LMK versus ,IJK so the ratio is / .IJ LM^ h  The condition 
( ) ( )L M F1 1 16$+ +  only requires LM to be of order ,F hence 
the total compression ratio can be as high as / .IJ FO^ h  Turning to 
overall computational complexity, note that optimal low-rank ten-
sor factorization is NP-hard, even in the rank-one case. Practical 
tensor factorization algorithms, however, typically have complex-
ity O IJKF^ h (per iteration, and overall if a bound on the max-
imum number of iterations is enforced). It follows that the 
practical complexity order for factoring out the P parallel threads 
is O PLMNF^ h versus O IJKF^ h for the brute-force computation. 
Taking into account the lower bound on ,P  the ratio is again of 
order / ,IJ LM^ h  and since the condition ( ) ( )L M F1 1 16$+ +

only requires LM  to be of order ,F  the total computational com-
plexity gain can be as high as / .IJ FO^ h
REMARK 3
The complexity of solving the master linear equation (2) in the final 
merging step for A  may be a source of concern—especially 
because it hasn’t been accounted for in the overall complexity cal-
culation. Solving a linear system of order of I equations in I
unknowns generally requires ( )O I3  computations; but closer scru-
tiny of the system matrix in (2) reveals interesting features. If all 
elements of the compression matrices U p" , (except for the com-
mon anchors) are i.i.d. with zero mean and unit variance, then, 
after removing the redundant rows, the system matrix in (2) will 
have approximately orthogonal columns for large .I  This implies 
that its left pseudoinverse will simply be its transpose, approxi-
mately. This reduces the complexity of solving (2) to .I F2  If higher 
accuracy is required, the pseudoinverse may be computed offline 
and stored. It is also important to stress that (2) is only solved once 
for each mode at the end of the overall process, whereas tensor 
decomposition typically takes many iterations. In short, the con-
stants are such that we need to worry more about the compression 
(fork) and decomposition stages, rather than the final join stage. 

Theorem 7 assumes ( , , )minF I J K#  to ensure (via Lemma 
2) absolute continuity of the compressed factor matrices, which is 
needed to invoke almost sure uniqueness per [26]. Cases where 

( , , )minF I J K2  can be treated using Kruskal’s condition for 
unique decomposition of each compressed replica 

( , ) ( , ) ( , ) .min min minL k M k N k F2 2A B C $+ + +

It can be shown that ( , )mink I FA =  for almost every A  (except 
for a set of measure zero in );R IF  and likewise ( , ),mink J FB =

and ( , ),mink K FC =  for almost every B  and .C  This simplifies 
the above condition to 

( , , ) ( , , ) ( , , ) .min min minL I F M J F N K F F2 2$+ + +

In other words, if the simplified condition holds, then CP 
decomposition of each reduced replica is unique for almost 
every ( ), ,A B C  and almost every set of compression matrices 
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( ) ., ,U V W Assume ,I F$ ,J F$  but ,K F1  and pick 
,L M F= =  and .N 3= Then the condition further reduces to 

( , ) ,minF K F2 3 2 2$+ +

which is satisfied for any K 2$  (i.e., for any tensor). We also need 

, , ,maxP L
I

M
J

N
K

2
2$
-
-c m

which in this case N 3=^ h reduces to 

, , .maxP L
I

M
J K 2$ -` j

When / / , / , ,maxI L I L J M K 2= -^ ^h h  then there are /I L^ h parallel 
threads of size LMN F3 2=  each, for total cloud storage ,IF3  i.e., 
order ;IF hence the overall compression ratio (taking all replicas 
into account) is of order ( ) / ( ) / .IJK IF JK F=^ ^h h  The ratio of over-
all complexity orders is also ( ) / ( / .)IJKF IF JK F2 =^ ^h h  This is the 
same type of result as the one we derived for the case F #

( , , ) .min I J K  On the other hand, when ( / , / ,max I L I MK 2- =

),K 2-  there are K 2-  parallel threads of size LMN F3 2=  each, 
for total cloud storage ( ),F K3 22 -  i.e., order ;KF2  hence the 
overall compression ratio is ( ) / ( ( ) / ,)IJK KF IJ F2 2=^ h  and the ratio 
of overall complexity orders is also ( ) / ( ( ) / .)IJKF KF IJ F3 2=^ h  We 
see that there is a penalty factor F  relative to the case 

( , , );minF I J K#  this is likely an artifact of the method of proof, 
which we hope to improve in future work. We summarize the 
result in the following theorem. 

THEOREM 8
In reference to Figure 2, assume : 1vecx X A B C9 9 != =^ ^h h

,R IJK  where A  is ,I F# B  is ,J F# C  is K F#  (i.e., the rank of 
X  is at most ) .F Assume that ,I F$ J F$ (K  can be ),F1  and 
pick ,L Lp = ,M Mp = ,N Np = , , ,p P16 g! " ,  with 

,L M F= =  and .N 3= The compression matrices are chosen as 
in Theorem 7. If / , / , ,max I L J MP K 2$ -^ h  then A, B, C^ h is id-
entifiable from , , ,A B Cp p p p

P
1=

u u u^ h" ,  for almost every , ,A B C^ h and 
almost every set of compression matrices. When ( / )I L =

( / ), ( / ), ,max I L J M K 2-^ h  the total storage and complexity gains 
are of order ( / );JK F  whereas if ( / ), ( / ), ,max I L J MK K2 2- = -^ h
the total storage and complexity gains are of order ( / ) .IJ F2

LATENT SPARSITY
If latent sparsity is present, we can exploit it to reduce .P Assume 
that every column of A ( , )B C  has at most na  (respectively, 

, )n nb c  nonzero elements. A column of A  can be uniquely recov-
ered from only n2 a  incoherent linear equations [30]. Therefore, 
we may replace the condition

, , ,maxP L
I

M
J

N
K

2
2$
-
-c m

with 

, , .maxP L
n

M
n

N
n2 2

2
2 2a b c$
-
-c m (3)

Assuming 

, , ,maxN
n

L
n

M
n

N
n

2
2 2 2 2

2
2 2c a b c

-
- =

-
-c m

it is easy to see that the total cloud storage and complexity gains 
are of order ( / ) ( / )IJ F K nc —improved by a factor of ( / ) .K nc  It is 
interesting to compare this result with the one in Sidiropoulos 
and Kyrillidis [13], which corresponds to using P 1=  in our pre-
sent context. Notice that (3) implies ( / ),n PL 2 a$ ( / ),n PM 2 b$

(( ) / )PN n2 2 2c &$- - 2 ( ( / )) ( / ) .P N n P1 1 2& $+ -( / )n PN 2$ c c

Substituting P 1=  we obtain ,L n2 a$ ,M n2 b$ ,N n2 c$

which is exactly the condition required in [13]. We see that PARA-
COMP subsumes [13], offering greater flexibility in terms of 
choosing P  to reduce the size of replicas for easier in-memory 
processing, at the cost of an additional merging step at the end. 
Also note that PARACOMP is applicable in the case of dense latent 
factors, whereas [13] is not. 

REMARK 4 
In practice we will use a higher ,P  i.e., 

, , ,maxP L
n

M
n

N
n

2
2a b c

$
n n n

-
-c m

with , ,3 4 5!n " , instead of 2, and an 1,  sparse underdeter-
mined linear equations solver for the final merging step for .A
This will increase complexity from ( )O I F2  to ( ),O I F.3 5  and the 
constants are such that the difference is significant. This is the 
price paid for the reduced memory and intermediate complexity 
benefits afforded by latent sparsity. 

MAPREDUCE IMPLEMENTATION
With the proliferation of large collections of data, as well as big 
clusters of (usually commodity) computers that were largely 
underutilized, arose the need for a unified framework of scalable 
distributed computation in the cloud. In [31], Dean et al. from 
Google introduced such a framework, called MapReduce. MapRe-
duce provides a very versatile level of programming abstraction: it 
conceals all its inner workings from the programmer, and simply 
requires the implementation of two functions: Map and Reduce.

The Map function runs in parallel on many machines; each 
instance reads data serially from the Distributed File System
(DFS), performs some sort of parsing or computation on that data, 
and emits a series of (key,value) pairs. (DFS is defined by 
MapReduce.) Consequently, the Reduce function runs in parallel 
on a set of machines, and each instance of Reduce receives as 
input (key,value) pairs with the same key; it performs some 
sort of (user defined) aggregation or computation on these val-
ues, and then emits a series of (key’,value’) pairs, which are 
eventually written to DFS. This way, any task that can be expressed 
as a combination of a Map and a Reduce function may be run in 
a distributed fashion on a cluster of computers, on data that is also 
stored in the cloud, and much bigger than what a typical personal 
computer can store or process in memory. The MapReduce frame-
work also deals with machine failures (an issue which arises very 
often in large clusters of computers) in a way that is transparent to 
the programmer. Among other safety measures, MapReduce uses 
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three-way replication of each computation, so that even if one 
machine fails, there are still two backup machines that are carry-
ing out the same task. This way, the user does not have to deal 
with the frustrations of machine failures. The original MapReduce 
implementation is internal to Google; however, there exists a very 
robust and well-tested open source implementation by Apache, 
called Hadoop [32]. The two primary programming languages that 
can be used with Hadoop are Java and Python. 

Signal processing algorithms are generally not realizable as a 
single MapReduce task, but it is often possible to break up a given 
algorithm in parts, each of which may be written as a MapReduce 
computation. In this way, the overall signal processing algorithm 
can be implemented as a chain of MapReduce tasks. 

The most typical introductory example of a MapReduce task 
is the WordCount application [33], where the goal is to esti-
mate the frequency of occurrence of each word in a corpus. 
Given that MapReduce was originally developed by Google, a 
search engine that relies heavily on indexing large collections of 
text to provide fast and accurate search results, the Word-
Count example fits perfectly in the original context. In “Solv-
ing a Toy Problem in Hadoop–MapReduce,” we instead use a 
very simple and common signal processing task to illustrate the 
way MapReduce works: computing the histogram of a big 

speech/audio, image, or video signal. The particular kind of 
signal is not important here, but bear in mind that our motiva-
tion is to be able to handle big data, distributed over the cloud. 
To simplify exposition, we assume that the signal of interest is 
integer valued. 

SKETCH OF PARACOMP IN MAPREDUCE
We now provide a sketch of an implementation of PARACOMP in 
MapReduce. As in Figure 2, we break the algorithm down to three 
distinct steps: 1) compression, 2) decomposition, and 3) recovery 
of factor matrices. Each of the three steps consists of a few MapRe-
duce chain tasks. 

COMPRESSION
For the compression step, we first need to create P  triplets of ran-
dom compression matrices ,U p ,Vp .W p  This may be carried out 
simply by a mapper that emits p  (the replica index) as key, and the 
dimensions of the matrices as the value. Thus, each reducer is 
responsible for creating and storing on DFS all three compression 
matrices. Depending on how large the compression matrices are, 
instead of assigning a single reducer the burden of creating an 
entire batch of ,U p ,Vp ,W p  we may instead choose to assign each 
reducer to create a single row of each of the matrices. Taking a 
closer look at Algorithm S1 in “Complexity of Multiway Compres-
sion–Redux,” we can devise a MapReduce task for the compression 
step. Let us assume that the tensor is stored in a text file, in multi-
ple lines (as many as the nonzero values in the tensor), in the form 

( ), ( ), ( ), ( ),i s j s k s v s

which is appropriate for sparse tensors. Each mapper reads a seg-
ment of that file, processing one line at a time. By inspecting the 
core equation of Algorithm S1 in “Complexity of Multiway 
Compression–Redux” 

( , , ) ( , , ) ( ( ), ) ( ( ), ) ( ( ), ) ( ),m n m n i s j s m k s n v sY Y U V W, , ,= +

we see that for each mapper, it suffices to hold ( ( ), :),i sU ( ( ), :),j sV
and ( ( ), :)k sW  in memory, so that it calculates the contribution of 
the current nonzero value of the tensor ( )v s to the partial sum 
that comprises ( , , ) .m nY ,  Since , ,L M N  are considerably 
smaller than , , ,I J K  we use ( )O L M N+ +  of memory on each 
mapper. Thus, each mapper emits as key the concatenation of 
( , , )m n,  and as value ( ( ), ) ( ( ), ) ( ( ), ) ( ) .i s j s m k s n v sU V W,  Fi-
nally, each reducer receives all partial values of the sum that builds 

( , , )m nY ,  up, sums up all incoming values, and emits a pair with 
key equal to ( , , )m n,  and value equal to ( , , ),m nY ,  which is 
eventually written to DFS. 

Since we execute multiple repetitions of the compression step, 
we may concatenate the repetition number p  to the key that is 
emitted by the mapper, as well as the key emitted by the reducer. 
Thus, at the end, there will be one file containing the nonzero val-
ues for each compressed tensor in the form: 

, , , , ( , , )p m n m nYp, , .

SOLVING A TOY PROBLEM IN HADOOP–MAPREDUCE
Consider a large speech/audio, image, or video signal, 
stored as a text file, with each line containing a signal 
value. This file is stored in a distributed fashion, in DFS. 
To compute its histogram, it suffices to use a single 
MapReduce job. 

■ Map: Each mapper gets a portion of the file and 
reads it line-by-line. For each line-entry, n, the mapper 

sets key n=  and value ,1=  and emits a ,n 1^ h pair. 

■ Reduce: As mentioned earlier, each instance of a 

reducer receives all such (key,value) pairs that have 

the same key. In this particular case, all instances of 
number n will be processed by the same reducer, since 

the Map function set key .n=  As a consequence, each 
reducer has all the information needed to calculate the 
exact count of appearances of a given number .n  Thus, 
each reducer simply calculates the total number of 

,n 1^ h pairs (denoted by ),f  and emits a single tuple 
, ,n f^ h  which contains the number and its correspond-

ing frequency of occurrence.
Finally, when all reducers have terminated, the output of 
the above MapReduce task will contain lines in the form: 

(number, frequency). 
Even though the above example is very simple, the logic 

that underlies the transformation of an algorithm into a 
series of MapReduce tasks is the same: decompose the 

algorithm into self-contained pieces, find a (key, value)
representation for the intermediate data of each piece, 

and finally express this computation as a pair of Map and 

Reduce functions.
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DECOMPOSITION
For the decomposition step, we spawn P  parallel processes on dif-
ferent machines, each one fitting the CP decomposition to the re-
spective compressed tensor. To do that in the MapReduce 
framework, we may use the Map function to feed the appropriate 
data to each reducer. More specifically, each mapper will read por-
tions of the file created by the compression step, and use as a key 
the repetition index ,p  and as value the rest of the row, i.e., 
( , , , ( , , )) .m n m nYp, ,  Consequently, P  reducers will be spawned, 
each receiving all the data of a single compressed tensor. We as-
sume that the compressed tensor fits in the main memory of a sin-
gle machine, therefore each reducer simply stores the incoming 
values in a three dimensional array, and proceeds with in-memory 
computation of the CP decomposition. In case the reducers are 
unable to store the compressed tensor in main memory, there ex-
ist methods that fit the CP decomposition on MapReduce [34]. 
However, solving each one of the parallel decompositions on Ma-
pReduce would significantly hurt performance, therefore we 
should aim for compressed tensors that fit in memory. 

RECOVERY OF FACTOR MATRICES
The final step involves the recovery of the factor matrices , ,A B C
from the partial factors as obtained from the parallel decomposi-
tion step. Recovery for each factor matrix is achieved by stacking 
the partial results on top of each other, as well as the compression 
matrices in a similar fashion, and solving a least squares problem 
involving these two matrices. The stacking of both partial factors 
and compression matrices can be done through a simple MapRe-
duce task: each mapper will be emitting ( , )i f  (i.e., the indices of 
each matrix coefficient) as key, and the value will be the coeffi-
cient of the matrix at ( , )i f (denoted by )v  and the index ,p  indi-
cating the replica number. Then, each reducer will emit tuples of 
the form 

, ,i f vl ,

where il will be the original row index adjusted appropriately 
using ,p to account for the stacking. 

To solve the least squares step, we may use scalable algorithms 
that implement the Moore–Penrose pseudoinverse on MapReduce 
[35]. After pseudoinversion, we need to carry out matrix multipli-
cation, a problem that has also been thoroughly studied for 
MapReduce [36].

ILLUSTRATIVE NUMERICAL RESULTS
Our theorems ensure that PARACOMP works with ideal low- and 
known-rank tensors, but what if there is measurement noise or 
other imperfections, or we underestimate the rank? Does the over-
all approach fall apart in this case? From “The Color of Com-
pressed Noise” and “Is Component Ordering Preserved After 
Compression?” we have good reasons to believe that this is not the 
case, but one cannot be confident without numerical experiments 
that corroborate intuition. In this section, we provide indicative 
results to illustrate what can be expected from PARACOMP and 
the effect of various parameters on estimation performance. 

In all cases considered, ,I J K 500= = =  the noiseless tensor 
has rank ,F 5= and is synthesized by randomly and independ-
ently drawing ,A ,B C  each from an i.i.d. zero-mean, unit-vari-
ance Gaussian distribution (randn(500,5) in MATLAB), and 
then taking their tensor product; i.e., computing the sum of outer 
products of corresponding columns of ,A ,B .C  Gaussian i.i.d. 
measurement noise is then added to this noiseless tensor to yield 
the observed tensor to be analyzed. The nominal setup uses 
L M N 50= = =  (so that each replica is 0.1% of the original ten-
sor), and P 12=  replicas are created for the analysis (so the over-
all cloud storage used for all replicas is 1.2% of the space needed to 
store the original tensor). S 3=  common anchor rows (instead of 

,S 2= which is the minimum possible) are used to fix the permu-
tation and scaling ambiguity. These parameter choices satisfy PAR-
ACOMP identifiability conditions without much additional slack. 
The standard deviation of the measurement noise is nominally set 
to . .0 01v =

Figure 3 shows the total squared error for estimating ,A  i.e., 
,A A 2

2
- t  where At  denotes the estimate of A  obtained using 

PARACOMP, as a function of .L M N= =  The baseline is the total 
squared error attained by directly fitting the uncompressed 
500 500 500# #  tensor using a mature tensor decomposition 
algorithm (COMFAC, available at www.ece.umn.edu/~nikos)—the 
size of the uncompressed tensor used here makes such direct fit-
ting possible, for comparison purposes. We see that PARACOMP 
yields respectable accuracy with only 1.2% of the full data, and is 
just an order of magnitude worse than the baseline algorithm 
when ,L M N 150= = =  corresponding to 32% of the full data. 
This is one way we can tradeoff memory/storage/computation ver-
sus estimation accuracy in the PARACOMP framework: by control-
ling the size of each replica. Another way to tradeoff memory/
storage/computation for accuracy is through .P  Figure 4 shows 
accuracy as a function of the number of replicas (computation 
threads) ,P  for fixed .L M N 50= = =  Finally, Figure 5 plots 
accuracy as a function of measurement noise variance ,2v  for 
L M N 50= = =  and .P 12=
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[FIG3] MSE as a function of .L M N= =
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SUMMARY AND TAKE-HOME POINTS

SUMMARY
We have reviewed the basics of tensors and tensor decomposition, 
and presented a novel architecture for parallel and distributed 
computation of low-rank tensor decomposition that is especially 
well suited for big tensors. It is based on parallel processing of a 
set of randomly compressed, reduced-size replicas of the big ten-
sor. We have also provided a friendly introduction to Hadoop–
MapReduce, starting from a toy signal processing problem, and 
going up to sketching a Hadoop implementation of tensor decom-
position in the cloud. 

MOTIVATION AND IMPACT
There is rapidly growing interest in signal processing for big data 
analytics, and in porting/translating and developing new signal pro-
cessing algorithms for cloud computing platforms. Tensors are 
multidimensional signals that have found numerous applications in 
signal processing, machine learning, data mining, and well beyond 
(psychology, chemistry, life sciences, etc.), and they are becoming 
increasingly important for online marketing, social media, search 
engines, and many more applications. Tensors easily grow to be 
really big, as their total size is the product of mode sizes, hence 
exponential in the number of modes (dimensions in signal process-
ing parlance). Big tensor data will thus be a big part of big data. 

TAKE-HOME POINTS
1) PARACOMP enables massive parallelism with guaranteed 
identifiability properties: if the big tensor is indeed of low rank 
and the system parameters are appropriately chosen, then the 
rank-one factors of the big tensor will indeed be recovered 
from the analysis of the reduced-size replicas. 
2) PARACOMP affords memory/storage and complexity gains of 
order up to /IJ F^ h for a big tensor of size I J K# #  of rank .F

10−8 10−6 10−4 10−2 100

100

102

10−2

10−6

10−4

10−8

10−12

10−10

Σ 2

||A
 −

 A
ha

t||
F2

I = J = K = 500; F = 5; L = M = N = 50;
P = 12; S = 3

PARACOMP
Direct,
No Compression

[FIG5] MSE as a function of additive white Gaussian noise 
variance .2v

THE COLOR OF COMPRESSED NOISE
Consider a noisy tensor ,Y X Z= +  where Z  denotes zero-
mean additive white noise. In vectorized form, ,y x z= +

with : ,vecy Y= ^ h : ,vecx X= ^ h  and : .vecz Z= ^ h  After 
multiway compression, one obtains the reduced-size tensor 

,Yc  whose vectorized representation : vecy Yc c= ^ h =
U V W yT T T7 7^ h = U V W xT T T7 7^ h + .U V W zT T T7 7^ h

Let : .z U V W zc
T T T7 7= ^ h  Clearly, [ ] ,E 0zc =  and 

E Ez z U V W zz U V Wc c
T T T T T7 7 7 7= ^ ^h h6 6@ @

EU V W zz U V WT T T T7 7 7 7= ^ ^h h6 @
U V W U V WT T T2 7 7 7 7v= ^ ^h h

,U U V V W WT T T2 7 7v= ^ ^ ^^ h h hh
where we have used two properties of the Kronecker 
product: transposition 

,A B A BT T T7 7=^ h
and the mixed product rule [29] 

.A B C D AC BD7 7 7=^ ^ ^h h h
We see that, if ,U ,V W  are orthonormal, then the noise in 
the compressed domain is white. Note that, for large I  and 
U  drawn from a zero-mean unit-variance uncorrelated dis-
tribution, U U IT .  by the law of large numbers. Further-
more, even if z  is not Gaussian, zc  will be approximately 
Gaussian for large ,IJK by the central limit theorem. From 
these, it follows that least-squares fitting is approximately 
optimal in the compressed domain, even if it is not so in the 
uncompressed domain. Compression thus makes least-
squares fitting universal!
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[FIG4] MSE as a function of ,P the number of replicas/parallel 
threads spawned.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [69] SEPTEMBER 2014

No sparsity is required, although such sparsity can be exploited 
to improve memory, storage, and computational savings. 
3) We have shown that using white noiselike compression 
matrices

 ■ approximately preserves component ordering  
 ■ ensures that the compressed noise is approximately white 

if the original measurement noise is white  
 ■ makes the compressed noise look Gaussian, rendering 

classical least-squares CP algorithms well suited for fitting 
the reduced-size replicas, even if the measurement noise in 
the big tensor is far from Gaussian.

4) Each replica is independently decomposed, and the results 
are joined via a master linear equation per tensor mode. The 
number of replicas and the size of each replica can be adjusted 
to fit the number of computing nodes and the memory avail-
able to each node, and each node can run its own CP software, 
depending on its computational capabilities. This flexibility is 
why PARACOMP is better classified as a computational archi-
tecture, as opposed to a method or algorithm.
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IS COMPONENT ORDERING PRESERVED AFTER COMPRESSION?
Consider randomly compressing a rank-one tensor ,a b c& &=X
written in vectorized form as x a b c7 7= (recall that the Kro-
necker product 7  and the Khatri–Rao product 9  coincide 
when all arguments involved are vectors). The compressed ten-
sor is ,Xu  in vectorized form 

x U V W a b cT T T7 7 7 7=u ^ ^h h
( ) ( ) ( ),U a V b W cT T T7 7=

using the mixed product rule [29]. It follows 

|| | |x x xT2
2 =u u u

( ) ( ) ( ) ( ) ( ) ( )a U b V c W U a V b W cT T T T T T7 7 7 7= ^ ^h h
( ) ( ) ( )a UU a b VV b c WW cT T T T T T7 7=

| | | | | | | | | | | | ,U a V b W cT T T
2
2

2
2

2
2=

where we have used the transposition and mixed product rules, 
and that the Kronecker product of scalars is a plain product. 
Notice that for our choice of U  (i.i.d. zero-mean Gaussian of 

variance 1, i.e., randn(I,L) in Matlab), ,U U IT
L L. #  but UUT

is rank-deficient ( ),L I1  thus far from .I I I# However, consider-
ing one generic element of ,U aT  say ,u aT  and its magnitude-
square, note that | | ,u a a uu aT T T2 =  so 

| | | | | | .E Eu a a uu a a a aT T T T2
2
2= = =8 8B B

Next, it can be shown that 

| | | | | | .2Var u a aT 2
2
4=8 B

So now, looking at || | | ,U aT 2
2

|| | | | | | | ,E LU a aT
2
2

2
2=8 B

and, since the different rows of UT  are independent, hence 
variance adds up 

|| | | | | | | .L2Var U a aT
2
2

2
4=8 B

So || | |U aT 2
2  has mean2/variance (‘SNR’) of ( / ) .L 2

Turning to || | |x 2
2u = || | | | | | | | | | | ,U a V b W cT T T

2
2

2
2

2
2  it can be 

shown that it has mean 

|| | | | | | | | | | | | | | | ,E LMNx a b c2
2

2
2

2
2

2
2=u8 B

and mean2/variance (‘SNR’) 

|| | |
|| | |

( ) ( ) ( )
.

E
L L M M N N L M N

L M N
2 2 2Var x

x
2
2

2
2 2

2 2 2 2 2 2

2 2 2
=

+ + + -u

u^ h
6
6

@
@

Assuming without loss of generality that ,L M N# #  this SNR 
is of order( / ) .L 2  What this means is that, for moderate , ,L M N
and beyond, the Frobenious norm of a compressed rank-one 
tensor component (=  Euclidean norm of the corresponding 
vectorized representation) is approximately proportional to 
the Frobenious norm of the uncompressed rank-one tensor 
component of the original tensor. In other words: compression 
approximately preserves component ordering. This is import-
ant because it implies that low-rank least-squares approxima-
tion of the compressed tensor approximately corresponds to 
low-rank least-squares approximation of the big tensor. The 
result also suggests that it may be possible to match the com-
ponent permutations across replicas simply by sorting compo-
nent energies. These are ignored in the permutation-matching 
procedure discussed in the main text, due to the normaliza-
tion needed to account for the scaling ambiguity. Including 
energy in the matching process will enhance robustness to 
noise. It seems intriguing to try rank (principal component) 
deflation in this context, but we will pursue this elsewhere 
due to space limitations in the article.
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H
igher-order tensors and their decompositions are 
abundantly present in domains such as signal pro-
cessing (e.g., higher-order statistics [1] and sensor 
array processing [2]), scientific computing (e.g., 
discretized multivariate functions [3]–[6]), and 

quantum information theory (e.g., representation of quantum 

many-body states [7]). In many applications, the possibly huge 
tensors can be approximated well by compact multilinear mod-
els or decompositions. Tensor decompositions are more versa-
tile tools than the linear models resulting from traditional 
matrix approaches. Compared to matrices, tensors have at least 
one extra dimension. The number of elements in a tensor 
increases exponentially with the number of dimensions, and so 
do the computational and memory requirements. The exponen-
tial dependency (and the problems that are caused by it) is 

[Tensor-based scientific computing in big data analysis]

©
 IS

TO
C

K
P

H
O

TO
.C

O
M

/T
A

2Y
O

4N
O

R
I

[Nico Vervliet, Otto Debals, Laurent Sorber, and Lieven De Lathauwer]

Breaking the Curse 
of Dimensionality 

Using Decompositions 
of Incomplete Tensors

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [72] SEPTEMBER 2014

called the curse of dimensionality. The curse limits the order of 
the tensors that can be handled. Even for a modest order, tensor 
problems are often large scale. Large tensors can be handled, 
and the curse can be alleviated or even removed by using a 
decomposition that represents the tensor instead of using the 
tensor itself. However, most decomposition algorithms require 
full tensors, which renders these algorithms infeasible for many 
data sets. If a tensor can be represented by a decomposition, this 
hypothesized structure can be exploited by using compressed 
sensing (CS) methods working on incomplete tensors, i.e., ten-
sors with only a few known elements. 

In domains such as scientific computing and quantum infor-
mation theory, tensor decompositions such as the Tucker 
decomposition and tensor trains (TTs) have been successfully 
applied to represent large tensors. In the latter case, the tensor 
can contain more elements than the number of atoms in the 
universe [8] [estimated at ( )] .O 1082  Algorithms to compute 
these decompositions using only a few mode-n  vectors (fibers) of 
the tensors have been developed to cope with the curse of dimen-
sionality. In this tutorial, we show, on the one hand, how decom-
positions already known in signal processing [e.g., the canonical 
polyadic decomposition (CPD) and the Tucker decomposition] can be 
used for large and incomplete tensors and, on the other hand, how 
existing decompositions and techniques from scientific computing 
can be used in a signal processing context. We conclude with a 
convincing proof-of-concept case study from materials sciences, 
to our knowledge the first-known example of breaking the curse 
of dimensionality in data analysis. 

NOTATION AND PRELIMINARIES
A general Nth-order tensor of size I I IN1 2# # #g  is denoted by 
a calligraphic letter as A C I I IN1 2! # # #g  and is a multidimensional 
array of numerical values ( , , , ) .Aa i i ii i i N1 2N1 2 f=g  Tensors can 
be seen as a higher-order generalization of vectors (denoted by a 
bold, lowercase letter, e.g., )a  and matrices (denoted by a bold, 
uppercase letter, e.g., ) .A  In the same way matrices have rows and 
columns, tensors have mode-n  vectors, which are constructed by 
fixing all but one index, e.g., ( , , , : ,A i ia n1 1f= - , , ) .i in N1 f+

The mode-1 vectors are the columns of the tensor, and the mode-2 
vectors are the rows of the tensor. More generally, an nth-order 
slice is constructed by fixing all but n  indices. Tensors often need 
to be reshaped. An example is the mode-n  matrix unfolding of a 
tensor ,A  which arranges the mode-n  vectors in a certain order 
as the columns of a matrix A( )n  [9], [10]. 

A number of products have to be defined when working 
with tensors. The outer product of two tensors A C I I IN1 2! # # #g

and B C J J JM1 2! # # #g  is given as 

( )A B i i i j j jN M1 2 1 27 =g g .a bi i i j j jN M1 2 1 2g g

The mode-n  tensor–matrix product between a tensor 
A C I I IN1 2! # # #g  and a matrix B C J In! #  is defined as 

.ji( )A a bB i i ji i i i ii

I
n 1

n
n n N N n

n
1 1 1 1 2=g g g=- + /

The Hadamard product A B*  for ,A B C I I IN1 2! # # #g  is the 
element-wise product. Finally, the Frobenius norm of a tensor 
A  is denoted by A  [9], [10]. 

TENSOR DECOMPOSITIONS
Most tensors of practical interest in applications are generated by 
some sort of process, such as a partial differential equation, a sig-
nal measured on a multidimensional grid, or the interactions 
between atoms. The resulting structure can be exploited by using 
decompositions, which approximate the tensor using only a small 
number of parameters. By using tensor decompositions instead of 
full tensors, the curse of dimensionality can be alleviated or even 
removed. We look into three decompositions in this tutorial: the 
CPD, the Tucker decomposition, and the TT decomposition. We 
conclude with a more general concept from scientific computing 
and quantum information theory called tensor networks. For 
more theory and applications, please see the “References” section, 
especially [4]–[6] and [9]–[11]. 

CANONICAL POLYADIC DECOMPOSITION
In a polyadic decomposition (PD), a tensor T  is written as a 
sum of R  rank-1 tensors (see Figure 1), each of which can be 
written as the outer product of N  factor vectors :a( )

r
n

, , , .T a a a A A A( ) ( ) ( ) ( ) ( )( )
r

r

R

r r
N N

1

2 1 21
7 7 7g f_=

=

" ,/ (1)

The latter notation is a shorthand for the PD, and the factor vec-
tors a( )

r
n  are the columns of the factor matrices A( )n  [9]. The PD is 

called canonical (CPD) when R  is the minimum number of 
rank-1 terms needed for (1) to be exact. In this case, R  is the CP 
rank of the tensor. Ignoring the trivial indeterminacies due to scal-
ing and ordering of the rank-1 terms, the CPD is unique under 
mild conditions [12]. The decomposition has many names, such as 
the parallel factor model (PARAFAC, chemometrics) and the 
canonical decomposition (CANDECOMP, psychometrics) or 
R-term representation (scientific computing) [4], [9]. 

The number of free parameters in this decomposition is only 
IR N 1Nn

N

1
- +

=
`` j j/  (because of a scaling indeterminacy in 

the decomposition), which is ( ),O N I R  assuming ,I In =

, , .n N1 f=  More importantly, it is linear in the number of 
dimensions .N  This means the curse of dimensionality can be 
broken by using a CPD instead of a full tensor if the tensor admits 
a good CPD [13]. In many practical cases in signal processing, R
is small, and .R I%  In cases where the rank R  cannot be derived 
from the problem definition, finding the rank is a hard problem. 

[FIG1] A PD of a third-order tensor T  takes the form of a sum of 
R  rank-1 tensors. If R  is the minimum number for the equality 
to hold, the decomposition is called canonical, and R  is the rank 
of the tensor.

c1 cR

bR

aRa1

b1
+ . . . +=
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In practice, many CPDs will be fitted to the data until a suffi-
ciently small approximation error is attained [13]. However, there 
is no guarantee that this process yields the CP rank ,R  as the best 
rank-R  approximation may not exist. This is because the set of 
rank-R  tensors is not closed, which means a sequence of rank-Rl
tensors with R R1l  can converge to a rank- R  tensor, while two 
or more terms grow without bounds. This problem is referred to 
as degeneracy [9], [14], [15]. By imposing constraints such as 
non-negativity or orthogonality on the factor matrices, degener-
acy can be avoided [10], [14], [16].

TUCKER DECOMPOSITION AND LOW 
MULTILINEAR RANK APPROXIMATION
The Tucker decomposition of a tensor T  is given as a multilinear 
transformation (see Figure 2) of a typically small core tensor 
G CR R RN1 2! # # #g  by factor matrices ,A C( )n I Rn n! # , , :n N1 f=

; , , , ,T G GA A A A A A( ) ( ) ( ) ( ) ( ) ( )N N
N

1 2 1 2
1 2 g f_= " , (2)

where the latter is a shorthand notation [9]. The N -tuple 
( , , , )R R RN1 2 f  for which the core size is minimal is called the 
multilinear rank. R1  is the dimension of the column space, R2  is 
the dimension of the row space, and, more generally, Rn  is the 
dimension of the space spanned by the mode-n  vectors [9]. In gen-
eral, the Tucker decomposition (2) is not unique, but the subspaces 
spanned by the vectors in the factor matrices are, which is useful in 
certain applications [9], [10]. In its original definition, the Tucker 
decomposition imposed orthogonality and ordering constraints on 
the factor matrices and the core tensor. In this definition, the Tucker 
decomposition can be interpreted as a higher-order generalization 
of the singular value decomposition (SVD) and can be obtained by 
reliable algorithms from numerical linear algebra (in particular, 
algorithms for computing the SVD). In this context, the names 
multilinear SVD and higher-order SVD are also used [17]. 

The number of parameters in the Tucker decomposition is 
( )O N I R RN+  when we take I In =  and ,R Rn = , , .n N1 f=

This means the number of parameters in a Tucker decomposition 
still depends exponentially on the number of dimensions .N  The 
curse of dimensionality is alleviated, however, as typically .R I%
More generally, when a tensor is approximated by (2) where the 
size of the core tensor is chosen by the user, this decomposition is 
called a low multilinear rank approximation (LMLRA). As in PCA, 
a Tucker decomposition can be compressed or truncated by omit-
ting small multilinear singular values [9], [10]. This reduction in 
R  is beneficial, given the exponential factor ( )O RN  in the num-
ber of parameters, as the total number of parameters decreases 
exponentially. Note that a truncated Tucker decomposition is just 
one, not necessarily optimal, way to obtain an LMLRA [17]. 

TENSOR TRAINS
TTs are a concept from scientific computing and from quantum 
information theory, where they are known as matrix product 
states [3], [5]–[7]. Each element in a tensor T  can be written as 

,t a a a
, , ,

( ) ( )( )
i i i i r

r r r
r i r r i

N21
1 1

g=g

f
N

N

N N1 2 1

1 2 1

2 2 1

-

-
/

with , , ,r R1n nf= , , .n N1 1f= -  The matrices A C( ) I R1 1 1! #

and A C( )N R IN N1! #-  are the “head” and “tail” of the train; the core 
tensors ,A C( )n R I Rn n n1! # #- , , ,n N2 1f= -  are the carriages, as 
can be seen in Figure 3. The auxiliary indices , , ,nR 1n f= N 1-
are called the compression ranks or the TT ranks [3]. It can be 
proven that the compression ranks are bounded by the CP rank of a 
tensor [18].

A TT combines the good properties of the CPD and the 
Tucker decomposition. The number of parameters in a TT is 

( ( ) ),O I R N I R2 2 2+ -  assuming ,I In = ,R Rn = , , ,n N1 f=

which is linear in the number of dimensions, similar to a CPD 
[3], [6]. This means a TT is suitable for high-dimensional prob-
lems, as using it removes the curse of dimensionality. As for the 
Tucker decomposition, numerically reliable algorithms based 
on the SVD can be used to compute the decomposition [3], [17].

[FIG2] The Tucker decomposition of a third-order tensor T
involves a multilinear transformation of a core tensor G  by 
factor matrices ,A( )n , , .n N1 f=

= A(1)
A(2)

A(3)

[FIG3] A fourth-order tensor T  can be written as a TT by 
linking a matrix ;A( )1  two tensors, A( )2  and A( )3  (the carriages); 
and a matrix .A( )4

A1

A42
3

r3

r1
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[FIG4] Different types of tensor networks: (a) a vector, 
a matrix, and their matrix–vector product (a contraction); 
(b) a Tucker decomposition; (c) a TT decomposition; and 
(d) an HT decomposition.
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TENSOR NETWORKS
The TT decomposition represents a higher-order tensor as a set of 
linked (lower-order) tensors and matrices, and it is an example of a 
linear tensor network. A more general tensor network is a set of 
interconnected tensors. This can be visualized using tensor net-
work diagrams (see Figure 4) [4], [7]. Each vector, matrix, or tensor 
is represented as a dot. The order of each tensor is determined by 
the number of edges connected to it. An interconnection between 
two dots represents a contraction, which is the summation of the 
products over a common index. Tensor network diagrams are an 
intuitive and visual way to efficiently represent decompositions of 
higher-order tensors. An example is the hierarchical Tucker (HT) 
decomposition (see Figure 4), which is another important decom-
position used in scientific computing [4]–[6]. More complicated 
tensor networks can also contain cycles, e.g., tensor chains and 
projected entangled-pair states from quantum physics [5], [7]. 

COMPUTING DECOMPOSITIONS OF LARGE, 
INCOMPLETE TENSORS
To compute tensor decompositions, most algorithms require a full 
tensor and are therefore not an option for large and high-dimen-
sional data sets. The knowledge that the data are structured and 
can be represented by a small number of parameters can be 
exploited by sampling the tensor in only a few elements. Then, the 
decomposition is calculated using an incomplete tensor. There are 
two important situations in which incomplete data sets are used. In 
the first case, some elements are unknown, e.g., because of a bro-
ken sensor [19], or unreliable, e.g., because of Rayleigh scattering 
[15], and the matrix or tensor needs to be completed [20]. In the 
second case, the cost of acquiring a full tensor is too high in terms 
of money, time, or storage requirements. By sampling the tensor in 
only a few elements, this cost can be reduced. 

CS methods are used to reconstruct signals using only a few 
measurements taken by a linear projection of the original data 
set [21]. Many extensions of these methods to tensors have been 
developed [10], [22], and new methods tailored to tensors have 
emerged, e.g., [23] and [24]. In this tutorial, we focus on a class 
of CS methods where decompositions of very large tensors are 
computed using only a small number of known elements. In 
particular, we first discuss methods to compute a CPD from a 
randomly sampled incomplete tensor. Then, we discuss how 
matrices can be approximated by extracting only a few rows and 
columns. This idea can be extended to tensors, and we conclude 
by elaborating on two mode-n  vector sampling methods: one 
for the TT decomposition and the other for the LMLRA. 

OPTIMIZATION-BASED ALGORITHMS
Most algorithms to compute a CPD use optimization to find the 
factor matrices :A( )n

, , , ,Tmin 2
1 A A A

, , ,

( ) ( ) ( )N1 2
2

A A A( ) ( ) ( )N1 2
f-

f
$ . (3)

which is a least-squares problem in each factor matrix separately. 
The popular alternating least-squares (ALS) method alternately 
solves a least-squares problem for one factor matrix while fixing the 

others. This method is easy to implement and works well in many 
cases but has a linear convergence rate and tends to be slow when 
the factor vectors become more aligned. It is even possible that the 
algorithm does not converge at all [25], [26]. CP-OPT uses a non-
linear conjugate gradients method to solve (3) [26]. By using first-
order information, the method also achieves linear convergence. 
Recently, some new methods based on nonlinear least-squares 
(NLS) algorithms have been developed. These methods exploit the 
structure in the objective function’s approximate Hessian. Because 
of the NLS framework, the second-order convergence can be 
attained under certain circumstances [25], [27]. The latter two 
methods are both guaranteed to converge to a stationary point, 
which can be a local optimum, however. 

Although efficient methods exist, the complexity of all meth-
ods working on full tensors is at least ( ),O IN  which becomes 
infeasible for large, high-dimensional tensors. To handle miss-
ing data, (3) can be adapted to 

, , , ,W Tmin 2
1 A A A

, , ,

( ) ( ) ( )N1 2
2

A A A( ) ( ) ( )N1 2
) f-

f
` j$ .

where { , }W 0 1 I I IN1 2! # # #g  is a binary observation tensor with a 
1 for every known element [19]. The popular ALS method has 
been extended by using an expectation maximization (EM) frame-
work to impute each missing value with a value from the current 
CP model [15]. Because of the imputation, the ALS-EM method 
still suffers from the curse of dimensionality. The CP-WOPT 
(weighted CP-OPT) method is an extension of the CP-OPT method 
and uses only the known elements, thereby relaxing the curse of 
dimensionality [19]. Adaptions of the Jacobian and the Gramian of 
the Jacobian for incomplete tensors can be used in an inexact NLS 
framework. Second-order convergence can again be attained 
under certain circumstances, while the computational complexity 
is still linear in the number of known elements [28]. 

The distribution of the known elements in the tensor can be 
random, although performance may decrease in case of missing 
mode-n  vectors or slices [19], [28]. The elements should be 
known a priori, contrary to the mode-n  vector based algo-
rithms. Constraints such as nonnegativity or a Vandermonde 
structure can easily be added to the factor matrices, which is 
useful for many signal processing applications [16].

PSEUDOSKELETON APPROXIMATION FOR MATRICES
Instead of randomly sampling a tensor, a more drastic approach 
can be taken by sampling only mode-n  vectors and only using 
these mode-n  vectors in the decomposition. These techniques 
originate from the pseudoskeleton approximation or the CUR 
decomposition for matrices. These decompositions state that a 
matrix A C I I1 2! #  of rank R  can be approximated using only R
columns and R  rows of this matrix: 

,A CGR= (4)

where C C I R1! #  has R  columns with indices J  of ,A  i.e., 
(: , ),JC A= R CR I2! #  has R  rows with indices I  of ,A  i.e., 
( , :)IR A=  and ,G A 1= -t  where At  contains the intersection of C
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and ,R  i.e., , ) .I J(A A=t  If ( ) ,Rrank A =  then (4) is exact when 
C  has R  linearly independent columns of A  and R  has R  linearly 
independent rows of A  (which implies that At  is nonsingular) [8]. 
Usually, we are interested in the case where ( ) .Rrank A 2  The 
best choice for the submatrix At  (and consequently C  and )R  is, in 
this case, the R R#  submatrix having the largest volume, which is 
given by the modulus of its determinant [29]. 

To determine the optimal submatrix ,At  the determinants 
of all possible submatrices have to be evaluated. This is com-
putationally challenging, and, moreover, all the elements of 
the matrix have to be known. A heuristic called cross approxi-
mation (CA) can be used to calculate a quasi-optimal maximal 
volume submatrix by only looking at a few rows and columns. 
The following general scheme can be used (based on [30]). An 
initial column index set { , , , }J I1 2 2f1  and an initial row 
index set { , , , }I I1 2 1f1  are chosen, and C  is defined as 

(: , ) .JA  Then, the submatrix ( , :)IC C=t t  with (approxi-
mately) the largest volume is calculated, e.g., using a tech-
nique based on full pivoting [30]. Next, the process is repeated 
for the rows, i.e., the subset Jt  resulting in the maximal volume 
submatrix (: , )JR R=t t  in ( , :)IR A=  is calculated. Next, the 
index sets are updated as J J J,= t  and ,I I I,= t  and the 
process is repeated until a stopping criterion is met, e.g., when 
the norm of the residual A CGR-  is small enough. To cal-
culate the norm, only the extracted rows and columns are 
taken into account. To make this more concrete, we give a 
simple method selecting one column and row at a time [31]: 

1) Set ,J 0=Y ,I 0=Y ,j 11 =  and .p 1=
2) Extract the column (: , )jA p  and find the maximal volume 
submatrix in the residual, i.e., the largest element in modu-
lus in the vector a j p  minus the corresponding elements in 
the already known rank-1 terms, and set i p  to its location. 
3) Extract the row ( , :)iA p  and find the maximal volume sub-
matrix in the residual that is not in the previously chosen 
column ,j p  and set j p 1+  to its location. 
4) Set { },J J j p,= { } .I I i p,=

5) If the stopping criterion is not satisfied, set p p 1= +  and 
go to step 2.

For more details, we refer to [8], [30], and [31].

CROSS APPROXIMATION FOR TT
Before we outline a CA-based algorithm for the TT decomposi-
tion, we first present a simplified version of a TT algorithm for 
full tensors based on repeated truncated SVD [8]: 

1) Set R 10 =  and ., ,T I IreshapeM kk

N
1 2

=
=

` j8 B%
2) For , , :n N1 1f= -

a) Calculate the (truncated) SVD: M U VHR=  (with H

being the conjugated transpose). 
b) Set ,, [ , , ]A R I Rreshape U( )n

n n n1= -^ h  and if ,n N 11 -

set ( ,reshapeM VHR= , .IR I kk n

N
n n 1 2+ = +

j8 B%
3) .A V( )N HR=

The truncation step 2a) determines the compression rank .Rn  In a 
scientific-computing context, the compression ranks Rn  are chosen 
such that the decomposition approximates the (noise free) tensor 
with a user-defined accuracy e  [3]. In signal processing, the tensor 

is often perturbed by noise. Therefore, the compression ranks Rn

can be determined by using a procedure estimating the noise level. 
The use of the SVD in 2a) has two disadvantages: all the ele-

ments in the tensor need to be known, and when this tensor is 
large, calculating the SVD is expensive. In [8], a CA-type method is 
suggested: the SVD can be replaced by a pseudoskeleton approxima-
tion as described above by replacing U  with CG  and VHR  with .R
The matrix R  does not require extra calculations, and working with 
R  does not require additional memory as it can be handled impli-
citly by selecting the proper indices. This algorithm requires the 
compression ranks to be known in advance. By using a compres-
sion or rounding algorithm on the resulting TT decomposition, the 
compression rank can be overestimated safely (see, e.g., [3] for a 
compression method based on the truncated SVD). In a signal pro-
cessing context, this rounding algorithm can be adapted to use a 
noise-level estimation procedure instead of using a user-defined 
accuracy .e  For practical implementation details, we refer to [8]. 

The positions of the elements needed by the CA algorithm are 
unknown a priori but are generated based on information in the 
mode-n  vectors that already have been extracted. In a 
scientific-computing context, where the tensor is often given as a 
multivariate function, this is not a problem as sampling an entry is 
evaluating this function. In a signal processing context, this 
means that either the elements are sampled while running the CA 
algorithm, or the full tensor has to be known a priori. This last 
condition can be relaxed, however, by imputing unknown ele-
ments in selected mode-n  vector by an estimate of the value of 
these elements, e.g., the mean value over the mode-n  vector. But 
this only works well if the imputed value effectively is a good esti-
mator of the unknown value. Only ( )O K N R2  columns of length 
R In n1-  are investigated during the CA algorithm, where K  is the 
number of iterations in the CA algorithm and assuming ,R Rn =

, , .n N1 1f= -  If the compression ranks and the number of 
iterations are low, very few elements need to be sampled. 

CROSS APPROXIMATION FOR LMLRA
The CA method for TT essentially only replaced the SVD with a pseu-
doskeleton approximation. In the case of the LMLRA, we look at an-
other generalization of the pseudoskeleton approximation method: 
T  can be approximated by 

,; , ,T G C G C G( )
( )

( )
( )

N
N

1
1 f= @ @t " ,

where C( )n  contains Rmm n!%  mode-n  vectors for , ,n N1 f=

and where the size of the core tensor G  is .R RN1# #g  The 
core tensor is the subtensor of T  containing the intersection of the 
selected mode-n  vectors. More concretely, we define the index sets 

{ , , },I I1( )n
nf1 , , .n N1 f=  Each column of C( )n  contains a 

selected mode-n  vector defined by an index set in ,I( )
m n

m# !  i.e., 

( , , , : , , , )T i i i in n N1 1 1f f- +

with 

( , , , , , ) .Ii i i i ( )
n n N m n

m
1 1 1 #f f ! !- +

C( )n  thus is a matricized ( )R R I R Rn n n N1 1 1# # # # # #g g- +

subtensor of .T  The intersection core tensor then is defined as 
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( , ,G T I( )1 f= ) .I( )N  To determine the index sets ,I( )n  an adap-
tive procedure can be used. Each iteration, the index i( )n  having 
the largest modulus of the residual in the mode-n  vector through 
the pivot is added to .I( )n  The residual is defined as ,E T T= - t

where the matrices ,C( )n , ,n N1 f=  and the core tensor G  are 
defined by the current index sets .I( )n  A simplified version of this 
fiber-sampling tensor decomposition algorithm [32] is given as: 

1) Choose an initial mode-N  vector in T  defined by ,i( )n
1  for 

, ,n N1 1f= -  and set i( )N
1  to the index containing the 

maximal modulus in this fiber. 
2) Set { }I i( ) ( )n n

1=  for , ,n N1 f=  and set the pivot to ( , ,i( )
1
1
f

) .i( )N
1

3) For , , :r R2 f=

a) For each mode , , :n N1 f=

i) Select the index i( )
r
n  of the maximal modulus of the 

mode-n  vector e  going through the pivot in the 
residual tensor ,E  i.e., in ( , , , : ,E i ie ( ) ( )

r r
n1 1f= -

, , );i i( ) ( )
r
n

r
N

1
1

1f-
+

-  unless for r 2=  and ,n 1=  then we 
select the maximal modulus in T  [32]. 
ii) Set { }I I i( ) ( ) ( )n n

r
n,=  and select ( , , , , ,i i i( ) ( ) ( )

r r
n

r
n1

1
1

f f-
+

)i( )
r
N

1-  as new pivot.
Each matrix C( )n  contains | | ( )I O R( )

m n
m N 1# =!

-  columns. The 
total number of mode-n  vectors of length In  that has to be 
extracted in this algorithm is then ( ) .O N RN 1-  Similarly to the 
pseudoskeleton approximation, an exact decomposition based on 
fiber sampling can be attained if T  has an exact LMLRA structure 
and multilinear rank ( , , ),R RN1 f  i.e., .; , ,T G A A( ) ( )N1 f= " ,  In 
this case, it can be proven that only Rn  mode- n  fibers per mode 
n  and Rnn

N

1=%  core elements have to be extracted [32]. In both 
cases, the computational complexity still has an exponential 
dependence on the number of dimensions [32]. Even with CA, the 
representation of a tensor as an LMLRA is limited by the curse of 
dimensionality to low-dimensional problems. We can make the 
same remarks for this method as for the TT decomposition con-
cerning the fact that the indices of the required elements are only 
known at runtime. A variation of this algorithm determines the 
largest element in slices instead of in mode-n  vectors [31]. An 
alternative to the pseudoskeleton approach is to sample mode-n
vectors after a fast estimation of probability densities [33]. 

CASE STUDIES
To illustrate the use of the decompositions and incomplete ten-
sors, two case studies are reported. The first case study shows 

how the concepts can be applied in a signal processing context. 
To compare the results with full-tensor methods, moderate-size 
tensors are used. The second case study gives an example from 
materials sciences, where a huge tensor is decomposed while 
using only a very small fraction of the elements. 

MULTIDIMENSIONAL HARMONIC RETRIEVAL
Multidimensional harmonic retrieval problems appear frequently 
in signal processing, e.g., in radar applications and channel sound-
ing [34]. To model a multipath wireless channel, e.g., a broadband 
wireless channel sounder can be used to measure a (time-varying) 
channel in the time, frequency, and spatial domains. The meas-
urement data can then be transformed into a tensor: 

( ) ,y s k ne ( )
i i i k r

r

R
i

d

D

i i i k
1

1

1

j ( )
d r

d

1 = +g g
n

=

-

=
D D2 1 2%/ (5)

where 1j2 =-  and ( )s kr  is the kth  complex symbol carried by 
the rth  multidimensional harmonic. The parameters ( )

r
dn  are, e.g., 

the direction of departure, the direction of arrival, the Doppler shift, 
and the delay. (For more information, we refer the reader to [34].) 
The noise ni i i kg D1 2  is modeled as zero-mean independent and iden-
tically distributed additive Gaussian noise. We can rewrite the 
model as a CPD 

, , , , ,Y A A A S N( ) ( ) ( )D1 2 f= +$ . (6)

with the Vandermonde structured factor matrices ,A C( )d I Rd! #

,a e,
( ) ( )
i r
d i 1j ( )

r
d

= n-
d

d  and S CK R! #  with ( ) .s s kkr r=  In the noise-
less case, the CP rank of this tensor is equal to .R  The multilin-
ear ranks and the TT ranks are, at most, .R  The uniqueness 
properties of (6) are given in [35]. 

To estimate the parameters ,( )
r
dn  a subspace-based approach is 

used. First, Y  is decomposed using a CPD, an LMLRA or a TT. 
Then, in the case of the LMLRA and TT, we compute the subspaces 
B( )d  spanned by the mode-d  vectors, , , .d D1 f=  (The parame-
ters can be estimated directly from the factor vectors in case of 
CPD.) Finally, we use a standard total-least-squares method to esti-
mate the parameters ( )dnt  from these subspaces (see [36]). Here, we 
focus on the first two steps, i.e., the approximation of the full or 
incomplete tensor Y  by a CPD, an LMLRA, or a TT and the compu-
tation of the subspaces. 

In the case of a CPD, we use the cpd _ nls method from 
Tensorlab [25], [37] to get an estimate of the factor matrices 

,A( )dt , , .d D1 1f= +  This method works on both full and 
incomplete tensors. Here, we can estimate the parameters 
directly as the generators of the noisy Vandermonde vectors 

,a( )
r
d , , ,d D1 f=  so the computation of the subspaces is not 

necessary. The number of sampled entries Nsamples  can be cho-
sen by the user (see Table 1). 

In the case of an LMLRA ,; , ,G A A( ) ( )D1 1f +t t t$ .  we first compute 
the decomposition using lmlra from Tensorlab [37], which uses 
an NLS-based optimization method on the full tensor, and using 
lmlra _ aca, which implements a fiber-sampling adaptive 
cross-approximation technique. In the latter case, the choice of 
the core size R RD1 1# #g +  controls the number of touched 
elements, i.e., the number of elements from the tensor that are 

[TABLE 1] THE NUMBER OF PARAMETERS AND TOUCHED
ELEMENTS FOR THE THREE DECOMPOSITIONS OF INCOM-
PLETE TENSORS. THE NUMBER OF TOUCHED ELEMENTS
CONCERN THE PRESENTED ALGORITHMIC VARIANTS. IN
THE CASE OF A CPD AND TT, THE CURSE OF DIMENSIONALITY 
CAN BE OVERCOME.

NUMBER OF
PARAMETERS 

NUMBER OF TOUCHED 
ELEMENTS 

CPD ( )O NIR Nsamples

LMLRA ( )O NIR RN+ ( )O NIRN 1-

TT ( ( ) )O IR N IR2 2 2+ - ( )O KNR I2 2
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used during the algorithm (see Table 1). Recall that R  is the 
number of multidimensional harmonics in (5). The subspaces 
B( )dt  are now computed using the first R  left singular vectors of 
the unfolded product ( .)G A( )

( )
d

dd
t t  (It can be verified that these 

are the dominant mode-d  vectors of ; , ,G A A( ) ( )D1 1f +t t t" , if the 
factor matrices are normalized to have orthonormal columns.) 

Finally, in the case of TT, we compute the TT cores ,A( )1t ,A( )dt

A( )D 1+t  using tt _ full, which uses the truncated SVD of the full 
tensor (cf. supra), and using dmrg _ cross, which uses cross 
approximation and touches only a limited number of mode-n  vec-
tors (cf. supra). Both methods are available in the TT-Toolbox 
(http://spring.inm.ras.ru/osel/). The number of touched elements is 
controlled by the compression ranks Rn  and the number of itera-
tions K  (see Table 1). The estimates for the subspaces B( )1t  and 
B( )dt  can be computed using the first R  left singular vectors of A( )1t

and of the mode-2 unfolding ,A( )
( )d
2
t , , ,d D2 f=  respectively. 

With two experiments, we show how the number of touched ele-
ments and noise influence the quality of the retrieved parameters 
using the three decompositions. We create an 8 8 8 8 20# # # #

tensor Y  with rank R 4=  according to (6). The D 4=  parameter 
vectors are chosen as follows: [ . , . , . , . ],1 0 0 5 0 1 0 8( )1n = - -

[ . , . , . , . ],0 5 1 0 0 9 1 0( ) ( )2 3n n= - - = [ . , . , . , . ],0 2 0 6 1 0 0 4-  a n d 
[ . , . , . , . ] .0 8 0 4 0 3 0 1( )4n = - -  Each of the R 4=  uncorrelated 

binary phase-shift keying sources takes K 20=  values. To evaluate the 
quality of the estimates, the root-mean-square (RMS) error is used: 

.E RD
1 ( ) ( )

r
d

r
d

d

D

r

R
2

11
RMS n n= -

==

t^ h//

For each experiment, the median value more than 100 Monte 
Carlo runs is reported. 

In the first experiment, the signal-to-noise ratio (SNR) is 
fixed to 20 dB, while the fraction of missing entries varies [see 
Figure 5(a)]. When there are no missing entries, we use the 
corresponding algorithms for full tensors. All methods then 
attain a similar accuracy. When the fraction of missing entries 
is increased, the error ERMS  also increases, except for TT, 
where the error remains almost constant but is higher than 
for CPD and LMLRA. An increase in the error is expected, as 
there are fewer noisy samples from which to estimate the 
parameters. For 99% missing entries, the CPD algorithm no 
longer finds a solution as the number of known entries (820) 
is close to the number of free parameters (204). The CPD-
based method has the best performance. (Y  has a CPD struc-
ture from which to start.) 

In the second experiment, the number of known elements is 
kept between 8% and 12% (remember that it is difficult to control 
the accesses in an adaptive algorithm), and the SNR is varied [see 
Figure 5(b)]. In case of the full-tensor methods, ERMS  is almost 
equal for all decompositions, except for when there is low SNR. In 
the case of the incomplete methods, the CPD-based method per-
forms better, especially in the low-SNR cases. 

MATERIAL SCIENCES EXAMPLE
When designing new materials, the physical properties of these 
new materials are key parameters. In the case of alloys, the 

concentrations of the different constituent materials can be 
used to model the physical properties. In this particular exam-
ple, we model the melting point of an alloy, using a data set 
kindly provided by InsPyro NV, Belgium. The data set contains a 
small set of random measurements of the melting point in func-
tion of the concentrations of ten different constituent materials. 
This data set can be represented as a ninth-order tensor .T  (One 
concentration is superfluous as concentrations must add up to 
100%.) The curse of dimensionality is an important problem for 
this kind of data, as the number of elements in this tensor is 
approximately ,100 10N 18=  with N 1+  being the number of 
constituent materials. Because measuring and computing all 
these elements is infeasible, only 130,000 elements are sampled. 

This case study illustrates how a tensor decomposition algo-
rithm for incomplete tensors can overcome the curse of dimen-
sionality. We use the cpdi _ nls algorithm [28] because it is 
suitable for a data set containing only a small fraction of randomly 
sampled elements. In particular, we approximate the training ten-
sor ,Ttr  which contains 70% of the data, by a CPD 

, ,T A A( ) ( )1 9f=t " , and repeat this for several ranks .R  To evaluate 
the quality of a rank-R  model, the validation error Eval  of the 
model is computed using an independent validation tensor Tval

containing the remaining 30% of the data. This error is defined as 
the weighted relative norm of the error between Tval  and the model 

., ,
W T

W TE A A( ) ( )1 9

val
val val

val val f
=

-*
*

^ h" ,

The binary observation tensor Wval  has only ones at the posi-
tions of known validation elements. We also report the 99% 
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[FIG5] The influence of (a) the number of known elements 
and (b) the SNR on ERMS  for the CPD ( ), the LMLRA ( ), 
and TT ( ). The dashed lines give the results for the full-tensor 
methods.
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quantile of the relative residuals between known elements in 
the validation set and the model as .Equant  The timing experi-
ments are performed on a relatively recent laptop (Intel core i7, 
quadcore at 2.7 GHz, 8-GB RAM, and MATLAB 2013b). 

To compute a CPD from the training tensor, the cpdi _ nls
method [28] is used. This method is an extension of the cpd _
nls method from Tensorlab [25], [37] for incomplete tensors. 
When choosing the initial factor matrices, we have to take the 
high-order N  into account: from (1), we see that every element in 
Tt  is the sum of R  products of N 9=  variables. This means that, 
if most elements in the factor matrices are close to zero, .T 0.
Here, we have drawn the elements in the initial factor matrices 

from a uniform distribution in ( , ),0 1  and we have scaled each fac-
tor vector ,a( )

r
n , ,n N1 f=  by ,r

N m  where rm  are the minimiz-
ers of ( ) .W T a a( ) ( )

rr

R
r r

N
1

1
tr tr 7 7gm-

=* /  Finally, we use a 
best-out-of-five strategy, which means that we choose five differ-
ent optimally scaled initial solutions and keep the best result in 
terms of error on the training tensor .Etr  The result is shown in 
Figure 6. Both Etr  and Equant  keep decreasing as R  increases, 
which indicates that outliers are also modeled when more rank-1 
terms are added to the model. Starting from ,R 5= Eval  and Etr

begin to diverge, which can indicate that the data are overmodeled 
for ,R 52  although Equant  keeps decreasing. For the remainder 
of this case study, we assume R 5=  to be a good choice as rank: 
the relative error Equant  is smaller than .1 81 10· 3-  for 99% of the 
validation points, while it only took 3 min to compute the model. 
(The time rises linearly in ,R  as can be seen in Figure 6.) 

To summarize: by using 105 elements we have reduced a data 
set containing 1018 elements to a model having ,N I R 4 500.

parameters. We can now go one step further by looking at the 
values in the different factor vectors (see Figure 7). We see that 
the factor vectors have a smooth, low-degree polynomial-like 
behavior, a little perturbed by noise. By fitting smooth spline 
functions to each factor vector, a continuous model for the 
physical parameter can be created: 

( , , ) ( ),T f c c a c( )
N r

n

n

N

r

R

n1
11

f. =
==

%/

where a( )
r
n  are continuous functions in the concentrations ,cn

, , .n N1 f=  This has many advantages: the high-dimensional 
model can be visualized more easily, and all elements having a 
certain melting point can be calculated (see, e.g., Figure 8). 
Furthermore, the model can be used in further steps in the 
design of the material. 

CONCLUSIONS
Tensor decompositions open up new possibilities in analysis and 
computation, as they can alleviate or even break the curse of 
dimensionality that occurs when working with high-dimensional 
tensors. Decompositions such as the TT decomposition are often 
used in fields such as scientific computing and quantum informa-
tion theory. These decompositions can easily be ported to a signal 
processing context. We have addressed some problems when 
computing decompositions of full tensors. By exploiting the 
structure of a tensor, CS methods can be used to compute these 
decompositions using incomplete tensors. We have illustrated 
this with random sampling techniques for the CPD, and with 
mode-n  vector sampling techniques originating from scientific 
computing for the LMLRA and the TT decomposition. 
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[FIG6] Errors on the training Etr  ( ) and validation Eval  ( )
set and the 99% quantile error Equant  ( ) for different CPDs. 
The computation time for each model is indicated by ( ) on 
the right y-axis.

[FIG7] The R 5=  factor vectors for the ninth mode a( )
r
9  are 

shown as dots. They clearly follow a smooth function.

[FIG8] A visualization of the continuous surface of melting 
points when all but two concentrations are fixed. The blue line 
links all points having a melting temperature of %, .1 400 C The 
model is only valid in the colored region.
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nalysis and processing of very large data sets, or big 
data, poses a significant challenge. Massive data sets 

are collected and studied in numerous domains, 
from engineering sciences to social networks, 
biomolecular research, commerce, and security. 

Extracting valuable information from big data requires innova-
tive approaches that efficiently process large amounts of data as 
well as handle and, moreover, utilize their structure. This 

article discusses a paradigm for large-scale data analysis based 
on the discrete signal processing (DSP) on graphs (DSPG). 
DSPG extends signal processing concepts and methodologies 
from the classical signal processing theory to data indexed by 
general graphs. Big data analysis presents several challenges to 
DSPG, in particular, in filtering and frequency analysis of very 
large data sets. We review fundamental concepts of DSPG,
including graph signals and graph filters, graph Fourier trans-
form, graph frequency, and spectrum ordering, and compare 
them with their counterparts from the classical signal process-
ing theory. We then consider product graphs as a graph model 
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that helps extend the application of DSPG methods to large data 
sets through efficient implementation based on parallelization 
and vectorization. We relate the presented framework to exist-
ing methods for large-scale data processing and illustrate it with 
an application to data compression. 

INTRODUCTION
Data analysts in scientific, government, industrial, and commer-
cial domains face the challenge of coping with rapidly growing 
volumes of data that are collected in numerous applications. 
Examples include biochemical and genetics research, fundamen-
tal physical experiments and astronomical observations, social 
networks, consumer behavior studies, and many others. In these 
applications, large amounts of raw data can be used for decision 
making and action planning, but their volume and increasingly 
complex structure limit the applicability of many well-known 
approaches widely used with small data sets, such as principal 
component analysis (PCA), singular value decomposition (SVD), 
spectral analysis, and others. This problem—the big data problem 
[1]—requires new paradigms, techniques, and algorithms. 

Several approaches have been proposed for representation and 
processing of large data sets with complex structure. Multidimen-
sional data, described by multiple parameters, can be expressed 
and analyzed using multiway arrays [2]–[4]. Multiway arrays have 
been used in biomedical signal processing [5], [6], telecommuni-
cations and sensor array processing [7]–[9], and other domains. 

Low-dimensional representations of high-dimensional data 
have been extensively studied in [10]–[13]. In these approaches, 
data sets are viewed as graphs in high-dimensional spaces and 
data are projected on low-dimensional subspaces generated by 
small subsets of the graph Laplacian eigenbasis. 

Signal processing on graphs extends classical signal process-
ing theory to general graphs. Some techniques, such as in [14]–
[16], are motivated in part by the works on graph Laplacian-based 
low-dimensional data representations. DSPG [17], [18] builds 
upon the algebraic signal processing theory [19], [20]. 

This article considers the use of DSPG as a methodology for 
big data analysis. We discuss how, for appropriate graph models, 
fundamental signal processing techniques, such as filtering and 
frequency analysis, can be implemented efficiently for large data 
sizes. The discussed framework addresses some of the key chal-
lenges of big data through arithmetic cost reduction of associated 
algorithms and use of parallel and distributed computations. The 
presented methodology introduces elements of high-performance 
computing to DSPG and offers a structured approach to the devel-
opment of data analysis tools for large data volumes. 

SIGNAL PROCESSING ON GRAPHS
We begin by reviewing notation and main concepts of DSPG. For 
a detailed introduction to the theory, we refer the readers to 
[17] and [18]. Definitions and constructs presented here apply 
to general graphs. In the special case of undirected graphs with 
nonnegative real edge weights, similar definitions can be for-
mulated using the graph Laplacian matrix, as discussed in [14]–
[16] and references therein. 

GRAPH SIGNALS
DSPG studies the analysis and processing of data sets in which 
data elements are related by dependency, similarity, physical 
proximity, or other properties. This relation is expressed though 
a graph ( , ),G AV=  where { , , }v vV N0 1f= -  is the set of N
nodes and A  is the weighted adjacency matrix of the graph. Each 
data element corresponds to a node vn  (we also say the data ele-
ment is indexed by ) .vn  A nonzero weight A C,n m !  indicates 
the presence of a directed edge from vm to vn that reflects the 
appropriate dependency or similarity relation between the nth
and mth  data elements. The set of neighbors of vn  forms its 
neighborhood denoted as { } .m 0AN ,n n m !=

Given the graph, the data set forms a graph signal, defined 
as a map 

: ,s CV " ,v sn n7

where C  is the set of complex numbers. It is convenient to 
write graph signals as vectors 

[FIG1] Examples of graph signals. Signal values are represented 
with different colors. (a) The periodic time series /cos n2 6r^ h
resides on a directed line graph with six nodes; the edge from the 
last node to the first captures the periodicity of the series. 
(b) Temperature measurements across the United States reside on 
the graph that represents the network of weather sensors. 
(c) Web site topics are encoded as a signal that resides on the 
graph formed by hyperlinks between the Web sites. (d) The 
average numbers of tweets for Twitter users are encoded as a 
signal that resides on the graph representing who follows whom.
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.s s ss CN
T N

0 1 1f != -6 @ (1)

One should view the vector (1) not just as a list, but as a graph 
with each value sn residing at node .vn

Figure 1 shows examples of graph signals. Finite periodic 
time series, studied by finite-time DSP [19], [21], are indexed by 
directed cyclic graphs, such as the graph in Figure 1(a). Each 
node corresponds to a time sample; all edges are directed and 
have the same weight 1, reflecting the causality of time series; 
and the edge from the last to the first node reflects the periodic-
ity assumption. Data collected by sensor networks is another 
example of graph signals: sensor measurements form a graph 
signal indexed by the sensor network graph, such as the graph 
in Figure 1(b). Each graph node is a sensor, and edges connect 
closely located sensors. Graph signals also arise in the World 
Wide Web: for instance, Web site features (topic, view count, rel-
evance) are graph signals indexed by graphs formed by hyper-
link references, such as the graph in Figure 1(c). Each node 
represents a Web site, and directed edges correspond to hyper-
links. Finally, graph signals are collected in social networks, 
where characteristics of individuals (opinions, preferences, 
demographics) form graph signals on social graphs, such as the 
graph in Figure 1(d). Nodes of the social graph represent indi-
viduals, and edges connect people based on their friendship, col-
laboration, or other relations. Edges can be directed (such as 
follower relations on Twitter) or undirected (such as friendship 
on Facebook or collaboration ties in publication databases). 

GRAPH SHIFT
In DSP, a signal shift, implemented as a time delay, is a basic 
nontrivial operation performed on a signal. A delayed finite peri-
odic time series of length N is .ss modn n N1= -u  Using the vector 
notation (1), the shifted signal is written as 

,s ss CsN
T

0 1f= =-u u u6 @ (2)

where C  is the N N#  cyclic shift matrix (only nonzero entries 
are shown) 

.
1

1

1

C
j

=

R

T

S
S
S
S
S

V

X

W
W
W
W
W

(3)

Note that (3) is precisely the adjacency matrix of the periodic 
time series graph in Figure 1(a). 

DSPG extends the concept of shift to general graphs by defin-
ing the graph shift as a local operation that replaces a signal 
value sn at node vn by a linear combination of the values at the 
neighbors of vn  weighted by their edge weights: 

.s sA ,n n m m
m Nn

=
!

u / (4)

It can be interpreted as a first-order interpolation, weighted aver-
aging, or regression on graphs, which is a widely used operation 
in graph regression, distributed consensus, telecommunications, 

Markov processes and other approaches. Using the vector 
notation (1), the graph shift (4) is written as 

.s ss AsN
T

0 1f= =-u u u6 @ (5)

The graph shift (5) naturally generalizes the time shift (2). 
Since in DSPG the graph shift is defined axiomatically, other 

choices for the operation of a graph shift are possible. The 
advantage of the definition (4) is that it leads to a signal process-
ing framework for linear and commutative graph filters. Other 
choices, such as selective averaging over a subset of neighbors 
for each graph vertex, do not lead to linear commutative filters 
and hence to well-defined concepts of frequency, Fourier trans-
form, and others.

GRAPH FILTERS AND z-TRANSFORM
In signal processing, a filter is a system H $^ h that takes a signal 
(1) as an input and outputs a signal 

( ) .s ss H sN
T

0 1f= =-u u u6 @ (6)

Among the most widely used filters are linear shift-invariant (LSI) 
ones. A filter is linear, if for a linear combination of inputs it 
produces the same combination of outputs: ( )s sH 1 2a b+ =

( ) ( ) .s sH H1 2a b+  Filters H1 $^ h and H2 $^ h are commutative, 
or shift-invariant, if the order of their application to a signal does 
not change the output: ( ( )) ( ( )) .s sH H H H1 2 2 1=

The z-transform provides a convenient representation for sig-
nals and filters in DSP. By denoting the time delay (2) as ,z 1-  all 
LSI filters in finite-time DSP are written as polynomials in z 1-

( ) ,h z h zn
n

N
n1

0

1

=-

=

-
-/ (7)

where the coefficients , , ,h h hN0 1 1f -  are called filter taps.
Similarly, finite time signals are written as 

( ) .s z s zn
n

N
n1

0

1

=-

=

-
-/ (8)

The filter output is calculated by multiplying its z-transform (7) 
with the z-transform of the input signal (8) modulo the polyno-
mial ,z 1N --  [19]: 

( )s z s zn
n

N
n1

0

1

=-

=

-
-u u/ ( ) ( ) ( ) .modh z s z z 1N1 1= -- - - (9)

Equivalently, the output signal is given by the product [21] 

( )hs C s=u (10)

of the input signal (1) and the matrix 

( )

.

h h

h
h

h

h

h

h

h
h

C Cn
n

N
n

N

N

N

0

1

0

1

1

1

1

1

1

0

h

j

j

f

f

j

j
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(11)
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Observe that the circulant matrix ( )h C  in (11) is obtained by 
substituting the time shift matrix (3) for z 1-  in the filter 
z-transform (7). In finite-time DSP, this substitution establishes 
a surjective (onto) mapping from the space of LSI filters and the 
space of N N#  circulant matrices. 

DSPG extends the concept of filters to general graphs. Simi-
larly to the extension of the time shift (2) to the graph shift (5), 
filters (11) are generalized to graph filters as polynomials in the 
graph shift [17], and all LSI graph filters have the form 

( ) .h hA A
L

0

1

= ,

,

,

=

-

/ (12)

In analogy with (10), the graph filter output is given by 

( ) .hs A s=u (13)

The output can also be computed using the graph z-transform
that represents graph filters (12) as 

( ) ,h z h z
L

1

0

1

= ,

,

,-

=

-
-/ (14)

and graph signals (1) as polynomials ( ) ( ),s z s b zn nn
N1 1

0
1=- -

=

-/
where ( ),b zn

1- ,n N0 1#  are appropriately constructed, lin-
early independent polynomials of degree smaller than N  (see 
[17] for details). Analogously to (9), the output of the graph 
filter (14) is obtained as the product of z-transforms modulo 
the minimal polynomial ( )m z 1

A
-  of the shift matrix A :

( ) ( )s z s b zn
n

N

n
1

0

1
1=-

=

-
-u u/ ( ) ( ) ( ) .modh z s z m z1 1 1

A= - - - (15)

Recall that the minimal polynomial of A  is the unique monic 
polynomial of the smallest degree that annihilates ,A  i.e., 

( )m 0AA =  [22].
Graph filters have a number of important properties. An 

inverse of a graph filter, if it exists, is also a graph filter that can 
be found by solving a system of at most N linear equations. 
Also, the number of taps in a graph filter is not larger than the 
degree of the minimal polynomial of ,A  which provides an 
upper bound on the complexity of their computation. In particu-
lar, since the graph filter (12) can be factored as 

( ) ,h h gA A IL

L

1
0

1

= - ,

,

-

=

- ^ h% (16)

the computation of the output (13) requires, in general, 
( )degL m xA#  multiplications by .A

GRAPH FOURIER TRANSFORM
Mathematically, a Fourier transform with respect to a set of 
operators is the expansion of a signal into a basis of the opera-
tors’ eigenfunctions. Since in signal processing the operators 
of interest are filters, DSPG defines the Fourier transform with 
respect to the graph filters. 

For simplicity of the discussion, assume that A  is diagonal-
izable and its eigendecomposition is 

,A V V 1K= - (17)

where the columns vn  of the matrix V v v CN
N N

0 1f != #
-6 @

are the eigenvectors of ,A  and CN N!K #  is the diagonal 
matrix of corresponding eigenvalues , , N0 1fm m -  of .A  If A  is 
not diagonalizable, Jordan decomposition into generalized 
eigenvectors is used [17].

The eigenfunctions of graph filters ( )h A  are given by the 
eigenvectors of the graph shift matrix A  [17]. Since the expansion 
into the eigenbasis is given by the multiplication with the inverse 
eigenvector matrix [22], which always exists, the graph Fourier 
transform of a graph signal (1) is well defined and computed as 

,
s ss V s

Fs
N

T
0 1

1f= =

=

-
-t t t6 @

(18)

where F V 1= -  is the graph Fourier transform matrix. 
The values snt  in (18) are the signal’s expansion in the eigenvec-

tor basis and represent the graph frequency content of the signal .s
The eigenvalues nm  of the shift matrix A  represent graph frequen-
cies, and the eigenvectors vn  represent the corresponding graph 
frequency components. Observe that each frequency component vn

is a graph signal, too, with its mth  entry indexed by the node .vm

The inverse graph Fourier transform reconstructs the graph 
signal from its frequency content by combining graph fre-
quency components weighted by the coefficients of the signal’s 
graph Fourier transform: 

s s ss v v vN N0 0 1 1 1 1g= + + + - -t t t .sF V s1= =- t t (19)

Analogously to other DSPG concepts, the graph Fourier 
transform is a generalization of the discrete Fourier transform 
from DSP. Recall that the mth  Fourier coefficient of a finite 
time series of length N is 

,s
N

s e1
m n

n

N
j N mn

0

1 2
=

r

=

-
-t /

and the time signal’s discrete Fourier transform is written in 
vector form as ,s DFT sN=t  where DFTN  is the N N#  discrete 
Fourier transform matrix with the th( , )n m  entry 

/ ( / ) .expN j nm N1 2r-  It is well known that the eigendecom-
position of the time shift matrix (3) is 

.
e

e

C DFT DFT
( )

N

j N

j N
N

N
1

2 0

2 1

·

·
j=

r

r

-

-

-
-

R
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S
S
S
S

V

X
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W
W

Hence, the discrete Fourier transform is the graph Fourier transform 
for cyclic line graphs, such as the graph in Figure 1(a), and 

( / ),exp j n N2nm r= - ,n N0 1#  are the corresponding fre-
quencies. In DSP, the ratio /n N2r  in the exponent 

( / )exp j n N2nm r= -  is also sometimes called (angular) frequency.

ALTERNATIVE CHOICES OF GRAPH FOURIER BASIS
In some cases, for example, when eigenvector computation is 
not stable, it may be advantageous to use other vectors as the 
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graph Fourier basis, such as singular vectors or eigenvectors of 
the Laplacian matrix. These choices are consistent with DSPG ,
since singular vectors form the graph Fourier basis when the 
graph shift matrix is defined as ,AA*  and Laplacian eigenvec-
tors form the graph Fourier basis when the shift matrix is 
defined by the Laplacian. However, the former implicitly turns 
the original graph into an undirected graph, and the latter 
explicitly requires that the original graph is undirected. As a 
result, in both cases the framework does not use the informa-
tion about the direction of graph edges that is useful in various 
applications [17], [19], [23]. Examples, where relations are 
directed and not always reciprocal, are Twitter (if user A follows 
user B, user B does not necessarily follow user A), and the 
World Wide Web (if document A links to document B, docu-
ment B does not necessarily link to document A). 

FREQUENCY RESPONSE OF GRAPH FILTERS
In addition to expressing the frequency content of graph sig-
nals, the graph Fourier transform also characterizes the effect 
of filters on the frequency content of signals. The filtering 
operation (13) can be written using (12) and (18) as 

( ) ( ) ( ) ,h h hs A s F F s F F s1 1K K= = =- -J (20)

where ( )h K  is a diagonal matrix with values ( )h nm =

h n
L

0
1
m,
,

,=

-/  on the diagonal. As follows from (20), 

( ) ( ) .h hss A s F s+ K= =u u t (21)

That is, the frequency content of a filtered signal is modified by 
multiplying its frequency content elementwise by ( ) .h nm

These values represent the graph frequency response of the 
graph filter (12). 

The relation (21) is a generalization of the classical convolu-
tion theorem [21] to graphs: filtering a graph signal in the 
graph domain is equivalent in the frequency domain to multi-
plying the signal’s spectrum by the frequency response of the 
graph filter. 

LOW AND HIGH FREQUENCIES ON GRAPHS
In DSP, frequency contents of time series and digital images are 
described by complex or real sinusoids that oscillate at different 
rates [24]. These rates provide an intuitive, physical interpreta-
tion of “low” and “high” frequencies: low-frequency compo-
nents oscillate less and high-frequency ones oscillate more. 

In analogy to DSP, frequency components on graphs can 
also be characterized as “low” and “high” frequencies. In par-
ticular, this is achieved by ordering the graph frequency com-
ponents according to how much they change across the graph; 
that is, how much the signal coefficients of a frequency compo-
nent differ at connected nodes. The amount of “change” is cal-
culated using the graph total variation [18]. For graphs with 
real spectra, the ordering from lowest to highest frequencies is 

.N0 1 1f$ $ $m m m -  For graphs with complex spectra, fre-
quencies are ordered by their distance from the point | |maxm  on 

the complex plane, where maxm  is the eigenvalue with the larg-
est magnitude. The graph frequency order naturally leads to 
the definition of low-, high-, and band-pass graph filters, analo-
gously to their counterparts in DSP (see [18] for details). 

 In the special case of undirected graphs with real nonnega-
tive edge weights, the graph Fourier transform (18) can also be 
expressed using the eigenvectors of the graph Laplacian matrix 
[16]. In general, the eigenvectors of the adjacency and Lapla-
cian matrices do not coincide, which can lead to a different 
Fourier transform matrix. However, when graphs are regular, 
both definitions yield the same graph Fourier transform 
matrix, and the same frequency ordering [18]. 

APPLICATIONS
DSPG is particularly motivated by the need to extend traditional 
signal processing methods to data sets with complex and irregu-
lar structure. Problems in different domains can be formulated 
and solved as standard signal processing problems. Applications 
include data compression through Fourier transform or 
through wavelet expansions; recovery, denoising, and classifica-
tion of data by signal regularization, smoothing, or adaptive fil-
ter design; anomaly detection via high-pass filtering; and many 
others (see [15] and [16] and references therein). 

For instance, a graph signal can be compressed by comput-
ing its graph Fourier transform and storing only a small fraction 
of its spectral coefficients, the ones with largest magnitudes. The 
compressed signal is reconstructed by computing the inverse 
graph Fourier transform with the preserved coefficients. When 
the signal is sparse in the Fourier domain, that is, when most 
energy is concentrated in a few frequencies, the compressed sig-
nal is reconstructed with a small error [17], [25]. 

Another example application is the detection of corrupted 
data. In traditional DSP, a corrupted value in a slowly chang-
ing time signal introduces additional high-frequency compo-
nents that can be detected by high-pass filtering of the 
corrupted signal. Similarly, a corrupted value in a graph signal 
can be detected through a high-pass graph filter, which can be 
used, for instance, to detect malfunctioning sensors in sensor 
networks [18]. 

CHALLENGES OF BIG DATA
While there is no single, universally agreed upon set of proper-
ties that define big data, some of the commonly mentioned 
ones are volume, velocity, and variety of data [1]. Each of these 
characteristics poses a separate challenge to the design and 
implementation of analysis systems and algorithms for big 
data. First of all, the sheer volume of data to be processed 
requires efficient distributed and scalable storage, access, and 
processing. Next, in many applications, new data is obtained 
continuously. High velocity of new data arrival demands fast 
algorithms to prevent bottlenecks and explosion of the data 
volume and to extract valuable information from the data and 
incorporate it into the decision-making process in real time. 
Finally, collected data sets contain information in all varieties 
and forms, including numerical, textual, and visual data. To 
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generalize data analysis techniques to diverse data sets, we 
need a common representation framework for data sets and 
their structure. 

The latter challenge of data diversity is addressed in DSPG by 
representing data set structure with graphs and quantifying 
data into graph signals. Graphs provide a versatile data abstrac-
tion for multiple types of data, including sensor network mea-
surements, text documents, image and video databases, social 
networks, and others. Using this abstraction, data analysis 
methods and tools can be developed and applied to data sets of 
a different nature. 

For efficient big data analysis, the challenges of data vol-
ume and velocity must be addressed as well. In particular, the 
fundamental signal processing operations of filtering and 
spectral decomposition may be prohibitively expensive for 
large data sets both in the amount of required computations 
and memory demands. 

Recall that processing a graph signal (1) with a graph filter 
(16) requires L multiplications by a N N#  graph shift matrix 

.A  For a general matrix, this computation requires ( )O LN2

arithmetic operations (additions and multiplications) [26]. 
When A  is sparse and has on average K nonzero entries in 
every row, graph filtering requires O LNK^ h operations. In 
addition, graph filtering also requires access to the entire 
graph signal in memory. Similarly, computation of the graph 
Fourier transform (18) requires ( )O N2  operations and access 
to the entire signal in memory. Moreover, the eigendecomposi-
tion of the matrix A  requires additional ( )O N3  operations and 
memory access to the entire N N#  matrix .A  Note that graph 
filtering can also be performed in the spectral domain with 

( )O N2  operations using the graph convolution theorem (21), 
but it also requires the initial eigendecomposition of .A

Degree heterogeneity in graphs with heavily skewed degree 
distributions, such as scale-free graphs, presents an additional 
challenge. Graph filtering (16) requires iterative weighted aver-
aging over each vertex’s neighbors, and for vertices with large 
degrees this process takes significantly longer than for vertices 
with small degrees. In this case, load balancing through smart 
distribution of vertices between computational nodes is 
required to avoid a computation bottleneck. 

For very large data sets, algorithms with quadratic and 
cubic arithmetic cost are not acceptable. Moreover, computa-
tions that require access to the entire data sets are ill suited for 
large data sizes and lead to performance bottlenecks, since 
memory access is orders of magnitude slower than arithmetic 
computations. This problem is exacerbated by the fact that 
large data sets often do not fit into main memory or even local 
disk storage of a single machine, and must be stored and 
accessed remotely and processed with distributed systems. 

Fifty years ago, the invention of the famous fast Fourier 
transform algorithm by Cooley and Tukey [27], as well as many 
other algorithms that followed (see [28] and [29] and references 
therein), dramatically reduced the computational cost of the 
discrete Fourier transform by using suitable properties of the 
structure of time signals, and made frequency analysis and 

filtering of very large signals practical. Similarly, in this article, 
we identify and discuss properties of certain data representation 
graphs that lead to more efficient implementations of DSPG

operations for big data. A suitable graph model is provided by 
product graphs discussed in the next section. 

PRODUCT GRAPHS
Consider two graphs ( , )G AV1 1 1=  and ( , )G AV2 2 2=  with 
| | NV1 1=  and | | NV2 2=  nodes, respectively. The product 
graph, denoted by ,G  of G1 and G2 is the graph 

( , ),G G G AV1 2G= = G (22)

with | | N NV 1 2=  nodes and an appropriately defined 
N N N N1 2 1 2#  adjacency matrix AG  [30], [31]. In particular, 
three commonly studied graph products are the Kronecker, 
Cartesian, and strong products. 

For the Kronecker graph product, denoted as ,G G G1 27=

the adjacency matrix is obtained by the matrix Kronecker product 
of adjacency matrices A1  and :A2

.A A A1 27=7 (23)

Recall that the Kronecker product of matrices [ ]bB mn !=

CM N#  and C CK L! #  is a KM LN#  matrix with block structure

.
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(24)

For the Cartesian graph product, denoted as ,G G G1 2#=

the adjacency matrix is 

.A A I I AN N1 22 17 7= +# (25)

Finally, for the strong product, denoted as ,G G G1 2#=  the 
adjacency matrix is 

.A A A A I I AN N1 2 1 22 17 7 7= + +X (26)

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (24)–(26) are 
associative, Kronecker, Cartesian, and strong graph products 
can be defined for an arbitrary number of graphs. 

Product graphs arise in different applications, including sig-
nal and image processing [32], computational sciences and data 
mining [33], and computational biology [34]. Their probabilistic 
counterparts are used in network modeling and generation 
[35]–[37]. Multiple approaches have been proposed for the 
decomposition and approximation of graphs with product 
graphs [30], [31], [38], [39]. 

Product graphs offer a versatile graph model for the represen-
tation of complex data sets in multilevel and multiparameter 
ways. In traditional DSP, multidimensional signals, such as 
digital images and video, reside on rectangular lattices that 
are Cartesian products of line graphs. Figure 2(a) shows a 
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two-dimensional (2-D) lattice formed by the Cartesian product of 
two one-dimensional lattices. 

Another example of graph signals residing on product 
graphs is data collected by a sensor network over a period of 
time. In this case, the graph signal formed by measurements of 
all sensors at all time steps resides on the product of the sensor 
network graph with the time series graph. As the example in 
Figure 2(b) illustrates, the kth  measurement of the nth  sensor 
is indexed by the nth  node of the kth  copy of the sensor graph 
(or, equivalently, the kth  node of the nth  copy of the time 
series graph). Depending on the choice of product, a measure-
ment of a sensor is related to the measurements collected by 
this sensor and its neighbors at the same time and previous and fol-
lowing time steps. For instance, the strong product in Figure 2(b) 
relates the measurement of the nth  sensor at time step k  to its 
measurements at time steps k 1- and ,k 1+ as well as to mea-
surements of its neighbors at times ,k 1- ,k  and .k 1+

A social network with multiple communities also may be 
representable by a graph product. Figure 2(c) shows an example 

of a social network that has three communities with similar 
structures, where individuals from different communities also 
interact with each other. This social graph may be seen as an 
approximation of the Cartesian product of the graph that cap-
tures the community structure and the graph that captures the 
interaction between communities. 

Other examples where product graphs are potentially use-
ful for data representation include multiway data arrays that 
contain elements described by multiple features, parameters, 
or characteristics, such as publications in citation databases 
described by their topics, authors, and venues; or Internet 
connections described by their time, location, IP address, port 
accesses, and other parameters. In this case, the graph factors 
in (22) represent similarities or dependencies between subsets 
of characteristics. 

Graph products are also used for modeling entire graph fam-
ilies. Kronecker products of scale-free graphs with the same 
degree distribution are also scale free and have the same distri-
bution [35], [40]. K- and e-nearest neighbor graphs, which are 
used in signal processing, communications, and machine learn-
ing to represent spatial and temporal location of data, such as 
sensor networks and image pixels, or data similarity structure, 
can be approximated with graph products, as the examples in 
Figure 2(a) and (b) suggest. Other graph families, such as trees, 
are constructed using rooted graph products [41], which are not 
discussed in this article. 

SIGNAL PROCESSING ON PRODUCT GRAPHS
In this section, we discuss how product graphs help “modular-
ize” the computation of filtering and Fourier transform on 
graphs and improve algorithms, data storage, and memory 
access for large data sets. They lead to graph filtering and Fou-
rier transform implementations suitable for multicore and clus-
tered platforms with distributed storage by taking advantage of 
such performance optimization techniques as parallelization and 
vectorization. The presented results illustrate how product 
graphs offer a suitable and practical model for constructing and 
implementing signal processing methodologies for large data 
sets. In this, product graphs are similar to other graph families, 
such as scale-free and small-world graphs, that are used to 
model properties of real-world graphs and data sets: while mod-
els do not fit exactly to all real-world graphs, they capture and 
abstract relevant representations of graphs and facilitate their 
analysis and processing. 

FILTERING
Recall that graph filtering is computed as the multiplication of a 
graph signal (1) by a filter (16). As we discussed in the section 
“Challenges of Big Data,” computation of a filtered signal 
requires repeated multiplications by the shift matrix, which is 
in general a computation- and memory-expensive operation for 
very large data sets. 

Now, consider, for instance, a Cartesian product graph with 
the shift matrix (25). A graph filter of the form (16) for this 
graph is written as 

Social Network
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[FIG2] Examples of product graphs indexing various data: 
(a) digital images reside on rectangular lattices that are Cartesian 
products of line graphs for rows and columns, (b) measurements 
of a sensor network are indexed by the strong product of the 
sensor network graph with the time series graph (the edges of 
the Cartesian product are shown in blue and green, and edges 
of the Kronecker product are shown in gray; the strong 
product contains all edges), and (c) a social network with 
three similar communities is approximated by a Cartesian 
product of the community structure graph with the 
intercommunity communication graph.
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( ) .h h gA A I I A IL N N N N

L

1 2
0

1

2 1 1 27 7= + -# ,

,=

- ^ h% (27) 

Hence, multiplication by the shift matrix A#  is replaced with 
multiplications by matrices A IN1 27  and .I AN 217

Multiplication by matrices of the form I AN 217  and A IN1 27

have multiple efficient implementations that take advantage of 
modern optimization and high-performance techniques, such 
as parallelization and vectorization [26], [42], [43]. In particular, 
the product ( )I A sN 217  is calculated by multiplying N1 signal 
segments ,s , ,n n N2f + ,n N0 11#  of length N2 by the matrix 

.A2  These products are computed with independent parts of the 
input signal, which eliminates data dependency and makes 
these operations highly suitable for a parallel implementation 
on a multicore or cluster platform [42]. As an illustration, for 

,N 31 = ,N 22 =  matrix 
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Here, all multiplications by A  are independent from each other 
both in data access and computations. 

Similarly, the product ( )A I sN1 27  is calculated by multiply-
ing N2 segments ,s , , , ( )n n N n N N11 2 1f+ + - ,n N0 21#  of the input 
signal by the matrix .A1  These products are highly suitable for a 
vectorized implementation, available on modern computational 
platforms, that performs an operation on several input values 
simultaneously [42]. For instance, for A  in (28), we obtain 

( ) .
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Here, three sequential signal values are multiplied by one ele-
ment of matrix A  at the same time. These operations are per-
formed simultaneously by a processor with vectorization 
capabilities, which respectively decreases the computation time 
by a factor of three. 

In addition to its suitability for parallelized and vectorized 
implementations, computing the output of the filter (27) on a Car-
tesian graph also requires significantly fewer operations, since the 
multiplication  by the shift matrix (25) requires N1 multiplications 
by an N N2 2#  matrix and N2  multiplications by an N N1 1#

matrix, which results in ( ) ( ) ( ( ))O N N O N N O N N N1 2
2

1
2

2 1 2+ = +

operations rather than ( ) .O N2  (We discuss here operation counts 
for general graphs with full matrices. In practice, adjacency 
matrices are often sparse, and their multiplication requires 

fewer operations. Computational savings provided by product 
graphs are, likewise, significant for sparse adjacency matrices.) 
For example, when , ,N N N1 2 .  this represents a reduction of 
the computational cost of graph filtering by a factor .N  To put 
this into the big data perspective, for a graph with a million verti-
ces, the cost of filtering is reduced by a factor of 1,000, and for a 
graph with a billion vertices, the cost reduction factor is more 
than 30,000. 

Furthermore, the multiplication by a matrix of the form 
I A7  can be replaced by the multiplication with a matrix A I7
with no additional arithmetic operations by suitable permuta-
tion of signal values [22], [42], [43]. This interchangeability 
leads to a selection between parallelized and vectorized imple-
mentations and provides means to efficiently compute graph fil-
tered signals on platforms with arbitrary number of cores and 
vectorization capabilities. 

The advantages of filtering on Cartesian product graphs also 
apply to Kronecker and strong product graphs. In particular, 
using the property [22] 

( ) ( ),IA A A I AN N1 2 1 27 7 7= 2 1 (29)

we write the graph filter (16) for the Kronecker product as 

( ) ( ) ( ) ) ,h h gA A I I A IL N N N N

L

1 2
0

1

2 1 1 27 7= -7 ,

,=

- ^ h%

and for the strong product as 

( ) ( ) ( )h hA A I I AL N N

L

1 2
0

1

2 17 7=X

,=

-

%

) .gA I I A IN N N N1 22 1 1 27 7+ + - ,

Similarly to (27), these filters multiply input signals by matrices 
I AN 217  and A IN1 27  and are implementable using paralleliza-
tion and vectorization techniques. They also lead to substantial 
reductions of the number of required computations. 

FOURIER TRANSFORM
The frequency content of a graph signal is computed through 
the graph Fourier transform (18). In general, this procedure has 
the computational cost of ( )O N2  operations and requires access 
to the entire signal in memory. Moreover, it also requires a pre-
liminary calculation of the eigendecomposition of the graph 
shift matrix ,A  which, in general, takes ( )O N3  operation. 

Let us consider a Cartesian product graph with the shift 
matrix (25). Assume that the eigendecomposition (17) of the 
matrices A1  and A2  is respectively ,A V Vi i i i

1K= - { , },i 1 2!

where iK  has eigenvalues , ,, ,i i N0 1fm m -  on the main diagonal.
Similar results can be obtained for nondiagonalizable matrices 
using Jordan decomposition. The derivation is more involved, 
and we omit it for simplicity of discussion. 

If we denote ,V V V1 27=  then the eigendecomposition of 
the shift matrix (25) is [22] 

( ) .A V I I VN N1 2
1

2 17 7K K= +#
- (30)
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Hence, the graph Fourier transform associated with a Cartesian 
product graph is given by the matrix Kronecker product of the 
graph Fourier transforms for its factor graphs:

( ) ,F V V V V F F1 2
1

1
1

2
1

1 27 7 7= = =#
- - - (31)

and the spectrum is given by the element-wise summation of 
the spectra of the smaller graphs: ,, ,n m1 2m m+ n N0 11#  and 

.m N0 21#

Reusing the property (29), (31) can be written as 
( ) ( )F F F F I I FN N1 2 1 22 17 7 7= =#  and efficiently implemented 

using parallelization and vectorization techniques. Moreover, 
the computation of the eigendecomposition (30) is replaced 
with finding the eigendecomposition of the shift matrices A1

and ,A2  which reduces the computation cost from ( )O N3  to 
( ) .O N N1

3
2
3+  For instance, when , ,N N N1 2 .  the computa-

tional cost of the eigendecomposition is reduced by a factor 
.N N  Hence, for a graph with a million vertices, the cost of 

computing the eigendecomposition is reduced by a factor of 
more than ,3 104#  and for a graph with a billion vertices, the 
cost reduction factor is over .3 1013#

The same improvements apply to the Kronecker and strong 
matrix products, since the eigendecomposition of the corre-
sponding shift matrices is 

( ) ,

( ) .

A V V
A V I I VN N

1 2
1

1 2 1 2
1

2 1

7

7 7 7

K K

K K K K

=

= + +

7

X

-

-

Observe that all three graph products have the same graph 
Fourier transform. However, the corresponding spectra are 
different: for Cartesian and strong products, they are, respec-
tively, , ,n m1 2m m  and ,, , , ,n m n m1 2 1 2m m m m+ +  where n N0 11#

and .m N0 21#  Thus, while all three graph products have 
the same frequency components, the ordering of these compo-
nents from lowest to highest frequencies, as defined by DSPG

and discussed in the section “Signal Processing on Graphs,” 
can be different. As an illustration, consider the example in 
Figure 3. It shows the frequencies (eigenvalues) of the three 

graph products in Figure 2(b). All product graphs have the 
same 16 frequency components (eigenvectors), but the fre-
quencies (eigenvalues) corresponding to these components are 
different and on each graph have a different interpretation as 
low or high frequency. For example, the values in the upper 
left corners of Figure 3(a)–(c) correspond to the same fre-
quency component. By comparing these values, we observe 
that this component represents the highest frequency in the 
Cartesian product graph, the lowest frequency in the Kro-
necker product graph, and a midspectrum component in the 
strong product graph. 

FAST GRAPH FOURIER TRANSFORMS
A major motivation behind the use of product graphs in signal 
processing and DSPG is derivation of fast computational algo-
rithms for the graph Fourier transform. A proper overview of 
this topic requires an additional discussion of graph concepts 
and an algebraic approach to fast algorithms [29], [44], [45] that 
are beyond the scope of this article. 

As an intuitive example, consider a well-known and widely 
used decimation-in-time fast Fourier transform for power-of-
two sizes [27]. It is derived using graph products as follows. 
We view the DFTN  as the graph Fourier transform of a graph 
with adjacency matrix ,C2  where C  is the cyclic shift matrix 
(3). This is a valid algebraic assumption, since the DFTN  is a 
graph Fourier transform not only for the graph in Figure 1(a), 
but for any graph with adjacency matrix given by a polynomial 

( ) .h C  This graph, after a permutation of its vertices at stride 
two (which represents the decimation-in-time step), becomes 
a product of a cyclic graph with /N 2  vertices with a graph of 
two disconnected vertices. As a result, its graph Fourier trans-
form DFTN  becomes a product I DFT /N2 27  and additional, 
sparse matrices that capture the operations of graph restruc-
turing. By continuing this process recursively for ,DFT /N 2

,DFT /N 4  and so forth, we decompose DFTN  into a product of 
sparse matrices with cumulative arithmetic cost of 

( ),logO N N  thus obtaining a fast algorithm for the computa-
tion of .DFTN
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[FIG3] The frequency values for the product graphs in Figure 2(b). Frequencies are shown as a color-coded 2-D map, with x- and y-axis 
representing frequencies of two factor graphs. Higher values correspond to lower frequencies and vice versa. (a) The Cartesian 
product, (b) Kronecker product, and (c) strong product.
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RELATION TO EXISTING APPROACHES
The instantiation of DSPG for product graphs relates to existing 
approaches to complex data analysis that are not based on 
graphs but rather view data as multidimensional arrays [2]–[4]. 
Given a K-dimensional data set ,S CN N NK1 2! # # #f  the family of 
methods called canonical decomposition or parallel factor 
analysis searches for K  matrices ,M Ck

N Rk! # ,k K1 # #  that 
provide an optimal approximation of the data set 

,S m m m E, , ,r
r

R

r K r1
1

2& & &f= +
=

/ (32)

that minimizes the error 

|| | | | | .E E , , ,
n

N

n

N

n n n
1 1

2

k

K

K

1

1

1 2f= f

= =

/ /

Here, m ,k r  denotes the rth  column of matrix ,Mk  and &
denotes the outer product of vectors. 

A more general approach, called Tucker decomposition,
searches for K  matrices ,M Ck

N Rk k! # ,k K1 # #  and a matrix 
C CR R RK1 2! # # #f  that provide an optimal approximation of the 
data set as 

.S C m m E, , , ,
r

R

r r
r

R

r K r
1 1

1K

K

K

K

1

1

1 1 & &f f= +f

= =

/ / (33)

Tucker decomposition is also called a higher-order PCA or SVD, 
since it effectively extends these techniques from matrices to 
higher-order arrays. 

Decompositions (32) and (33) can be interpreted as signal com-
pression on product graphs. For simplicity of discussion, assume 
that K 2= and consider a signal s CN N1 2!  that lies on a product 
graph (22) and corresponds to a 2-D signal ,S CN N1 2! #  so that 

,S s,n n n N n1 2 1 2 2= +  where n N0 i i1#  for , .i 1 2=  If matrices M1

and M2  contain as columns, respectively, R1 and R2 eigenvectors 
of A1  and ,A2  then the decomposition (33) represents a lossy com-
pression of the graph signal in the frequency domain, a widely used 
compression technique in signal processing [21], [24]. 

EXAMPLE APPLICATION
As a motivational application example of DSPG on product 
graphs, we consider data compression. For the testing data set, 
we use the set of daily temperature measurements collected by 
150 weather stations across the United States [17] during the 
year 2002. Figure 1(b) shows the measurements from one day 
(1 December 2002), as well as the sensor network graph. The 
graph is constructed by connecting each sensor to eight of its 
nearest neighbors with undirected edges with weights given by 
[17,  eq. (29)]. As illustrated by the example in Figure 2(b), such 

a data set can be described by a product of the sensor network 
graph and the time series graphs. We use the sensor network 
graph in Figure 1(b) with N 1501 =  nodes and the time series 
graph in Figure 1(a) with N 3652 =  nodes. 

The compression is performed in the frequency domain. We 
compute the Fourier transform (31) of the data set, keep only C
spectrum coefficients with largest magnitudes and replace others 
with zeros, and perform the inverse graph Fourier transform on 
the resulting coefficients. This is a lossy compression scheme, 
with the compression error given by the norm of the difference 
between the original data set and the reconstructed one normal-
ized by the norm of the original data set. Note that, while the 
approach is tested here on a relatively small data set, it is applica-
ble in the same form to arbitrarily large data sets. 

The compression errors for the considered temperature data 
set are shown in Table 1. The results demonstrate that even for 
high compression ratios, that is, when the number C of stored 
coefficients is much smaller than the data set size ,N N N1 2=

the compression introduces only a small error and leads to 
insignificant loss of information. A comparison of this approach 
with schemes that compress the data only in one dimension 
(they separately compress either time series from each sensor 
or daily measurements from all sensors) [17], [25] also reveals 
that compression based on the product graph is significantly 
more efficient. 

CONCLUSIONS
In this article, we presented an approach to big data analysis based 
on the DSP on graphs. We reviewed fundamental concepts of the 
framework and illustrated how it extends traditional signal pro-
cessing theory to data sets represented with general graphs. To 
address important challenges in big data analysis and make imple-
mentations of fundamental DSPG techniques suitable for very 
large data sets, we considered a generalized graph model given by 
several kinds of product graphs, including the Cartesian, Kro-
necker, and strong product graphs. We showed that these product 
graph structures significantly reduce arithmetic cost of associated 
DSPG algorithms and make them suitable for parallel and distrib-
uted implementation, as well as improve memory storage and 
access of data. The discussed methodology bridges a gap between 
signal processing, big data analysis, and high-performance com-
puting, as well as presents a framework for the development of 
new methods and tools for analysis of massive data sets. 
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T
he discrete Fourier transform (DFT) is a funda-
mental component of numerous computational 
techniques in signal processing and scientific com-
puting. The most popular means of computing the 
DFT is the fast Fourier transform (FFT). However, 

with the emergence of big data problems, in which the size of 
the processed data sets can easily exceed terabytes, the “fast” 
in FFT is often no longer fast enough. In addition, in many big 

data applications it is hard to acquire a sufficient amount of 
data to compute the desired Fourier transform in the first 
place. The sparse Fourier transform (SFT) addresses the big 
data setting by computing a compressed Fourier transform 
using only a subset of the input data, in time smaller than the 
data set size. The goal of this article is to survey these recent 
developments, explain the basic techniques with examples and 
applications in big data, demonstrate tradeoffs in empirical 
performance of the algorithms, and discuss the connection 
between the SFT and other techniques for massive data analy-
sis such as streaming algorithms and compressive sensing. 

[Anna C. Gilbert, Piotr Indyk, Mark Iwen, and Ludwig Schmidt]

[A compressed Fourier transform for big data]

Recent Developments 
in the Sparse Fourier 

Transform
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INTRODUCTION
The DFT is one of the main mathematical workhorses of signal 
processing. The most popular approach for computing the DFT 
is the FFT algorithm. Invented in the 1960s, the FFT computes 
the frequency representation of a signal of size N  in 

( )logO N N  time. The FFT is widely used and was considered to 
be one of the most influential and important algorithmic devel-
opments of the 20th century. However, with the emergence of 
big data problems, in which the size of the processed data sets 
can easily exceed terabytes, the FFT is not always fast enough. 
Furthermore, in many applications it is hard to acquire a suffi-
cient amount of data to compute the desired Fourier transform. 
For example, in medical imaging, it is highly desirable to reduce 
the time that the patient spends in a magnetic resonance imag-
ing machine. This motivates the need for algorithms that can 
compute the Fourier transform in sublinear time (in an amount 
of time that is considerably smaller than the size of the data), 
and that use only a subset of the input data. The SFT provides 
precisely this functionality. 

Developed over the last decade, SFT algorithms compute 
an approximation or compressed version of the DFT in time 
proportional to the sparsity of the spectrum of the signal (i.e., 
the number of dominant frequencies), as opposed to the 
length of the signal. The algorithms use only a small subset of 
the input data and run in time proportional to the sparsity or 
desired compression, considerably faster than in time propor-
tional to the signal length. This is made possible by requiring 
that the algorithms report only the nonzero or large frequen-
cies and their complex amplitudes, rather than a vector con-
taining this information for all frequencies. Since most video, 
audio, medical images, spectroscopic measurements 
(e.g., nuclear magnetic resonance), global positioning system 
(GPS) signals, seismic data, and many more massive data sets 
are compressible or are sparse, these results promise a signifi-
cant practical impact in many big data domains. 

The first algorithms of this type were designed for the Had-
amard transform; i.e., the Fourier transform over the Boolean 
cube [19], [20] (cf. [7]). Shortly thereafter, algorithms for the 
complex Fourier transform were discovered as well [1], [5], 
[8], [22]. The most efficient of those algorithms [8] computed 
the DFT in time ,logk N( )O 1  where k  is the sparsity of the sig-
nal spectrum. All of the algorithms are randomized and have a 
constant probability of error. These developments were cov-
ered in [9]. 

Over the last few years, the topic has been the subject of 
extensive research, from the algorithmic [3], [4], [6], [10]–[13], 
[15], [17], [18], [21], [23], [26], implementation [25], [27], and 
hardware [2], [29] perspectives. These developments include the 
first deterministic algorithms that make no errors [3], [17], 
[18], as well as algorithms that, given a signal with k -sparse 
spectrum, compute the nonzero coefficients in time ( )logO k N
[11] or even ( )logO k k  [6], [21], [23], [26]. The goal of this 
article is to survey these developments. We focus on explaining 
the basic components and techniques used in the aforemen-
tioned algorithms, coupled with illustrative examples and 

concrete applications. We do not cover the analysis of sampling 
rates and running times of the algorithms (the reader is 
referred to the original papers for proofs and analysis). However, 
we present an empirical analysis of the performance of the algo-
rithms. Finally, we discuss the connection between the SFT and 
other techniques for massive data analysis such as streaming 
algorithms and compressive sensing. 

DEFINITIONS
Let F CN N! #  be the DFT matrix of size ,N  defined entrywise by 

:F N
e

,

/

j

i j N2
=~

r ~-

(1)

for , .j N0 1# ~  The DFT of a vector f CN!  is simply 

: .Ff f=t (2)

Equivalently, one may define f CN!t  componentwise by 

.N f ef 1 /
j

j

N
i j N

0

1
2=~ r ~

=

-
-t / (3)

In this section it will also be useful to consider the inverse of 
the DFT matrix above. Its entries are given by 

:F e,
/

j
i j N1 2=~
r ~- (4)

for , .j N0 1# ~  The inverse DFT of a vector f CN!t  is just 

: .F F Ff f f1 1= =- -t ^ h (5)

This allows one to write f CN!  in terms of its Fourier compo-
nents by the formula 

.f f e /
j

N
i j N

0

1
2= ~

~

r ~

=

-
t/ (6)

TECHNIQUES
In this section, we outline the basic components and tech-
niques used in sparse FFT algorithms. We start from the simple 
case when the spectrum of the signal consists of, or is domi-
nated by, only a single nonzero frequency. In this case we show 
that the position and the value of the nonzero frequency can be 
found using only two samples of the signal (if the signal is a 
pure tone without any noise) or a logarithmic number of sam-
ples (if the signal is contaminated by noise). These techniques 
are described in the section “Phase Encoding.” Second, we 
address the general case by reducing it to several subproblems 
involving a single nonzero frequency. This is achieved by 
grouping subsets of Fourier space together into a small num-
ber of bins. In the simplest case, each bin corresponds to a fre-
quency band, but other groupings are also possible. If each bin 
contains only a single frequency (i.e., if a frequency is isolated), 
then we can solve the problem separately for each bin using the 
techniques mentioned earlier. This leads to the sample com-
plexity and the running time proportional to the number of 
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bins, which is lower bounded by the sparsity parameter .k  The 
binning techniques are described in the section “Filtering to 
Isolate Frequencies.” Finally, in the section “Randomly Binning 
Frequencies,” we show how to deal with spectra in which two 
nonzero frequencies are very close to each other, and thus can-
not be easily isolated via binning. Specifically, we show how to 
permute the spectrum of the signal in a pseudorandom fash-
ion, by pseudorandomly permuting the time domain signal. 
Since the positions of the nonzero frequencies in the permuted 
signals are (pseudo)random, they are likely to be isolated, and 
then recovered by the binning procedure. To ensure that all 
nonzero coefficients are recovered, the permutation and bin-
ning procedure is repeated several times, using fresh random-
ness every time. 

All sparse FFT algorithms follow this general approach, as 
discussed in more detail in the section “The Prototypical SFT.” 
However, they differ in the implementations of the specific 
modules, as well as in the methods they use for aggregating the 
information gathered from different invocations of the permu-
tation and binning procedure. 

SINGLE-FREQUENCY RECOVERY
In the simplest possible case, a vector f CN!  contains a single 
pure frequency. In such a setting an SFT must be able to rapidly 
determine the single tone much more quickly than the 

( )logO N N -time FFT. In this section we will illustrate several 
different techniques for accomplishing this fundamental task. 
In later sections, we will demonstrate techniques for filtering 
more general vectors to produce the type of single-frequency 
vectors considered here. For now, however, we will assume that 
our vector is of the following form: 

: .f f e· /
j

i j N2= ~
r ~t (7)

for a fixed { , , , } .N0 1 1f!~ -

PHASE ENCODING
Given a simple vector defined as in (7), one can quickly calculate ~
by choosing { , , },j N0 1f! -  and then computing the phase of 

.cos sin
f

f
e

N
i

N
2 2·/

j

j i N1 2 r~ r~= = +r ~+ c cm m (8)

If ,j N1+ =  we set .f fj 1 0=+  More generally, we will assume 
that indices are always taken modulo N  when referring to 
entries of f CN!  below. Furthermore, once ~  is known, f~t  can 
be calculated by computing .f e· /

j
i j N2r ~-  This procedure effec-

tively finds the DFT of the vector from (7) in ( )O 1 -time by 
inspecting only two entries of .f The procedure, referred to as 
the OFDM trick in [11], was also used in [21]. It can also be seen 
as a very special case of the Prony method [13].

Although fast, this straightforward technique is not gener-
ally very robust to noise. Specifically, if :f f e· /

j
i j N

j
2 e= +~
r ~t  for 

all ,j  the phases calculated from (8) can fail to yield ~  unless 
| |je  is much smaller than | | / .f N~

t  Hence, it is often necessary 
to use different techniques to find ~  from (7). 

A BINARY SEARCH TECHNIQUE
One means of learning ~  from (7) in a more noise tolerant 
fashion is to perform the equivalent of a binary search for ~
through the frequency domain. Many variants of such a search 
can be performed. In this subsection we will illustrate the most 
basic type of search for the example vector

: .f f e· /
j

i j2 8·= ~
r ~t (9)

Note that this is exactly (7) with .N 8=  Here, ~  is unknown. 
We begin knowing only that 

{ , , , , , , , } .0 1 2 3 4 5 6 7!~

Our job is to find ~  using three rounds of testing based on at 
most six entries of .f

Our tests will be based on the following observations: If 
/ ,N0 2 41 1~ =  then e /i2 8r ~  will be closer to i e /i2 2 8= r  than to 

i e /i2 6 8- = r  [see Figure 1(a)]. Conversely, if / ,N 2 42~ =  then 
e /i2 8r ~  will be closer to i-  than to .i  Similarly, /N 4 21~ =  or 

/N3 4 62~ =  implies that e /i2 8r ~  is closer to 1 than to ,1-  and 
/ /N N2 4 3 4 61 1~= =  implies that e /i2 8r ~  will be closer to 

1-  than to 1.
During our first round of testing we will choose 
{ , , }j 0 7f!  and then test whether both 

| | · | | | · | | · |

| | · | | ,

f i e i f f i f f

f i e

/

/

j
i

j j j j

j
i

2 8
1 1

2 8

·

·

1- = - +

= +

r ~

r ~

+ +

(10)

and

| | · | | | | | |

| | · | |

f e f f f f

f e

1

1

/

/

j
i

j j j j

j
i

2 8
1 1

2 8

·

·

1- = - +

= +

r ~

r ~

+ +

(11)

are true. Note that (10) and (11) will be true if and only if 

| | | ( ) | ,e i e i/ /i i2 8 2 81- - -r ~ r ~ (12)

and 

| | | ( ) |e e1 1/ /i i2 8 2 81- - -r ~ r ~ (13)

are true, respectively. Hence, (10) and (11) are simply testing which 
axes of the complex plane are best aligned with .e /i2 8r ~  If (10) holds 
true we may safely conclude that { , , }5 6 7"~  [Figure 1(a)]. Oth-
erwise, if (10) is false, we conclude that { , , } .1 2 3"~  Similarly, 
(11) holding true implies that { , , },3 4 5"~  while (11) failing to 
hold implies that { , , } .0 1 7"~

Returning to our example (9), suppose that both (10) and 
(11) fail to hold. The first test (10) failing tells us that 

{ , , },1 2 3"~  and the second failure tells us that { , , } .0 1 7"~

Taken all together, then, the tests tell us that { , , }4 5 6!~  in 
this case (i.e., we learn that e /i2 8·r ~  is in the third quadrant of 
the complex plane).

Having learned that { , , }4 5 6!~  allows us to simplify the 
problem. In particular, we may now implicitly define a new vector 
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:f e f f e· ·( / ) ( ) /
j

i j
j

i j2 4 2 8
2

2 4 4· · ·= =r
~

r ~- -l t (14)

for all .j0 41#  Note that f C4!l  was formed by 1) shifting 
the possible range for ~  into the first quadrant (by multiplying 
f  by ),e /i j2 4 8·r-  and then 2) discarding the odd entries. This 
effectively halves our initial problem: f C4!l  is a vector with 
one frequency, ( ) { , , }4 0 1 2!~ ~= -l  [see Figure 1(b)]. Our 
new goal is to find ~l using two entries of fl (i.e., two additional 
entries of .f)

Our second round of tests now proceeds exactly as before. 
We choose { , , }j 0 3f!  and then consider both 

| | | | ,i f f i f f· ·j j j j1 11- ++ +l l l l (15)

and 

| | | | .f f f fj j j j1 11- ++ +l l l l (16)

As previously shown, these tests will collectively determine the 
quadrant of the complex plane containing .e ( )/i2 4 4·r ~-

Continuing our example, suppose that (15) is true and 
(16) is false. This means that ( ) { , }4 1 2!~-  (i.e., we have 
ruled out 0 and 3). We can now implicitly form our last new 
vector for the third round of tests. In particular, we form 
f C2!m  by 

: ( )f e f f 1· ·( / ) ( )
j

i j
j

j2 1 2 4
2

5· ·= = -r
~

~- -m l t (17)

for , .j 0 1=  Note that we have once again formed our new vec-
tor by 1) shifting the possible values of ( )4~ ~= -l  to the first 
quadrant of the complex plain, and then 2) discarding all odd 
entries of .fl  We now know that ( ) { , },5 0 1!~ ~= -m  and may 
decide which it is by testing .f m

In particular, suppose that 

| | | |f f f fj j j j1 11- ++ +m m m m (18)

holds for a { , } .j 0 1!  Then, we conclude that 

.5 0 5&~ ~- = =

This concludes the description of the binary search proce-
dure for identifying the nonzero frequency. Since we learn the 
position of the frequency bit by bit, the total number of samples 
used is ( ) .logO N  Furthermore, we note that the binary search 
is (relatively) robust to noise. Adding small perturbations to 
each entry of (9) will not stop us from determining that .5~ =

Further details are given, e.g., in [9]. 

AN ALIASING-BASED SEARCH
We will conclude our discussion of single-frequency recovery 
techniques with an example of a modified search method that 
takes advantage of natural aliasing phenomena (see, e.g., [17] 

Re

Im

i = e 2πi ·2/8

i = e 2πi ·0/8

–i = e 2πi ·6/8

–i = e 2πi ·4/8

Re

Im

i = e 2πi ·1/4

i = e 2πi ·0/4

–i = e 2πi ·3/4

–i = e 2πi ·2/4

(a) (b)

e 2πi ·1/8e 2πi ·3/8

e 2πi ·7/8
e 2πi ·5/8

[FIG1] Recovering a single frequency via a binary search (see the section “A Binary Search Technique”). Both parts show the unit circle 
in the complex plane. The black dots indicate the potential locations of the dominant, hidden frequency, which is represented by the 
gray square. (a) The initial search problem. Our goal is to locate the hidden frequency ,5~ =  i.e., the gray square at .e /i2 8r ~  In the first 
stage of the binary search, we determine that the hidden frequency lies in the third quadrant. (b) The simplified search problem 
associated with ,fl  which is the second stage of the binary search. The unknown frequency 5~ =  has been mapped to 1~ =l  (i.e., 
the gray square) within a smaller search space. 
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and [18]). These ideas are of use when subsampling signals is 
easy to implement directly, or when N  is a product of several 
smaller relatively prime integers. Suppose, e.g., that 

,N 70 2 5 7· ·= =

and let a C2!  be the two-element subvector of f  from (7) with 

: , : · ( ) .a f f a f f 1and /N0 0 1 2= = = = -~ ~
~t t (19)

Calculating a C2!t  using (3) we get that

( ) ,a f 2
1 1·0 =
+ -

~

~

t t (20)

and

( ) .a f 2
1 1·1

1

=
+ -

~

~+

t t (21)

Note that since ~  is an integer, exactly one element of at  will be 
nonzero. If a 00 !t  then we know that 0/~  modulo 2. On the 
other hand, a 01 !t  implies that 1/~  modulo 2. 

In this same fashion, we may use several potentially aliased 
FFTs in parallel to discover ~  modulo 5 and 7, since they both 
also divide .N  Once we have collected these moduli we can 
reconstruct ~  via the Chinese remainder theorem (CRT) (see 
“Theorem 1: Chinese Remainder Theorem”). 

To finish our example, suppose that we have used four FFTs 
on subvectors of f  of size 2, 5, and 7 to determine that 1/~
mod 2, 4/~  mod 5, and 3/~  mod 7, respectively. Using that 

1/~  mod 2 we can see that a2 1·~ = +  for some integer .a
Using this new expression for ~  in our second modulus we get 

( ) .mod moda a2 1 4 5 4 5· &/ /+

Therefore, a b5 4·= +  for some integer .b  Substituting for a
we get that .b10 9·~ = +  By similar work we can see that 
b 5/  mod 7 after considering ~  modulo 7. Hence, 59~ =  by 
the CRT. As an added bonus we note that our three FFTs will 
have also provided us with three different estimates of .f~t

The end result is that we have used significantly fewer than 70 
entries to determine both ~  and .f~t  Using the CRT we read only 
2 5 7 14+ + =  entries of .f  In contrast, a standard FFT would 
have had to process all 70 entries to compute .ft  This CRT-based 
single frequency method also reduces the required computational 
effort. Of course, a single frequency signal is incredibly simple. 
Vectors with more than one nonzero Fourier coefficient are 
much more difficult to handle since frequency moduli may begin 
to collide modulo various numbers. In the next section we will 
discuss methods for removing this difficulty. 

FILTERING TO ISOLATE FREQUENCIES
We will begin our discussion of filtering by extending our alias-
ing-based frequency identification ideas from the last section. In 
this example we assume that our vector f  has length 12, with 
entries given by : ( / )cosf j2 3 12· ·j r=  for , , .j 0 11f=  Note 
that this means f C12!t  has two nonzero entries: ,f 13 =t  and 

.f 19 =t  Our objective is to learn the location and Fourier coeffi-
cient of each of them by reading fewer than 12 entries of .f

Proceeding according to the last section, we might try to 
learn the two frequencies by looking at the three-element sub-
vector of ,f ,a R3!  given by :a fj j4=  for , ,j 0 1 2=  [see 
Figure 2(a)]. Unfortunately, we will fail to learn anything about 
the individual entries of ft  this way because both of its nonzero 
DFT entries are congruent to 0 modulo 3 [see Figure 2(b)]. 
Recall that a~t  is the sum of all Fourier coefficients whose indi-
ces are congruent to ~  modulo 3. In particular, we will only see 
that ,a f f f f 20 0 3 6 9= + + + =t t t t t  and that .a a 01 2= =t t  If all we 
know is that ft  contains at most two nonzero entries, we are 
unable to determine its nonzero entries using this information. 
The problem is that the two nonzero entries of ft  have collided
modulo 3 (i.e., they are both congruent to the same residue 
modulo 3). 

Note, however, that the CRT guarantees that the two non-
zero entries of ft  can not also collide modulo / .4 12 3=  If a 
new subarray of f  is created using four equally spaced entries 
[see Figure 2(c)], its DFT will separate the two nonzero entries 
of ft [see Figure 2(d)]. The end result is that two subvectors 
will always reveal the locations of the nonzero entries of ,ft  as 
long as ft  has at most two nonzero entries. More generally, one 
can use similar ideas to learn the k  largest magnitude entries 
of ft  from the results of a small number of aliased DFTs of sub-
vectors of .f

In the continuous setting, one can view the preceding dis-
cussion as a demonstration of how a relatively small set of 
spike-train filters can be used to separate important frequencies 
from one another in Fourier space. This turns out to be a fruit-
ful interpretation. This perspective motivates the development 
of other types of filters which, when modulated (i.e., shifted in 
Fourier space) a few times, can be used to group different subsets 
of Fourier space together into a small number of shorter intervals, 
or “bins” (see Figure 3). If the most important frequencies in a 
function, ,f  are uniformly spread over a given interval of Fourier 
space, one will be likely to isolate them from one another by 
convolving f  with a few different modulations of such a filter. This 
effectively “bins” the Fourier coefficients of ft  into different fre-
quency bins. Once an important frequency is isolated in a filtered 
version of ,f  the methods from the last subsection can then be 
used to recover it via, e.g., a modified binary search. 

Note that a good continuous filter can be periodized and dis-
cretized for use as part of a discrete SFT. One generally does so 
to design a discrete filter that is highly sparse in time (i.e., that 
is “essentially zero” everywhere, except for a small number of 
time-domain entries). This allows fast convolution calculations 
to be performed with the filter during frequency binning. This 
is crucial since these convolutions are used to repeatedly 

THEOREM 1: CHINESE REMAINDER THEOREM

Any integer x is uniquely specified modulo N  by its remain-

ders modulo m  relatively prime integers , ,p pm1 f  as long as 

.p N
l

m
l1
$

=
%
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compute time samples from filtered versions of ft  during each 
modified binary search for an important frequency. Further-
more, the DFT of the discrete filter should also have a special 
structure to aid in the construction of good, low-leakage, fre-
quency filters. (We say that a frequency filter leaks if it has non-
zero values at frequencies other than our desired values.) 
Suppose, e.g., that one wants to isolate the k-largest entries of ft

from one another. To accomplish this, one should use a filter 
whose DFT looks like a characteristic function on 
{ , , ( / )} [ , )O N k N0 0 Z+f 1  (i.e., on a ( / )O k1 -fraction of the 
“discrete Fourier spectrum” of ) .f  The filter can then be modu-
lated ( )O k  times to create a filter bank with ( )O k  approximate 
“pass regions,” each of size ( / ),O N k  that collectively tile all of 
[ , ) .N0 Z+  These pass regions form the frequency bins dis-
cussed above [Figure 3(b)]. To date several different types of fil-
ters have been utilized in sparse FFTs, including Gaussians [12], 
indicator functions [5], [8], spike trains [6], [17], [18], [23], and 
Dolph–Chebyshev filters [11]. 

RANDOMLY BINNING FREQUENCIES
As mentioned in the previous subsection, a filter function can 
be used to isolate the most important entries of ft  from one 
another when they are sufficiently well separated. Unfortu-
nately, an arbitrary vector f CN!  will not generally have a DFT 
with this property. The largest magnitude entries of ft  can 
appear anywhere in principle. One can compensate for this 
problem, however, by pseudorandomly permuting ft  so that it 
“looks” uniformly distributed. As long as the permutation is 

reversible, any information gathered from the permuted vector 
can then be directly translated into information about the origi-
nal vector’s DFT, .ft

Perhaps the easiest means of randomly permuting ,f CN!

and therefore ,ft  is to use two basic properties of the Fourier 
transform: the scaling property, stating that for a fj cj=  we have 
a fj c j1= -t t  (where c 1-  is the inverse of c  modulo ,N  assuming it 
exists); and the modulation property, stating that for 
a e f·/

j
i b j N

j
2 · ·= r  we have .a fj j b= -t t  We proceed by choosing 

two random integers , [ , ),b c N0!  and defining a CN!  as 

:a e f·/
j

i b j N
c j

2 · ·
·= r (22)

for , , .j N0 1f= -  It can be seen that at  is a permuted version 
of ,ft  as the entry f~t  appears in at  as entry ( )  .modc b N·~ +

Note that permutations of this form are not fully random, even 
though b  and c  were selected randomly. Nevertheless, they are 
“random enough” for our purposes. In particular, the probabil-
ity that any two nonzero coefficients land close to each other 
can be shown to be small. 

THE PROTOTYPICAL SFT
In the simplest setting, a sparse FFT is a method that is designed 
to approximately compute the DFT of a vector f CN!  as quickly 
as possible under the presumption that the result, ,f CN!t  will be 
sparse, or compressible. Here compressible means that ft  will 
have a small number of indices (i.e., frequencies) whose entries 
(i.e., Fourier coefficients) have magnitudes that are large 

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11−2

−1

0

1

2
1

−2

−1

0

1

2
1

(b)(a)

(d)(c)

[FIG2] A demonstration of aliasing-based filtering. The vector under consideration has entries ( · · / ): cosf j2 3 12j r=  for , , .j 0 11f=
Note that f C12!t  contains only two nonzero entries: ,f 13 =t  and .f 19 =t  (a) marks the entries of a subvector, ,a R3!  of .f  Its DFT, ,at
also has three entries, each corresponding to a different subset of f.t Each subset is labeled using a different symbol in (b). Note that 
both nonzero entries of ft  fall into the same subset—both are labeled with a green diamond. (c) marks the entries of another subvector 
of f  consisting of four entries. Its DFT partitions the entries of ft  into four subsets [see (d)]. In this case the two nonzero entries of ft
fall into different subsets: one is labeled with a pentagon and the other with a triangle. (a) Three equally spaced subsamples (the red 
diamonds). (b) Three frequency bins, one for each residue modulo 3. (c) Four equally spaced subsamples (the red diamonds). 
(d) Four frequency bins, one for each residue modulo 4.
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compared to the Euclidean norm of ft  (i.e., the energy of ) .ft

Sparse FFTs improve on the runtime of traditional FFTs for such 
Fourier sparse signals by focusing exclusively on identifying ener-
getic frequencies, and then estimating their Fourier coefficients. 
This allows sparse FFTs to avoid “wasting time” computing the 
Fourier coefficients of many insignificant frequencies. 

Although several different sparse FFT variants exist, they 
generally share a common three-stage approach to computing 
the sparse DFT of a vector: Briefly put, all sparse FFTs (repeat-
edly) perform some version of the three following steps: 

1) identification of frequencies whose Fourier coefficients 
are large in magnitude (typically a randomized subroutine) 
2) accurate estimation of the Fourier coefficients of the fre-
quencies identified in the first step  
3) subtraction of the contribution of the partial Fourier rep-
resentation computed by the first two steps from the entries 
of f  before any subsequent repetitions.
Generally, each repetition of the three stages above is guar-

anteed to gather a substantial fraction of the energy present in ft

with high probability. Subtracting the located coefficients from 
the signal effectively improves the spectral sparsity of the given 
input vector, ,f  from one repetition to the next. The end result 
is that a small number of repetitions will gather (almost) all of 
the signal energy with high probability, thereby accurately 
approximating the SFT, ,ft  of the given vector .f

Consider, e.g., a vector f  whose DFT has 100 nonzero entries 
(i.e., 100 nonzero Fourier coefficients). The first round of the three 
stages above will generally find and accurately estimate a large frac-
tion of these entries (e.g., three fifths of them, or 60 terms in this 
case). The contributions of the discovered terms are then sub-
tracted off of the remaining samples. This effectively reduces the 
number of nonzero entries in ,ft  leaving about 40 terms in the cur-
rent example. The next repetition of the three stages is now exe-
cuted as before, but with the smaller effective sparsity of 40. 
Eventually all nonzero entries of ft  will be found and estimated 
after a few repetitions with high probability. We will now consider 
each of the three stages mentioned above in greater detail. 

STAGE 1: IDENTIFYING FREQUENCIES
Stage 1 of each repetition, which identifies frequencies whose 
Fourier coefficients are large in magnitude, is generally the 
most involved of the three repeated stages mentioned above. It 
usually consists of several ingredients, including: randomly 
sampling f  to randomly permute its DFT, filtering to separate 
the permuted Fourier coefficients into different frequency 
bands, and estimating the energy in subsets of each of the afore-
mentioned frequency bands. Many of these ingredients are illus-
trated with concrete examples in the section “Techniques.” Our 
objective now is to understand the general functionality of the 
identification stage as a whole. 

Roughly speaking, stage 1 works by randomly binning the 
Fourier coefficients of f  into a small number of “bins” (i.e., fre-
quency bands), and then performing a single frequency recovery 
procedure (as described in the section “Phase Encoding”) within 
each bin to find any energetic frequencies that may have been 

isolated there. The randomness is introduced into the Fourier 
spectrum of f CN!  by randomly subsampling its entries (see the 
section “Randomly Binning Frequencies”). This has the effect of 
randomly permuting the entries of .ft  The resulting “randomized 
version of f_t  is then binned via a filter bank. (i.e., as discussed in 
the section “Filtering to Isolate Frequencies”). Because ft  is 
approximately sparse, each “frequency bin” is likely to receive 
exactly one relatively large Fourier coefficient. Each such isolated 
Fourier coefficient is then identified by using one of the proce-
dures described in the section “Single Frequency Recovery.” The 
collection of frequencies discovered in each different bin is then 
saved to be analyzed further during the estimation stage 2.

STAGE 2: ESTIMATING COEFFICIENTS
Recall that stage 2 involves estimating the Fourier coefficient, ,f~t

of each frequency ~  identified during stage 1 of the sparse FFT. 
In the simplest case, this can be done for each such ~  by using 
L N%  independent and uniformly distributed random samples 
from the entries of ,f , , ,f fu uL1 f  to compute the estimator 

: .f L f e1 · /
u

l

L
i u N

1

2 · ·
l

l=~
r ~

=

-lt / (23)

–20 –10 10 20

(a)

(b)
10 20 30 400

[FIG3] A filter function with small (effective) support, and 
several frequency bins resulting from different modulations of 
the filter. The filter is a product of a sinc function with a Gaussian 
[see (a)]. The Fourier transform of the filter is a characteristic (i.e., 
box) function convolved with a Gaussian. Three translates of the 
Fourier transform, each produced by a different modulation of 
the filter function, are graphed in (b). Note that modulations of 
the filter can be used to (effectively) regroup the Fourier 
spectrum into a small number of (essentially) disjoint frequency 
bins. (a) The filter function. (b) The Fourier space: three 
modulations of the filter.
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Note that f~lt  is an unbiased estimator for f~t  (i.e., )f fE =~ ~lt t6 @
whose variance is / .O Lf 2

2t^ h  Thus, the estimator will approxi-
mate f~t  to high (relative) precision with high probability whenever 
| |f 2
~
t  is large compared to / .Lf 2

2t  In slightly more complicated 
scenarios, the estimates might come “for free” as part of the identi-
fication stage (see the section “Filtering to Isolate Frequencies” for 
an example). 

STAGE 3: REPEATING
A naive implementation of stage 3 is even more straightforward 
than stage 2. Suppose that 

| , ,f m k1 Cm f 1=~lt" ,
is the approximate sparse DFT discovered for f  during stages 1 
and 2 of the current repetition of our sparse FFT. Here, 

, , k1 f~ ~  are the frequencies identified during stage 1, while 
, ,f f m1 f~ ~l lt t  are the estimates for their Fourier coefficients found 

during stage 2 [e.g., via (23)]. In future iterations of stages 1–3, 
one can simply replace each sampled entry of ,f ,f j  with 

.f ef /
j

m

k
i j N

1

2 · ·m
m- r ~
~

=

lt/ (24)

If the entries of f  to be used during each iteration of the three 
stages have been predetermined, which is often the case, (24) can 
be used to update them all at once. These “updated samples” are 
then used in the subsequent repetitions of the three stages. 

One of the primary purposes of stage 3 is to avoid mistakenly 
identifying insignificant frequencies as being energetic. Sup-
pose, e.g., that a small number of erroneous Fourier coefficients 
are identified during the jth  repetition of the first two stages. 
Then, subtracting their contribution from the original signal 
samples during the third stage will effectively add them as new, 
albeit erroneous, energetic Fourier coefficients in .ft  This, in 
turn, allows them to be corrected in subsequent repetitions of 
the first two stages. Hence, stage three allows errors (assuming 
they are rare) to be corrected in later repetitions. 

In contrast, some SFT methods [12], [17], [18] perform only 
stages 1 and 2 without any stage 3. These methods identify all 
the energetic frequencies in stage 1 and then estimate their 
Fourier coefficients in stage 2, completely in only one iteration. 
Of course, such methods can also mistakenly identify significant 
frequencies as being energetic during stage 1. Such mistaken 
frequencies are, however, generally discovered as being insignif-
icant by these methods later, during stage 2, when their Fourier 
coefficients are estimated. 

EMPIRICAL EVALUATION
In this section, we compare several existing SFT implementations 
to the fastest Fourier transform in the West (FFTW), a fast imple-
mentation of the standard FFT, to demonstrate the computational 
gains that recent SFTs can provide over the standard FFT when 
dealing with Fourier-compressible signals. To this end, we con-
sider the following algorithms and implementations: 

■ FFTW: base line implementation of the standard FFT 
■ AAAFT: an implementation of [8] 
■ SFFT1-MIT, SFFT2-MIT: implementations of the algo-
rithms in [12] by the authors 
■ SFFT1-ETH, SFFT2-ETH: implementations of the algo-
rithms in [12] given in [25] 
■ SFFT3-ETH: implementation of a variant of the algorithm 
in [11] given in [25].

All implementations are freely available. FFTW is available at 
http://www.fftw.org. AAFFT, as well as several significantly 
faster sampling-based SFTs, are available at http://sourceforge.
net/projects/aafftannarborfa/. The ETH implementations are 

[FIG4] Running time plots for several algorithms and 
implementations of sparse FFT. (a) Runtime as a function of the 
signal length ,N  for .k 50=  (b) Runtime as a function of the signal 
length ,k  for .N 222=
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available at http://www.spiral.net/software/sfft.html. All other 
SFT implementations are available at http://groups.csail.mit.
edu/netmit/sFFT/. The SFT variants considered herein are lim-
ited to those which compute the DFT of a vector [i.e., (2)]. 
Additional experiments involving other existing SFT variants 
that sample continuous functions, as well as additional experi-
ments demonstrating noise tolerance and sampling complex-
ity, can be found at https://github.com/ludwigschmidt/
sft-experiments.

Figure 4 plots the runtimes of these SFTs against FFTW for 
various sparsity levels, ,k  and vector lengths, .N  The algo-
rithms were run on randomly generated vectors of length N
whose DFTs were k-sparse (containing k  ones in randomly 
chosen locations) for varying values of k  and .N  For each pair 
of values of k  and ,N  the parameters of the (randomized) algo-
rithms were optimized to minimize the running time while 
ensuring that the empirical probability of correct recovery was 
greater than 0.9.

APPLICATIONS
In this section, we give an overview of some of the data-inten-
sive applications of sparse FFT algorithms and techniques that 
emerged over the last few years. These applications involve, e.g., 
GPS receivers, cognitive radios, and, more generally, any analog 
signal that we wish to digitize. It is these applications that we 
focus on as they highlight the role of sparse FFT algorithms in 
the signal processing of large data. 

GPS SYNCHRONIZATION
In the (simplified) GPS synchronization problem, we are given a 
(pseudorandom) code, corresponding to a particular satellite. 
(For simplicity, this description ignores certain issues such as 
the Doppler shift, etc. See [10] for details.) The satellite repeat-
edly transmits the code. Furthermore, we are given a signal 
recorded by a GPS receiver, which consists of a window of the 
signal generated by the satellite, corrupted by noise. The goal is 
to align the code to the recorded signal, i.e., identify where the 
code starts and ends. To this end, the receiver computes the 
convolution of the code and the received signal and reports the 
shift that maximizes the correlation. This computation is typi-
cally done using the FFT: one applies the FFT to the code and 
the signal, computes the product of the outputs, and applies the 
inverse FFT to the product.

The paper [10] uses sparse FFT techniques to speed up the 
process. The improvement is based on the following observa-
tion: since the output of the inverse FFT contains a single peak 
corresponding to the correct shift, the inverse step can be 
implemented using the sparse FFT. In fact, since ,k 1=  the 
algorithm is particularly simple, and relies on a simple aliasing 
filter. Furthermore, since the sparse inverse FFT algorithm uses 
only some of the samples of the product, it suffices to compute 
only those samples. This reduces the cost of the forward step as 
well. The experiments on real signals show that the new algo-
rithm reduces the median number of multiplications by a factor 
of 2.2, or more if the value of the Doppler shift is known. 

SPECTRUM SENSING
The goal of a spectrum sensing algorithm is to scan the 
available spectrum and identify the “occupied” frequency 
slots. In many applications this task needs to be done 
quickly, since the spectrum changes dynamically. Unfortu-
nately, scanning a GHz-wide spectrum is a highly power-con-
suming operation. To reduce the power and acquisition time, 
one can use an SFT to compute the frequency representation 
of a sparse signal without sampling it at full bandwidth. One 
such proposal was presented in [28], which uses a method of 
frequency identification similar to that described in the sec-
tion “An Aliasing-Based Search.” Another approach is pre-
sented in [14], which uses a sparse FFT procedure similar to 
that in [6], [23]. It describes a prototype device using three 
software radios called Universal Software Radio Peripherals 
(USRPs), each sampling the spectrum at 50 MHz. The device 
captures 0.9 GHz, i.e., six times larger bandwidth than the 
three USRPs combined. 

ANALOG TO DIGITAL CONVERTERS  
The random binning procedure described in the section “Ran-
domly Binning Frequencies” forms the basis of the pulse-
position modulation (PPM) analog to digital converter 
presented in [29]. A prototype 9-bit random PPM analog to digi-
tal converter incorporating a pseudorandom sampling scheme 
is implemented as proof of concept. The approach leverages the 
energy efficiency of time-based processing. 

OTHER APPLICATIONS
Other applications include 2-D correlation spectroscopy [24]. 

CONCLUSIONS
It is interesting to note that SFTs have a good deal in common 
with compressive sensing techniques. The latter generally aim 
to reduce sampling requirements as much as possible to recover 
accurate sparse approximations of frequency-compressable 
functions. SFTs, on the other hand, attempt to recover accurate 
sparse approximations of frequency-compressible functions as 
quickly as absolutely possible. By necessity, therefore, an SFT 
also cannot sample a function many times (i.e., since sampling 
takes time). As a result, SFTs also utilize a relatively small num-
ber of samples and, so, can be considered as compressive sens-
ing algorithms. This puts SFTs into a broader spectrum of 
compressive sensing strategies that tradeoff additional sampling 
for decreased computational complexity. 

SFTs are also closely related to streaming (or sublinear) 
algorithms developed in the computer science community. 
Streaming algorithms aim to run in time considerably smaller 
than the time required to read the entire original data set, or 
signal. Hence, the streaming literature contains a rich set of 
tools for processing and approximating large data sets both 
quickly and accurately. Many of the techniques employed in 
existing SFTs are adapted to the Fourier setting from streaming 
techniques. For an overview of the links between these two top-
ics, see [16]. 
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I
n this article, we describe a multimodal bike-sensing setup 
for automatic geoannotation of terrain types using Web-
based data enrichment. The proposed classification system 
is mainly based on the analysis of volunteered geographic 
information gathered by cyclists. By using participatory 

accelerometer and global positioning system (GPS) sensor data 
collected from cyclists’ smartphones, which is enriched with 

data from geographic Web services, the proposed system is able 
to distinguish between six different terrain types. For the classi-
fication of the Web-based enriched sensor data, the system 
employs a random decision forest (RDF) (which compared 
favorably for the geoannotation task against different classifica-
tion algorithms). The accuracy of the novel bike-sensing system 
is 92% for six-class road/terrain classification and 97% for two-
class on-road/off-road classification. Since the evaluation is per-
formed on large-scale data gathered during real bike runs, these 
“real-life” accuracies show the feasibility of our novel approach. 

[Steven Verstockt, Viktor Slavkovikj, Pieterjan De Potter, and Rik Van de Walle]

[Geoannotation of road/terrain type 
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INTRODUCTION

THE GEOSENSING (R)EVOLUTION
The beginning of the 21st century is characterized by a mobile 
sensing (r)evolution. Mobile phones have increasingly evolved 
in functionality, features, and capability and are being used by 
many for more than just communication. With the continuous 
improvement in sensor technology built into these devices, and 
Web services to aggregate and interpret the logged information, 
people are able to create, record, analyze, and share a huge 
amount of data about their daily activities or the places they 
visit. As such, the mobile phone is well on its way to becoming a 
personal sensing platform [19]. 

Within this mobile sensing (r)evolution, phone users act as 
sensor operators, and more people start to contribute their sensor 
measurements as part of a larger-scale effort to collect data about 
a population or a geographical area. This is the idea behind par-
ticipatory or human-centric sensing. By combining mobile data 
taken from large groups of individuals, it is possible to derive new 
values for end users in ways that the contributor of the content 
even did not plan or imagine as well as perform functions that are 
either difficult to automate or expensive to implement. 

Recently, the tendency of participatory data gathering has 
also started to occur in the domain of geographic information 
systems (GIS). Where the process of mapping the Earth has 
been the task of a small group of people (surveyors, cartogra-
phers, and geographers) for many years, it has started to 
become possible now for everyone to participate in several types 

of collaborative geographic projects, such as OpenStreetMap 
(OSM) and RouteYou [5]. These projects are built upon user-
generated geographic content, so-called volunteered geographic 
information (VGI). VGI makes it easier to create, combine, and 
share maps and supports the rapid production of geographic 
information. One drawback of current VGI approaches, however, 
is that a lot of the work still involves manual labor. Within our 
article, we focus on how mobile sensors can help to automate 
and facilitate the more labor-intensive VGI tasks.

A common task performed by recreational GPS users is to find 
good routes in an area. From all the route characteristics, the road 
quality, i.e., the physical condition of the terrain, and the terrain 
surface showed to have a significant impact on how the users rank 
their routes [15]. Currently, however, this information is largely 
unavailable. To bridge this gap, there is a need for automatic road 
classification. We investigate the ability to determine the current 
terrain type from onboard mobile sensors (i.e., from a smartphone 
mounted on a bike), enriched with geographic Web data from the 
GPS coordinates. Contrarily to manual VGI, our approach facili-
tates real-time updates/annotation, e.g., when road conditions 
change or new roads are found. Furthermore, by using common 
phones, it is not required to buy expensive, specialized sensing 
equipment, keeping the costs very low. Finally, the novel approach 
allows creating more advanced route statistics. 

MULTIMODAL BIKE SENSING
A general overview of our multimodal bike-sensing setup is 
shown in Figure 1. Both bike data and Web data are used to 

[FIG1] A multimodal bike-sensing setup for automatic geoannotation of terrain types.
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extract geographic information of the terrain the user is travers-
ing. The bike data consists of accelerometer/vibration signals 
and GPS coordinates. Both are collected using the onboard 
smartphone of the cyclist. Impor-
tant to remark is that for the collec-
tion of the bike data, the device can 
be placed or stored as wanted by the 
user. Compared to our camera-
based multimodal bike-sensing sys-
tem proposed in [22], this gives 
more flexibility and freedom to the 
user. The Web data consists of a set 
of geographic images and features 
centered at the location that corre-
sponds to the bike GPS coordinates. 
To retrieve this information, we query the Web application pro-
gramming interfaces (APIs) of online geoservices like Google 
Maps, Streetview, OSM, and GisGraphy. When available, it is 
also possible to use external data sources. Based on the bike 
data and corresponding online geoimages and features, the ter-
rain type is estimated using a multimodal RDF-based classifier, 
which is fed with a set of discriminative image and accelerome-
ter features. Finally, a geographic map can be annotated auto-
matically using this road/terrain information or advanced route 
statistics can be generated.

RELATED WORK 

MOBILE SENSING: GIS TERRAIN CLASSIFICATION
The majority of mobile-sensing solutions for GIS road/terrain 
classification either use accelerometer data or visual images. 
Although they can easily (and successfully) be combined, the 
combination of both sensor types is only scarcely/marginally 
investigated. First, we will discuss the state-of-the-art accelerome-
ter- and camera-based single-sensor approaches. Second, we 
zoom in on some multimodal/multisensor approaches.

Weiss et al. [25] used an accelerometer mounted on a robot to 
perform vibration-based road classification. To train and classify the 
vibration signals, they fed a set of distinctive accelerometer features 
to a support vector machine (SVM). Although they achieved 80% 
correct classifications, the speed of the vehicle is not realistic (i.e., 
too slow) and the experiments were performed in a “controlled” 
environment. The accelerometer features, however, were well cho-
sen and are (partly) used in our setup. A similar approach was pre-
sented by Ward and Iagnemma [24], where the algorithm was 
validated in real-world conditions. They classified multiple terrain 
types as 89% correct. However, they made use of expensive, special-
ized sensing equipment, and the classifier was only trained to rec-
ognize four very distinctive classes. When the classes’ vibration 
behavior was closer to each other, e.g., when comparing tiles to 
cobblestones, the confusion of classes is expected to be higher, lead-
ing to lower accuracy. By using visual features, in addition to accel-
erometer data, we are able to tackle this problem.

Tang and Breckon [21] classified urban, rural, and off-road 
terrains by analyzing several color and texture features. They 

reported a performance of almost 90% correct SVM classifica-
tion. A drawback of their method, however, was the genericity of 
the terrain classes, i.e., too broad for recreational purposes. 

Similar limitations arise in [14]. 
What is interesting, however, is that 
these authors perform a “voting” 
over small image regions. In this 
way, conflicting or confusing zones 
can be detected and eliminated, 
leading to higher classification 
accuracy. Furthermore, it is impor-
tant to mention that the majority of 
visual approaches use an “unrealis-
tic” setup, i.e., sharp images con-
taining a single terrain type 

captured from a perpendicular camera angle. Our approach, on 
the other hand, uses images from online geoservices, contain-
ing blurred images with nonsharp terrain boundaries. As such, 
our 72% for six-class road/terrain classification and 88% for 
two-class on-road/off-road classification are “real-life” accura-
cies. Although SVM has shown to perform best in the related 
work, Khan et al. [11] recently showed that RDF beat SVM in 
the context of terrain classification. This hypothesis was also 
confirmed by our experiments.

Recently, some authors also investigated the combination 
of accelerometer and visual images for terrain classification 
[18], [23], [25]. However, none of these works was found to 
have the same level of flexibility/freedom as the proposed 
mobile approach with online geoenrichment. Both Wang et 
al. [23] and Smith III [18] made use of an instrumented “cali-
brated” road vehicle, which limited the practical use of such 
systems for large-scale collaborative sensing. A similar 
remark holds for the robot setup of Weiss [25]. Due to the dif-
ferent hardware/sensors used and the differences in terrain 
types/data sets, direct comparison with these systems is also 
difficult. Our accuracy of 92% for six-class road/terrain clas-
sification, however, is already higher than the reported accu-
racy of 90% of Wang’s four-class terrain classification. In 
combination with the higher usability, we believe that we 
may say that our system improves the state of the art  in this 
domain. Furthermore, by focusing on computational low-
cost feature extraction and classification, the proposed sys-
tem is optimized for large-scale collaborative sensing.

DATA ENRICHMENT USING WEB APIs
While the state-of-the-art approaches discussed in the previous 
section only use their own sensor data to detect the terrain type, 
we expect it is beneficial to use publicly available geodata from 
the Internet. With the growing availability of geodata Web ser-
vices, it is possible to achieve a unique combination of geo-
graphic data of different origin coupled to the location’s 
coordinates. In this section, we will briefly discuss the related 
work in this domain. 

Hariharan et al. [7] described several applications that take 
advantage of existing Web data combined with GPS location 

IN THIS ARTICLE, WE INVESTIGATE 
THE ABILITY TO DETERMINE 
THE CURRENT TERRAIN TYPE 
FROM “ONBOARD” MOBILE 

SENSORS (I.E., FROM A
SMARTPHONE MOUNTED ON 

A BIKE), ENRICHED WITH 
GEOGRAPHIC WEB DATA FROM 

THE GPS COORDINATES.
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measurements. Pinpoint Search, for example, converts the (lati-
tude, longitude) pair of a location into search terms for a search 
engine, giving Web pages relevant to the user’s immediate 
surroundings. The conversion from 
the raw (latitude, longitude) pair 
into a street address or a closely 
located point-of-interest (POI) is 
performed using a geocoding API. 
With some of these geocoders, like 
the GisGraphy API, it is even possi-
ble to find the distance to the clos-
est matching street. In our setup, 
this feature is used to facilitate the 
road/off-road terrain classification. 

Pannevis and Marx [13] discussed several providers of 
location-related Web data and list the problems related to 
each of these services. The two main problems geospatial data 
may suffer from are the variable quality and the description 
conflicts [10]. The first one concerns updating, completeness, 
and accuracy of the data. The second problem concerns 
inconsistent descriptions provided by different sources for the 
same location. To cope with geodata from a different origin 
with different data models, resolution, and types of geometric 
representations, we extract and weight the geographical fea-
tures from each geoservice individually and do not merge the 
data itself.

The works most closely related to our approach are [8] and 
[9]. Both approaches query OSM data to enrich a location-based 
mobile application. The first work improves autonomous robot 

navigation in urban environments 
using the free-to-use and globally 
available online geographic OSM 
data. The latter work presents a 
mobile application that enables 
location-based haptic exploration of 
OSM data for visually impaired 
users. Both OSM-based approaches 
show the feasibility of Web-based 
geodata enrichment. Instead of only 

focusing on OSM, our approach also uses other geographic data 
providers to improve the overall classification result. 

TERRAIN CLASSIFICATION
The multimodal bike-sensing system is built upon two sensing 
components (an accelerometer and a GPS sensor) and a location-
based querier of geographic Web APIs. Each of these “data provid-
ers” independently and concurrently captures terrain data. Based 
on this multimodal data, the proposed terrain classification sys-
tem estimates which type of terrain (asphalt, cobblestones, tiles, 
gravel, grass, and mud) the vehicle is currently traversing. 

A general scheme of the classification system is shown in 
Figure 2. First, the raw sensor data is preprocessed. The windowing 

[FIG2] A general scheme of the multimodal RDF-based terrain classification.
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groups the vibration data into overlapping data fragments of 5 s 
and aligns them onto the corresponding geoimages and the 
GPS data. Subsequently, we further process/analyze the sensor 
data to create a set of training and test feature vectors (which is 
discussed in detail in the next section). Next, the training vec-
tors are used to construct a random forest of binary decision 
trees (as explained in the section “RDF Classification”). Finally, 
the test vectors are classified using the trained RDF. Based on 
the RDF class probabilities and corresponding GPS data, geoan-
notation of test data can be performed.

FEATURE EXTRACTION
For each of the sensor data segments, i.e., for each 5 s of biking, 
we extract a set of discriminative Web and vibration features that 
best describe the terrain conditions. The selection of these fea-
tures is based on the “State of the Art” (SOTA) study (see the sec-
tion “Related Work”), and on our test data evaluation (see the 
section “Experimental Setup and Evaluation Results”). When fea-
tures show similar behavior, the feature with lowest computa-
tional cost is chosen.

ACCELEROMETER/VIBRATION FEATURES
By inspecting the accelerometer readings for the different ter-
rain types, it was found that not every road type has a distinct 
pattern. Similar “feature equalities” occur when analyzing the 
geo-Web images, however, not between the same pairs of road/
terrain types. As such, by performing a multimodal analysis it is 

expected that the ambiguities in the vibration data can be com-
pensated by visual data, and vice versa.

The accelerometer of our mobile device(s) detects the 
vibration along the X, Y, and Z-axes (see Figure 3). It is impor-
tant to remark that, depending on the position of the device, 
the tri-axial acceleration values , ,A A Ax y z" ,  will vary and 
complicate the classification task. To overcome this obstacle of 
forcing the user to place the device in a predefined position, 
the magnitude m  of the accelerometer A  is calculated in a 
similar way as in [2] using

m A A Ax y z
2 2 2= + + . (1)

Computing (and analyzing) the features on the vibration magni-
tude ,m  instead of on the individual accelerometer data along 
the X, Y, and Z axes, enables our system to assume an arbitrary 
and possibly changing orientation for the mobile device, i.e., 
increases the user’s freedom [16].

The set of features that were found to best describe the bike 
vibrations are a combination of the ones proposed in [25] and 
[16], and are defined as:

■ ( ):mn  mean of m–for flatter/smoother surfaces (e.g., 
asphalt), ( )mn  is low (close to 0)  
■ ( ):max m  maximum of m–takes large values for terrain 
types that contain big bumps, e.g., cobblestones and 
grass/mud 
■ ( ):min m  minimum of m–takes larger values for flat ter-
rains (e.g., asphalt) 

[FIG3] Exemplary accelerometer data along the X, Y, and Z axes. Visual images of corresponding terrain types are shown below the 
graph. By visual inspection of the accelerometer data, accelerometer differences between the terrain types can be noticed. Based on 
these differences, we have constructed our features.
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■ ( ):mv  standard deviation of m–is higher for coarse terrain 
types (e.g., gravel) than for smoother ones (such as tiles and 
asphalt) 
■ :m  norm of m–is large if the acceleration is constantly 
high, as it is for cobblestones 
■ ( ):mE  energy, i.e., squared fast Fourier transform sum of 
m  [28]–takes larger values for 
coarse terrains. 
It is important to remark that 

each of these vibration features is 
calculated over a sliding overlap-
ping time window of 5 s, to align 
them with the Web-based geoim-
ages/features. A similar windowing 
approach has demonstrated success 
in a previous work [29].

Table 1 shows exemplary accelerometer feature values for each 
of the investigated terrain types. This makes clearer the relation 
between each of the features and the road/off-road terrain types. 
Each of these features can be calculated in real time on the mobile 
device or can be generated at the server based on the raw acceler-
ometer data. The former approach is “battery-consuming” and the 
latter approach is “network-consuming.” Due to the low computa-
tional cost of our features, the former approach is chosen.

WEB-BASED GEOIMAGES/FEATURES
To enrich the accelerometer features, we have evaluated several 
geographic Web services based on their ease of use, data type, 
and accuracy. First we discuss the geofeatures that directly, i.e., 
without preprocessing, could be fed to the RDF. Next, we go 
more into detail on the geoimages/maps features. 

GISGRAPHY GEOFEATURES 
The Gisgraphy World Geocoding API allows for finding address 
information for a given GPS coordinate pair via a representa-
tional state transfer Web service. The two most interesting fea-
tures for our setup are the distance to the closest matching 
street and the street type. The street type, however, tends not to 
be well documented (as revealed by our experiments). As such, 
only the distance feature is used: 

■ d(lat,long): distance from current location to closest 
matching street–higher for off-road.

MAP IMAGE FEATURES
Most of the geographic Web services also allow for images to 
be queried from the neighborhood of a (lat, long)-pair. 
Depending on the service, these images may differ in detail, 
colors, and content or representation. As such, it is necessary 
to convert each of these image types individually into one or 

more features representing the 
image content. In the current 
setup, we use images from OSM 

,IOSM^ h  Google Maps IGM^ h  and 
Street View ,ISV^ h  and NGI ,INGI^ h
i.e., the Belgian National Geo-
graphic Institute. From these 
images, we extracted the following 
eight features: 

■ texture :ISV^ h  the number of strong Canny edge pixels of 
the Google Street View image ISV  (which pitch is set to -90 
to face down the “camera”). It takes large values for cobble-
stones and tiles. Since no Street View images exist for off-
road locations, texture ISV^ h is left blank, facilitating road/
off-road classification. 
■ streets IOSM^ h/streets :INGI^ h  the percentage of street-col-
ored pixels in the OSM and NGI image. The street pixels are 
filtered out using the specific OSM and NGI street color 
ranges. It is higher for road types (e.g., asphalt and cobble-
stones) than for off-road types (such as grass).
■ grass IOSM^ h /grass IGM^ h /grass :INGI^ h  the percentage 
grass- or rural-colored pixels in the OSM, Google Maps, 
and NGI image. Grass pixels are filtered out using the spe-
cific OSM, Google Maps, and NGI rural color ranges. It 
takes large values for off-road terrain types. grass IGM^ h
only takes large values for grass, and not for mud or gravel. 
The latter terrain types can be detected using the mud 

IGM^ h feature. 
■ mud :IGM^ h  the percentage of low-saturated “orange-red” 
hue-saturation-value pixels (~mud-colored pixels) in the 
Google Maps image IGM. It is large for mud and some types 
of gravel.
■ urban :IOSM^ h  the percentage of “gray” pixels based on 
red-green-blue equality. It is larger for road terrain types 
like asphalt, cobblestones, and tiles.

RDF CLASSIFICATION
RDF is a very fast tool for classification and clustering, which 
has shown to be extremely flexible in the context of com-
puter vision. The most well-known application of RDF is the 
detection of human body parts in Microsoft’s Kinect. The 
accuracy of RDF is comparable with other classifiers. Other 
advantages are its simple training and testing, and the fact 
that it can easily perform multiclass classifications. For a 
more general discussion on random forests, we refer the 
reader to [1] and [17].

Random forests are ensembles of randomized decision 
trees ,Tn  as illustrated in Figure 4. Each of the Ntree  trees 
consists of split nodes and leaves that map the multimodal 

[TABLE 1] EXEMPLARY ACCELEROMETER FEATURES
FOR EACH OF THE INVESTIGATED TERRAIN TYPES.

ASPHALT COBBLE-
STONES

TILES GRASS MUD GRAVEL

( )mn 9.811 10.777 10.248 11.274 10.899 9.121

( )mMAX 12.904 27.692 19.193 21.781 18.435 17.036

( )mMIN 6.749 1.909 3.201 1.916 4.022 3.294

( )mv 1.139 4.185 3.559 4.537 3.284 3.050

m 108 129 120 135 126 107

( )mE 11,705 16,556 14,463 18,144 15,927 11,461

THE CURRENT DATA SET 
CONTAINS OVER 16,000 

“REAL-LIFE” TERRAIN SAMPLES 
IN TOTAL TO TRAIN AND TEST 

OUR RDF-BASED CLASSIFICATION 
ALGORITHM.
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feature vector v to a distribution P ci ^ h stored at each leaf. 
The split nodes evaluate the arriving feature vector, and, 
depending on the feature values, pass it to the left or right 
child. Each leaf stores the statistics of the training vectors. 
For a classification task, it is the probability for each class c, 
denoted by :P c v;^ h

.P c v P c vn
n

N

1

tree

=
=

^ ^h h/ (2)

EXPERIMENTAL SETUP AND EVALUATION RESULTS
To evaluate the proposed architecture, we have performed sev-
eral bike tours. During these tours, we collected the training/
test data and annotated them with the ground truth (GT). Based 
on this GT, we evaluated the test data while varying the number 
of trees Ntree^ h and the sample ratio r  (i.e., the percentage of 
randomized training vectors used in each tree construction). 
Furthermore, we have also launched a bike app to extensively 
test the proposed setup and collect more test data. 

Vibration Data GEO Images/Features

v = {μ (m), max (m), min(m), σ (m), . . . , Texture (lSV), Streets (lOSM)}

Tree t1 Tree tT

f1(v ) < t1>

P1(c )

PT (c )

Category c

Category c

[FIG4] The RDF for terrain classification [17]. 
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[FIG5] An exemplary bike cycle (start to finish). 
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DATA COLLECTION
The data collection was performed using standard 26-in and 
29-in mountain bikes. Multiple cycles with varying terrain 
conditions (in type and frequency) 
were performed in several rural and 
(sub)urban regions all over Belgium. 
An exemplary run, in which all six 
terrain types occurred, is shown in 
Figure 5. To have varying weather 
conditions, the cycle runs were 
spread over the year. Tire pressure 
and tire types were changed in between several runs to cope with 
the tire-vibration dependency. 

To collect the vibration and GPS data, we used a Sony Erics-
son Xperia mini-Android smartphone and a Garmin Edge 800 
bike GPS. On the smartphone, we ran an accelerometer data log-
ger and the time lapse Android app, which takes a picture every  

s.5  These pictures are used for the GT creation. The bike GPS 
collected all geographical data and bike statistics. Based on the 
time stamps, which are stored for each sensor reading, the sensor 
data is aligned on each other. With our bike-sensing app, all 
future data will be captured using only the smartphone, increas-
ing the usability of the overall setup. 

The current data set contains over 16,000 “real-life” terrain 
samples in total to train and test our RDF-based classification 
algorithm. Each terrain sample consists of the features of 5 s 

of accelerometer data and the corresponding Web-based geo-
images/features. The distribution of the classes, which is 
retrieved using the GT creation (discussed in the section “GT 

Creation”),  consists of  26% 
asphalt, 11% cobblestones, 9% 
tiles, 12% gravel, 19% grass, and 
23% mud. To cope with the class 
imbalance in the data set, i.e., to 
have a more “unbiased” classifier, 
we follow the idea of cost-sensitive 
learning and use a weighted ran-

dom forest [3], [25]. We assign a weight to each class, with the 
minority classes given larger weight, i.e., higher misclassifica-
tion cost. 

GT CREATION
The GT creation is performed by visual analysis of the terrain 
images using a custom built GT marking application. In addi-
tion to this image-based annotation, we also extend the GT with 
the available geographic terrain data of online maps. This data 
can be retrieved by reverse geocoding of the GPS Exchange For-
mat latitude/longitude information of our GPS.

As can be seen in the cycle run in Figure 5, it is not always 
clear/easy to distinguish between the off-road types. Some-
times the terrain consists of a combination of multiple terrain 
types, e.g., grass and mud. In these situations, GT annotation 

[FIG6] (a) The accuracy of six-class road classification solely 
based on accelerometer data. (b) The accuracy of two-class road/
off-road classification solely based on accelerometer data.

1

0.9

0.8

0.7

0.6

0.5

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

r
(a)

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

r
(b)

A
cc

ur
ac

y

1

0.9

0.8

0.7

0.6

A
cc

ur
ac

y

8

Ntree

16 32 64 128

8

Ntree

16 32 64 128

1

0.9

0.8

0.7

0.6

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

r
(a)

0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

r
(b)

A
cc

ur
ac

y

1

0.9

0.8

0.7

0.6

A
cc

ur
ac

y

8

Ntree

16 32 64 128

8

Ntree

16 32 64 128

[FIG7] (a) The accuracy of six-class road classification solely 
based on online geographic data. (b) The accuracy of two-class 
road/off-road classification solely based on online geodata.
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is difficult and can be error prone. A similar kind of GT inac-
curacy was also reported in [20]. To cope with this GT issue, 
we will extend the GT concept to allow multiannotation. Cur-
rently, one can also discard these misclassifications from the 
confusion matrices and other evaluation metrics, which are 
discussed hereafter.

EVALUATION STRATEGY/METRICS 
First, it is important to mention that both six-class and two-
class road/off-road classifications are evaluated. This facilitates 
comparison with SOTA works, which mainly perform two-class 
classification or do not always use the same set of terrain types. 
Furthermore, depending the application in which the classifica-
tion system is used, the degree of specificity will also differ, i.e., 
for some GIS tools, a road/off-road discrimination is sufficient.

The accuracy of the proposed system is evaluated for an 
increasing number of RDF trees Ntree^ h and increasing sample 
ratio r (which is related to the number of bootstrap samples). 
We define the accuracy as the proportion of the total number 
of predictions that were correct, i.e., the ratio of the number 
of correctly classified test vectors and the total number of test 
vectors. This accuracy will be calculated for each of the sen-
sors individually, i.e., the accelerometer and geodata accuracy, 
and also for their multimodal combination. When they are 
combined, the highest class probability in P c v;^ h wins. 

Like in the work of Khan et al. [12], the evaluation is per-
formed using tenfold cross-validation. The data collected during 
our bike cycles is randomly divided into ten equally sized pieces. 
Each piece is used as the test set with training done on the 
remaining 90% of the data. The test results are then averaged over 
the ten cases, i.e., the accuracies that are reported are the average 
accuracy over ten RDF runs.

To allow a more detailed analysis, we also generated confu-
sion matrices for the optimal RDF N rtree-  combinations. The 
strength of a confusion matrix is that it identifies the nature of 
the classification errors, as well as their quantities.

RESULTS 
First, we will present the accuracy results for each of the sensors 
individually, i.e., the accelerometer and geodata accuracy. Subse-
quently, we will present their multimodal accuracy, based on a sim-
ple merging strategy. Figures 6–8 show the accuracy for increasing 
number of RDF trees Ntree^ h and increasing sample ratio .r  Both 
six-class and road/off-road two-class accuracy are shown.

ACCELEROMETER/VIBRATION RESULTS
Figure 6(a) shows the accuracy for the six-class terrain classifica-
tion solely based on accelerometer data. For an optimal RDF con-
figuration ; . ,N 32 0 75rtree c c^ h  an accuracy of 72% is achieved. 
For two-class road/off-road classification, the accuracy is 81%, as 
can be seen in Figure 6(b).

GEODATA RESULTS
Figure 7(a) shows the accuracy for the six-class terrain classifica-
tion solely based on online geographic data. For an optimal RDF 

configuration ; . ,N 064 60rtree c c^ h  an accuracy of 90% is 
achieved. For two-class road/off-road classification, the “geo-only” 
accuracy is 95%, as can be seen in Figure 7(b). Due to the “big” 
online enrichment, the gain of multimodal analysis is not that 
high (<2%). However, such an extensive enrichment will not 
always be possible, e.g., due to a lack of geographic data.

COMBINED “MULTIMODAL” RESULTS
Figure 8(a) shows the accuracy for the six-class terrain classifica-
tion based on both accelerometer and online geodata. For an opti-
mal RDF configuration ; . ,N 32 0 5rtree c c^ h  an accuracy of 92% 
is achieved. For two-class road/off-road classification, the multi-
modal accuracy is 97% [see Figure 8(b)]. Both results show that 
our system outperforms the SOTA work in this domain 
(see the section “Related Work”).

CONFUSION MATRICES
Figure 9 shows the accelerometer, geodata, and multimodal con-
fusion matrices for their optimal RDF N r–tree  combinations on a 
test set of 240 terrain segments (with 40 segments for each class). 
These matrices contain information about the actual (~GT) and 
predicted classifications done by our RDF-based classification sys-
tem and report the number of true/false positives and true/false 
negatives. As the geodata confusion matrix in Figure 9(a) shows, 
each of the terrain types was classified correctly to a high degree. 
Only a limited number of misclassifications occurred. For the 

[FIG8] (a) The accuracy of six-class road classification based on 
multimodal data. (b) The accuracy of two-class road/off-road 
classification based on multimodal data.
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accelerometer classification, most misdetections occur on off-road 
terrain types [as shown in bold in Figure 9(b)]. 

The confusion matrix for the multimodal result is shown in 
Figure 9(c). As already mentioned in the section “Geodata 
Results,” the accuracy gain of multimodal analysis compared to 
the geodata result is not that high (only 2%) due to the extensive 
enrichment in our test setup. This is also reflected by the 

multimodal confusion matrix, which holds similar results as the 
confusion matrix of the geodata. However, as can be seen by com-
paring Figure 9(a) and (c), some improvements are achieved in 
the road/off-road classification–road/off-road misclassifications 
and are shown in Figure 9 with a gray background.

RECEIVER OPERATOR CHARACTERISTIC/
AREA UNDER THE CURVE EVALUATION
The performance of the RDF-based classifier in predicting the ter-
rain type is also assessed by plotting the receiver operator charac-
teristic (ROC) curve for the tenfold cross validation results on the 
evaluation set. To generate the multiclass ROC operating points 
we treat the multiclass problem as a “one versus all” binary classi-
fication problem and calculate the operating points for each class 
and then average it out for the entire classifier [4], [6]. The ROC 
curve, shown in Figure 10, shows the tradeoff between prediction 
sensitivity and specificity. The RDF cutoff is the parameter that is 
varied along the curve. The area under the curve (AUC) is near the 
maximum and demonstrates the high prediction accuracy of our 
multimodal terrain classification algorithm. 

CONCLUSIONS 
This article focuses on the automatic geoannotation of road/terrain 
types by collaborative bike sensing and presents the detailed design, 
implementation, and evaluation of a novel road/terrain classifica-
tion system. The proposed system shows how mobile sensors can 
help to automate and facilitate some of the more labor-intensive 
VGI tasks. Based on the analysis of volunteered geographic informa-
tion gathered by cyclists, enriched with Web-based geographic data, 
geographic maps can be annotated automatically with each of the 
six terrain types. A geographic map can be annotated automatically 
using this road/terrain information or advanced route statistics can 
be generated. In the future, it should even be possible to use the 
collected data to perform terrain-based routing. 

[FIG10] The ROC curve for the RDF-based terrain classification 
using tenfold cross-validation. The high prediction accuracy of 
our classification method is shown by the AUC, which is 0.9136 
for accelerometer only, 0.985 for geodata only, and 0.994 for the 
multimodal approach.
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[FIG9] The confusion matrices for geodata, accelerometer, and 
multimodal classification on a test set of 240 terrain segments 
(with 40 segments for each class). (a) A geodata confusion 
matrix. (b) An accelerometer confusion matrix. (c) A multimodal 
confusion matrix.
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It is worth pointing out that the proposed techniques can 
also be extended to other sensing scenarios. First of all, the con-
cept of combining mobile sensing with online (geographic) 
enrichment can lead to improvements in many domains. The 
proposed contributions are not limited to geographic map 
enrichment, but can easily be adapted to other applications, 
such as transportation analysis, health/activity monitoring, and 
robot navigation. Our article shows how computationally low-
cost features that are collected by a sensing device can be 
extended/filtered/improved at large scale using data on the Web. 
Furthermore, it is shown how an RDF-based classifier can be 
used to perform multimodal classification tasks at low training 
and testing time. Finally, it is important to mention that the set 
of mobile and online terrain features can also be used for other 
big data classification tasks, such as scene classification and 
image clustering. 
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C
omplex-valued signals occur in many areas of science and 
engineering and are thus of fundamental interest. When 
developing signal processing methods in the complex 
domain, there are two key issues: making use of the full statis-
tical information and optimization. In this article, we review 

the necessary tools to address these two key issues and provide examples in 
filtering and blind source separation (BSS) that utilize these tools. 

INTRODUCTION
Complex-valued random signals are essential to a great number of 
applied research areas, such as communications, radar, sonar, geophysics, 
oceanography, optics, and electromagnetics. A common assumption 
when dealing with complex random signals is that they are proper or cir-
cular. Most often, this is not explicitly stated but implied by ignoring 
some aspect of the statistics of a complex signal. A proper complex ran-
dom variable is uncorrelated with its complex conjugate, and a circular
complex random variable has a probability distribution that is rotation-
ally invariant in the complex plane. These assumptions are mathemati-
cally convenient because they simplify many computations. Often, they 
can indeed be justified. However, there are also many situations where 
proper and circular signals are very poor models of the underlying phys-
ics. While this has been known and appreciated by oceanographers since 
the early 1970s [1], and pioneering works in signal processing date back 
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to the 1990s [2]–[5], it is only more recently that the signal pro-
cessing community has started showing an increasing interest 
in this topic. 

Another important issue in the processing of complex-valued 
signals is related to optimization. Since cost functions are real 
valued and hence nonanalytic, two approaches have been the 
common practice in optimization: derivatives are either evaluated 
with respect to the real and imaginary parts separately and then 
combined, or optimization is performed in an augmented space 
by transforming the problem from the complex domain to the 
real domain of double the dimension. The first approach leads to 
unnecessarily long expressions, and the second requires finding 
the appropriate transformation, which is not always straightfor-
ward, especially when dealing with nonlinear functions.
Wirtinger calculus [6] addresses this issue by relaxing the defini-
tion of differentiability and defining a general framework that 
includes analytic functions as a special case. The development by 
the Austrian mathematician Wirtinger dates back to 1927. It was 
rediscovered in the engineering community, without reference to 
Wirtinger, by Brandwood in 1983 [7], and then further developed 
for gradient and Hessian formulations by van den Bos [8], [9] 
using an augmented representation that doubles the dimension-
ality. It is only recently that a larger fraction of the signal process-
ing community has taken notice of the development. The biggest 
advantage of using Wirtinger derivatives is that the expressions 
are kept simple and similar to the real case, and many algorithms 
and analyses can be readily extended from the real to the complex 
domain. An additional advantage is that, since the expressions do 
not become unnecessarily complicated, many of the simplifying 
assumptions—of which circularity has been a common one—can 
be avoided. 

When a signal is improper or noncircular, accounting for 
this fact can provide significant performance gains. For 
instance, in mobile multiuser communications, it can enable 
an improved tradeoff between spectral efficiency and power 
consumption. Important examples of digital modulation 
schemes that produce improper complex baseband signals are: 
binary phase-shift keying, pulse-amplitude modulation, 
Gaussian minimum shift keying, and offset quaternary phase-
shift keying. A small sample of papers exploiting the impropri-
ety of these signals is [10]–[15]. Improper baseband 
communication signals can also arise due to an imbalance 
between their in-phase and quadrature (I/Q) components. I/Q 
imbalance degrades the signal-to-noise ratio and thus the bit 
error rate performance. Some papers proposing ways of com-
pensating I/Q imbalance in different types of communication 
systems include [16]–[19]. Techniques for wideband system 
identification when the system, e.g., a wideband wireless com-
munication channel, is not rotationally invariant are pre-
sented in [20] and [21]. Widely linear beamformers have been 
considered by [22]–[25]. 

Data-driven methods for signal processing, particularly BSS, 
is another area where exploiting impropriety and noncircularity 
has led to important advances. An important technique for BSS is 
independent component analysis (ICA), where the multivariate 

data are decomposed into additive components that are as inde-
pendent as possible. Under certain conditions, ICA can be 
achieved by exploiting impropriety [26], [27]. Significant perfor-
mance gains can be obtained when algorithms explicitly take the 
noncircular nature of the data into account [28]–[33]. Among the 
many applications of ICA, medical data analysis and communica-
tions have been two of the most active. For example, in [33], 
noncircularity is exploited for feature extraction in electrocardio-
grams, and, in [34], noncircularity is shown to improve the esti-
mation of neural activity when analyzing functional magnetic 
resonance imaging (fMRI) data. 

To exploit the improper or noncircular nature of signals, we 
need to utilize the complete statistical characterization of com-
plex-valued random signals. When restricted to second-order 
moments, this means that not only the (standard) correlation 
matters but also the complementary (or pseudo-) correlation, 
which is the correlation of a complex signal with its complex con-
jugate. To access the information contained in this correlation, 
we can employ linear-conjugate linear, or widely linear, transfor-
mations, or we can use cost functions that take the full second-
order statistics into account with a linear structure [35]. 
Complementary correlations were first mentioned in the signal 
processing literature in 1969 by [36], and the optimum widely 
linear minimum mean-squared error (WLMMSE) filter was 
derived by [2] and [37]. When higher-order moments are consid-
ered, then there is a multitude of complementary correlations 
[38], [39]. For instance, in the fourth-order moment 

{ },E x x x x( ) ( ) ( ) ( )
1 2 3 4
* * * *  each term may or may not be conjugated. 

Higher-order statistics (HOS) are often utilized implicitly by opti-
mizing a cost function such as entropy. 

In this article, we review some of the basic results on sta-
tistical signal processing of complex-valued data and also 
some of the more recent applications in filtering and blind 
source separation.  

OPTIMIZATION
In the derivation of signal processing algorithms, we often have 
to compute gradients and Hessians of cost functions, such as qua-
dratic forms or likelihood functions. Cost functions are real-val-
ued but often involve complex-valued parameters. Such functions 
are not analytic and hence not differentiable. To overcome this 
basic limitation, two possible approaches have traditionally been 
adopted in the signal processing literature. The most common 
approach is the evaluation of separate derivatives with respect to 
the real and imaginary parts of the nonanalytic function. Another 
approach has been to define “augmented” vectors by stacking the 
real and imaginary parts in a vector of twice the original dimen-
sion, and then to perform all the evaluations in the real domain. 
In the end, the solution is converted back to the complex domain. 
Needless to say, both approaches are cumbersome and might also 
require additional assumptions, such as circularity, to simplify 
the expressions. 

The framework based on Wirtinger calculus [6], [40]—also 
called the CR  calculus [41]—provides a simple and straightfor-
ward approach to calculating derivatives with respect to complex 
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parameters, in particular for the important case of nonanalytic 
functions. Wirtinger calculus allows one to perform all the deriva-
tions and analysis in the complex domain. This can be done with-
out considering the real and imaginary parts separately and 
without doubling the dimensionality, which was the approach 
taken by [9]. Hence, all of the computations can be carried out in a 
manner very similar to the real-valued case, making many tools 
and methods developed for the real case readily available for the 
complex case. 

In this section,  we introduce the main idea behind Wirtinger 
calculus for scalar, vector, and matrix optimization and give 
examples to demonstrate its application. By keeping the expres-
sions and evaluations simple, a key advantage is that common 
assumptions in complex-valued signal processing—most nota-
bly circularity—can be avoided. 

OPTIMIZATION: SCALAR CASE
We first consider a complex-valued function ( )f z =

( , ) ( , ),u z z jv z zr i r i+  where .z z jzr i= +  The classical definition 
of complex differentiability requires that the derivatives defined 
as the limit 

( ) ( ) ( )limf z z
f z z f z

z
0

0

0 0

D
D

=
+ -

"D
l (1)

be independent of the direction in which zD  approaches 0 in 
the complex plane. This requires that the Cauchy–Riemann 
equations [40], [42] 

z
u

z
v

z
u

z
vand

r i i r2
2

2
2

2
2

2
2= =- (2)

be satisfied. These conditions are necessary for ( )f z  to be 
complex-differentiable. If the partial derivatives of ( , )u z zr i  and 

( , )v z zr i  are continuous, then they are sufficient as well. A func-
tion that is complex-differentiable on its entire domain is called 
holomorphic or analytic. Obviously, since real-valued cost func-
tions have ( , ) ,v z z 0r i =  the Cauchy–Riemann conditions do 
not hold, and hence cost functions are not analytic. The Cau-
chy–Riemann equations impose a rigid structure on ( , )u z zr i

and ( , )v z zr i  and thus ( ) .f z  A simple demonstration of this fact 
is that either ( , )u z zr i  or ( , )v z zr i  alone suffices to determine 
the derivatives of an analytic function. 

Wirtinger calculus provides a general framework for differen-
tiating nonanalytic functions, and is general in the sense that it 
includes analytic functions as a special case. It only requires that 

( )f z  be differentiable when expressed as a function : .f R R2 2"

Such a function is called real differentiable. If ( , )u z zr i  and 
( , )v z zr i  have continuous partial derivatives with respect to zr

and ,zi f  is real differentiable. For such a function, we can write 

,z
f

z
f j z

f
z
f

z
f j z

f
2
1

2
1and

r i r i2
2

2
2

2
2

2
2

2
2

2
2_ _- +

*
c cm m (3)

which can be easily derived by writing ( ) /z z z 2r = + *  and 
( ) /z z z j2i = - *  and then using the chain rule [43]. Instead of 

computing the derivatives with respect to zr  and ,zi  the 

complex derivatives (3) can be evaluated by considering f  to be 
a bivariate function ( , )f z z*  and treating z  and z*  as indepen-
dent variables. That is, when applying / ,f z2 2  we take the deriva-
tive with respect to ,z  while formally treating z*  as a constant. 
Similarly, /f z2 2 *  yields the derivative with respect to ,z*  for-
mally regarding z  as a constant. Thus, there is no need to 
develop new differentiation rules. This was shown in [7] in 1983 
without a specific reference to Wirtinger’s earlier work [6]. 
Interestingly, many of the references that refer to [7] and use 
the generalized derivatives in (3) do evaluate them by comput-
ing derivatives with respect to zr  and zi  separately, rather than 
considering the function in the form ( , )f z z*  and directly taking 
the derivative with respect to z  or .z*  This leads to unnecessar-
ily complicated derivations. 

When we consider the function in the form ( , ),f z z*  the 
Cauchy–Riemann equations can simply be stated as / .f z 02 2 =*

In other words, an analytic function cannot depend on .z*  If f
is analytic, then the usual complex derivative in (1) and /f z2 2  in 
(3) coincide. Hence, Wirtinger calculus contains standard com-
plex calculus as a special case. 

For real-valued ( ),f z  we have *( / ) / ,f z f z2 2 2 2= * i.e., the 
derivative and the conjugate derivative are complex conjugates 
of each other. Because they are related through conjugation, we 
only need to compute one or the other. As a consequence, a nec-
essary and sufficient condition for real-valued f  to have a sta-
tionary point is / .f z 02 2 =  An equivalent necessary and 
sufficient condition is /f z 02 2 =*  [7]. 

EXAMPLE
Consider the real-valued function ( ) | |f z z z z z2r r i

4 4 2 2= = + + .zi
4

We can evaluate /f z2 2  by differentiating separately with respect 
to zr  and ,zi

( ),z
f

z
f j z

f z z z j z z z2
1 2 2 2

r i
r r i r i i
3 2 2 3

2
2

2
2

2
2= - = + - +c m (4)

or we can write the function as ( ) ( , ) ( )f z f z z z z2 2= =* *  and dif-
ferentiate by treating z*  as a constant, 

( ) .z
f z z2 2

2
2 = * (5) 

The second approach is clearly simpler. It can be easily shown 
that the two expressions, (4) and (5), are equal. However, while 
the expression in (4) can easily be derived from (5), it is not 
quite as straightforward the other way around. Because ( )f z  is 
real valued, there is no need to compute / :f z2 2 *  it is simply the 
conjugate of / .f z2 2 ■

Series expansions are a valuable tool in the study of nonlin-
ear functions. For analytic, i.e., complex-differentiable, func-
tions, the Taylor series expansion assumes the same form as in 
the real case

( ) !
( ) ( ) ,f z k

f z
z z

( )k

k

k0

0
0= -

3

=

/ (6)
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where ( )f z( )k
0  denotes the kth-order derivative of f  evaluated at 

.z0  If ( )f z  is analytic for | | ,z R#  then the Taylor series given 
in (6) converges uniformly in | | .z R R1 1#

As in the case of Taylor series expansions, the desire to have 
the complex domain representation follow the real-valued case 
closely has also been the main motivation for defining differen-
tiability in the complex domain using (1). However, the class of 
functions that admit such a representation is limited, excluding 
the important group of cost functions. For functions that are 
real differentiable, Wirtinger calculus can be employed to write 
the Taylor series of a nonanalytic function as an expansion in z
and .z*  We discuss this approach in more detail in the next sec-
tion, when we introduce vector optimization using Wirtinger 
calculus. This simple but useful idea for Taylor series expansions 
of real differentiable functions has been introduced in [38] and 
formalized in [44] using the duality between R N2  and .CN

OPTIMIZATION: VECTOR CASE

SECOND-ORDER EXPANSIONS
In the development and study of adaptive signal processing
algorithms, i.e., in iterative optimization of a selected cost func-
tion and in performance analysis, the first- and second-order 
expansions prove to be most useful. For an analytic function 

( ): ,f z C CN 7  we define ( ) ( )f f fz z0D = -  and z z z0D = -  to 
write the second-order approximation to the function in the 
neighborhood of z0  as 

( )f f 2
1z z H z zT T

zd.D D D D+

, ( ) ,,f 2
1z H z z zzdG H G HD D D= +* * (7)

where

( )
f

f
z
z

z
z0

d
2
2

=

is the gradient evaluated at ,z0  and 

( ) ( )
f

fH z
z z

z
T

2
2

z
z0

d
2 2

2
_ =

is the Hessian matrix evaluated at .z0  As in the real-valued case, 
the Hessian matrix is symmetric, and it is constant if the func-
tion is quadratic. 

On the other hand for a cost function, ( ): ,f z C RN 7  which 
is nonanalytic, we can use Wirtinger calculus to expand ( )f z  in 
two variables z  and ,z*  which are treated as independent 

( ) , , ,f f f f
2
1z, z z z

z z
z zT

2

z zd d
2 2
2.G H G HD D D D D+ +* * *

*

, , .f f
2
1

z z
z z

z z
z zH H

2 2

2 2
2

2 2
2D D D D+ +* * *
*

(8)

Thus, the series expansion has the same form as one for a real-
valued function of two variables, except that these are replaced
by z  and .z*  Note that when ( )f z, z*  is real valued, we have 

, , , ,Ref f f2z z zz z zd d dG H G H G HD D D+ =* * *" , (9)

since, in this case, .f fz zd d= ** ^ h  Using the Cauchy–Bunya-
kovskii–Schwarz inequality [45], we have 

| | ,ffz zH
z zd d#D D* *

which holds with equality when zD  is in the same direction as 
.fzd *  Thus, for maximum change in the function value, one 

needs to calculate and use the gradient with respect to the 
complex conjugate of the variable, i.e., ( ) .f zd *

It is also important to note that when ( ) ( ),f fz, z z=* i.e., the 
function is analytic (complex differentiable), all derivatives with 
respect to z*  in (8) vanish, and (8) thus coincides with (7). As 
noted earlier, the Wirtinger framework includes analytic func-
tions, and when the function is analytic, all the expressions 
reduce to those for analytic functions. 

COMPLEX GRADIENT UPDATES
To derive the expressions for gradient descent and Newton 
updates in the complex domain, we construct three closely 
related vectors from two real vectors w Rr

N!  and .w Ri
N!

The first one is the complex vector ,jw w w Cr i
N!= +  and the 

second is the real composite N2 -dimensional vector 
[ , ] ,w w w Rr

T
i
T T N2

R !=  obtained by stacking wr  on top of .wi

Finally, the third one is the complex augmented vector 
[ , ] ,w w CT H T N2!=w  obtained by stacking w  on top of its 

complex conjugate .w*  Augmented vectors are always under-
lined. The complex augmented vector w  is related to the real 
composite vector w R N2

R !  through U wN R=w  and 
/ ,1 2w UN

H
R = w^ h  where the real-to-complex transformation 

j
j

U
I
I

I
I CN

N N2 2!=
-

#; E (10)

is unitary up to a factor of 2, i.e., .2U U U U IN N
H

N
H

N= =  The 
complex augmented vector w  is obviously an equivalent redun-
dant, but convenient, representation of .wR  Consider a func-
tion ( ):f w C RN 7  that is real differentiable up to second order. 
If we write the function as ( ):f w R RN2

R 7  using the aug-
mented vector definition given above, we can easily establish 
the following two relationships [40], [46]: 

f f
w U

*N
H

R2
2

2
2= w (11)

.f f
w w

U U
*T N

H
T N

2 2

R R2 2
2

2 2
2= w w (12)

We can use these relationships to derive the expressions for gra-
dient descent and Newton updates for iterative optimization in 
the complex domain. 

From the real gradient update rule ,/fw wR R2 2nD =- ^ h  we 
obtain the complex update relationship 

.f f2U w U wN NR
R2
2

2
2n nD D= =- =-w w

The dimension of the update equation can be further reduced 
as

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [116] SEPTEMBER 2014

.

f

f
f2 2

w
w

w

w

w
w

&2
2

2
2 2

2n n
D
D

D=- =-
**

*

R

T

S
S
S
S

;
V

X

W
W
W
W

E

Again, we note that the gradient with respect to the conjugate 
of the parameter gives the direction for maximal first-order 
change, derived here using the representation equivalent to the 
real-valued case in .R N2

COMPLEX NEWTON UPDATES
The Newton update in R N2  given by 

f f
w w

w wT

2

R R
R

R2 2
2

2
2D =- (13)

can be shown to be equivalent to

( ) f fw H H H H
w

H H w
* * *
2 1 2

1
1

1
1 2

1

2
2

2
2D =- - -- - -

*c m (14)

in ,CN  where 

.f fandH
w w

H
w wT H1

2

2

2

2 2
2

2 2
2_ _ (15)

To establish this relationship, we can use (11) and (12) to 
express the real-domain Newton update in (13) as 

,f f
* *T

2

2 2
2

2
2D =-w w w w

which can then be rewritten as

,

f

f
H
H

H
H

w
w

w

w

* *

*
2

1

1

2

2
2

2
2

D
D

=-
*

R

T

S
S
S
S

> =
V

X

W
W
W
W

H G
where H1  and H2  are defined in (15). We can use the formula for 
the inverse of a partitioned positive definite matrix [47, p. 472], 
provided that the nonnegative definite matrix /f * T22 2 2w w^ h is 
full rank, to write 

,

f

f
w
w

T
T H H

H H T
T

w

w
* *

* * *

*

1

1 2

2 1 2
2

2
2

D
D

=-
-

--

- -

- -

-*

*

R

T

S
S
S
S

= >
V

X

W
W
W
W

G H (16)

where T H H H H* *
2 1 2

1
1_ - -  and : )-^ h  denotes .1

: )
-^ h6 @  Since 

) / (f * T22 2 2w w^ h is Hermitian, we finally obtain the complex 
Newton update given in (14). The expression for wD *  is the 
conjugate of (14). 

In [48], it was shown that the Newton algorithm for N  com-
plex variables cannot be written in a form similar to the real-
valued case. However, as established here, it can be written as in 
(16) using the augmented form, which is equivalent to the New-
ton method in .R N2  In ,CN  it can be expressed as in (14). 

EXAMPLE
A linear filter approximates the desired sequence ( )x n  through 
a linear combination of a window of input samples ( )y n  such 
that the estimate of the desired sequence is 

( ) ( ),x n nw yH=t

where the input vector at time n  is written as ( )ny =

[ ( ) ( ) ( )] ,y n y n y n N1 1 Tg- - +  and the filter weights are 
[ ] .w w ww N

T
0 1 1g= -  Hence, the random vector ( )ny  is formed 

by the current (at time )n  and last n 1-  samples of the discrete 
time random sequence ( ) .y n  The minimum mean-square error 
(MSE) filter is designed such that the error 

( ) {| ( ) | } {| ( ) ( ) | }J E e n E x n x nw 2 2
mse = = - t

is minimized. To evaluate the weights wopt  given by 

( ),arg min Jw wopt msew
=

we can directly take the derivative of the MSE with respect to w*—
by treating the variable w  as a constant—such that 

{ ( ) ( )} { ( ) ( ) ( ) ( ) }E e n e n E x n n x n n
w w

w y w yH T

2

2

2

2
=

- -
*

* *

*

*6 6@ @
( ) ( ) ( )E n x n ny w yT=- -* *6 @" , (17)

and obtain the complex Wiener–Hopf equation

{ ( ) ( )} { ( ) ( )}E n n E x n ny y w yH
opt = *

by setting (17) to zero. We assume that the input is a zero-mean 
wide-sense-stationary (WSS) process and that the desired 
sequence and input are jointly WSS. We then define the input 
covariance matrix { ( ) ( )}n nEC y yyy

H=  and the cross-covariance 
vector { ( ) ( )},E x n nc yxy = *  to write 

w C cyy xy
1

opt =
- (18)

when the input is persistently exciting, i.e., the covariance 
matrix is nonsingular. ■

Another example would be the derivation of the backpropa-
gation update rule for training a multilayer perceptron (MLP), 
which involves the optimization of a nonlinear function. As 
demonstrated in [40], Wirtinger calculus simplifies the deriva-
tion considerably by allowing the use of simple tools such as 
the chain rule for nonanalytic functions, significantly shorten-
ing the derivation compared with the derivations given in, 
e.g., [49]–[51]. 

MATRIX CASE
Wirtinger calculus extends straightforwardly to functions 
:f C CN M"  or : .f C CN M "#  There is no need to develop new dif-

ferentiation rules for Wirtinger derivatives. All rules for taking 
derivatives for real functions remain valid. However, care must be 
taken to properly distinguish between the variables with respect to 
which differentiation is performed and those that are formally 
regarded as constants. So all the expressions from the real-valued 
case given, e.g., in [52], can be straightforwardly applied to the 
complex case. For instance, for ( ) ( ),g TraceZ,Z ZZ* H=  we obtain 
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( ( ) ) .
g gTrace andZ Z

Z Z Z
Z

Z
*

*
*

T

2
2

2
2

2

2
= = =

Another example is the conjugate derivative of | ( ) | ,log det W 2  a 
term that acts as a regularizer in the derivation of ICA algorithms 
using maximum likelihood (ML) cost. It can be simply evaluated as 

| ( ) | ( ) ( )

( )
.

log det log det det

log det
W

W
W
W W

W
W

W

* *

*

*

*
H

2

2

2

2

2

2

2

=

= = -

6
6

@
@

(19)

There are a number of comprehensive references (e.g., [40],
[41], [44], [46], [53], and [54]) on Wirtinger calculus that deal 
with the chain rule for nonanalytic functions, complex gradi-
ents and Hessians, and complex Taylor series expansions. 

Complex-valued ICA is an example for the usefulness of 
Wirtinger calculus for complex-valued matrix derivatives. When 
the demixing matrix is not constrained to be unitary, it is a 
matrix-valued parameter that needs to be optimized. In this 
case, Wirtinger calculus has again proven powerful, both for the 
derivation of the algorithm and in stability and performance 
analysis [28], [55], [56]. 

STATISTICS
How is a complex random vector statistically described using
probability distributions and moments? This is the topic of this 
section, where we pay particular attention to the ever-important 
Gaussian distribution. 

COMPLEX RANDOM VECTORS
An N-dimensional complex random vector x  is defined as 

,jx x xr i= +  where xr  and xi  are a pair of N-dimensional real 
random vectors. The probability distribution (density) of a com-
plex random vector is given by the joint distribution (density) of 
its real and imaginary parts. If the probability density function 
(pdf) exists, we write this as 

( ) ( ) ( , ) .p p j px x x x xr i r ix x x xr i_= +

If there is no risk of confusion, the subscripts may also be 
dropped. The expected value of a function :g D CN"  whose 
domain D  includes the range of ,x  is given by 

{ ( )} { [ ( )]} { [ ( )]}Re ImE g E g jE gx x x= +

( ) ( , ) .g j p d dx x x x x xr i r i r i
R N2

= +# (20)

Unless otherwise stated, we assume that all random vectors
have zero mean. To characterize the second-order statistical 
properties of ,jx x xr i= +  we consider the real composite ran-
dom vector [ , ] .x x xr

T
i
T T

R =  Its covariance matrix is 

{ }C E x
C
C

C
Cxx x

T x x

x x
T

x x

x x
R R

r r

r i

r i

i i
R R = = ; E

with { },EC x xx x r r
T

r r = { },EC x xx x r i
T

r i =  and { } .EC x xx x i i
T

i i =  The 
augmented covariance matrix of x  is [57]–[59] 

{ } ,E U C U
C
C

C
C* *H N x x N

H xx

xx

xx

xx

H
R R= = = =C x x Cxx xx= GLL (21)

which is related to the real covariance matrix Cx xR R  through 
the real-to-complex transformation UN  from (10). The north-
west block of the augmented covariance matrix is the usual 
(Hermitian and nonnegative definite) covariance matrix 

{ } ( ) ,E jC xx C C C C Cxx
H

x x x x x x
T

x x xx
H

r r i i r i r i= = + + - = (22)

and the northeast block is the complementary covariance matrix

{ } ( ) ,E jC xx C C C C Cxx
T

x x x x x x
T

x x xx
T

r r i i r i r i= = - + + = LL (23)

which uses a regular transpose rather than a Hermitian (con-
jugate) transpose. Other names for CxxL  include pseudo-cova-
riance matrix [60], conjugate covariance matrix [2], or 
relation matrix [5]. It is important to note that, in general, 
both Cxx and CxxL are required for a complete second-order 
characterization of .x  In the important special case where the 
complementary covariance matrix vanishes, ,0Cxx =L x  is 
called proper, otherwise improper [60]. Similar to the 
augmented vector ,x  the augmented covariance matrix C xx  is 
an equivalent redundant, but convenient, representation of 
Cxx  and .CxxL

Necessary and sufficient conditions for propriety on the 
covariance and cross-covariance of real and imaginary parts xr

and xi  are C Cx x x xr r i i=  and .C Cx x x x
T

r i r i=-  When x x jxr i= +

is scalar, then having uncorrelated real and imaginary parts is 
necessary, but not sufficient, for propriety. If x  is proper, its 
Hermitian covariance matrix is 

,j j2 2 2 2C C C C Cxx x x x x x x x x
T

r r r i i i r i= - = +

and its augmented covariance matrix C xx  is block-diagonal. If 
complex x  is proper and scalar, then its variance is twice the 
variance of real and imaginary parts: x x x .2 22 2 2

r iv v v= =

The complex multivariate Gaussian pdf can be written in 
terms of the augmented covariance matrix as [57], [58]: 

( ) .
det

expp 1
2
1x N

xx

H
xx

1

r
= - -

C
x C x' 1 (24)

This pdf depends algebraically on ,x  i.e., x  and ,x*  but is 
interpreted as the joint pdf of xr  and ,xi  and can be used for 
proper or improper .x  In the past, the term complex Gaussian 
distribution often implicitly assumed propriety. Therefore, some 
researchers call an improper complex Gaussian random vector 
generalized complex Gaussian, not to be confused with the 
complex generalized Gaussian [61]. It is particularly illuminat-
ing and instructive to look at the scalar complex improper 
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Gaussian case; see [46] for a detailed discussion. The simplifica-
tion that occurs when 0Cxx =L  is obvious and leads to the pdf of 
a complex proper Gaussian random vector x  [62], [63]

( ) .
det

expp 1x
C

x C xN
xx

H
xx

1

r
= - -" ,

It is also possible to define a stronger version of propriety in 
terms of the probability distribution of a random vector. A vec-
tor is called circular if its probability distribution is rotationally 
invariant, i.e., x  and ex xj= al  have the same probability distri-
bution for any given real .a  Circularity does not imply any con-
dition on the standard covariance matrix Cxx  because 

{ } { } .E E e eC x x xx Cx x
H j H j

xx= = =a a-l ll l (25)

On the other hand,

{ } { }E E e e eC x x xx Cx x
T j T j j

xx
2= = =a a al ll lL L (26)

can be equal to CxxL  for arbitrary a  if and only if .0Cxx =L
Because the Gaussian distribution is completely determined by 
second-order statistics, a complex Gaussian random vector x  is 
circular if and only if it is zero-mean and proper [64]. 

Propriety requires that second-order moments be rotationally 
invariant, whereas circularity requires that the distribution, and 
thus all moments (if they exist), be rotationally invariant. There-
fore, circularity implies zero mean and propriety, but not vice 
versa, and impropriety implies noncircularity, but not vice versa. 
By extending the reasoning of (25) and (26) to higher-order 
moments, we see that if x  is circular, a pth-order moment can be 
nonzero only if it has the same number of conjugated and non-
conjugated terms [4], [38]. In particular, all odd-order moments 
must be zero. This holds for arbitrary order .p

EXAMPLES
As examples for proper/improper/noncircular signals, we show 
scatter plots—sample values in the complex plane—of three 
signals in Figure 1: (a) Ice Multiparameter Imaging X-Band 
Radar (IPIX) data from http://soma.crl.mcmaster.ca/ipix/, (b) a 
16-quadrature amplitude modulated (QAM) signal, and (c) the 

functional MRI data for a simple box-car type paradigm [40], 
which is naturally represented as complex valued. 

The radar signal in Figure 1(a) is narrowband. Evidently, 
the gain and phase of the in-phase and quadrature channels 
are matched, as the data appear circular, and, therefore proper. 
The uniform phase is due to carrier phase fluctuation from 
pulse-to-pulse and the amplitude fluctuations are due to varia-
tions in the scattering cross section. The 16-QAM signal in (b) 
has zero complementary covariance function and is therefore 
proper—second-order circular. However, its distribution is not 
rotationally invariant and therefore it is noncircular. The fMRI 
component shown in (c) is highly noncircular as can be easily 
observed. Of course, classifying signals as circular or 
improper/noncircular should not be done based on inspection 
of their scatter plots, but rather on sound statistical argu-
ments. In the next section, we discuss how we can measure 
the degree of impropriety. 

CIRCULARITY COEFFICIENTS AND ENTROPY
We now derive a maximal invariant for the augmented covari-
ance matrix xxC  under nonsingular linear transformation. Such 
a set is given by the canonical correlations between x  and its 
conjugate ,x*  which [27] calls the circularity coefficients of .x
Maximal invariant means two things: 1) the circularity coeffi-
cients are invariant under nonsingular linear transformation, 
and 2) if two jointly Gaussian random vectors x  and y  have the 
same circularity coefficients, then x  and y  are related by a non-
singular linear transformation, .x My=

Assuming Cxx  has full rank, the canonical correlations 
between x  and x*  are determined by starting with the coher-
ence matrix [65] 

[( ) ] [ ] .R C C C C C C/ * / / /
xx xx xx

H
xx xx xx

T1 2 1 2 1 2 1 2= =- - - -L L (27)

Since R  is complex symmetric, ,R RT=  yet not Hermitian 
symmetric, i.e., ,R RH!  there exists a special singular value 
decomposition, called the Takagi factorization [47], which is 

.R FKFT= (28)

7

0

–7
–7 0

xr

x i

7

1.5

0

–1.5
–1.5 0

xr
x i

1.5

3

0

–3
–4 0

xr

x i

3

(a) (b) (c)

Radar Data 16-QAM Data fMRI Data

[FIG1] Scatter plots for (a) circular, (b) proper but noncircular, and (c) improper (and thus noncircular) data.
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The complex matrix F  is unitary, and diagK = ( , , ..., )k k kN1 2

contains the canonical correlations k1 1$ $ k k 0N2 g$ $ $

on its diagonal. The canonical correlations are a maximal 
invariant for xxC  under nonsingular linear transformation of .x
Therefore, any function of xxC  that is invariant under nonsin-
gular linear transformation must be a function of these canoni-
cal correlations only. Following [27], we call these canonical 
correlations kn  the circularity coefficients, and the set { }kn n

N
1=

the circularity spectrum of ,x  however note that they actually 
measure the degree of impropriety. The asymptotic distribution 
of the estimated circularity coefficients has been derived by [66]. 

DIFFERENTIAL ENTROPY
The (differential) entropy of a complex random vector x  is 
defined to be the entropy of the real composite vector .xR  The 
entropy of a complex Gaussian random vector x  with aug-
mented covariance matrix xxC  is thus 

( ) ( ) .log dete2
1xH N

xx
2r= C6 @

Noting that 

( ) ( ),det det det det k1C I KK Cxx xx
H

xx
n

N

n
2 2

1

2= - = -
=

C % (29)

we may write the entropy of a complex noncircular Gaussian
random vector x  as [27], [67] 

[( ) ]log detH e2
1 N

xx
2

noncircular r= C

[( ) ] ( ),log det loge k2
1 1CN

xx

H n

N

n
1

2

0
circular

r= + -

#

=1 2 34444 4444
1 2 34444 4444
% (30)

where Hcircular  is the entropy of a circular Gaussian random vec-
tor with the same Hermitian covariance matrix Cxx  (but 

) .0Cxx =L  The entropy is maximized if and only if x  is circular. 
If x  is noncircular, the loss in entropy compared to the circular 
case is given by the second term in (30), which is a function of 
the circularity spectrum. This loss in entropy can serve as a 
measure for the degree of impropriety. The maximally improper
case, which is also called rectilinear [23], is given by .K I=

At this point, we will make a cautionary remark. On the 
one hand, if signals are indeed noncircular, we would expect a 
noncircular model to capture their properties more accurately. 
On the other hand, noncircular models have more degrees of 
freedom than circular models, and the principle of parsimony 
says that one should choose simple models to avoid overfitting 
to noise fluctuations. This means that using a noncircular 
model for a circular or only slightly noncircular signal is gener-
ally detrimental. For instance, it may slow down the conver-
gence speed of iterative algorithms [68]. This can be also 
addressed as a model selection problem using information theo-
retic criteria [68], [69] to show that circular models are to be 
preferred not only when the degree of noncircularity is low but 

also when the signal-to-noise ratio is low, or the number of 
samples is small. 

Choosing between proper/circular and improper/noncircular 
models is a question of how to detect noncircularity, for which a 
number of tests exist [65], [70]–[74]. For the simplest general-
ized likelihood ratio test (GLRT) for impropriety, the test statis-
tic is the loss of entropy, given by the second term in (30). The 
more general problem of detecting the number of circular and 
noncircular component signals in an observed signal has been 
discussed by [69]. 

WIDELY LINEAR ESTIMATION
To introduce the main idea behind widely linear estimation, we 
first discuss correlation coefficients between two complex ran-
dom variables x  and ,y  and linear and conjugate linear estima-
tion of x  from .y

ROTATIONAL AND REFLECTIONAL CORRELATIONS
For a pair of complex zero-mean random variables x  and ,y  as 
a straightforward extension of the real case, we can define the 
complex correlation coefficient 

{| | } {| | }
{ }

,
E x E y

E xy
xy

x y

xy

2 2
t

v v
v

= =
*

(31)

which satisfies | | .0 1xy# #t  The linear minimum MSE 
(LMMSE) estimate of x  from y  is 

( )
| |

,x y y e y
y

xy

y

xy j
2 2

xy

v

v

v

v
= = \vt (32)

which achieves the minimum error

{| ( ) | }
| |

( | | ) .E x y x 1x
y

xy
x xy

2 2
2

2
2 2v

v

v
v t- = - = -t (33)

Hence, if | | ,1xyt = ( )x yt  is a perfect estimate of x  from .y
Figure 2 depicts four sample pairs of two complex random 
variables x  and y  with ( / ),exp j 4xyt r= -  in the complex 
plane. Plot (a) shows samples of x  and (b) the corresponding 

[FIG2] Sample pairs of two complex random variables x  and y
with ( / ),exp j 4xyt r-=  and | | / . .1 2xy y

2v v = Plot (a) depicts 
samples of x  and (b) samples of y  in the complex plane. 
Corresponding samples are shown in the same color.

(a) (b)
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samples of .y  We observe that (b) is simply a scaled and 
rotated version of (a). The amplitude is scaled by the factor 
| | / ,xy y

2v v  preserving the aspect ratio, and the rotation angle 
is .xy xy\ \v t=

In the section “Statistics,” we saw that to characterize the sec-
ond-order statistics of a complex random variable ,x  we need to 
consider both the variance x

2v  and the complementary variance 
,x

2vu  which is the covariance between x  and .x*  This suggests 
that when considering two random variables x  and ,y  we should 
not only consider the covariance between x  and ,y  but also the 
complementary covariance [ ],E xyxyv =u  which is the covariance 
between x  and .y*  We can do so by estimating x  as a linear 
function of y*

* * * *( )
{| | }

{ ( ) } | |
.x y

E y
E x y

y y e y
y

xy

y

xy j
2 2 2

xy

v

v

v

v
= = = \v

* *
t

u u u (34)

We call this estimator the conjugate linear minimum MSE 
(CLMMSE) estimator. The corresponding correlation coefficient is 

,xy
x y

xy
t

v v
v

=u
u

(35)

with | | ,0 1xy# #tu  and the CLMMSE is

{| ( ) | }
| |

( | | ) .E x y x 1*
x

y

xy
x xy

2 2
2

2
2 2v

v

v
v t- = - = -t

u
u (36)

Hence, if | | ,1xyt =u ( )x y*t  is a perfect estimate of x  from .y*

Figure 3 depicts four sample pairs of two complex random vari-
ables x  and y  with ( / ),exp j 2xyt r=u  in the complex plane. 
Figure 3(a) shows samples of x  and (b) the corresponding sam-
ples of .y  We observe that (b) is a reflected version of (a). The 
amplitude is unchanged because | | / .1xy y

2v v =u  Since 
,x yxy\ \ \v= -u  we have, with probability 1

.x y2
1

2
1

xy xy\ \ \ \v v- =- -u uc m (37)

Thus, the reflection axis is given by / / ,2 2xy xy\ \v t=u u  which is 
the dashed red line in the figure. 

Depending on whether rotation or reflection better models 
the relationship between x  and ,y | |xyt  or | |xytu  will be 
greater. We note the ease with which the best possible reflec-
tion axis is determined as half the angle of the complementary 
covariance xyvu  (or half the angle of the correlation coefficient 

) .xytu  This would be significantly more cumbersome with real-
valued notation. 

Of course, data might exhibit a combination of rotational and 
reflectional correlation, motivating a WLMMSE

( , ) ,x y y y ya b= +* *t (38)

where a  and b  are chosen to minimize {| ( , ) | } .E x y y x* 2-t

We will derive this WLMMSE estimator in the next section. 
More details about rotational and reflectional correlations are 
provided in [46]. 

WIDELY LINEAR MMSE ESTIMATION
Next, we extend the results from the previous subsection to the 
more general setting of estimating an N-dimensional message 
(or signal) x  from an M-dimensional measurement y.  If a ran-
dom variable is improper, we should use widely linear estima-
tors rather than linear estimators to achieve the best possible 
performance. For vector-valued signal and measurement, such a 
widely linear estimator takes on the form 

.x W y W y*
1 2= +t (39)

We can simplify the derivation of W1  and W2  by working 
with augmented vectors. Using [ , ]x xT H T=x  and [ , ] ,y y yT H T=

we can write (39) equivalently as 

,yx W=t (40)

where we have introduced the augmented matrix

.
W
W

W
W* *

1

2

2

1
=W ; E

If we work with augmented matrices, we always need to 
enforce the block-pattern of ,W  where the northwest block is 
the conjugate of the southeast block, and the northeast block is 
the conjugate of the southwest block. We now determine W
such that the MSE { } ( / ) { }E E1 2x x 2 2- = -x xt t  is mini-
mized. This can be done by applying the orthogonality principle
( )x x y=-t  and ( )x x y*=-t  [37], or equivalently, ( .yxx =- )t

This says that the error between the augmented estimator and 
the augmented signal must be orthogonal to the augmented 
measurement. This leads to { } { }E E 0y yH H- =x xt  and thus 

.0yy xy xy yy
1+- = = -W C C W C C (41)

Thus, ,yxy yy
1= -C Cxt  or equivalently, [37] 

( ) ( ) .x C C C C P y C C C C P y* * * *
xy xy yy yy yy xy xy yy yy yy

1 1= - + -- - - -t LL L L
[FIG3] Sample pairs of two complex random variables x  and y
with ( / )exp j 2xyt r=u  and | | / .1xy y

2v v =u Plot (a) depicts samples 
of x  and (b) samples of y  in the complex plane. Samples of y
correspond to reflected samples of .x The reflection axis is the 
dashed red line, which is given by / / / .2 2 4xy xy\ \v t r= =u u

(a) (b)
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In this equation, the Schur complement P C C C C* *
yy yy yy yy yy= - -L L

is the error covariance matrix for linearly estimating y  from 
.y*  The augmented error covariance matrix Q  of the error vec-

tor e x x= -t  is 

{ } .EQ H
xx xy yy xy

H1= = - -e e C C C C

A competing estimator y= Wxl lt  will produce an augmented 
error = -e x xll t  with covariance matrix 

( ) ( ) ,EQ QH
yy

H= = + - -e e W W C W Wl l l ll " , (42)

which shows that Q Q-l  is nonnegative definite, i.e., .Q Q# l

As a consequence, all real-valued increasing functions of Q  are 
minimized, in particular, { } { } { }E Trace TraceQ Q2 #= =e l

{ }E 2el  and { } { } .det detQ Q# l  These statements hold for the 
error vector e  as well as the augmented error vector e  because 

.Q Q Q Q&# #l l  A particular choice for a generally subopti-
mum filter is the LMMSE filter 

,
0C C

0 C C
W C C* *

xy yy

xy yy
xy yy

1
1+= =

-

-
-Wl l= G

which ignores complementary covariance matrices. 
An important special case is when the signal x  is real. Then, 

,C C*
xy xy=L  which leads to the simplified expression 

( ) .Re2x C C C C P y* *
xy xy yy yy yy

1= - - -t " ,L L
While the WLMMSE estimate of a real signal from a complex sig-
nal is always real [37], the LMMSE estimate is generally complex. 

APPLICATIONS
In this section, we discuss two important signal processing
applications to demonstrate the importance of taking full 
statistical information into account: filtering and BSS. We 
provide a more detailed discussion on the use of second-
order statistics in both filtering and source separation, and a 
shorter discussion, along with some key references to recent 
work, on HOS. 

FILTERING

LINEAR AND WIDELY LINEAR FILTERING
USING MSE AND GAUSSIAN ENTROPY
In the previous section, we discussed WLMMSE filtering. An obvi-
ous disadvantage of WLMMSE filtering is that it doubles the 
dimension of the filter. A model with more parameters is more 
prone to overfitting and also leads to slower convergence when 
gradient-type algorithms are employed [40], [68]. An alternative 
way to incorporate full second-order statistics is to use a strictly 
linear filter with Gaussian entropy as the cost [35], which is 
equivalent to minimizing the determinant of the augmented 
error covariance matrix, ( ) .det Q  The determinant of Q  depends 
on both the covariance and the complementary error covariance, 
as opposed to the MSE, { } / ( ),1 2Trace TraceQ Q= ^ h  which only 
accounts for the covariance matrix. 

Let us consider the linear filtering example given in the section 
“Optimization: Vector Case,” where we estimate ( )x k  from obser-
vations taken at M  time instants ( ) [ ( ), ( ), ...,k y k y k 1y = -

( )]y k M 1 T- + as ( ) ( ) ( ) .x k k kw yH=t  We can either use the 
MSE

( ) {| ( ) | }J E e kw 2
mse = (43)

or the Gaussian entropy cost defined as 

( ) {| ( ) | } { ( )} ,J E e k E e kw 2 2 2 2
ent = -6 @ (44)

where ( ) ( ) ( )e k x k x k= - t  and ( )x kt  can be estimated using 
either a linear filter 

( ) ( )x k kw yH=t

or a widely linear filter 

( ) ( ),x k kv ywl
H=t

where the weight vector [ , , , ]v v vv M
T

0 1 2 1g= -  has twice the 
dimension of the linear filter. 

As shown in (18), we can directly calculate the optimal linear 
weight vector using Wirtinger derivatives as 

( ) ,J 0
w

w w C c* yy yx
1mse

opt&
2

2
= = -

where ( ) { ( ) ( )} .k E x k kc yyx = *  If ( )x k  and ( )y k  are jointly 
WSS, this equation is independent of .k

Similarly, we can calculate the Wirtinger derivative of 
J went ^ h and write 

* *

*

( ) {| ( ) | } { ( ) ( )} { ( ) } { ( ) ( )}

( ( ) ) ( ) ,

J
E e k E e k k E e k E e k k

E e k k

2 2

0 0
w

w y y

ye

2 2ent

&

2

2

t

=- +

= - =

*

*

6 @
" ,

by defining the correlation coefficient { ( )} /E e ke
2t =

{| ( ) | } .E e k 2  The entropy cost does not admit a closed-form 
solution for ,wopt  but we can use either Newton variant updates 
[35] or stochastic gradient updates 

( ) ( ) ( ) ( ) ( ) ( ) .k k e k k e k k1w w yen t+ = + - ** t6 @ (45)

The latter leads to the least stochastic entropy (LSE) algorithm
[35]. Here, the correlation coefficient ( )ket  is estimated using the 
sample average up to time .k  Note that the term ( ) ( ) ( )k e k kyet*t

takes impropriety of the error signal into account. When the error 
is proper, i.e., ( ) ,k 0et =*t  the update in (45) reduces to the well-
known least mean squares (LMS) update rule. 

Similarly, we can also derive a widely linear LSE update rule as 

( ) ( ) ( ) ( ) ( ) ( ),k k e k k e k k1v v yen t+ = + -* *t6 @ (46)
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where the error is computed as ( ) ( ) ( ) .e k x k kv yH= -  This 
update rule coincides with the LMS update for ( ) .k 0et =t

The performance of these filters depends on whether they are 
implemented adaptively or batch-wise. Let us first consider a 
batch implementation, where K  samples are processed at a time. 
To compare the performance of the linear filters designed using 
the MSE and the Gaussian entropy criteria, we assume that ( )x k
is generated using the linear regression model 

( ) ( ) ( ),x k k e kw yH
0 0= + (47)

where ( )e k0  is a white noise process, uncorrelated with the 
input ( ),y k  which is an uncorrelated process, { ( ) ( )}E k ly yH =

{ ( ) ( )}E k l 0y yT =  for ,k l! i.e., both covariance and comple-
mentary covariance functions are zero for .k l!

We evaluate performance in terms of the weight error vector 
.w w0e = -  The total weight error using the entropy criterion, 

for large ,K  is given by [35] 

{ } ( / ) | | ( ) ( / ),E K O K1 2 1 1Trace Ke e
2 2 2 1 2

ent 0 0_ ef t v= - +-^ h (48)

where

,K
C

C
C

C* *
yy

e yy

e yy

yy0

0

t

t
=
-

- *= GL
L

and C yy  and C yyL  are the covariance and the complementary 
covariance matrices of the input. For ,0e0t =  the expression 
reduces to the total weight error for the MSE criterion 

( / ) ( ) ( / ) .K O K1 1Trace Ce yy
2 1 2

mse 0f v= +- (49)

When the error is maximally improper, | | ,1e0t =  we have 
.0entf =  One can show that ,ent mse#f f  with equality only 

when 0e0t =  or ( )y k  is maximally improper. In addition, it is 
the entropy criterion that leads to a best linear unbiased estima-
tor (BLUE) for ,w0  where BLUE is to be understood with respect 
to a given vector, which in the case of widely linear filter is a fil-
ter in double dimension, the input vector augmented with its 
complex conjugate. 

A similar study can be performed for the adaptive implemen-
tations, LMS and LSE, which minimize MSE and entropy, 
respectively, using stochastic gradient updates. In general, the 
LSE algorithm leads to better performance in terms of the total 
weight error. For a proper input, the LSE yields a smaller 
weight error if the additive noise is improper. However, as the 
degree of impropriety of the input increases, the LSE algorithm 
suffers from slower convergence rate due to an increase in the 
eigenvalue spread, the ratio of maximum to minimum eigenval-
ues. This is analogous to the widely linear LMS algorithm. 

The situation is quite different for widely linear filters. If 
implemented batch-wise, the widely linear filters using the 
entropy and the MSE criteria lead to the same solution. This is 
due to the fact that the WLMMSE filter minimizes ,Q  and there-
fore all increasing functions of ,Q  in particular, both ( )Trace Q
and ( ),det Q  are minimized. The total weight error (both for MSE 
and entropy cost function) is given by (49), except that C  is 
replaced by .C  Hence, both error criteria provide the same 
asymptotically BLUE for a widely linear optimal filter .vopt

With a stochastic gradient approach, however, the entropy 
criterion yields a smaller steady-state error than the MSE crite-
rion if the residual error ( )e kopt  is noncircular. However, this 
gain comes at a price: An improper error also increases the 
overall eigenvalue spread of the augmented joint input-error 
covariance matrix that defines the modes of the algorithm [35]. 
This slows down its convergence rate. Hence, for the widely lin-
ear case, the widely linear LSE algorithm has no clear advan-
tage over the widely linear LMS algorithm. 

EXAMPLE
Here is an example to compare the performance of batch esti-
mation of filter weights using either the MSE or the entropy cri-
terion. Consider (47), where the input is a white sequence, and 
its covariance and complementary covariance matrices are 
given by C Iyy =  and .C Iyy yt=L  The real and imaginary parts 
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[FIG4] The total weight error for a linear filter with the Gaussian 
entropy and MSE criteria. Each simulation point is averaged over 
1,000 independent runs. The predicted curves are calculated 
based on (48) and (49).
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of the filter coefficients of w  are randomly drawn from the stan-
dard Gaussian distribution. The additive noise e0  is a white 
noise process with unit variance. The order of the linear filter is 

,N 3=  and the sample size is 1,000. We vary the circularity 
coefficients of the input and the additive noise to observe their 
impact on the estimation of .w

Figure 4 shows the average total weight error of a linear fil-
ter with the two criteria, for input circularity coefficient 
| | .0 3yt =  and noise circularity coefficient | | . .0 9e0t =  For 
both cases, the Gaussian entropy criterion yields better perfor-
mance in terms of total weight error. In the first case, the gain 
by using the entropy criterion increases with increasing impro-
priety of the additive noise. In the second case, the gain 
decreases with increasing input impropriety. It is also shown 
that the estimated performance gain closely matches the gain 
predicted by (48) and (49). ■

NONLINEAR FILTERING
As discussed above, full second-order statistics can be taken into
account by a linear filter with Gaussian entropy cost or by a 
widely linear filter with either MSE or Gaussian entropy cost. 
When the assumption of Gaussianity is not realistic and prior 
information on the distribution of the residual error is available, 
the cost can be modified as 

( ) {| ( ) | } {| ( ) ( ) | },J E e k E x k x kwp
p p= = - t

with .p 1$  Alternatively, the complete statistics of the error 
can be taken into account by choosing as the cost the entropy of 
the error, ( ) { ( )} .logJ E p ew eent =-  In either case, Wirtinger cal-
culus enables optimization of the selected cost function once it 
is expressed as a function of w  and ,w*  a straightforward task 
in most cases. For ( ),J went  we can write ( , )p e ee r i  as a function 
of e  and e*  to enable the use of Wirtinger derivates. The 
entropy can be approximated using either parametric or non-
parametric methods. In [75], a semiparametric approach is used 
to propose a complex-valued filter based on the minimization of 
error entropy, where the entropy is estimated by choosing the 
tightest bound among a number of candidates using entropy 
bound minimization (EBM) [32], [76]. 

Given the expected dynamics of the underlying problem, the
desired sequence ( )x kt  can be approximated using either a linear, 
widely linear, or a nonlinear filter such that ( ) , ( ) .x k g kw y=t ^ h
Most of the real-valued adaptive filters have been extended to the 
complex domain, such as kernel filters [77]—which are closely 
related to the radial basis function networks—tapped-delay MLP 
structures [78], [79], and Volterra filters [80]. For most of these 
nonlinear structures, the popular MSE has been the cost function 
of choice. 

When designing tapped-delay line MLP filters, the typical 
structure is a hidden layer with nonlinear activation functions 
f :^ h—typically of the squashing type (the hyperbolic tangent 
function)—followed by a linear output layer. When choosing 
the activation function f :^ h for a complex MLP, a number of 
solutions [81]–[83] have emphasized boundedness and advo-
cated the use of functions that process either the real and 

imaginary parts or the magnitude and phase of the complex 
variable separately, by defining bounded complex functions that 
are not complex-differentiable. A second approach adopts the 
use of nonlinearities that are complex-differentiable functions 

:f C C7  and hence have to possess singular points as stated 
by Liouville’s theorem [42]. As an example, the commonly used 
nonlinearity ( )tanh z  has periodic singular points. MLP filters 
employing such nonlinearities are called fully complex. These 
filters are shown to be more efficient in approximating nonlin-
ear functions, and lead to better performance in challenging 
problems such as equalization of highly nonlinear channels 
[50], and when using gradient-adaptive step-size algorithms 
[51]. More importantly, as in the real-valued case, it can be 
shown that an MLP that uses fully complex nonlinearities is a 
universal approximator of any smooth nonlinear mapping [79] 
despite the presence of singular points. For MLPs using either 
the split or the fully complex type nonlinearities, the backpropa-
gation update rule as well as other second-order algorithms can 
be easily derived using Wirtinger calculus, making many effi-
cient learning procedures developed for the real-valued case 
readily accessible in the complex domain [40]. 

Another important class of nonlinear adaptive filters is the 
class of kernel filters. Kernel methods make use of the theory of 
reproducing kernel Hilbert spaces (RKHS) to transform the typi-
cally low-dimensional input space to a high-dimensional, possibly 
infinite-dimensional, feature space. Hence, the nonlinear prob-
lem in the input space is transformed into a linear one in the fea-
ture space, which can now be solved by linear processing, i.e.,
simple quadratic optimization. Since most kernel methods are 
variations on the well-known support vector machine framework, 
they are best suited to batch processing. However, they have been 
extended to allow online processing [84], and a number of kernel 
adaptive filters including the kernel version of the LMS algorithm 
[85] have been proposed. A key result that enables the develop-
ment of complex-valued kernel filters is the extension of 
Wirtinger calculus to functional spaces using Fréchet derivatives, 
which generalizes differentiability to Hilbert spaces. In [77], after 
extending Wirtinger calculus to include complex RKHS, a num-
ber of kernel LMS algorithms are derived by using real-valued 
reproducing kernels through a process called complexification as 
well as using complex Gaussian kernels. A number of practical 
examples along with a framework for adaptive learning in com-
plex RKHS are given in [86]. The choice and design of effective 
complex kernels as well as ways to cope with the issue of increas-
ing memory length in the implementation of kernel adaptive fil-
ters is an important research problem. 

Finally, it is worth pointing out that widely linear filters 
can be extended to account for HOS. The next logical step is 
the extension to widely linear-quadratic processing [46], 
[80], [87], which requires statistical information up to fourth 
order. We should, however, add the cautionary note here that 
there is no difference between the optimum, generally non-
linear, conditional mean estimator { | },E x y  and *{ | , } .E x y y
Conditioning on y  and y*  changes nothing, since { | }E x y
already extracts all the information there is about x  from .y
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So the “widely nonlinear” estimator { | , }E x y y*  is simply 
{ | } .E x y  A number of examples in nonlinear filtering can be 

found in [49]. 

INDEPENDENT COMPONENT ANALYSIS
Data-driven approaches such as BSS minimize the assump-
tions on the data and thus have become attractive alternatives 
to traditional model-based techniques, especially for problems 
where the underlying dynamics are difficult to characterize. 
BSS methods are typically based on a linear mixing model 
where the goal is to identify the underlying components, 
which may or may not correspond to physical quantities. 
Since independence of the underlying components in a given 
data set is a natural assumption, ICA has been the most popu-
lar way to achieve source separation. In addition, indepen-
dence allows for easy interpretation of the results, and because 
it is a strong condition, admits a solution subject to only a 
scaling and permutation ambiguity. 

The standard linear mixing model for ICA is given by 

( ) ( ), , ,v v v V1x As f= = (50)

where ( )vx CN!  denotes the observation vector, ( )vs CN!

the sources (or components), and A CN N! #  is the nonsingular 
mixing matrix. The index v  can be time, a spatial, or a volume 
index, e.g., a voxel in the case of fMRI analysis. The sources 

, , , ,s n N1n f=  are identifiable up to a scaling and permutation 
ambiguity because independence is invariant to those. The scal-
ing ambiguity includes the phase as well as the magnitude since 
both s  and A  are assumed to be complex. 

Given this simple linear model, ICA decomposition is 
achieved by determining a demixing matrix W  such that 

( ) ( )v vu Wx=  are the source estimates. For this task, one has to 
make use of the statistical properties of the signals, i.e., some 
form of diversity. Non-Gaussianity of individual sources—
exploited through HOS—has been the most commonly used 
type of diversity followed by the sample-to-sample correlation 
within each source. If there is sample correlation in the real-val-
ued case, it allows separation of Gaussian sources as well. An 
important result for complex-valued ICA is that the circularity 
coefficients—discussed in the section “Circularity Coefficients 
and Entropy”—provide yet another source of diversity one can 
use. They enable separation of Gaussian sources even without 
sample correlation using the strong uncorrelating transform 
(SUT) [26], [27], provided that all the sources in the mixture are 
improper with distinct circularity coefficients. 

Assuming that the sources are stationary, one can bring the 
two approaches for achieving ICA—use of HOS and sample 
dependence—under one umbrella by using mutual information 
rate as the cost function [88]

( ) ( ) | ( ) | ( ),log detH u HI W W xr r
n

N

n r
1

R= - -
=

/ (51)

where ( ) ( ), , ( ) /limH u H u u v v1r n v n nf= "3 6 @  is the entropy rate 
of the nth source estimate un  with pdf ( )p us nn = ( , ),p u u,s s n nn n r ir i

and 

W
W
W

W
W

r

i

i

r
R =

-; E
is the real representation of complex .jW W Wr i= +  It results 
from the use of Jacobian transformation ( ) | |detp px Wx uR= ( ),Wx
where ( ) ( ) .p pWx uu u=  S ince  | | ( )det detW WWH

R = =

| ( ) | ,det W 2  we can rewrite (51) as 

( ) ( ) | ( ) | ( )log detH u H2I W W xr r
n

N

n r
1

= - -
=

/ (52)

and use (19) along with the definition of Wirtinger derivatives
(3) to develop gradient update rules for optimizing the cost. 

The entropy rate ( ) ( ), , ( ) /limH H v v1x x xr v f= "3 6 @  of the 
observations is constant with respect to ,W  and thus the first 
term is sufficient to minimize statistical dependence among 
the sources. The second term | ( ) |log det W  helps with the reg-
ularization by penalizing ill-conditioned matrices. Minimiza-
tion of the mutual information rate is equivalent to ML 
estimation when we write the expectations in (52) using the 
given set of observations { ( )} .vx v

V
1=  When W  is constrained to 

be unitary ( ),WW IH =  then | ( ) |log det 0W =  and (52) 
becomes equivalent to maximization of negentropy rate as 
cost. Maximization of negentropy is achieved by minimizing 
the entropy of the source estimates under a variance con-
straint, another effective way to make use of HOS for separa-
tion. While this constraint provides a natural decoupling 
among the source estimates, it limits the search space for the 
optimal demixing matrix and results in suboptimal perfor-
mance [28]. An effective decoupling approach [89], [90] allows 
one to retain the bigger optimization space of nonunitary 
matrices by decomposing the determinant term in (52) into a 
series of vector optimization problems. It is also important to 
remember that the whitening step typically employed in ICA 
algorithms implies constraining the demixing matrix to be 
unitary only when the number of samples tend to infinity. 

A number of algorithms based on ML or maximization of 
negentropy have been derived for complex ICA, which has been 
an active field of study. Wirtinger calculus has played an impor-
tant role in the development and analysis of algorithms especially 
when considering the general case that avoids the circularity 
assumption. Next, we summarize some of the work in the area, in 
terms of identifiability, performance, and algorithms. 

For the real-valued case, identification—up to the two ambigui-
ties of ICA, permutation and scaling—is possible as long as there 
are no two sources in the mixture that are both Gaussian and have 
proportional covariance matrices. If sample correlation is not taken 
into account—or is absent because the samples are independent 
and identically distributed (i.i.d.)—and only HOS are used, then we 
can identify only a single Gaussian source [91]–[95]. For the com-
plex case, with the additional diversity offered through the comple-
mentary covariance, i.i.d. Gaussian sources can be identified as 
well, as long as no two sources have the same circularity 
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coefficient. When sample correlation is taken into account, the 
availability of complementary covariance as an additional source of 
information makes identifiability of the ICA model even easier. In 
this case, the ICA problem becomes nonidentifiable only when 
there are two Gaussian sources that have both their covariance and 
complementary covariance matrices proportional to each other, 
and proportional through a complex constant for the latter, as 
implied by the analyses in [56] and [96]. Hence, it is again the sec-
ond-order properties that determine the identifiability. In [97], the 
performance of the SUT is analyzed using interference-to-source 
ratio as the metric. It is also shown that a maximally improper 
source can be perfectly separated from all other sources as long as 
these are not maximally improper as well. 

In Figure 5, we demonstrate the role of the three types of diver-
sity available for the complex ICA problem on performance and in 
terms of identifiability. We plot the Cramér–Rao lower bound 
(CRLB) for two sources: an i.i.d. source that comes from a general-
ized Gaussian distribution [61]—a unimodal symmetric density 
that is Gaussian when the shape parameter ,1b =  super-Gaussian 
for ,0 11 1b  and sub-Gaussian when .12b  We consider three 
levels of noncircularity for the source by changing its circularity 
coefficient such that | | , .0 0 4t =  and . .0 7  The second source is a 
first-order autoregressive (AR) process generated by a circular gen-
eralized Gaussian distributed (GGD) innovation process. By chang-
ing the value of AR coefficient ,a  we consider three cases with 
increasing sample dependence, a 0=  for which samples are i.i.d., 
as well as .a 0 4=  and . .a 0 7=  We see that the only case that is 
not identifiable is when both sources are i.i.d. and circular Gauss-
ians (black curve, ,1b = ,a 0=  and ) .0t =  With the addition of 
noncircularity, the ICA problem becomes identifiable (green curve), 
and as demonstrated by the trends of all four curves, performance 
improves when the degree of non-Gaussianity increases (when we 
move away from 1), and when sample dependence and noncircular-
ity of the sources increase. Next, we consider the i.i.d. case and plot 
the CRLB for two sources, a GGD and a Gaussian, to show the role 
of diversity in a continuous scale. We change the degree of noncir-
cularity of the Gaussian source and the shape parameter b  of the 
second GGD source. As shown in Figure 6, performance improves 
with increasing noncircularity and non-Gaussianity. As these sim-
ple examples also demonstrate, the three types of diversity—non-
circularity, non-Gaussianity, and sample correlation—all help 
improve the performance, and help with the identifiability of the 
ICA model. 

Thus, the conditions for identifiability of the complex ICA 
model are quite relaxed. However, to achieve the desirable large 
sample properties of the ML estimator, one needs to estimate the 
density of the sources along with the demixing matrix. Modeling 
of the density for a complex random process has more degrees of 
freedom than a real-valued one, making the problem more diffi-
cult. Most of the complex ICA solutions to date have a focus on the 
use of HOS, ignoring sample correlation where the entropy rate in 
(52) is simply replaced by the entropy. Among those, early solu-
tions assumed that the sources are circular [98], [99] which sim-
plifies the derivation but fails to take the additional source of 
diversity into account. Thus, it limits the type of sources that can 

be successfully separated. Another approach used analytic nonlin-
earities within a nonlinear correlations framework, hence bypass-
ing the need to directly optimize (52) [100]. On the other hand, by 
writing ( ) ( , )p u p u us s r i=  as a function of u  and ,u*  one can 
make use of Wirtinger derivatives and derive algorithms by 
directly minimizing (52) as shown in [28], thus eliminating the 
need to assume that the sources are circular. Among the solutions 
based on ML—or maximization of negentropy, which constrains 
W  to be unitary in the ML cost—there are those that use complex 
nonlinear functions [30], [31], generalized Gaussian density model 
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for the sources, a good model for symmetric unimodal distribu-
tions [55], [61], and a semiparametric approach based on EBM 
[32]. All these solutions take potential noncircularity of the 
sources into account and provide better separation performance in 
terms of the minimum achievable interference-to-source ratio 
when the sources are noncircular. In [56], the CRLB is derived for 
ML ICA. It is shown that ML ICA, with the nonlinearity exactly 
matched to the source density, approaches this bound. Moreover, 
the complex EBM algorithm [32], which is not matched to the 
specific density but uses a flexible set of nonlinearities, also 
approaches the CRLB for large enough sample size. Many of the 
complex-valued ICA algorithms have been made available in a 
MATLAB-based [101] toolbox, LYCIA, which stands for Library of 
Complex Independent component analysis Algorithms, and is 
available at http://mlsp.umbc.edu/lycia/lycia.html. The toolbox 
allows for comparison of multiple algorithms, including algo-
rithms supplied by the user through a number of metrics and 
visualization tools. 

In [96], a second-order algorithm, entropy rate minimization 
(ERM), is derived by minimizing (52) directly and making use 
of both full second-order statistics and sample correlation. Infor-
mation in terms of sample dependence is exploited by whitening 
the source estimates un  through a widely linear filter ,v aH= u
such that a C p2!  is estimated by minimizing the Gauss-
ian entropy subject to | ( ) | | ( ) | .a a p0 12 2- =  Then the demix-
ing matrix is estimated by minimizing ( , , , )W a aJ N1 f =

{| | } | ( ) | .log log detE v 2 W
n

N
n1

2 -
=

/  The SUT [26], [27] be-
comes a special case of the ERM when the correlation lag is set to 
0, i.e., sample correlation is not taken into account. However, the 
SUT can be computed directly in a straightforward manner by 
first estimating the coherence matrix in (27). Then, after comput-
ing a Takagi factorization of the coherence matrix as in (28), the 
SUT is .W F C /H

xx
1 2= -  Other complex ICA solutions that have 

been proposed include approaches that explicitly compute and 
maximize HOS such as kurtosis, either by taking the full statistics 
into account [33], [102] or by assuming circularity [103]; a non-
circular version of the second-order blind identification algo-
rithm [96] that diagonalizes time-lagged covariance and 
complementary covariances; and a quaternion ICA algorithm that 
uses full second-order statistics [104]. A recent review of complex 
ICA algorithms, both those based on joint diagonalization and ML 
estimation can be found in the book [88]. 

Development and performance analysis of complex ICA algo-
rithms have been an active field of study, and noncircularity has 
played an important role in the development. On the one hand, 
it has provided an additional type of diversity relaxing the condi-
tions for identifiability of the ICA model. On the other hand, it 
has made the problem more complicated due to two factors: 
density models that account for the potential noncircularity of 
the sources are more complicated making the development 
more challenging, and the local stability of the algorithms is 
impacted by the circularity coefficients where the algorithms 
become more prone to instability when sources are highly non-
circular [31], [55]. Hence, the complex ICA problem is indeed a 
rich one, and there is still a need for algorithms that can 

directly minimize (52) by powerful complex density models that 
account for both sample dependence and HOS. 

DISCUSSION
We have discussed the two key components for optimization and 
estimation in the complex domain: 1) the optimization of real-
valued cost functions with respect to complex parameters using 
Wirtinger calculus and 2) utilizing the complete statistical 
description of complex random signals. With respect to the latter, 
we provided details on estimation using the full second-order sta-
tistics in terms of covariance and complementary covariances. 
Widely linear transformations provide an easy and straightfor-
ward way to incorporate such information. Most of the develop-
ment for widely linear filters follows that of linear filters, as in the 
case of MSE estimation. This is a direct consequence of the 
homomorphism between the double-dimensional real and aug-
mented complex representations. Doubling the dimensionality, 
however, increases the number of parameters to be estimated. 
This leads to potential overfitting as well as other undesirable 
effects such as slow convergence when gradient-type algorithms 
are used. In general, circular models are to be preferred when the 
signal-to-noise ratio is low, the number of samples is small, or the 
degree of noncircularity is low [68], [69]. As an alternative, 
accounting for the full second-order statistics with a linear filter, 
as discussed in the section “Filtering”  might offer advantages. 

This article reviewed some of the fundamental results and 
selected more recent developments in the field. There is a lot 
that we have not included, such as Cramér–Rao type perfor-
mance bounds and practical applications in areas such as com-
munications, medical image analysis, and array processing. 
Moreover, the only noncircular distribution we formally intro-
duced is the Gaussian distribution. Of course, we do not live in a 
perfectly Gaussian world, so non-Gaussian noncircular distribu-
tions are important as well. For an account of these, we refer 
the reader to [61], [70], [73], and [74]. 

There are a number of recent references that provide a more 
comprehensive overview of complex-valued signal processing. 
Among those, [46] presents the theory for statistical signal pro-
cessing, [40] discusses complex-valued optimization, robust 
estimation, and ICA, and [88] concentrates on complex-valued 
ICA. Another book on the topic is [49], which has a focus on 
neural networks, and two recent, more technical, overview 
papers are [68] and [74]. We hope that this review article will 
help further increase the activity in this growing and important 
area of signal processing. 
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[103] B. Sällberg, N. Grbić, and I. Claesson, “Complex-valued independent compo-
nent analysis for online blind speech extraction,” IEEE Trans. Signal Processing,
vol. 16, no. 8, pp. 1624–1632, 2008.

[104] J. Via, D. Palomar, L. Vielva, and I. Santamaria, “Quaternion ICA from second-
order statistics,” IEEE Trans. Signal Processing, vol. 59, no. 4, pp. 1586–1600, 2011.

[SP]

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


Proceedings of the IEEE:
Pioneering technology
from the inside out.

Understand technology from every angle—subscribe today.
www.ieee.org/proceedings

At Proceedings of the IEEE, we don’t want you to just read 

about technology. We want you to understand emerging 

breakthroughs—from beginning to end, from the inside out. 

That’s why we give you multi-disciplinary technology coverage 

that explains how key innovations evolve and impact the 

world. Every month, you’ll fi nd the comprehensive, in-depth 

research that only IEEE can provide. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.qmags.com/clickthrough.asp?url=www.ieee.org/proceedings&id=19040&adid=P129A1
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


Rishee K. Jain, José M.F. Moura, 
and Constantine E. Kontokosta

[exploratory SP]

IEEE SIGNAL PROCESSING MAGAZINE [130] SEPTEMBER 2014 1053-5888/14©2014IEEE

Digital Object Identifier 10.1109/MSP.2014.2330357

Date of publication: 19 August 2014

Big Data + Big Cities: Graph Signals of Urban Air Pollution

F
or the first time in human his-
tory, the majority of the world’s 
inhabitants now reside in cities. 
Urban inhabitants are expected to 
account for a staggering 67% of 

the world’s population (6.3 billion people) 
by 2050 [1]. This enormous migration 
toward urban environments has brought 
with it a host of challenges related to sus-
tainability, health, and development. Engi-
neers, scientists, and policy makers must 
grapple with the daunting task of provid-
ing the next generation of urban citizens 
with such core necessities as clean water, 
energy, and air.

In parallel, the proliferation of low-cost 
sensing has led to an explosion of data 
from the urban-built environment. Large 
amounts of data at a high degree of spatial 
granularity and temporal frequency (i.e., 
big data)—such as energy and water 
usage, environmental emissions, and 
human activity—are rapidly becoming 
available in cities around the world. Urban 
informatics—applying “big data” analytics 
to the context of “big cities”—offers an 
unprecedented opportunity to understand, 
analyze, and improve how our cities 
develop and operate. Processing unstruc-
tured and high-dimensional data from 
urban systems will require combining 
expertise from the fields of signal process-
ing, graph theory, and data science with 
the application domains of civil engineer-
ing, environmental science, and urban 
planning, among others. In this column, 
we consider unstructured data sets from 
the urban-built environment and propose 
how to represent them as a high-dimen-
sional and geometrically structured graph 

signal. We illustrate the impact and merits 
of this approach by applying it to a perti-
nent sustainability and health issue in 
New York City—air pollution from the 
burning of heavy fuel oils for heating and 
hot water in buildings.

Air pollution from the burning of 
heavy fuel oil has been shown to have del-
eterious effects on human health. The 
combustion of heavy fuel oils results in 
the release of particulate matter smaller 

than 2.5 μm (PM2.5) and mono-nitrogen 
oxides (NOx). Both pollutants have been 
linked to increased airway inflammation, 
decreased lung function, and the worsen-
ing of asthma leading to a rise in hospital 
emergency room visits, hospital admis-
sions, and deaths from cardiovascular and 
respiratory diseases [2], [3]. Recent work 
[4] has successfully applied methods from 
data science and machine learning to 
improve models of urban air quality in 
Beijing and Shanghai. As a result, policy 
makers and citizens around the world are 
increasingly aware of the potential to uti-
lize data-driven methods to understand 
trends on PM2.5 and NOx emissions. For 
example, identifying neighborhoods or 
clusters of buildings with high emissions 

could have widespread implications on the 
deployment of air quality sensor infra-
structure, the design of targeted programs 
aimed at accelerating the transition of 
buildings to cleaner fuels, the formulation 
of public health initiatives regarding 
respiratory diseases, and even real estate 
prices in neighborhoods identified as high 
or low emitters.  

In this article, we apply signal process-
ing and data science methodologies to 
study the environmental impact of burn-
ing different types of heating oil in New 
York City, where currently the burning of 
heavy fuel oil in buildings produces more 
annual black carbon, a key component of 
PM2.5, emissions, than all cars and trucks 
combined [5]. The data utilized in this 
article are collected through New York 
City’s Local Law 84 (LL84) energy disclo-
sure mandate [6]. The mandate requires 
annual energy consumption reporting for 
large buildings (i.e., approximately greater 
than 50,000 gross feet) of all use types. 
This analysis utilizes actual heating oil 
consumption data for calendar year 2012. 
The LL84 data set was merged with land 
use and geographic data at the tax lot level 
from the Primary Land Use Tax Lot Out-
put (PLUTO) data set from the New York 
City Department of City Planning. The 
PLUTO data set provides building and tax 
lot characteristics, as well as their geo-
graphic location. 

THE URBAN-BUILT ENVIRONMENT 
AS GRAPH SIGNALS
Consider a data set where each data ele-
ment is represented by a building. For 
each of the N  data elements or build-
ings, we have the corresponding geo-
graphic location and subsequently can 
infer some relational information about 
the data elements. This information can 

ENGINEERS, SCIENTISTS, 
AND POLICY MAKERS
MUST GRAPPLE WITH
THE DAUNTING TASK 
OF PROVIDING THE
NEXT GENERATION
OF URBAN CITIZENS
WITH SUCH CORE
NECESSITIES AS
CLEAN WATER, 

ENERGY, AND AIR.
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be represented by a graph ( , )G V W= ,
where { , , }V v vN0 1f= -  is the set of 
nodes and W  is the weighted adjacency 
matrix of the graph. Each data element 
or, in this case, building corresponds to 
node .vn  The entry W ,i j  is the weight of 
a directed edge that reflects the degree of 
relation of the jth  building to the ith
building. We define G  generally so that 
it can take the form of an undirected or 
directed weighted graph. For example, if 
we define the relation between two 
buildings as the physical distance 
between them, then W W, ,i j j i=  and G
would be an undirected weighted graph. 
However, the relation between two build-
ings can also be defined as a function of 
each building’s properties (e.g., building 
size) causing W W, ,i j j i!  and G  to take 
the form of a directed weighted graph. In 
this general model for representing 
buildings data in a graph, we do not 
restrict the edge weights of W ,i j  to non-
negative reals, but physical constraints 
related to the application will likely gov-
ern such values. We also define our 
model to allow self-loops, an edge that 
connects a node to itself, to account for 
specific applications related to the built 
environment (e.g., a building’s air pollu-
tion would impact itself in addition to 
neighboring buildings). As a result, 

0W ,i i !  is a valid entry in our weighted 
adjacency matrix.

In the context of the built environ-
ment, the edge weights will most likely be 
naturally defined by the application. How-
ever, this natural definition may not be 
apparent during the initial construction of 
a graph and thus one can define an edge 
connecting node j  to i  by using the com-
mon thresholded Gaussian kernel weight-
ing function:

[ , )
,

,

exp
W 2

0

dist i j
if dist i j

otherwise
,i j

2

2

#
i

c
=

^e ^o h@*
(1)

where c  and i  are parameters defined by 
the user and ,dist i j^ h  represents the 
physical distance between buildings 
(nodes) j  and i  or the Euclidean distance 
between two feature vectors describing j
and .i

We define a graph signal of buildings 
as :f V R"  defined on the nodes of the 
graph. The signal can be represented as 
a vector f RN!  where the ith  compo-
nent of the vector f  is the signal at the 
ith  building (node) in .V  Alternatively, 
if a building has multiple signals, we can 
define a vector xi  comprising all signals 
related to the ith  building where 

{ , , }X x x0 N 1f= -  is the set of signal 
vectors. For example, xi  could consist of 
discrete data on energy, water, and nat-
ural gas consumption or data on the 
physical properties of building .i  A dia-
gram of the built environment repre-
sented as a graph is provided in Figure 1.

APPLICATION TO AIR POLLUTION 
IN NEW YORK CITY

ADAPTING THE GENERAL MODEL 
TO URBAN AIR POLLUTION
To adapt the general model described above 
to air pollution in New York City, we define 
the edges between nodes using a modified 
Gaussian dispersion plume model. The 
Gaussian dispersion plume model has been 
utilized in previous work [7] to gain a high-
level understanding of urban air pollution 
dynamics. Assuming the most conservative 
boundary condition (i.e., perfectly reflective 
surface), the Gaussian dispersion equation 
takes the following form:

( , , ; )

,

exp
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C x y z H u
Q

y

z H

z H
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2

2

$ $ $
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r
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v

v
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=
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+

^
^

h
h

=
=
=

G
G
G

)
3 (2)

where C  is the mean concentration (in 
g/m3), x  is the distance from the 
sources in the direction of the wind (in 
m), y  is the cross wind distance from 
the source (in m), z  is the vertical 
height from the ground (in m), H  is the 
effective height above ground of where 
the pollutant is being released (in m), u
is the wind speed (in m/s), Q  is the 
strength of the emission source (in g/s), 

yv  is the urban dispersion parameter 
(i.e., the standard deviation of the emis-
sion distribution, a function of stability 
class and )x  in the horizontal direction, 
and zv  is the urban dispersion parame-
ter in the vertical direction. 

We aim to use the Gaussian dispersion 
model as a basis for gaining a simple 
understanding of differences in air pollu-
tion across an urban area by analyzing 
data from several thousand buildings. It 
should be noted that our goal is not to 
specifically quantify the concentration of a 
pollutant at a given location but to derive 
data-driven estimates of where air pollu-
tion is highest in an urban area. Obtaining 
an accurate quantification of concentra-
tion would require the development of a 
much more complex and input intensive 
computational fluid dynamic (CFD) model 
for the area surrounding each building. 
We make several simplifying assumptions 
in our analysis: the wind speed u  is 
assumed to be constant across the study 
area in a single direction (west to east), 
z H 0= =  meaning that we assume 
emissions and exposure to occur at the 
ground level with no dispersion in the z
direction (i.e., zv  is a constant), and Q  is 
a static value of the total emissions 
released (in our case a function of kBTU) 
and not a rate. As a result, C  is not the 

2

1

3

W1, 3

W3, 1

W1, 1

x1 =
EC1

FLRS1

...

x1 Is the Signal Vector of
Building (Node) 1 with

EC = Energy Consumption,
FLRS = Number of Floors

[FIG1]  A diagram of the built environment represented as a graph signal.
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[exploratory SP]continued

concentration but a representative value 
of emissions (a function of kBTU). Remov-
ing the constants ( ,  ,  )u 2 zr v  and apply-
ing our assumptions to (2), the Gaussian 
plume equation takes the following 
reduced form:

,expC Q y
2y y

2

2

$
v v

= -= G (3)

where the urban dispersion parameter yv

takes the following form based on [8] for 
New York City (classified as Pasquill 
atmospheric stability urban class C; see [9] 
for details on Pasquill stability classes): 

. ( . ) .x x0 22 1 0 0004 /
y

1 2v = + - (4)

We translate (3) into a graph and signal 
form by breaking up the Gaussian disper-
sion component and the strength of the 
emission source Q  into a matrix A  and 
signal vectors q  in the set { , ,Q q0 f=

} .qN 1-  Matrix A is defined as:

[ ]

,

exp
A

y
y1

2
0

if

otherwise
,

,
,

i j y y

i j
i j2

2

$
v v

c
=

-e o* (5)

where y ,i j  is the Euclidean physical dis-
tance between building j  and building .i
The threshold c  is set as 2.54E-10 
[derived from setting x  and y  to 1,500 m 
in (3) and (4)], and we assign one to the 
diagonals of matrix A  to account for the 
impact of a building’s own emissions on 
itself (self-loop). The signal vector q  is 
defined as

q hi
T

im= , (6)

where hi  is a 3#1 vector corresponding 
to building i’s consumption of heating 
oil #2, heating oil #4, and heating oil 
#6 where , ,H h h0 N 1f= -" , is the set of 

consumption vectors. Each type of heating 
oil contributes to air pollution by a differ-
ent magnitude based on the pollutant 
being examined (i.e., PM2.5 or NOx). There-
fore, hi  is multiplied by the transpose of 
a 3#1  weighting vector .m  Table 1 pro-
vides the weighting values for each pollut-
ant relative to heating oil #6. Intuitively, 
this means that burning one kBTU equiva-
lent of heating oil #4 emits 47% less PM2.5

and 32.5% less NOx than burning one 
kBTU of heating oil #6.

Finally, we obtain the weighted 
directed adjacency matrix as follows from 
A and :q

.W A q, ,i j i j j= (7)

GRAPH METRICS AND 
COMMUNITY DETECTION 
A large amount of information can be 
abstracted from a graph by examining the 
properties of its nodes and edges. We 
define several common graph metrics as 
they relate to the study of urban air pollu-
tion in Table 2.

Additionally, we are interested in 
identifying clusters or communities of 
buildings with large amounts of emis-
sions. Identifying such “hot spots” of 
emissions are valuable for data-driven 
deployment of air quality sensors and 
the development of policy measures to 
reduce building emissions. For our 
analysis, we employ a commonly used 
community detection algorithm, the 
Louvain method [12]. Community 
detection differs from other methods of 
graph partitioning in that the experi-
menter does not make any a priori
assumptions on the number and size of 
the partitions [11]. Thus, community 
detection algorithms are able to infer 
the natural substructure of the graph.

The Louvain method is a heuristic 
method based on modularity maximiza-
tion. Modularity is a measure of the density 
of links inside communities as compared to 
the links between communities [11] and 
can be derived as follows. Let us first for-
mulate in mathematical terms the value of 
edges that run between nodes in the same 
community:

( ,  ),W c c2
1

,ij i j i jd/ (8)

where W  is the weighted adjacency 
matrix of an undirected graph, ci  repre-
sents the community to which node i  is 
assigned, and function d  is 1 if c ci j=

and 0 otherwise.
Next, we formulate a mathematical 

expression for the expected value of edges 
between all pairs of nodes in the same 
community if connections are made 
purely at random:

( , ),m
k k

c c2
1

2ij

i j
i jd/ (9)

where k W ,ji i j=/  is the sum of all the 
weights of the edges attached to node i
(i.e., degree of )i  and m  is the total value 
of edges in the graph. 

Taking the difference between (8) and 
(9), we obtain the mathematical expres-
sion [given in (10)] for the values of edges 
that are present in a community beyond 
what would be expected at random, a 
quantity known as modularity M^ h [11]:

( , ) .M m W m
k k

c c2
1

2,ij i j
i j

i jd= -c m/
(10)

The Louvain algorithm optimizes 
modularity across a network in two 
phases. First, the algorithm optimizes 
modularity by allowing only local changes 
of communities. Second, the algorithm 
aggregates communities to build a new 
network of supercommunities and opti-
mizes modularity again. These two phases 
are repeated iteratively until an increase in 
modularity is no longer observed. The 
method returns subgraphs of G  such that 
a subgraph .S G3  More details regarding 
the Louvain method can be found in [12].

To apply the Louvain method for com-
munity detection, we translate our graph 
from directed to undirected by mapping 
the signal vector q  to an n n# symmet-
ric matrix Q  as:

,q Q Q  Z h , hi i,j j,i
T

i j" m= = ^ h (11)

where m  is the 3#1  weighting matrix [as 
defined in (6)] and Z  is a proportional 
weighting function defined as:

h h
h h

h h
h h

h h
h h

Z h , h
i j

i j

i j

i j

i j

i j

1 1

1
2

1
2

2 2

2
2

2
2

3 3

3
2

3
2

i j =
+

+

+

+

+

+
,

^ h =
G (12)

[TABLE 1] THE WEIGHTING VALUES 
FOR EACH POLLUTANT RELATIVE 
TO HEATING OIL #6 (SOURCE: [10]).

HEATING 
OIL TYPE

PM2.5 NOX

#6 1 1

#4 0.53 0.675

#2 0.06 0.32
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where h ,  h , hi1 i2 i3  correspond to build-
ing i’s consumption of heating oil #2, heat-
ing oil #4, and heating oil #6 and 
h ,  h , hj1 j2 j3  correspond to building j s\
consumption of heating oil #2, heating oil 
#4, and heating oil #6, respectively.

Additionally, to translate matrix A  into 
an n n#  symmetric matrix, we superim-
pose two symmetrical wind directions 
(i.e., west to east, east to west).

DESCRIPTION OF NEW YORK 
CITY DATA SET
The NYC LL84 and PLUTO data sets were 
merged on Borough Block Lot (BBL) 
numbers, unique identifiers used by the 
City of New York to track tax lot parcels, 
to form a composite data set of heating 
oil consumption and associated geo-
graphic location of buildings covered by 
the energy disclosure mandate. A 

conversion process was undertaken using 
CORPSCON [13], an open-source coordi-
nate conversion program from the U.S. 
Army Corps of Engineers that can batch 
convert coordinates between map projec-
tions, to convert data in the New York–
Long Island State Plane Coordinate 
System to corresponding latitude and lon-
gitude values. An initial preprocessing step 
was conducted on the composite data set 

(a) (b)

Highest Aggregate Consumption
(PM2.5 Self-Loop+In-Degree Consumption)

Highest Emitters (PM2.5 Self-Loop Consumption)

Highest Aggregate Consumption
(NOX Self-Loop+In-Degree Consumption)

Highest Emitters (NOX Self-Loop Consumption)

[FIG2] Visualization of the buildings estimated to be exposed to high levels of (a) PM2.5 and (b) NOx. The top 50 emitting 
buildings are indicated by red markers and the top 50 buildings exposed to the highest aggregate consumption by blue 
markers. Red markers are determined by taking the nodes with highest weighted heating oil consumption. Blue markers are 
determined by taking the nodes with the highest combined self-loop and in-degree consumption. Dark red markers indicate 
where a red and blue markers overlap.

[TABLE 2] THE COMMON GRAPH METRICS APPLIED TO URBAN AIR POLLUTION.

GRAPH METRIC FORMAL DEFINITION
(DEFINITIONS ADAPTED FROM [11])

MATHEMATICAL 
FORMULATION

APPLICATION TO URBAN 
AIR POLLUTION

SELF-LOOP OF A VERTEX THE VALUE OF AN EDGE 
CONNECTING A VERTEX TO ITSELF.

W ,i j  WHERE i j= A MEASURE OF THE EMISSIONS 
OF BUILDING .i

IN-DEGREE OF A VERTEX THE VALUE OF ALL IN-GOING 
EDGES CONNECTED TO A 
VERTEX ON A DIRECTED GRAPH.

k W ,i
j

N

i j

1

in
=

=

/
A MEASURE OF HOW MUCH NEIGHBORING 
BUILDINGS ARE CONTRIBUTING TO 
BUILDING i s\ AIR QUALITY. 

OUT-DEGREE OF A VERTEX THE VALUE OF ALL OUT-GOING 
EDGES CONNECTED TO A VERTEX 
ON A DIRECTED GRAPH.

k W ,j
i

N

i j

1

out
=
=

/
A MEASURE OF HOW MUCH BUILDING 
j  IS CONTRIBUTING TO THE AIR QUALITY 
OF ITS NEIGHBORS.

Note: For the specific application of air pollution, we deviate from the standard definition of in-degree and out-degree by excluding the contribution of a self-loop ( )W ,i j , where i j=
since we are trying to ascertain the impact neighboring buildings have on building i’s air quality or building j  has on the air quality of neighboring buildings.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [134] SEPTEMBER 2014

[exploratory SP]continued

to remove duplicate data points and data 
points that were incomplete or contained 
missing information (i.e., energy usage, 
square footage, geographic information). A 
secondary preprocessing step was con-
ducted to identify and remove erroneous 
(i.e., energy usage exorbitantly too high or 
too low) and outlier data points (i.e., top/
bottom 1% of energy usage). Both pre-
processing steps are consistent with the 
data cleaning methodology established by 
the City of New York in their annual report 
regarding the LL84 energy disclosure data 
[14]. The postprocessed data set consisted 
of 11,196 valid data points and represented 
nearly 2 billion gross ft2 with an average 

building size of 173,707 ft2. Seventy-six 
percent of the data points correspond to 
multifamily residential buildings, and 11% 
correspond to commercial office buildings. 
The remaining percent of buildings have a 
multitude of uses (e.g., retail, hotel edu-
cation). The geographic distribution of 
the data points across the five New York 
City boroughs are as follows: 44% in 
Manhattan, 17% in the Bronx, 18% in 
Brooklyn, 19% in Queens, and 2% in 
Staten Island. The geographic bias toward 
Manhattan is expected as Manhattan con-
tains the bulk of large buildings subject to 
the reporting requirements of the disclo-
sure mandate. We acknowledge this 

geographic bias as a limitation of our 
analysis and aim to mitigate this issue in 
future work by incorporating other dispa-
rate data sets on smaller buildings in New 
York City. A subset of the overall data set 
(4,702 data points, 42% of the total) 
accounted for over 27.5 billion kBTU of 
heating oil consumption in the 2012 cal-
endar year with an average consumption 
of 5.8 million kBTU per building. 

ANALYSIS, RESULTS, 
AND IMPLICATIONS 
All analysis was conducted using Net-
workX [15], an open-source Python lan-
guage software package for the creation, 
manipulation, and analysis of complex 
graphs. Results were visualized using Car-
toDB [16], an online visualization tool for 
geotagged data.

IDENTIFYING BUILDINGS 
MOST EXPOSED TO POLLUTION
We aim to illustrate the benefits of our 
graph-based approach by identifying spe-
cific buildings in New York City that are 
susceptible to high levels of PM2.5 and NOx

pollution. For comparison, we employed 
both a conventional analysis method and a 
method derived from representing the 
data as a graph signal. The conventional 
method consisted of ranking the buildings 
by their weighted heating oil consumption 
( )qi  to determine the top emitters for each 
pollutant. The second method utilizes the 
graph structure of our model to quantify 
and rank the combined impact a building’s 
own heating oil consumption and the con-
sumption of its neighbors has on sur-
rounding air quality. In graph terms, this 
quantity is calculated by summing the in-
degree and the self-loop for each vertex (as 
defined in Table 2). A visualization of the 
results for both methods is presented in 
Figure 2 for PM2.5 and NOx.

Significant overlap exists between the 
two analysis methods as indicated by the 
dark red markers in Figure 2. As expected, 
several buildings that are the highest 
emitters for both PM2.5 and NOx also have 
the highest aggregated consumption, 
indicative of buildings most exposed to air 
pollutants. However, a discrepancy is also 
apparent between the two methods. Sev-
eral buildings are identified to be high 

[FIG3] Visualization of building clusters that form “hot spots” of pollution. The base 
case does not weigh consumption by pollutant and is in orange. PM2.5 and NOx are 
represented by blue and green markers, respectively. The size of each circle marker 
is indicative of the number of buildings in each community with the center located 
at the geographic coordinates of the “Ego In” node (i.e., the building with the 
highest in-degree plus self-loop value). Each cluster’s information box provides: the 
“Ego In” node’s address, the “Ego Out” (i.e., the building with the highest out-
degree value indicating that it significantly contributes to the poor air quality of its 
neighboring buildings) node’s address and the total number of nodes in the cluster 
that burn heating oil.

Base

NOX

PM2.5
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emitters (red markers), but the air pollu-
tion around the building may not be an 
issue given that surrounding buildings are 
not contributing significant amounts of 
pollution. Conversely, the conventional 
method fails to identity several buildings 
in Manhattan (blue markers) where the 
combination of a building’s own emissions 
and those of its neighbors together are 
indicative of locations where the sur-
rounding air quality maybe poor. By not 
taking into account the geometric struc-
ture of the data, the conventional method 
fails to utilize all of the available informa-
tion and as a result may not provide a 
complete picture of what buildings may be 
the most susceptible to high levels of PM2.5

and NOx. Identifying buildings that are 
exposed to high levels of pollutants can 
allow policy makers to develop targeted 
measures aimed at reducing heating oil 
consumption in specific properties. Addi-
tionally, such information could also be 
valuable to public health workers aiming 
to understand and reduce respiratory 
diseases. Future analysis could be under-
taken to explore health issues and hospi-
talization rates surrounding the identified 
buildings and utilized to inform public 
health policy. 

IDENTIFYING “HOT SPOTS” 
OF AIR POLLUTION
We extend the previous analysis to demon-
strate how our graph-based approach can 
be used to identify “hot spots” of air pollu-
tion. As described in a previous section, 
the graph partitioning method employed 
makes no a priori assumptions on the 
structure of the graph and therefore 
allows the natural structure of clusters to 
emerge from the data. A visualization of 
the results for a base case (all pollutant 
weights set equal to one) for PM2.5 and 
NOx levels is provided in Figure 3 and a 
representative network diagram for a sam-
ple cluster is provided in Figure 4.

Clusters of PM2.5 and NOx pollution are 
consistent and the largest clusters are pre-
sent in midtown Manhattan, the Upper 
East Side, and northern Manhattan/Bronx. 
The base case clusters follow a similar pat-
tern, but not weighting the consumption 
based on fuel oil type and pollutant is seen 
to shift the center of clusters in many 

areas, such as northern Manhattan/Bronx. 
While the results are not surprising given 
the geographic distribution of building 
types and building age across New York 
City neighborhoods, this approach pro-
vides an alternative method based on 
point source consumption and emissions 

data to corroborate traditional air quality 
monitoring and modeling studies [18].

The graph-based approach also allows 
us to deepen our analysis and abstract 
additional information on each cluster of 
buildings including the location of the 
“Ego In” and “Ego Out” nodes. The 
“Ego In” node is the building with the 
highest in-degree plus self-loop value 
and therefore estimated to be where the 
concentration of pollutants is the highest. 
Identifying where air pollution is expected 
to be the worst in each cluster of buildings 
could be utilized for intelligent and data-
driven positioning of air quality monitor-
ing equipment. Previous research [19] has 
found that pollution hot spots in urban 
areas maybe inaccurately characterized 

[FIG4] Visualization of a sample cluster located in the Manhattan borough of New 
York City consisting of 127 nodes and 5,702 edges (2,942 visible). The large red 
marker and edges indicate the “Ego In” node (i.e., the building with the highest 
in-degree plus self-loop value within the cluster) and its edges. The inset visualizes 
the “Ego In” node and all 80 of its edges with gray edges representing a connection 
not visible in the main visualization. The visualization was created using NodeXL [17].

WE APPLY SIGNAL
PROCESSING AND DATA

SCIENCE METHODOLOGIES
TO STUDY THE

ENVIRONMENTAL IMPACT
OF BURNING DIFFERENT
TYPES OF HEATING OIL

IN NEW YORK CITY.
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[exploratory SP]continued

due to inappropriate positioning of air 
quality monitoring equipment. Given that 
air quality monitoring equipment is often 
deployed based on site availability rather 
than the need for measurement at that 
particular location, a data-driven approach 
could drastically improve the reliability of 
air quality models and enhance our under-
standing of urban air pollution dynamics. 
The “Ego Out” node is the building with 
the highest out-degree value indicating 
that it significantly contributes to the poor 
air quality of its neighboring buildings. 
Identifying and disseminating the “worst 
neighbor” buildings in communities could 
impact the real-estate market (e.g., such 
information could alter a buyer’s decision 
to purchase in a particular building) and 
even the social dynamics driving the adop-
tion of cleaner heating technologies (e.g., 
a property owner could be incentivized to 
adopt a cleaner heating technology to 
avoid social scrutiny from occupants of 
surrounding buildings). In particular, 
social norms have been observed to have 
an impact on other environmental behav-
ior, such as energy consumption [20], 
[21]. Thus, similar social dynamics could 
be utilized to accelerate the adoption and 
penetration of clean heating systems in 
New York City.

TOWARD A DATA-DRIVEN 
URBAN ENVIRONMENT
This article represents data from the urban 
built environment as a high-dimensional 
and geometrically structured graph signal. 
We demonstrate the merits of this 
approach by applying it to the issue of air 
quality in New York City and illustrate how 
the geometric structure of the data can be 
utilized to abstract valuable information 
for both urban citizens and policy makers. 
This work represents an important first 
step in rethinking how we structure and 
analyze data from the urban built environ-
ment and could be expanded in numerous 
ways, including: relaxing the assumption 
that an urban environment is flat by incor-
porating dispersion along the z-axis, sup-
plementing the current data set with 
information on smaller buildings not cap-
tured by the current energy disclosure 
mandate, incorporating data from addi-
tional sources (e.g., social media, 

health-care informatics) to observe the 
interdynamics between air pollution and 
human health or behavior, and applying 
new methods from the emerging field of 
signal processing on graphs (e.g., [22] and  
[23]) to further deepen our analysis. 

More importantly, this article con-
tributes to the literature at the intersec-
tion of big data and urban environments 
(i.e., “urban informatics”) and aims to 
catalyze future research on how urban 
data can be collected, processed, repre-
sented, and analyzed to make our cities 
more sustainable. Moving toward a 
more data-driven urban environment 
will provide an enormous opportunity to 
not just accommodate but enhance the 
lives of the world’s urban inhabitants. 
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Accelerating Cardiovascular Magnetic Resonance Imaging: 
Signal Processing Meets Nuclear Spins

C
ardiovascular diseases are still 
the leading cause of death 
worldwide, accounting for an 
estimated 30% of all deaths 
across the globe, more than 

cancer, injury, and HIV/AIDS combined 
(Figure 1). Efforts to address cardiovascu-
lar disease with technology can be traced 
back nearly 200 years to the invention of 
the stethoscope in 1816. The many suc-
cessful technological advances since then 
have significantly transformed the detec-
tion, diagnosis, and treatment of cardiovas-
cular diseases over the last two centuries.

Cardiovascular imaging technology 
has enabled measurement and visualiza-
tion of the structure and function of the 
beating heart and has become an indis-
pensable part of cardiac health care. A 
number of cardiac imaging modalities 
are available to the new generation of 
cardiologists: cardiac ultrasound, known 
as echocardiography (ECHO), and X-ray
computed tomography (CT) are typically 
used to image cardiac structure; positron 
emission tomography (PET) and single 
photon emission computed tomography 
(SPECT) are typically used to image car-
diac function. Magnetic resonance imag-
ing (MRI), the topic of this column, is 
suitable for both structural and functional 
imaging (Figure 2).

CARDIOVASCULAR MRI
Because of the particular properties of the 
magnetic resonance (MR) phenomenon, 
MRI has unique potential for cardiovascu-
lar imaging. MRI is already the gold stan-
dard modality for cardiac chamber 
anatomy and function, detection and 
assessment of myocardial infarction, 

evaluation of congenital heart disease, and 
more [1]. Further advances in myocardial 
perfusion imaging, blood flow velocity 
imaging, spectroscopic imaging, and other 
applications have brought MRI closer to 
achieving its potential as the premier all-
around imaging modality for cardiolo-
gists, although technological challenges 
still exist for each of these applications. 

The primary challenge facing cardio-
vascular MRI is imaging speed. There is a 
fundamental tradeoff between the tempo-
ral resolution and spatial resolution of 
MRI, both of which are major concerns 
when imaging the beating heart. Conven-
tionally, the sampling requirements for 
MRI are governed by the Nyquist–Shan-
non theorem. The earliest methods to 
accelerate MRI were fast-scanning meth-
ods focused on manipulating nuclear 
spins for fast data acquisition, all within 
the Nyquist–Shannon framework. Fast-
scanning technology is now a relatively 
mature area of research, giving way to 
solutions which leverage different signal 
processing frameworks for sub-Nyquist 
imaging within the sampling constraints 
of nuclear spin physics.

OVERCOMING THE 
NYQUIST BARRIER
In cardiovascular MRI, the desired spatio-
temporal image , trt^ h is related to the 
signal ,d tkq q

Q
1=^ h" ,  from an array of Q

receive coils as

, , ,d t S t e dk r r rq q
i2 k rt= $

3

3
r

-

-8^ ^ ^h h h (1)

where S rq ^ h represents the spatial sensi-
tivity of the qth  receive coil. For conven-
tional image reconstruction, the coil 
sensitivities are absorbed into the desired 
image function for each coil, , trqt =^ h

, ,S tr rq t^ ^h h  which are then indepen-

dently reconstructed from the Nyquist-
sampled , tk^ h-space data via the inverse 
Fourier transform. The resulting coil 
images are combined to form the final 
reconstructed image.

PARALLEL IMAGING
Parallel imaging utilizes the additional 
encoding power of the receive coil sensi-
tivities S rq q

Q
1=^ h" ,  to solve the recon-

struction problem from the sub-Nyquist 
data. This approach is an ingenious appli-
cation of Papoulis’ multichannel sampling 
theorem to MRI [2]. It is well known that, 
under certain conditions, a signal that is 
bandlimited in either time or space can be 
exactly recovered from sub-Nyquist mea-
surements of the signal from multiple 
sensors. More specifically, consider that 

, trt^ h is spatially bandlimited to the 
region [ / , / ]B B2 2-  and ,d tkq q

Q
1=^ h" ,

are the outputs from a bank of Q  linear 
and k-shift-invariant filters .S rq q

Q
1=^ h" ,

Papoulis’ multichannel sampling theorem 
states that , ,d t t e d ,k r ri2 k rt= $

3

3
r

-

-8^ ^h h
and therefore , ,trt^ h  can be recovered 
from complex samples of ,d tkq q

Q
1=^ h" ,

taken at rate /Q BkT =t  (i.e., a factor of Q
above the Nyquist rate / )k B1T =  using 
interpolation kernels g kq q

Q
1=^ h" ,  derived 

from .S rq q
Q

1=^ h" ,
In the situation with known ,S rq q

Q
1=^ h" ,

, trt^ h can be recovered in image space by 
inverting (1) (e.g., sensitivity encoding for 
fast MRI (SENSE) [3]). When S rq q

Q
1=^ h" ,

are unknown, , trt^ h can be recovered 
using k-space interpolation kernels (anal-
ogous to the g kq q

Q
1=^ h" ,  in Papoulis’ 

sampling theorem), which are learned 
from auxiliary data (e.g., generalized 
autocalibrating partially parallel acquisi-
tions (GRAPPA) [4]). Although Papoulis’ 
multichannel sampling framework 
permits acceleration factors up to ,Q
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measurement noise, auxiliary data 
acquisition, and ill-conditioning of the 
reconstruction problem limit the prac-
tically achievable acceleration factor. As 
a result, acceleration factors well below 
Q  are applied in practice. To achieve 
greater acceleration, parallel imaging is 
often applied jointly with complemen-
tary acceleration approaches such as 
compressed sensing (CS) and/or sub-
space imaging.

COMPRESSED SENSING
CS theory enables recovery of sparse sig-
nals from sub-Nyquist measurements and 
has found important application in MRI, 
especially cardiac MRI. After discretizing 
and vectorizing ( , )trt  and ( , )d tk  as t
and ,d  respectively, the data acquisition 
equation (1) can be formulated as

.A dt =  Under the CS theory, t  can be 
recovered from d  by minimizing T 1t

subject to A dt =  or d A 2
2 1 et-  (in 

the case with noise), where T  is a sparsi-
fying transform.

Cardiovascular images are sparse in a 
number of transform domains [5], 
including the , fr^ h-space (spatial-spec-
tral), wavelet-spectral, or spatiotemporal 
finite-difference domains. T  is commonly 
chosen to transform the image vector t
into one of these domains. Randomly 
ordered , tk^ h-space sampling is also used 
for CS MRI, as it generally results in a 

Notable Developments in Cardiac Technology

1816 Stethoscope — Laennec

1899 Defibrillator — Prevost and Batelli

1906 EKG/ECG — Einthoven

1929 Human Cardiac Catheter — Forssmann

1932 Hyman Pacemaker — Hyman

1953 Artificial Heart — Winchell

Causes of Death Worldwide (Source: WHO)
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[FIG1] Notable facts about cardiovascular diseases and cardiac technologies.

[FIG2] Applications of cardiovascular MRI.
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sampling basis A  which is incoherent 
with any of the previously mentioned 
sparse bases. Image reconstruction can be 
performed by solving an unconstrained 
optimization problem:

t ,arg min d A T2
2

1mt t- +

where m  is a regularization parameter. 
Like parallel imaging, CS is an effec-

tive strategy to accelerate cardiovascular 
MRI and is most effective when jointly 
used with parallel imaging and/or sub-
space imaging.

SUBSPACE IMAGING
Subspace imaging exploits the fact that 
cardiovascular signals have a high degree 
of spatiotemporal correlation (or reside 
in a low-dimensional subspace). More 
specifically, the spatiotemporal changes 
of cardiac MR data can be expressed as 

,d t u v tk kL

1
= , ,,=

^ ^ ^h h h/  [6]. In other 
words, ,d tk^ h  is Lth -order partially 
separable. It can be shown that the 
Casorati matrix C  formed with elements 

,C d tkij i j= ^ h has a rank no more than 

.L  This property enables recovery of 
,d tk^ h (or the missing entries of )C  from 

highly undersampled measurements by 
imposing a rank or subspace constraint.

MR cardiac signals are highly corre-
lated and as a result, the separation rank 
L  is rather low (around 32). In addition, 
special data acquisition schemes can be 
implemented, which acquire at least L
rows of C  in full and sparsely sample the 
remaining rows of .C  This allows the 
temporal subspace to be predetermined 
and the rank-constrained matrix com-
pletion problem to be solved with this 
known subspace, which significantly 
simplifies the subspace imaging recon-
struction problem.

Subspace imaging provides a power-
ful tool to accelerate cardiovascular MRI. 
It produces best results when jointly 
imposed alongside parallel imaging and/
or CS, as demonstrated in Figure 3.

APPLICATIONS

CINE IMAGING
Dynamic cine image sequences depict the 
structure and function of the heart, 
including the mechanical contraction, 
timing, and extent of wall motion and 
thickening, as well as the function of 
valves. From these images, it is possible to 
perform a multitude of cardiac assess-
ments. Global measures such as cardiac 
mass, blood volume, and ejection fraction 
can be measured from time-resolved 
images at different cardiac phases. 
Regional wall motion may be used to 
determine and localize abnormal tissue 
function: akinetic regions of the myocar-
dium (i.e., the cardiac wall) can be well 
visualized, helping to determine the 
extent of injury to the myocardium. Func-
tional cine imaging may augment mor-
phological imaging to better assess 
complex structural abnormalities and con-
genital heart defects by visualizing the 
motion of the blood and valves. Cine 
imaging may also be used to assess the 
mechanical activation of the heart, which 
may be important in understanding 
arrhythmias and in guiding treatment. 
When used in conjunction with contrast 
enhanced viability imaging, it may further 
be used to distinguish irreversibly dam-

aged myocardium from stunned myocar-
dium after ischemia.

The cornerstone of cine imaging is 
cardiac motion; however, it is challenging 
to acquire high spatial resolution images 
quickly enough to resolve the motion of 
the heart. For this reason, “gated” meth-
ods are commonly employed to utilize 
data acquired across multiple heartbeats, 
with the underlying assumption that 
each heartbeat is the same, i.e., that

, trt^ h is periodic. This is achieved by 
using the electrocardiogram (ECG) as a 
reference signal and instructing the sub-
ject to hold his or her breath; the data 
from multiple heartbeats are then com-
bined to reconstruct a single representative 
heartbeat. However, many patients are 
unable to hold their breath adequately or 
may have variations in their heart rhythms 
that violate the assumption of a stationary 
(i.e., periodic) heart, leading to poor image 
quality using gated methods. For this rea-
son, it is often preferable to use accelerated 
methods that can produce high spatial-res-
olution images quickly enough to resolve 
cardiac and respiratory motions with-
out resorting to ECG triggering or breath-
holding. These accelerated methods are 
referred to as real-time imaging methods. 
Figure 4(a) shows a comparison between 
gated and real-time imaging on patients 
with atrial fibrillation.

Advanced image reconstruction meth-
ods that use signal processing to permit 
rapid imaging and fill in the missing data 
from undersampled acquisitions are rou-
tinely applied to cardiac functional cine. 
These methods are used to reduce the 
breath-hold duration for gated, segmented 
scans to several heartbeats, as well as for 
real-time imaging. Indeed, cine imaging 
has advanced to the point where it is now 
possible to image two-dimensional (2-D) 
slices of the heart at 1.0 mm in-plane spa-
tial resolution and 20 frames per second 
(fps), using hybrid fast-scanning, parallel 
imaging, CS, and subspace imaging 
methods [7]. 

Methods that can acquire time-resolved 
three-dimensional (3-D) volumes have 
potential to greatly simplify the workflow 
and improve the analysis of cardiac func-
tion. Three-dimensional methods require 
an even higher degree of acceleration and 

y

x
t

(a)

(b)

[FIG3] An illustration of sub-Nyquist
cardiac MRI. (a) Nearest-neighbor 
temporal interpolation of the (k,t)-space 
data demonstrates the low temporal 
sampling rate of MRI as well as the 
resulting spatiotemporal artifacts and 
blurring. (b) Reconstruction of the same 
data using parallel imaging, CS, and 
subspace imaging shows the power of 
accelerated imaging. Images are shown 
stacked along the time dimension, and 
spatiotemporal slices show the 
temporal profiles over the yellow lines.
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are a subject of active investigation. There 
is also demand for even higher spatiotem-
poral resolution: submillimeter resolution 
to capture detail of small structures such 
as atria, coronary arteries, or thin walls 
such as the right ventricle, and temporal 
resolution on the order of 10–20 ms for 
the assessment of diastolic function [8]. 
Validating the fidelity of advanced image 
reconstruction methods is an important 
area of research.

VIABILITY IMAGING
Late gadolinium enhancement (LGE) 
imaging (also known as delayed enhance-
ment imaging) is used to assess the viabil-
ity of myocardial tissue (i.e., whether the 
tissue is dead or alive). The heart is typi-
cally imaged 10–20 min after the adminis-
tration of gadolinium-based contrast 
agent into the blood stream. Gadolinium 
contrast agents shorten the spin-lattice 
relaxation time constant T1 (a key mecha-
nism in the contrast of ),t  boosting the 
signal when using T1-weighted imaging 
and therefore brightening voxels in which 

the contrast agent is concentrated. After a 
period of time following the administra-
tion of the gadolinium based contrast agent, 
concentration is higher in fibrous scar tis-
sue than in normal myocardium, since the 
contrast agent in that tissue washes out at a 
slower rate. With T1-weighted sequences 
such as inversion recovery, the normal 
myocardium appears dark and scar tissue 

appears bright, leading to positive con-
trast. LGE has become the gold standard 
for viability imaging.

To measure enough data (lines of
k-space) to achieve the desired spatial res-
olution, it is customary to acquire data 
over multiple heartbeats in a gated, seg-
mented fashion. This approach presumes 
that the subject has a stable heart period 
and is able to reliably hold their breath, 
but it is difficult (or for sicker subjects, 
impossible) to fulfill this requirement. 
Accelerated parallel imaging may be used 
to acquire LGE images in a single heart-
beat [9]. Using this approach, the patients 
may breathe freely, and imaging is not 
sensitive to arrhythmias.

TISSUE CHARACTERIZATION
The physics of MR provides a rich set of 
contrasts useful in characterizing tissue 
and answering a number of clinical ques-
tions. Various contrasts such as T1, T2, or 
T2* may be achieved by varying the pulse 
sequence used in data acquisition, reveal-
ing characteristics of the local chemical 
environment. For instance, it is possible to 
image and quantify water, fat, and iron 
content, which can be used to diagnose 
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[FIG4] Example images from different applications of cardiac MRI. (a) Examples of gated and real-time imaging of patients with 
irregular heartbeats. Individual heartbeats do not match up when “stacked” as in gated imaging, producing artifacts. Real-time 
imaging is fast enough to image each heartbeat individually, avoiding these artifacts. (b) Examples of both qualitative (LGE) and 
quantitative [Native T1 and extracellular volume (ECV) fraction] cardiovascular MR images. Quantitative imaging has advantages 
over qualitative imaging when the disease is globally diffuse, which is more difficult to discern using qualitative imaging (as in 
the cardiac amyloidosis example).
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and differentiate disease. While qualitative 
T1-weighted imaging may reveal regional 
differences in the T1 of tissue (such as the 
elevated T1 due to edema in acute myocar-
ditis), it is more challenging to detect when 
there is a global shift in T1. In this instance, 
there will be no regional differences or spa-
tial contrast observed. To detect diseases 
that result in a global abnormality (i.e., a 
uniform contrast change), it is required to 
quantify the actual value of T1 or other 
parameters (e.g., T2 or T2*).

It is possible to quantify these param-
eters by collecting multiple images with 
different parameter weightings to gener-
ate parametric maps. These maps have 
proven useful in cases of globally diffuse 
disease processes such as fibrosis and 
edema [10]. Figure 4(b) shows some of 
the advantages of quantitative imaging 
over qualitative imaging, particularly for 
the cardiac amyloidosis example, wherein 
amyloids have globally infiltrated the 
myocardium and therefore do not exhibit 
the local enhancements required to allow 
detection via qualitative imaging. Quanti-
tative MRI is more objective and provides 
a means to perform serial measurements 
which may be used to evaluate the effec-
tiveness of therapies in the long term. 

Parametric mapping places additional 
demands on accelerated imaging to 
achieve the desired image quality and spa-
tiotemporal resolution in the presence of 
motion. For example, in creating a pixel-
wise map of the time constant T1, images 
are acquired at varying delays following an 
inversion or saturation of the magnetiza-
tion, and measurements of the signal at 
each pixel are fit to an exponential recov-
ery curve. Quantitative measurements 
have great potential for disease detection 
but increase the demand for reliable and 
validated image reconstruction methods to 
achieve the desired accuracy and precision.

MYOCARDIAL PERFUSION IMAGING
Myocardial perfusion imaging measures 
blood flow through the myocardium to 
detect coronary artery disease. Imaging is 
performed to measure the wash-in and 
wash-out during the first passage of a bo-
lus of gadolinium-based contrast agent. 
Regions with normal flow will appear 
brighter than regions with reduced flow 

(signal intensity is proportional to the 
concentration of contrast agent on a T1-
weighted image). Perfusion measure-
ments can then be extracted from the sig-
nal intensity curve , tr0t^ h for any voxel 
r0  inside the myocardium. Myocardial 
perfusion contrast dynamics are transient, 

so real-time imaging must be performed 
with adequate temporal resolution to 
freeze cardiac motion. Spatial coverage of 
the heart is achieved by imaging several 
2-D slices in rapid succession or by a 
highly accelerated 3-D volumetric acqui-
sition. Myocardial perfusion imaging is 
commonly performed under both stress 
(wherein the patient is generally admin-
istered a pharmacological stress agent) 
and at rest. Imaging during stress pres-
ents additional challenges due to in-
creased heart rates and the subsequent 
requirement for even faster imaging. 
Myocardial perfusion imaging after exer-
cise-induced stress (such as after a tread-
mill session) is even more challenging 
due to the need to image within seconds 
of reaching peak stress.

Research in myocardial perfusion 
imaging is largely focused on increased 
speed and spatial coverage using highly 
undersampled acquisitions and advanced 
reconstruction. Although MR images are 
conventionally acquired by sampling k-
space on a Cartesian grid, new approaches 
to highly accelerated myocardial perfu-
sion imaging have explored non-Carte-
sian sampling patterns such as radial or 
spiral k-space trajectories [11]. Non-Car-
tesian trajectories also have the potential 
to achieve full 3-D coverage using CS 

reconstruction [12]. Respiratory motion 
correction via image registration allows 
for free breathing during the acquisition 
of first-pass contrast-enhanced images, 
and advanced image reconstruction 
methods that incorporate motion correc-
tion directly into the image reconstruc-
tion problem have been demonstrated. 
Myocardial perfusion is an active area of 
research with goals of achieving reliable, 
artifact free, high spatial resolution imag-
ing and providing fully quantitative mea-
surement of myocardial blood flow and 
flow reserve.

PHASE CONTRAST 
VELOCITY MAPPING
Magnetic field gradients can also manip-
ulate nuclear spins to encode the blood 
flow velocity in the phase of the complex 
image , .trt^ h  Velocity encoding in a 
single carefully chosen direction can 
provide flow measurements for targeted 
areas; velocity encoding in three direc-
tions can provide a vector field showing 
the path and speed of blood flow through 
all of the imaged chambers and vessels. 
This vector field can then be used to 
identify forward, regurgitant, and shunt 
flows and potentially be used to measure 
flow pressure as well as shear stress on 
the vessel wall.

Velocity encoding in multiple direc-
tions cannot be performed simultane-
ously; the data from each velocity 
encoding direction are collected sepa-
rately, resulting in a threefold loss of 
temporal resolution. Phase contrast (PC) 
velocity mapping has been performed in 
2-D without the use of ECG gating 
through a combination of fast-scanning, 
parallel imaging, and sparse sampling, 
achieving 1.8 mm in-plane spatial reso-
lution at 23 fps [13], but the additional 
acceleration requirements of PC MRI 
have ensured that 3-D PC MRI is still sol-
idly dominated by gated techniques [14]. 
Opportunities exist to accelerate 3-D PC 
MRI to the point where ECG gating is no 
longer required.

SPECTROSCOPIC IMAGING
MR spectroscopic imaging (MRSI) col-
lects a nuclear MR (NMR) chemical spec-
trum for each voxel, adding yet another 
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image dimension. For example, 1H spec-
troscopic imaging separates the hydro-
gen signals in water, fat, creatine, lactate, 
etc., from each other, generating images 
for each molecule. Phosphorus (31P) 
imaging is even more useful, allowing 
monitoring of cardiac metabolism by 
isolating phosphocreatine (PCr), inor-
ganic phosphate (Pi), and the phosphate 
groups in adenosine diphosphate (ADP) 
and adenosine triphosphate (ATP). 
Sodium (23Na) imaging also has potential 
to assess extracellular volume (ECV) 
without the need for contrast agents due 
to the elevated sodium levels in myocar-
dial scars.

The low abundance of spins in metab-
olites ensures that MRSI is extremely sig-
nal starved. Coupled with the sampling 
difficulties brought on by the additional 
imaging dimension, real-time dynamic 
cardiac MRSI has yet to be demonstrated. 
Static cardiac MRSI methods have 
addressed the signal-to-noise ratio prob-
lem by using large voxel sizes on the 
order of 20 mm and by averaging the sig-
nal from many different acquisitions over 
the course of 30 min or more [15]. The 
ability to perform high-resolution cine 
MRSI would represent a major step for-
ward in cardiac imaging.

OUTLOOK
Cardiovascular MRI has come a long way 
since its inception and has had impor-
tant clinical impact. Technological 
advancements based on signal process-
ing for reconstruction of sparsely sam-
pled data are making important impacts 
in many areas, including cardiovascular 
stress imaging, pediatric imaging of con-
genital heart disease, quantitative tissue 
characterization, vessel wall imaging, 
and image-guided therapeutic proce-
dures. Quantitative imaging has the 
potential for earlier and more reliable 
detection of diseases. Advances in spec-
troscopic imaging could allow myocar-
dial viability and ECV assessments 
without the use of contrast agents. 
Improvements in rapid imaging may be 
used to streamline the imaging workflow 
and reduce the cost of studies. Rapid 3-D 

whole-heart imaging will streamline the 
workflow even further by eliminating the 
need for scout scans and scan plane 
localization. These advances are quickly 
moving us toward an all-free-breathing 
paradigm for whole-heart cardiac MRI, 
allowing shorter scans with increased 
patient comfort.

Comprehensive physiological imaging 
is also an exciting possibility, which would 
provide metabolic and biochemical infor-
mation about cardiac tissues in a wide 
number of conditions: hypertensive, val-
vular, and ischemic heart diseases, heart 
failure, cardiac transplantation, and car-
diomyopathies. The fusion of MRI with 
other imaging modalities such as PET can 
leverage the various strengths of differ-
ent modalities to provide even more 
physiological information.

Tracking and fully utilizing this physi-
ological information will require advances 
in cardiovascular health informatics, a 
hugely important topic related to cardiac 
MRI as well as the broader signal process-
ing community. Leveraging MRI’s capa-
bility to acquire structural, functional, 
and physiological information of the heart 
may allow development of personalized 
computational models of the cardiovascu-
lar system. When combined with 
advances in health informatics, longitudi-
nal personalized models could be 
retrieved and updated from any properly 
equipped clinical facility. These models, 
coupled with other real-time sensory data 
such as ECG signals, would not only 
quantitatively assess the current state of 
the heart, but could also be used to design 
personalized treatment (e.g., cardiac 
implants, pharmacotherapy) or even to 
predict future cardiac events.
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Multiuser Collaborative Viewport via Temporal 
Psychovisual Modulation

C
onsider a multiuser visualiza-
tion scenario. When making 
or evaluating emergency 
response plans for a large 
city, professionals from 

police, fire, civil defense, health, environ-
ment, transportation, and social services 
departments meet and discuss. As emer-
gency management involves coordinated 
activities of various stakeholders, all par-
ticipants desire to have visual representa-
tion of location-sensitive data on a 
common, integrated display. Separate dis-
plays for different types of data cause 
semantic fragmentation; as one’s eyes 
switch between displays to associate 
related information, mental transforma-
tion in cognitive psychology has to take 
place, reducing an individual’s perfor-
mance on the task. Moreover, separate 
personal displays create a feeling of isola-
tion from others and hinders face-to-face 
communication. 

While sharing the same physical dis-
play, different experts may need to inde-
pendently consult specialty maps of their 
own disciplines (e.g., political, topo-
graphic, hydrological, geological, atmo-
spheric, seismic, underground utility, 
satellite images, etc.) without distracting 
others. The underground maze of water 
and sewage pipes, electricity and tele-
communication lines, etc., may appear 
perfectly clear and legible to someone in 
charge of public utilities but bewildering 
to an ambulance dispatcher. In other 
words, the optimal level of details varies 
from user to user and task to task. There-
fore, clutter-free presentation of complex 
geodata in the above case—or any type 
of big data in general—to a team of 

collaborating users requires a single 
physical display to generate concurrent 
multiple visuals tailored to different 
viewers. The previously mentioned col-
laborative multiuser visualization can be 
facilitated by an information display tech-
nology called temporal psychovisual 
modulation (TPVM) [1], which can gen-
erate a number of interference-free visu-
als on a common exhibition medium. 

BACKGROUND
Multiple exhibitions on a lone display 
(MELD) refers to the display capability of 
concurrently generating multiple individ-
ual-tailored interference-free views on a 
common physical medium. Conceptually, 
displaying multiple images on a common 
optoelectronic medium surface can be 
considered as a problem of two-dimen-
sional (2-D) optical communication. 

The two straightforward approaches 
for MELD are space multiplexing and 
time multiplexing of light signals emitted 
from the display surface (a rectangular 
array of light transmitters). The classic 
multiview display techniques of lenticu-
lar lens [2] and parallel barriers [3] are 
the approach of space multiplexing. A 
more sophisticated space multiplexing-
based MELD technique is random hole 

display [4]. The weakness of space multi-
plexing methods is that the spatial reso-
lution of displayed image for each viewer 
is reduced and the image quality rapidly 
deteriorates as more participants join the 
session. The user experience is further 
compromised by the fact that the image 
quality of these displays varies in viewers 
positions, with only a few so-called sweet 
spots. The SecondLight system [5], the 
ThirdEye system [6], and the dual-view 
display of Sony Corporation [7] are meth-
ods of simple time multiplexing. Time 
multiplexing-based MELD can only be 
achieved on displays of high refresh rate, 
and it is a terrible waste of available opti-
cal bandwidth; a time multiplexing dis-
play has to run at 60 KHz to support K
users. Moreover, the light influx for each 
viewer drops as the number of concur-
rent views increases, further limiting the 
number of users served. In contrast, the 
new TPVM information display paradigm 
published in the January 2013 issue of 
IEEE Signal Processing Magazine [1] is 
ideally suited to achieve the MELD func-
tionality; it can exhibit a much larger 
number of concurrent views than space 
and time multiplexing without suffering 
from loss of spatial resolution or deple-
tion of light influx. 

MELD SYSTEM BASED ON 
TEMPORAL PSYCHOVISUAL 
MODULATION
Unlike conventional displays, in TPVM, 
each output frame alone is generally not 
a complete image but rather a so-called 
atom frame, which is meant to be lin-
early combined with other atom frames 
to form different concurrent images all 
on the same display medium. As long as 
these atom frames are refreshed at a 
speed higher than 60 Hz, the critical 

THE TWO
STRAIGHTFORWARD

APPROACHES FOR
MELD ARE SPACE

MULTIPLEXING AND
TIME MULTIPLEXING
OF LIGHT SIGNALS

EMITTED FROM THE
DISPLAY SURFACE.
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flicker frequency, the human visual sys-
tem (HVS) cannot distinguish individual 
basis frames but rather psychovisually 
fuse them into an image. Therefore, if 
the temporal psychovisual fusion process 
can be manipulated, then different 
images can be formed out of the same 
set of atom frames for different viewers. 
The control of temporal psychovisual 
fusion can be obtained by placing a dis-
play-synchronized light amplitude mod-
ulator between a viewer’s eyes and the 
display medium. 

Figure 1 is a schematic depiction of a 
TPVM-based MELD display system, in 
which active liquid crystal (LC) glasses 
play the role of the display-synchronized 
light amplitude modulator. The LC 
glasses, if synchronized with the high-
speed display, can regulate how much of 
the light energy of each atom frame to 
pass through and reach retina, particu-
larly, perform amplitude modulation of 
rapidly fired atom frames. At the heart of 
the multiuser display system is a prob-
lem of nonnegative matrix factorization 
(NMF) [8]. Let ( , , , )Y y y yK1 2 f=  be the 
K  target images to be concurrently dis-
played to different viewers. The N K#

matrix ,Y  where N  is the number of 
pixels in each target image, needs to be 
decomposed into ,Y XW=  with the 
N M#  matrix ( , , , )X x x xM1 2 f=  being 
the set of atom frames and the M K#
matrix ( , , , )W w w wK1 2 f=  being the 
K  modulation coefficient vectors corre-
sponding to the K  target images. The
resulting atom frames , , ,x x xM1 2 f  are 
cyclically displayed at a refresh rate 
above 60M Hz, and the corresponding 
2-D optical signals are temporally modu-
lated by active LC glasses according to 
weights , , , .w w wK1 2 f  This optoelec-
tronic display-glass coupling and the 
psychovisual temporal fusion mecha-
nism of HVS jointly render the K  con-
current target images , , ,y y yK1 2 f  as 
different linear combinations of the 

, , ,x x xM1 2 f  atom frames. 
In practice, the image decomposition 

underlying TPVM has to respect a condi-
tion of nonnegativity because the light 
energy emitted by the display cannot be 
negative, and active LC glasses can only 
implement modulation weights between 0 
and 1. Therefore, the introduced MELD 
display system needs to solve the follow-
ing problem of NMF: 

,

, ,

min

0 1subject to

Y XW

X W

F
2

X,W

# #

-

(1)

with , , ,Y X WN K N M M K0 0 0! ! !# # #

and where · F  is the Frobenius norm; #
operates on each element of the matrices. 

In the MELD display system, all K
target views ,yk ,k K1 # #  which are 
generated through synchronized active 
LC glasses performing light amplitude 
modulation, are called personal views in 
a multiuser environment, as they are 
intended to provide individualized visual 
experience. However, in concurrence 
with these personal views, yet another 
image will also result for those viewers 
who use no light modulation devices. 
This is the view that the HVS forms by 
fusing all unattenuated atom frames 
displayed in rapid succession, i.e.,

;y x x xM0 1 2 f= + + + y0  is the default 
image seen by all viewers without using 
personalized viewing devices. In most 
multiuser applications, the shared view 
y0  should be semantically meaningful 
and visually pleasing in coexistence of 
intended personal views on the same dis-
play medium. Once given in conjunction 

Nonnegative Matrix Factorization:
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W = [w1, w2, ... , wk]
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[FIG1] Image formation by temporal psychovisual modulation (TPVM). The basis images and modulation vectors are computed from 
non-negative matrix factorization. ( , , , )Y y y yK1 2 f=  are K  target images to be concurrently displayed to different viewers. The 
N K#  matrix ,Y  where N  is the number of pixels in each target image, is decomposed into ,Y XW=  with the N M#  matrix 

( , , , )X x x xM1 2 f=  being the set of atom frames and the M K#  matrix ( , , , )W w w wK1 2 f=  being the K  modulation coefficient 
vectors corresponding to the K  target images. The atom frames , , ,x x xM1 2 f  are cyclically displayed and temporally modulated by 
active LC glasses according to weights , , , .w w wK1 2 f  The optoelectronic display-glass coupling and the psychovisual temporal fusion 
mechanism of HVS jointly render the K  concurrent target images as different linear combinations of the atom frames.
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of personal views in a multiuser setting, 
y0  needs to be factored into the MELD 
design criteria. This expands the objec-
tive function (1) to 

,

, ,

min

0 1subject to

Y XW y X1

X W

F F
2

1 0
2

X,W

# #

m- + -` j
(2)

where 1 stands for a column vector of all
s,1  and multiplier 1m  determines quality 

tradeoff between the shared view y0  and 
personal views ,yk .k K1 # #

How many personal views can be sus-
tained by the system in addition to a 
shared view and at what quality depend 
on the number of atom frames .M  In 
TPVM, supporting M  atom frames with-
out flicker artifacts requires the display 
refresh rate and light modulator speed to 
reach 60M Hz. There are high-speed 
optoelectronic displays that can operate 
at 240 Hz or much higher. For example, 
the new DLP9500 DMD (which stands for 
“Digital Micromirror Device”) from Texas 
Instruments can operate at 1,700 Hz for 
full high-definition resolution [9]. The 
speed active LC glasses is significantly 
lower. Although there are advanced LC 
glasses whose response speeds reach 
1,000 Hz or above in laboratories [10], 
the speed of the off-the-shelf LC glasses 
cannot exceed 240 Hz. One way to 
accommodate this device limitation is to 
impose suitable constraints on the modu-
lation vectors in .W

Due to the material property of LC, the 
expected response time of active LC shut-
ters is shorter if the controlling electric 
signal is sparse in time (i.e., fewer “on” 
states), meaning in our case a fewer num-
ber of large elements in the modulation 

weighting vector ,wk .k K1 # #  This 
sparsity constraint is added to the objec-
tive function (2) by making wk 1,  as 
small as possible, namely, 

,

, ,

min

0 1subject to

Y XW y X1

w

X W

F F

k
k

K

2
1 0

2

2
1

X,W

1

# #

m

m

- + -

+ ,
=

c
m/

(3)

where the second multiplier 2m  governs 
the desired level of sparsity in the modu-
lation weighting vectors. The sparsity-
based NMF problem (3) can be simplified 
and solved by the two-block coordinate 
descent type of algorithms [11], e.g., the 
active set method [12]. 

APPLICATION SHOWCASES 
AND DISCUSSIONS
A prototyped MELD viewport in action is 
illustrated in Figure 2. We showcase MELD 
functionalities and visual effects in two 
mock-up application scenarios: 1) collabor-
ative visualization of a large and complex 
data set and 2) MELD display for multiuser 
virtual reality (VR) in surgical planning. 

Figure 3 shows the screen captures of a 
multiuser collaborative visualization ses-
sion as described in the introduction, 
where a group of interdisciplinary experts 
and municipal administrators congregate 
to discuss a city’s emergency response 
plans. The available geographical data are 
highly complex with many specialty layers. 
Displaying all map layers together on a 
conventional screen generates severe 
visual clutters as shown in Figure 3(f). 
This problem is alleviated by the MELD 
system that concurrently presents multi-
ple interference-free views tailored 

to individual participants: the view of the 
satellite image with buildings and roads 
annotated [Figure 3(b)], the view of the 
same satellite image but with color coded 
traffic patterns [Figure 3(c)], and the views 
of the same base image but coupled with 
different layers of underground structures 
[gas pipelines in Figure 3(d) and sewage 
system in Figure 3(e)]. In addition, the 
MELD system presents a shared (or 
default) view as a common reference for 
those who do not use modulation glasses 
[Figure 3(a)]. Unlike in other multiview 
display systems that restrict personal views 
in locations, viewpoints, and spatial resolu-
tion, MELD personal views are visible from 
any angle, presented at the full spatial res-
olution of the display, and can completely 
overlap each other without interference. 

The second application scenario is sur-
gical planning in a setting of multiuser 
mixed reality (combined virtual and physi-
cal realities), where collaborating sur-
geons and nurses “operate” on a virtual 
patient in physical copresence. If a con-
ventional display is used to render the vir-
tual patient, then participants are forced 
to have an identical view despite their dif-
ferent eye positions and viewing angles. 
Their visual experience will be distorted 
and disconnected from the VR, causing 
disorientation and cognitive impairment. 
In contrast, a MELD display concurrently 
generates perspective correct views for dif-
ferent participants, even as they move and 
physically interact with each other. 

Figure 4 illustrates actions and effects 
of the MELD system in surgical planning. 
By feeding each participant her/his own 
eye-tracked perspective-correct image of 
the virtual patient’s anatomy, the MELD 

[FIG2] (a) A prototyped MELD viewport. (b) and (c) Different personal views in collaborative visualization rendered on a common 
desktop display. (d) The LC viewing devices, glasses, and viewport. 

(a) (b) (c) (d)
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[applications CORNER]continued

system can create a fairly realistic collab-
orative team experience with respect to a 
common virtual environment rendered on 
a single desktop viewport. The participants 
can stand around the viewport as they 

would around an operation table, interact 
with each other face to face unobstructed, 
and yet have their own perspective-correct 
views of the virtual patient from the 
MELD viewport. 

SUMMARY
We discussed a novel multiview display sys-
tem suitable for multiuser VR/augmented 
reality and collaborative visualization that 
utilizes the TPVM principle for concurrent 

(b)

(a)(c) (d)

[FIG4] Snapshots of the MELD system when used in multiuser VR for medical applications. (a) The prototyped MELD desktop 
viewport. (b) A shared top-down view of a patient’s anatomy. (c) A personal view from the top left of the virtual patient.  
(d) A personal view from the top right of the virtual patient.

[FIG3] Snapshots of the MELD prototype system used in multiuser collaborative visualization of a multilayer geographic information 
system data set. (a) Shared view: satellite image of a target area. (b) Personal view 1: with annotations of building and roads.  
(c) Personal view 2: with live traffic conditions shown. (d) Personal view 3: with mock underground gas pipelines and storage facility 
shown. (e) Personal view 4: with mock underground sewage system shown. (f) Visual clutter when all data layers are displayed 
superimposed to each other. Parts of data are from Google Maps and parts of data are imaginative for demonstration purpose only.

(a) (b) (c)

(d) (e) (f)
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images formation. We also discussed an 
algorithmic approach of sparsity-based 
NMF for the generation of concurrent 
images. Finally we demonstrated the 
functionalities of the new display technol-
ogy with multiple concurrent interfer-
ence-free user-manipulable views at high 
quality on a common physical medium. 
The future directions of this research 
include the design of fast TPVM algo-
rithms and the development of hardware 
solutions for real-time applications. 
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These new, ultra-wideband models provide attenuation levels from 3 to 20 dB, 2W power handling, 
and 2.9mm connectors. Our full “BW” precision attenuator family now includes 70 models with 
accurate attenuation ranging from 1 to 50 dB and power handling from 2 up to 100W to meet 
your requirements with performance you can count on.

Visit minicircuits.com for free data, curves, quantity pricing, designer kits, and everything 
you  need to find the right BW attenuator for your needs.  All models are available off-the-shelf 
for delivery as soon as tomorrow!

518 rev C

Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com

    NOW from DC up to40 GHz from
$2995

    ea. (1-49)
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Important Dates 
Tutorials, Special, Sessions & Challenges 

Proposal Submission
June — Sept.  2014 

4-Page Paper Submission 
Aug. 1st  — Nov. 10th, 2014 
Notification
Dec. 20th, 2014 
Upload & Registration 
Jan. 10th, 2015 

The IEEE International Symposium on Biomedical Imaging (ISBI) is a premier 
interdisciplinary conference encompassing all scales of imaging in medicine 
and the life sciences. The 2015 meeting will continue its tradition of fostering 
knowledge transfer among different imaging communities and contributing to 
an integrative approach to biomedical imaging across all scales of observation. 

ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the 
IEEE Engineering in Medicine and Biology Society (EMBS). The 2015 meeting 
will open with a morning of tutorials, followed by a scientific program of plenary 
talks, invited special sessions, challenges, as well as oral and poster 
presentations of peer-reviewed papers. 

High-quality papers are requested containing original contributions to 
mathematical, algorithmic, and computational aspects of biomedical imaging, 
from nano- to macro-scale. Topics of interest include image formation and 
reconstruction, computational and statistical image processing and analysis, 
dynamic imaging, visualization, image quality assessment, and physical, 
biological, and statistical modeling. We also encourage papers that elucidate 
biological processes (including molecular mechanisms) or translational 
ramification through integration of image-based data. Accepted 4-page regular 
papers will be published in the symposium proceedings and included in IEEE 
Xplore.

To encourage attendance by a broader audience of imaging scientists (in 
particular from the biology, radiology, and physics community) and offer 
additional opportunities for cross-fertilization, ISBI will again propose a second 
track featuring posters selected from abstract submissions without subsequent 
archival publication. 

Conference Chairs
Elsa Angelini
Telecom ParisTech, France 
Columbia University, USA 

Jelena Kova evi
Carnegie Mellon University, USA 

Program Chairs
Sebastien Ourselin
University College London, UK 

Jens Rittcher
Oxford University, UK   

Organizing Committee
Stephen Aylward, Kitware
Dana Brooks, Northeastern U. 
Qi Duan, NIH
Elisa Konofagou, Columbia U. 
Jan Kybic, Czech Tech. University 
Erik Meijering, Erasmus MC 
Wiro Niessen, Erasmus MC 
Ricardo Otazo, NYU 
Dirk Padfield, GE Healthcare
Gustavo Rohde, Carnegie Mellon 
Badri Roysam, U. of Houston 
Ivan Selesnick. Polytech NYU
Dimitri Van De Ville, EPFL 
Simon Warfield, Harvard
Ge Yang, Carnegie Mellon

Contact
d.bernstein@ieee.org

http://biomedicalimaging.org/2015

IEEE International Symposium on Biomedical Imaging 
April 16th — 19th  2015,  Brooklyn, NY USA 

Venue: ISBI 2015 will be held at the Marriott hotel at the 
Brooklyn bridge, located on Adams street, next to the 
historical Court House building, with premier shopping, dining, 
and attractions in the heart of the Dumbo district. A short walk 
will take you to eight subway lines, a city bike station or a 
yellow cab to explore Brooklyn or to reach Manhattan just 1.5 
miles (2 subway stations) across the East river for memorable 
nights in the Big Apple. 

1-Page Paper Submission 
Nov. 20th , 2014 — Dec. 20th , 2014
Notification
Feb. 1st , 2015 
Upload & Registration 
Feb. 15th , 2015
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Robust Transmit Nulling in Wideband Arrays http://dx.doi.org/10.1109/TSP.2014.2329653 . . . . . . . . . . . .. . . . . . . . . . . . P. G. Vouras and T. D. Tran 3706

Digital and Multirate Signal Processing

-Channel Oversampled Graph Filter Banks http://dx.doi.org/10.1109/TSP.2014.2328983 . . . . . . . . . . . . . . . . . . . . . . . Y. Tanaka and A. Sakiyama 3578

Jump-Sparse and Sparse Recovery Using Potts Functionals http://dx.doi.org/10.1109/TSP.2014.2329263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Machine Learning

Collaborative Kalman Filtering for Dynamic Matrix Factorization http://dx.doi.org/10.1109/TSP.2014.2326618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Z. Sun, D. Parthasarathy, and K. R. Varshney 3499

Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning

http://dx.doi.org/10.1109/TSP.2014.2329272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Prasad, C. R. Murthy, and B. D. Rao 3591

Signal Processing for Networks

Fading

http://dx.doi.org/10.1109/TSP.2014.2329267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Zafar, R. M. Radaydeh, Y. Chen, and M.-S. Alouini 3616

Radar and Sonar Signal Processing

Invariance and Optimality of CFAR Detectors in Binary Composite Hypothesis Tests http://dx.doi.org/10.1109/TSP.2014.2328327 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Ghobadzadeh, S. Gazor, M. R. Taban, A. A. Tadaion, and S. M. Moshtaghioun 3523

MIMO Communications & Signal Processing

PARAFAC-PARATUCK Semi-Blind Receivers for Two-Hop Cooperative MIMO Relay Systems

http://dx.doi.org/10.1109/TSP.2014.2328323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. R. Ximenes, G. Favier, A. L. F. de Almeida, and Y. C. B. Silva 3604

Signal Processing for Communications

Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer http://dx.doi.org/10.1109/TSP.2014.2328980 . . . . . . . . . . . . . . . . . .
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http://dx.doi.org/10.1109/TSP.2014.2329649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Shirazinia, S. Chatterjee, and M. Skoglund 3667

On Linear Precoding Strategies for Secrecy Rate Maximization in Multiuser Multiantenna Wireless Networks

http://dx.doi.org/10.1109/TSP.2014.2326617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. F. Hanif, L.-N. Tran, M. Juntti, and S. Glisic 3536

Statistical Signal Processing

A Class of Fast Exact Bayesian Filters in Dynamical Models With Jumps http://dx.doi.org/10.1109/TSP.2014.2329265 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Petetin and F. Desbouvries 3643

Fractional Sampling Theorem for -Bandlimited Random Signals and Its Relation to the von Neumann Ergodic Theorem

http://dx.doi.org/10.1109/TSP.2014.2328977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Torres, Z. Lizarazo, and E. Torres 3695

http://dx.doi.org/10.1109/TSP.2014.2329420 . . . . . . . . . . . . . .
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http://dx.doi.org/10.1109/TSP.2014.2328322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Ren, M. N. E. Korso, J. Galy, E. Chaumette, P. Larzabal, and A. Renaux 3682

COMMENTS AND REPLIES

Signal Processing for Networks

Comments on “Distributed MMSE Relay Strategies for Wireless Sensor Networks” http://dx.doi.org/10.1109/TSP.2014.2329279 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Lee, J. Yang, and H. M. Kwon 3720
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The 40th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 
will be held in the Brisbane Convention & Exhibition Centre, Brisbane, Australia, between 
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CALL FOR PAPERS  

IEEE Signal Processing Society 

IEEE Journal of Selected Topics in Signal Processing 

Special Issue on Signal and Information Processing for Privacy 

Aims and Scope 

There has been a remarkable increase in the usage of communications and information technology over the past decade. Currently, in the backend 
and in the cloud, reside electronic repositories that contain an enormous amount of information and data associated with the world around us. 
These repositories include databases for data-mining, census, social networking, medical records, etc. It is easy to forecast that our society will 
become increasingly reliant on applications built upon these data repositories. Unfortunately, the rate of technological advancement associated 
with building applications that produce and use such data has significantly outpaced the development of mechanisms that ensure the privacy of 
such data and the systems that process it. As a society we are currently witnessing many privacy-related concerns that have resulted from these 
technologies—there are now grave concerns about our communications being wiretapped, about our SSL/TLS connections being compromised, 
about our personal data being shared with entities we have no relationship with, etc.  The problems of information exchange, interaction, and 
access lend themselves to fundamental information processing abstractions and theoretical analysis. The tools of rate-distortion theory, distributed 
compression algorithms, distributed storage codes, machine learning for feature identification and suppression, and compressive sensing and 
sampling theory are fundamental and can be applied to precisely formulate and quantify the tradeoff between utility and privacy in a variety of 
domains. Thus, while rate-distortion theory and information-theoretic privacy can provide fundamental bounds on privacy leakage of distributed 
data systems, the information and signal processing techniques of compressive sensing, machine learning, and graphical models are the key 
ingredients necessary to achieve these performance limits in a variety of applications involving streaming data, distributed data storage (cloud), 
and interactive data applications across a number of platforms. This special issue seeks to provide a venue for ongoing research in information 
and signal processing for applications where privacy concerns are paramount. 

Topics of Interest include (but are not limited to): 

Signal processing for information-theoretic privacy 
Signal processing techniques for access control with privacy guarantees in distributed storage systems 
Distributed inference and estimation with privacy guarantees 
Location privacy and obfuscation of mobile device positioning 
Interplay of privacy and other information processing tasks 
Formalized models for adversaries and threats in applications where consumer and producer privacy is a major concern 
Techniques to achieve covert or stealthy communication in support of private communications 
Competitive privacy and game theoretic formulations of privacy and obfuscation 

Important Dates:   

Manuscript submission due:  October 1, 2014 
First review completed:  December 15, 2014  
Revised manuscript due:  February 1, 2015  
Second review completed:  March 15, 2015  
Final manuscript due:  May 1, 2015 
Publication date: October 2015  

Prospective authors should visit http://www.signalprocessingsociety.org/publications/periodicals/jstsp/ for information on  paper submission. 
Manuscripts should be submitted using Manuscript Central at http://mc.manuscriptcentral.com/jstsp-ieee.  

Wade Trappe
Rutgers University, USA
trappe@winlab.rutgers.edu

Lalitha Sankar
Arizona State University, USA
lalithasankar@asu.edu

Radha Poovendran
University of Washington, USA
rp3@u.washington.edu

Heejo Lee
Korea University, Korea
heejo@korea.ac.kr

Srdjan Capkun
ETH Zurich
srdjan.capkun@inf.ethz.ch
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The 15th ACM/IEEE International Conference on Information Networks
IPSN Call for Papers

The International Conference on Information Processing in Sensor Networks (IPSN) is a leading, single-
track, annual forum on research in networked sensing and control, broadly defined. IPSN brings together 
researchers from academia, industry, and government to present and discuss recent advances in both 
theoretical and experimental research. Its scope includes signal and image processing, information and 
coding theory, databases and information management, distributed algorithms, networks and protocols, 
wireless communications, collaborative objects and the Internet of Things, machine learning, mobile and 
social sensing, and embedded systems design. Of special interest are contributions at the confluence of a 
multiple of these areas.

In addition to regular research papers, in IPSN 2015, we also encourage submissions of Challenge Papers 
that lay out visions and future challenges in the field of information processing in sensor networks. 
Challenge papers are up to 6 page long and the title should start with “Challenge: … ” These submissions 
are reviewed based on the novelty of the concepts and potential of impacting the field.

The conference features two submission focus areas: one on Information Processing (IP), and one on 
Sensor Platforms, Tools and Design Methods (SPOTS). The entire program committee is eligible to review 
both focus areas, but authors are encouraged to make indications in the submission site accordingly to aid 
in reviewer selection. 

The IP area focuses on algorithms, theory, and 
systems for information processing using 
networks of embedded, human-in-the-loop, or 
social sensors. Topics covered in the IP area 
include, but are not limited to:

Sensor data processing, mining, and machine 
learning

Data storage, management, and retrieval
Coding, compression and information theory
Detection, classification, tracking, reasoning, 

and decision making
Sensor tasking, control, and actuation
Theoretical foundation and fundamental 

bounds
Network and system architectures and 

protocols
Location, time, and other network services
Programming models and languages
Mobile, participatory, and social sensing
Innovative applications and deployment 

experiences

Key Dates
Abstract registration: October 3, 2014
Submission deadline: October 10, 2014

17, 2015

Submission
Formatting guidelines for regular and challenge 
papers are available here.

The SPOTS area focuses on new hardware and 
software architectures, modeling, evaluation, 
deployment experiences, design methods, 
implementations, and tools for networked 
embedded sensor systems. Submissions are 
expected to refer to specific hardware, software, 
and implementations. Topics covered in SPOTS 
include, but are not limited to:

Novel components, devices and architectures 
for networked sensing

Innovative sensing and processing platforms 
including cloud,crowd, and Internet-of-Things

Embedded software for sensor networks
System modeling, simulation, measurements, 

and analysis
Design tools and methodologies for sensor 

networks
Network health monitoring and management
Operating systems and runtime environments
User interfaces for sensing applications and 

systems
Case studies highlighting experiences, 

challenges, and comparisons of platforms 
and tools

Organizers
General Chair: Suman Nath, MSR
TPC Co-Chair (IP): Bhaskar Krishnamachari, USC
TPC Co-Chair (SPOTS): Anthony Rowe, CMU
Steering Committee Chair: Feng Zhao, MSR Asia
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■ 50 ■ 100 ■ 200 ■ 300 ■ 400 ■ 500 or _________ (in multiples of 50) reprints.
■ YES ■ NO Self-covering/title page required. COVER PRICE: $74 per 100, $39 per 50.
■ $58.00 Air Freight must be added for all orders being shipped outside the U.S.
■ $18.50 must be added for all USA shipments to cover the cost of UPS shipping and handling.

...PLEASE SEND ME...

Number of Text Pages
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...2011 REPRINT PRICES (without covers)..
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Cardholder’s Name (please print): ____________________________________________________________________
________________________________________________________________________________________________
■ Bill me  (you must attach a purchase order)  Purchase Order Number ______________________________________

Send Reprints to: Bill to address, if different: 
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_____________________________________ _______________________________________________________
_____________________________________ _______________________________________________________
_____________________________________ _______________________________________________________

Because information and papers are gathered from various sources, there may be a delay in receiving your reprint request.  This is especially true with 
postconference publications. Please provide us with contact information if you would like notification of a delay of more than 12 weeks.

Telephone: _______________________ Fax: _________________________  Email Address: _____________________

...PAYMENT...

Tax Applies on shipments of regular reprints to CA, DC, FL, MI, NJ, NY, OH and Canada (GST Registration no. 12534188).

Prices are based on black & white printing. Please call us for full color price quote, if applicable.

Authorized Signature: ___________________________________________     Date:__________________

Author: ________________________________________

Publication Title: _________________________________

Paper Title: _____________________________________

_______________________________________________

RETURN THIS FORM TO:
IEEE Publishing Services
445 Hoes Lane
Box 1331
Piscataway, NJ  08855-1331
Call Reprint Department at (732) 562-3941 
for questions regarding this form
(732) 981-8062 - FAX

...PLEASE FILL OUT THE FOLLOWING

ORDER FORM FOR REPRINTS
Purchasing IEEE Papers in Print is easy, cost-effective and quick.

Complete this form, tear it out, and either fax it (24 hours a day) to 732-981-8062 or mail it back to us.

Larger quantities can be ordered. Email reprints@ieee.org with specific details.
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 

engineering—digital
10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 

management
5. Design engineering management

—analog
6. Design engineering management

—digital
7. Research and development

engineering
8. Design/development engineering

—analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2014 IEEE MEMBERSHIP APPLICATION

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address City State/Province

Postal Code Country

Secondary Phone

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  
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(Updated March 2012)

The IEEE TRANSACTIONS are published monthly covering advances in the

the journal with the most appropriate scope for your submission.
Authors are encouraged to submit manuscripts of Regular papers (papers

which provide a complete disclosure of a technical premise), or Correspon-
dences (brief items that describe a use for or magnify the meaning of a single
technical point, or provide comment on a paper previously published in the
TRANSACTIONS). Submissions/resubmissions must be previously unpublished
and may not be under consideration elsewhere.

being addressed, (b) state why it is important to solve the problem, and (c) give

By submission/resubmission of your manuscript to this TRANSACTIONS, you
are acknowledging that you accept the rules established for publication of man-
uscripts, including agreement to pay all overlength page charges, color charges,
and any other charges and fees associated with publication of the manuscript.
Such charges are not negotiable and cannot be suspended.
New and revised manuscripts should be prepared following the “New Manu-

script Submission” guidelines below, and submitted to the online manuscript

be prepared following the “FinalManuscript SubmissionGuidelines” below. Do
not sendoriginal submissions or revisions directly to theEditor-in-Chief orAsso-
ciate Editors; theywill access yourmanuscript electronically via the ScholarOne
Manuscripts system.

Please follow the next steps.
1. Account in ScholarOne Manuscripts. If necessary, create an account in the

you already have an existing account which is based on your e-mail ad-
dress and may have been created for you when you reviewed or authored
a previous paper.

2. Electronic Manuscript
double-spaced format (one full blank line between lines of type) using a
font size of 11 points or larger, having a margin of at least 1 inch on all
sides. For a regular paper, themanuscript may not exceed 30 double-spaced
pages, including title; names of authors and their complete contact infor-

ures and equations are visible in your document before you “SUBMIT”
your manuscript. Proofreading is critical; once you submit your manu-
script, the manuscript cannot be changed in any way. You may also submit

issues prior to completing the submission process.
3. Double-Column Version of Manuscript. You are required to also submit
a roughly formatted version of the manuscript in single-spaced, double
column IEEE format (10 points for a regular submission or 9 points for

equations stick out). If accepted for publication, over length page charges
are levied beginning with the 11th published page of your manuscript.
You are, therefore, advised to be conservative in your submission. This

proximate publication length of the manuscript and gives an additional

paid when billed upon publication.

ScholarOneManuscripts site.
4. Additional Material for Review. Please upload pdf versions of all items
in the reference list which are not publicly available, such as unpublished
(submitted) papers. Other materials for review such as supplementary ta-

5. Submission.

sion will open on screen containing the manuscript tracking number and

contributing authors. Once you click “Submit,” your manuscript cannot be
changed in any way.

6. Copyright Form and Consent Form. By policy, IEEE owns the copyright
to the technical contributions it publishes on behalf of the interests of the
IEEE, its authors, and their employers; and to facilitate the appropriate
reuse of this material by others. To comply with the IEEE copyright poli-
cies, authors are required to sign and submit a completed “IEEE Copyright
and Consent Form” prior to publication by the IEEE.
The IEEE recommends authors to use an effective electronic copyright

form (eCF) tool within the ScholarOne Manuscripts system. You will be
redirected to the “IEEE Electronic Copyright Form” wizard at the end of
your original submission; please simply sign the eCF by typing your name
at the proper location and click on the “Submit” button.

Correspondence items are short disclosures with a

meaning of a single technical point, or provide brief comments on material
previously published in the TRANSACTIONS. These items may not exceed 12
pages in double-spaced format (3 pages for Comments), using 11 point type,
with margins of 1 inch minimum on all sides, and including: title, names and
contact information for authors, abstract, text, references, and an appropriate
number of illustrations and/or tables. Correspondence items are submitted in
the same way as regular manuscripts (see “NewManuscript Submission” above
for instructions).

Papers published on or after 1 January 2007 can now
be up to 10 pages, and any paper in excess of 10 pages will be subject to over
length page charges. The IEEE Signal Processing Society has determined
that the standard manuscript length shall be no more than 10 published pages
(double-column format, 10 point type) for a regular submission, or 6 published
pages (9 point type) for a Correspondence item, respectively. Manuscripts that
exceed these limits will incur mandatory over length page charges, as discussed
below. Since changes recommended as a result of peer review may require
additions to the manuscript, it is strongly recommended that you practice
economy in preparing original submissions.
Exceptions to the 30-page (regular paper) or 12-page (Correspondences)

manuscript length may, under extraordinary circumstances, be granted by the
Editor-in-Chief. However, such exception does not obviate your requirement to
pay any and all over length or additional charges that attach to the manuscript.

Authors of rejected
manuscripts are allowed to resubmit their manuscripts only once. The Signal
Processing Society strongly discourages resubmission of rejected manuscripts
more than once. At the time of submission, you will be asked whether you con-
sider your manuscript to be a new submission or a resubmission of an earlier
rejected manuscript. If you choose to submit a new version of your manuscript,
you will be asked to submit supporting documents detailing how your new ver-
sion addresses all of the reviewers’ comments.
Full details of the resubmission process can be found in the Signal Processing

Society “Policy andProceduresManual” at http://www.signalprocessingsociety.
org/about/governance/policy-procedure/. Also, please refer to the decision letter
andyourAuthorCenter on theon-line submission system.

Author Misconduct Policy: Plagiarism includes copying someone else’s work
without appropriate credit, using someone else’s work without clear delineation
of citation, and the uncited reuse of an authors previously published work that
also involves other authors. Plagiarism is unacceptable.
Self-plagiarism involves the verbatim copying or reuse of an authors own

prior work without appropriate citation; it is also unacceptable. Self-plagiarism
includes duplicate submission of a single journal manuscript to two different
journals, and submission of two different journal manuscripts which overlap
substantially in language or technical contribution.
Authors may only submit original work that has not appeared elsewhere in a

journal publication, nor is under review for another journal publication. Limited
overlap with prior journal publications with a common author is allowed only
if it is necessary for the readability of the paper. If authors have used their own
previously published work as a basis for a new submission, they are required

fers substantively novel contributions beyond those of the previously published
work.
It is acceptable for conference papers to be used as the basis for a more fully

developed journal submission. Still, authors are required to cite related prior
work; the papers cannot be identical; and the journal publication must include
novel aspects.
Author Misconduct Procedures: The procedures that will be used by the

Signal Processing Society in the investigation of author misconduct allegations
are described in the IEEE SPS Policies and Procedures Manual.
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Author Misconduct Sanctions: The IEEE Signal Processing Society will
apply the following sanctions in any case of plagiarism, or in cases of
self-plagiarism that involve an overlap of more than 25% with another journal
manuscript:
1) immediate rejection of the manuscript in question;
2) immediate withdrawal of all other submitted manuscripts by any of the
authors, submitted to any of the Society’s publications (journals, con-
ferences, workshops), except for manuscripts that also involve innocent
co-authors; immediate withdrawal of all other submitted manuscripts by
any of the authors, submitted to any of the Society’s publications (jour-
nals, conferences, workshops), except for manuscripts that also involve
innocent co-authors;

3) prohibition against each of the authors for any new submissions, either in-
dividually, in combination with the authors of the plagiarizing manuscript,
or in combination with new co-authors, to all of the Society’s publications
(journals, conferences, workshops). The prohibition shall continue for one
year from notice of suspension.

Further, plagiarism and self-plagiarism may also be actionable by the IEEE
under the rules of Member Conduct.

Authors are encouraged to prepare manuscripts employing the on-line style

are available on the web at http://www.ieee.org/publications_standards/publi-
cations/authors/authors_journals.html#sect2 under “Template for all Transac-
tions.” (LaTeX and MS Word).
Authors using LaTeX: the two PDF versions of the manuscript needed for

document is generated by including \documentclass[11pt,draftcls,onecolumn]

double-column document for estimating the publication page charges via
\documentclass[10pt,twocolumn,twoside]{IEEEtran} for a regular submission,
or \documentclass[9pt,twocolumn,twoside]{IEEEtran} for a Correspondence
item.

Title page and abstract:
title, names and contact information for all authors (full mailing address, in-

An asterisk * should be placed next to the name of the Corresponding Au-
thor who will serve as the main point of contact for the manuscript during
the review and publication processes.
An abstract should have not more than 200 words for a regular paper,

or 50 words for a Correspondence item. The abstract should indicate
the scope of the paper or Correspondence, and summarize the author’s
conclusions. This will make the abstract, by itself, a useful tool for
information retrieval.
EDICS:

EDICS published online at http://www.signalprocessingsociety.org/publi-
cations/periodicals/tsp/TSP-EDICS/

mission of a newmanuscript, please choose the EDICS categories that best
suit your manuscript. Failure to do so will likely result in a delay of the peer
review process.

abstract page—of the manuscript.
Illustrations and tables:
intelligible without requiring reference to the text. Illustrations/tables may
be worked into the text of a newly-submitted manuscript, or placed at the

tables must be submitted separately and not interwoven with the text.)

is understandable.
In preparing your illustrations, note that in the printing process, most

illustrations are reduced to single-column width to conserve space. This
may result in as much as a 4:1 reduction from the original. Therefore, make
sure that all words are in a type size that will reduce to a minimum of
9 points or 3/16 inch high in the printed version. Only the major grid lines
on graphs should be indicated.
Abbreviations: This TRANSACTIONS follows the practices of the IEEE
on units and abbreviations, as outlined in the Institute’s published
standards. See http://www.ieee.org/portal/cms_docs_iportals/iportals/pub-
lications/authors/transjnl/auinfo07.pdf for details.
Mathematics: All mathematical expressions must be legible. Do not give
derivations that are easily found in the literature; merely cite the reference.

Upon formal acceptance of a manuscript for publication, instructions for

sponding Author. Finalized manuscripts should be prepared in LaTeX or MS

http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect2.

setup.
RANSACTIONS, the name of

the author, and the software used to format the manuscript.

(although this is acceptable for your initial submission). If submitting on

text, but include callouts like “(a),” “(b).”

Powerpoint, Excel or PDF.Not acceptable is GIF, JPEG,WMF, PNG,BMP
or any other format (JPEG is accepted for author photographs only). The
provided resolution needs to be at least 600 dpi (400 dpi for color).

note that this will be at the expense of the author. Without other indica-
tions, color graphics will appear in color in the online version, but will be
converted to grayscale in the print version.

Additional instructions for preparing, verifying the quality, and submitting
graphics are available via http://www.ieee.org/publications_standards/publica-
tions/ authors/authors_journals.html.

http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect6 under “Multimedia.” To make your work reproducible by
others, the TRANSACTIONS

Voluntary Page Charges. Upon acceptance of a manuscript for publication,
the author(s) or his/her/their company or institution will be asked to pay a charge

that comprise the standard length (six pages, in the case of Correspondences).
Mandatory Page Charges. The author(s) or his/her/their company or insti-

pages for regular papers and six published pages for correspondence items.
These are mandatory page charges and the author(s) will be held responsible

ingness to pay these charges simply by submitting his/her/their manuscript to
the TRANSACTIONS. The Publisher holds the right to withhold publication under
any circumstance, as well as publication of the current or future submissions of
authors who have outstanding mandatory page charge debt.
Color Charges.

in the hardcopy version in grayscale, and the author is responsible that the cor-

sive, and all charges for color are the responsibility of the author. The estimated

preparation charges which may be estimated as follows: color reproductions
on four or fewer pages of the manuscript: a total of approximately $1045; color

color reproductions on nine through 12 pages: a total of approximately $3135,
and so on. Payment of fees on color reproduction is not negotiable or voluntary,
and the author’s agreement to publish the manuscript in the TRANSACTIONS is
considered acceptance of this requirement.
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