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Rugged, repeatable performance.

At Mini-Circuits, we're passionate about transformers. We even
make own transmission line wire under tight manufacturing
control, and utilize all-welded connections to maximize
performance, reliability, and repeatability. And for signals up
to 8 GHz, our rugged LTCC ceramic models feature wrap-
around terminations for your visual solder inspection, and
they are even offered in packages as small as 0805!

Continued innovation: Top Hat.

A Mini-Circuits exclusive, this new feature is now available on
every open-core transformer we sell. Top Hat speeds
customer pick-and-place throughput in four distinct ways:
(1) faster set-up times, (2) fewer missed components,

(3) better placement accuracy and consistency,
and (4) high-visibility markings for quicker visual
identification and inspection.

More models, to meet more needs

Mini-Circuits has over 250 different SMT models in
stock. So for RF or microwave baluns and transformers,
with or without center taps or DC isolation, you can
probably find what you need at minicircuits.com. Enter
your requirements, and Yoni2, our patented search
engine, can identify a match in seconds. And new custom
designs are just a phone call away, with surprisingly
quick turnaround times gained from over 40 years of
manufacturing and design experiencel!
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events to the research, educational, and professional
communities. It is also the main Society communica-
tion platform addressing important issues concerning
all members.
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zoubir@spg.tu-darmstadt.de

Abdelhak Zoubir
Editor-in-Chief
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Journals and Magazine Reviews: A Quality Control Mechanism

EEE Technical Activities (IEEE-TA) is

a major component of the IEEE that

includes all programs of the 45 Societ-

ies of the IEEE and technical councils,
as well as programs of the Technical
Activities Board (TAB) and the Technical
Activities Department. The board, as well
as each committee, plays a vital role in the
success of IEEE-TA. One of these commiit-
tees is the TAB Periodicals Review and
Advisory Committee (PRAC). Under the
“Scope” of the TAB PRAC, it is stated [1]:
The objectives of the Committee are
to provide suggestions for improve-
ments; determine how well the IEEE
Society/Council (S/C)-sponsored peri-
odicals perform in terms of quality
and timeliness, and meet the policies
and procedures for IEEE periodicals;
conduct a financial “health check,”
and make recommendations for
changes, if required. In carrying out
the above objectives, the TAB Periodi-
cals Review and Advisory Committee,
on an ongoing basis, will identify best
practices and assist/encourage S/Cs in
identification of potential improve-
ments to their publishing programs.

On 13 February, I, as well as my col-
leagues and fellow editors-in-chief (EiCs) of
the IEEE Signal Processing Society (SPS)
journals, and IEEE SPS senior leaders,
such as the current President Alex Acero,
Past-President Ray Liu, and VP Publica-
tions Mari Ostendorf, attended the five-year
review meeting in Los Angeles. Compre-
hensive five-year review reports, which
were compiled by the EiCs with the assis-
tance of IEEE SPS staff and the oversight
of the IEEE SPS VP Publications, were

Digital Object Identifier 10.1109/MSP2014.2305766
Date of publication: 7 April 2014

submitted at an earlier stage to the PRAC.
These reports are similar to those submit-
ted for an SPS technical committee five-
year review.

Publications volunteers from other
IEEE Societies conducted the reviews of
IEEE Signal Processing Magazine (SPM)
and SPS transactions and letters. The
meeting was collaborative and collegial
and, indeed, it was conducive to improve-
ments in many ways, including best prac-
tices used by other IEEE periodicals.
During and after the meetings, it was
mentioned by the review committee mem-
bers that SPS is to be commended for its
best practices.

Clearly, this is the result of the hard
work of the many volunteers in the SPS.
Editorial boards play a vital role in main-
taining the high quality of journals and the
magazine. SPM consists of a senior editorial
board with members who are academics
and industrialists and who tirelessly assist in
ensuring the high quality of feature articles
and special issues. In addition, the editorial
boards for columns and forum as well as the
eNewsletter play a crucial role in ensuring
timely and high-quality publications. I wish
to thank all members of the editorial boards
for their support and dedication.

Editorial boards rely on external vol-
unteers who conduct reviews of articles
and columns. I take this opportunity to
wholeheartedly thank all of the colleagues
and friends that are always willing to help
with reviews of articles for SPM.

I also wish to thank the members of the
senior editorial board whose term finished
in 2013. Their support was instrumental
for ensuring high-quality feature articles
and special issues.

It gives me great pleasure to introduce
the new 2016 class of editorial board mem-

bers: Patrick Flandrin, Hamid Krim, Hing
Cheung So, Isabel Trancoso, Pramod
Varshney, and Z. Jane Wang. With these
energetic and dedicated professionals, we
shall move SPM to an even higher level
with more innovations to come.

It is one of our main duties as re-
searchers to guide young graduate stu-
dents and introduce professionals to new
areas by providing them with invaluable
archival resources. This issue of SPM in-
cludes a feature article on physical layer
service integration in wireless networks,
indeed a timely topic for next-generation
wireless networks. The authors provide an
excellent overview of state-of-the-art solu-
tions and identify signal processing chal-
lenges and some promising research
directions. Also, this special issue is on a
topic that has become extremely impor-
tant in engineering practice: source sepa-
ration. Five experts guest edited this
issue, which provides an overview on the
most important advances, as well as some
key areas of development in this area in
theory and applications. With the energy,
dedication, and enthusiasm of all volun-
teers, working together with guest editors
and authors, we shall move SPS’s flagship
magazine to greater heights and serve our
research and professional communities
par excellence.

REFERENCE

[1] IEEE Technical Activities Board Operations
Manual. [Online]. Available: https //www.ieee.org/
documents/tab_operations_manual.pdf
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GlobalSIP and ChinaSIP: New Conferences
Developed by the IEEE Signal Processing Society

hrough member surveys, we
have learned that you value
attending conferences and
workshops as an opportunity
to present your work, learn
the latest advances in the field, and have a
chance to network with colleagues. As the
signal processing field grows, more and
more members join our Society, and our
conferences and workshops attract more
and more attendees. We are always look-
ing for opportunities to serve you better,
and that includes offering more technical
meetings from which you can choose.

The International Conference on
Acoustics, Speech, and Signal Processing
(ICASSP) is the largest conference orga-
nized by the IEEE Signal Processing Soci-
ety and the only one that covers all of the
Society’s fields of interest. Since its found-
ing in 1976, ICASSP has taken place in the
spring of every year. To cater to the more
specialized needs within the signal pro-
cessing field, many of our 12 technical
committees (TCs) have workshops in the
fall. Running a workshop is a time-con-
suming process for the volunteer organiz-
ers, as it involves many nontechnical
activities such as setting up contracts with
hotels for meeting space and meals, regis-
tration, local arrangements, etc. To
address these responsibilities, the Society’s
Board of Governors decided to offer
another option to such workshop organiz-
ers: the IEEE Global Conference on Signal
and Information Processing (GlobalSIP).

GlobalSIP is a collection of symposia
proposed by our TCs that all take place at
the same venue and the same time during

Digital Object Identifier 10.1109/MSP2014.2305774
Date of publication: 7 April 2014

the fall, so that many of the nontechnical
logistics can be shared. TCs are not forced
to set up their workshops at GlobalSIP
though; they can continue running their
workshops independently if they so wish.
Our first GlobalSIP took place in Austin,
Texas, United States, in December 2013.
I want to thank General Chairs Robert
Heath and Ahmed Tewfik, as well as the
rest of the organizing committee for the
enthusiasm and work they put in running
a very successful conference. GlobalSIP
2013 was a collection of 18 separate sym-
posia, each run by a separate technical pro-
gram committee with its own technical
theme, format, and acceptance rate. Glo-
balSIP 2013 attracted 466 attendees, many
of whom came from other fields. We
received positive feedback from the attend-
ees, especially that GlobalSIP provided
them an opportunity to meet people with
different expertise.

The IEEE Signal Processing Society is
becoming more and more international.
The first ICASSP took place in Philadel-
phia, Pennsylvania, United States, in 1976
and, of the first ten ICASSPs, only one
took place outside the United States
(Paris, France) in 1982. The situation has
changed dramatically in the last 40 years.
In fact, of the five upcoming ICASSPs,
only one will take place in the United
States. ICASSP 2014 will be held in Flor-
ence, Italy; ICASSP 2015 in Brishane,
Australia; ICASSP 2016 in Shanghai,
China; ICASSP 2017 in New Orleans,
Louisiana, United States; and ICASSP
2018 in Seoul, South Korea. At the same
time, roughly 50% of the Society’s mem-
bers are coming from the United States
(Regions 1-6). So, the Society’s Board of
Governors decided to hold GlobalSIP in

2014-2015 SPS President

Alex Acero

a.acero@ieee.org

the United States, at least for the next few
years, since many of our Region 1-6
members wanted to have access to a pre-
mier signal processing conference closer
to their home base. GlobalSIP 2014 will
take place in Atlanta, Georgia, United
States, on 3-5 December 2014. We look
forward to seeing you there.

Also, tremendous growth in China
prompted us to create a conference in that
country. The first IEEE China Summit
and International Conference on Signal
and Information Processing (ChinaSIP)
took place in Beijing in July 2013, and it
attracted over 400 attendees. I want to
thank General Chairs Thomas Fang Zheng
and Zhi Ding as well as the rest of the
organizing committee for their hard work.
I encourage you to attend ChinaSIP 2014,
which will take place in Xi'ian, China, on
9-13 July 2014.

ICASSP 2013 in Vancouver, Canada,
had over 2,400 attendees and offered plenty
of interesting papers and stimulating dis-
cussions. I'm looking forward to seeing
you at ICASSP 2014 in the beautiful city of
Florence, Italy, on 4-9 May 2014. ICIP
2013 took place in Melbourne, Australia,
with over 1,000 attendees. ICIP 2014 will
take place in another beautiful city, Paris,
France, on 27-30 October 2014. There are
many more specialized workshops happen-
ing this year. I hope you find time in your
busy schedule to attend at least one of
these conferences or workshops.

Gi@oew
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SPS Members Recognized with Awards

he IEEE Signal Processing

Society (SPS) congratulates

the following SPS members

who are being recognized

with the Society’s prestigious
awards during the International Confer-
ence on Acoustics, Speech, and Signal Pro-
cessing (ICASSP) 2014 in Florence, Italy,
on 4-9 May.

2013 IEEE SPS AWARDS TO BE
PRESENTED IN FLORENCE, ITALY
The Society Award honors outstanding
technical contributions in a field within
the scope of the SPS and outstanding
leadership within that field. The Society
Award comprises a plaque, a certificate,
and a monetary award of US$2,500. It is
the highest-level award bestowed by the
IEEE SPS. This year’s recipients are Al
Bovik, “for fundamental contributions to
digital image processing theory, technol-
ogy, leadership and education” and Alan S.
Willsky “for fundamental contributions to
probabilistic modeling and for pioneering
work in the development and application
of multiresolution statistical methods.”
Two Technical Achievement Awards
are presented this year. Yonina Eldar will
receive the award “for fundamental con-
tributions to sub-Nyquist and com-
pressed sampling, convex optimization,
and statistical signal processing.” Al Hero
will be recognized “for information-theo-
retic advances in statistical signal pro-
cessing and machine learning.” The
Technical Achievement Award honors a
person who, over a period of years, has
made outstanding technical contribu-
tions to theory and/or practice in techni-
cal areas within the scope of the Society,
as demonstrated by publications, patents,

Digital Object Identifier 10.1109/MSP.2014.2298092
Date of publication: 7 April 2014

or recognized impact on this field. The
prize for the award is US$1,500, a plaque,
and a certificate.

Two Meritorious Service Awards will
be presented this year to Ali H. Sayed and
Rabab Ward “for exemplary service to
and leadership in the IEEE Signal
Processing Society.” The award com-
prises a plaque and a certificate; judging
is based on dedication, effort, and contri-
butions to the Society.

TWO MERITORIOUS
SERVICE AWARDS WILL
BE PRESENTED THIS
YEAR TO ALI H. SAYED
AND RABAB WARD “FOR
EXEMPLARY SERVICE
TO AND LEADERSHIP
IN THE IEEE SIGNAL
PROCESSING SOCIETY.”

The SPS Education Award honors edu-
cators who have made pioneering and sig-
nificant contributions to signal processing
education. Judging is based on a career of
meritorious achievement in signal pro-
cessing education as exemplified by writ-
ing scholarly books and texts, course
materials, and papers on education; inspi-
rational and innovative teaching; and
creativity in the development of new curri-
cula and methodology. The award com-
prises a plaque, a monetary award of
US$1,500, and a certificate. The recipient
of the SPS Education Award is Dimitris
Manolakis, “for fundamental contribu-
tions to education in signal processing
and algorithms for adaptive filtering and
hyperspectral target detection.”

The IEEE Signal Processing Magazine
Best Paper Award honors the author(s) of
an article of exceptional merit and broad
interest on a subject related to the

Society’s technical scope and appearing in
the Society’s magazine. The prize com-
prises US$500 per author (up to a maxi-
mum of US$1,500 per award) and a
certificate. In the event that there are more
than three authors, the maximum prize
shall be divided equally among all authors,
and each shall receive a certificate. This
year, the IEEE Signal Processing Magazine
Best Paper Award recipients are Zhou
Wang and Alan C. Bovik for their article
“Mean Squared Error: Love it or Leave it?
A New Look at Signal Fidelity Measures,”
published in IEEE Signal Processing
Magazine, vol. 26, no. 1, Jan. 2009.

Five Best Paper Awards were awarded,
honoring the author(s) of a paper of excep-
tional merit dealing with a subject related
to the Society’s technical scope and
appearing in one of the Society’s transac-
tions, irrespective of the author’s age. The
prize is US$500 per author (up to a maxi-
mum of US$1,500 per award) and a certifi-
cate. Eligibility is based on a five-year
window preceding the year of election, and
judging is based on general quality, origi-
nality, subject matter, and timeliness. Up to
six Best Paper Awards may be presented
each year. This year, the awardees are:

m Amir Beck, Petre Stoica, and Jian Li,

“Exact and Approximate Solutions of

Source Localization Problems,” IEEE

Transactions on Signal Processing,

vol. 56, no. 5, May 2008

m Matthew A. Herman and Thomas

Strohmer, “High-Resolution Radar via

Compressed Sensing,” IEEE Trans-

actions on Signal Processing, vol. 57,

no. 6, June 2009

m Chunming Li, Chiu-Yen Kao, John C.

Gore, and Zhaohua Ding, “Minimization

of Region-Scalable Fitting Energy for

Image Segmentation,” IEEE Transac-

tions on Image Processing, vol. 17,

no. 10, Oct. 2008
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= Robert W. Heath, Jr., Tao Wu, Young

Hoon Kwon, and Anthony C.K. Soong,

“Multiuser MIMO in Distributed An-

tenna Systems with Out-of-Cell Inter-

ference,” IEEE Transactions on Signal

Processing, vol. 59, no. 10, Oct. 2011

m George E. Dahl, Dong Yu, Li Deng,

and Alex Acero, “Context-Dependent

Pre-Trained Deep Neural Networks for

Large-Vocabulary Speech Recognition,”

IEEFE Transactions on Audio, Speech,

and Language Processing, vol. 20, no.

1, Jan. 2012.

The Young Author Best Paper Award
honors the author(s) of an especially meri-
torious paper dealing with a subject related
to the Society’s technical scope and ap-
pearing in one of the Society’s transactions
and who, upon date of submission of the
paper, is under 30 years of age. The prize is
US$500 per author (up to a maximum of
US$1,500 per award) and a certificate. Eli-
gibility is based on a three-year window
preceding the year of election, and judging
is based on general quality, originality,

subject matter, and timeliness. Three
Young Author Best Paper Awards are being
presented this year:
® Yuejie Chi, for the paper coauthored
with Louis L. Scharf, Ali Pezeshki, and
A. Robert Calderbank, “Sensitivity to
Basis Mismatch in Compressed Sens-
ing,” IEEE Transactions on Signal Pro-
cessing, vol. 59, no. 5, May 2011
m Kalpana Seshadrinathan, for the
paper coauthored with Alan Conrad
Bovik, “Motion Tuned Spatio-Temporal
Quality Assessment of Natural Videos,”
IEEE Transactions on Image Process-
ing, vol. 19, no. 2, Feb. 2010
m Lin Li, for the paper coauthored
with Anna Scaglione and Jonathan H.
Manton, “Distributed Principal Sub-
space Estimation in Wireless Sensor
Networks,” IEEE Journal of Selected
Topics in Signal Processing, vol. 5,
no. 4, Aug. 2011.
One IEEE Signal Processing Letters
Best Paper Award was awarded, honor-
ing the author(s) of a letter article of

exceptional merit and broad interest on a
subject related to the Society’s technical
scope and appearing in IEEE Signal Pro-
cessing Letters. The prize shall consist of
US$500 per author (up to a maximum of
US$1,500 per award) and a certificate. To
be eligible for consideration, an article
must have appeared in IEEE Signal Pro-
cessing Letters in an issue five years pre-
ceding the year of election. Judging shall
be on the basis of the technical novelty,
the research significance of the work,
quality, and effectiveness in presenting
subjects in an area of high impact to the
Society’s members. The recipient of the
IEEE Signal Processing Letters Best Paper
Award is
= Gan Zheng, Kai-Kit Wong, Arogyas-
wami Paulraj, and Bjorn Ottersten,
“Collaborative-Relay Beamforming
with Perfect CSI: Optimum and Dis-
tributed Implementation,” IEEE Sig-
nal Processing Letters, vol. 16, no. 4,
Apr. 2009.
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John Edwards

Signal Processing Leads a Photographic and Imaging Revolution

hotography and imaging have

been radically transformed

over the past couple of decades

in ways that 19th-century pio-

neers such as Louis-Jacques-
Mandé Daguerre (Figure 1) and Henry
Fox Talbot could have scarcely imagined.
Traditional photography and imaging,
rooted in chemical processes, have now
largely given way to digital methodolo-
gies and technologies. The result has
been faster, less expensive, and more
convenient ways of acquiring and pre-
senting images, and in many cases the
creation of clearer, more detailed, and
less distorted pictures on many different
types of media.

Signal processing plays an important
role in virtually all types of digital photog-
raphy and imaging. In consumer, profes-
sional, industrial, and scientific still
cameras, sophisticated integrated algo-
rithms help determine how images are
collected, interpreted, and stored. Algo-
rithms, for example, ensure that captured
raw sensor data are efficiently translated
into color-corrected image data that can
then be stored either in raw pixels or as
compressed images. Image processing
algorithms are also involved in image cap-
ture and compression, focus and exposure
control, managing white balance, demo-
saicsing, image storage, preview display
rendering and scaling, and various post-
processing tasks.

FREEZING STREAKS

As researchers work to extend the capabil-
ities of existing imaging systems, as well
as blaze new technologies, signal process-
ing provides ways of adding new capabili-
ties and improving the performance of

Digital Object Identifier 10.1109/MSP2014.2301793
Date of publication: 7 April 2014

existing features and functions. Research-
ers at Laguna Hills, California-based Met-
roLaser, for instance, used signal
processing in the creation of a camera that
captures full-color images of projectiles
traveling at speeds of up to 3,350 m/s,
approximately ten times the speed of
sound. The digital galvo mirror streak
camera, designed to replace now-obsolete
film-based streak cameras, records the
motion of a projectile as it passes in front
of its lens, creating a long, continuous
composite image of the object.

Now that digital technology has com-
pleted its sweep across the photography
industry, the specialized film required for
analog streak photography cameras is no
longer being manufactured. In 2007, the
U.S. Air Force asked MetroLaser to design
a modern digital system that could pro-
duce high-quality ballistic images. “The Air
Force wanted a highly rugged digital cam-
era system that would allow them to get
full-color, high-resolution photos of rocket
sleds moving up to Mach 10 with schlieren
effects (optical inhomogeneities in trans-
parent material that aren’t necessarily visi-
ble to the human eye) included,” says Ben
Buckner, MetroLaser’s chief scientist.

The imaging system Buckner devel-
oped with coresearcher Drew LEsperance,
utilizes a precisely controlled mirror galva-
nometer to follow a rapidly moving object
and freeze its image. Buckner explains that
the mirror tracks the ballistic object as it
moves past the camera lens and directs
appropriate portions of the image onto
specified areas of the image sensor to form
a complete, undistorted picture. “It enables
full-color 15-plus megapixel photography
of objects moving at high speeds with stan-
dard photographic flashes, or even strong
natural light, with schlieren photography
of disturbances in the surrounding air,”
Buckner says.

Since the mirror is synchronized to
the ballistic object, the biggest challenge
the researchers faced when developing the
system was finding a way of accurately
measuring the object’s speed and calculat-
ing the swing of the mirror to precisely
match that object’s trajectory. “The main
challenge is that the software has to con-
trol a galvanometer mirror very precisely
and very quickly,” Buckner says. “The
rocket sled velocity is variable, so you have
to measure [the sled] as it’s coming down
the track, and in a few milliseconds, the
software has to calculate the required tra-
jectory for the mirror to match the speed
and generate the control signals,” he con-
tinues. At such high speeds, the mirror
response tends to be nonlinear. “So in
addition to working out the basic kine-
matic equations for the motion, you have
to put in some corrections and then gen-
erate the required control waveform on
the fly,” he says.

“I put a fair bit of time into optimizing
the code for fast execution, since it’s on a

[FIG1] Photography pioneer Louis-Jacques-
Mandé Daguerre. (Photo courtesy of
www.wikipedia.com.)
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December 3-5, 2014
Georgia Tech Hotel
and Conference Center
Atlanta, GA USA

The 2" IEEE Global Conference on Signal and
Information Processing (GlobalSIP 2014)

The IEEE Global Conference on Signal and Information Processing (GlobalSIP) is a recently
launched flagship conference of the IEEE Signal Processing Society. It is made up of a series of
symposia and workshops. GlobalSIP 2014 will focus broadly on signal and information
processing with an emphasis on up-and-coming signal processing themes. For details and paper
submission, please go to http://www.ieeeglobalsip.org.

List of Symposia

Information Processing for Big Data

Perception Inspired Multimedia Signal Processing Techniques

Machine Learning Applications in Speech Processing

Data Flow Algorithms and Architecture for Signal Processing Systems

Advances in Mixed-Signal and Optical Sensing: Hardware to Algorithms

Signal Processing Applications Related to Animal Environments

Signal Processing for Next Generation Semiconductor Integrated Circuits

Energy Exchange and Intelligent Trading

Signal Processing for Cognitive Radios and Networks

10. Energy Efficiency and Energy Harvesting Related Signal Processing and Communications

11. Game Theory for Signal Processing and Communications

12. Signal Processing Challenges and Architectures for High Throughput Satellite
Communications

13. Massive MIMO Communications

14. Network Theory

o oo SO0 kD 5 B P

Workshops

1. Workshop on Information Forensics and Security (WIFS)
* Privacy Preserving Technologies
* Information Forensics and Watermarking
* Biometrics, Authentication and Secure Multiparty Computation
* Secure Communication and Networking
2. Workshop on Genomic Signal Processing and Statistics (GENSIPS)
* Signal Processing of Genomic Sequencing Data
* Modeling and Integration of Multi-Modality Omics Data
* Dynamics and Control of Regulatory and Signaling Networks

Paper Submission

Paper submission instructions are available through the GlobalSIP 2014 website at
http://www.ieeeglobalsip.org.

for website and EDAS-related questions

Important Dates

May 16, 2014 Paper submission deadline (regular and invited)
June 27, 2014 Review results announced
September 5, 2014 Camera-ready regular and invited papers due
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‘ special REPORTS  continued

fairly low-end embedded processor,” Buck-
ner says. Other challenges were optimiz-
ing the acceleration curve and deriving
the nonlinear response corrections. “We’re
pushing the galvo controller to its limits,
so the way you accelerate it is important,”
Buckner says.

Buckner foresees other potential appli-
cations for the galvo mirror streak camera,
such as determining the finishing order in
high-speed races. “There are other ways of
doing high-speed imaging, but this one is
particularly effective at doing very high-
resolution images, color images, schlieren
images, and large-scale subjects where it’s
very difficult to get a submillisecond flash
of sufficient energy,” he explains.

Most other types of high-speed imaging
techniques are hampered by resolution
and color reproduction limitations, Buck-
ner says. The galvo mirror streak camera,
however, has many of the same benefits as
conventional professional-level cameras.
“We can work with the same flash rigs that
any commercial photographer uses, and

L)
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largely [with] the same camera back,”
Buckner explains. “Our system really just
replaces the camera lens, and all the rest of
it is the same equipment you would find
being used to take school pictures or mag-
azine glamour shots.” The system’s modu-
lar design also allows it to be easily
upgraded. “Commercial camera backs are
always improving,” Buckner says. “We
could easily get [the system] up to 80
megapixels now just by putting one of the
newer camera backs on it.”

UPGRADING MICROSCOPES

Researchers at the California Institute of
Technology (Caltech) relied on signal pro-
cessing techniques to help develop a
method of converting relatively inexpen-
sive conventional microscopes into high-
end billion-pixel imaging systems. The
new approach, called Fourier ptycho-
graphic microscopy (FPM), promises to
significantly enhance the efficiency of dig-
ital pathology, particularly in situations
where specialists need to review large

Raw Data

[FIG2] (a) An FPM installation that converts a relatively inexpensive conventional
microscope into a billion-pixel imaging system. The inset in (a) shows a magnified
image of the LED chip that contains a red-green-blue LED. A raw image of human
blood smear taken with a 2X objective lens is shown in (b) along with (c) the
reconstructed image produced by the FPM system. (Photo courtesy of the California

Institute of Technology.)

numbers of tissue samples (Figure 2).
The researchers also hope that the tech-
nology will bring high-performance
microscopy capabilities to medical clinics
that can’t currently afford high-density
imaging systems.

“A microscope’s pixel count is funda-
mentally limited by the physical nature of
the optical lenses—all physical lenses have
aberrations that ultimately degrades the
imaging process,” says Changhuei Yang, a
Caltech professor of electrical engineering,
bioengineering, and medical engineering.
A standard digital microscope typically cre-
ates images with approximately ten mega-
pixels of resolvable pixels. “You can choose
between a large field of view and a poor
resolution, or small field of view and a high
resolution,” Yang says. “If we are simply
examining microscope slides with our
eyes, this pixel count is quite sufficient, but
this pixel count is woefully low to address
digital pathology needs.”

FPM provides a computational-oriented
approach that aims to free microscope
developers from the physical limitations of
optical lenses. The microscopy industry’s
current approach for creating high-quality
microscopes is to use very complicated—
and expensive—stacks of exotic glass
lenses to cross-compensate for aberration.
FPM makes this type of development
model unnecessary. “To FPM, the distor-
tions in optical elements are simply math-
ematical functions that it can manipulate
computationally and zero out of the final
processed image,” Yang says. “We can take
a [poor] microscope, make some cheap
modification to its lighting scheme, and
use it to collect a sequence of poor-quality
images. “The algorithm will then take the
data and render a high-quality and high
pixel count image.”

FPM stitches the low-resolution images
together to create high-resolution inten-
sity and phase information, providing a
more complete picture of a particular clini-
cal sample’s entire light field. To create a
complete image of a particular sample, the
system acquires approximately 150 low-
resolution images with each image corre-
sponding to a single element in the
light-emittion diode (LED) array.

When their work began several years
ago, the researchers struggled to reach
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their goal by completely eliminating
lenses from microscopes. The approach
found them trying a variety of chip-scale
microscope systems, none of which met
their performance or cost targets. “In the
past couple of years, we started asking
ourselves whether we can tackle optical
aberrations head-on rather than side-step-
ping the problem,” Yang says. “If we could,
we would not have to throw out the com-
pelling advantages of using lenses in
microscopes.” Benefits associated with
lenses include the ability to concentrate
light and easier color handling. By follow-
ing a computational-oriented approach
and developing FPM, the researchers were
able to bring the resolution of a conven-
tional 2X objective lens to the level of a
20X objective lens.

FPM’s main design strategy is similar
to that of interferometric synthetic aper-
ture microscopy: expanding summation

by parts (SBP) in Fourier space through
multi-image fusion. However, because no
measured phase information is needed for
FPM, the researchers’ approach eliminates
the design challenges associated with in-
terferometric detection. Yet FPM’s image
recovery procedure follows a strategy
common with ptychography scanning dif-
fraction microscopy, iteratively solving for
a sample estimate that is consistent with
many intensity measurements. Unlike pty-
chography, however, FPM’s object support
constraints are imposed in the Fourier do-
main, offering several unique advantages
and opportunities.

FPM’s data collection procedure is
straightforward, according to Yang. The
process involves placing a two-dimen-
sional (2-D) sample at the focal plane of a
low-numerical aperture microscope objec-
tive and collecting a sequence of images,
with the sample successively illuminated

by plane waves at different angles. Unlike
other synthetic aperture techniques, the
procedure acquires intensity images of the
sample, so no interferometric measure-
ments are required. The use of a low-
numerical aperture objective lens allows a
large field of view to be captured at the
expense of a low spatial resolution.

A major advantage of the new
approach is relatively pain-free hardware
compatibility. Manufacturers only need to
add an LED array to an existing micro-
scope—no other hardware modifications
are necessary. A computer then handles
the rest of the work. The researchers say
that their method could have wide appli-
cations not only in digital pathology but
also in everything from hematology to
wafer inspection to forensic photography.
“A broad swath of imaging modalities can
benefit from this computational approach
of tackling imaging,” Yang says. Satellite
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‘ special REPORTS  continued

imaging is a particular area of interest.
“The features we can resolve in satellite
images is tied to the size of the camera
you send up to space,” Yang says. “We
think FPM can ... allow satellite imaging at
unprecedented resolution.” X-ray imaging
is another potential application. “X-ray
imaging is confounded by the lack of high-
quality lenses,” Yang says. FPM makes this
a nonissue since it simply treats the dis-
tortions as a mathematical function.

Yang is optimistic that FPM micros-
copy will soon become a scientific main-
stay. “Because the hardware is so simple,
we hope it will be commercially available
in a couple of years,” he says.

FIXING PHOTOS

Sophisticated computational processing
also promises to benefit the everyday
users of smartphones and various other
types of consumer-level cameras. Target-
ing such individuals, researchers at the
Massachusetts Institute of Technology
(MIT) have developed a chip-based pro-
cessor that’s dedicated to helping almost
any camera user—amateur or pro—cre-
ate high-quality photographs.

At MIT’s Microsystems Technology
Laboratory, Rahul Rithe, a graduate stu-
dent in the school’s Department of Electri-
cal Engineering and Computer Science,
recently worked on the team that devel-
oped the “Maxwell” processor (named after
James Clerk Maxwell, who in 1855 first
proposed creating color photographs by
using red, green, and blue filters to merge
together three captured images). The chip
(Figure 3) aims to help shutterbugs by

&

MIT MAXWELL
Computational

Photography ‘ H

[FIG3] A printed circuit board containing
MIT’s “Maxwell” computational photog-
raphy processor. (Photo courtesy of MIT.)

almost instantaneously creating more
realistic or enhanced lighting in a shot
without destroying the scene’s ambience.
“This energy-efficient and scalable imple-
mentation is ideal for integration with
mobile devices such as smartphones, tab-
lets, digital cameras, and even laptops, to
enable live computational photography on
these energy-constrained devices,” says
Rithe, who was lead author of a paper on
the project.

RITHE NOTES THAT
SIGNAL PROCESSING
TECHNIQUES LIKE
NONLINEAR FILTERING
ARE ESSENTIAL TO
THE PROCESSOR'’S
OPERATION.

Most current computational photogra-
phy applications are software based. “Per-
forming [image optimization] tasks on
general purpose CPUs and GPUs consumes
a significant amount of power and is typi-
cally not fast enough to support real-time
performance,” Rithe says. He states that
the Maxwell processor can perform optimi-
zation operations in real-time while con-
suming dramatically less power. “While
software-based systems typically take sev-
eral seconds to perform an operation like
high dynamic range (HDR) imaging, the
chip can do it in a few hundred millisec-
onds on a ten-megapixel image,” says
Rithe, who notes that the high-perfor-
mance chip can also enhance video output.

To create an HDR image, Maxwell tells
the camera to take three individual low
dynamic range photos: a normally exposed
image, an overexposed image capturing
details in the dark areas of the scene, and
an underexposed image capturing details
in the bright areas. The processor then
merges the photos to create a single image
that captures the scene’s full color and
brightness range.

The processor uses bilateral filtering,
Rithe says, a nonlinear filtering technique
that effectively reduces noise and smooths
out an image’s defects without blurring
sharp edges, thereby preserving important
details. “Nonlinear filtering techniques
like bilateral filtering are used in a wide

range of computational photography
applications,” he notes. Unfortunately, due
to its high computational complexity, bilat-
eral filtering is generally inefficient and
slow. “We leveraged the bilateral grid
structure ... and developed an optimized
hardware implementation that represents
a 2-D image using a three-dimensional
(3-D) data structure and performs the pro-
cessing in the 3-D domain,” Rithe says.
“This significantly reduces both the com-
putational complexity and the amount of
memory required to process large images.”
Rithe notes that signal processing
techniques like nonlinear filtering are
essential to the processor’s operation.
“Signal processing is vital to our research
in the form of image processing tech-
niques that enable us to manipulate and
create images that could have only come
from a handful of prolific artists, like
Ansel Adams, in the past,” Rithe says. The
algorithms implemented on the chip were
inspired by the computational photogra-
phy work of Fredo Durand and Bill Free-
man (an associate professor and professor,
respectively), at MIT’s Computer Science
and Artificial Intelligence Laboratory.
Multimedia processing applications
such as computational photography have
very high computational complexity and
memory requirements. “The major chal-
lenge was to come up with a combination of
algorithmic-, architectural-, and circuit-
level innovations that significantly brought
down the computational complexity, mem-
ory requirement, and bandwidth,” Rithe
says. “To enable real-time processing while
being extremely power efficient, we devel-
oped a highly parallel architecture that is
able to support real-time processing of high-
definition (HD) images while operating at
less than 100 MHz frequency, as opposed to
CPUs and GPUs that operate at several
GHz.” One of the key components in maxi-
mizing the processor’s energy-efficiency is
voltage/frequency scaling. “Careful circuit
design for low-voltage operation ensured
reliable performance from 0.9 V down to 0.5
V,” Rithe explains. “This enables voltage/fre-
quency scaling to maximize the energy-effi-
ciency for a required performance level.”
Rithe developed the processor on a
team that included Anantha Chan-
drakasan, MIT’s Joseph F. and Nancy P.
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Keithley Professor of Electrical Engineer-
ing. Other members included fellow grad-
uate student Priyanka Raina, research
scientist Nathan Ickes, and undergraduate
student Srikanth Tenneti.

Work on the processor began in Janu-
ary 2011 when Rithe and his coresearch-
ers started exploring different types of
computational photography algorithms.
After the team completed algorithmic
optimizations, developed a highly parallel
architecture to enable real-time process-
ing, and finalized circuit implementations,
the chip was sent for fabrication in April
2012 through Taiwan Semiconductor
Manufacturing Company’s University
Shuttle Program.

The researchers presented their work
at the IEEE International Solid-State
Circuits Conference in February 2013.

[FIG4] A demonstration system that
integrates the processor with DDR2
memory and connects with a camera
and a display through the USB inter-
face. The system provides a platform
for live computational photography.
(Photo courtesy of Nathan Ickes/MIT.)

The live demonstration system prototype
combined the processor with external
memory, camera, and display (Figure 4).
“We received significant interest from

the leading mobile processor and device
makers,” Rithe says.

Future processors designed along the
lines of Maxwell will permit more complex
computational photography applications,
Rithe says. He notes that Raina is cur-
rently leading an effort to develop a pro-
cessor capable of sharpening images that
are blurred due to camera shake during
image capture. “We are also exploring
ways of extending computational photog-
raphy and computer vision techniques to
enable portable smartphone-based medi-
cal imaging applications,” he says.

AUTHOR

John Edwards (jedwards@johnedwards
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‘ from the GUEST EDITORS

Source Separation and Applications

ata-driven methods are

based on a simple generative

model such as matrix or ten-

sor decompositions and

hence can minimize the
assumptions on the nature of the data and
the latent variables. They have emerged as
alternatives to the traditional model-based
approaches whenever the unknown
dynamics are hard to characterize. Source
separation has been at the heart of data-
driven approaches and has found wide
applicability in areas as diverse as biomedi-
cine, communications, finance, geophys-
ics, and remote sensing.

Historically, the source separation
problem has been posed with flexible and
general assumptions and minimal priors,
hence leading to the designation blind
source separation (BSS). The first method-
ology for successful BSS was independent
component analysis (ICA), and today,
source separation includes a broader range
of topics that emphasize incorporation of
various priors and different types of
decompositions to take the natural dimen-
sionality of the observed data into account.
New trends of research include the joint
analysis of large-scale heterogeneous mul-
tidimensional sets of data, e.g., associated
to multimodal data acquisition as in
hyperspectral or brain imaging. In addi-
tion, underdetermined problems, i.e.,
those with a weak diversity and a large
number of sources, are practically very
interesting and can be solved through the
use of additional priors such as sparsity.
Indeed, many connections between source
separation and the fields of sparse repre-
sentations, compressive sensing, and dic-
tionary learning have emerged, leading
to new avenues for research. Hence,

Digital Object Identifier 10.1109/MSP.2014.2300211
Date of publication: 7 April 2014

addressing the theory and problems at the
junction of these topics, along with other
exciting directions such as sparse compo-
nent analysis and nonnegative matrix fac-
torization (NMF), is of particular interest.

Our aim in this special issue is to pro-
vide a comprehensive view of the main
advances in the field through a number of
overview articles as well as contributions
that emphasize the key topics of develop-
ment in the area, both in terms of theory
and applications. The issue contains 12
articles, where the focus of the last five is
on applications.

The first two articles are overviews.
The first article “Diversity in Independent
Component and Vector Analyses” by Adali
et al. provides an overview of ICA and its
extension to multiple data sets, indepen-
dent vector analysis (IVA). Mutual infor-
mation rate is used as the cost that allows
the use of both non-Gaussianity and sam-
ple dependence as the form of diversity—
statistical property—for achieving the
decomposition, which in the case of IVA,
adds the use of one more type of diversity,
statistical dependence of the sources
across the data sets. For this general case,
identification conditions are given for
both ICA and IVA, underlining the paral-
lels between the two, and noting that
both can identify multiple Gaussians
under certain conditions when non-
Gaussianity is not the only form of diver-
sity that is used. Many existing algorithms
and results are discussed as special cases
under this broad umbrella along with per-
formances of a few using medical imaging
as the motivating example. While the
focus in terms of algorithms for the first
overview article is on iterative methods
that maximize the likelihood, the second
article shifts the focus to another impor-
tant class—source separation through
joint diagonalization.

Talay Adali, Christian Jutten,
Arie Yeredor, Andrzej Cichocki,
and Eric Moreau

The joint diagonalization of a set of
matrices has been a prominent tool in lin-
ear ICA and BSS since, in many mixing
models, the underlying key features of the
mixed sources—such as their mutual sta-
tistical independence—can be expressed in
terms of diagonal matrices. In fact, exact
or approximate joint diagonalization is an
important particular case of a broader fam-
ily of joint matrix decompositions and
transformations, which can be useful in a
variety of source separation scenarios. The
article “Joint Matrices Decompositions and
Blind Source Separation” by Chabriel et al.
provides a description of some of the the-
ory and practice behind the different signal
models and approaches in which advanced
techniques for joint matrix decomposi-
tions become instrumental.

In recent years, the field of source sepa-
ration benefited from the gradual assimila-
tion of multilinear algebra into signal
processing, in the form of tensors in gen-
eral and tensor decompositions in particu-
lar. In many practical source separation
contexts, the observed signals can be
arranged in multiway arrays, and much
can be gained by considering them as ten-
sors and by applying tensor analysis and
decomposition tools—which, in many
cases, can produce not only estimates of
the mixing parameters but also denoised
versions of the underlying source signals.
In his article “Tensors,” Comon overviews
some of the fundamental properties of ten-
sors, such as their relations with polyno-
mials and different concepts of tensor
ranks. Several exact and approximate ten-
sor decomposition approaches are
reviewed in a way that can hopefully serve
as a solid basis for readers interested in
further pursuing these appealing tools.

Nonnegativity is a natural property that
one can take into account when achieving
source separation, and NMF has indeed
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been an active area. Three articles in the
special issue have a focus on nonnegative
factorizations. In “Nonnegative Matrix and
Tensor Factorizations,” Zhou et al. present
an overview of the current and novel effi-
cient algorithms for large-scale NMF and
their extensions to nonnegative tensor fac-
torizations and decompositions. The per-
formances of the proposed algorithms are
demonstrated by several illustrative exam-
ples. In “Static and Dynamic Source Sepa-
ration Using Nonnegative Factorizations,”
Smaragdis et al. discuss models beyond
the standard NMF and provide a unifying
approach to nonnegative source separation
for both static and dynamic models. They
show how they can be easily extended to
temporal models that are either continu-
ous or discrete. Their approach enables
many alternative formulations of dynamic
source separation algorithms with non-
negativity constraints. Finally, in “Putting
Nonnegative Matrix Factorization to the
Test,” Huang and Sidiropoulos give a con-
cise tutorial style derivation for the Cra-
mér—Rao lower bound for standard
symmetric and asymmetric NMF. By pro-
viding the performance bound, they pro-
vide the benchmark against which the
performance of the competitive NMF algo-
rithms can be assessed. The proposed
approach can be extended to facilitate
analogous derivations for related bilinear
matrix factorizations problems with con-
straints other than nonnegativity.

Classical source separation mostly re-
lies on statistical properties of the sources
and is usually effective only when the mix-
ing process is invertible, requiring the
number of observed mixtures to be equal
to (or larger than) the number of sources.
Separation of sources from fewer mix-
tures, and even from a single mixture, is
possible when some structural informa-
tion is available regarding the sources, es-
pecially when such information can be
expressed using a convex operator—cost
function—which promotes the desired
structure. The article “Convexity in Source
Separation” by McCoy et al. provides an
elucidating overview of this emerging
field, starting with simple motivating ex-
amples and following through with an
explanation of underlying theoretical

concepts, separability conditions and algo-
rithmic aspects. Li et al. also addresses the
underdetermined problem in “Sparse Rep-
resentation for Brain Signal Processing”
and considers an important application
area—brain imaging. The problem that
has no solution without extra priors has
been addressed in the early 2000s based on
sparsity assumption on the sources, and
the work has led to a wide class of meth-
ods known as sparse component analysis,
also related to sparse representation and
dictionary learning, two very active areas
of research. In their article, the authors
provide a review and extension of main re-
sults in the area and then demonstrate
how sparse representation methods can
enhance ill-posed inverse problems in
brain signal processing.

Audio processing, the original inspira-
tion to the source separation problem by
the “cocktail-party problem,” has been ar-
guably the most active application area for
source separation. Today, the area is still a
very active one, and three of the articles in
this issue have a focus on audio applica-
tions. While initially, most of the work in
the area considered the convolutive nature
of the mixtures and were based on ap-
proaches in the time or frequency domain,
the current state of the art and recent ad-
vances exploit—most often jointly—many
priors on signals, such as sparsity, positivi-
ty, and sophisticated models of speakers, of
instruments or the rooms, leading to in-
formed source separation. The article
“From Blind to Guided Audio Source Sep-
aration” by Vincent et al. provides an at-
tractive review of this evolution and
critical perspectives for the field. The tran-
sition from blind, to semiblind, and semi-
informed separation is the focus of
another article in the issue. In “Score-In-
formed Source Separation for Musical
Audio Recordings,” Ewert et al. address
the growing field of music signal process-
ing, which has applications in stereo-to-
surround up-mixing, remixing tools,
instrument-wise equalizing, karaoke sys-
tems, and preprocessing in music analysis
tasks. They review recent developments in
the field that integrate the prior knowl-
edge encoded by the musical score, a sim-
ple prior that is typically available. In

addition to use of different priors that lead
to an “informed” solution, one can also
make use of complementary information,
more specifically, visual information,
which can be considered to be insensitive
to background noise. The article “Audiovi-
sual Speech Source Separation” by Rivet
et al. provides an overview of the key
methodologies in audiovisual speech
source separation. It focuses on three as-
pects: modeling the audio-video coherence
in a common probabilistic framework for
modeling the audiovisual features distri-
bution; use of video as secondary modali-
ties for improving speech detection; and
use of video information to regularize/con-
trol the audio enhancement based on ei-
ther ICA or time-frequency masking.

Another application area where the
mixing model has been useful is chemical
analysis. Data recorded through various
chemical sensing procedures can be mod-
eled as linear or nonlinear mixtures of
concentrations of spectra. Classical meth-
ods of chemiometrics can then be en-
hanced with recent methods of source
separation, taking into account special
properties of the available data: nonnega-
tivity (of the concentrations, spectra), de-
pendence (due to chemical interactions),
and sparsity (mass spectrum) among oth-
ers. In “Source Separation in Chemical
Analysis,” Duarte et al. show how chemical
data properties can be exploited through
various methods, including ICA, geometri-
cal, and Bayesian methods.

We thank our contributors for their
comprehensive and interesting articles
and to Fulvio Gini for his support in put-
ting together this special issue. We would
like to also extend our thanks to our
reviewers for their detailed and insightful
comments, to Rebecca Wollman for the
great guidance along the way, and to Jessica
Barragué for the care in putting together
our special issue.

Source separation, we believe, is an
exciting area that keeps evolving. We hope
that this special issue reflects that senti-
ment and will help identify some of the
new and emerging directions in the area
as well as providing critical perspectives
on the existing ones.
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Talay Adali, Matthew Anderson, and Geng-Shen Fu

Diversity in

Independent Component

and Vector Analyses

Identifiability, algorithms, and

applications in medical imaging

tarting with a simple generative model and the assump-

tion of statistical independence of the underlying com-

ponents, independent component analysis (ICA)

decomposes a given set of observations by

making use of the diversity in the
data, typically in terms of statistical
properties of the signal. Most of the =
ICA algorithms introduced to
date have considered one of
the two types of diversity:
non-Gaussianity—i.e.,
higher-order statistics
(HOS)—or, sample depen-
dence. A recent generaliza-
tion of ICA, independent
vector analysis (IVA), general-
izes ICA to multiple data sets and
adds the use of one more diversity,
dependence across multiple data sets for

Source Separation and Applications

IMAGE LICENSED BY

the more recently developed IVA methods. In addition, this formu-
lation allows us to make use of maximum likelihood theory to
study large sample properties of the estimator, derive the Cramér—
Rao lower bound (CRLB) and determine the conditions

for the identifiability of the ICA and TVA mod-

els. In this overview article, we first

present ICA, and then its general-

@ ization to multiple data sets, IVA,

= | both using mutual informa-
~  tion rate, present conditions
~for the identifiability of the
given linear mixing model
and derive the performance
bounds. We address how
various methods fall under
this umbrella and give exam-
ples of performance for a few
sample algorithms compared with

the performance bound. We then discuss

INGRAM PUBLISHING

achieving an independent decomposition,

jointly across multiple data sets. Finally, both ICA and IVA,
when implemented in the complex domain, enjoy the addition of
yet another type of diversity, noncircularity of the sources—
underlying components. Mutual information rate provides a uni-
fying framework such that all these statistical properties—types of
diversity—can be jointly taken into account for achieving the
independent decomposition. Most of the ICA methods developed
to date can be cast as special cases under this umbrella, as well as

Digital Object Identifier 10.1109/MSP.2014.2300511
Date of publication: 7 April 2014

the importance of approaching the performance
bound depending on the goal, and use medical image analysis
as the motivating example.

INTRODUCTION

Data-driven methods typically start with a simple latent variable
model—of which the linear mixing has been the most common—
and decompose a given set of V' -dimensional P observations, typ-
ically arranged as a P X I/ observation matrix, into two matrices,
a P X M mixing matrix and an M X V' component/source matrix
using a suitable cost. Since in this very general form, this is not a
well defined problem, usually additional constraints are imposed
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on the mixing and/or component matrices such as sparsity and
nonnegativity. ICA is based on the assumption of statistical inde-
pendence of the underlying components, and because this is a
strong assumption, it enables a solution subject to only scaling
and permutation ambiguities. Independence is also a natural
assumption in many problems and a set of features that are statis-
tically independent can be easily used for many tasks. This is the
reason for the popularity of ICA and its wide use in areas as diverse
as biomedicine, communications, finance, geophysics, and remote
sensing, see, e.g., [1]-[3]. In this article, we use mutual informa-
tion rate to provide a common umbrella for ICA such that the two
most commonly used types of diversity to achieve ICA, depend-
ence of samples and HOS are both taken into account.

There are numerous applications where not only one set of
observations but multiple data sets, which have some dependence
among them, need to be jointly ana-
lyzed. Examples include the analysis
of medical data such as functional
magnetic resonance imaging (fMRI)
and electroencephalography (EEG)
collected from multiple subjects,
remote sensing data such as hyper-
spectral images where each pixel pro-
vides spectral information over
multiple frequency bands, analysis of multisensor or multimodality
data that provide complementary information, and multisubject
biometric data, among many others. In all of these cases, the under-
lying components within the data sets, and hence the observations
themselves, exhibit statistical dependence, which is another form of
diversity to exploit. One approach to analyze these multiple data
sets is to perform an individual ICA on each data set separately.
Since most applications require matching of the corresponding
components from each data set, one should then use a permutation
algorithm to align the estimated components/sources since the
ordering of the sources cannot be determined by ICA. Such an
approach becomes computationally prohibitive as the number of
data sets and sources increases, but more importantly, it fails to take
advantage of the additional diversity, statistical dependence across
multiple data sets while performing the analysis. An approach for
ICA of multiple data sets, called group ICA, which is introduced in
the context of fMRI analysis [4], temporally concatenates multiple
data sets, and after a dimension reduction step, performs ICA on
this concatenated data set and then reconstructs the estimates for
each data set separately. As we demonstrate in this article, while
practical and useful, using a common subspace for performing ICA
is likely to lead to information loss. Multiset canonical correlation
analysis (MCCA) [5] alleviates the problem by making full use of all
the available data and has found wide application; see, e.g., [6] and
[7]. It can be also shown to achieve joint blind source separation [8].
However, MCCA makes use of only second-order statistics (SOS)
and constrains the demixing matrix to be orthogonal, hence limit-
ing the search space for the optimal solution.

IVA generalizes the ICA problem to multiple data sets in such a
way that it allows making full use of the statistical dependence
across multiple data sets, and can take not only SOS but HOS into

account as well, and includes MCCA as a special case. Using the IVA
framework, one can exploit the statistical dependence of each
source across multiple data sets leading to performance beyond
what is achievable with single-set ICA algorithms applied separately
to each data set. Additionally, IVA automatically aligns dependent
sources across the data sets hence bypassing the need for the use of
a second permutation algorithm for the task. The original formula-
tion for IVA [9] assumes that sources across data sets have no sec-
ond-order dependence, and uses a multivariate Laplacian model for
the source component vector (SCV)—which is defined in the sec-
tion “IVA: Cost Function.” In this overview article, we present a
more general formulation for IVA, show that just like ICA, IVA can
be cast using mutual information rate and thus all three key statis-
tical properties, sample dependence within a source, source depen-
dence within an SCV, as well as HOS are taken into account [10].
We give the identifiability conditions
and present results on large sample
properties using maximum likelihood
theory for both ICA and IVA, and in
the process, discuss the parallels
between the two approaches in terms
of the role statistical dependence
plays. We emphasize the fact that it is
the SOS that determine identifiability
for both ICA and IVA, and that the correlation structure defines the
diversity needed for establishing an independent decomposition for
both, and discuss the parallels for the two. The results for identifi-
ability and large sample properties do consider another important
diversity type, which is nonstationarity of the sources. Finally, the
application of ICA and IVA to medical image analysis is discussed
highlighting the importance of diversity in these studies.

INDEPENDENT COMPONENT ANALYSIS

We consider the basic noiseless ICA problem based on instanta-
neous mixing where there are as many sources as mixtures—the
most common case, the overdetermined one, also the case in fMRI
analysis, can be easily reduced to this form using order selection
as in [11] and [12]. The linear mixing model is then written as

x@) =As@), 1<v=<V, x@),s@) eR", (1)

where v is the sample index such as voxel, pixel, or time. The esti-
mates are given by u(v) = Wx(v), which can be also written in
matrix form as U= WX, where u) € R is the nth row of
U=WX, ie., U=[uy...,un]’, and X, U e R, Since we
consider the more general case that includes sample dependence
in the ICA formulation and would like to keep the notation as sim-
ple as possible, we make the following definitions. We use
x(@) € RY to refer to the random vector that contains the N
mixtures x, (@), 1 <n <N, and x, € R" to denote the trans-
pose of the nth row of the observation matrix X € RY*". When
the reference is to a random quantity rather than observation, it
will be clear from context.

In ICA, we assume that the sources s,(v) in s(@) =
[s1(0)s2(@)...sn()]" are statistically independent, and make use
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of different properties of the signal, such as non-Gaussianity, sam-
ple dependence, geometric properties, or nonstationarity of the sig-
nal, i.e., diversity in some form [1, Ch. 1]. Among those, the most
commonly used type of diversity has been non-Gaussianity—
HOS—of the sources. Most of the popular ICA algorithms such as
Infomax [13], FastICA [14], and joint approximate diagonalization
of eigenmatrices (JADE) [15] as well as many of the variants of
maximum likelihood (ML) techniques with different approaches for
approximating the source density, such as [16] and [17], all fall
under this umbrella. Even very recent surveys—such as [18]—pri-
marily consider ICA algorithms within this group. As a result, in
the community, most often, fundamental results such as those for
identifiability always consider this more limiting view of achieving
ICA. It has been hence commonly noted that ICA can identify only
a single Gaussian source. As we note next, this is true only when
non-Gaussianity is the only form of diversity that is considered.

Besides those making use of non-Gaussianity, another import-
ant group is algorithms that make use of linear dependence
among the samples, hence SOS. These include the algorithm for
multiple unknown signal extraction (AMUSE) [19], second-order
blind identification (SOBI) [20], and weights-adjusted SOBI
(WASOBI) [21] among others. In this
case, we use a random process rather
than a random variable model for
the sources, and use s,(v) where v
is an index such as time, pixel, or
voxel. In this article, we use v for
voxel, as medical image analysis, i.e.,
volume data will be our main motiv-
ating example.

Algorithms using only non-Gaussianity form a major portion
of the ICA algorithms developed to date, while those using sample
dependence come in second. An obvious question one may ask is
“Why not make use of both types of diversity, non-Gaussianity
and sample dependence together, at the same time?” As one
would expect, this approach leads to algorithms with better per-
formance than those using only one type of diversity as demon-
strated in [22]-[26]. In addition, use of these two types of diversity
jointly allows for more relaxed conditions for the identifiability of
the ICA model in (1).

This is our main goal in this section, to show how mutual
information rate helps bring most of the ICA algorithms under
one umbrella and helps determine identification conditions along
with performance bounds so that the performance of various algo-
rithms can be compared against this benchmark.

ICA: COST FUNCTION

Mutual information is a natural cost for ICA since the goal is
the maximization of independence among the source estimates
u = Wx, and has been used commonly when providing a gen-
eral umbrella for approaches based on the use of HOS. Here,
using the random process notation as in (1), we write the nth
source estimate as u,(v) = wix(v), where w; is the nth row
of the demixing matrix W. We can then write the mutual infor-
mation rate as

1]
M=

Ir(w) Hr(Un)_Hr(u)

n=1

=

H,(uy) —log | det W |— H,(x) @)

n=1

and take into account both HOS and sample dependence to
achieve ICA. In (2), we used the Jacobian expression
ps(u) =ps(Wx) = px(x)|det W[, and hence the last term
H.(x) is a constant with respect to W, it can be replaced by C
resulting in

N
T,(W) = Y H,(un) —log | detW|—C, 3)
n=1

where H,(u,) is the entropy rate, which is H,(u,) = lim,_«
Hlun(1),...,un(@®)]/v and the entropy is written as H (u,) =
—E{logps,(wrx)}. In the rest of the article, we refer to differen-
tial entropy simply as enfropy since discrete-valued random vari-
ables are not considered in the article. When the process is
stationary, we have H,(un)=limy.o H@u: @) |u.(v—-1),...,
u»(1)). Since entropy rate measures the per sample density of the
average uncertainty of a random process, minimization of (3)
makes use of both HOS—through
the minimization of missing infor-
mation, entropy—and sample
dependence by making samples eas-
ier to predict by increasing sample
dependence, i.e., decreasing the
entropy rate. The term log | detW |
acts as a regularization term preserv-
ing the volume across the directions
of source estimation. Since entropy is not scale invariant, i.e.,
H(x) # H(ax) for a # 1, without the regularization term, the
cost function could be minimized by simply scaling the source esti-
mates. Mutual information rate hence provides a broad umbrella
under which one can study the properties of ICA algorithms by tak-
ing into account both HOS and sample dependence, the two types
of diversity most commonly used for ICA.
When we constrain the demixing matrix to be orthogonal,
i.e., let WWT =1, we have |det (W) |= 1, and the cost in (3) re-
duces to

ToW = 3 Hy(wn)— C, @
n=1

which maximizes the negentropy rate, the information-theoretic
distance of a random process from that of a Gaussian for each
source, under a variance constraint.

For a given set of observations, X € R"*", we can maximize
the likelihood given by

N
Lica(W) = > logps, (un) + Vlog | detW|, (5)
n=1

where u, € R" is the transpose of the nth row of U= WX, i.e.,
U= [uy,...,un] . By the general asymptotic equipartition prop-
erty [27], as V — oo, the maximization of likelihood function
Lica(W) becomes equivalent to the minimization of the mutual
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information rate cost in (3). This is true if the probability den-
sity function (pdf) ps,(u.) used in the ML formulation exactly
matches the true pdf, which is implied when using mutual
information rate as the cost. When there is a mismatch between
the estimated pdf through likelihood and the true one, there is a
bias that can be represented by the relative entropic—Kullback-
Leibler—distance of the true density to the estimated. Using a
flexible density model such as those employed by the two algo-
rithms introduced in the section “ICA: Algorithms,” autoregres-
sive mixture of Gaussians (AR-MOG) [24], and entropy rate
bound minimization (ERBM) [25], decreases this bias. At this
point, and for the performance discussion in the next section,
we assume that the source pdf is known. In the section “ICA:
Algorithms,” we discuss different
ways of estimating the source pdf
during adaptation, which lead to a
number of different ICA algorithms
that can all be studied under the
mutual information rate minimiza-
tion umbrella. In [17], a distinction
is made between a true ML scheme that estimates the pdf and
one that uses a fixed distribution where the latter is called a
quasi-ML procedure.

In the rest of the development, to simplify the discussion, we
assume that all variables are zero mean so that the definitions of
correlation and covariance matrices coincide.

ICA: IDENTIFICATION CONDITIONS

AND THE PERFORMANCE BOUND

Given the log likelihood in (5), we can compute the Fisher infor-
mation matrix (FIM) using the expected value of its Hessian,
which tells us how informative the given set of observations are
for the estimation of the demixing matrix W. The FIM also plays a
key role in determining the identification conditions of the ICA
model as well as the lower bound on the unbiased estimator, the
CRLB. We consider the FIM locally around the optimal point,
G =AW =1, hence have u, =s,. Due to the invariance of the
induced CRLB with respect to G, the CRLB only depends on the
statistics of the sources. Here, we note that since the quantity
being estimated is W rather than G, the estimated bound is actu-
ally the induced CRLB following [28].

By making use of the independence of the sources, one can
show that the FIM has a block diagonal structure with N scalars
and N(N—1)/2 matrices that are 2 X 2. The scalar diagonal
entries are all positive, and hence, the properties of the FIM are
determined by the 2 X2 matrices—pairwise interaction of
sources—given by

ICA _ Km,n 1

mn =1 Knym],15m<nSN, (6)

where

Knm = trace (E{yr(s») y' (sn) }Rim),
_ dlognulsn) v and R, = E(sesi) € R™.

Hence, the FIM is a function of the key source statistics, the two
types of diversity the formulation in (5) takes into account—sam-
ple dependence and HOS. In addition, source nonstationarity is
another type of diversity, and the form in (6) considers the use of
this third type of diversity as well since here the definitions are
with respect to the complete source vector of dimensionality V,
which matches the dimension of the samples in the given observa-
tion. The quantity ¢ () is called the score function and is defined
as the derivative with respect to the source estimate u,.This is a
slightly different definition than in traditional ML theory where
the score function is defined with respect to the parameter.

Since the blocks Ji%, 1<m <n <N are the diagonal
blocks of a covariance matrix, the FIM, they are positive semidefi-

nite, and since FIM is block diagonal,

they determine the condition for

positive definiteness of the whole

matrix. Evaluating the condition for

which JK% becomes singular hence

yields the nonidentifiability condi-

tion for the ICA model—subject to

the scaling and permutation ambiguities. It can be shown that

1% remains positive definite as long as there are no two sources

that are Gaussian with proportional autocovariance matrices, i.e.,

we do not have two Gaussians, s, and s, in the mixture that sat-

isfy R» = 82R,, [1, Ch. 4]. Hence, in the presence of this simple

correlation diversity, i.e., when R, # 82R,, even Gaussian

sources are separable using ICA when sample dependence and

HOS are both considered. In addition, this result also includes use

of nonstationarity as diversity—to keep the notation simple we

have not included a time index in the definition of the autocovari-
ance matrices.

For algorithms that only take sample dependence into account
however, for algorithms such as AMUSE, SOBI, and WASOBI, any
two sources—not only Gaussians—with “similar” covariance
matrices cannot be separated [19], [28]. Obviously, using these
algorithms, independent and identically distributed (i.i.d.) sources
cannot be separated either. When the sources are i.i.d., or when
only HOS are taken into account implicitly assuming i.i.d. sam-
ples—as is the case in most of the ICA algorithms—then effect-
ively, we have R; = 071 for / =n,m. In this case, we can only
identify a single Gaussian source since the correlation diversity is
no longer available. This is the commonly known condition for the
identifiability of the ICA model since the majority of ICA algo-
rithms only exploit non-Gaussianity. However, as we note here, it
is important to remember that this condition is true only for a
specific case, and now there are effective algorithms that can take
into account multiple types of signal diversity.

Using the expression in (6), we can write the CRLB as

var (U)m,n) = %(Km,n - K:riz,lm)il . (7)

Assuming that the mixtures are whitened such that £{XX"} =1
and o5, = 1, we can calculate the CRLB using the normalized

W (sn) sy interference-to-signal-ratio (ISR)
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__ 1 3
ISR= R 2 Elgha), @®)

mn=1m#n

where gn» are the entries of G = AW, which we plot in Figure 1
along with performances of two algorithms introduced in the next
section against this bound.

ICA: ALGORITHMS
Mutual information rate in (3) can be minimized using relative/
natural gradient updates [29], [30] as

W(I+1) =W +uI-E{FU)UHWEO), )

where ¥ (U) = [y1(w),...,wy(un)]” € RMY, 1> 0 is the
step size, [ is the iteration index, and the score function wy, (+) is
defined in (6). In the update in (9),
we include the complete source esti-
mate matrix U= W (/)X as we con-
sider sample correlation, rather than
the commonly used random vector
notation as in [29] and [30]. The
form of this update is the same as the
one proposed in [31] based on non-
linear decorrelations, the original
approach for achieving ICA [32].
The bound given in (7) assumes
that the exact density of each source
is known. To approach this bound, a number of density matching
methods are proposed, in particular for the i.i.d. case, where the

10°

Normalized ISR

107" 10° 10!
Shape Parameter

—CRLB a=0(i.i.d) O ERM-ARG a=0.4

---CRLBa=04 x ERBM a=0.7

O ERM-ARG a=0.7

+ ERBM a=0.4

[FIG1] The induced CRLB and performance of two algorithms
as a function of shape parameter 3 (non-Gaussianity) for three
levels of sample correlation, for AR coefficient a = 0,0.4, and
0.7. Note the improvement in performance as the role of HOS
(8 moves away from 1) and as sample correlation (value

of a) increase.

problem is simpler as we need to estimate a univariate rather than
the multivariate score y, (+) in (9). Solutions for the i.i.d. case
include both parametric and nonparametric approaches as in effi-
cient variant of FastICA (EFICA) [33] and nonparametric ICA (NP-
ICA) [16], as well as a semiparametric approach, ICA by entropy
bound minimization (EBM) [34].

EBM uses an efficient entropy estimator where rather than
estimating the entropy directly, an upper bound is estimated
among a number of competing candidates determined by the
maximum entropy principle and by a finite number of prespecified
measuring functions. Available prior information can be used in
the selection of measuring functions, and even a simple selection
of two odd and two even functions leads to a flexible algorithm
that provides robust performance in a number of scenarios [34].
In [25], the flexible EBM density estimation strategy is combined

with an invertible filter model such
that both non-Gaussianity and sam-
ple dependence are taken into
account to derive ERBM—originally
introduced as full blind source separ-
ation—and hence to directly minim-
ize (3). Other approaches that take
both types of diversity into account
are Markovian ICA [22] where the
Markovian source model is adopted,
autoregressive mixture of Gaussians
[24], entropy rate minimization
using an AR source model driven by GGD (ERM-ARG) [35], and
MULTICOMBI [23] where either non-Gaussianity or sample
dependence is taken into account by switching between the EFICA
and WASOBI algorithms. All of these solutions assume stationarity
of the sources.

The decoupling of the source estimates by assuming an
orthogonal W introduced in the section “ICA: Cost Function”
leads to negentropy rate as the cost, and greatly simplifies the
score/density matching problem as the estimation for a given
source then does not interact—and hence complicates—the esti-
mation of others. This is the approach used in the FastICA algo-
rithm [14], which is noted for its fast convergence. In [33],
generalized Gaussian distribution (GGD)

p(s) oc exp(—|s|*) (10)

has been used as the source model to derive EFICA. Besides help-
ing with density estimation, the assumption of orthogonality pro-
vides a number of other advantages such as making second-order
algorithms such as Newton-variants become more practical and
allowing for easier implementation of constrained ICA [36].
However, this decoupling through constraining W to be
orthogonal also limits the search space for the demixing matrices
thus also limiting the achievable performance [37]. The decou-
pling approach given in [38] and [39] transforms the matrix opti-
mization problem to a series of vector optimization problems
without having to constrain the matrix to be orthogonal. Here, it
is also important to remember that the commonly used whitening
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step for the observations implies an orthogonal demixing matrix
only when the number of samples V' — oo, and hence does not
guarantee an orthogonal demixing estimate unless it is embedded
into the update mechanism. This decoupling approach is used in
the EBM and ERBM algorithms that employ flexible density mod-
els for each source estimate. Finally, algorithms that only make
use of sample dependence, and hence SOS, such as AMUSE, SOBI,
and WASOBI jointly diagonalize multiple covariance matrices to
determine an estimate for W rather than directly maximizing the
likelihood (5). A second-order ICA approach based on ML with a
Gaussian density model is given in [40], and it is shown that
besides this ML-based algorithm, WASOBI approaches the CRLB
as well, when the sources are stationary AR processes.

EXAMPLE: DIVERSITY, CRLB, AND THE

PERFORMANCE OF TWO ALGORITHMS

To demonstrate the role of diversity in attaining optimal perfor-
mance while designing an algorithm, we consider a simple exam-
ple, the separation of two linearly mixed sources, an i.i.d. source
drawn from a GGD (10) and a second source, a first-order AR pro-
cess generated by a Gaussian process v(v) such that
s@)=as—1)+v(v). GGD assumes the form of a Gaussian
for B =1, is super-Gaussian when 0 < 8 < 1 and sub-Gaussian
when B > 1. Hence, as 8 moves away from 1, the role of HOS
increases, and similarly, the role of sample dependence increases
as |a |- 1. In Figure 1, we plot the CRLB given by (7) using the
ISR (8). First note that for finite ISR, it suffices for one of the
sources to have sample correlation—nonzero a—when both are
Gaussian. The widely referenced and repeated condition for the
real case that says “with ICA, one can identify only a single Gauss-
ian” hence is true only when sample dependence is not taken into
account—or is absent in that the samples are i.i.d., which rarely is
the case in practice. In the same figure, we also show the perfor-
mance of two algorithms that make use of both sample depen-
dence and HOS: one that exactly matches the underlying source
models, entropy rate minimization using AR model with a GGD
driving process (ERM-ARG) [35] and the more flexible ERBM algo-
rithm [25]. The results are shown for 1,000 samples and 500 inde-
pendent runs. While we observe that the exact match provides the
best performance, the flexible ERBM does a decent job in
approaching the bound as well and does not use prior information
like the ERM-ARG.

EXAMPLE: PERFORMANCE COMPARISON

IN SEPARATION OF NATURAL SOURCES

In Figure 2, we show the ISR of nine different algorithms in sepa-
ration of ten artificially mixed images from [41] to demonstrate
the performance of different algorithms in separation of sources
that come from a rich class of distributions. Since, for small sam-
ple sizes, there were a number of unstable runs, the results are
plotted using the median rather than the mean. The algorithms
used in the comparison are JADE; EFICA; Robust, Accurate, Direct
ICA aLgorithm (RADICAL); and ICA-EBM that exploit the HOS,
WASOBI that uses sample dependence, AR-MOG, ERM-ARG, and
ERBM that use both, and finally MULTICOMBI that uses both but

one at a time. The advantage of making use of both diversity
jointly is clear as well as the superior performance of two algo-
rithms that use flexible density models, AR-MOG and ERBM—
though the performance of AR-MOG deteriorates with decreasing
sample size due to its complexity.

INDEPENDENT VECTOR ANALYSIS

In many applications, not only a single but multiple data sets with
dependence among them need to be jointly analyzed. Examples
include the analysis of medical data such as fMRI and EEG from
multiple subjects or at different conditions, data from multiple fre-
quency bins when solving the convolutive ICA problem in the fre-
quency domain, and the analysis of multisensor or fusion of
multimodality data with complementary information. IVA general-
izes the ICA problem to multiple data sets so that one can take
advantage of this additional type of diversity, the one across mul-
tiple data sets when achieving the decomposition.

Next, we show that IVA can be formulated using mutual infor-
mation rate minimization like ICA but now with the addition of
one more diversity, dependence among sources across data sets.
Also, as in the case of ICA, we consider the general case that does
not constrain the demixing matrices to be orthogonal, and as
such, IVA generalizes CCA and MCCA [5] as well, both through
incorporation of statistics higher than two and also by allowing a
general nonorthogonal demixing matrix. Using this general for-
mulation, we give the general conditions for identifiability of the
IVA model as well as the performance bounds. The ICA result, as
expected, becomes a special case when the number of data sets is
set to one. We then present current algorithms for achieving IVA,
and address the challenges in the area.

10°
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-x-|1CA-EBM -0©- ERM-ARG
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[FIG2] The performance of nine algorithms using different types
of diversity—either HOS or sample dependence, or both—in the
separation of a mixture of sources that come from a rich density.
Note the best performance by algorithms making use of both
types of diversity.
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IVA: COST FUNCTION

The IVA problem is defined similar to ICA except that we now have
K data sets, each containing V' samples, and formed from linear
mixtures of N independent sources,

o) =A¥sW () 1<k<K, 1<v=<V, (11)

where A¥le RY*Y k=1,... K are invertible mixing matrices.
The problem is finding A demixing matrices W¥' such that
sources for each data set can be estimated through
u(p) = WHxH (1) for k = 1,...,K as shown in Figure 3(a).

For K data sets X' € R¥*"  we can recover the source esti-
mates for each data set using U = W¥XW | and by defining aug-
mented matrices X and S,, write the problem as

x Al 0 0 S[ll p
S l={0 . 0| i | X=AS where A=®) AW,

X[K’I 0 0 A[K] S[K’I k=1
(12)

The estimates are given by U= WX and the demixing matrix is
also block diagonal, W =@ W/ The decomposition is per-
formed on this augmented matrix X so that the dependence of
components of the source matrices S¥ across data sets can be
taken into account. In this model, the components within each
S* are assumed to be independent while we allow for dependence
across corresponding components of S¥! in multiple data sets. In
fact, it is this additional dependence that IVA takes advantage of,
and the following definition helps clarify the idea and is key for the
whole development to follow.
We define the SCV for the nth SCV s,, as

$20) = [sV©),s2 ), ...,s8 )] € RY,

Source
Dependence

=

Sample
Dependence

XIK AlK] slkl

(a)

i.e., by concatenating the nth source from each of the A data
sets, or similarly, define the source component matrix (SCM) S,
shown in Figure 3(a), through concatenation of each row of S*
as Sp=[si s ... s¥1]T. The SCV takes into account sample
dependence through the inclusion of index » in its notation and
we use both definitions, SCV and SCM, in the discussion to follow.
As an example, in the fMRI analysis we introduce in the section
“Application to Medical Image Analysis,” the nth SCM contains
the spatial activation maps of the nth source, such as the motor
component, for all K subjects in the study. One would expect the
activation maps of different subjects to be statistically dependent,
as for each subject, voxels at corresponding locations would show
comparable levels of activation. This is the additional diversity that
the general IVA formulation makes use of when achieving the
decomposition. It is, however, important to note that while IVA
makes use of this additional diversity, it does not require that it
exists, and in its absence, reduces to individual ICAs on each data
set. This additional diversity is also what helps with the resolution
of permutation ambiguity among the sources estimated across the
data sets. The identification condition we introduce in the next
section specifies when all the sources in an IVA model can be iden-
tified, and is a quite relaxed condition. However, the identification
of sources does not imply that the sources will be aligned as well,
and sources across data sets—components of each SCV—can be
aligned only if the sources across the data sets are statistically
dependent [10].

At this point it is also useful to note that the IVA formulation is
a special case of the multidimensional ICA (MICA) problem [42],
also defined as an independent subspace problem [43]. Though
MICA is not necessarily defined for multiple data sets as IVA, we
can use the augmented matrix definition in (12) to understand
how MICA considers a more general model. For the MICA formu-
lation, the mixing matrix is not assumed to have a block diagonal

102
— 0=0.0,a=0.0
—0=0.3,2=0.0
—0=05,a=0.0
0=0.0,a=05
- 0=0.3,a=05
%) 0=05,a=05
3 10 '
N
T
£
(o]
pza
100
107" 100 101

Shape Parameter

(b)

[FIG3] For the IVA problem given in (a), note the improvement in performance shown in (b) as the values of o (source dependence)
and a (sample dependence) increase and shape parameter moves away from 1, i.e., the role of HOS increases. (a) IVA for analysis of
multiple data sets and the two key signal properties available in addition to HOS: sample dependence and dependence among sources
within an SCM S... (b) The role of three types of diversity on performance in terms of induced CRLB (normalized ISR).

IEEE SIGNAL PROCESSING MAGAZINE [24] MAY 2014

SignalProcessing

Previous Page |“Contents™|"Zoomin“|"Zoom out™|"Front"Cover-|"Search Issue“|"Next'Page “‘rﬁags

THE WORLD'S NEWSSTAND®


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

*
Previous Page|“Contents™|"Zoomin~|~Zoom out | Front" Cover-|“Search Isstue“|"Next'Page \"(‘i‘

form and the number of components within each SCV can be dif-
ferent. Hence, the problem is one of finding independent sub-
spaces where in each, there might be different number of
dependent components. There are many challenges for solving the
general MICA problem. A major one among them is determining
the number of subspaces and components within each SCV. A
recent overview of MICA is given in [44] where an effective solu-
tion is offered for the multivariate-Gaussian case. Assuming the
correct number of components within each SCV can be deter-
mined, MICA then identifies the independent subspaces and does
not identify the individual components within each subspace, i.e.,
the components within an SCV like IVA does. The IVA formulation
provides enough additional restrictions to the MICA formulation
so0 as to achieve identifiability of individual components while still
creating a more general framework than ICA.

Since W has far fewer nonzero parameters than its full
KN x KN dimension implies, we define ‘W & RY*¥*X a three-
dimensional array, to denote the set of parameters to be estimated.

Given the definition of an SCV, we formulate the IVA problem
similar to that of ICA in (3) as

YA W) = D Hy(un)— f log| det(WH)|— ¢, (13)
k=1

n=1

where the main difference is that we are now seeking to minimize
the mutual information among SCVs rather than individual
sources. To provide a clear view of the role of this additional diver-
sity, we rewrite (13) as

K

IV (W)= ﬁ ( H, (ulf) —L(un))— f log| det(W*)|—C.
n=1\k=1 k=1

(14)

Without the second term Ziv: I+ (un), the expression in (14)
is exactly equivalent to the sum of the cost in (3) across K data
sets, hence performing independent ICAs on each data set. It is
this second term, sum of mutual information within each SCV,
Z:/:l]f(un) that takes the diversity across data sets into
account. The minimization of (14) hence increases mutual
information among components of an SCV, thus making use of
the natural dependence among data sets.

If we consider no sample dependence—hence the cost is
mutual information (7) rather than mutual information rate
(I,)—and use the multivariate Gaussian model for the SCV, we
have H (u,) = (1/2)10g[(27ze)K le Mk]] where 2% is the kth
eigenvalue of the covariance matrix of the nth SCV, then (13)
reduces to

N K
TG () = NKIO%(Zﬂe) +%10g<n I /u;d)
n=1k=1

K
= log|det(W")|—C. (15)
k=1

This is exactly equivalent to the generalized variance method
(GENVAR) cost function proposed for achieving MCCA [5] when
we constrain the demixing matrices to be orthogonal

hence eliminating the term ), log|det(W"')| but imposing a
constraint on the sum of estimates, hence the eigenvalues. In [5],
five cost functions are introduced for maximizing correlation
among linearly transformed multiple data sets, which in our IVA
formulation are the SCVs. The cost functions introduced in [5] all
have the common objective of estimating W*! such that the SCV
covariance matrix becomes as ill conditioned as possible, since this
maximizes the correlation among the components within an SCV.
Obviously the term log( NOTTE, M{”) achieves this goal
when we let the sum of the eigenvalues be constant, i.e., constrain
the demixing matrix. In (15), the term ), log| det(WH )|
achieves this purpose and is written using the theoretically well-
justified cost of mutual information.
For given X" & = 1,..., K, we can write the likelihood as

N K
Lia(W) = 3 1og(pa(Un)+ VY log|det(WH)],
n=1 k=1

where now the score function for the SCM U, is written as

_ 3logp,(Un)

VA —
¥ (Un) = U,

e REXV, (16)
Now, we can proceed as in ICA to derive the performance bound
and determine the conditions for the identifiability of the IVA
model by working within ML theory.

IVA: IDENTIFICATION CONDITIONS

AND THE PERFORMANCE BOUND

We evaluate the FIM by the expected value of the Hessian of Lva
at the optimal point G =®5_ WA+ =®%_,Gs = I, which is
now KN?x KN? in dimension, since ‘W has a total of KN?
parameters. Since, the IVA formulation replaces the sources with
SCMs that are mutually independent, and each SCM includes A
components, the FIM is again block diagonal but now with N
block matrices that are A XK and N(N—1)/2 matrices of
dimension 2K X 2K. The properties are again determined by the
latter blocks, those that describe the interaction of now the SCMs,
the 2K x 2K block matrices

IVA Knn 2K 2K
= eR ,
IK 7(n,m

where  {Fnnbpp = (UV)E{(yh ) Sl (WD) yy AT}
when m #n, yi* = (¥ Te, where Wh™ is given in (16),
the subscript for the identity matrix I denotes its dimension, and
e is the kth basis vector. Again, the FIM is a function of the key
SCM statistics, and in this case, all three types of diversity—sam-
ple dependence, dependence within an SCM, and the HOS—that
are considered in this IVA formulation. Since the SCM is writ-
ten for V samples, i.e., is K X V, nonstationarity is taken into
account as well.

The FIM is a block diagonal matrix for this case as well and
the identification condition for the IVA model is obtained by
evaluating when J¥4 remains positive definite. It is shown
that [10], [45] identification of the IVA model in (11) is possible
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as long as no two SCMs have o-Gaussian components for
which Ryo = (I ®D)R,o (Ir®D), for 1 <m #n <N, where
D e Rf<*A« is any full rank diagonal matrix, K. the number of
o-Gaussian components, R, = E£{S.S.}, and ® is the Kro-
necker product. An a-Gaussian component is defined as the
subset of rows of an SCM that are independent from the others
and have multivariate Gaussian distribution, and o refers to the
index of this subset within {1,...,K}, and R, refers to the
covariance matrix of the matrix formed from the o-Gaussian
rows of an SCM. Hence, it is again a second-order condition that
determines the identifiability of the model, and the major role played
by the source covariance matrix in ICA is now replaced by the SCM
covariance matrix. As in the case of

ICA, the result holds for the use of

nonstationarity as a diversity type.

A useful special case to consider
is when the samples are i.i.d., which
is equivalent to considering V=1
so that Iy is a scalar and unity and
we now consider SCVs where each
entry is a random variable rather
than SCMs or an SCV with entries
that are random processes. This is
the basic assumption in most ICA algorithms where only HOS
are taken into account, and it leads to practical and effective
solutions that work well for most cases, including many where
the samples are actually dependent. However, for ICA, with the
i.i.d. assumption, we can only identify a single Gaussian source.
For IVA, however, the condition for this case is more general
and now we can identify the IVA model as long as there are no
two o-Gaussian SCVs for which Ry« = DRy D € Rf<*fe,
Hence, the identification of multiple Gaussians is possible
with IVA provided that the covariance diversity is available, in
the sense that covariance matrices of sources that are Gauss-
ian across data sets are not essentially identical, i.e., satisfy
R # DRy D € RFHx,

Finally, for K =1, the condition reduces to that for ICA and
we cannot identify any two Gaussians that have R, = 8°R,,
8 # 0 where now the covariance is defined for a single source
rather than an SCV. A comparison of these two conditions reveal
the dual nature of the role of diversity in these two cases, diversity
in the form of source dependence for IVA versus sample depend-
ence in ICA. The diagonal matrix D for IVA and &2 for ICA are
present in the conditions simply due to the inherent scaling ambi-
guity of the problem. The given identification conditions for the
i.i.d. case coincide with those derived assuming a multivariate
Gaussian model in [46] and [47] since they are determined by sec-
ond-order statistics.

The CRLB for IVA is given by

var (wih )> L o T (Hn — TCab) e, 17
which has a similar form to (7), and, again similarly, can be com-
puted using the sum of ISR values, now defined as £{(g%,)?}.
E{(g%h)?}.

EXAMPLE: ROLE OF THREE TYPES OF DIVERSITY FOR IVA
The simple example shown in Figure 3(b) plots the CRLB in
terms of ISR for two sources and two data sets, where the first
set of sources—common to both data sets—is drawn from a
multivariate GGD, which is Gaussian when the shape parameter
B =1, and has super-Gaussian marginals for 0 < 8 <1 and
sub-Gaussian for 8 > 1. The second set of sources are an i.i.d.
Gaussian and a first-order AR process s(@) =as(v— 1)+ v (),
where v (v) is a white Gaussian process. Hence, the AR param-
eter a characterizes influence of sample correlation and the
shape parameter S of non-Gaussianity, i.e., HOS. Finally, we
introduce correlation for the first group of sources through a
correlation coefficient o. As observed
in Figure 3(b), performance—as
measured by the ISR—improves as
sample source correlation and de-
pendence across data sets—values of
a and o respectively—increase, and
as the sources become more non-
Gaussian—i.e., as the value of 8
moves away from 1. We also note the
condition for identifiability of the IVA
model in that when the sources are
all Gaussian (3 = 1) and i.i.d., a finite ISR is still possible as long as
there is correlation among the sources, in this example introduced
only to the first set of GGD sources through o.

IVA: ALGORITHMS

In algorithm development, while it is desirable to consider
together all types of diversity expressed in the cost (13), current
solutions available for the problem only take HOS and source
dependence across data sets into account, primarily due to com-
putational and modeling challenges. Hence, they minimize
mutual information rather than mutual information rate. A gen-
eralization of joint diagonalization proposed in [48] is the only
solution we know of that exploits sample dependence for the joint
source separation problem in addition to the other two diversity,
HOS and source dependence.

We write the relative/natural gradient updates for IVA to min-
imize the mutual information—hence not accounting for sample
dependence—as

WH({I+1) =

W[k](l)-i-,u(l—E{\pNA’[k] (u[k])T})W[k](l), (18)

where now the score function has the simpler form VA =

—[(3logp1 (1) /aul™), ... .(alogpy (uy)/0u™)]". Again, a key
problem is the estimation of the score function, i.e., the source
pdf, during the adaptation. For IVA, as opposed to ICA, all solu-
tions to date have emphasized parametric methods as non-
parametric approaches can easily become prohibitive for the
multidimensional case.

IVA is originally formulated for solving the convolutive
ICA problem in the frequency domain [9], which is an appli-
cation where resolution of the permutation ambiguity across
frequency bins is critical to the success of the solution.
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Hence, the main application domain that is considered has
been the separation of acoustic sources resulting in an
emphasis on models attractive for this case starting with the
multivariate Laplace model [9], [49]. In [50], a mixture of
Gaussians is proposed where the noisy IVA problem and an
online solution are considered as well. However these solu-
tions fail to consider all-order statistical dependence within
an SCV and in certain cases constrain the demixing matrix to
be orthogonal/unitary as in [50] and [51]. As discussed ear-
lier, constraining the demixing matrix limits the perfor-
mance and the decoupling trick introduced in the section
“ICA: Algorithms” allows for advantages of orthogonality
without having to constrain the matrix, and provides a num-
ber of additional advantages such as easier density matching,
better convergence properties, and enabling easier derivation
of second-order iterative algorithms. In (18), a single step
size u is used to update the entire demixing matrix while
each row corresponds to a different source as in the case of
ICA. In [47], a number of algorithms—including vector gra-
dient descent and vector Newton algorithms—are derived
using the decoupling trick so that the demixing matrices are
not constrained to be orthogonal. They are then imple-
mented using a multivariate Gaussian SCV model to derive a
class of algorithms called IVA-G, and later using a the Kotz
family [52] that includes the GGD, and hence Gaussian and
Laplace as special cases. All of these solutions account for
all-order statistical dependence for an SCV.

Iterative approaches to optimizing the IVA cost function
are subject to similar convergence issues as iterative algo-
rithms for ICA. It is shown that the Hessian matrix for the IVA
cost with the multivariate Gaussian model always remains
positive definite [47] and thus IVA-G has very desirable conver-
gence properties. Hence, it is a good candidate for initializa-
tion of other algorithms, and is used for initializing the

10!

solution of IVA with multivariate Laplace implemented as in
[9] for the results we present in the section “Application to
Medical Image Analysis.” For non-Gaussian sources, it is
known that local minima exist in the cost function. These
local minima correspond to demixing solutions that have dif-
ferent permutations across data sets [10]. Thus, even if a local
minimum occurs, it is observed that the sources within each
data set have been separated but the dependent sources across
data sets are not aligned. This issue is addressed in [53] for the
special case of spherical and super-Gaussian sources.

EXAMPLE: PERFORMANCE OF TWO IVA SOLUTIONS

In Figure 4, we show the CRLB for separation of sources that are
drawn from a multivariate GGD, and the performance of the IVA
algorithm of [52] for different sample sizes. We implement two ver-
sions of the algorithm, one that estimates the covariance matrix but
assumes that the true shape parameter S is known, and a second
version that selects one of two 8 = {0.5,2} during the adaptation,
which is a practical implementation. As expected, in both cases, the
performance improves approaching the CRLB as the number of
samples increase. In addition, while the first “clairvoyant” version of
the algorithm in Figure 4(a), as expected, provides better perfor-
mance, the second and practical implementation shown in Figure
4(b) provides quite satisfactory performance as well.

In terms of algorithms that only make use of linear depend-
ence across multiple data sets, MCCA is the oldest, an extension of
CCA [54] defined for two data sets. The algorithms given in [5]
assume orthogonal demixing and are deflationary in nature such
that each row of weights are estimated sequentially. IVA using
multivariate Gaussian model also makes use of only linear depend-
ence and can be derived within an ML framework [47], [55]. Since
CCA can be achieved using generalized eigenvalue decomposition,
it can also be posed as a diagonalization problem, which can be
readily extended to achieve IVA using generalized joint

10!
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[FIG4] The performance of two IVA algorithms that take source dependence and HOS into account for separation of three GGD sources
of dimension K =5 with shape parameter 8 and a random covariance matrix compared to the induced CRLB (normalized ISR) for
different sample sizes. (a) Shape parameter S is assumed to be known. (b) Shape parameter is selected from 3 ={0.5, 2}.
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in the study of networks of such intrinsic
activity since it naturally takes all the voxels
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Time Index
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into account when achieving the decompo-
sition and provides a summary statistics for
brain activity as well as its modulation
across time. Besides, the linear superpos-

e i

[FIG5] The spatial ICA of fMRI data. Note the presence of both sample dependence and

HOS as forms of diversity.

diagonalization [48]. A review of extensions of CCA to include non-
linear dependences is given in [45].

APPLICATION TO MEDICAL IMAGE ANALYSIS

FMRI has enabled us to directly study temporal and spatial
changes in both the healthy and the diseased brain as a function
of various stimuli, and has contributed greatly to our understand-
ing of the most complex organ of the human body. Relatively low
image contrast-to-noise ratio of the blood oxygenation level
dependent fMRI signal, head movement, and undesired physio-
logical sources of variability (cardiac, pulmonary) make detection
of the activation-related signal changes difficult. The standard
approach for the analysis of fMRI data has been correlating the
time-series data with an assumed reference signal, i.e., perform-
ing a simple linear regression as implemented in the popular stat-
istical parametric mapping (SPM) software [56]. Even though it is
robust, use of such a reference time course requires prior infor-
mation, which most often is not reliable, and more importantly,
in most cases it simply is not available. This is the case for data
that are acquired when subjects are at rest or performing natural-
istic behavior such as watching a movie. Hence, following its first
application to fMRI analysis [57], ICA has become an attractive
solution and is now widely used for fMRI analysis—for a recent
review on ICA of fMRI, see [58].

Spatial ICA finds systematically nonoverlapping, temporally
coherent brain networks without constraining the temporal
domain, hence can effectively recover functional networks. Func-
tional connectivity refers to temporal correlations between spa-
tially distinct regions of the brain, and ICA has been very effective

ition assumption holds for fMRI; see, e.g.,
[59], and the data-driven nature of ICA
helps minimize unrealistic assumptions
about the temporal domain and brain
hemodynamics.

Figure 5 shows the application of ICA to
fMRI analysis for finding spatially indepen-
dent components, which has been by far
the most common use of ICA for the problem. The observation
matrix X € R™YV is formed by flattening the volume image data
of V' voxels at each time point. The time dimension is typically
reduced from 7, typically in the hundreds, to N, a value around
30-60 to improve the estimation performance. Information-theo-
retical criteria (ITC) using principal component analysis (PCA) is
most commonly employed for this step [11], i.e., to determine the
dimensionality of the signal subspace, usually with a correction for
dependence among the samples (voxels) [12] so that a better esti-
mate of ML can be used for the ITC. The spatially independent
components—activation maps—form the sources, and the col-
umns of the mixing matrix correspond to the temporal modula-
tion of the corresponding source in the given time frame, [1,7].
In Figure 5, we show a sample time course after reconstruction to
its original dimension 7, and its corresponding Z -thresholded
spatial activation map.

EXAMPLE: TAKING SAMPLE DEPENDENCE

AND HOS IN ICA OF fMRI DATA

The activation maps, the underlying independent sources, are
typically super-Gaussian since they include heavy tails due to
active voxels, those with high intensity values, and include sam-
ple dependence due to point spread function as well as low pass
filtering, a common preprocessing step used for fMRI data.
Hence, it would make sense to account for both types of diversity,
HOS and sample dependence, when performing ICA of fMRI data.
In Figure 6, we show the performance of three ICA algorithms in
estimating the default mode network (DMN): 1) Infomax that
uses a sigmoidal nonlinearity, a good match to super-Gaussian

Infomax EBM ERBM

Number of Voxels

Overlapping with the Mask 2,386 3,291 3,328
Sensitivity of -Map

with the DMN Mask 0.73 0.82 0.82
Estimated t-Values on

Time Regression Coefficients -0.18 -1.10 -2.08

[FIG6] Estimated t-maps for DMN using Infomax, EBM, and ERBM, and quantitative measures of their performance.

SignalProcessing

IEEE SIGNAL PROCESSING MAGAZINE

Previous Page |“Contents™|"Zoomin“|"Zoom out™|"Front"Cover-|"Search Issue“|"Next'Page

28] MAY 2014

>

*
-
“Qmags

THE WORLD'S NEWSSTAND®


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

*
Previous Page|“Contents™|"Zoomin~|~Zoom out | Front" Cover-|“Search Isstue“|"Next'Page \"c‘i‘

THE WORLD'S NEWSSTAND®.

sources; 2) EBM that uses a flexible density model, and 3) ERBM
that combines the flexible density estimation of EBM with a filter-
ing approach to account for sample dependence. DMN is part of
intrinsic networks, and one that has received much attention
lately as it is regarded to be an important biomarker for different
disorders. It activates preferentially when individuals focus on
internal tasks, when the mind is wandering, and hence it is
expected to be negatively correlated with the task time-course,
when data are collected during a task. In this example, the data
are collected from 20 subjects performing the auditory oddball
task [60]. As shown in the figure, all three algorithms have com-
petitive performance, however both EBM and ERBM estimate
more voxels than Infomax that correlate with the DMN mask.
Also, when we perform a £-test on the multiple regression coeffi-
cients of the estimated time courses to determine their task-relat-
edness, ERBM yields the highest negative value for DMN, hence
highest negative correlation with the task, indicating best perfor-
mance using this metric [60].

Since the need to jointly analyze data from multiple subjects
is inherent to most problems in medical data analysis, following
the introduction of ICA for fMRI analysis [57] and its success, a
simple but effective method, called group ICA [4], is introduced
for multisubject fMRI data analysis. Group ICA performs a first-
level dimension reduction at the individual subject level, and
then temporally concatenates dimension-reduced subject data,
to perform a second-level PCA to find a common subspace for
data from all subjects. Then a single ICA is performed after
which individual subject maps and time-courses are recon-
structed as shown in Figure 7(a). There are a number of
approaches for reconstructing the subject maps, which are

evaluated and discussed in detail in [61] as well as a number of
ways to perform concatenation of data sets [62]. While robust
and practical, the projection to a common subspace of data
from different subjects can potentially cause loss of information
in terms of subject variability. In the application of IVA to fMRI
analysis shown in Figure 7(b), individual subject data are
directly analyzed following the subject-level dimension reduc-
tion. Hence, all individual subject maps are estimated concur-
rently, and are aligned across subjects when there is dependence
among them. This is typically the case for all components of
interest, i.e., components corresponding to meaningful func-
tional areas such as DMN and motor areas, since these naturally
have statistical dependences across subjects. Components
related to artifacts such as the motion artifact, however, might
not be aligned for all subjects as these are less likely to have a
similar dependence structure across subjects, and are more
likely to be subject specific. Next we demonstrate the advantage
of IVA over the widely used group ICA approach with two exam-
ples, one with simulated fMRI-like data and a second one using
real fMRI data.

EXAMPLE: CAPTURING SUBJECT

VARIABILITY WITH IVA

To test the ability of IVA in capturing subject variability, we use
the fMRI simulation toolbox, SimTB [63], and generate ten
components shown in Figure 8(a) for two groups, with 12 sub-
jects in each. For each subject, components are randomly gen-
erated with small variations in terms of translation, rotation,
and spread. For the first component, however, we introduce sig-
nificant difference in terms of spread between the two groups of
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[FIG7] Group ICA and IVA for multisubject fMRI analysis. Note how IVA avoids projecting multisubject data to a common space after
subject-level PCA as well as the additional back-reconstruction step of group ICA. (a) Multisubject fMRI analysis with group ICA.

(b) Multisubject fMRI analysis with IVA.
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[FIG8] A group analysis study using fMRI-like data. IVA leads to better performance especially with increasing group variability, hence
the role of source dependence. (a) SimTB experimental setup. (b) and (c) Receiver operating characteristic curves for IVA and group ICA.

subjects, so as to simulate a typical difference in brain network
volume change between the healthy and patient groups found
in fMRI studies. The difference in spread is kept at two levels,
one indicating a smaller difference between the groups, and a
second one with greater difference in spread. Then, the perfor-
mance is tested between the two approaches: group ICA using
Infomax with a nonlinearity matched to Laplacian pdf and IVA
using a multivariate Laplacian model following initialization
with IVA-G, which we call IVA-GL [64]. In Figure 8(b), we show
the receiver operating characteristics curves for the detection of
the difference between the two groups at two levels of spread. To
obtain the reference map, we perform a two-sample f-test
between the two simulated groups, which is thresholded at 0.05
significance. By changing the threshold for #-values, we plot
the receiver operating characteristics by counting the number
of voxels within (Nue) and outside the reference map (Nise ).
The ratios of these values to the total number of voxels within
the map and outside, respectively, yields the true positive—
detection power—and false alarm values. IVA performs better
than the group ICA approach at both lower and higher group
variability, and its performance improves when there is higher

IVA Group ICA

0

group variability. Because with higher group variability, diver-
sity in terms of source dependence has more statistical power,
improving the performance of the IVA approach.

EXAMPLE: PERFORMANCE OF IVA
AND GROUP ICA WITH REAL fMRI DATA
To test the performance of IVA for the analysis of real fMRI data
from subjects that exhibit significant variability, we used data col-
lected from patients who suffered a stroke that primarily affected
their motor areas. Data were collected while subjects performed a
motor task that had alternating cycles of rest (30 s) and task (24 s),
which was squeezing a ball. After standard preprocessing using
SPM [56] as in [62], data from ten subjects in two sessions, hence
providing a total of 20 data sets, are analyzed using the two
approaches for multisubject analysis, group ICA and IVA with the
same algorithms as in the previous example, IVA-GL and Infomax
with a nonlinearity matched to a Laplace pdf implemented using
group ICA of fMRI Toolbox (GIFT) [65]. In Figure 9, we show the
t-maps thresholded at a significance level of 0.05.

As clearly observed from the figures, for both components, IVA
leads to better estimation of the functional areas as indicated by

0

[FIG9] Sample estimated spatial maps for IVA and group ICA for two components: (a) DMN and (b) frontal. Note the higher activation

levels and spatial extent of the estimated maps using IVA.
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more connected regions and better correlation with the masks
generated for these areas as discussed in [66)].

DISCUSSION

In this article, we provided an overview of ICA by emphasizing
two types of diversity, HOS and sample dependence, which have
been the two most typically used for achieving ICA. By using
mutual information rate, we showed that a number of ICA
approaches can be brought under one umbrella. We then intro-
duced IVA that extends ICA to multiple data sets, and presented a
general formulation for IVA that adds a third type of diversity,
dependence of sources across data sets to these two. We empha-
sized the parallels between ICA and IVA in the way diversity plays
a role for both and discussed how a number of existing algo-
rithms fit as special cases under this umbrella. Even though this
is a rather broad umbrella, this has been a partial survey given
the vast activity in the area. For example, algorithms that explic-
itly compute HOS such as JADE as well as those that make use of
other types of diversity such as nonstationarity, noncircularity,
and geometrical properties are not considered. Nonstationarity,
however, is taken into account in our discussion on identifiability
and it has been used with other types of diversity in algorithm
development, e.g., along with HOS in [67], and HOS and sample
dependence in [68].

Another important diversity type—which we could not dis-
cuss here due to space constraints—is noncircularity of the
signals when ICA or IVA is implemented in the complex
domain, which can be also studied under the mutual informa-
tion rate umbrella [69]. Since it is the SOS that determine
identifiability for ICA and IVA, again in this case, it is the
impropriety, second-order noncircularity, that plays a key role.
A random vector x is called second-order circular—or,
proper—if its complementary covariance matrix E{xx'} van-
ishes. For improper signals, identification of i.i.d. Gaussians is
possible if all circularity coefficients are distinct using strongly
uncorrelating transform [70], and in addition, if we make use
of HOS and sample dependence, it can be shown that the iden-
tification conditions we have given here become more relaxed.
Then the ICA problem becomes nonidentifiable only when
there are Gaussian sources with both the covariance and com-
plementary covariance matrices that are proportional, and
proportional through a complex constant for the latter, as
implied by the analyses in [71] and [72]. A conjecture for IVA
would be that the condition given here will also include the
complementary covariances of SCVs. As one would expect,
with the addition of each new type of diversity, identification
becomes easier, a broader class of signals can be separated
using ICA or IVA. A recent review of complex-valued ICA can
be found in [69], and a comprehensive review of the field of
blind source separation in [1].

ICA has found a fruitful application in fMRI analysis, and
IVA promises to be another attractive solution. ICA has been
widely applied to fMRI and EEG analyses, two domains where
the linear superposition assumption of ICA holds. A recent
review [58] underlined the now wide use of ICA for fMRI

analysis by showing the exponential growth in publications
on the topic following its first application in 1998 [57]. An
interesting recent claim was that ICA for fMRI has been suc-
cessful because the widely used algorithms Infomax and
FastICA—with kurtosis nonlinearity—select for super-
Gaussian sources, hence it is sparsity that determines the
final decomposition, and not independence [73]. A response
to the article [74] showed that the examples in [73] were
flawed and with the correct interpretation of underlying
models in ICA, it is indeed independence that achieves a use-
ful decomposition of the fMRI data. Still, it is worth noting
that Infomax has been the most widely used algorithm for
fMRI analysis, first, due to historical reasons—it was the first
algorithm used—and then because its simple fixed score
function is a good match for the fMRI sources and provides
robustness. However, as the examples we give in this article
demonstrate, maximizing independence by using an algo-
rithm with a flexible density matching mechanism can lead
to improved performance. In addition, the fact that there is
good support for the inherent linear superposition assump-
tion of the basic ICA model of (1) suggests that the spatial
maps can be regarded as hidden variables in the model, just
like audio sources in a cocktail-party problem. In these cases,
maximizing the independence though flexible density match-
ing, and making use of multiple types of diversity to
approach the performance bound is meaningful. In applica-
tions such as data fusion, however, the approach is mostly
exploratory in that the sources do not necessarily have phys-
ical meaning, they primarily help explain the data, relation-
ships among modalities. Then, in this case, using a robust
algorithm such as Infomax might be sufficient, as discussed
in detail in a review on data-driven fusion [75].

The formulation of IVA we present here provides an attrac-
tive framework for joint blind source separation with numer-
ous potential applications. These include those where MCCA
has been applied such as medical data analysis and fusion,
hyperspectral data analysis, blind equalization, and of course
the first motivation for the IVA formulation, solution of the
convolutive ICA problem. Among many others, multimodality
data fusion is an important application area for IVA as it would
extend the successful application of MCCA [76] to include
HOS without constraining the demixing matrix.

IVA also presents number of challenges and interesting
venues for future research. The well-defined structure of IVA
might allow a more flexible solution to the MICA—also
called subspace ICA—problem where components within
each independent subspace are allowed to have dependences.
Estimation of the density during adaptation—to truly
approach the CRLB and improve performance—is a more dif-
ficult task than for ICA. The multivariate nature of the pdf
makes the problem more challenging especially when the
goal is not only modeling flexible marginals but also taking
dependence among the components of an SCV into account.
Hence, if successfully extended to the multivariate case, a
flexible density model like EBM can achieve this desired
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balance, and potentially allow one to also account for sample
dependence in the model and estimate an SCM. This is not to
say there are not challenges for ICA either. The performance
of most ICA algorithms deteriorate when the number of
sources increases as well as the noise level. The noisy and the
undetermined cases still deserve much attention, and also
the problem of nonlinear ICA. Hence, even though the field
of blind source separation has now reached a maturity, there
are still a good number of important challenges and prob-
lems that require our attention.
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Joint Matrices
Decompositions and

Blind Source Separation

A survey of methods, identification, and applications

atrix decompositions such as the eigenvalue
decomposition (EVD) or the singular value
decomposition (SVD) have a long history in
signal processing. They have been

used in spectral analysis,

signal/noise subspace estimation, prin- ¥

cipal component analysis (PCA), °
dimensionality reduction, and ° o
whitening in independent / t
component analysis (ICA).
Very often, the matrix under
consideration is the covari-
ance matrix of some obser-
vation signals. However,
many other kinds of matrices
can be encountered in signal
processing problems, such as
time-lagged covariance matrices,
quadratic spatial time-frequency matrices

Source Separation and Applications
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extraction in radar, and ICA. Perhaps one of the first such algo-
rithms is the joint approximate diagonalization of eigenmatrices
(JADE) algorithm proposed in [8]. In this algorithm, the matri-
ces under consideration are Hermitian and the
considered joint diagonalizer is a unitary

matrix. More recently, generalizations

and/or new decompositions were

g found to be of considerable

| interest. They concern new
sets of matrices, a nonuni-
tary joint diagonalizer, and
i new decompositions.

INTRODUCTION
In the context of noncircular
complex-valued signals, com-
plex symmetric (non-Hermitian)
matrices provide information that
can be useful and even sufficient for blind
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[21], and matrices of higher-order statistics.
In concert with this diversity, the joint diagonalization

(JD) or approximate JD (AJD) of a set of matrices has been recently
recognized to be instrumental in signal processing, mainly
because of its importance in practical signal processing problems
such as source separation, blind beamforming, image denoising,
blind channel identification for multiple-input, multiple-output
(MIMO) telecommunication system, Doppler-shifted echo
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beamforming or source separation. One exam-
ple is the complementary covariance matrix, also called the
pseudocovariance matrix. With such complex symmetric matrices,
one ends up with jointly diagonalizing a set of matrices via either
the transpose congruence transform or Hermitian congruence
transform. For the special two-matrix case with one Hermitian and
one complex symmetric matrix, there are particularly fast JD algo-
rithms based on EVD and SVD.

This article provides a comprehensive survey of matrix joint
decomposition techniques in the context of source separation.
More precisely, we first intend to elaborate upon the signal
models leading to different useful sets of matrices and their
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joint decompositions. Second, we present recent identifiability
results and algorithms in distinguishing important classes.

SIGNAL MODEL, MATRICES, AND DECOMPOSITIONS

To motivate the JD problem from the perspective of blind source
separation (BSS), let us consider the classical linear memoryless
source mixing model with additive noise described by

x(¢) = As(f) +n(f), 1)

where x(#) € C" is the observation vector, s(f) € CV the source
(component) vector, n(f) € C* the

noise vector, and A € C'"V the

mixing matrix assumed full column

rank (we shall not address the under-

determined case of fewer rows than

columns until the section on direct

fit methods). Since we suppose that

we have more than one source, this

leads to M >N = 2. The index f

characterizes the variability of the

signals. It is very often the time index

but it can be the frequency index or the position index for an
image, or any physical variables describing the considered signals.
For convenience, it is considered in the sequel as the time index.

In BSS, the mixing matrix is assumed unknown and the
sources not observable. The problem is then the estimation of the
sources given only the observations.

When statistical (or other) information is available regarding
the noise, such information can be accounted for in the estima-
tion of the unknown mixing matrix, as well as in the estimation of
the sources (even when the mixing matrix is known). However, to
capture the essence of the problem and of its links to JD, we shall
ignore the noise in here and assume n (f) = 0.

Since the mixing model is not unique, it is well known that
estimation of the sources is possible only up to some indetermin-
acies about the sources’ scaling and ordering (see the section
“Identifiability Issues for the Symmetric Case”). Among other
things, this can be done by estimating a (left) pseudo-inverse (or
simply the inverse in the square case) of A denoted (generically)
by B. Basically there are two ways for that: the first one consists of
estimating A, followed by the calculation of its pseudo-inverse
whereas the second one consists of estimating B directly. Notice
that the estimation of A corresponds to the so-called blind identi-
fication problem in signal processing while the direct estimation
of B corresponds to the classical BSS.

The estimation of A or B can be formulated as a joint decom-
position of a set of well-chosen matrices, to which we shall refer as
target-matrices. Hence the first step is to choose target-matrices
admitting a specific decomposition with respect to (w.r.t.) the mat-
rix for which we are looking. The choice of useful matrices
depends on a source model.

Quite commonly, the target-matrices are constructed from sta-
tistics of the observation. It is common practice to assume that the
sources have zero mean, hence first-order statistics are of no

interest. Thus second-order statistics (SOS) is considered. For a
complex-valued random observation vector, one can define two
kinds of SOS matrices,

R.(4,7) =E{x(O)x" (¢t -71)}, R:¢t,7)=E{x@Ox"(f-1)},
where ()7 and () are the transpose operator and the transpose
conjugate operator, respectively, and E{-} denotes the expectation
operator. The first matrix R (¢, 7) is the classical correlation mat-
rix, whereas the second one Rx(Z,7) is the so-called complemen-
tary correlation matrix. The usefulness of the complementary

correlation matrix is directly related
to a noncircularity property of the
sources since for circular sources
this matrix would be null.

One can also consider higher-
order statistics (HOS) described by
cumulants. Since third-order statis-
tics are not so useful in practice
mainly because the probability den-
sity function (PDF) of the sources is
often close to symmetric, fourth-

order statistics are often considered. In a very general way, they
are defined as

Cuiia(t,{Th)=Cum {x:(8), x§ (¢ — T1), 2k (¢ —72), 21 (E = 73)},

where (*)1 and (*)2 denote optional complex conjugates and
{r} = {71, 72,73}. One way to construct matrices from cumulants
consists of considering a linear combination of the above cumu-
lants while keeping free the first two indices that will be used as row
and column indices for the constructed matrix. This is written as

M
(Cxt,fz))i= 2 GuCuia(t (7)),
Ki=1
where G = (Gr) is a fixed coefficients matrix. All of the above sta-
tistics generally depend on the time index . In such a case the
sources are called nonstationary. In the special case where the
dependence w.r.t. ¢ is periodic, the sources are called cyclosta-
tionary. When the statistics do not depend on £, the sources are
called stationary.

In the noiseless case, using (1), the matrices Rx(f,7) and
Cx(¢,{r}) with (*)1 = *, denoted generically as My, all admit the
factorization M, = AM;A”, whereas the matrices R« (¢,7) and
C.(t,{r}) with (*); = 1, denoted generically as My, all admit the
factorization Mx = AMsA”. With no further assumptions regard-
ing the sources, the matrices M and Ms do not possess any special
algebraical structures compared to M, and My, so these decompo-
sitions are noninformative. However, quite often some plausible
assumptions regarding certain properties of the sources imply a spe-
cial and “simplified” structure (diagonal or other) of M, and Ms.
This is directly linked to an identifiability property that has to be
considered to be able to separate the sources. Basically, for stochas-
tic sources, the classical identifiability assumption is their statistical
independence, leading to the ICA problem. For independent
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sources, the matrices M, and Ms are always diagonal [5], [8], [15],
[20], [29], giving rise to the concept of “JD” of the selected target-
matrices, as the result of representing each of these matrices as the
corresponding transformation of a respective diagonal matrix.

In practice, however, the set of “true” target-matrices (specific-
ally, the respective true SOS or HOS of the observations) is not
available. Only sample-estimates of these matrices may be availa-
ble, and these estimated matrices may no longer admit an exact
JD transformation. In such cases one must resort to AJD, in an
attempt to find a transformation being “as close as possible” to JD,
with various measures for the quality of the approximation.

Simplifying the notations, we can always consider a set of A
complex matrices My, to be decomposed as

My = ADsA* + 1 k=1,.. K, 2)
where ()* corresponds to either the transpose or the conjugate
transpose of the matrix argument and matrices Dx all share
some prescribed common structure. Depending on the signal
model, the matrices D« can be either all diagonal, all block diag-
onal, or all zero diagonal, as we shall explain in the sequel. The
residual matrices Ilx are perturbation matrices which are linked
to estimation errors and/or to modeling errors. This is referred to
as the symmelric case; see Figure 1. Note that another model
My = ADxA™" + I14 has been studied as well [24] but is less popu-
lar in applications. A more general formulation, which is some-
times found to be more useful, reads

M = A DrAR+ I, @)

where the matrices A, and A are a priori arbitrary; see, e.g.,
[12]. This is referred to as the nonsymmetric case since Ar is not
directly (or explicitly) linked to A..

The main problem consists of estimating A (or Az) or its left
inverse up to acceptable indeterminacies. In practice, these

X

o Jus e Tee 8

[FIG1] Anillustration of AJD of four 3 x 3 symmetric target-
matrices M1, M2, M3, M4 (N = 3, K = 4).

indeterminacies correspond to the estimation of all columns of A
up to a scaling factor and up to ordering. This is the concept of
essential uniqueness, which will be discussed in the section “Iden-
tifiability Issues for the Symmetric Case.”

In all of the following sections, we denote B = A", Bz = A},
and B, = A}, where ()" stands for the pseudo-inverse of the mat-
rix argument or directly the inverse in the square case.

IDENTIFIABILITY ISSUES FOR THE SYMMETRIC CASE

One fundamental question in the context of the BSS problem is:
“Under what conditions on the sources can the mixing process be
uniquely identified up to ordering and scaling?” This is evidently
a question of general identifiability conditions, which are inde-
pendent of a particular separation approach, and have been
derived, e.g., in [15], [30], and [41]. However, in the context of JD-
based BSS, the identifiability issue is closely related to the
uniqueness (up to the trivial ambiguities) of the JD solution,
which in turn relies on properties of the target-matrices. An
underlying assumption is that under asymptotic conditions the
estimated target-matrices can become arbitrarily close to the true
target-matrices, and therefore the uniqueness of the joint diago-
nalizer has to be explored w.r.t. the true target-matrices, in the
context of exact, rather than approximate JD. When the mixing
matrix is invertible, identifiability of the mixing matrix implies
the ability to separate the sources and is therefore often associ-
ated with separability. However, even when it is not invertible, the
mixing matrix may still be identifiable (even by AJD), but such
identifiability would not imply separability of the sources in such
cases. Additionally, in some scenarios that are beyond the scope of
this article, some sources may be separable from the mixture
based on their special key properties (e.g., sparsity) but still with-
out the need for identifiability of the full mixing matrix. In this
section, we only focus on the symmetric case with an invertible
mixing matrix.

Identifiability conditions for some specific scenarios have been
provided, e.g., for the unitary case [5] and for the nonorthogonal
real-valued case [2]. In this section, we summarize the necessary
and sufficient conditions for the joint diagonalizer to be unique up
to permutation and scaling for the noiseless, symmetric JD case
(2). While general identifiability conditions for the nonsymmetric
case (3) are still an open question, for particular nonsymmetric
algorithms [12], [13] a necessary and sufficient condition can be
provided (see the sections “Nonunitary Joint Diagnalization” and
“Nonunitary Joint Zero Diagonalization,” respectively, for the
diagonal and zero-diagonal cases).

In the noiseless case, and under the assumption of full column
rank of A, whenever M > N one can easily find N of the M
observed mixtures that would be linearly independent and ignore
the other observed mixtures without loss of information. There-
fore, without loss of generality, we consider the square (or “deter-
mined”) BSS problem, i.e., M =N. Given B,B' € C¥*¥ B is
said to be essentially equivalent to B’, and vice versa, if B is only
different from B’ by at most a row-wise ordering and scaling.
Moreover, we say that the solution of a JD problem is essentially
unique, if all solutions are essentially equivalent.
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HOMOGENEOUS MODELS AND THEIR

UNIQUENESS RESULTS

The uniqueness of JD under transpose congruence transform has
been considered for real matrices in [2]. Recently, the extension to
complex matrices has been studied in [3] and [25]. We first discuss
the case where all matrices are to be diagonalized with the same
transformation [i.e., f is exclusively either 7' or A in (2)] and
refer to this as the ~omogeneous case. For that, we require a
measure of collinearity for diagonal matrices, which is obtained by
means of the complex angle between the vectors formed by stack-
ing the entries at corresponding positions together. The relation in
(4) illustrates an example with (2 x 2) diagonal matrices. Let
Di:= diag(d,...,dw) € CV for k = 1,...,K. For a fixed diag-
onal position 7, we denote by d; := [d1;, ..., dxi]" € C* the vector
consisting of the 7th diagonal element of each matrix, respectively,

diu 0 ] [dm 0 din 0 . [dw,da, ..., dx] " =:dy
0 d12’ 0 dzz"”"‘ 0 dsz [d12,d22,...,dK2]T=:d2 ’
D1

D2 Dk (4)

Recall that the cosine of the complex angle between two nonzero
vectors v,w & C* computed as c(v,w):= (vw)/(|v|[w]),
where || v || denotes the Euclidean norm of a vector v. (If one of
the two vectors is zero, the cosine is defined to be one by conven-
tion.) The uniqueness result states that, for a given set of matri-
ces My, the joint diagonalizer B is essentially unique, if and
only if |¢(d;,d;) | # 1 for all pairs (7, j) with 7 #. In particular,
for K = 2, this condition allows to uniquely solve the JD prob-
lem simply via a generalized EVD approach, i.e., MiB = M2BA,
where A is diagonal [33].

A HYBRID MODEL AND ITS

UNIQUENESS RESULTS

The uniqueness results above state that, when there exists one
pair of collinear concatenated vectors (d;,d;), the solutions
under homogeneous transforms are not essentially unique.
However, it is known that signals with distinct second-order
circularity coefficients are uniquely identifiable via a nonhomo-
geneous JD of only one covariance matrix (using the conjugate
transpose operator (1)) and one pseudo-covariance matrix
(using the transpose operator (1)7). The corresponding method
is known as strong uncorrelating transform (SUT) [20].

Recent works in [47] and [39] generalize the SUT approach to
jointly diagonalize both Hermitian and complex symmetric matri-
ces. The following statement provides a necessary and sufficient
condition for the JD problem with a mixture of Hermitian congru-
ence and transpose congruence. For given matrices My: = AD;A”
with £=1,...,K and Mi:=AD/A” with /=1,...,L, the com-
mon joint diagonalizer B is essentially unique, if and only if there
exists no pair (7, j) with 7 #, such that the following two condi-
tions hold:

Dlc(d,dy)|=lc(dd)=1; 2)|di|ld;]=14d:]Idsl.

In other words, when there is at least one pair of collinear con-
catenated vectors (d;, d;), then the essential uniqueness implies
that the respective norms are not proportional.

In the simplest case, where only one Hermitian and one
complex symmetric matrix are considered, d;, d;, di, and d;,
are all scalars, so all pairs are trivially collinear. Then the previ-
ous result boils down to the following. Given two matrices
M:=ADA” and M:=ADA’ with D = diag(d,,...,dw) and
D= diag(c?l,...,fiM), the joint diagonalizer B is essentially
unique if and only if the condition | d:||d;|# |d:||d;| holds for
all pairs (7, j) with 7+#j. This result simply recovers the
uniqueness condition for SUT, where the matrix M is Hermitian
and positive definite. We refer to [25] for a study of a further
generalization of SUT, known as the pseudo-uncorrelating
transform (PUT) and to [52] for the separation performance of
the SUT for specific signal models.

The identifiability results yield a sufficient theoretical condi-
tion on the properties of the sources, such that the BSS prob-
lem is uniquely solvable, independent of any JD algorithms.
Meanwhile, depending on the properties of the sources, it allows
to determine a set of matrices, such that an exact JD solution
yields the correct demixing matrix. In the presence of noise,
AJD algorithms are used to find a matrix that minimizes some
diagonality measures.

MATRIX NORMALIZATION FOR

JOINT DIAGONALIZATION

For simplicity, let us only consider the symmetric case. A normal-
izing linear transformation B, can be applied to the observations
as Xn (f) = Bax(¢) or directly onto the set of target-matrices as

Mus = BoaMsBY and/or Mnk=B.MsB%, k=1,... K,

(here the subscript (-)n denotes “normalization”) in such a way
that the overall problem is normalized or simplified. The normaliz-
ing matrix B, is usually determined by selecting a particular Her-
mitian matrix denoted My, which would be exactly diagonalized
by this transformation, and may (or may not) coincide with one of
the target-matrices My,..., Mx. It is well known [23] that any
such matrix admits diagonalization as Mg = UAU”, where A isa
real-valued diagonal matrix of eigenvalues and U is a unitary mat-
rix of orthonormal eigenvectors in its columns, i.e.,
UU” = U”U =1 where I is the identity matrix. In the context of
BSS, and especially when My coincides with one of the target-
matrices, the matrix U can often serve as a reasonable initial guess
for the approximate joint diagonalizer of the entire set, or can at
least serve to “simplify” the matrix set by considering B, = U”.
Now, if the number of sources N is known (or well estimated),
then one can do a little more. If V eigenvalues of My are nonzero
and all the M — N others are zero, then we denote A the diago-
nal matrix corresponding to these N nonzero eigenvalues and Uy
the matrix of corresponding eigenvectors (spanning the so-called
signal subspace). Then we directly have Mo = Us A;UY. Now we
can consider B, = U, which corresponds to a projection of the
observations onto the signal subspace. Hence all new matrices
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Mus and/or Mk are of size N XN.
This is essentially a PCA operation,
which corresponds to a useful
dimension reduction when M > N.

Finally, we point out that My is
often positive semidefinite, that is
all nonzero components of A (spe-
cifically, the diagonal components
of As) are positive. This is usually
the case when My is selected as the
(zero lag) sample-covariance matrix of the observations. Then
we can set B, =VA; YUY, where V is any NxN unitary
matrix. This operation is known as whitening, and it can be
shown (as evident from the above definition using a nondeter-
mined unitary matrix V) that following such a whitening step,
any unitary diagonalizer of the normalized (“whitened”) set
M., ..., My x would maintain the whiteness of the transformed
My. Therefore, when a whitening stage is used, the diagonalizer
of the whitened set is usually constrained to be unitary, which
simplifies the search.

NONUNITARY JOINT DIAGONALIZATION
In this section, we address the nonunitary AJD problem as the
most important and common case. Following the alternating
columns, diagonal centers (ACDC) algorithm [50], many AJD
algorithms have been proposed over the last decade; see, e.g.,
[13], [21], [38], [43], and [49]. These papers only consider the
symmetric version with B, = B% = B. Since, however, an
extension to the nonsymmetric version is possible (straightfor-
ward for some of these algorithms), we present the problem in
the latter form. In the existing literature, we can distinguish
four groups of nonunitary AJD algorithms.
1) Minimizing the so-called indirect least-squares criterion,
which may be a possibly weighted square norm of off-diago-
nal elements of the transformed matrices B, MxBr. To use
this criterion the matrices B, and Bz must be properly
constrained so as to avoid the trivial zero solution and/or
degenerate solutions.
2) Minimizing the direct least-square criterion (which can
also be weighted), measuring the squared difference between
the matrices and their representations, specifically the
norms of the residual matrices I in (2) or (3).
3) A combination of these two criteria. Here, one seeks
matrices B, and Br that transform the given set of matri-
ces into a set of nearly diagonal matrices, which cannot be
diagonalized any further in the direct-fit sense, specifically
such that the best direct-fit diagonalizer of the transformed
set is the identity matrix.
4) Minimizers of an approximate log-likelihood criterion. So
far the log-likelihood criterion was derived only for the case
where the given matrices reflect second-order statistics of a
mixture of Gaussian vector processes.
In many applications, performance of the nonunitary AJD algo-
rithms can be significantly enhanced by appropriate weighting,
introduced in the optimization criterion. When a statistical model

for the sources is fully known, the
optimal weighting may be deduced in
advance (e.g., [51]). Usually, however,
the proper weights are not known in
advance but may be estimated from
the observed data, e.g., when a statis-
tical model for the sources is only
known up to some parameters, which
nonetheless can be estimated as a by-
product of the diagonalization pro-
cess (e.g., [42]), or when multiple snapshots of the data are
available for nonparametric estimation of the weights [53].

MINIMIZING THE INDIRECT-FIT CRITERION
Historically, the first, natural choice of an indirect-fit criterion is

K
Cn(B,Br)= D | Zdiag{B.M«Bx} [}, (5)
i1

where Zdiag{-} sets the diagonal entries of the matrix argu-
ment to zero. Since, however, trivial minimization by down-
scaling towards B, = Br = 0 is clearly not interesting, one has
to consider some constraint or barrier function to evade this.
The following options have been proposed in the literature,
together with appropriate minimization procedures, derived for
the symmetric case where B, = B and Bz = B”:

1) B is unitary. This choice has already been discussed in

the previous section.

2) The rows of B have unit norm. This constraint is weaker

than the former one and was used in [19].

3) BMB” must have an all-ones main diagonal [48], where

My may or may not be included among {Mx}. In the BSS

context, if My is the zero-lag covariance matrix of the obser-

vations, this constraint corresponds to the constraint on the

separated sources, that they should have equal (unit) power.

The proposed method of optimization uses iterative general-

ized matrix eigenvector computation.

4) B has a unit determinant. The optimization can be

attained through Givens and hyperbolic rotations [40].

5) In [28], a penalty term (proportional to log|detB) is

added to (5). The optimization proceeds by alternating

between optimization w.r.t. individual rows of matrix B.

6) Another suitable AJD criterion, which is scale-invariant in

B, was proposed in [1] and [2],

K
Cr(B)= Y |M;—B'Diag{BM:B"}B [} . (6)
k=1

The scale invariance means that the criterion is not affected by
changing scale of any rows of B. The optimization was achieved by
combination of triangular Jacobi matrices and Givens rotations.

MINIMIZING THE DIRECT-FIT CRITERION
The direct-fit criterion is a measure of difference between the
given matrices Mx and their assumed model in terms of the
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estimating the left and right mixing matrix A, and Az and
diagonal matrices Dx, £ =1,... K,

K
Ci3 (AL, Ar,{Di}) = 2 [ Ms— ALDiAglf;. (7)
=1

Minimization of this criterion is directly linked to tensor
decompositions, as we explain shortly. The noiseless part
A;DrAr of the target-matrices M together represents a third-
order tensor 7~ of dimensions M X M X K, with elements T,
i,j=1,...M and k=1,...,K such that its kth slice 7.
equals ALDrAg, i.e.,

M
7~ijk = Z (AL)ir(AR) 1 (Dk) e (8)
r=1
In the tensor terminology, 7 is a tensor of rank at most M,
because it can be written as a sum of M rank-1 tensors, each of
them being an outer product of three vectors, specifically the
rth column of A., rth row of Ag, and a vector composed of the
(r, r)th elements of D, £ =1,...,k. The decomposition of this
kind is called canonical polyadic or CANDECOMP-PARAFAC
(CP) decomposition [9], [22]. The special case when two or
more factor matrices coincide (in our case, the coinciding factor
matrices might be A; and A%) is called individual differences
in scaling (INDSCAL) [10] (see Figure 2 for an illustration).

The direct-fit criterion, or the CP decomposition, offers
more flexibility than the indirect fit: it allows for treating situa-
tions where the number of separated sources is not necessarily
equal to the dimension of the mixture. If the number of sources
is smaller than A, it is still possible to use an indirect-fit criter-
ion and identify the sources among spurious (noisy) ones. A less
trivial task is to separate underdetermined mixtures, where the
number of sources exceeds the number of mixtures. CP decom-
position allows such a separation [16], [45].

The area of CP tensor decompositions is a rapidly growing
field, and many techniques have been proposed. A traditional
and still the most popular technique is the alternating least
squares. Other methods include enhanced line search, damped
Gauss—Newton method (also called Levenberg—Marquardt),
and others; see, e.g., references in [36]. A link between the CP
decomposition and AJD (even in the underdetermined case,
rank greater than the dimension) was shown in [17], and more
recently was exploited in [37]. It was shown that CP decompo-
sition can be attained through approximate JD of certain sets
of matrices.

Beside the CP decomposition approach, a suboptimum direct-
fit optimization of (7) was proposed in [13] (called DIEM for “diag-
onalization using equivalent matrices”), offering a closed-form
(noniterative) solution. Moreover, DIEM can deal with the non-
symmetric case since the matrices A, and Ar are not constrained
or linked in the derivations. A necessary and sufficient condition
for the uniqueness of the DIEM solution is that the set of A
underlying diagonal matrices D1, ...,Dx spans the N-dimensional
subspace of diagonal matrices in CV*¥. New BSS applications
using nonsymmetric JD are discussed in the last section.

COMBINATION OF THE DIRECT

AND INDIRECT-FIT CRITERIA

Combining the indirect and direct fit of JD is conceptually simple
and computationally efficient. A generic algorithm of this type
works with a partially diagonalized set of matrices BYM;B,
k=1,...,K, iis the iteration index. Initially, one can start with
B =Bl = I. Each step consists of one iteration of a direct-fit
procedure, which may or may not use weighting. In the
unweighted (or uniformly weighted) version, we have

K

{A}, A} = argmin I|BY M BY — AL Dig Arls,  (9)
LAR 1

k=

where Dy = Diag{B'M;BY}. The direct-fit procedure can be
of Gauss—Newton type, for fast convergence in a neighborhood
of the true local minimum and is sought close to A, = Az =1.
Only one iteration of the Gauss—Newton procedure is applied in
each step because, at the initial point A, = Az = I, the Hessian
matrix has an attractive decoupled form that enables its inver-
sion through solving distinct sets of 2 X 2 linear equations.

Once an approximation of the best fitting mixing matrices
A" and A is found, the estimated demixing matrices are
updated as Bi*1 = A" 1B and BETM =BY (A%l)fl. This
algorithm was named WEDGE (for “weighted exhaustive diago-
nalization with Gauss iteration”), or U-WEDGE in its uniformly
weighted version, in [43].

MAXIMIZATION OF A LOG-LIKELIHOOD CRITERION

The last principle of AJD is a maximum likelihood (ML)
approach. It was developed by Pham [35] for JD of a set of sam-
ple covariance matrices taken from distinct signal-blocks, where
the statistical model assumes independent Gaussian distributed
sources with variances that are constant within each block but
varying between blocks. For real-valued signals and mixtures,
the ML method with B = B, = B} leads to the criterion

K H T
CB) = log det Diag{BM;B"} (10)

= det(BMsB")

which is scale-invariant in B and does not require any con-
straints. This criterion may also be used as a generic AJD criter-
ion (outside the ML framework), however it is meaningful only
for positive definite target-matrices {Mx}.

a10a10d1+3208.20d2 +a30a30d3

[FIG2] The AJD of the target-matrices of Figure 1 viewed as a
partially symmetric CP decomposition (INDSCAL).
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COMPUTATIONAL COMPLEXITY

The fastest nonorthogonal AJD algorithms such as U-WEDGE/
WEDGE [43], fast AJD (FAJD) [28], and Pham’s [35] have asymp-
totic computational complexity of O (KM?) operations per itera-
tion. This is the lower bound for any algorithm that should have
access to all elements of the target-matrices. Some other algo-
rithms have slightly higher complexity, O (KM?) operations per
iteration, such as quadratic AJD (QAJD) [48], Souloumiac’s [40]
or Afsari’s [1]. The number of iterations is varying. Among the
algorithms, U-WEDGE/WEDGE, Pham’s, Souloumiac’s, and Afsa-
ri’s algorithm exhibit a quadratic convergence, as inherited from
the approximate Gauss—Newton methods, and usually only need a
few dozens of iterations to converge; FAJD and QAJD are based on
alternating minimization, exhibit only linear convergence, and
usually require hundreds of iterations.

For fixed and moderate A and M, a very fast AJD algorithm
is the noniterative DIEM algorithm of Chabriel and Barrere [13]
that, however, only attains an approximate optimum of the
direct fit, and works with matrices of the size M? x M?, so that
its complexity is at least O (KM®).

All direct-fit algorithms have complexity of at least O (KM>)
per iteration because this is the complexity of one least-squares
solution step (fixing two factor matrices and minimizing w.r.t. the
third one). Indeed, more complex algorithms require a higher
number of operations per iteration. For example, the fastest avail-
able implementation of the Levenberg-Marquardt algorithm has
complexity O (KM® + M°®) operations per iteration.

APPROXIMATE JOINT BLOCK DIAGONALIZATION

In this subsection, we briefly mention the concept of approximate
joint block diagonalization that was first introduced in [54].
Indeed it might happen that for some given sets of target-matri-
ces it is not possible to find mixing or demixing matrices such
that the indirect or direct-fit error is satisfactorily small, but it is

possible to fit them well by a block diagonal model. The latter
model resembles (3), but the matrices D are block diagonal,
with diagonal blocks of appropriate size; see Figure 3(a). Such a
model is usually relevant in cases where not all sources are inde-
pendent, but several groups of sources exist, with intragroup
dependence but with intergroup independence. As in the ordinary
diagonalization task, the block diagonalization can be either uni-
tary or nonunitary. The first block-diagonalization algorithms
were unitary, [7]. Later, nonunitary algorithms were proposed as
well: direct-fit methods by Nion [31], indirect methods by
Tichavsky et al. [44], and ML methods by Lahat et al. [27].

NONUNITARY JOINT ZERO DIAGONALIZATION
In this section, we consider the case where, in (2) or (3), the
matrices Dy are zero diagonal for all & and where the searched
matrix is a priori nonunitary; see Figure 3(b). This problem is
termed approximate zero diagonalization (AZD). The matrices
Dy for all & are denoted Zi here for a direct interpretation. We
consider both the symmetric and the nonsymmetric cases when
all matrices are square N X N. This can always be considered in
using a first-dimension reduction operation.

In the symmetric case, the problem can be addressed by con-
sidering the indirect least squares criterion [21] C(B) =

f:IH Diag{BM;B”} |’ that has to be minimized. As initially
proposed in [21], the optimization of C(B) can be performed
row by row in searching iteratively for eigenvectors associated
to matrices built from the target-matrices. Even if the optimiza-
tion scheme is rather simple, it can lead to nonuseful solutions
(certainly corresponding to local minima). However since JD
algorithms are more robust, very interestingly, it can be shown
that the above problem can be cast as an ordinary nonunitary
JD problem [11]. This is possible when the set of A underlying
zero-diagonal matrices Z1, ...,Zx spans the N> — N dimensional
subspace of zero-diagonal matrices in C*V. In fact, this

g o o e 8

[FIG3] (a) The approximate joint block diagonalization of four 3 x 3 symmetric target-matrices M1, M2, M3, M4, with one 2 x 2 block
and one 1 x 1 “block.” (b) The approximate joint zero diagonalization of four 3 x 3 symmetric target-matrices M1, M2, M3, M.
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condition is also a sufficient for essential uniqueness of the joint
zero diagonalizer. Note that the number of target-matrices has
to be relatively large, K > N*> — N for this condition to hold.

In the nonsymmetric case, matrices Ag and A, are a priori
not linked. Following [11], a nonsymmetric algorithm [12] can
be derived in turning the problem into a nonsymmetric JD one
that can be solved using, e.g., the nonsymmetric version of
DIEM mentioned earlier.

EXAMPLES OF BSS APPLICATIONS

In this section, we mention examples of two applications of AJD-
based BSS techniques, one for symmetric AJD and the other
one for symmetric or nonsymmetric AJD. As an application of
joint zero diagonalization, we can mention the zero-division
multiple access wireless telecommunications system [12] where
all the signals to be sent use the same bandwidth.

BLIND AUDIO SOURCE SEPARATION

Since modern AJD algorithms allow the JD of sets of large
matrices with dimensions such as 100 x 100 or 500 x 500
within time of order fraction of seconds or few seconds, they
enable us to solve blind audio source separation (BASS), also
known as the “cocktail-party problem”; see Figure 4(a), in the
time domain [26].

Most of the existing BASS algorithms work in the frequency
domain by transforming the convolutive mixture model into an
instantaneous mixture model using the short-time Fourier
transform. The individual sources were separated in each fre-
quency bin independently. Since, however, the order of sources
obtained in each bin is arbitrary, it is necessary to resolve the
permutation ambiguity simultaneously in all the bins. Random
errors in the estimated order of the components in different bins,
which are inevitable in practice, lead to nonlinear distortion of
the estimated signals.

Time-domain BSS methods do not produce nonlinear distor-
tions in the data but estimate linear MIMO filters that separate the
sources. In short, the input signals measured by the microphones
are augmented by their time-shifted replicas to become a multidi-
mensional input of an BSS algorithm. The number of the time-
shifted replicas should be large enough to cover mutual time
delays of arrival of the individual source signals at the micro-
phones and their reflections. An insufficient number of the time
replicas would lead to poor performance of the whole system.

In principle, it is possible to use any ICA algorithm to trans-
form the input data set (microphone outputs with their time-
shifted replicas), in “pseudo-independent” components; the
“pseudo-independent” components are further grouped and used
to reconstruct the source images (contributions of all sources at
all microphones) [26]. A successful ICA algorithm in this applica-
tion was the block Gaussian separation algorithm, which consists
in applying a nonunitary AJD algorithm UWEDGE/WEDGE to the
set of covariance matrices of the input signals at nonoverlapping
time windows.

In [14], the cocktail-party problem is addressed differently,
using a compact array of microphones. It is shown that if the

———

Local Modes
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[FIG4] (a) An llustration of the cocktail-party problem with
three speakers and three microphones. (b) An analytical 15
degrees-of-freedom system. (Figure reprinted from [4], with
permission from Elsevier.)

distance between any pair of microphones is sufficiently small
(relatively to the coherence time of each source), a linear instant-
aneous mixing model, as the one in (1), holds, but w.r.t. an
extended mixture model, where the temporal derivatives of the
sources are added as “additional” (pseudo-independent) sources.

OPERATIONAL MODAL ANALYSIS

Operational modal analysis (OMA) is concerned with the ana-
lysis of a mechanical or electrical vibration system in terms of
individual vibration modes; see Figure 4(b). The analysis is
based on the system output, assuming white input noise. It was
shown in [4] that SOS-based BSS methods are able to separate a
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set of system responses into modal coordinates from which the
system poles can be extracted by single-degree-of-freedom tech-
niques. In addition, these methods return a mixing matrix
whose columns are the estimates of the system mode shapes.

The method is based on JD of the set of time-lagged covari-
ance matrices of the observations. The authors of [4] considered
the algorithm for multiple unknown signals extraction (AMUSE)
(based on generalized eigendecomposition of a pair of the covari-
ance matrices with lags 0 and 7 # 0) [46] and second-order
blind identification [5] algorithms in forming the AJD problem.
Next, they proposed their own nonsymmetric AJD algorithm,
which was shown to be more adequate for this problem.

CONCLUSIONS

We presented a survey of AJD methods and related joint matrix
decomposition methods that can be used in various BSS applica-
tions, together with conditions for uniqueness of the solutions. In
addition, we pointed out the option of weighted AJD methods,
which might yield optimized performance through proper selec-
tion of the weights. The selection of the most suitable AJD/AZD
method will always depend on the target application because cri-
teria of success might be quite different. Finally, we mentioned
joint nonsymmetric matrix decompositions that should lead to
new (promising) BSS or array processing applications.
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Tensors

A brief introduction

ensor decompositions are at the core of many blind

source separation (BSS) algorithms, either explicitly

or implicitly. In particular, the canonical polyadic

(CP) tensor decomposition plays a central role in the

identification of underdetermined mixtures. Despite
some similarities, CP and singular value decomposition (SVD) are
quite different. More generally, tensors and matrices enjoy differ-
ent properties, as pointed out in this brief introduction.

MOTIVATION
Originally, BSS exploited mutual statistical independence between
sources [20]. Among possible approaches based on the sole hypoth-
esis of source statistical independence, several use
cumulants. In fact, when random variables

are independent, their cumulant tensor

is diagonal [57]. When the source ®

mixture is linear, the decomposi-
tion of the data cumulant ten-
sor into a sum of outer
products yields the columns

of the mixing matrix. This

is the first instance of ten-

sor decomposition applied

to BSS, even if it is not
always explicit. In that case,
the tensor is actually symmetric.
In the presence of noise, the extrac-

tion of sources themselves needs another

Source Separation and Applications

IMAGE LICENSED BY

is lost. Yet, in some real-world applications, it is meaningful to
assume a multilinear model for this multiway array, which justi-
fies considering it as a tensor. The decomposition of the latter
into a sum of outer products yields not only the columns of the
mixture, but also an estimate of the sources. So contrary to the
first generation of BSS algorithms, there is no need to resort to
an extracting filter. In addition, no statistics are to be estimated,
so that the performance is expected to be better for short samples
or correlated sources.

Beside numerous books dedicated to applications in physics,
there already exist some surveys that can be used in the signal
processing field. To begin, some background is presented in [46],

i.e, basic engineering tools and a good panel of appli-
cations; a more signal processing-oriented

tensor overview may be found in [16].

A quite complete digest, more the-

ﬁ oretical and oriented toward

algebraic geometry, can be
found in [49]. This article
aims at motivating the sig-
nal processing community
to dive into the promising
world of tensors.

s

THE WORLD
OF TENSORS
Tensors were introduced at the end
of the 19th century with the develop-

INGRAM PUBLISHING

procedure, based for instance on a spatial
matched filter (SMF) [20].

BSS has then been addressed later in different manners. A
quite interesting class of approaches consists of exploiting an
additional diversity [74]. More precisely, measurements are usu-
ally made in two dimensions, generally space and time. But if
they are made as a function of three (or more) dimensions, e.g,,
frequency, polarization, and time repetition, the data are stored in
a multiway array. By treating this array as a matrix, information

Digital Object Identifier 10.1109/MSP.2014.2298533
Date of publication: 7 April 2014

ment of the differential calculus. They have
then been omnipresent in physics, to express laws independ-
ently of coordinate systems. Yet, a tensor is essentially a mapping
from a linear space to another, whose coordinates transform mul-
tilinearly under a change of bases, as subsequently detailed. For an
easier reading, we shall resort to arrays of coordinates, when this
indeed eases presentation; interested readers may want to refer to
[23] and [49] for a more advanced coordinate-free presentation.

LINEARITY
Linearity expresses the property of a map x defined on a vector
space S onto another vector space S’ built on the same field K
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that: u(ax + By) = au(x) + Bu(y), vx,y € S, a, f € K. (As far
as we are concerned, K will be either the field of real numbers R
or complex numbers C.) If S and S’ are of finite dimension, then
this map can be represented by a matrix of coordinates, once the
bases of S and S’ have been fixed. We see that every linear map
can be associated with a matrix, say A, so that x(x) = Ax. On the
other hand, every matrix does not uniquely define a map. In fact, a
matrix A could, e.g., define a bilinear form from S x 8" onto K,
i.e., f(x1,X2) = X1 Ax2. Hence, the correspondence between maps
and arrays of coordinates is not one to one.

BILINEARITY
Let’s start with a simple example.

EXAMPLE 1

Consider two multidimensional zero-mean random vari-
ables 21 and z;, and denote the cross-covariance matrix
by G = Ef{z1 z3}. We see that the covariance is linear with
respect to z; and 2, which is referred to as bilinearity.
Now suppose that z: and 2 represent two phenomena
that are measured in a given coordinate system. G gives
an indication of their correlation. If we change the coordi-
nate system, the covariance matrix changes. More pre-
cisely, if z> = Az, and 2> =Bz, then G’ =E{z12'} can
be written G’ = AGB'. We see that G’ # G, whereas the
phenomena remain the same. So we must distinguish
between the physical phenomena that are coordinate
free, and the arrays of measurements we made. And
because of bilinearity, we know how to go from one
matrix representation to another. We may say that the
covariance object is a tensor of order 2, and can be repre-
sented by a matrix in any given coordinate system.

What we just saw in Example 1 can be put in more formal
terms. Now assume a linear change of coordinates is made in
spaces S and S’ defined by matrices {A, B} so that the new
coordinates express as X1 = Ax; and x2 = Bx2. A tensor G rep-
resented in the original basis with an array G will be represented
(as in Example 1) in the new basis by the new array G' whose
coordinates are:

Gi= ZAiijquq

r.q

This can be compactly denoted by G' = (A, B) - G. Another nota-
tion, equally acceptable, is sometimes used: G’ =[G;A,B]. This
will now be extended to orders higher than 2.

MULTILINEARITY

Now assume Sy are D vector spaces, 1 <d < D, and suppose
is a map from S1 X% ... X Sp onto K. Map £ is said to be multi-
linear if f(xi,...,Xp) is linear with respect to every variable
x4, 1<d=<D. In other words, f(xi,...,aXqs+ BYq,...,Xp) =
af(xi,...,Xd, ..., Xp) + Bf(X1, ..., Y4, ..., Xp), Vd, Ve, B € K. This
map is actually a multilinear form. As in the previous section, map
f can be represented by an array of coordinates, once the bases of
Sy have been fixed, 1 <d < D, and this array needs D indices.

TENSORS

For the sake of simplicity, let us focus on D = 3, which is sufficient
to give us an idea. Because of multilinearity, special properties are
satisfied. For instance, f(axi, X2, X3) = f(X1, X2, aX3), so that the
two triplets of vectors (ax1, X2, X3) and (X1, X2, ax3) have the same
image. When dealing with multilinear forms, it is then relevant to
consider the equivalence classes defined by the relation
(x,y,2)~(x',y',z') if there exist a,8,y €K such that
(x',y,2') = (ax, By, vz), with oy =1. Each class may be
regarded as a decomposable tensor (decomposable tensors are also
called pure or simple). The space spanned by these classes is
denoted as S1® S» ® S3, where ® is called the fensor product.
An element of this space is called a fensor of order 3. (In physics, the
word rank is also sometimes used, but we shall avoid it because of
the possible confusion with the more standard meaning related to
rank of a linear operator.) In more mathematical words, one would
say that S1® S» ® Ss is the quotient space S1 X S2 X S3/~.

EXAMPLE 2

Let x1 € S1, X2 € S, and x3 € S3. Tensors 6X1 ® X2 ® X3
and x1®2x,®3x3; are the same, but in 81X S, %X S5,
vectors (6X1, X, X3) and (X1, 2X», 3x3) are different.

If a linear change of basis is made in space S1 (respectively,
Sy and 83), as X’ = Ax (resp. y' = By and z’ = Cz), then the
array 7' defining multilinear form 7 in the new coordinate
system expresses as a function of 7~. For so-called contravari-
ant tensors, the relationship is

Ti}k = ZAiijq Cir qur (1)

pqr

as in Example 1, or in compact form: 7" = (A, B, C) - 7. On the
other hand, there also exist covariant tensors for which the
inverses of the above matrices are instead involved (cf. Example 4),
and even mixed tensors that are partly covariant and partly con-
travariant [23], [71]. However, we shall concentrate only on
contravariant tensors in this article, which follow (1) under a
multilinear transformation. Note that (1) holds true for contra-
variant tensors even if the linear transforms (A, B, C) are not
invertible; they can even be rectangular matrices. This property
is crucial in BSS when mixtures are underdetermined [20], [83].

EXAMPLE 3

Consider three multidimensional random variables x, y,
and z. Then the third-order moment tensor M is repre-
sented by the third-order array Mijx = E{xiy;z«}. As in the
case of second-order moments, it is a contravariant tensor.
In fact, if X’ =Ax, y' =By, and 2' =Cz, then M’ =
(A, B, C)- M as in (1). It turns out that cumulants may also
be seen as tensors as pointed out in [57]. Because cross-
cumulants of independent random variables are null at any
order, they have been extensively used in BSS. For instance,
the cumulant tensor of order 2 is nothing else but the
covariance matrix, and accounts for the correlation at
order 2 only; it is not sufficient to account for statistical
independence unless variables are Gaussian.
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EXAMPLE 4

The derivatives of order D of a multivariate scalar func-
tion can be stored in a covariant tensor of order D. For
instance at order 2, if Aj=23’f/ax;dx;, x =Mx, and
Apq = 02 floxpdx,, then A= NTAN, with N=M""'. From
now on and for the sake of simplicity, we shall only con-
sider contravariant tensors in this article.

More generally, a tensor of order D is an element of
S1®...®8)p, and can be represented by a D-way array 7~
once bases of spaces Sg¢ have been fixed. Under multilinear
transforms, these arrays of coordinates change similarly to (1).

EXAMPLE 5

In physics, Hooke’s law relates the deformation (strain) of
a solid under the action of forces (stress). It states that
stress F is related to strain X by the elasticity tensor as:
F = Ce X, where e is a contraction operator (see the
section “Transformations” for a formal definition). Once
bases are fixed in the stress and strain spaces, this rela-
tionship can be written in terms of arrays of coordinates

Fj= Z Ciipg Xpq-
P.q

The elasticity tensor C is of order 4. Strain and stress are
tensors of order 2, which are represented by matrices.

As illustrated above, it should be kept in mind that an array of
coordinates alone does not suffice to define a tensor: spaces and
bases need to be defined. Since we are interested mainly in manip-
ulating arrays, and not so much in the map they may represent,
arrays will be subsequently associated with multilinear forms, i.e.,
maps from a product of spaces to their construction field K. Even
if most results can be stated without introducing arrays of coordi-
nates [49], bases are required in engineering applications because
calculations are made with arrays of numbers.

NOTATION

In the literature, indices of D-way arrays are sometimes put in
superscripts or in subscripts, depending on the covariant or
contravariant character of corresponding subspaces; this nota-
tion also allows the use the Einstein summation convention.
Because we consider essentially fully contravariant tensors in
this article, we do not need to make the distinction.

Throughout the article, arrays of numbers will be printed in
boldface. More precisely, one- and two-way arrays will be denoted
in bold lowercase and bold uppercase, respectively, like, e.g., v
and M. Arrays with more than two indices will be denoted by bold
calligraphic symbols, as A. Sets and spaces will be noted in script
font, like S, whereas tensors will be printed in calligraphic font,
as A. Entries of arrays v, M, and A will be noted v;, Mj, and
Ajj.x, without bold font because they are scalar numbers. In prac-
tice, a tensor A is often assimilated to its array representation A
[16], [21], [46], which is generally not very confusing. Neverthe-
less, we shall make the distinction in the sequel, to keep the pres-
entation as clear as possible.

TRANSFORMATIONS

The tensor product A ® B between two tensors A € S1® S»
and B e S3® Sy is a tensor of S1® S2 ® S3® Sy. The conse-
quence is that the orders add up under tensor product.

EXAMPLE 6

Let A be represented by a three-way array A = [Aix] and B
by a four-way array B = [Bmnp|; then tensor C=A® B is
represented by the seven-way array of components
Cijkemnp = Aijk Bimnp. With some abuse of notation, the tensor
product is often applied to arrays of coordinates, so that nota-
tion C = A ® B may be encountered.

If the tensor product increases the order, the contraction
decreases it by two. The contraction consists of a summation over
a pair of indices. This operation permits to define the mode-A
product between tensors, and can be denoted by e, where & indi-
cates which index should be summed.

EXAMPLE 7

If A and A  are tensors of order D and D’, the tensor
B=AeA is a tensor of order D+ D' —2 obtained by
summing over the kth index. For instance, if (D,D’, k) =
(3,3,2), this yields Bipq =, Aij Apq. For (D,D’', k)=
(2,2, 1), we would have the matrix product Ae1 A = A"A’.
However, when the product is between a matrix and a ten-
sor of higher order, it has been the usual practice to always
sum over the second matrix index. For instance, if M is a
matrix, A ¢3 M means that the sum is performed on the
third tensor index and the second matrix index.

It may be convenient to store D-way arrays in matrices. This
transformation is called matrix unfolding or flattening, and can be
performed in different manners, depending on the arbitrarily cho-
sen ordering [27], [46]. Here, the ordering of [46] has been
retained, but the choice of [27] would work equally well. In fact,
the exact definition is not so important, provided the inverse map
is defined consistently. We shall limit ourselves to matrices whose
number of rows equals one of the tensor dimensions; this is some-
times referred to as mode-n unfolding [46)]. Example 8 illustrates
how to relate a third-order tensor to its three flattening matrices.
But it is also possible to associate a D-way array, D > 3, to a mul-
tilinear operator of lower order; see, e.g., [9], [29], [64], and [69].

EXAMPLE 8
Let a 2x2x2 array of coordinates Aix. Its mode-n
unfoldings A™ are

A = A1 A |Anz A
Aa11 A1 |A12 A1

AD = A Aon Az Aoz
A1 Axni A2 A

AG = A Axni A Ao
Az Axnz2|Aia Ana|

Remark that the row number of matrix A™ corre-
sponds to the nth index of tensor A.
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The Kronecker product between two matrices A and B of
size I xJ and K XL, respectively, is the matrix AKX B of size
IK x JL defined blockwise by

A 11 B o A v B
AXB = o
AnB ... AyB
The Kronecker product is used to represent the tensor product
when bases are fixed and when tensors are represented by their
array of coordinates unfolded into matrices. It should be borne in
mind that the Kronecker product usually applies to matrices
(although an extended definition has recently been proposed in
[63]), whereas the tensor product is more general and coordinate

free. Hence they should not be confused.

SPECIAL TENSORS

A particularly important class of tensors is that of decomposable
tensors, which are tensor products of vectors. As previously stated in
the section “Tensors,” they are of the form D =u®v®...®w,
and span the whole tensor space. The corresponding array of coordi-
nates is Djjix = u;vj..wr. One can view these tensors as a discre-
tization of a multivariate function whose variables separate.

EXAMPLE 9

Take a function of two variables with separated vari-
ables: f(x,y) =u(x)v(y). Then its discretization takes
the form f(x; y;) = u(xi)v(y;), and these numbers can
be stored in a rank-1 matrix D = uv'.

A tensor is cubical if all its spaces of construction are identical,
with the same basis. (The term ~omogeneous is also used in phys-
ics.) A cubical tensor A is symmetric if its array of coordinates is
invariant under permutation of its indices: Asj.x = Aij.k, VO.

EXAMPLE 10
The tensor of moments and the tensor of derivatives,
defined in Examples 1, 3, and 4, are symmetric.

The simplest symmetric array is the diagonal one, defined by
Nix=0if G, Jj,.., k) #G,1,.,10).

DECOMPOSITIONS AND RANKS

TENSOR RANK
Any tensor 7~ can be decomposed (nonuniquely) into a linear
combination (with coefficients in ) of decomposable tensors

T = f AL D(r), (2)
r=1

D(r)=a,®b,®...®c,. If tensor spaces are endowed with
scalar products, one can impose decomposable tensors D(r) to
be built with unit norm vectors, which permits us to impose
A € R* if desired. The smallest value R for which (2) holds is
called the fensor rank. The definition of tensor rank can be
traced back to the beginning of the 20th century [38], but it has

been reintroduced in other disciplines under various names [7],
(12], [36], [39], [66], [82].

EXAMPLE 11
Let the arrays A and B of dimensions 2x2x2 be
defined by their mode-1 unfoldings

Tensor A=[1,01®[1,01®[1,1] has rank 1. Tensor B is
symmetric and has rank 3, as will be seen with 7% in
Example 18.

Note that, by definition, a tensor is decomposable if and only
if it has rank 1. If the order of a tensor 7~ is > 3, the rank may
depend on the field, in the sense that a real tensor of rank R
may have smaller rank if we allow the decomposition (2) to be
complex, as demonstrated in Example 12.

EXAMPLE 12
Take a real symmetric array Y of dimensions 2x 2 x 2,
defined by its mode-1 unfolding

2 0
0-2

0 -2

(1) _
W= 20

Then, we need three decomposable tensors in R:

1®3+[—1

®3 ®3

=1l

=4 .

0 1

but only two in C, setting J=+—1

1]@3 [ 1]@3
aF o
J =J

Hence its tensor rank in R is 3 whereas it is 2 in C.

Y=

Other examples may be found in [18], [46], and [48]. Exam-
ples 11 and 12 incidentally show that, unlike matrix rank, ten-
sor rank may exceed all dimensions.

TUCKER DECOMPOSITION
At this stage, it is interesting to make a connection with the matrix
SVD. Two important features characterize the SVD of a matrix M:

M=UXV", (3)

specifically 1) U and V have orthonormal columns, and 2) X is
diagonal. Consider the decomposition below of a three-way
array, introduced by Tucker in the 1960s [85]:

Tk = zzzAiijquerqr, (4)

p g r
which we shall compactly denote 7= (A,B,C)- G. It is clear
that if the number of free parameters in the right-hand side of (4)
is smaller than the number of equations, then there will generally
be no solution. This happens to be the case if A, B, and C are
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orthonormal and G is diagonal. In the quest for existence, we
have to choose: either G is diagonal, but we have to relax the
orthogonality constraint on factor matrices, which will be
allowed to have more columns than rows [this corresponds to
decomposition (2)], or we keep the orthonormality constraint,
but allow G to have nonzero extra-diagonal entries as elaborated
in the next section.

HOSVD AND MULTILINEAR RANKS

If we impose matrices {A, B, C} to have orthogonal and unit-
norm columns in the Tucker decomposition (4), then we can
make several observations. First, denote by R, the rank of T®,
the nth unfolding matrix of 7, 1 <n <D =3. Rank R, is
called mode-n rank of T, or n-rank in short. Then the number of
columns of A (respectively, B, C) does not need to exceed R:
(respectively, R2, R3), and the dimension of the core tensor may
be imposed to be R1 X R2 X Rs3. In addition R, cannot exceed the
tensor rank R defined in (2), nor the nth dimension. This prop-
erty is not a surprise, if we view decomposition (2) as a decomposi-
tion of the nth unfolding matrix into a sum of rank-1 matrices
where rows are imposed to have a special structure. The D-uple of
n-ranks is the multilinear rank of 7°. Another property is less
immediate to capture: the core array G can be imposed to be all-
orthogonal, which means that all tensor slices of order D — 1 are
orthogonal to each other in every mode; when D = 3 this means:

Z Gojk G ik = ZGiakGiﬁk = Z GiGip=0
I ik i

if o # B. See [27] and references therein for more details. It is
worth noticing the elementary fact that for tensors of order 2
(i.e., matrices), R1 = R2 = R, and all equal the matrix rank.

EXAMPLE 13
The multilinear rank of array 8 defined in Example 11
is (2, 2, 2), whereas that of A is (1, 1, 1).

CP DECOMPOSITION

On the contrary, if we keep a diagonal form for G, we end up
with the polyadic decomposition [38], also sometimes called
CANDECOMP or PARAFAC because of its rediscovery in the 1970s:

R
7_ijk = z AirBjerr/lr (5)

r=1

or, in compact form, 7= (A, B, C) - £, where L is diagonal. If
R is not loo large, this decomposition can be unique (cf. the
section “Exact Decompositions”) and deserves to be called
canonical polyadic (CP). Following a practice now adopted in
applied mathematics and engineering [5], [42], we shall subse-
quently use the acronym CP, which can also cleverly stand for
CANDECOMP/PARAFAC. After inspection, it may be seen that
(5) is nothing else but decomposition (2) in array coordinates.
In other words, the CP decomposition reveals the tensor rank.

SYMMETRIC RANK

As already pointed out in the section “Special Tensors,” a tensor
T is symmetric if its coordinate array 7~ is invariant by permuta-
tions of indices. If we impose tensors D (r) in (2) to be themselves
symmetric, then we might end up with a larger value of rank,
denoted R;, which is referred to as the symmetric rank of 7. 1t is
clear that Rs > R for any symmetric tensor 7, since any con-
straint on decomposable tensors may increase rank; we have
already observed this fact with the real constraint in Example 12.
It has been conjectured in [19] that rank and symmetric rank are
always equal, but this has not yet been proved in the general case.

NONNEGATIVE RANK

When an array is real nonnegative, one may want to impose
rank-1 terms in its CP decomposition to be themselves non-
negative. The minimal number of terms is then called the non-
negative rank and is generally strictly larger than the rank in R.
This is already the case for matrices (D = 2) as shown in Exam-
ple 14, due to Herbert E. Robbins. The same phenomenon is
observed for tensors, although theoretical results are still lacking.

EXAMPLE 14

The following matrix has rank 3 since vector [1,—1,—1,1]
belongs to its kernel. But it can be proved that its nonnega-
tive rank is four

1100
1010
M=10101]
0011
STRUCTURED RANKS

More generally, when matrix factors are imposed to have a special
structure, such as banded, van der Monde, Toepltiz, or Hankel, the
tensor rank may increase, just as in the nonnegative case. Struc-
ture can also have an impact on computational issues [49], [78].

BORDER RANK

A tensor has border rank R if it is the limit of tensors of rank R
and not the limit of tensors of smaller rank. Rank and border
rank always coincide for matrices, but not for tensors of order
larger than two, as shown in the next example.

EXAMPLE 15

Let u and v be fixed real or complex numbers, and ¢ a
small positive number. Then (1/e)[(u + ev)® —u?] = 3u?v +
O(g). Now if multiplication is not commutative, we have
three distinct terms on the right-hand side; this is what hap-
pens for the tensor product, so that Ve > 0:

Te = H(u+ev)® - u™]= T+ 0(e),
To=uQUAV+URVRU+VRURU

hold for any vectors u and v. If the latter are not collin-
ear, it can be proved that 75 is of rank R =3, but is the
limit of tensors 7=, which are all of rank 2. Hence the bor-
der rank of 70 is R = 2.
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E. Waring
(1736-1798)

A. Clebsch
(1833-1872)

J.J. Sylvester
(1814-1897)

[FIG1] Some contributors to the field of tensors.

The border rank has been defined and utilized by many
authors, especially in arithmetic complexity [7], [52], [72], [82].
This concept is crucial in tensor approximation problems, as
addressed in the section “Approximate Decompositions.”

RELATION WITH POLYNOMIALS
Homogeneous polynomials are bijectively related to tensors, which
allows to transpose existing results of algebraic geometry; see, e.g.,
[10], [15], [17], [19], [23], [49], [80], and references therein. In fact,
one can associate the following polynomial with any array 7
(X, V,...z) = _Zk Tik XiYj...2k.
i

Conversely, any homogeneous polynomial of degree D and par-
tial degree 1 in every variable can be associated with a (nonsym-
metric) tensor 7.

Through this bijection, a decomposable tensor of order D is
translated into a product of D linear forms, and the CP decompo-
sition can be translated into a linear combination of such terms:

R
PX,Y,...2) = 2 A (a/x) (by)...(c) 2). (6)

r=1
In the case of symmetric tensors, x =y = ... = z. More pre-

cisely, a symmetric tensor 7~ of order D can be identified with
the homogeneous polynomial of degree D:

p(x) = Z Tik XiXj... Xk
ij,.k
in the indeterminates xi,..., x,. It can be easily checked that
symmetric tensors of rank 1 are associated with a polynomial
of the form a(x)”, where a(x) = a'x is a linear form. In other
words, they are exactly the Dth powers of a homogeneous lin-
ear form. The CP decomposition of 7~ reduces in this case to

p(x) =D ai(x)” (7)
i=1
which has been classically called a Waring decomposition [40].
The minimum number of summands R; in a Waring decompo-
sition is the symmetric rank of 7, which we defined earlier.

EXAMPLE 16

The polynomials associated with tensors A and B of
Example 11 are, respectively, a(xi, X2, y1, 2,21, 22) =
x1y1(z1+2z2) and b(x1, x2) = 3xixz.

EXAMPLE 17
Take the polynomial of degree D = 3:

2X3 — 6x1X3 = (X1 + Jx2)> + (x1 — Jx2)>
3
=4(x1)> = (1 +x2)° — (X1 — x2) ,
where J=4/—1. It has complex symmetric rank equal to

two and real symmetric rank equal to three. This polynomial
is actually associated with tensor Y/ given in Example 12.

EXAMPLE 18

Example 15 can be written in terms of polynomials, and is
even easier to understand this way. Take u=[1,0] and
v =[0,1]. Then u®® and v®* are associated with polynomi-
als x3 and x3 respectively, whereas (u+ &v)®* is associ-
ated with (x1+&x2)3 which can be expanded as
X3 +3exix2+o(e). This shows that 7 is associated with
3x3x2+0(e). Hence 7 tends to 7o, because 7 is associ-
ated with 3x3x2. Moreover, the rank of 77 is three because
3x3x2 cannot be written as a sum of fewer than three cubes.

EXACT DECOMPOSITIONS

Now one can ask whether the CP decomposition defined in (2)
and (5) is unique or not. First of all, the D-way array associated
with a Dth order decomposable tensor 9 is not uniquely rep-
resented by an outer product of vectors: there remain D —1
scaling factors of unit modulus. So we are rather interested in
the uniqueness of coefficients A, € R* and tensors D(r),
which is more meaningful; this is sometimes called essential
uniqueness. In this section, we will see two ways of assessing
uniqueness: almost surely or deterministically.

EXPECTED RANK

A naive approach is to count the number of degrees of freedom on
both sides of (6), which is a rewriting of (2) in terms of polynomi-
als, and say that the number of equations should be at least as
large as the number of unknowns. To fix the ideas, take a tensor of
order D and dimensions n1 X ... X np. Itis clear that a necessary
condition for uniqueness of the CP decomposition is that

D
R((Zni)—D+1)SN, (8)
i=1
where N = Hi n:. We can proceed similarly for symmetric ten-
sors and count equations and unknowns in (7). This leads to
Rsn <N, 9)

where N; = <” * g - 1) corresponds to the number of free parame-
ters in a symmetric tensor. Equations (8) and (9) induce an upper
bound on rank, which is called the expected rank, and is defined as

0 N

< =

Rk [1—D+Zini 10

RSSR§=[NS . (11)
n

When the fraction above is not an integer, there will always
be an infinity of solutions, because of too many free parameters.
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When it is an integer, the number of unknowns is equal to the
number of equations, and we could expect that there is a finite
number of solutions. However, things are not so simple, as
pointed out by Clebsch in the 19th century (Figure 1). In fact,
there are exceptions [1], [3], [23], [58].

EXAMPLE 19

Consider fourth-order symmetric tensors of dimension three.
In that case, Ns/n = (2)/3 =5 is an integer. Our hope is not
realized since five forms are generally not sufficient in their
decomposition. This exception was first noticed by Clebsch
(Figure 1) from the polynomial framework: the “generic
rank” of ternary quartics is in fact six [33]. This means that
most homogeneous polynomials of degree four in three
variables in C can be written as a sum of six linear forms
raised to the fourth power, and not fewer with probability 1.

TYPICAL AND GENERIC RANKS

Generic (resp. typical) ranks are the ranks that we encounter with
probability one (resp. nonzero probability), when their entries are
drawn independently according to a continuous probability distri-
bution, hence their importance. Contrary to the matrix case, they
are not maximal; tables of rank values may be found in [24], as
well as simple codes to compute numerically the generic rank of a
large panel of tensors. (Codes can be downloaded from [94].)

A striking fact is that only one rank occurs with probability
one (the so-called generic rank) in C, whereas several typical
ranks may exist in R. The generic rank in C is always equal to
the smallest typical rank one would find in R. This problem
was first addressed by Sylvester (Figure 1) in the 19th century.
The case of real symmetric tensors of dimension two is now well
understood [13], [22], [67]. In fact, all the integers between
[(D+2)/(2)] and D have been shown to be typical ranks [8]. If
the tensor rank is smaller than a bound depending on the
generic rank [typically R° — 1 as defined in (10) and (11)], there
exist almost surely finitely many CP decompositions. See [23]
for a survey of recent results on almost sure uniqueness.

UNIQUENESS RESULTS BASED ON LINEAR ALGEBRA
Instead of associating tensors with polynomials and making use
of results borrowed from algebraic geometry, uniqueness condi-
tions can be obtained by considering particular factor matrices.
However, these conditions are generally only sufficient [41], and
often much more restrictive. The most well known is that pub-
lished by Kruskal [47] and extended later in [73] and [81]; alter-
nate proofs have been derived in [49] and [68]. It requires the
following definition: The Kruskal rank of a matrix is the largest
number k such that any subset of k¥ columns is full rank. By
construction, Kruskal’s rank cannot exceed matrix rank.

EXAMPLE 20
The matrix
1000
A=(0110
0101

has rank 3, but its Kruskal rank is k = 2.

The CP decomposition is unique if the sufficient condition holds:

2R+D—-1<

Mo

Kd, (12)
d

1

where ks denotes the Kruskal rank of the dth factor matrix in
the CP decomposition. Further recent deterministic results may
be found in [25], [31], and [32]. These results do not need alge-
braic geometry but advanced linear algebra (i.e., compound
matrices formed of minors). They are sometimes much more
powerful than Kruskal’s bound.

EXACT COMPUTATION

Due to the space restrictions in this article, various existing algo-
rithms will not be described. However, we provide below some
guidance to related literature, among many others. In [6], algo-
rithms to compute the symmetric rank of symmetric tensors of
small border rank are proposed. When the rank is small, the sym-
metric CP decomposition can be computed with the help of
Sylvester’s algorithm [10]; when it is not unique, one CP decompo-
sition can still be delivered. In [60], approaches based on special
eigenvector computations are proposed. Direct computation is pro-
posed in [4] for 2 X n X n arrays.

When one tensor dimension is large compared to its rank and
to other dimensions, it is possible to compute the CP decomposi-
tion via a joint congruent diagonalization of its matrix slices; this
has been first proposed in [50] for two matrix slices. In the pres-
ence of errors with more than two slices, such a diagonalization
becomes approximate [25] and needs more care (see the next sec-
tion). In a similar spirit, for low-rank tensors of order larger than
three, one can also decrease the order by working jointly on ten-
sor slices of lower orders [29], or by rearranging the original ten-
sor into another of lower order but larger dimensions [64].

APPROXIMATE DECOMPOSITIONS

In practice, measurements are always corrupted by some noise,
which almost always has a continuous probability distribution.
For this reason, the tensor rank is generic or typical, and the CP
decomposition is generally not unique. That’s why a best rank-r
approximation must be computed [21], [44]. General-purpose
optimization algorithms will generally suffice to solve the prob-
lem, e.g., [21], [46], [65], [77], and [84]; they are widely used
but their convergence toward a minimum is not guaranteed,
because the objective function may have only an infimum.

In fact, low-rank approximations are useful and even
unavoidable, but unfortunately ill posed in general [37], [75],
except for special cases of tensors under constraints, like non-
negativity [54]. Most algorithms presently utilized by engineer-
ing communities ignore this fact, which may raise serious
practical problems in a small fraction of cases.

Il posedness comes from the fact that the set of tensors of
rank at most R is not closed, as pointed out in section “Border
Rank.” Some remedies have been proposed in the literature to
face or circumvent this difficulty. In practice, this means that
another problem is solved, often by imposing constraints in the
CP decomposition.
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These include:
m Impose orthogonality between columns of factor matrices
[20]—in BSS, this takes the form of a spatial prewhitening.
m Impose orthogonality between decomposable tensors [45].
m Prevent divergence by bounding coefficients A, [54], [61].
m If the tensor is nonnegative, use a nonnegative CP [54].
®m Impose a minimal angle between columns of factor matri-
ces [55].
m Compute an exact CP of another tensor, which has under-
gone a multilinear compression via truncated HOSVD [11],
[21]. It may happen that the problem remains ill posed after
this type of compression, because reducing the mode-ranks
does not necessarily reduce tensor rank.
m Compute another decomposition where the core tensor is
block diagonal instead of diagonal [26], [79].
m Compute a joint approximate diagonalization (JAD) of
matrix slices, which may be viewed as another decomposition
where the core tensor is not diagonal [2], [14], [20], [30], [51],
[56], [62], [69], [86], [87], [89], as depicted in Figure 2. The
drawbacks of this family of approaches, which become more
and more popular, are threefold. First, rank must be smaller
than two dimensions; in [25], the latter constraint is neverthe-
less relaxed. Second, replacing the core tensor by its diagonal
yields an approximate CP decomposition whose optimality is
not known. Third, a closed subclass of invertible matrices
needs to be (arbitrarily) chosen, and indeed varies from one
algorithm to another.
® When one dimension is much larger than the others, the
optimality of this kind of approach can be significantly improved
by imposing a structure in the diagonalization process [25].
Some codes are freely available on the Internet. See, e.g., the
home pages of R. Bro, L. De Lathauwer, T. Kolda, A.H. Phan, and
P. Comon [90]-[94]. A good site to find applications and related
references is the Three-Mode Company’s maintained by P.
Kroonenberg [95].

THE CASE OF RANK-1 APPROXIMATE

The rank-1 approximation problem is of interest for at least two
reasons: first it is always well posed, and second it shows up in the
deflation approach of BSS [20]. In addition, it is much easier to
compute than a full CP decomposition [28], [43]. This problem
may be seen to be related to tensor eigenvalues [17], [35], [53],
[59], [88]. It has been proved recently that the best rank-1
approximation of a symmetric tensor is symmetric [34]; a shorter
proof can be found in [35], as well as uniqueness issues. So a
question deserves to be raised: can the exact or approximate CP
decompositions be computed by successive rank-1 approxima-
tions? It is already known that this does not generally work.

In fact, attention should be paid to the fact that subtracting
the best rank-1 approximate does not decrease tensor rank in
general [80], contrary to the matrix case. Simple examples may
be found in [18]; similar examples also exist for nonsymmetric
or nonnegative tensors. The consequence is that the rank-1
terms appearing in the best rank-% tensor approximation are
not the same for different values of &. Hence, it is not possible

(@) (b)

[FIG2] Because the optimization criteria are different in JAD and
CP decompositions, one does not attempt to zero the same
entries. This figure shows the location of the entries that are (a)
not minimized in the core tensor in the CP decomposition of a
third-order 4 x 4 x 4 tensor, and (b) during the execution of a
JAD algorithm. Note that JAD algorithms deliver two factor
matrices; the entries of third one remain in the core tensor.

to compute a full CP decomposition by solving successive best
rank-1 approximations, contrary to what has been claimed by
some authors. This procedure, called deflation, works in BSS
for other reasons. In fact, BSS does not only reduce to a low-
rank tensor approximation, but also includes a regression stage.
However, whether deflation works in special cases (such as
structured CP decompositions) is still an open question.

EXAMPLE 21
The tensor defined by its mode-1 unfolding

_|10]o
o= 2‘1

1 1
0 0

is of rank 2. Its best rank-1 approximate is [80]:
_|00|00
Y ‘[o 2 ‘0 o]'

One checks out that the difference

_[10]01
T’Y‘[oo 10

is of rank 3. In this example, deflation does not permit to
decrease tensor rank.

APPLICATIONS

Applications of tensor decompositions (essentially CP) include
arithmetic complexity, separation of variables, blind identification
of linear mixtures, BSS, data mining, spectroscopy, antenna array
processing, and phylogenetics, among others. Tucker and HOSVD
have other application fields in which uniqueness is not
requested, like data compression. Due to the space constraints of
this article, we shall now detail only one application of the CP
decomposition, particularly fluorescence spectroscopy [76], for
which very few theoretical results can apply, unfortunately. The
reader is invited to consult, e.g., [16], [20], and [46] for pointers
to other applications.

An optical excitation applied to a solution produces several
effects, including Rayleigh and Raman diffusions, and fluores-
cence. If the latter effect can be isolated, it may allow to accu-
rately measure the relative concentrations of fluorescent
solutes. In fact, at low concentrations and in the presence of R

SignalProcessing

IEEE SIGNAL PROCESSING MAGAZINE [51

MAY 2014

Previous Page |“Contents™|"Zoomin“|"Zoom out™|"Front"Cover-|"Search Issue“|"Next'Page \’oa;ags

THE WORLD'S NEWSSTAND®


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

Previous Page|“Contents™|"Zoomin~|~Zoom out | Front" Cover-|“Search Isstue“|"Next'Page IS

THE WORLD'S NEWSSTAND®.

SignalProcessing

fluorescent solutes, the Beer—Lambert law can be linearized and
takes the form

T, y,2) =T, vix)e@ ),
=1

where x, y, and z denote the fluorescence emission wavelength,
the excitation wavelength, and the sample number, respectively,
T~ is the fluorescence intensity measured as a function of the lat-
ter variables, y(x) denotes fluorescence emission spectrum of the
(th solute, &:(y) its absorbance spectrum (sometimes called exci-
tation spectrum), and c(2) its relative concentration. In practice,
only a finite number of samples are available, and measurements
are made on discrete values within a limited spectral range, so that
variables x, y, and z take a finite number of values. In other
words, we deal with a CP decomposition of a finite three-way array,
often of rather large dimensions (several hundreds). The particu-
larity of this CP decomposition is that 7~ is real nonnegative, as
well as all the terms involved in its CP decomposition. Hence, R is
the nonnegative rank of 7~. The good news is that 1) the best low-
rank approximate always exists [54], and that 2) there are simple
efficient numerical algorithms available for its computation [70].
The bad news is that known uniqueness results, which we have
reviewed in this article, are not appropriate for nonnegative CP
decompositions. For instance, if nonnegative rank is plugged in
place of rank in (12), the obtained sufficient condition is more
restrictive, and does not even guarantee that factor matrices are
nonnegative. This is the subject of ongoing research.
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Nonnegative Matrix

and Tensor Factorizations

An algorithmic perspective

common thread in various approaches for model
reduction, clustering, feature extraction, classifica-
tion, and blind source separation (BSS) is to
represent the original data by a lower-dimensional
approximation obtained via matrix or tensor
(multiway array) factorizations or decompositions. The notion of
matrix/tensor factorizations arises in a wide range of important
applications and each matrix/tensor factorization makes different
assumptions regarding component (factor) matrices
and their underlying structures. So choosing
the appropriate one is critical in each 2,
application domain. Approximate .
low-rank matrix and tensor fac- / °
torizations play fundamental
roles in enhancing the data
and extracting latent (hid-
den) components.
In the nonnegative mat-
rix and tensor factorization
approaches, high-dimen-
sional data such as non-
negative time series or images
are factorized to find meaningful
latent nonnegative components [1]. The

O
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Source Separation and Applications

IMAGE LICENSED BY

than 15 years, but it has gained popularity through the works of
Lee and Seung published in Nafure [2]. Based on the argument
that the nonnegative components are important in human brain
visual perception, they proposed simple multiplicative update algo-
rithms for finding meaningful parts-based localized additive repre-
sentations of face images (such as the eyebrows, mouth, and nose).
After that, NMF received extensive study and the idea has been
extended to multiway models (i.e., multilinear models that perform
tensor decompositions) including nonnegative Tucker
decompositions (NTDs) and nonnegative poly-

adic decompositions (NPDs) [1].
In signal processing and data

@a . analysis, nonnegative matrix and

‘ tensor factorizations are
® O important and pervasive top-
ics due to their unique
properties and numerous
applications [1]. As the the-

ory and new applications of
nonnegative matrix and ten-
sor factorizations are still
under development and are sub-
ject of extensive research (including
uniqueness, performance, and estimation

INGRAM PUBLISHING

motivation behind them is that besides the
dimensionality reduction sought in many applications, the
underlying data ensemble is nonnegative and can be better mod-
eled and interpreted by means of nonnegative and, preferably,
sparse or smooth components to achieve a unique additive parts-
based representation (nonsubtractive combinations of non-
negative basis) [2].

Nonnegative matrix factorization (NMF) has been investigated
by many researchers, especially Paatero and Tapper [3], for more

Digital Object Identifier 10.1109/MSP.2014.2298891
Date of publication: 7 April 2014

of nonnegative rank), our aim is to present algo-
rithmic and computational frameworks for the analysis and
development of reliable, efficient, and robust algorithms for NMF/
NPD/NTD for sparse representation of signals, particularly, based
on low-rank approximations of high-dimensional data. These top-
ics are key factors for development of many emerging real-life
applications, e.g., three-dimensional (3-D) video tensor displays
[4], text mining, and classification and clustering [1], [5], [6].

GEOMETRIC INTERPRETATION AND UNIQUENESS OF NMF
In NMF, a given nonnegative matrix Y € R¥*" is modeled as
Y =AB”+E, where A € RY*F and B € RY** are called the
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A ar,am, [Alm A MATRIX, THE rth COLUMN, mth ROW, AND THE (m, r)th ENTRY OF MATRIX A, RESPECTIVELY.
1,1,0 THE IDENTITY MATRIX, THE MATRIX WITH ALL OF ITS ELEMENTS BEING ONE, ZERO.

In THE INDEX SET OF NONZERO INTEGERS NO LARGER THANN, LE., Ty ={1,2,...,N}. SIMILARLY FOR T&,.
RR1 xR xRy SET OF R1-BY-R:... BY-Ry NONNEGATIVE TENSORS OR MATRICES.

A>0 NONNEGATIVITY OF A, ILE.,.[A]; > 0.

Pi(A) [A]j = max([Aly,0), Vi,j.

Y, Yo A TENSOR, THE MODE-n MATRICIZATION OF TENSOR Y.

®, 0 ELEMENT-WISE (HADAMARD) PRODUCT, DIVISION OF MATRICES OR TENSORS.

®,0 KRONECKER PRODUCT AND KHATRI-RAO PRODUCT (COLUMN-WISE KRONECKER PRODUCT) OF MATRICES
ZA, SA NUMBER OF ZEROS IN' A € RM*N THE SPARSITY DEFINED AS sa = (Za/(MN)) € [0, 1].

A~U(0,1) ELEMENTS OF A ARE DRAWN FROM INDEPENDENT UNIFORM DISTRIBUTIONS BETWEEN ZERO AND ONE.

basis matrix and the encoding matrix, respectively, and E € R**¥

denotes the noise (See Table 1 for the notations we adopted in this
article). The minimum value of R leading to E = 0 is called the
nonnegative-rank of Y. Apparently nonnegative-rank is always no
less than the rank of Y. We assume that R < M < N, as we often
can use only a small number of nonnegative components to
approximate the original high-dimensional data.

Unfortunately, NMF does not always give correct decompo-
sition into parts [7], which gives
rise to the issue of uniqueness. We
say that the NMF is (essentially)
unique if the factor matrices A
and B are estimated only up to
arbitrary positive scaling and per-
mutation ambiguities of their col-
umns. Uniqueness of NMF is the
foundation for NMF to be used as
a BSS tool. The first sufficient
uniqueness conditions were given by Donoho and Stodden [7]
in the context of separable NMF, and later a stronger version
was given by Laurbert et al. based on sufficient spread and
boundary closeness of factors [8]. New uniqueness results
were derived by Gillis and Huang et al. very recently, together
with comprehensive reviews and new insights into the unique-
ness of NMF (see [9], [10], and references therein). Here we
omit the mathematical details but illustrate intuitively when
NMF is likely to be unique via a geometric interpretation of
NMF. Considering the NMF of Y = AB” with the given non-
negative-rank R, each column of Y can be expressed as
Vn =Zf:larbm where b, =0, which means that all the
points y, are enclosed by the conic hull cone(A) defined by
{a )R, (see Figure 1 for M =R =3), and these points are
either located on the boundary of cone(A), or inside cone(A).
From the figure, we can observe [11], [5].

SPARSITY

The sparsity of B are reflected by the points on the boundary of
cone(A) [11]. In Figure 1, the points marked by blue dots are
located on the lines collinear with the basis vectors a, (i.e.,
extreme rays), which means y, = a,b,», and the corresponding

coefficients b,. are 1-sparse (we call a vector k-sparse if it just
contains & nonzero elements). The points marked by green “0”
are located on the hyperplanes spanned by any two basis vectors
and the corresponding b,. are 2-sparse. The red asterisks are

located inside cone(A) and the corresponding b,. > 0 are dense.

UNIQUENESS

It is obvious that the NMF is not unique if there exists another
conical hull cone(A) such that
cone(A) c cone (A) C cone (I). If
A is chosen as the basis matrix
with Y =AB”, B will be nonnega-
tive but less sparse than B as all the
points are enclosed by cone(A) and
consequently are inside cone(A).
Conversely, suppose that we have
an NMF such that Y=AB” with
dense factor B > 0. We can keep

shrinking cone(A) until some points reside on its boundary

while the others are inside it, thereby leading to a sparser NMF.

Extreme Ray — _,_/—»-as'; Cope( )*\,t

.| * One Sparse
i o Two Sparse |
.|« Dense

Dimension Il
-

Dimension Il 0.5
0 Dimension |

[FIG1] A geometric interpretation of NMF Y = AB” with

M = R = 3 in the data space. The columns of A form a conic
hull cone(A). The sparse points on the boundary (marked by ‘¢’
and ‘0’) of cone(A) govern the sparsity and uniqueness of NMF.
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In general the NMF is nonunique. However, intuitively, the NMF
with sufficiently sparse nonnegative components of B, associated
with the “smallest” conic hull cone(A) enclosing all points yy, is
likely to be unique, and under which NMF can be used as a BSS
tool. Particularly, if there exist
1-sparse points on each extreme ray,
we call it separable NMF, which
restricts the columns of A to be par-
tial columns of Y and will be dis-
cussed later.

In summary, sparsity not only
directly reflects the learning-parts
ability of NMF, but also plays a key
role in the essential uniqueness analysis of NMF.

NMF ALGORITHMS BASED ON NONNEGATIVE
ALTERNATING LEAST SQUARES

NMF is implemented by minimizing a cost (loss) function
D(YH AB') that measures the discrepancy or distance between
the factorization AB” and the data matrix Y. In this article, the
Euclidean distance is used because it is the most widely applied in
practice. Then NMF can be performed by minimizing the cost
function Dywr = (1/2)| Y — AB” [}, where A and B are con-
strained to be nonnegative. As Dnwr is not convex, alternating the
minimization of Dnwr with respect to either A or B while fixing
the other one has been widely adopted, which is referred to as
alternating nonnegative least squares (ANLS) [12]. For example,
when B is fixed, the optimal A is estimated by solving the follow-
ing nonnegative least squares (NLS):

2
g

min Ds = o[ Y= AB"[[, st A=0. 1)

For simplicity, we focus on the update rule of nonnegative mat-
rix A with fixed B by solving (1), but keep in mind that by con-
sidering Dxwr = (1/2)]| Y — BA” |3, the roles of A and B are
exchanged and the update rule of B can be obtained similarly.
Theoretically, second-order methods that exploit both the Hes-
sian matrix and the gradient give more accurate solutions and
enjoy a higher rate of convergence than first-order methods. How-
ever, the Hessian matrix is huge for large-scale problems. More-
over, the algorithms that need to search step-size involve frequent
evaluation of the cost function, which is computationally expen-
sive. Hence we only consider low-complexity algorithms that are
free of searching step-size and essentially use the first-order infor-
mation only, i.e., the gradient (dDn.s/0A) =—YB + AB”B.

MULTIPLICATIVE UPDATE ALGORITHM

In the multiplicative update (MU) method [2], the matrix A is
updated by using A — A — 174 ® (dDx1s/0A) with a smart choice
of step-size (learning rate) na = A @ (AB”B), which leads to the
MU rule [2], [13]:

A -A®P.(YB)@ (AB"B). 2)

As such, A remains nonnegative and Dyis is nonincreasing dur-
ing iterations (here P is used to accommodate the case where

Y occasionally contains some negative entries caused by noise
[13]). The MU method converges relatively slowly but it is simple
and easy to implement. Hence, based on it many extended ver-
sions were proposed [1], [13], [14].

ACTIVE-SET METHODS
Kim and Park proposed the efficient
block principal pivoting (BPP) method
based on the active set method [15],
which needs to solve the linear inverse
problem (dDxis/0A)=0 defined
over the active set of variables. Differ-
ent from the standard active set
method, this method exchanges multiple variables between working
sets per iteration and effectively exploits the multiple columns fea-
ture of variable matrices to achieve high efficiency.

ACCELERATED PROXIMAL GRADIENT METHOD

Taking into account that Dnis is convex and its gradient is Lip-
schitz continuous, Guan et al. developed the NMF algorithm based
on Nesterov’s optimal gradient method (NeNMF) [16], i.e., the
accelerated proximal gradient (APG) method to solve (1). In the
AGP approach, the step-size is selected as the reciprocal of the Lip-
schitz constant and hence is free of line search [16].

HIERARCHICAL ALTERNATING

LEAST SQUARES ALGORITHM

In each iteration, the hierarchical alternating least squares
(HALS) [1] algorithm updates only one column of A (or B),
which leads to the following set of optimization problems:

2
fod

Y, —a,b!

1;1’1211(‘)1 %‘ re Ip, 3)
where Y, =Y — Zi . a;b!. Equation (3) is strictly convex when
b7 # 0 and it leads to

ar P (a, + ﬁ(m - ABTb,)), rele. ()

The NMF algorithms based on the above NLS solvers belong
to block coordinate descent methods. This type of method con-
verges if the optimal solution of each subproblem is unique
[17]. Note that once the subproblem (1) is strictly convex, its
optimal solution will be unique. Hence, these NMF algorithms
have the guarantee of local convergence if we can maintain the
full column rank of factors during the iterations. In the case
where the NMF is not unique, existing NMF algorithms are
often blamed for their lack of global convergence. Nevertheless,
this drawback does not prevent NMF from performing success-
fully in many practical applications.

To increase the sparsity of results and/or enforce the unique-
ness, we often add penalty or regularization terms to the cost
function Dnwr, typically /1-norm penalty, which leads to
Dis = (1/2)Y = AB” [+ A|| A ||, with 2 > 0 in (1). As A>0,
we have ||A||; = trace (17A) and (dNn.s/0A) =—YB +AB”B +
A1, which allows to apply the aforementioned NLS solvers
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straightforwardly. Another popular regularized model is
Dais = (12)|Y = AB” [+ (A2)| A2, 2> 0. In this case,
Dis is strictly convex and equivalent to applying the Tikhonov
regularization. This model generally results in a denser factor A
and consequently a sparser factor B in the ANLS-based NMF. In
these methods, how to select the parameter A is crucial to
achieve satisfactory results, and readers are referred to [18] and
references therein for an in-depth analysis.

All the NLS solvers we introduced above involve the computa-
tion of YB and AB”B [i.e., the terms of the gradient (9Nx1s/94)]
explicitly or implicitly in each iteration. The time complexity of
computing YB is as high as O(MNR). One key factor to achieve
fast NMF is to compute YB and YA (used for minimizing
Duis = (1/2)| Y" — BAT | with respect to B) efficiently.

NMF FOR LARGE-SCALE PROBLEMS

NMF BASED ON LOW-RANK APPROXIMATION
In this approach, we consider a two-stage procedure to perform
NMF [13] (see Figure 2):
1) Obtain the low-rank approximation (LRA) of Y such that
Y ~ AB’, where A € R and B € R¥*. This can be done
by solving the unconstrained optimization problem
min||Y — AB” |, where | - |, denotes a suitable matrix norm.
2) Solve mina=o5=0(1/2)| AB” — AB” [} with fixed A and
B, i.e., perform NMF on AB”.
The purposes of LRA in Step 1 are twofold. First, it signifi-
cantly reduces the subsequent computational complexity of ANLS.
After Y is replaced by AB’, the gradient (dDis/0A) becomes

s —_A(BB) +A(BB), (5)
which can be computed in the complexity of O (NR?) and theor-
etically is about M/R times faster than the original version, pro-
vided that R <K M < N [13].

The second important purpose of applying LRA is to reduce the
noise in data matrix Y, which is realized often by choosing a
proper matrix norm | - ||, in Step 1 according to the distribution
of noise. Popular LRA techniques include principal component
analysis (PCA) and robust PCA (RPCA) [19] (see, e.g., [13] and ref-
erences therein). Moreover, if Y contains missing values, one may
use matrix completion techniques to complete it by exploiting its
intrinsic low-rank structure [19]. Then NMF is applied to the low-
rank representation of data. Of course, this two-stage procedure
may not give the optimal solution. However, it is easy to

Raw Data

Without Nonnegativity

¢ High-Dimensional,
Noisy Data and Space Complexity

o Filter Out Noise

Low-Rank Approximation

¢ Reduce Subsequent Time

implement and provides an immediate and ad hoc suboptimal
solution. Inevitably, the quality of LRA will affect the resulting
accuracy of NMF. If the LRA is exact, there is no difference
between the direct methods and the two-stage methods. However,
if the error caused by LRA is significant, the final accuracy can be
poor. In [13], the error bounds of LRA-based NMF has been theor-
etically investigated for ¢ = 2. By exploiting the equivalence of
matrix norms, similar results may be obtained easily for other g.
Anyway, the LRA procedure should be performed very carefully in
practice.

SEPARABLE NMF

The core idea of separable NMF is simple: it assumes that all col-
umns of Y reside in a cone generated by R columns of Y (i.e.,
there exists at least one 1-sparse point on each extreme ray in
Figure 1). Although separable NMF has been widely studied in the
context of hyperspectral unmixing [20], [21], only since very
recently has separable NMF shown great potential in handling
very large-scale data by using linear programs [5], [22], [23]. Sep-
arable NMF has many attractive properties: 1) ordinary exact
NMF is NP-hard, whereas separable NMF can be solved in polyno-
mial time [22], [23], and can be parallelized and tailored for very
large-scale problems; and 2) separable NMF is always essentially
unique. Although separability is a strong assumption, unlikely to
be satisfied exactly in many practical applications, however, in
this case the large-scale data matrix often can be well approxi-
mated by separable NMF [22]. So far, separable NMF has been
successfully applied to discover topics, find representative objects
ina large-scale database, and improve clustering analysis [5],
[22], [23]. In BSS, separable NMF corresponds to the pure-source
dominance condition, which means that for some sample
instants only one source is active or strongly dominant, i.e.,
assuming source sparsity. Under such an assumption, the non-
negative sources can be efficiently separated by using (near) sepa-
rable NMF, no matter whether they are statistically independent
or not. Note that separable NMF also has a close relation with
convex NMF [24] and convex hull NMF [6], where Y is approxi-
mated as Y ~ YAB” under nonnegativity constraints on factors.
When A is restricted to be R columns of a permutation matrix,
convex NMF boils down to separable NMF.

NONNEGATIVE COMMON FEATURE

EXTRACTION OF MULTIBLOCK DATA

Very often the data we encounter is a collection of matrices
rather than a single matrix, e.g., the electrophysiological signals

Nonnegative Matrix/Tensor
Factorization

¢ Sparse and Parts-Based
Representation

[FIG2] A diagram of the nonnegative matrix/tensor factorizations based on the LRA of high-dimensional noisy data.
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B B individual Basis

[FIG3] An illustration of nonnegative common and individual
feature extraction. Each data matrix is represented as

= [A As]B;, where B, = [B,Bal, A denotes the common
components shared by all the matrices and A, are their
individual components.

. Common Basis

recorded from different subjects and trials responding to spe-
cific stimuli. These multiblock data often share some common
features and, at the same time, they have their own individual
features, due to the background in which they are measured
and collected. It is therefore meaningful to analyze such data
blocks in a linked way rather than separately [25], [26]. By
assuming that the multiblock data are spanned by a set of com-
mon components, group independent component analysis (ICA)
and independent vector analysis have been proposed and achieved
great success in multiblock functional magnetic resonance
imaging data analysis [27], [28]. Besides sharing common com-
ponents, however, we think the multiblock data also contain their
individual components. To model such phenomena, given a set of
nonnegative matrices Y = {Y, € RY’", n € In}, we consider a
linked NMF model such that (see Figure 3)

Y, ~ AB} + A.Bl, ne Iy, (6)

where A € RY*C denotes the common components shared by
all data, while A, € RY*®~9 denotes the individual compo-
nents contained by the data Y, only, R, is the positive-rank of
Y., 0 <C <R, is the number of common components, and
the nonnegative matrices By, B, are the coefficients. Nonnega-
tivity constraints and permission of existence of both common
and individual components distinguish model (6) from existing
group ICA methods [27], [28].

To solve (6), a straightforward approach is to minimize
2 en(122) 1Y, — ABY — A.BI|} with respect to A, By, An, B
by applying the ANLS memthod, which is similar to the joint
and individual variation explained (JIVE) method [26] but with
nonnegativity constraints. However, due to local convergence
this approach may fail to extract the common components,
especially when the common components are relatively weak.

Another way is to use a two-stage procedure. In the first step,
the common and individual subspaces are separated such that
Y, ~ UR% + U,R%, where U and U, are bases of the common
and individual subspaces, respectively, and R,, R, are the cor-
responding coefficients. This step can be done by using the JIVE
[26] or common orthogonal basis extraction (COBE) methods
[29], where U”U, =0 is imposed to achieve a perfect separ-
ation of the common and individual subspaces, and this restric-
tion itself will not introduce any additional factorization error
[29]. In Step 2, the nonnegative common and individual compo-
nents are extracted from the respective subspaces. To extract
nonnegative common components, we need to solve the follow-
ing minimization problem:

~min_ >'||UR} - ABZ (7)

A=0,B,=0 7
by applying the ANLS framework for NMF. If we define
R=[RT R} ... RE/"and B=[BY BS ... BL], (7)is equiv-
alent to NMF of UR” by applying the LRA and matrix partition
techniques, where the latter is a quite useful technique when the
matrices are too big to fit into a computer physical memory. Due to
the restriction U"U, = 0, we have A% A, ~ 0, which enforces
perfect separation of the nonnegative common and individual com-
ponents, but could lead to larger fitting error (on the contrary, the
first approach achieves better fitting while permitting some interac-
tions between the nonnegative common and individual compo-
nents). Note also that this approach can be viewed as a relaxed
version of orthogonal NMF that requires that the nonnegative mat-
rix A, =[A A,] to be orthogonal [30], if we treat each data Y,
separately. As orthogonal NMF is equivalent to K-means clustering
([30, Th. 1]), the proposed method could be extended to perform
linked clustering analysis of multiblock data.

NONNEGATIVE TENSOR DECOMPOSITIONS
In analogy to matrix factorizations, tensor decompositions
are developed to analyze high-dimensional tensor data, which
have been given increasing importance in recent signal pro-
cessing and machine-learning applications [1], [31]-[33]. In
the past, high-order tensors were reshaped and formatted as
matrices such that standard matrix factorization techniques
could be applied directly. However, this treatment often
causes the loss of useful multiway structure information of
data. It is more favorable to analyze these data in their own
domain, i.e., tensor domain. In Table 2 we list some basic
notations and operations for tensors; readers may refer to [31]
for more details.

One of the most widely used model for tensor decomposi-
tions is the Tucker model (see [1], [31], and references therein),
where a given tensor Y € R"*2 !V is decomposed as

y=gX1A(DXzA(2)---XNA(N)ZQX"Q]NA("). (8)
A" e R™*R is the mode-7 (factor, component) matrix consist-

ing of latent components a\™ as its columns, n € Ix, r € Ix,,
and G € RF>RRv s the core tensor reflecting interactions
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GIVEN AN nth-ORDER TENSOR G € RF*#>**fv THE NOTATIONS AND PROPERTIES LISTED BELOW WILL BE USED [31]:
FIBERS: A MODE-n FIBER OF A TENSOR IS A COLUMN VECTOR DEFINED BY FIXING EVERY INDEX EXCEPT FOR n.
MATRICIZATION G(,: THE MODE-n MATRICIZATION OF G YIELDS A R”'BY'HPM Ro MATRIX DENOTED BY Gy, WHOSE COLUMNS CONSIST OF ALL MODE-n

FIBERS OF G.

MODE PRODUCT . THE MODE-n PRODUCT OF G AND A € R”™ YIELDS ATENSOR Jf = G x , A € R fr- /xR \WHOSE ENTRIES ARE DEFINED

BY Yriooro siimereoms = 2 Grin-ndiny. NOTE THAT Y =G X 5 A & Yin = AGr.

OUTER PRODUCT -: THE OUTER PRODUCT OF n VECTORS YIELDS A RANK-1 nth-ORDER TENSOR. FOR EXAMPLE, a-b-c YIELDS A THIRD-ORDER TENSOR
Y WHOSE ELEMENTS ARE DEFINED AS yix = a;b;jcx, WHERE a, b, AND ¢ ARE COLUMN VECTORS.

LET K= {i1,/2,...,ik} BE ANY NONEMPTY SUBSET OF 7 WITH FIXED ORDER OF ELEMENTS, WE SYMBOLICALLY DEFINE

1) ngF’K A(k)égxm AO‘)X/‘Q A(rz)_“ X/,KA(/K)

2) Okex A¥=AW@AN... @ A (THE INVERSE ORDER OF ix); SIMILARLY FOR OAND ®.

between the components in each factor matrix. Generally,
R, < I, to achieve data compression. The Tucker model is
quite flexible and it is the foundation of many multiway data
analysis tools [34]. However, Tucker decomposition suffers from
rotation ambiguity. To achieve essentially unique decomposition
with physically meaningful components additional constraints
are often essential.

In the special case of (8) where R1 =Rz =--- =Ry =R and
the core tensor G is diagonal, we obtain the polyadic decompo-
sition (PD), also known as parallel factor analysis (PARAFAC)
(see [1], [31], and references therein). In PDs, a given tensor Y
is represented as the sum of rank-1 terms

R
Y= raWea®...cal. 9)
r=1

For simplicity, we use W/ =[AY A® ..., AM] as a shorthand
notation of (9), where A, are absorbed into A™. The minimum
R making (9) exact is called the rank of the tensor Y, and in
this case (9) is called canonical PD (CANDECOMP or CPD) of
Y. Different from Tucker decompositions, CPD is free of rota-
tion ambiguity and essentially unique under mild conditions
[35]. Moreover, the minimum value of R making (9) exact
under nonnegativity constraints is called the nonnegative-rank
of Y. Apparently, for any non-
negative tensor the tensor rank is
always no greater than the non-
negative rank.

Hereafter we focus on tensor
decompositions with nonnegativity
constraints imposed on the factors,
which is referred to as nonnegative
tensor decompositions that not only
inherit all the advantages of NMF,
but also enjoy additional multilinear structure benefits of multi-
way data. The general scheme for nonnegative tensor decompo-
sitions based on ANLS is illustrated in Figure 4, while details
are given in the following sections based on the polyadic and
Tucker models.

FAST NTD BASED ON LRA AND SEQUENTIAL NMF
For a given tensor Y, by NTD we seek a nonnegative tensor
Y =G X ner,A® that minimizes the cost function Dy =

Matricization/Unfolding LRA

1) Converting to NLS
Subproblems of (2)

3) Alternating Update of Factors

2) Computing
Gradients

[FIG4] A general ANLS scheme for nonnegative tensor
decompositions.

(172)| Y = Y |, such that both A™ and G are nonnegative
[see (8)]. Considering the mode-n matricizations of Y and Y in
Dy, ie., Yo and Y(n), we have

Dy = %” Yo — AP BT, (10)

where B® =[® ¢ riA?)] Gl and G is the mode-n matri-
cization of G [31]. By vectorizing Y/ and y, Dy can also be
written as Dy = (1/2)] vec (V) = [®ncrsA? ] vec (@) |5,
where vec () is the vectorization operator [31]. These two equiva-
lent forms of Do allow us to per-
form NTD by applying the ANLS
straightforwardly with respect to
A" and G. For example, in [36] the
multiplicative update rules have
been applied to perform NTD. How-
ever, computing the matrix B” in
each iteration is too expensive, and
frequent matricization of tensor Y
is also quite time- and space-con-
suming for large-scale data.

One efficient approach that allows us to significantly reduce
the time and space complexity is to apply the idea of LRA to
NTD. Suppose we have achieved a compressed unconstrained
Tucker representation of Y such that VY ~ Y = G X ncr,A?,
where A” e R® (This can be done, e.g., by using truncated
multilinear singular vector decomposition (MLSVD) [37]). Then
we minimize Dym = (1/2)1 Y/ — R ||i, where the gradients can
be computed efficiently as
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D B i ,
% =—X(n)G(7n)+X(n)G(rn);
%&TD :—aneIA«C(m‘f‘gXneIwC(n), 11

where C? = AWTA® C0 = A@WTA® X and X(n) are mode-n
matricizations of X and X, respectively, and

X = G X pE[}\,‘\{n)c(p) X nA(n),
X =G X pernmC? x ,A", (12)

Based on (11), any NLS solver can be applied to optimize A®
and G but without directly accessing the large-scale tensor Y,
thereby leading to significantly
reduced time and space complexity.
We call this method LRANTD.

Another alternative efficient solu-
tion is to avoid frequently unfolding
operations by applying unique NMF
algorithms to extract each non-
negative factor sequentially rather
than simultaneously, typically by
starting with the sparsest factors A™
incorporating on it a sparsity penalty. Suppose that the factor A
can be essentially uniquely estimated by running a suitable NMF
algorithm on Y(»). Then Y is updated as  — Y x ,A™" and we
move to the next factor. This method is similar to the multilinear
SVD, but orthogonality is replaced by nonnegativity and here is
referred to as NTD based on sequential (unique) NMF (NTDSNMF)
(see [13]).

FAST NPD BASED ON DIMENSIONALITY

AND MODE REDUCTION

Historically, NPD is also referred to as nonnegative tensor factoriza-
tion in the literature [1], [31], [38], [39]. Quite different from
unconstrained PDs, a nonnegative tensor with nonnegative-rank R
always has the best nonnegative-rank- approximations for any
r < R [38]. Consequently, in the case where the unconstrained PD
is not unique or ill posed, NPD may help to extract desired unique
components [38], [39]. Moreover, NPD is able to give sparse, parts-
based, and physically meaningful representation of high-order ten-
sors. NPD is therefore a very important research topic and has been
found many practical applications.

Reshape

Nth Order (N > 3) - {3)J
Tensor ¥ Z> Third-Order Tensor i/
1) Mode
< 2 Reduction @ 2) NPD
a” h(

nein, reirp

A

3) Khatri-Rao Product Approximation

k=1,2,8,reln
|

hﬁk) = Opes, aﬁp)

[FIG5] The diagram of NPD based on mode reduction of high-
order tensors (N > 3).

For a given tensor Y, by NPD we seek a tensor Y=
[AY,A? ... AY] minimizing the cost function Dxep =
(12)1 Y — Y |7, where A™ € R"*R 5 e Iy. By considering
the mode-n matricizations of Y/ and J in Dypp, i.e., Yi) and

Y(»), we need to solve

min Dy =+ Yo — A"BYTE, ne Iy,  (13)

A= 2

where B” =0, crnmA® [31]. Based on (13) we can apply the

ANLS with respect to A™ to perform NPD [1], [40]. However,

direct computations of the gradients (9Dxep/dA™) =—YuB™ +
APBPWTB® ayre quite expensive
and it is therefore crucial to find
more efficient way to compute the
gradients [41].

NPD BASED ON LRA

Noticing that unconstrained PD

generally converges significantly

faster than NPD, we update Y

by its LRA such that Y ~ Y =
JA® ... A™] in Dyep, thereby leading to Do = (1/2)
|A®B®T — AWB®T |5 where B” =0, rnmA®?, and hence

(aDNpD/aA(")) :_A(n) [B(n}TB(n)] +A® [B(n)TB(m] .

The key point is that, due to the special structure of B® and B®,
BPTB™ =® ,c 1o (APTAP), similarly for B®"B™, both of
which can be economically computed during the iterations.

NPD USING MODE REDUCTION

Another key factor affecting the efficiency of NPD is the order of
the data tensor N. NPD algorithms that are based on the ANLS
framework require to unfold (matricize) the tensor N times in
each iteration, which consumes considerable memory and time
when N > 3. To overcome this problem, the mode reduction
method [42] can be applied to NPD of high-order tensors. To
explain this idea, suppose Y =[A" A® ... AM]. We can
reshape the Nth-order tensor Y properly to yield a third-order
tensor Y by merging (combining) some modes of Y. It turns
out that the components of ¥ = [HY, H?, H®)| satisfy that

HY =0,csA”, k=1,2,3, (14)

where Si are pair-wisely disjoint, nonempty subsets of 7 with
Uk-1238k = Tn. The mode reduced tensor Y*) has many
interesting properties [42]. Particularly, if Y/ satisfies the unique-
ness conditions given in [35], there always exists at least one mode
reduced tensor Y©' whose CPD is also unique. Moreover, the
components of Y are generally of less collinearity than those of
Y (these properties are also true for any Y7, 3 <K < N [42]).
Equation (14) allows us to estimate A”), p € S, from H* effi-
ciently and uniquely via a Khatri-Rao product approximation [42].
This motivates us to perform NPD on a properly mode-reduced
tensor Y that has unique NPD of ¥ = [H", H? H"Y], and
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then to recover the factors A™ from

H® (k=1,2,3) by exploiting the

Khatri-Rao product structure (14);

see Figure 5 for the diagram of this

method. This method can be much

faster than direct NPD of the original

high-order tensor, because frequently

unfolding to each of the N modes is

avoided and the mode-reduced tensors often have well-condi-
tioned factor matrices.

How to merge the modes is crucial to the mode reduction-
based method [42]. Theoretically, the two factor matrices hav-
ing the smallest Kruskal ranks should be merged first to largely
maintain the uniqueness property. However, as the Kruskal
ranks of factors are unknown before factorization, we often
merge the modes whose corresponding matricizations have the
smallest ranks first [42].

Next, we briefly discuss how to recover A™ from H* using
(14). For simplicity, we let H=H", £ =1,2,3, and consider
the following Khatri—Rao product approximation problem

E‘}'g |H=0,csA? [ (15)
Let H" be the tensor formed by reshaping the rth column of
H according to the dimension of a{”’, p € Sk. Then the tenso-
rial power iteration method followed by nonnegative projection
can be used to update a'”’ [42]

(16)

.7_{(r)>< — a(j)T
ai”) <—P+(—j€ Rlp)Er .

)|
[T csumlla’l,

Repeat (16) for all p € Sk until convergence, the rth columns
of A® will be estimated. Then, we repeat the procedure for all
k =1,2,3, which can be done in a parallel way for all £ and r.

FAST NPD BASED ON ESSENTIALLY UNIQUE NMF
Below we discuss the possibility of using Y*® =[H",H?]
in the aforementioned mode-reduction method. Note that Y%
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is actually a matrix such that
Y@ =HYH®T that generalizes
the concept of standard matriciza-
tion of tensors [cf. (13)]. Hence, we
may perform NMF on matrix Y%
first to obtain factor matrices HV
and H?®, and then we recover A™
from H" and H® by solving (15).
However, this approach works only if the NMF of Y} is essen-
tially unique, e.g., both HY and H® are sufficiently sparse.
Fortunately, in general, the Khatri—-Rao products (14) substan-
tially improve the sparsity level.

PROPOSITION 1
Let aeR”! and b e RY*!. Then zaob = Nza +Mzh—2a2h
and Siob = Sa + Sp— SaSh, Which means that max (Sa,s») < Saob.
In other words, both H" and H® can be very sparse and
the NMF of Y} is very likely to be essentially unique, provided
that A" are sufficiently sparse. In [43], we considered the spe-
cial case where one specific factor matrix can be essentially
uniquely estimated by incorporating suitable a priori informa-
tion on this factor. Particularly, it can be shown that if one fac-
tor matrix satisfies the separable condition, ¥* also satisfies
the separable condition. In such a case, the NMF of Y is
essentially unique and the above method can be applied.

IMPROVED SPARSITY AND UNIQUENESS

OF NONNEGATIVE TENSOR DECOMPOSITIONS

It is worth noticing that multilinear structures in nonnegative
tensor decompositions intrinsically enforce sparse representa-
tions. By NPD, a tensor Y can be represented as Y{,) = B™A™7
by using the mode-» matricization, where B™ =0, crnmA®?.
Hence if B™ is interpreted as the basis matrix, from Propos-
ition 1, it is usually very sparse. This sparsity comes from the
sparsity of A’ (p # n), and is enhanced by the Khatri-Rao prod-
uct structure of B™. We call B™ a Khatri—Rao product basis. By
NTD a tensor Y can be represented as Y, = R™ G{,)A™7 by

-
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[FIG6] A very sparse and parts-based Kronecker basis (i.e., ® nc(1,2,A™) extracted from the COIL-100 database obtained by the
LRANTD based on HALS, which is often used for feature extraction in clustering and classification tasks.
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[TABLE 3] THE PERFORMANCE COMPARISON OF THE NMF ALGORITHMS ON SYNTHETIC DATA. THE SIR VALUES AND TIME OF

THE PLAIN MODE WERE NOT LISTED AS ALL THE ALGORITHMS FAILED TO RECOVER THE ORIGINAL SOURCES (THE CORRE-
SPONDING SIR VALUES WERE LOWER THAN 10 dB) IN THIS MODE.

FIT (%)
ALGORITHMS PLAIN RPCA LRA
MU 743 £ 0.4 93.8 £ 0.0 94.1% 0.1
BPP 741 £ 04 99.1 £ 0.5 99.1 £ 0.5
NENMF 741 £ 0.4 99.2 £ 0.3 99.4 + 0.3
GCD 746 £ 0.4 99.4 + 0.3 99.3 + 0.3
HALS 742 £ 04 99.3 + 0.3 99.4 + 0.3

SIR (dB) TIME (S)
RPCA LRA RPCA LRA
245 + 6.7 245 + 6.8 560.6 170.5
284 £ 7.1 284 £ 7.1 848.1 286.8
29.4 £ 6.1 33.0 £ 57 345.0 156.7
33.0 £ 57 31.8 £ 6.1 325.8 1M1
328 £ 6.1 331 57 329.9 57.9

using the mode-n matricization, where R™ =®,c A,
ne Iy. If R is interpreted as the basis matrix, it can also be
very sparse due to its Kronecker product structure, and we called
it a Kronecker product basis of Y. In summary, compared with
NMF, nonnegative tensor decompositions are able to provide
sparser bases, which have multilinear structures. See Figure 6 for
a visualization of a very sparse Kronecker product basis of real-
world data. Such sparse representation often allows us to perform
efficient classification or clustering tasks [1].

As NPD is a special case of unconstrained PD, the unique-
ness conditions of PD [35] can be applied to NPD straightfor-
wardly once the nonnegative-rank is equal to the rank.
However, the nonnegativity constraints may lead to more
relaxed uniqueness conditions. We believe that both NPD and
NTD should be essentially unique as long as the latent factors
are sufficiently sparse, nevertheless, comprehensive analysis on
uniqueness of nonnegative tensor decompositions is still an
open issue.

SIMULATIONS
All the simulations were performed in MATLAB 2008a on a PC
with i7CPU 3.33 GHz and 24-GB memory running Windows 7.

SYNTHETIC DATA BENCHMARK

We compared the introduced NMF algorithms using synthetic
data generated by Y =AB” +E, where A,B c RI*™"%0 3nd
A~U(0,1), B~U(0,1). Note that all the NMF algorithms using
the Euclidean distance are essentially based on the independent
and identically distributed Gaussian noise assumption. To inves-
tigate their flexibility and robustness to non-Gaussian noise, we
added Gaussian noise (with SNR=20 dB) to the only randomly
selected 1,000 entries of Y to be outliers. In other words, the
noise term E contained only 1,000 nonzero entries. The ele-
ments of A and B, which were less than 0.5, were set to zero to
generate sparse factors. The algorithms we compared included
the MU algorithm [2], the BPP based on the active-set method
[15], the NeNMF using the APG method [16], the greedy coord-
inate descent (GCD) algorithm [44], and the HALS algorithm
[1]. For each NMF algorithm we tested three modes: 1) the
plain mode that applied NMF to the noisy data directly; 2) the
RPCA mode that applied NMF to the cleaned data preprocessed
by using the RPCA [19]; 3) the LRA mode that used the LRAs

(obtained by using truncated SVD) of cleaned data to acceler-
ate each NMF algorithm, in addition to 2). In each run all the
algorithms started from the same initial matrices with the
maximum iteration number 500. Their performance averaged
over ten Monte Carlo runs was shown in Table 3, where the
signal-to-interference ratio (SIR) evaluates how well the
estimated components match their original ones, and the
fit=(1—(|Y—ABT|/] Y||») X 100%. From the table, we can
conclude that
m using suitable LRA techniques to reduce noise prior to
NMF is crucial to improve the accuracy. In this case, it is
often unnecessary to develop special NMF algorithms for dif-
ferent noise distributions. Instead, we may use suitable LRA
methods to substantially reduce noise without considering
the nonnegativity constraints prior to applying NMF.
m for cleaned data (i.e., the RPCA mode and the LRA mode),
all algorithms with or without LRA achieved almost the same
factorization accuracy in terms of fits and SIRs. However,
their LRA-based implementations were always much faster
than their original ones (the time consumed by RPCA was
not counted in both cases). This improvement can be very
remarkable for large-scale data.
m as the factors were very sparse (50% entries were zeros)
and the number of observations was significantly larger
than the number of components, all the true sources were
accurately estimated by all NMF algorithms with the RPCA
preprocessing. This justifies that NMF may be used a BSS
tool when the sources and/or mixing matrix are very sparse
and nonnegative.

COIL-100 IMAGES ANALYSIS

In this simulation, we used NTD methods to extract sparse
bases of the Columbia Object Image Library (COIL-100,
available at http://www.cs.columbia.edu/CAVE/software/soft-

lib/coil-100.php), which is a database of color images of 100

objects, and each object has 72 images. Each image was res-
caled as 128 x 128. These images formed a big tensor with
the size of 128 x 128 x 3 x 7200. We compared the higher-
order NMF (HONMF) algorithm [36], the NTDSNMF algo-
rithm [13], and the new proposed LRANTD based on the MU
and the HALS updates, respectively. As our purposes were to
illustrate the learning-parts ability of NTD and to compare
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the efficiency of NTD algorithms, we simply set the numbers
of components as Ri1=R2=10, R3 =3, R+=100 for all
algorithms (in practical applications, however, we may use
the Bayesian information criterion or generalized informa-
tion criterion [18] to select these parameters) for better visu-
alization, which results in ®,cn23A™ composed of 300
basis images (128 x 128 x 3) as its columns. We set the
maximum iteration numbers to be 100. In the LRANTD, the
multilinear SVD [37] was applied to perform LRA. See
Table 4 for their performance, where fit is defined similarly
as for matrices. Obviously, the NTDSNMF algorithm and the
proposed LRANTD algorithms significantly outperformed the
standard NTD algorithm HONMF. Figure 6 visualized the
Kronecker product basis extracted by LRANTD based on
HALS, showing that NTD can provide very sparse bases that
are useful in clustering and classification tasks [1].

FACE IMAGES CLUSTERING ANALYSIS
We applied the nonnegative common feature extraction (NCFE)
to cluster analysis of human face images. Intuitively, all face
images should share some common features as they have com-
mon facial characteristics such as cheeks, eyes, and a mouth,
whose locations and shapes are similar to some extent. These
common features that are presented in all faces are less impor-
tant for clustering as they do not provide any discriminative
information. It is therefore reasonable to remove these common
or similar features at first and then use the individual features
only to cluster the faces. We validated this idea on the Carnegie
Mellon University (CMU) pose, illumination, and expression
(PIE) face database (available at http://vasc.ri.cmu.edu/idb/html/
face/), which is a collection of face images of 68 persons taken
under different poses, illumination conditions, and expressions.
We used the preprocessed version considered in [45], which
consists of 2,856 full frontal face gray-scale images taken at the
front pose labeled as c27. Each time we randomly selected A
clusters/persons (K € {30,40,50,60,68}). To extract their com-
mon features, in each run we permuted the images randomly
first and then split them into, for simplicity, A groups to obtain
Y, k€ Ik, (each group consisted of face images from
unknown different clusters). Then we used the common orthog-
onal basis extraction [29] to extract the common subspace and
then used the NCFE to extract the nonnegative common fea-
tures. The number of common components was empirically
specified as two. After removing the nonnegative common sub-
space, i.e., the term AB? in (6), we obtained their individual
features. Finally, two components extracted by using the t-dis-
tributed stochastic neighbor embedding (tSNE) method [46]
from their individual subspace were used to cluster the faces by
using the K-means method. As K-means is sensitive to initial
centers of clusters, we replicated K-means 20 times in each
run. The proposed method was compared with the PCA using
50 principal components, the graph regularized NMF [45], the
tSNE, and the improved MinMax Cut method [47].

The mean values and the standard variations of accuracy
over 20 Monte Carlo runs were detailed in Figure 7 (the

ALGORITHM HONMF NTDSNMF LRANTD_MU LRANTD_HALS
FIT (%) 63.1 753 755 75.6
TIME (s) 50,351 232 112 103

Accuracy (%)

30 40 50 60 68
Number of Clusters

I NCFE [ PCA [[JtSNE

[ GNMF [l MM Cut

[FIG7] A comparison of clustering performance on the PIE
database. In the NCFE-based method, the nonnegative common
components were removed first and then the individual
components were used for clustering analysis. The NCFE method
achieved considerable improvement of performance.

[FIG8] A visualization of clustering results using the two tSNE
components of individual information after removing two
common nonnegative components from all data. The faces
images were from the CMU PIE database (pose c27) and the
number of clusters was 68.
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performance index accuracy was defined as in [45]), showing
that after removing the common features in all faces, the accu-
racy was significantly improved. Figure 8 visualizes the clusters
by using the two tSNE components of the individual subspace
of all 68 categories. In fact, all clusters were quite well sepa-
rated. More details about this method can be found in [29].

CONCLUSIONS

In this article, we reviewed state-of-the-art nonnegative matrix and

tensor factorization algorithms, which not only provide faster con-

vergence speed but also can be scaled up for very large-scale prob-

lems, particularly by incorporating distributed computing

techniques [48]. We discussed how robust, powerful, and efficient

LRA techniques (e.g., PCA/truncated

SVD, multilinear SVD, RPCA, matrix/

tensor completion methods) can be

applied to substantially reduce noise

and computational complexity in

nonnegative matrix and tensor

decompositions. Moreover, we intro-

duced several new and promising

methods to compute large-scale non-

negative PDs, including the methods

that reshape a high-order data tensor

to a matrix or a third-order tensor,

and in the next step, we estimate non-

negative factor matrices sequentially. We also proposed fast and

efficient algorithms for NTDs, which outperform most existing

algorithms. Moreover, we discussed how to perform NMF for linked

multiblock data and how to extract the nonnegative common and

independent components. By representative simulations, we com-

pared performance of state-of-the-art algorithms and illustrated

their applications on both synthetic and real-world data.
Supplementary materials containing the pseudocode of

selected NPD/NTD algorithms and the MATLAB code are avail-

able at http://bsp.brain.riken.jp/zhougx/tensor.html.
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Static and Dynamic

Source Separation Usin
Nonnegative Factorizations

A unifed view

ource separation models that make use of nonnegativity
in their parameters have been gaining increasing popu-
larity in the last few years, spawning a significant number
of publications on the topic. Although these techniques
are conceptually similar to other matrix decompositions,
they are surprisingly more effective in extracting percep-
tually meaningful sources from complex mix-
tures. In this article, we will examine the &
various methodologies and exten- °
sions that make up this family of
approaches and present them
under a unified framework.
We will begin with a short
description of the basic con-
cepts and in the subsequent
sections we will delve in
more details and explore
some of the latest extensions.

[ ] e
o e

Source Separation and Applications

USING NONNEGATIVE
FACTORIZATION

IMAGE LICENSED BY

equation [2]. What makes this model particularly interesting is the
constraint that the matrices V, W, and H are all nonnegative. This
constraint ensures that the vectors making up the two factor matri-
ces W and H can be interpreted as constructive building blocks of
the input. Such an interpretation often does not apply to decompo-
sitions that employ negative-valued entries; in such
decompositions, the elements of W and H

can cancel each other out, obscuring the

latent components’ perceptual

[A meaningfulness [1]. When NMF

/1 is applied to data that was gen-
. & 2l k\o erated by mixing a number of
q \ \ _ nonnegative sources, the

M\/'? components NMF discovers
v often correspond remark-

ably well to those sources,

and the decomposition is able

to separate out the contribu-

tions of each source to the data.

Since NMF can operate even without

any prior information about the nature of

INGRAM PUBLISHING

MODELS FOR SEPARATION

The basic model we will use to get started is a bilinear factor-
ization of a nonnegative input V into two nonnegative matrices W
and H, i.e,, V= WH, where both of the two factor matrices can be
of lower rank than V. This is known as the nonnegative matrix fac-
forization (NMF) [1] model, and it is conceptually similar to other
well-known matrix factorizations such as principal component ana-
lysis, independent component analysis, sparse linear models, or
even vector quantization, which can all be expressed using the same

Digital Object Identifier 10.1109/MSP.2013.2297715
Date of publication: 7 April 2014

the sources in the data, it is particularly well

suited to unsupervised or blind source separation problems.

Some examples of interpretable components discovered by NMF are
presented in Figure 1.

Sometimes it is more natural to represent complex sources
using a linear combination of multiple latent components that
collectively make up source dictionaries. In this case, we need one
more level of hierarchy to group these components in terms of
sources. Although in some cases this grouping could be obvious
or analytically tractable, it is in principle not easy to compute.
One can overcome this problem by using nonnegative factoriza-
tion models in a supervised manner and explicitly providing cues
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to the nature of the sources. This involves learning a dictionary for
each target source by using the above model on clean training
data that presents that source in isolation, and then identifying
where in a mixture the dictionary elements associated with each
source lie. If our data is not nonnegative already, to employ a non-
negative factorization we need to transform our inputs to an addi-
tive (or approximately additive) nonnegative representation. For
many kinds of time series, such a domain can be a time-frequency
localized energy measure computed
via a harmonic decomposition such
as the Gabor transform, or a wavelet
decomposition. Since most natural
signals tend to be sparse in the mag-
nitude or power, by using these
transforms we can often guarantee
with high probability that the trans-
form of the sum of two sources will
be equal or approximately equal to
the sum of the transforms of the two
sources separately, which can satisfy the additivity constraint. As
we show later, depending on the exact NMF model and the
representation used, the additivity assumption can be one that is
either weak or strong.

To demonstrate the separation process with a tangible exam-
ple, let us look at a hydrophone mixture containing a whale
song (target source) and sea clutter (background sources). We

represent this mixture using a magnitude short-time Fourier
transform (STFT), which is shown in Figure 2(c). To learn a target
source dictionary we use a clean recording of whale songs
[Figure 2(a)]. This is done by analyzing the matrix containing
the STFT representation using any of the models that we detail
in the remainder of this article. A learned dictionary is shown in
Figure 2(b), and as one can see its elements represent salient
spectral features that comprise the whale song recording. We
can repeat this process for the sea
clutter source to get components
that describe it too. In practice, a
few seconds of training data is usu-
ally enough to learn an adequate
model of a source, although this
can vary depending on the domain
and source characteristics we are
dealing with. The number of com-
ponents per dictionary determines
how accurately we want to model
the sources, with more components giving us more expressive
power but at the cost of making a dictionary so rich that it
could describe other sources as well.

Given the approximate additivity assumption and a represen-
tative set training data, we can now hypothesize that the mixture
recording will be explained by a linear combination of the ele-
ments in the source dictionaries, i.e., that X ~[W1, Wz]H will
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[FIG1] Extracted NMF components from various domains. (a) The analysis of handwritten digital data results in parts of penstrokes,
(b) the analysis of chemometric data results in the spectral profiles of the three constituent components (oxylene, napthalene,
dibenzothiophene), and (c) the analysis of music spectrograms results in spectra of musical notes.
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[FIG2] Extracting a target source from a hydrophone ocean mixture using a nonnegative dictionary. The training data in (a) are
isolated whale songs used to learn the dictionary shown in (b). Not shown are the equivalent plots for sea clutter sounds. These
dictionaries are then used to extract their respective sources from a mixture that includes them, shown in (c). The extracted whale

song is shown in (d).

approximately hold, where X contains the magnitude STFT of
the mixture and W1 and Wy are the learned left factors from the
training data of the two sounds. We thus only need to compute
the matrix H. Given the ability to compute the full NMF model,
the estimation of the H matrix can be easily obtained by fixing
[W1, W2] and only updating the estimate for H. Once this is
computed we can reconstruct the mixture using only the diction-
ary of one source at a time, which will produce in a time-fre-
quency representation of the two sources separately, which can
then be inverted back to the time domain. The only assumption
that needs to hold at this point is that the two source dictionaries
are sufficiently different from each other so that they do not
model the same elements in the mixture. Although there is no
easy way of quantifying the required degree of dissimilarity in
real-world examples, this is a process that works even in cases
where the sources are very similar (e.g., two speakers of the same
gender), and by incorporating the ideas in the remainder of this
article we can even separate sources that share identical diction-
aries by making use of their temporal statistics. In this particular
case, the dictionaries that characterize the two sources have min-
imal similarities and produce a very clean separation. The result
of extracting the whale song from the hydrophone mixture is
shown in Figure 2. The details of this process and its generaliza-
tion in the case where we might not have dictionaries for all the
sources is described in [3].

This basic approach of supervised separation has spawned
much subsequent research using varying approaches and method-
ologies, often seemingly incompatible with each other. In the fol-
lowing sections we will take a closer look at the details of various
formulations of nonnegative factorization models, and will show a
unified progression of techniques that spans from the simple static
models (such as the ones shown above) to more complex dynamic
approaches that incorporate more temporal information and can
produce higher-quality results. We will predominantly focus on
the statistical interpretation (and variation) within NMF algo-
rithms and then we will show how these can be extended to two
kinds of useful temporal models: continuous state and discrete
state models, which in turn can take advantage of temporal infor-
mation to improve the performance of source separation tasks.

STATIC MODELS

A PROBABILISTIC VIEW OF NMF
Traditionally NMF is applied by solving the optimization prob-
lem defined by

r‘eriPpD(V|WH) st W=0,H>0, (1)

where V, W, and H are nonnegative matrices of size F X T,
FxK, and KX T, respectively. The notation M > (0 denotes
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element-wise nonnegativity of M (and not semidefinite positiv-
ity) and D (V| WH) is a separable measure of fit such that

T
D(V|WH) = > D(vi|Wh)). @)
=1

D(x|y) is a divergence between vectors x and y, i.e., a non-
negative function of y € RY given x € R, with a single minimum
(zero) for x =y. For convenience we will use the same notation
D (|") to denote the divergence between vectors or matrices, with
the convention that in the matrix case the divergences between col-
umns simply add up as in (2). Common divergences used in NMF
include the squared Euclidean distance (see [46]), variants of the
Kullback—Leibler (KL) divergence [1],
and the Itakura—Saito (IS) divergence
[4]. More general families of diver-
gences considered for NMF include
alpha-beta [5] and Bregman diver-
gences [6]. A comprehensive review of
divergences and algorithms used for
NMF can be found in [7].

In many cases divergences are
likelihoods in disguise (and are as
such sometimes referred to as pseu-
dolikelihoods) in the sense that they underlie a probabilistic gener-
ative model of the data. The correspondence is such that there
exists a probability density function (pdf) p (V| W, H) that satisfies

—logp (V|WH) =a D(V|WH) + b, (3)

where a and b are constants with respect to WH. Some examples
of correspondences are given in Table 1. Note that this correspond-
ence does not automatically imply a coherent generative model for
nonnegative real-valued data; e.g., although the generalized KL
divergence is a valid measure of fit on the whole positive orthant,
the corresponding Poisson likelihood is only a true likelihood on
the nonnegative integers, and in the large-variance setting the
additive Gaussian model could generate negative data. However,
these theoretical issues can usually be resolved; see, e.g., [8].

In this article we focus on two probabilistic NMF models that
have been widely used in source separation: probabilistic latent com-
ponent analysis (PLCA), which is closely related to NMF with the KL
divergence [9], and the Gaussian composite model (GCM), which is
closely related to NMF with the IS divergence [4]. A common feature
of these models, shared by the models in Table 1 as well, is that the
conditional expectation of V is WH (i.e., E[V|WH] = WH), and
that the data points are conditionally independent given WH [i.e.,
p(V|WH) = H D (v Why)]. These simple factorization models
are “static” in the sense that data points (columns of V) could be
exchanged without any effect on the estimates other than a permu-
tation of H. Dynamic, nonexchangeable models will be introduced
later in the article using temporal priors on H.

PROBABILISTIC LATENT COMPONENT ANALYSIS
PLCA is an extension of probabilistic latent semantic indexing
(PLSI) for signal processing applications [9]. PLSI is a method

for text analysis based on word counts from documents [10]. In
PLCA, the input matrix V is a magnitude spectrogram
vi =|xr|, where xs is the complex-valued STFT of some time-
domain data. PLCA interprets the entries of each column v; of
V as a sort of histogram of independent identically distributed
(i.i.d.) frequency “quanta” fe{1,...,F} in each time frame f.
The data distribution in PLCA is therefore

v ~ Mult (v¢ | || ' ||1, Vi), (4)

where || v||1= Zf\ vr| is the ¢1 norm, v; = Why, and Mult (V, p)
denotes the multinomial distribution. In PLCA it is imposed that
| well; = he|; = 1, which in turn implies that || v¢], = 1. A draw
from Mult(V, p) returns an integer-
valued vector of dimension /' whose
entries sum to N. The fth entry of
this vector corresponds to the num-
ber of times event / was sampled in
N independent draws from the dis-
crete distribution defined by p.
Although usual inputs in source sep-
aration problems are not integer val-
ued, the negative log-likelihood of the
data and parameters in PLCA provides
a valid divergence for nonnegative real-valued data. Specifically,
under (4) and introducing the normalized data v; = v¢/| v¢|;, the
negative log-likelihood is given by

—logp (V| V) = D_||ve|l,Dke (Ve | 92) + cst, (5)
t

where “cst” denotes terms constant with respect to V and
Dru(x|y) =D ,xrlog(xr/ys) is the KL divergence between dis-
crete distributions. As such, PLCA essentially minimizes a
weighted KL divergence between the normalized input and its fac-
torized approximation, where every data point is given a weight
equal to its sum.

IS-NMF AND THE GAUSSIAN COMPOSITE MODEL
Underlying IS-NMF is a multiplicative noise model of the form
Vim =0 .€n, where € has a Gamma distribution with

DIVERGENCE
D(Vr | \71‘)

LATENT GENERATIVE MODEL
pve| Vo)

SQUARED EUCLIDEAN DISTANCE
#zf(wt— Ur)?

ADDITIVE GAUSSIAN
[1,N(vee| 7, 0?)

GENERALIZED KL DIVERGENCE POISSON
Zf<Vfr |Og% — Vi + Un) Hf Pvee | vr)
t
IS DIVERGENCE MULTIPLICATIVE GAMMA
Vi VR I1,Gvr|a, alis)
Zf( Vit lOg [ ! ) f
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expectation one. The resulting data distribution is given in
Table 1 and the negative log-likelihood is such that

—logp (V|V) = aDis (V| V) +cst, (6)

where Dis () is the IS divergence defined in Table 1.

When o =1, i.e.,, when the multiplicative noise has an expo-
nential distribution, the multiplicative noise model can be related to
a generative model of real- or complex-valued data coined Gaussian
composite model (GCM) [4]. The model is in particular a valid prob-
abilistic model of STFTs. Let x4 be the complex-valued STFT of
some time-domain signal. The GCM is defined by x» = Z 4 Ce and
cmt ~ Ne(0, wahi), where Nc(0, A) refers to the circular complex
Gaussian distribution with zero mean.

A random variable has distribution

N:(0,A) if its real and imaginary

parts are independent centered Gauss-

ian variables with variance A/2. In

other words, the GCM models the

STFT as a sum of uncorrelated cen-

tered Gaussian components struc-

tured through their variance. The variance of the Ath component is
characterized by the spectral pattern wx, amplitude-modulated in
time by the coefficients {Ax}:. The centered assumption reflects an
equivalent assumption in the time domain, which holds for many
signals (in particular audio signals). The latent components ¢ can
trivially be marginalized from the generative model, yielding
X~ NC(O, Z Wi A ). Tt follows that the power spectrogram
vp=|xn|? of xz is exponentially distributed with mean
Op = Z Wi hi, and can thus be written as a special case of the
multiplicative Gamma model given in Table 1 with o = 1. Under
this model, minimum mean squares estimate (MMSE) of the com-
ponents can be obtained by Wiener filtering and given by
Ce = [ hwe) l0r)xh.

WHICH MODEL TO USE?
An important feature of the GCM is that the phase of the original
complex-valued data is preserved in the generative model

h®) KB K@ h(" h)

[FIG3] An illustration of the MM principle on a unidimensional
problem. Given a current estimate of W, the blue curve acts as
the objective function C(H) = D(V | WH) to be minimized with
respect to H. The MM approach relies on the iterative
minimization of tight upper bounds (dashed red curves). The
algorithm is initialized at H®, at which the first upper bound is
minimized during the first iteration to yield H™, and so on until
convergence.

(though it is modeled in an uninformative way, owing to the cir-
cular assumption) rather than discarded, as in PLCA. Addition-
ally, the additivity assumption holds strongly in the original
STFT domain. The IS divergence turns out to be a scale-invariant
measure, i.e., dis(Ax | Ay) = dis(x |y), where x, y, and A are
positive scalars. This makes it well suited to audio spectrograms
and their widely varying ranges of magnitudes; a more detailed
discussion is in [4]. In contrast, PLCA will rely more heavily on
data vectors with large norms, as can been seen from the diver-
gence expression in (5). Whether this is a desirable property or
not depends on the data and specific task. A downside of the IS
divergence with respect to the weighted KL divergence of PLCA
is its lack of convexity with respect
to its second argument, which leads
more often to local solutions in
practice, as explained in the next
section. PLCA and IS-NMF were
benchmarked in [11] for speech sep-
aration and audio interpolation
tasks. However, a consensus did not
clearly emerge from the experiments as to which method is best,
and the conclusions were often data or task dependent.

ESTIMATION

We now discuss estimation in PLCA and IS-NMF, i.e., the opti-
mization of the objective functions (5) and (6) with respect to W
and H. Like virtually all NMF algorithms, PLCA and IS-NMF rely
on a block-coordinate descent structure that alternates between
updating W holding H fixed and updating H holding W fixed. It
is easy to see that the updates of W and H are essentially the
same by transposition (V~WH < V" ~ H'W’). Each update
can be carried out by majorization-minimization (MM) [12]. MM
consists in upper bounding the objective function with an auxil-
iary function that is tight at the current estimate and that can
be minimized in closed form. The principle of MM is illustrated
in Figure 3. Details of the algorithms can be found in [9] for
PLCA and in [13] for IS-NMF. The resulting updates are given in
Table 2. Their multiplicative structure automatically ensures
the nonnegativity of the updates given positive initialization.

It should be pointed out that in every NMF problem the
objective function D (V| WH) is not jointly convex with respect
to W and H. When the divergence D(x|y) is convex with
respect to its second argument vy, like in PLCA, the problem is at
least convex with respect to H given W and vice versa. However
it is never convex with respect to both. This means that the block-
coordinate approach may converge to local solutions that will
depend on initialization. Some recent work (e.g., [14] and [15])
has explored alternate estimation algorithms that avoid formulat-
ing NMF as a nonconvex optimization and thereby sidestep the
local-optima problem. The guarantees associated with these algo-
rithms are dependent on separability and/or sparsity assumptions
that may be more appropriate for extremely high-dimensional
data like document word counts than for moderately high-dimen-
sional data like audio spectra. However, as shown in [16], separ-
ability is not necessary for uniqueness in NMF, and such a
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[TABLE 2] PLCA AND IS-NMF FOR THE GCM SUMMARIZED. IN THE UPDATE RULES, W#« AND h.. DENOTE CURRENT PARAMETER

VALUES. V. DENOTES THE CURRENT DATA APPROXIMATION, LE., 3, wxhi IN THE UPDATE OF H AND Zk Wikhke IN THE
UPDATE OF W.

PLCA IS-NMF FOR THE GCM
V=|X| V=|X|?
D(V | WH) = Zt” Vz||1 DKL(Vr | \7t> D(V | WH) = D/S(V | WH)

NONNEGATIVE DATA
OBJECTIVE FUNCTION

CONSTRAINTS [lwell =llhelly =1 —

LATENT GENERATIVE MODEL p(ve| ¥ = Mult(ve] | velly, ) P ) =T, Nclxe| 0, )

UPDATES - e 2, wielviel7r) Y W (Vie/7%)
« Zk fmzf Wi (vl Ur) ke 2 wik(1/7r)

Wik zlhkt(Vﬂ/Vﬁ> - Znhkf(vﬁ/‘ﬁt)

Who= et Wi = Wik ==

Z, Wik Zrhkr(Vft/Vfr) Zn hie(1/Vs)

constraint can be too restrictive when using convex formulations.
Regardless, for our purposes, the block-coordinate approach is
practical and effective on a wide range of problems, despite its
lack of theoretical guarantees.

So far we have presented a basic version of NMF in which the
data is approximated as V ~ WH without any structural priors
(aside from nonnegativity) on either W or H. However, in many
cases one is expecting the latent factors to have a certain structure,
such as smoothness or sparsity. As such, a large part of the NMF
literature has concentrated on penalized variants of NMF, in which
penalty functions of either W or H are added to the divergence
D (V| WH). In our probabilistic setting, this can be viewed as set-
ting prior distributions for the latent factors. In particular, the next
section will review temporal priors p (H) that have been used in
the literature. In most cases, penalized NMF can be handled with
MM, by simply adding the penalty term, or a local majorization of
the latter, to the auxiliary function obtained in the static case.

DYNAMIC MODELS

Temporal continuity is one of the most important features of
time-series data. Our aim here is to present some of the basic as
well as advanced ideas to make use of this information by mode-
ling time dependencies in NMF. These dependencies between
consecutive columns of V can be imposed either on the basis
matrix W or on the activations H. The former case is known as
the convolutive NMF [17]-[19]. In these approaches, the repeat-
ing patterns within data are represented with multidimensional
bases which are not vectors anymore, but functions that can span
an arbitrary number of dimensions (e.g., both frequency and time
in examples like the previous one). These models can be seen as a
deterministic way to model temporal dependencies. Although
they are useful in extracting temporal components, they most
often result in very structured representations that do not gener-
alize well enough to be successfully employed for source separ-
ation. A more flexible approach for modeling temporal statistics is
to impose constraints on the model activations. Such methods
are very much in line with traditional dynamic models that have
been studied extensively in signal processing, and in this section
we will turn our attention to these.

Most models considered in the literature are special cases of
the general dynamic model given by

—_
3

he~ p(h; | hi-1,6),
Vz~p(V1 | th)

—
*x

We assume that (8) defines a probabilistic NMF observation model
such that E[V|WH] = WH. As such, it may refer to any of the
static models discussed in the previous section. Equation (7) intro-
duces temporal dynamics by assuming a Markov structure for the
activation coefficients. 8 denotes the prior parameters. The aim of
this section is to describe the general concepts of dynamic NMF
and provide references for specific instantiations related to given
probabilistic NMF models (PLCA, IS-NMF, generalized KL-NMF,
etc.). Two broad classes of models are discussed next, continuous
and discrete models.

CONTINUOUS MODELS

SMOOTH NMF
A straightforward approach to use temporal continuity is to
apply some constraints that reduce fluctuations in each individ-
ual row of H. This corresponds to assuming that different rows
of H are independent.

In these approaches, the general equation (7) can be written as

K
hi~ [T p(Ake | Bk, 0). 9)
k=1

A natural choice for p(Ax | Are-1), 0) is a pdf that either takes its
mode at Ak(-1) or is such that E[Ak | Ar¢-1),0] = hr¢-1). Vari-
ous papers have dealt with smooth NMF and they typically differ
by the choice of observation models and priors (or in nonproba-
bilistic settings, penalty term) that is used [4], [20]-[27]. Gauss-
ian priors (or equivalently, squared differences) of the form
p (it | hie-v) = N(hie | hee-1, 0?) are used in [20], [21], and
[26]. Nonnegativity-preserving Gamma or inverse-Gamma Markov
chains are considered in [4], [23], [25], and [27]-[30] and Markov
random fields in [31].

IEEE
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NONNEGATIVE STATE-SPACE MODELS

Smooth NMF does not capture the full extent of frame-to-frame

dependencies in its input. In practice we will observe various tem-

poral correlations between adjacent

time frames that will be more

nuanced than the continuity that

smooth NMF implies. In other words,

there is correlation both within

(smoothness) and between (transi-

tions) the time frames of the coeffi-

cients of H. For real-valued time series, this type of structure can

be handled with the classical linear dynamical system, using

dynamics of the form h; = Ah;-1+ €, where € is a centered

Gaussian innovation. This model is not natural in the NMF setting

because it may not maintain nonnegativity in the activations.

However it is possible to design alternative dynamic models that

maintain nonnegativity while preserving
E[h;|Ah;—1] = Ah,_;. (10)

The statistical models considered in the section “Static Models”

are good candidates by exchanging v; for h; and v, for h,-;.

Following that idea, a nonnegative dynamical system (NDS)

with multiplicative Gamma innovations was proposed in [32], in

conjunction with multiplicative Gamma noise for the observa-

tion (IS-NMF model). Note that in the case of the Gaussian lin-

ear dynamical system, integration of the activation coefficients

from the joint likelihood p (V,H|W) is feasible using the Kal-

man filter. Such computations are unfortunately intractable

with NDS, and a MAP approach based on an MM algorithm is

pursued in [32].

Dynamic filtering of the activation coefficients in the PLCA
model has also been considered [33], [34], where the proposed
algorithms use Kalman-like prediction strategies.

The technique in [34] considers a more general multistep pre-
dictor such that h; = ZjA ihs—j, and describes an approach for
both the smoothing (which relies on both past and future data)
and causal filtering (which relies only on the past data) problems.

DISCRETE MODELS
Time-series data often has hidden structure in which each time
frame corresponds to a discrete hidden state g,. Moreover, there is
typically a relationship between the hidden states at different time
frames, in the form of temporal dynamics. For example, each time
frame of a speech signal corresponds to a subunit of speech such
as a phoneme, which can be modeled as a distinct state. The subu-
nits evolve over time as governed by temporal dynamics. Hidden
Markov models (HMMs) [35] have been used extensively to model
such data. They model temporal dynamics with a transition matrix
defined by the distribution p(g:|g:-1). There has been a recent
thread of literature [36]-[40] that combines these ideas with NMF
to model nonnegative data with such structure.

The notion of a state is incorporated in the NMF framework by
associating distinct dictionary elements with each state. This is
done by allowing each state to determine a different support of

the activations, which we express with the distribution p (h:|g.).
This is to say that given a state, the model allows only certain dic-
tionary elements to be active. Some techniques [36], [39] define
the support of each state to be a sin-
gle dictionary element, while other
techniques [37], [38], [40], called
nonnegative HMMs (N-HMMs),
allow the support of each state to be
a number of dictionary elements.
Since only a subset of the dictionary
elements are active at each time frame (as determined by the
state at that time frame), we can interpret these models as impos-
ing block sparsity on the dictionary elements [41].

As in (7), there is a dependency between h; and h;—:. How-
ever, unlike the continuous models, this dependency is only
through the hidden states, which are in turn related through
the temporal dynamics. Therefore h; is conditionally independ-
ent of h,—1 given g; or g;~1. In the case of discrete models, we
can therefore replace (7) with

qe~p(qge|qe-1),
h; ~ p(he[ge).

Since these models incorporate an HMM structure into an
NMF framework, one can make use of the vast theory of Mar-
kov chains to extend these models in various ways. For exam-
ple, one can incorporate high-level knowledge of a particular
class of signals into the model, use higher-order Markov
chains, or use various natural language processing techniques.
Language models were recently incorporated in this frame-
work [42] as typically done in the speech recognition litera-
ture [35]. Similarly, one can incorporate other types of
temporal structure like music theory rules when dealing with
music signals.

The above techniques discuss how to model a single source
using an HMM structure. However, to perform source separ-
ation, we need to model mixtures. This is typically done by com-
bining the individual source models into a factorial HMM [28],
[36]-[38], [40], which allows each source to be governed by a
distinct pattern of temporal dynamics. One issue with this strat-
egy is that the computational complexity of inference is expo-
nential in the number of sources. This can be circumvented
using approximate inference techniques such as variational
inference [43], which makes the complexity linear in the num-
ber of sources.

THE USE OF DYNAMIC MODELS

IN SOURCE SEPARATION

To demonstrate the utility of dynamic models in context, we will
once again use a real-world source separation example. This time
it will be an acoustic mixture of speech mixed with background
noise from a factory (using the TIMIT [47] and NOISEX-92 [48]
databases). The mixture is shown using a magnitude STFT
representation in Figure 4. This particular case is interesting
because of the statistics of speech. We note that human speech
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[FIG4] An example of dynamic models for source separation. (a) The four spectrograms show the mixture and the extracted speech for
three different approaches. (b) A quantitative evaluation of the separation performance of each approach.

tends to have a smooth acoustic trajectory, which means that
there is a strong temporal correlation between adjacent time
frames. On the other hand, we also know that speech has a strong
discrete hidden structure that is associated with the sequence of
spoken phonemes. These properties make this example a good
candidate for demonstrating the differences between the methods
discussed so far and their effects on source separation.

We performed source separation using the three main
approaches that we covered in this
article. These include a static PLCA
model [44], a dynamic PLCA model
[34], and an N-HMM [37]. In all
three cases, we trained a model for
speech and a model for background
noise from training data. The dic-
tionary size for the noise was fixed
to 30 elements, whereas the speech
model had 60 dictionary elements
for PLCA and dynamic PLCA, and
40 states with ten dictionary ele-
ments each for the N-HMM. For the dynamic models, we
learned the temporal statistics as well. To separate a mixture
of test data of the sources, we fixed the learned W matrices for
both the speech and noise models and estimated their respect-
ive activations H using the context of each model. In Figure 4,
we show the reconstruction of speech using each model. We
also show a set of objective metrics that evaluate the quality of
separation in each case. These include the source-to-distortion
ratio (SDR), the source-to-interference ratio (SIR), and the
source-to-artifacts ratio (SAR) as defined in [45]. These results
are averaged over 20 different speakers to reduce biasing and
initialization effects.

For the static PLCA model, we see that there is a detectable
amount of visible suppression of the background noise, which
amounts to a modest SIR of about 5 dB. The dynamic PLCA
model on the other hand, by taking advantage of the temporal
statistics of speech, does a much better job resulting in more
than double the SIR. Note however that in the process of adher-
ing to the expected statistics, it introduces artifacts, which
result in a lower SAR as compared to the static model. The

N-HMM results in an even higher
SIR and a better SAR than the
dynamic PLCA model. This is
because the specific signal we are
modeling has a temporal structure
that is well described by a discrete
dynamic model as we transition
from phoneme to phoneme. By
constraining our model to only use
a small dictionary at each discrete
state, we obtain a cleaner estimate
of the source. An example of that
can be seen when comparing the separation results in Figure 4,
where unwanted artifacts between the harmonics of speech in
the dynamic PLCA example are not present in the N-HMM
example since the dictionary elements within a state cannot
produce such complex spectra.

WHICH MODEL TO USE?

Now, in addition to pondering on which divergence function is
the most appropriate to employ, we also have a decision to make
on which model is best fo,r a source separation approach. As
always, the answer depends on the nature of the sources in the
mixture. In general, the static model has found success
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in a variety of areas but does not take advantage of temporal
correlations. In domains where we do not expect a high degree
of correlations across time (e.g., short, burstlike sources) this
model works well, but in cases where we expect a strong sense
of continuity (e.g., a smooth source like a whale song), then a
continuous dynamic model would work better. Furthermore, if
we know that a source exhibits a behavior of switching through
different states, each with its own unique character (e.g.,
speech), then a model like the N-HMM is more appropriate
since it will eliminate the concurrent use of elements that
belong at different states and produce a more plausible recon-
struction. Of course, by using the generalized formulation we
present in this article, there is nothing that limits us from
employing different models concurrently. It is entirely plausible
to design a source separation system where one source is mod-
eled by a static model and other by a dynamic one, or even have
both being described by different kinds of dynamic models.
Doing so usually requires a relatively straightforward applica-
tion of the estimation process that we outlined earlier.

CLOSING THOUGHTS

In this article we presented a unifying look at source separation
approaches that employ nonnegative factorizations, and showed
how they can be easily extended to temporal models that are
either continuous or discrete. Using this methodology one can
come up with many more alternative formulations, e.g., factorial
HMMs, switching models, etc. and incorporate even more com-
plex priors to better model sources in mixtures. We hope that by
presenting this streamlined formulation we can help readers to
experiment with the many other possibilities in formulating
dynamic source separation algorithms and to help highlight rela-
tionships between a family of approaches that can initially seem
divergent despite their common roots.
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Kejun Huang and Nicholas D. Sidiropoulos

Putting Nonnegative
Matrix Factorization
to the Test

A tutorial derivation of pertinent Cramér—Rao

bounds and performance benchmarking

onnegative matrix factorization (NMF) is a useful
tool in a broad range of applications, from signal sep-
aration to computer vision and machine learning.
NMF is a hard (NP-hard) computational
problem for which various
approximate solutions have been devel- (
oped over the years. Given the -
widespread interest in NMF and
its applications, it is perhaps N\
surprising that the pertinent
Cramér—Rao lower bound
(CRLB) on the accuracy of
the nonnegative latent fac-
tor estimates has not been
worked out in the literature. L g_t‘_\_’__J -2
In hindsight, one reason may " Y
be that the required computa-
tions are more subtle than usual: the
problem involves constraints and ambi-

Source Separation and Applications
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algorithms, and they are reassuring in that the gap to optimality is
small in relatively sparse and low rank scenarios.

INTRODUCTION
NMF is the problem of (approximately) factor-
ing an element-wise nonnegative matrix
X ~ WH’, where W is /x K, H

[A is JXK, K<min(/,J), and

. N W=0, H=0 element-wise
. || o [, [2]. Symmetric NMF is
Kﬁ the problem of factoring a
NZR square matrix X ~ WW’,
where the /XK matrix
== W =0 element-wise. Both
general (asymmetric) and
symmetric NMF have a long

history and various applications;

they were more recently introduced

to the signal processing community, pri-

INGRAM PUBLISHING

guities that must be dealt with, and the Fisher

information matrix is always singular. We provide a concise
tutorial derivation of the CRLB for both symmetric NMF and
asymmetric NMF, using the latest CRLB tools, which should be of
broad interest for analogous derivations in related factor analysis
problems. We illustrate the behavior of these bounds with respect
to model parameters and put some of the best NMF algorithms to
the test against one another and the CRLB. The results help illumi-
nate what can be expected from the current state of art in NMF
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marily as means to restore identifiability in bilin-
ear matrix factorization/blind source separation (BSS).

The CRLB [3, Ch. 3] is the most widely used estimation
benchmark in signal processing. In many cases it is relatively
easy to compute, and it is asymptotically achievable by maxi-
mum likelihood (ML) estimators in high signal-to-noise ratio
(SNR) scenarios [3, pp. 164]. In other cases, there may be tech-
nical difficulties in deriving (or complexity issues in comput-
ing) the pertinent CRLB; but due to the central role of this
bound in signal processing research, work on developing CRLB
tools continues [4]-[7], thereby enlarging the set of problems
for which the CRLB can be used in practice.
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Interestingly, despite the popularity of NMF, the pertinent
CRLB on the latent factors has not been studied, to the best of our
knowledge. This is surprising, especially because ML NMF is NP-
hard, and it is natural to wonder how far from the best achievable
estimation performance existing (suboptimal) NMF algorithms
operate, under different scenarios. The missing link can perhaps
be explained by the fact that most NMF researchers come from dif-
ferent communities, and, even for someone versed in statistical
signal processing, the CRLB computations for NMF are subtle,
requiring modern tools, as we will see. The aim of this article is
threefold: first, to fill this gap; second, to put some of the leading
NMF algorithms to the test using the CRLB as a benchmark; and
third, to do so in an easily accessible way that can serve as a start-
ing point for analogous derivations in related constrained matrix
and tensor factorization problems.

FUNDAMENTALS

IDENTIFIABILITY

Rank-constrained matrix factorization is highly unidentifiable with-
out additional constraints. For any given factorization X = WH”
and any invertible Q, X = WH” with W =WQ" and H = HQ".
For symmetric factorization X = WW7, we need only further
require Q to be unitary. To force the factorization to be unique, one
must put additional constraints on the latent factors (the columns
of W and H), e.g., orthogonality in the case of singular value
decomposition (SVD). With W :=[ws1,---,wg], H:=[h,---, hg],
WH” =wihf + --- + wghk; hence we may permute the rank-one
outer products {wkh;f}szl, and/or scale wx by s > 0 and coun-
terscale hy by 1/s without changing WH”. These ambiguities are
inherent to NMF, requiring additional conventions (as opposed to
conditions) to resolve, similar to ordering the singular values in the
SVD. These inherent ambiguities are often inconsequential in
applications, and we will say that a model is essentially identifiable
or essentially unique when it can be identified up to these inher-
ently unresolvable ambiguities. Still, these ambiguities are reflected
in, and in fact dominate the CRLB, unless they are properly
accounted for. In this article, for asymmetric NME, we assume the
columns of W are scaled to sum up to one, i.e.,

i i i
dwi=Yywe=-=) wk=1 (1)
i=1 i=1 i=1

to overcome the scaling ambiguity. Once we get estimates of
W and H, denoted W and H, respectively, using any NMF algo-
rithm, we scale the columns of W to satisfy (1), and counter-
scale the corresponding columns of H. Then least-squares
matching of the columns of W to those of W is equivalent to
the so-called linear assignment problem [8], whose solution can
be found by the Hungarian algorithm [9], [10]. The MATLAB
code is available at http://www.mathworks.com/matlabcentral/
fileexchange/11609-hungarian-algorithm. In the symmetric
case, there is no scaling ambiguity, so we directly use the Hun-
garian algorithm to find the best column permutation.
Conditions for (essential) uniqueness of NMF (ensuring
that Q can only be a positively scaled permutation matrix in the

asymmetric case, or simply a permutation matrix in the symmet-
ric case) have previously been studied in [11]-[13], and are sum-
marized in [14]. In a nutshell, NMF is not always unique, and
pertinent conditions ensuring uniqueness are complicated (e.g., a
sufficient condition for uniqueness requires the conic hull of the
row vectors of W to be a superset of a specific second-order cone
[14]). The following corollary is a useful rule of thumb: if the suffi-
cient condition given in [14, Th. 4] is satisfied for the symmetric
NMF X = WW’, then

m the supports (sets of indices of nonzero entries) of any two

columns of W are not contained in one another.

m each column of W contains at least X — 1 zeros.

The same holds for both W and H in the asymmetric case
X = WH”. These two properties together are neither sufficient
nor necessary for uniqueness; in practice however, as shown
empirically in [14, Examples 3 and 4], it is very likely that NMF
will give an essentially unique solution if these two conditions are
both satisfied. Notice that if we set the zero entries of W(and H in
the asymmetric case) randomly, with density (number of nonzero
entries over the number of entries) less than (I — K)/I, then for
large I these conditions will be met with high probability.

ALGORITHMS

Owing to the NP-hardness of asymmetric NMF [15], numerous
approximation algorithms have been developed (cf. [16] and ref-
erences therein). On the contrary, there are relatively few algo-
rithms available for symmetric NMF (cf. [17] and references
therein and [14]). If a symmetric matrix admits an exact sym-
metric NMF (not necessarily low rank), it is called completely
positive (CP) [18]. It was recently proven that checking whether
a matrix is CP is also NP-hard [19].

He et al. [17] summarized existing algorithms for symmetric
NMF, which turned out being very similar (all based on so-called
multiplicative updates). They concluded that those algorithms
all belong to two basic kinds of algorithms: o« -symmetric NMF
and B-symmetric NMF, where o and 8 are tuning parameters
that moderate performance (e.g., the algorithm in [20] belongs
to o-symmetric NMF with o = 1/4, and the algorithm in [21]
belongs to B-symmetric NMF with g = 1/2). A very different
algorithm based on Procrustes rotation was proposed in [14].

The algorithms for asymmetric NMF can be broadly classi-
fied as optimization-based and geometry-based. The cost func-
tion in optimization-based methods usually measures the
quality of factorization, e.g., in terms of Euclidian distance, K-L
divergence, etc., and may include regularization terms that cap-
ture presumed properties of the sought latent factors, e.g., spar-
sity, smoothness, etc. None of these formulations is jointly
convex in W and H (WH is a bilinear form); but in most cases
they are conditionally convex over one factor given the other.
Most optimization-based methods therefore adopt an alternat-
ing optimization approach—a few algorithms employ all-at-
once (joint) parameter updates using gradient or Newton steps,
but these require careful parameter tuning to ensure conver-
gence to a local optimum. In the context of alternating opti-
mization algorithms, for the update of one factor, one can take a
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gradient direction but with a very conservative step-size such
that positivity is always satisfied; this can be reduced to a multi-
plicative update [22], [23]. Alternatively, a more aggressive step-
size can be used, but then a projection back to the nonnegative
orthant is required [24]. A less popular way is to take the sec-
ond-order derivative into account [25].

The most commonly used cost function is Euclidean distance.
One reason for this is that when one factor is fixed, and if we
ignore the nonnegativity constraint, the problem reduces to lin-
ear least squares, in which case we know the solution in closed
form. Therefore, a straightforward way is to simply replace the
negative entries of the least squares result with zeros in each
update [26]—which is, however, suboptimum, and not guaran-
teed to converge. Taking the nonnegativity constraints back into
consideration, the conditional update problem is nonnegative
least squares, which is convex but the solution is not in closed
form. Existing methods use quadratic programming [27], active
set [28], [29], and coordinate descent [30].

Geometry-based methods stem from the geometric interpreta-
tion of NMF by Donoho [11]. The basic idea is to find a simplicial
cone, with a certain number of extreme rays, that is contained in
the nonnegative orthant and contains all the data points. The
effectiveness of geometry-based methods is application dependent;
in cases where the so-called separability assumption [11] is rea-
sonable, the extreme rays of the simplicial cone can be found by
selecting from the data vectors per se [31], [32]. In other cases,
nonnegativity is not strictly required for one factor, and the aim is
to find the minimum volume simplicial cone that contains the
data points [33], [34]. A polytope approximation method [35]
seems to be more general compared to the others in this genre.

MODERN CRLB TOOLS

Suppose a set of measurements X is drawn from a probability
density function p(X;6) parameterized by 6, and our goal is
to estimate 6 given the realizations of X. If the regularity
condition Ex{Velnp (X;0)} = 0 is satisfied, then we can define
the Fisher information matrix (FIM) as Fp 2 Ex{[Vglnp (X;0)]
[Voln p (X;0)] T}, and the CRLB on the covariance matrix of any
unbiased estimator of 8 on the basis of X is the inverse of the FIM

CROSS-CHECKING THE CONSTRAINED CRLB

It is instructive to check the constrained CRLB for the special case
of affine g(6) via the CRLB under transformation [3, Sec. 3.8].
Suppose g(6) = GO — b = 0, and suppose U satisfies that it is an
orthonormal basis of the nullspace of G. Then any feasible 6 can
be represented by the unconstrained variable o as 6 = Ua + 6o =
a=U"(6 —60), where 6, is one feasible point. Thus,

Velnp(x;0) =U"VeInp(x;0) = F,=U"FU.

Now « is an unconstrained parameter to estimate, and the
CRLB of 6 via transformation of « is

(Vo) Fi (Vo) " =U(U'FU) U,

[3, Ch. 3], i.e., the difference between the estimator covariance
matrix and the inverse of the FIM is positive semidefinite. From
this, it follows that Ex{ll6 — 85} = tr{F5'}, where & is any unbi-
ased estimator of 6 on the basis of X. More detailed discussion of
the CRLB, including conditions under which there exists an esti-
mator that can attain the bound, can be found in classic textbooks
on estimation theory, e.g., [3, Ch. 3].

When the FIM is singular, Stoica and Marzetta [6] have shown
that we can use the Moore-Penrose pseudoinverse instead (in
hindsight, this can be deduced from the Schur complement gen-
eralized to singular matrices [36, p. 651]). The pseudoinverse is
still a lower bound, albeit it is generally looser, and more difficult
to attain. Important references on the CRLB for problems with
constraints on the unknown parameters, represented by equalities
and inequalities, include [4], [5], and [7]. Their results show that
inequality constraints do not affect the CRLB, whereas equality
constraints do. (Strictly speaking, inequalities do not affect the
CRLB if they are not equivalent to equalities. For example, the two
inequality constraints 6 > 0 and 6 < 0, are equivalent to 6 = 0.
See the definition of a regular point in [4] for details.) Suppose the
equality constraints are g(0) = 0, then we can define U as an
orthonormal matrix whose columns span the null space of
Vog(0), the Jacobian matrix of g(0), i.e., Vog(8)U =0 and
U”U = L. Then the constrained CRLB is modified as

Ex{lo- 618} = tr{UUTFU) U},

where the superscript “i” denotes the pseudoinverse. A simple
derivation of the CRLB under affine equality constraints is
given in “Cross-Checking the Constrained CRLB.”

CRAMER-RAO BOUNDS FOR NMF

In this section, we derive the CRLB for both symmetric and
asymmetric NMF, under an additive white Gaussian noise
(AWGN) model. Note that at low SNRs, Gaussian noise may gen-
erate observations having negative values, albeit the probability
that this happens is negligible at higher SNRs. Yet the same is
true for any additive noise model that is not one sided. A multi-
plicative noise model can capture two-sided perturbations with
nonnegative noise, but if the signal elements are > 1, then tak-
ing the logarithm one obtains a NMF model with two-sided
additive noise in the log domain. Hence the possibility of having
negative data is unavoidable. Furthermore, Gaussian noise is
implicitly assumed in all NMF applications where least squares
is adopted for model fitting—including, e.g., the hierarchical
alternating least squares (HALS) algorithm [30]. This is so
because the least squares criterion can be interpreted as ML
under a Gaussian noise model. Beyond this, it is interesting to
note that for general signal models observed in independent
and identically distributed (i.i.d.) additive noise, the CRLB
under any noise distribution that possesses everywhere continu-
ous first and second derivatives is the same as the correspond-
ing Gaussian CRLB up to a constant multiplicative factor that
depends on the noise distribution [37]. Hence, our results are
more general than meets the eye.
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IDENTIFIABILITY, FIM, AND CRLB FOR THE SCALAR CASE

Before we delve into FIM and CRLB computations for NMF, it is
instructive to consider the scalar case first, particularly
x=wh+n, where w and h are nonnegative reals. This is
clearly unidentifiable unless, e.g., we fix w = 1. Then this is
equivalent to the linear estimation problem x = h+n, and if n
is Gaussian with variance o2, the CRLB is 0. But for now, let us
treat it as an estimation problem with two unknown parameters
[wh]’, with the constraint w = 1. Then the FIM is

= _1[h*> wh]_ 1 [h*h
=57 lhw w2l 62 lh 1l

while u=[01]" spans the null space of the Jacobian of the
equality constraint. Therefore, the CRLB is

00
0 o?

u(uTFW,hu)’1uT:[

which is consistent with what we get by treating it as a single
parameter problem. The symmetric scalar model x =w?+n is
sign-unidentifiable, but with the nonnegativity constraint w > 0
it becomes identifiable. For n zero-mean Gaussian with variance
o2, it is easy to compute the Fisher information for w, which is
Fu=-2 w2,
o

Notice that the Fisher information is zero if w=0, and as a

special case of pseudoinverse, 0" = 0. Since the parametric con-

straint is an inequality, the CRLB is unaffected according to [4], so
for any unbiased estimator w,

As a warm-up, a derivation of the CRLB for scalar NMF is pre-
sented in “Identifiability, FIM, and CRLB for the Scalar Case.”

A CRLB FOR SYMMETRIC NMF
Consider the 7/ x I symmetric matrix X generated as

X =WW"+N, 2)

where W is /XK, W= 0, and the elements of N are drawn
from an i.i.d. Gaussian distribution with zero-mean and vari-
ance o2. The IK x IK Fisher information matrix for W is

Fu = %(W’W@ I+ (Ix®W)P (Ix ®W)7), 3)

where I; is the identity matrix of size /X I, and likewise for Ix
and all the boldface I with a subscript indicating its size in the
rest of the article, “®” indicates matrix Kronecker product [38,
Sec. 10.2.1], and P is a specific permutation matrix; see the
supporting supplementary material that accompanies this arti-
cle in IEEE Xplore. Here the constraints are W > 0, which do
not affect the CRLB. In addition, Fw is rank deficient (see the
supporting supplementary material), so we need to compute its
pseudoinverse to get the CRLB.

In practice, when the size of W is large, we are usually inter-
ested in the overall reconstruction error |W —W]|f, and the

0 w=0,

Ex{(W—W)Z}Z|O'T2W2 w £ 0.

This is illustrated in Figure S1. Notice that the pseudoinverse
of the FIM is a legitimate bound, albeit far from being attaina-
ble when w = 0. The situation is not as bad in the matrix
case—in fact, we will see that existing algorithms come close to
attaining the optimistic CRLB obtained from the pseudoin-
verse, under certain conditions.

1,600

1,400

1,200

00G000

1,000

800

pinv(FIM) at w =

0 / s o
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

600 %
\

400

e

200

[FIGS1] The CRLB for scalar symmetric NMF.

CRLB implies that Ex{|W— W/} > tr{Fj}. We also look at
the relative error, normalized by |W|?, so that the scale and
the size of W are taken into account. Thus, the normalized
aggregate CRLB for symmetric NMF is given by

Ex{W-WIi) | tr(Fl)
Wi Wi

(4)

For A =1, the symmetric decomposition is unique even
without nonnegativity constraints, and the FIM is invertible.
The CRLB can be calculated in closed form, as provided in
“Identifiability, FIM, and CRLB for the Symmetric Vector Case.”

Figure 1 illustrates how this normalized CRLB changes as
a function of the outer dimension / (the number of rows of
W), the inner dimension K (the number of columns of W),
and the density (the amount of nonzero entries). The pattern
of (non)zeros in W were drawn from an i.i.d. Bernoulli distri-
bution, and the nonzero entries of W were drawn from an
i.i.d. exponential distribution. In Figure 1(a), the inner dimen-
sion is fixed to be ten, while the outer dimension increases
from 50 to 150, for different densities; in (b), the outer dimen-
sion is fixed at 100, while the inner dimension increases from
five to 25, with different densities. In all cases, the SNR
WW” [}

I
SNR = 10log1o o’
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IDENTIFIABILITY, FIM, AND CRLB FOR THE
SYMMETRIC VECTOR CASE
Consider the vector case

X=ww’ +N.

Obviously, this problem is also identifiable if N = 0, apart from
a sign ambiguity. We do not need to impose nonnegativity con-
straints on all the elements of w to resolve the ambiguity, but
only on one element, e.g., w1 = 0. The FIM can be computed as
a special case of the formula (3), whose derivation can be found
in the supplementary material in IEEE Xplore, yielding

Fo= (WPl + ww?),
o

which is nonsingular for w # 0, and we can calculate its
inverse in closed form, using the matrix inversion lemma [38],

1 _ o -2p _ 1 -4 T
R’ = S {lwi 2= Diwi tww ).

Thus,

Ex{lw-w|} _ tr{fs} _ o2 1 4
= = == [wi™.
wp ~ 2\'" 2™

[l

Notice here that italic / is the dimension of w (not to be con-
fused with the identity matrix ).

is fixed at 10 dB. Each CRLB with the specified size and den-
sity is calculated as the average of 100 Monte Carlo draws of
W. Note how the density of W affects the CRLB—the sparser
the latent factors, the lower the CRLB. Not surprisingly, the
CRLB increases as the ratio between the outer dimension and
the inner dimension decreases.
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CRLB FOR ASYMMETRIC NMF
Consider the 7xJ asymmetric matrix generated as

X =WH"+N, (5)

where W is /XK, W=0, His JxK, H=0, and the ele-
ments of N are drawn from an i.i.d. Gaussian distribution with
zero-mean and variance o?. The (/+J)Kx (I+J)K Fisher
information matrix of W and H is (cf. supporting supplemen-
tary material in IEEE Xplore, which also shows that Fwu is
rank deficient)

_ 1 H'H®I,
T oIk ®@H)P(Ix®W)

(Ixk@W)P(Ix®@H)"

WW®I, (6)

Fwn

Here, the constraints on the parameters are W>0, H> 0,
and (1). In calculating the CRLB, we only need to take into
account the equality constraints. The Jacobian of the equality
constraints over W is

Zz{:lw“_l

z;zlwm’_l

where 1 is the all 1 vector with dimension /. Upon defining

Vieew) =1x®17,

Vi:%(zel_ieﬂrl), V=[vi va -~ vi1], (7)
1T

=1

we have V71 = 0 and V'V = I,_1. Therefore, let

[x®V 0
U= [ 0 Ikl
satisfying
1{:1 wia—1
: U=0, U'U=1I¢-1k.
vec(W) I
V[vec(ﬂ)] i=1 wix—1
Wis 100 x K
0.2 .

—©— Density 0.5
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—>— Density 0.7
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[FIG1] (a) and (b) The symmetric NMF CRLB—how the outer dimension, inner dimension, and density affects the CRLB, for SNR=10 dB.
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Using the FIM Fw,u and the null basis U above, we obtain the
CRLB for W and H as U(U"FwyU)"U”.

Tn practice, the reconstruction errors | W — W|f» and || H — F |[>
are usually assessed separately since W and H model different
entities (e.g., loadings and scores). Partition (U Fw,xU) " into blocks

i [P @2]

T
(U'Fwul)' = o ®s

where @, is /K X IK and ®3 is JK X JK. Then
Ex(|W-WI(F o tr{(lx®V) 1 (1x®V)")

> , (8a)
W , W
Ex{{H-H[} _ tr{®s)
> , (8b)
IH IH

with similar normalization as in the symmetric case.

Similar to the symmetric case, for A =1 the asymmetric
decomposition is essentially unique, and the matrix we need to
pseudoinvert for calculating the CRLB is actually nonsingular. The
closed form CRLB for this case is given in “Identifiability, FIM, and
CRLB for the Asymmetric Vector Case.”

Figure 2 plots the CRLB for asymmetric NMF for various sizes
and densities. Figure 2(a) and (b) shows the CRLB for W, which is
constrained such that each column sums up to one, while (c) and
(d) show the CRLB for H, which does not have any scaling con-
straints. Figure 2(a) and (c) shows the CRLB when the size of W is
fixed at 100 X 10, and the number of rows in H increases from
50 to 150, with different densities. Figure 2(b) and (d) shows the
CRLB when the number of rows in W and H is fixed at 100 and
120, respectively, and the number of columns in W and H
increases from five to 25, with different densities. As usual, SNR

| WH [

SNR = 101log1o 7 Jo?

is fixed at 10 dB. Each CRLB point for a specified size and density is
calculated as the average of 100 Monte Carlo draws. Figure 2(c)

may seem curious: it shows the normalized CRLB with respect to
H when we fix W and gradually increase the number of rows of
H, and we observe that the normalized CRLB does not change
very much. It slowly increases as the outer-dimension of H
increases, as opposed to the normalized CRLB for W, which seems
to decrease exponentially. This is because the block in the FIM
Fw.i that corresponds to H is W/W ® I, where the dimension of
I, changes according to the dimension of H, which contributes
the most to the block of the CRLB that corresponds to H. The
W’W part is fixed, and the size of I, grows approximately linearly
with | H %, which explains intuitively why the normalized CRLB
for H does not change very much. Apart from that, the overall ten-
dency of the CRLB versus the size is similar to the symmetric case:
it goes down as one of the outer dimensions increases, and it goes
up as the common inner dimension increases, as intuitively
expected from “equations versus unknowns” considerations. Note,
however, that here as the number of observations increases, so
does the number of unknown parameters. For example, if a new
column is appended to X then a new row is appended to H as
well, and the CRLB may worsen, depending on the new entries and
other factors [e.g., the way we resolve the scaling ambiguity; see
Figure 2(a) and (c)].

What is more, the sparser W and H, the lower the CRLB
in all cases.

PUTTING NMF ALGORITHMS TO THE TEST

SYMMETRIC NMF

We compared three algorithms for symmetric NMF with the
CRLB derived in the section “Cramer—Rao Bounds for NMF.”
These are o-symmetric NMF and S-symmetric NMF with
a=pB=10.99 [17], and the algorithm recently proposed in [14].
The true W is generated such that a certain proportion of its
entries are randomly set to zero, and the rest are drawn from an
i.i.d. exponential distribution. Using the generative model (2) the

IDENTIFIABILITY, FIM, AND CRLB FOR THE ASYMMETRIC VECTOR CASE

For K= 1, i.e,, when w and h are vectors, asymmetric factori-
zation is identifiable from noiseless (rank-one) data, similar to
the symmetric case. There is still a scaling issue, and we can
resolve this by fixing the scaling of one factor, e.g., setting
17w = 1 as we did in the matrix case. Then, using (6), the FIM is

F _ 1 [ihPL wh”
"o hw' [ wPL)

The corresponding U matrix is
vV o
v=[g o}

with the same V as defined in (7). Let us first try to calculate

where ®; and ®; are the inverse of the Schur complement [36,
p.650] of || h|*1;-1 and &2 w |1, respectively, inU"Fu,nU, e,

2
o1-o(1nfrn- - [B!

=il
~V'ww’V |
[l

Ty |12 -1
;= O'Z(HWHZD— H‘H’h"‘\"ZH hhT> .

Again, the inverses can be calculated in closed form by using
the matrix inversion lemma. Using the Pythagorean theorem
lwiP =VTw P+ (1)/(1)] 17w (details omitted), we obtain

Ex{lw—w|} _ tr{vo,V7} _ w2 h[20— 1+ (VW)

the following inversion [w P [w P
. hIPL . Viwh’|' [© © Ex{lh—h[} _ tr{®s} P
R Al el B e T 1 i IR LTR Y (A8
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[FIG2] (a)-(d) The asymmetric NMF CRLB—how the outer dimensions,

resulting X will not be symmetric, so we use (1/2)(X + X7), since
all algorithms are designed specifically for symmetric nonnegative
matrices. Reference [17] did not provide a termination criterion,
so both a-symmetric NMF and 3-symmetric NMF are left to run
for a large number of iterations (10%), to ensure the best possible
results. For the algorithm in [14], we used the termination criter-
ion described in [14, Fig. 4] with the tolerance set to machine pre-
cision eps. We used a single draw of W for each (size, density)
combination reported. Under various SNRs, the normalized
squared error (| W —W?%[)/(|W|2) is calculated and averaged
over 100 Monte Carlo tests, so that we can get a better approxima-
tion to the expected error Ex {(| W —W [:)/(| W[2)}.

The results are plotted in Figure 3, where (a) shows the nor-
malized squared error benchmarked by the CRLB, (b) shows the
(aggregate) bias for each estimate, defined as

) 9

F

T ~
bias = H%z (W—W,)
=1

where 7' is the number of trials, in this case 100, and (c) shows
the model fitting error for each algorithm. The dashed lines in (c)
show the total noise power; a good approximation should yield a
fitting error close to the noise power. The plots in the left column
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°©
w
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©
=

inner dimension, and density affects the CRLB, for SNR=10 dB.

show a case where the symmetric NMF problem is relatively
“overdetermined,” since the inner dimension (30) is small com-
pared to the outer dimension (200), and the latent factors are
quite sparse (density 0.5). The two other columns show more dif-
ficult cases—low rank (30 versus 200) but relatively dense latent
factors for the middle column, not-so-low rank (50 versus 100)
but relatively sparse latent factors for the right column. Recall the
discussion in the section “Fundamentals” for the rule of thumb
for when identifiability can be expected—the middle and right col-
umns illustrate cases where this requirement is barely satisfied.

In all cases, the aggregate bias is small and goes to zero as
SNR increases, indicating that the estimates provided by these
algorithms are asymptotically unbiased, and we can use the
CRLB to approximately bound the performance. Generally
speaking, a/p-symmetric NMF slightly outperform the Pro-
crustes rotation algorithm [14] in the low SNR regime but fail
to reach the CRLB in the high SNR regime. The algorithm in
[14] exhibits classic threshold behavior—for SNR higher than
some threshold, the mean square error (MSE) stays close to the
CRLB. The reason is that it employs eigenanalysis to estimate
the column space of W as a first step and then applies Procrus-
tes rotations in the estimated subspace. On the other hand, both
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[FIG3] (a) The normalized squared error of three existing symmetric NMF algorithms versus the CRLB; similarly, (b) shows the
(aggregate) bias, and (c) shows the fitting error.

symmetric NMF variants are modifications of the multiplicative m projected gradient (PG) proposed by Lin [24] (the MATLAB

update algorithm using || X — WWT |5 (Gaussian log-likelihood) as code can be downloaded from http://www.csie.ntu.edu.

the objective, so that it is not surprising that they perform better tw/~cjlin/nmf/index.html)

in the low-SNR regime. We can also see this from Figure 3(b), as m fast HALS proposed by Cichocki and Phan [30, Algor. 2]

the biases of o/ 8-symmetric NMF are lower than that of the Pro- m block principle pivoting (BPP) alternating nonnegative least

crustes method under low SNR. squares using BPP proposed by Kim and Park [29] (the MAT-
LAB code can be downloaded from http://www.cc.gatech.

ASYMMETRIC NMF edu/~hpark/nmfsoftware.php).

In this section, we compare several asymmetric NMF algorithms For all algorithms, we used the optimality condition in [39] to

aiming to minimize the Euclidian distance. Notice that the data check for termination, i.e., calculate

we synthetically generated were corrupted by additive i.i.d. Gauss-

i i ing Euclidian dista the objecti tuall

1§n noise, so usmg. ucli 1aq .1s nce as .e objective actually W ((X—WH') H)

gives us the ML estimate. This is why algorithms that use other T r

. . - . H® (X' —HW")W)

divergence functions as the objective were not considered here.

The algorithms tested are:
m multiplicative update (MU) proposed by Lee and Seung [22] in each iteration and terminate when it is smaller than the
m alternating least squares (ALS) proposed by Berry et al. [26] machine precision eps, with a maximum number of iteration set as

F
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[FIG4] In (a), the normalized squared error for W using various asymmetric NMF algorithms versus the CRLB is shown; similarly,

(b) shows the (aggregate) bias for W and (c) the fitting error.

10*. In the expression, ® stands for the Hadamard (element-wise)
matrix product. Similar to the symmetric case, the entries of W
and H were generated such that a certain proportion of them are
randomly set to 0, and the rest are drawn from an i.i.d. exponential
distribution. Then the columns of W are scaled to sum up to one.
Three tests were conducted and illustrated in Figures 4 and 5
for W and H, respectively—low-rank and sparse latent factors on
the left, low rank but moderately dense in the middle, and an
unbalanced case (/ much larger than /) where the rank is not
small compared to the smaller outer dimension, with density set
relatively small to ensure identifiability. Similar to Figure 3,
Figures 4(a) and 5(a) show the normalized squared error for each
algorithm benchmarked by the CRLB, Figures 4(b) and 5(b) show

the (aggregate) bias of W as defined in (9), and similarly for H,
and Figure 4(c) shows the fitting error for each algorithm.

As we can see from Figures 4(b) and 5(b) the biases are gener-
ally small and approach zero with increasing SNR, indicating that
we can use the CRLB to approximately bound performance. In all
three cases, HALS, BPP, and PG were able to provide a good esti-
mate with MSE close to the CRLB, under all SNRs tested. On the
other hand, MU and ALS are not guaranteed to work well even
under very high SNR. All methods separate the variables into
blocks, and HALS, BPP, and PG aim to find the conditionally opti-
mal point before moving to the next block, whereas the updates of
MU and ALS cannot guarantee this. Interestingly, in the “well-
posed” case shown in the left columns of Figures 4 and 5, ALS
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[FIG5] (a) The normalized squared error for H using various asymmetric NMF algorithms versus the CRLB; similarly (b) shows the

(aggregate) bias for H.

gave similar results to those three methods, indicating that if we
know a priori that the latent factors are both low rank and sparse,
it is worth trying ALS, since its updates rules only require linear
least-squares followed by simple projection to the nonnegative ort-
hant, which is much simpler than the rest.

RECAP AND TAKE-HOME POINTS

WHAT WE LEARNED

NMF entails a singular FIM as well as constraints and ambiguities
that must be dealt with in the computation of the pertinent
CRLB. We learned how to tackle those and used the results to
benchmark and develop insights on what can be expected from
some of the best available algorithms. For symmetric NMF, the
CRLB can be approached using the Procrustes rotation algorithm
[14] in the high SNR regime, or o/p-symmetric NMF in low
SNR cases. For asymmetric NMF, the best-performing algorithms
were able to give results with MSE close to the CRLB. In both
cases, approaching the CRLB is possible when the signal rank is
small and the latent factors are not dense, i.e., when there is a
small number of latent components whose loadings contain suffi-
ciently many zeros. This is quite remarkable given that the CRLB
with a singular FIM is generally unattainable; see Figure S1.

There may be room for improvement in cases involving moderate
SNR and/or moderate rank and/or moderate density.

WHY IT IS IMPORTANT

Beyond NMF, the approach and techniques we learned can be used
to facilitate analogous derivations for related factor analysis prob-
lems. For example, the FIMs provided here can be applied to more
general bilinear matrix factorizations, e.g., using other types of
constraints on W. The FIM will remain the same, but the U
matrix will be different. Also, we can exploit a basis of the
nullspace of the FIM to reduce the complexity of computing its
pseudoinverse, and this idea is more broadly applicable to other
bilinear matrix factorizations. The results can also be extended
toward, e.g., nonnegative tensor factorization.

SUPPLEMENTARY MATERIAL

The supplementary material that is available through IEEE
Xplore contains detailed FIM derivations, as well as auxiliary
results on FIM rank and efficient numerical computation of its
pseudoinverse. These results reduce the complexity of comput-
ing the CRLB from O ((IK)®) to O(IK°) in the symmetric case,
and from O(+J)K)% to O((I+J)K°) in the asymmetric
case (recall 7, J > K, and usually 7, J > K). The supplementary
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material also includes streamlined and optimized MATLAB code
for computing these CRLBs.
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Convexity Iin
Source Separation

Models, geometry, and algorithms

ource separation, or demixing, is the process of
extracting multiple components entangled within a
signal. Contemporary signal processing presents a
host of difficult source separation problems, from
interference cancellation to background subtraction,
blind deconvolution, and even dictionary learning. Despite the
recent progress in each of these applications, advances in high-
throughput sensor technology place demixing algorithms
under pressure to accommodate extremely high-dimensional
signals, separate an ever larger number of sources,
and cope with more sophisticated signal
and mixing models. These difficulties
are exacerbated by the need for
real-time action in automated
decision-making systems.
Recent advances in con-
vex optimization provide a
simple framework for effi-
ciently solving numerous
difficult demixing prob-
lems. This article provides
an overview of the emerging
field, explains the theory that
governs the underlying procedures,
and surveys algorithms that solve them

Source Separation and Applications

IMAGE LICENSED BY

and we wish to determine the component signals x¢ and yo. This
simple model appears in many guises. Sometimes, superimposed
signals come from basic laws of nature. The amplitudes of electro-
magnetic waves, for example, sum together at a receiver, making
the superposition model (1) common in wireless communica-
tions. Similarly, the additivity of sound waves makes superposition
models natural in speech and audio processing.

Other times, a superposition provides a useful, if not literally
true, model for more complicated nonlinear phenomena. Many
images can be modeled as the sum of constituent fea-

tures—think of stars and galaxies that sum to
create an image of a piece of the night

sky [1]. In machine learning,
superpositions can describe hid-

> den structure [2], while in

I
. [ statistics, superpositions can
N b
o \ K’\ model gross corruptions to
54
\ ¢

data [3]. These models also
appear in texture repair (4],
graph clustering [5], and
line-spectral estimation [6].
A conceptual understanding
of demixing in all of these applica-
tions rests on two key ideas. Natural
signals in high dimensions often cluster

INGRAM PUBLISHING

efficiently. We aim to equip practitioners with a
toolkit for constructing their own demixing algorithms that
work, as well as concrete intuition for why they work.

FUNDAMENTALS OF DEMIXING

The most basic model for mixed signals is a superposition model,
where we observe a mixed signal zo € R? of the form

Zo=Xxo+ Yo, (1)

Digital Object Identifier 10.1109/MSP.2013.2296605
Date of publication: 7 April 2014

around low-dimensional structures with few

degrees of freedom relative to the ambient dimension [7].
Examples include bandlimited signals, array observations from seis-
mic sources, and natural images. By identifying the convex functions
that encourage these low-dimensional structures, we can derive con-
vex programs that disentangle structured components from a signal.
Of course, effective demixing requires more than just struc-
ture. To distinguish multiple elements in a signal, the components
must look different from one another. We capture this idea by say-
ing that two structured families of signal are incoherent if their
constituents appear very different from each other. While demix-
ing is impossible without incoherence, sufficient incoherence

1053-5888/14/$31.0002014IEEE
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typically leads to provably correct demixing procedures. The two
notions of structure and incoherence above also appear at the core
of recent developments in information extraction from incomplete
data in compressive sensing and other linear inverse problems [8],
[9]. The theory of demixing extends these ideas to a richer class of
signal models, and it leads to a more coherent theory of convex
methods in signal processing.

While this article primarily focuses on mixed signals drawn
from the superposition model (1), recent extensions to nonlinear
mixing models arise in blind deconvolution, source separation,
and nonnegative matrix factorization [10]-[12]. We will see that
the same techniques that let us demix superimposed signals reap-
pear in nonlinear demixing problems.

THE ROLE OF CONVEXITY

Convex optimization provides a unifying theme for all of the demix-
ing problems discussed above. This framework is based on the idea
that many structured signals possess corresponding convex func-
tions that encourage this structure [9]. By combining these func-
tions in a sensible way, we can develop convex optimization
procedures that demix a given observation. The geometry of these
functions lets us understand when it is possible to demix a superim-
posed observation with incoherent components [13]. The resulting
convex optimization procedures usually have both theoretical and
practical guarantees of correctness and computational efficiency.

To illustrate these ideas, we consider a classical but surpris-
ingly common demixing problem: separating impulsive signals
from sinusoidal signals, called the spikes and sines model. This
model appears in many applications, including star—galaxy separa-
tion in astronomy, interference cancellation in communications,
inpainting and speech enhancement in signal processing [1], [14].

While individual applications feature additional structural
assumptions on the signals, a simple low-dimensional signal
model effectively captures the main idea present in all of these
works: sparsity. A vector xp € R? is sparse if most of its entries
are equal to zero. Similarly, a vector yo e R? is sparse-in-
frequency if its discrete cosine transform (DCT) Dy, is sparse,
where D € R™“ is the matrix that encodes the DCT. Sparse vec-
tors capture impulsive signals like pops in audio, while sparse-in-
frequency vectors explain smooth objects like natural images.
Clearly, such signals look different from one another. In fact, an
arbitrary collection of spikes and sines is linearly independent or
incoherent provided that the collection is not too big [14].

Is it possible to demix a superimposition zo = xo + yo of spikes
and sines into its constituents? One approach is to search for the
sparsest possible constituents that generate the observation zo

(X, §]:= arg min{” xlo+ ADyly:z0=x+y}, @)
x,yeRd

where the 0p-“norm” measures the sparsity of its input, and
A > 0 is a regularization parameter that trades the relative spar-
sity of solutions. Unfortunately, solving (2) involves an intractable
computational problem. However, if we replace the 0y penalty
with the convex ¢;-norm, we arrive at a classical sparse approxi-
mation program [14]

&, §1:= argmin{| x|, + M| Dyl,: 20 = x + 4} @)
x,yERd

This key change to the combinatorial proposal (2) offers numer-
ous benefits. First, the procedure (3) is a convex program, and a
number of highly efficient algorithms are available for its solution.
Second, this procedure admits provable guarantees of correctness
and noise-stability under incoherence. Finally, the demixing pro-
cedure (3) often performs admirably in practice.

Figure 1 illustrates the performance of (3) on both a synthetic
signal drawn from the spikes-and-sines model above, as well as on
a real astronomical image. The resulting performance for the basic
model is quite appealing even for real data that mildly violates the
modeling assumptions. Last but not least, this strong baseline per-
formance can be obtained in fractions of seconds with simple and
efficient algorithms. The combination of efficient algorithms, rig-
orous theory, and impressive real-world performance are hall-
marks of convex demixing methods.

DEMIXING MADE EASY

This section provides a recipe to generate a convex program that
accepts a mixed signal zo =xo+yo and returns a set of demixed
components. The approach requires two ingredients. First, we must
identify convex functions that promote the structure we expect in
xo and yo. Second, we combine these functions together into a
convex objective. This simple and versatile approach easily extends
to multiple signal components and undersampled observations.

STRUCTURE-INDUCING CONVEX FUNCTIONS

We say that a signal has structure when it has fewer degrees of free-
dom than the ambient space. Familiar examples of structured
objects include sparse vectors, sign vectors, and low-rank matrices.
It turns out that each of these structured families have an associ-
ated convex function, called an atomic gauge, adapted to their spe-
cific features [9].

The general principle is simple. Given a set of atoms A c R,
we say that a signal x € R? is atomic if it is formed by a sum of a
small number of scaled atoms. For example, sparse vectors are
atomic relative to the set of standard basis vectors because every
sparse vector is the sum of just a few standard basis vectors. For a
more sophisticated example, recall that the singular value decom-
position implies that low-rank matrices are the sum of a few rank-
one matrices. Hence, low-rank matrices are atomic relative to the
set of all rank-one matrices.

We can define a function that measures the inherent complex-
ity of signals relative to a given set A. One natural measure is the
fewest number of scaled atoms required to write a signal using
atoms from A, but unfortunately, computing this quantity can be
computationally intractable. Instead, we define the atomic gauge
| x|, of asignal x € R by

[ x|lq:= inf{?n >0:x€e k-conv(ﬂ)},

where conv(A) is the convex hull of A. In other words, the
level sets of the atomic gauge are the scaled versions of the con-
vex hull of all the atoms A [Figure 2(a)].
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[FIG1] (a)—(c) We obtain perfect separation of spikes from sinusoids by solving (3). The original signal is perfectly separated into
(b) its sparse component and (c) its DCT-sparse component. (d)-(f) We also achieve high-quality star-galaxy separation by solving

(3) with an astronomical image. (d) The original is separated into (e) a starfield corresponding to a nearly sparse component and
(f) a galaxy corresponding to a nearly two-dimensional DCT-sparse component. (Galaxy image courtesy of NASA/JPL-Caltech and

used with permission.)

By construction, atomic gauges are “pointy” at atomic vec-
tors. This property means that most deviations away from the
atoms result in a rapid increase in the value of the gauge, so
that the function tends to penalize deviations away from simple
signals [Figure 2(b)]. The pointy geometry plays an important
role in the theoretical understanding of demixing, as we will see
when we discuss the geometry of demixing below.

A number of common structured families and their associ-
ated gauge functions appear in Table 1. More sophisticated
examples include gauges for probability measures, cut matrices,
and low-rank tensors. We caution, however, that not every
atomic gauge is easy to compute, and so we must take care to
develop tractable forms of atomic gauges [9], [16]. Surprisingly,
it is sometimes easier to compute the value of atomic gauges
than it is to compute the (possibly nonunique) decomposition
of a vector into its atoms [12]. We will return to the discussion
of tractable gauges when we discuss demixing algorithms below.

THE BASIC DEMIXING PROGRAM

Suppose that we know the signal components xo and yo are
atomic with respect to the known atomic sets Ay and A,. In
this section, we describe how to use the atomic gauge functions
[+ llm, and || - |5, defined above to help us demix the compo-
nents xo and yo from the observation zy.

lxll, > 1

(b)

[FIG2] (a) An atomic set A, consisting of five atoms (stars). The
"unit ball” of the atomic gauge || - |4 is the closed convex hull of
A (heavy line). Other level sets (dashed lines) of the gauge are
dilations of the unit ball. (b) At an atom (star), the unit ball of

| - |l# tends to have sharp corners. Most perturbations away
from this atom increase the value of || - |4, so the atomic gauge
often penalizes complex signals that are comprised of a large
number of atoms.

Our intuition developed above indicates that the values
[ x0ll, and [|yo 4, are relatively small because the vectors xo
and yo are atomic with respect to the atomic sets Ay and A, .
This suggests that we search for constituents that generate the
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[TABLE 1] EXAMPLE SIGNAL STRUCTURES AND THEIR ATOMIC
GAUGES [9], [15]. THE TOP TWO ROWS CORRESPOND TO
VECTORS WHILE THE BOTTOM THREE REFER TO MATRICES.
THE VECTOR NORMS EXTEND TO MATRIX NORMS BY

TREATING m X n MATRICES AS LENGTH-mn VECTORS. THE
EXPRESSION || x ||, DENOTES THE EUCLIDEAN NORM OF THE
VECTOR x, WHILE oi(X) RETURNS THE iTH SINGULAR VALUE
OF THE MATRIX X.

STRUCTURE ATOMIC SET ATOMIC GAUGE | - 4
SPARSE SIGNED BASIS 01 NORM

VECTOR VECTORS {x e} lxll, =, 1l
BINARY SIGN SIGN VECTORS { 1)¢ 0. NORM

VECTOR [l = maxi| x|
LOW-RANK RANK-1 MATRICES SCHATTEN 1-NORM
MATRIX {wtlluvtll-= 1} 1 X1ls, =22, 00 (%)
ORTHOGONAL ORTHOGONAL SCHATTEN oo -NORM
MATRIX MATRICES {0:00" = I} 1 X]s. =010
ROW-SPARSE MATRICES WITH ROW- ¢; NORM
MATRIX ONE NONZERO 11X 1L,

ROW {eiv':||v |, =1}

observation and have small atomic gauges. That is, we deter-
mine the demixed constituents X, by solving

& 9= arg min{| x g, + Mg lln, 6 +9 = 20} @)
The parameter A > 0 negotiates a tradeoff between the relative
importance of the atomic gauges, and the constraint x +y =z
ensures that our estimates x and y satisfy the observation
model (1). The hope, of course, is that * =xy and § = yo, so
that the demixing program (4) actually identifies the true com-
ponents in the observation zj.

The demixing program (4) is closely related to linear inverse
problems and compressive sampling (CS) [8], [9]. Indeed, the
summation map (x, y) — x +y is a linear operator, so demixing
amounts to inverting an underdetermined linear system using
structural assumptions. The main conceptual difference between
demixing and standard CS is that demixing treats the components
xo and yo as unrelated structures. Also, unlike conventional CS,
demixing does not require exact knowledge of the atomic decom-
position, but only the value of the gauge.

The only link between the structures that appears in our rec-
ipe comes through the choice of tuning parameter A in (4),
which makes these convex demixing procedures easily adaptable
to new problems. In general, determining an optimal value of A
may involve fine-tuning or cross-validation, which can be quite
computationally demanding in practice. Some theoretical guid-
ance on explicit choices of the regularization parameter appears
in [2], [3], and [17].

EXTENSIONS

There are many extensions of the linear superposition model (1).
In some applications, we are confronted with a signal that is only
partially observed—compressive demixing. In others, we might
consider an observation with additive noise, for instance, or a sig-
nal with more than two components. The same ingredients that

we introduced above can be used to demix signals from these
more elaborate models.

For example, if we only see z9 = ®(xo+yo), a linear map-
ping of the superposition, then we simply update the consistency
constraint in the usual demixing program (4) and solve instead

e gli=arg min{| ¢, + A la, <@+ 9) =20} (5)
xyeR
Some applications for this undersampled demixing model
appear in image alignment [18], robust statistics [5], and graph
clustering [19].

Another straightforward extension involves demixing more
than two signals. For example, if we observe zy = xo+ yo + wo,
the sum of three structured components, we can determine the
components by solving

&, §, @):= arg min{| x|, + A1) g |, + A2,
xywerd
:x+y+w=zo}, (6)

where A, is an atomic set tuned to wy, and as before, the param-
eters A; > 0 trade off the relative importance of the regularizers.
This model appears, for example, in image processing applications
where multiple basis representations, such as curvelets, ridgelets,
and shearlets, explain different morphological components [1].
Further modifications along the lines above extend the demixing
framework to a massive number of problems relevant to modern
signal processing.

GEOMETRY OF DEMIXING

A critical question we can ask about a demixing program is “When
does it work?” Answers to this question can be found by studying
the underlying geometry of convex demixing programs. Surpris-
ingly, we can characterize the success and failure of convex demix-
ing precisely by leveraging a basic randomized model for
incoherence. Indeed, the geometric viewpoint reveals a tight char-
acterization of the success and failure of demixing in terms of geo-
metric parameters that act as the “degrees of freedom” of the
mixed signal. The consequences for demixing are intuitive: demix-
ing succeeds if and only if the dimensionality of the observation
exceeds the total degrees of freedom in the signal.

DESCENT CONES AND THE STATISTICAL DIMENSION

Our study of demixing begins with a basic object that encodes the
local geometry of a convex function. The descent cone D (A, x)
at a point x with respect to an atomic set A c R? consists of the
directions where the gauge function | - ||4 does not increase near
x. Mathematically, the descent cone is given by

DA, x):={h:]| x+ th|a<|x

.« for some T > 0}.

The descent cone encodes detailed information about the local
behavior of the atomic gauge | - |4 near x. Since local optimality
implies global optimality in convex optimization, we can charac-
terize when demixing succeeds in terms of a configuration of
descent cones. See Figure 3 for a precise description of this opti-
mality condition.
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To understand when the geometric optimality condition is
likely to hold, we need a measure for the “size” of cones. The most
apparent measure of size is perhaps the solid angle, which quanti-
fies the amount of space occupied by a cone. The solid angle, how-
ever, proves inadequate for describing the intersection of cones
even in the simple case of linear subspaces. Indeed, linear sub-
spaces are cones that take up no space at all, but when their
dimensions are large enough, any two subspaces will always inter-
sect along a line. Imagine trying to arrange two flat sheets of paper
so that they only touch at their centers: it’s impossible!

We find a much more informative measure of size, called the
statistical dimension, when we measure the proportion of space
near a cone, rather than the proportion inside the cone.

DEFINITION 1 (STATISTICAL DIMENSION)

Let CcR? be a closed convex cone, and denote by
Ilc(x) := arg mingec||x —y || the closest point in C to x. We
define the statistical dimension & (C) of a convex cone C C R? by

8(0):=E[Hc() |5, Y

where g~ Normal (0,1) is a standard Gaussian random variable
and the letter [E denotes the expected value.

The statistical dimension gets its name because it extends
many properties of the usual dimension of linear subspaces to
convex cones [20], and it is closely related to the Gaussian width
used in [9]. Our interest here, however, comes from the interpre-
tation of the statistical dimension as a “size” of a cone. A large sta-
tistical dimension &(C) ~d means that ||IIc(g) 3 is usually
large, i.e., most points lie near or inside the cone. Conversely, a
narrow cone C possesses a small statistical dimension because the
nearest point to C is typically close to zero, which drives down the
average norm. We will see below that the statistical dimension of
descent cones provides the key parameter for understanding the
success and failure of demixing procedures.

Of course, a parameter is only useful if we can compute it. For-
tunately, the statistical dimension of descent cones is often easy to
compute or approximate. Several ready-made statistical dimension
formulas and a step-by-step recipe for accurately deriving new for-
mulas appear in [20]. Some useful approximate statistical dimen-
sion calculations can also be found in the works [9] and [17]. As an
added bonus, recent work indicates that statistical dimension cal-
culations are closely related to the problem of finding optimal
regularization parameters [17, Th. 2].

PHASE TRANSITIONS IN CONVEX DEMIXING

The true power of the statistical dimension comes from its ability
to predict phase transitions in demixing programs. By phase tran-
sition, we mean the peculiar behavior where demixing programs
switch from near-certain failure to near-certain success within a
narrow range of model parameters. While the optimality condition
from Figure 3 characterizes the success and failure of demixing, it
is often difficult to certify directly. To understand how demixing
operates in typical situations, we need an incoherence model. One
proposal to model incoherence assumes that the structured sig-
nals are oriented generically relative to one another. This is

Xo+D (A, Xp)

lIx]l.4, < lIXoll.a,

Xo 20— Xlla,<l120 = Xol.4,

[FIG3] The geometric characterization of demixing. When the
descent cones D(Ax, Xo) and D(Ay, yo) share a line, then
there is an optimal point x (star) for the demixing program
(4) not equal to xo. Conversely, demixing can succeed for
some value of A > 0 if the two descent cones touch only at
the origin. In other words, demixing can succeed if and only
if D(Ax x0) N—D(Ay, yo) = {0} [13].

achieved, for example, by assuming that the structured compo-
nents are drawn structured relative to a rotated atomic set QA,
where Q € R”? is a random orthogonal matrix [13]. Surpris-
ingly, this basic randomized model of incoherence leads to a rich
theory with precise guarantees that complement other phase tran-
sition characterizations in linear inverse problems [21], [22]. Many
works propose alternative incoherence models applicable to spe-
cific cases, including [3] and [9], but these specific choices do not
possess known phase transitions. Under the random model of [13],
however, a very general theory is available. The following result
appears in [20, Th. III].

THEOREM 1

Suppose that the atomic set of xo is randomly rotated, i.e., that
A = QA, for some random rotation Q and some fixed atomic
set A.. Fix a probability tolerance 7 € (0,1), and define the nor-
malized total statistical dimension

Ai= LIS@ @, x0) + 8D A, yo).
Then there is a scalar C > 0 that depends only on 7 such that

A<1-C/+/d = demixing can succeed with probability >1—7
A>1+C/+/d = demixing always fails with probability >1—1.

In fact, we can take C:=4/log(4/n). By “demixing can suc-
ceed,” we mean that there exists a regularization parameter
A >0 so that (xo, yo) is an optimal point of (4). “Demixing
always fails” means that (xo, yo) is not an optimal point of (4) for
any parameter A > 0.

Theorem 1 indicates that demixing exhibits a phase transition
as the normalized statistical dimension A increases beyond the
one. The first implication above tells us that if A is just a little less
than one, then we can be confident that demixing will succeed for
some tuning parameter A > 0. On the other hand, the second
implication says that if A is slightly larger than one, then demix-
ing is hopeless. See Figure 4 for an example of the accuracy of this
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[FIG4] Phase transitions in demixing. Phase transition diagram
for demixing two sparse signals using ¢1 minimization [20]. This
experiment replaces the DCT matrix D in (3) with a random
rotation Q. The color map shows the transition from pure
success (white) to complete failure (black). The 95%, 50%, and
5% empirical success contours (tortuous curves) appear above
the theoretical phase transition curve (yellow), where A = 1.
See [13] for experimental details. (Figure used with permission
from [20].)

theory for the sparse approximation model (3) from the introduc-
tion when the DCT matrix D is replaced with a random rotation
Q. The agreement between the empirical 50% success line and
the curve where A = 1 is remarkable.

This theory extends analogously to the compressive and mul-
tiple demixing models (5) and (6). Under a similar incoherence
model as above, compressive and multiple demixing are likely to
succeed if and only if the sum of the statistical dimensions is
slightly less than the number of (possibly compressed) measure-
ments [23, Th. A]. This fact lets us interpret the statistical dimen-
sion 8§ (D (A, xo)) as the degrees of freedom of a signal xo with
respect to the atomic set A. The message is clear: Incoherent
demixing can succeed if and only if the total dimension of the
observation exceeds the total degrees of freedom of the constitu-
ent signals.

PRACTICAL DEMIXING ALGORITHMS

In theory, many demixing problem instances of the form (4) admit
efficient numerical solutions. Indeed, if we can transform these
problems into standard linear, cone, or semidefinite formulations,
we can apply black-box interior point methods to obtain high-accu-
racy solutions in polynomial time [24]. In practice, however, the
computational burden of interior point methods makes these meth-
ods impracticable as the dimension d of the problem grows. Fortu-
nately, a simple and effective iterative algorithm for computing
approximate solutions to the demixing program (4) and its exten-
sions can be implemented with just a few lines of high-level code.

SPLITTING THE WORK

The simplest and most popular method for iteratively solving
demixing programs goes by the name alternating direction
method of multipliers (ADMM). The key object in this algorithm is
the augmented Lagrangian function L, defined by

Lot y,w):= | xlla, + Ay |a, + (w0, x +y = 20)

1 2
+—x+y-
% |x+y— 20,
where (-,-) denotes the usual inner product between two vectors
and p > 0 is a parameter that can be tuned to the problem. Start-

ing with arbitrary points x, y!, w' € RY, the ADMM method
generates a sequence of points iteratively as

xk+1 = arg minxeRdLP (x’ ykr wk)
yk+l =arg minyeR'le (xk+17 Y, wk)
W = wh 4+ (g — 20 p. (8)

In other words, the x- and y-updates iteratively minimize the
Lagrangian over just one parameter, leaving all others fixed. The
alternating minimization of L, gives the method its name.
Despite the simple updates, the sequence (x*, y*) of iterates gen-
erated in this manner converges to the minimizers (x, ) of the
demixing program (4) under fairly general conditions [25].

The key to the efficiency of ADMM comes from the fact that the
updates are often easy to compute. By completing the square, the
x-and y-updates above amount to evaluating proximal operators
of the form

x**1 = arg min| x|
xeRd

I ST -
T [u*—x| and
g = argminAly l, + g5 1o~y )

where uf:=z)—y"— pw* and v*:=zy— 2" — pw*. When
solutions to the proximal minimizations (9) are simple to com-
pute, each iteration of ADMM is highly efficient.

Fortunately, proximal operators are easy to compute for many
atomic gauges. For example, when the atomic gauge is the ¢;
-norm, the proximal operator corresponds to “soft thresholding”

ui—p, Ui > p,
arg min|| x |, +$Hu —x|F = soft(u, p) =10, lui|< p,
<Rl ui+p, ui <p.

If we replace the ¢;-norm above with the Schatten-1 norm, then
the corresponding proximal operator amounts to soft threshold-
ing the singular values. Numerous other explicit examples of prox-
imal operations appear in [25, Sec. 2.6].

Not all atomic gauges, however, have efficient proximal opera-
tions. Even sets with finite number of atoms do not necessarily lead
to more efficient proximal maps than sets with an infinite number
of atoms. For instance, when the atomic set consists of rank-one
matrices with unit Frobenius norm, we have an infinite set of
atoms and yet the proximal map can be efficiently obtained via sin-
gular value thresholding. On the other hand, when the atomic set
consists of rank-one matrices with binary +1 entries, we have a
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finite set of atoms and yet the best-known algorithm for computing
the proximal map requires an intractable amount of computation.

There is some hope, however, even for difficult gauges. Recent
algebraic techniques for approximating atomic gauges provide
computable proximal operators in a relatively efficient manner,
which opens the door to additional demixing algorithms for richer
signal structures [9], [16].

EXTENSIONS

While the ADMM method is the prime candidate for solving prob-
lem (4), it is not usually the best method for the extensions (5) or
(6). In the first case, if @ is a general linear operator, it creates a
major computational bottleneck since we need an additional loop
to solve the subproblems within the ADMM algorithm. In the lat-
ter case, ADMM even loses convergence guarantees [26].

One possible way to handle both (5) and (6) is to use decompo-
sition methods. Roughly speaking, these methods decompose (5)
or (6) into smaller components and then solve the convex sub-
problem corresponding to each term simultaneously. For exam-
ple, we can use the decomposition method from [27]

o = w + p (@ +y") - 20)

T = arg mineere| x |4, +(0F, Px >+$H x ="

g1 = arg mingcwiA| y |, + (05, By )+$H y—y*l

W =Wt p (@ ) — z0). 10

When the parameter p is chosen appropriately, the generated
sequence {(x¥, ¥%)} in (10) converges to the solution of (5). Since
the second and the third lines of (10) are independent, it is even
possible to solve them in parallel. This scheme easily extends to
demixing three or more signals (6).

Another practical method appears in [28]. In essence, this
approach combines a dual formulation, Nesterov’s smoothing
technique, and the fast gradient method [24]. This technique
works both for (5) and (6), and it possesses a rigorous O (1/k)
convergence rate.

EXAMPLES

The ideas above apply to a large number of examples. Here, we
highlight some recent applications of convex demixing in signal
processing. The first example, texture inpainting, uses a low-rank
and sparse decomposition to discover and repair axis-aligned tex-
ture in images. The second example uses the low-rank and diago-
nal demixing of a sensor array correlation matrix to improve
beamforming.

TEXTURE INPAINTING

Many natural and man-made images include highly regular tex-
tures. These repeated patterns, when aligned with the image
frame, tend to have very low rank. Of course, rarely does a natural
image consist solely of a texture. Often, though, a background tex-
ture is sparsely occluded by a untextured component. By model-
ing the occlusion as an additive error, we can use convex demixing
to solve for the underlying texture and extract the occlusion [4].

In this model, we treat the observed digital image Z, € R™*”
as a matrix formed by the sum Zy = X + Y, where the textured
component Xy has low rank and Y} is a sparse corruption or
occlusion. The natural demixing program in this setting is the
rank-sparsity decomposition 2], [3]

[X,¥] = arg min| X s, + 2| Y|, subjectto X+ Y= Z, (11)

This unsupervised texture-repair method exhibits a state-of-the-
art performance, exceeding even the quality of a supervised pro-
cedure built in to Adobe Photoshop on some images [4]. When
applied, e.g., to an image of a chessboard, the method flawlessly
recovers the checkerboard from the pieces (Figure 5).

BEAMFORMING

We describe a convex demixing program for signal estimation via
beamforming. Beamforming uses an array of n sensors to acquire
a source signal from a given direction while suppressing the
sources interfering from distinct directions. Denoting the signal of
a sensor array with (S € C"*!) where is the number of snapshots,
the desired signal is estimated with (' S), where (w € C™) is
known as the beamforming weights. Assuming that the signal
impinges on the array from the direction (d), the optimal weights
for signal prediction are obtained as (uZ;'d) where
(Zo=TE[S S) is the correlation matrix and (1) stands for a cor-
rection factor to cancel the distortions [29]. When the sources are
independent, the joint expected correlation matrix Zy of the sen-
sor array signals takes the form Z, = AoAj) + Yo, where the col-
umn space of the n Xr matrix Ao encodes the bearing
information from 7 sources, and Y, is the covariance matrix of
the noise at the sensors.

When the number of sources 7 is much smaller than the num-
ber of sensors 7, the matrix Xo:=AoAj is positive semidefinite
and has low rank. Moreover, when the sensor noise is uncorre-
lated, the matrix ¥, is diagonal. Using the atomic gauge recipe
from above, we can demix Xy and Y, from the empirical covari-
ance matrix Zo by setting

[X,V,E] = argmin [ X [ls; + Y o + M E [
p R
subjectto X+Y+E =2, (12)

where E absorbs the deviations in the expectation model due to
the finite sample size. Here, || - [|s; is the atomic gauge generated
by positive semidefinite rank-one matrices, which is equal to the
trace for positive semidefinite matrices, but returns +oco when its
argument has a negative eigenvalue. Similarly, the gauge || - [
is the atomic gauge generated by the set of all diagonal matrices,
and so it is equal to zero on diagonal matrices but + oo otherwise.
The norm || - ||, is the usual Frobenius norm on a matrix. The
results of [11] relate the success of a similar problem to the geo-
metric problem of ellipsoid fitting, and show that, under some
incoherence assumptions, the method (12) succeeds.

In beamforming, the array correlation matrix plays a key
role in estimating the optimal weights. For instance, minimum
variance distortionless response (MVDR) beamforming exploits
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(b)

[FIG5] Texture inpainting (white to move, checkmate in two). The rank-sparsity decomposition (11) perfectly separates the chessboard

from the pieces. (a) The original image. (b) The low-rank component. (c) The sparse component.

the correlation matrix to estimate the source signals at a given
direction. The presence of noise corrupts the empirical correla-
tion matrix estimate, which deteriorates the beamforming per-
formance by MVDR.

The approach in [31] assumes a low-rank correlation matrix
and discusses source estimation using atomic regularization.
Hence, the demixing results perfectly dovetail with this beam-
forming approach. To see synergy, we simulate a scenario where
three sources impinge on a uniform linear array of ten sensors
from far-field in free space. The input source-to-interference
ratio (SIR) is =5 dB. In addition, we add isotropic noise to the
sensor measurements at —10 dB source-to-noise ratio (SNR).

The results are quite encouraging. The average output SIR
of the standard MVDR beamformer using the empirical correla-
tion Zo turns out to be 5 dB. The beamforming approach [31]
with the empirical correlation estimate yields 6.3 dB SIR, while
using the demixed estimate X of (12) results in an impressive
9.4 dB SIR—with an approximate improvement of 3 dB in inter-
ference suppression for source detection.

HORIZONS: NONLINEAR SEPARATION

We conclude our demixing tutorial with some promising direc-
tions for the future. In many applications, the constituent signals
are tangled together in a nonlinear fashion [10], [12]. While this
situation would seem to rule out the linear superposition model
considered above, we can leverage the same convex optimization
tools to obtain demixing guarantees and often return to a linear
model using a technique called semidefinite relaxation.

We describe the basic idea behind this maneuver with a con-
crete application: blind deconvolution. Convolved signals appear
frequently in communications due, e.g., to multipath channel
effects. When the channel is known, removing the channel effects
is a difficult but well-understood linear inverse problem. With
blind deconvolution, however, we see only the convolved signal
2o =x0*yo from which we must determine both the channel
xo € R™ and the source yo € RY.

While the convolution xo *yo involves nonlinear interactions
between xo and yo, the convolution is in fact linear in the matrix
formed by the outer product xoy. In other words, there is a lin-
ear operator C : R™*¢ — R™" such that

zo=C(Xo) where Xo:=x0y).

The matrix Xy has rank one by definition, so it is natural use
the Schatten 1-norm to search for low-rank matrices that gen-
erate the observed signal

X =argmin [|X|s, subjectto zo=C(X).
XeRmxd
This is the basic idea behind the convex approach to blind
deconvolution of [10].

The implications of the nonlinear demixing example above
are far-reaching. There are large classes of signal and mixing
models that support efficient, provable, and stable demixing.
Viewing different demixing problems within a common frame-
work of convex optimization, we can leverage decades of research
in various diverse disciplines from applied mathematics to signal
processing, and from theoretical computer science to statistics.
We expect that the diversity of convex demixing models and geo-
metric tools will also inspire the development of new kinds of scal-
able optimization algorithms that handle nonconventional cost
functions [30].
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Sparse Representation

for Brain Signal Processin

A tutorial on methods and applications

n many cases, observed brain signals can be assumed as the lin-
ear mixtures of unknown brain sources/components. It is the
task of blind source separation (BSS) to find the sources. How-
ever, the number of brain sources is generally larger than the
number of mixtures, which leads to an under-
determined model with infinite solutions.
Under the reasonable assumption that %
brain sources are sparse within a
domain, e.g., in the spatial, s L o
time, or time-frequency do-
main, we may obtain the
sources through sparse rep-
resentation. As explained in
this article, several other
typical problems, e.g., fea-
ture selection in brain signal
processing, can also be formu-
lated as the underdetermined lin-
ear model and solved by sparse

) @ L i
T \J/
V

Source Separation and Applications

INTRODUCTION
In recent years, sparse representation has received a great deal
of attention in brain signal processing. Many biological findings
support sparse representation/coding in the brain. For example,
for simple cells in the primary visual cortex, it
was shown that a set of receptive fields
learned by maximizing the sparsity
of the output of a neural net-
work model is spatially local-
{1 ized, oriented, and selective
to the spatial structure at a
specific scale similar to
cortical simple cells [1].
Sparsity of the neural
response has been observed
in neurons and in fMRI [2].
Therefore, sparsity characteris-
tic of brain activities provides a
basis for sparse representation-based

IMAGE LICENSED BY

representation. This article first reviews the
probabilistic results of the equivalence between two
important sparse solutions—the 0-norm and 1-norm solutions. In
sparse representation-based brain component analysis including
blind separation of brain sources and electroencephalogram (EEG)
inverse imaging, the equivalence is related to the recoverability of
the sources. This article also focuses on the applications of sparse
representation in brain signal processing, including components
extraction, BSS and EEG inverse imaging, feature selection, and
classification. Based on functional magnetic resonance imaging
(fMRI) and EEG data, the corresponding methods and experimental
results are reviewed.
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brain data analysis. Many problems in brain
signal processing can be formulated by the sparse
representation models

=As (noiseless model), (1)
x =As+v (noisy model), (2)

where x € R” is a given signal vector, A€ R"*™ (n<m) is a
basis/dictionary matrix, s € R™ is the sparse coefficient vector to
be found, and v € R" represents the noise. The basis matrix A
can be randomly generated, or produced, from the union of sev-
eral known bases such as Fourier and wavelet bases, and it can
also be estimated from the data. Equations (1) and (2) can be in a
matrix format, in which x, s, and v are replaced by a signal
matrix, a coefficient matrix and a noise matrix, respectively.
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For example, we often assume that the observed brain signals
are the linear mixtures of brain sources, where both the mixing
matrix, i.e., the basis matrix A in (1), and the brain sources are
unknown/to be estimated [see Figure 1(a)]. This hypothesis has

x = As

x: Observed, A: Given or Estimated, s: Sparse Solution to Be Found

Brain Signal Analysis (fMRI, EEG, Neural Spike, . . .)

Blind Source Separation EEG Inverse Imaging

| AN (it b
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[FIG1] The framework for the applications of sparse representation in brain signal analysis.
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been demonstrated for EEG signals [3]. Generally, the number of
brain sources is larger than the number of the mixtures. The
brain sources can be assumed to be sparse in a domain such as
the time domain or the time-frequency domain. Through sparse
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representation BSS, we can identify the brain sources based on
the observed brain signals [4]. The brain sources can also be
obtained and localized by sparse representation-based EEG
inverse imaging, where the mixing matrix A is first estimated
based on a head model, and the brain sources are then separated
and localized [see Figure 1(b)]. For component extraction, a
channel of brain signal can be treated as a linear mixture of a
sparse set of dynamic components, each of which corresponds to
a column of the basis matrix A [2]

[see Figure 1(c)]. In feature selec-

tion, a target function (e.g., a stimu-

lus function in an fMRI experiment)

can be linearly regressed using a

data/feature matrix A, of which the

data for each column are derived

from a feature dimension (e.g., a

voxel in the fMRI data). In other

words, each row of the matrix A is a

feature vector [5], as shown in

Figure 1(d). The number of features (e.g., the voxels in fMRI data)
is generally larger than the number of observations (e.g., the
scanning time points for each voxel in the fMRI data). For the
classification of brain signals, we may also employ the model
shown in Figure 1(d), in which the target function is a test sam-
ple/feature vector and each column of the data matrix is a train-
ing sample/feature vector of a certain class [6]. These typical
problems in brain signal processing can be solved under the
framework of sparse representation.

The sparsity of a vector s can be measured by (, norm
I's]|» which is defined as ( " lsi \”)l/p for 0 <p <1, and
the number of nonzeros of s for p = 0. As shown in Figure 1,
there are main four classes of algorithms for finding a sparse
solution to (1):

m the algorithms for 0-norm minimization, including

orthogonal matching pursuit (OMP) and matching pursuit

(MP), where the corresponding 0-norm solution, denoted as

s is the sparsest among all possible solutions of (1)

m the algorithms for 1-norm minimization, e.g., linear pro-

gramming (LP) [7], where the corresponding 1-norm solu-

tion, denoted as s, is also sparse but may not be the
sparsest and is relatively easy to obtain

m the algorithms for p-norm minimization (0 < p < 1), e.g,,

focal underdetermined system solver (FOCUSS) and the

thresholding algorithm [8], where the p-norm minimization is

a nonconvex optimization problem with a global optimal solu-

tion that is difficult to be found [9] but is still of interest [10]

(some studies have discussed (1/2)-norm minimization [8])

m the algorithms for finding an approximate solution through

relaxing the constraints, including least absolute shrinkage

and selection operator (LASSO), iterative reweighted least

square (IRLS), separable surrogate functionals (SSFs), and the

iterative shrinkage and thresholding algorithm (ISTA).
Previous studies have provided detailed reviews on the sparse rep-
resentation algorithms [9]. These algorithms have been applied in
image processing, compressive sensing, and BSS [9]. In

brain signal processing, the choice of an algorithm depends on the
specific task. For instance, if BSS/EEG inverse imaging is to be per-
formed, it may be beneficial to use LP algorithms because there
have been a lot of corresponding recoverability results and there is
no need to set any regularization parameters for the algorithms.
For feature selection/classification, all of the above-described sparse
representation algorithms may be used, as the objective is gener-
ally to improve the classification accuracy, and only part of the rele-
vant features may be required.
Considering both the processing
speed and accuracy, if the number of
equations is small (e.g., <1,000),
greedy algorithms can produce good
results with high speed. For a larger
number of equations, approximation
methods such as ISTA, fast ISTA, and
SSF are preferred.
When sparse representation is
applied to brain signal processing,
an important objective is to find the sparsest solution, i.e., the
0-norm solution. For instance, under the assumption that the
brain sources are sparse, we may obtain the brain sources by find-
ing the 0-norm solution through either sparse representation-
based BSS or EEG inverse imaging. Although 0-norm
minimization is NP-hard [9], the 0-norm solution can be
obtained by 1-norm minimization in many cases. Equivalence
between the 0-norm solution and the 1-norm solution thus
becomes a key problem (see Figure 1). For sparse representation-
based BSS and EEG inverse imaging, the equivalence is related to
the recoverability of the brain sources. As shown in Figure 1, this
problem can be analyzed using two different types of methods:
deterministic methods (see [9] and the references therein) and
probabilistic methods (see [4], [7], and [11]-[14]). Compared with
the deterministic methods, the conditions under which the two
sparse solutions are equivalent with a high probability in the
probabilistic methods may be weaker. This is because the condi-
tions obtained by the deterministic methods are sufficient for the
equivalence but the probabilistic conditions are not.

RECOVERABILITY RESULTS BASED

ON PROBABILISTIC METHODS

In BSS and EEG inverse imaging, it is necessary to consider the
recoverability of the brain sources. As stated above, this problem
is transformed into the equivalence between the 0-norm solu-
tion and the 1-norm solution when sparse representation is
applied. Herein, we review several equivalence results obtained
by probabilistic methods.

PROBABILISTIC METHODS BASED

ON SUFFICIENT CONDITIONS

In references such as [10], [13], and [14], a set of sufficient con-
ditions for the equivalence between the 0- and 1-norm solutions
were proposed with respect to the basis matrix and the sparsity
of the 0-norm solution. The probability that these sufficient
conditions would hold for a random basis matrix was
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subsequently analyzed. For instance, in [10], it was shown that
the proposed sufficient conditions, in particular, the CS condi-
tions, hold for a random basis matrix with an overwhelming
probability. In [14], a probability result for the equivalence was
obtained based on both an invertibility condition and a magni-
tude condition, which were imposed on a partial Fourier matrix
and a particular polynomial, respectively. To illustrate the prob-
abilistic method, we present several results related to a so-called
restricted isometry property (RIP) condition [13], [15].

RIP can be described, as shown in [15], via the following
definitions.

DEFINITION 1
For each integer j=1,2,--,
the RIP of order j if there existsa §; € (0,

n, the matrix A € R™™ satisfies
1) such that

(1-68,)IsB<lAslE<(1+8;)s3 3)

holds for all j-sparse vectors s. A vector is said to be j-sparse if
it has at most j nonzero entries. The isometry constant &, of a
matrix A is defined as the smallest §; satisfying (3).

Recently, it was proven that the equivalence holds if a j-sparse
solution exists for (1) and the isometry constant §; < (1/3)
[16]. When the matrix A is given randomly, using the John-
son-Lindenstrauss lemma and width theory, R. DeVore et al.
provided a probability estimation that (3) holds as below [13].

THEOREM 1

Suppose that for given n,m, and 0 < § < 1, the probability
distribution generating the n X m random matrices A satisfies
the concentration inequality, i.e., Vi€ (0,1) and Vs € R™,
there exists a co(g) > 0, such that

P AsE—Is Bz el s [}) < 2e7", (4)

where the probability is taken over all 7 X m matrices A. Then
there exist constants c1,c2 > 0 depending only on § such that
the RIP condition (3) holds for A with the prescribed & and any
J < cin/log(m/j) with a probability > 1 — 2e~*" [13].

Remark 1

There are a number of random matrices including random
Gaussian and Bernoulli matrices, with distributions satisfying
the concentration inequality (4) [13]. Using Theorem 1 and the
bound of the isometry constant that guarantees the equiva-
lence, we may obtain a lower bound for the equivalence proba-
bility. For example, let § = §; < (1/3) and s be j-sparse with
Jj=< cm/log (m/j) Following Theorem 1 and Theorem 3.1 in
[16], ( = >> 1 —2e7", Because the parameters c¢1 and
c2 in Theorem 1 are difficult to explicitly express, the probabil-
ity (or the lower bound) that the RIP condition holds is difficult
to obtain, especially for fixed n and m. In fact, the probability
in Theorem 1 shows an overwhelming likelihood with respect to
n. The recoverability results based on the RIP condition can be
extended to a noisy case (2), as shown in [16].

EQUIVALENCE PROBABILITY ESTIMATION

Different from the above approach, Li et al. proposed an alterna-
tive method to directly estimate the probability that the two
sparse solutions are equivalent [4], [7], [11], [12]. Several equiva-
lence probability estimates were presented in [11] for a fixed basis
matrix and in [12] for a random basis matrix both with a random
0-norm solution. We present several equivalence probability esti-
mations and the corresponding simulation results for a fixed
basis matrix with a random 0-norm solution.

THEOREM 2 [12]

Let Ac R s e R™ and s" be the 1-norm solutions satis-
fying (1) with x:= As’. Then s = s, if and only if the optimal
value of the following optimization problem is less than 1/2

max Y, [sign(s}o))sz st.Az=0,|z],=1, (5

1<k=m

where [y]+ = max(y,0) forall y € R.

It is also NP-hard to check the sufficient and necessary condi-
tion in Theorem 2 and to precisely specify the set for which the
maximum in (5) is computed [11], [12]. However, from Theorem
2, given the basis matrix A the recoverability of the 0-norm solu-
tion through 1-norm minimization depends only on the index set
and the signs of its nonzero entries, i.e., the sign vector/pattern.
The equivalence probability can be obtained by determining how
many sign vectors can be recovered through 1-norm minimiza-
tion, as illustrated in the following three cases [11].

Case 1

The number of nonzero entries for the 0-norm solution s is
fixed, e.g., j. In this case, there are a total of 2/Cj, sign vectors
with 0-norm j. Suppose that ¢; is the number of sign vectors
with 0-norm j which can be recovered by 1-norm minimization.
We have

59 =) =57 (6)

pi= P(s(l) =50
where ¢; can be obtained by checking the equivalence of each
sign vector with 0-norm j and its corresponding 1-norm solu-
tion. This can be performed either by Theorem 2 or by directly
comparing the 0-norm solution with its corresponding 1-norm
solution obtained by 1-norm minimization.

Case 2

The number of nonzero entries for s is unknown, but the prob-
ability that every entry of s is equal to zero is known and
denoted as a. In this case, P(H s, =j) = CL(1—a)/a™7 and

P( ‘1)—3) i Cih(1—a)/a™ 7 p;. (7

Case 3
All entries for s are drawn from a Laplacian distribution with
the probability density function (A/2)exp(—A |x|). In this case,
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P(s‘”zs“’))= > Chl-aiay p;, ®)

0<j<m

where oy = P<|s§f) | < eo> =1-—exp(—A€g) and € >0 is a
sufficiently small constant.

We review several simulation results [11]. The basis matrix
A € R™° was arbitrarily given in advance. Figure 2 shows the
estimated equivalence probability curves (solid curves with
“*#”) and the true equivalence probability curves (dashed
curves with “0”) for the above three cases. Note that each true
probability value was obtained by randomly generating 1,000
corresponding source vectors (0-norm solutions) and count-
ing the number of source vectors recovered by 1-norm mini-
mization. It follows from Figure 2 that the probability
estimates from (6)—(8) accurately reflected the true probability
that a 0-norm solution was recovered by 1-norm minimization
in Cases 1-3, respectively.

Remark 2

Based on the equivalence probability estimates described above,
it is still NP-hard to obtain the exact values for a large m. How-
ever, approximations can be obtained by applying a sampling
method to the set of sign vectors [17]. In addition to the above-
described equivalence problem, another important problem in
sparse representation is the uniqueness of the 0-norm solution
of (1). In [7], it was shown that for model (1), a 0-norm solution
with less than 7 nonzeros is unique with a probability of one if
the basis matrix A is randomly given.

In brain signal processing, noise generally can not be
neglected. According to the discussion in [7], the 1-norm solu-
tion of (1) is robust to noise to some degree. In particular, for a
given A, there exists an M > 0 such that ||s{’ —s? |1 <
M||v||1, where s is the 1-norm solution of the noisy model
(2). Therefore, for a case with low noise, we can determine the
0-norm solution through 1-norm minimization, provided that

the equivalence holds. Furthermore, the above probability esti-
mations on the equivalence have been extended to the noise case
in [17]. Simulation results showed that these probability estima-
tions of the equivalence hold at noise levels of approximately 18
dB. However, for brain signals, it is difficult to estimate the noise
level, which may be very high. Further studies are needed to
demonstrate the effectiveness of the above-described probability
estimations and to evaluate the brain sources obtained by sparse
representation-based BSS/EEG inverse imaging. Additionally, the
above-described probability estimates are based on the sparsity of
the 0-norm solution, which is generally difficult to directly deter-
mine. It has been shown that the sparsity of sources can be esti-
mated based on the sparsity of the mixtures [17].

FUNCTIONAL MRI DATA ANALYSIS

In this section, we discuss two applications of sparse representa-
tion in fMRI data analysis: the modification of a general linear
regression model (GLM) with statistical parameter mapping
(SPM), and brain decoding.

MODIFIED GLM-SPM APPROACH

BASED ON SPARSE REPRESENTATION

An important objective of fMRI data analysis is to detect the weak
blood-oxygen-level dependent (BOLD signal from the noisy data
and localize the activated regions in the brain. GLM-SPM is a com-
mon method for fMRI data analysis [18] that is based on

x; =GB+ e, 9)

where x; € RY is a time series of the ith voxel (i =1,..., M),
G € RV is a so-called design matrix of which each column
corresponds to an explanatory variable related to the specific
experimental conditions under which the data were collected,
B: € R® is an unknown weight vector to be estimated for each
voxel, and e; € RY is a noise vector. At the end of the GLM
learning process, the statistical parameter map is obtained

based on /- or F-statistics calculated

using the regression coefficients, and it

can be used to display the activated brain
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[FIG2] Curves for estimated equivalence probabilities (solid curves with “*") and true
equivalence probabilities (dash-dotted curves with “0"). (a) Case 1, (b), Case 2, and

(c) Case 3.
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areas and the importance of each voxel.

ag? Several studies have been conducted to
' ] improve the GLM-SPM method based on
sparse representation. One method for
improving GLM is to modify the design
matrix to overcome its drawbacks. The
design matrix is generally constructed using
the canonical hemodynamic response func-
tion (HRF). However, this function does not
fully reflect the individual and experimental
variances that occur during the task period
[2]. To overcome this issue, Hu et al. pro-
posed an SPM-ICA framework with a design
matrix composed of the components
learned by an independent component anal-
ysis (ICA) algorithm [19]. In [2], a data-
driven sparse GLM method was proposed

A
(©)
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for maximum likelihood (ML) estimation of spatially adaptive
design matrices and sparse response signals. In this method, the
BOLD signal at a specific voxel can be regarded as a linear combi-
nation of a sparse set of dynamic components [see Figure 1(c)]. A
K-SVD-based iterative algorithm was used to identify these compo-
nents and to perform sparse coding at the same time. Based on the
learned design matrix and sparse response signals, a statistical test
was then used to detect the activated voxels. Using simulated and
real fMRI data, this method was demonstrated to adapt to individ-
ual variations better than canonical HRF and spatial ICA.

SPARSE REPRESENTATION-BASED MVPA

METHODS FOR BRAIN DECODING

Multivariate pattern analysis (MVPA) has recently become a
popular approach for analyzing fMRI data. MVPA approaches
open the possibility of separating and localizing spatially dis-
tributed patterns, which are generally too weak to be detected
by univariate methods, such as

GLM [20]. By effectively pooling the

information available across many

fMRI voxels, MVPA methods allow

the perceptual, cognitive, and

behavioral parameters or features

to be decoded. The results of brain

decoding can be used to further

assess how precisely cognitive

information is encoded by the activ-

ity of neural populations within the

whole brain [21]. Because there are

far more voxels (e.g., 30,000) than fMRI volumes/scanning time
points for each of the voxels (e.g. 1,000), voxel selection plays
an important role in the MVPA-based brain decoding of fMRI
data [see Figure 1(d)]. It has been shown that sparse represen-
tation is an effective method for voxel selection. The sparseness
leads to a simple prediction function useful for avoiding overfit-
ting. For instance, a LASSO regression was used to reconstruct
muscle activity from human cortical fMRI data, where the cor-
related voxels were selected through the learned sparse weights
[22]. In the following, we briefly present a sparse representa-
tion-based voxel selection algorithm and its two variants/exten-
sions. Specific details for these algorithms can be obtained from
[5] and [23].

LINEAR PROGRAMMING-BASED
FEATURE SELECTION ALGORITHM
Let A € R™*™ denote an fMRI data matrix, where each column
is the time series of a voxel. Let x € R” denote a stimulus/task
function convolved with an HRF. A stimulus function can be
constructed by setting its value to one when the stimulus is
available; otherwise the value is set to zero. The following algo-
rithm is designed to identify the columns of A (i.e., voxels in
the fMRI data) that are relevant to x.

Algorithm 1 (LP-Based Feature Selection Algorithm):

Step 1: For k=1,---, Ky (a predefined integer, e.g., 100),
perform Steps 1.1 and 1.2.

Step 1.1: Randomly choose L (e.g., 0.3n) rows from the
matrix A to construct an L by m submatrix denoted as A,
with the corresponding L entries of x forming a column vector
denoted by xx € R-.

Step 1.2: Solve the optimization problem (denote the opti-
mal solution as s*),

min ||s||1,$.f. Aks = Xx. (10)
Step 2: Let
s=L S (11)
Ko™ o

Step 3: Using the weight vector s, we either select a fixed
number (e.g., 100) of voxels with large absolute weights or
select voxels with absolute weights higher than a given positive
constant 6. The threshold parameter 6y can be chosen in vari-

ous ways, e.g., through the cross-
validation method [5].

Because of noise, the weight
vector s obtained by a single opti-
mization may not accurately reflect
the importance of the features.
Thus, we calculate an average
weight vector by boosting the
1-norm minimization in Algorithm
1. With the selected voxels, decod-
ing of the stimulus/task parameters
can be performed using a classifica-

tion/regression algorithm such as SVM.

OMP-BASED FEATURE SELECTION ALGORITHM

In Step 1.2 of Algorithm 1, we can replace the LP/basis pursuit
(BP) algorithm with the OMP algorithm [9] to conduct sparse
representation and obtain the OMP-based feature selection algo-
rithm. For fMRI data, we find that the OMP-based algorithm is
faster than Algorithm 1 because the number of time samples is
generally much smaller than the number of voxels and the OMP
algorithm avoids a large-scale LP problem.

SPARSE REPRESENTATION-BASED

PATTERN LOCALIZATION ALGORITHM

There are three unsolved problems in Algorithm 1: the abilities
to 1) select all informative features, 2) differentiate those
selected features according to two stimuli classes/brain states,
and 3) remove incorrectly selected features (irrelevant/noisy fea-
tures). A sparse representation-based pattern localization (SPL)
algorithm was used to address these problems [23]. The SPL
algorithm contains a K -fold cross-validation procedure. In each
fold, a recursive iterative feature elimination method relying on
the weights obtained by sparse representation (e.g., Algorithm 1
or the OMP-based feature selection algorithm) is used to iden-
tify as many informative features as possible. Each iteration
selects those informative features for removal. The next itera-
tion is based on the remaining features. After the selected
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For each of the three sub-

[TABLE 1] PREDICTION ACCURACIES (PEARSON CORRELATION) FOR FOUR TASK FUNC-

TIONS (HITS, INSTRUCTIONS, FACES, AND VELOCITY), OBTAINED BY THREE METHODS:
GLM-SPM, LP, AND OMP-BASED ALGORITHMS.

TASK SUBJECT 1 SUBJECT 2

GLM-SPM  LP OMP GLM-SPM  LP OMP
HITS 0.18 0.31 0.33 0.35 0.39 0.47
INSTR. 0.51 0.75 0.60 0.63 0.66 0.57
FACES 0.06 0.15 0.12 -0.01 0.31 0.28
VELOCITY 0.25 0.38 0.63 0.38 0.38 0.69

jects, two runs of data, collected
in different time intervals, were
analyzed. After data processing,

SUBJECT 3

GLM-SPM P OMP each run of fMRI 'data' corre-
0.25 0.33 0.33 sponded to a matrix with 500
0.32 0.83 0.60 rows (time points) and approxi-
0.61 0.65 0.42

0.16 0.35 0.61 mately 32,000 columns (voxels).

Based on the BP (Algorithm 1) or

features from all of the iterations are removed, the decoding
accuracy based on the remaining features is close to the chance
level. According to the signs of the weights, the selected fea-
tures are divided into two sets corresponding to two stimuli
classes/brain states. Next, two probability maps/density func-
tions are constructed using the two classes of features selected
across the A folds. Inside each probability map, the probability
value of a feature is obtained by counting the number of times
that the feature is selected across all folds. Finally, to remove
the irrelevant features, the two probability maps are tested with
a permutation test either at the individual level or at the group
level if group data are available. In this way, two patterns corre-
sponding to the two stimuli classes/brain states are obtained.

EXPERIMENTAL RESULTS

First, we individually applied Algorithm 1 and the OMP-based fea-
ture selection algorithm to the fMRI data of PBAIC 2007 for voxel
selection. The details for the data can be found at http:/pbc.lrdc.
pitt.edu/?q=taxonomy/term/45. The subject performed several
tasks in a virtual reality world during scan acquisition (e.g., Hits:
whenever the subject picked up fruits or weapons; Instruction:
whenever task instructions were presented; Faces: whenever the
subject looked at faces; Velocity: whenever the subject was mov-
ing). For each task, a stimulus function was provided by PBAIC
2007. The corresponding task function was computed by convolv-
ing this stimulus function with an HRF, which reflected the delay
of the hemodynamic responses with respect to the onsets of the
stimuli. The data analysis predicted the task functions from the
fMRI data.

[FIG3] The dark and bright blobs in (a)-(c) are shown for two
classes of stimuli, i.e., the horizontal axis-of-motion stimuli and
the vertical axis-of-motion stimuli. (@) and (b) The difference
maps reconstructed using our BP-based and OMP-based SPL
algorithms, respectively. (c) A difference map between the two
stimulus conditions.

OMP-based feature selection

algorithm, we performed twofold
cross-validation. In each fold, voxel selection was performed
based on the training data (data from Run 1/Run 2) in two steps,
i.e., an initial selection based on Pearson correlation coefficients
between the time series of voxels and the task function and a sec-
ond selection based on our algorithm. Using the selected voxels
(ranging from two to 100), we predicted the task function of the
test data (data from Run 2/Run 1) through ridge regression. The
prediction performance was measured as the Pearson correlation
between the actual task and the predicted task functions. For the
purpose of comparison, we used the GLM-SPM method to replace
our method to select the voxels. The average prediction accuracies
across all the numbers of the selected voxels are shown in Table 1.
The high accuracy values demonstrate the effectiveness of our
algorithms. Based on Table 1, our algorithms overperformed
GLM-SPM method in the majority of cases, with only two excep-
tions: the accuracies obtained by the OMP-based method for sub-
ject 2 in the instruction task and for subject 3 in the face task. One
important reason for this finding is that GLM-SPM is a univariate
method, whereas our algorithms are multivariate. Multivariate
methods simultaneously consider a set of variables, and their
advantages have been shown in numerous studies [20]. For the
face task, the results for the three subjects were significantly dif-
ferent, possibly because of the different levels of attention that the
subjects paid to this task.

Second, we present results obtained by applying the SPL
algorithm to an optical imaging data set that was collected from
a macaque monkey. The detailed experimental procedure was
described elsewhere [23]. Based on data from 40 horizontal and
40 vertical axis-of-motion trials, we used a leave-one-out
method to search the informative pixels and obtained two prob-
ability maps. The difference between the two probability maps,
which reflects the class information, is shown in Figure 3(a),
(based on Algorithm 1) and Figure 3(b) (based on the OMP-
based feature selection algorithm). As shown in Figure 3(c), we
also obtained a differential map between the two conditions
using an established method for optical imaging data analysis
(the so-called differential mapping method). The dark and
bright blobs in Figure 3(c) represent the two classes of informa-
tive features. In Figure 3, a comparison of (a) and (b) to (c)
reveals that our algorithms can find all of the informative fea-
tures and further separate them into two classes corresponding
to the two experimental conditions. These results show that the
columnar structures in the V1 area of the visual cortex of the
monkey can be detected by the SPL algorithm.
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EEG DATA ANALYSIS

In this section, we discuss the application of sparse representa-
tion in EEG data analysis including component analysis and
pattern classification.

EEG COMPONENT ANALYSIS

BLIND SOURCE SEPARATION

EEG signals can be considered as the linear mixtures of unknown
sources with an unknown mixing matrix. In this case, the true
sources can be obtained through

sparse representation-based BSS [see

Figure 1(a)]. Under the condition

that the sources are sparse within a

domain such as the time-frequency

domain, the sparse representation-

based BSS can be conducted using a

two-step method ([7], [11], and the

references therein). The mixing

matrix is first estimated using, e.g., a

clustering algorithm. The sources

are then obtained using a sparse representation algorithm. In the
two-step method, it is difficult to estimate the mixing matrix pre-
cisely. For sparse representation-based BSS, the number of
sources can be larger than the number of the mixtures and the
sources can be correlated, provided that the sources are suffi-
ciently sparse. In [4], a wavelet packet transformation was first
applied to an EEG data set collected in an experiment with a
modified Sternberg memory task for producing sparsity. Specifi-
cally, in the experiment, the subjects were instructed to memo-
rize three numbers successively presented at random positions
on a computer monitor. The effectiveness of the subjects’ mem-
ory was evaluated using a “test number” presented 2.5 s later.
Next, the ratio matrix was constructed as the mixing matrix
using wavelet packet transformation coefficients. Third, the
sources were estimated by 1-norm mini-

mization. Furthermore, several pairs

of almost uncorrelated sources were

activity and to provide information for presurgical planning for
the patients [24].

The distributed source model for inverse imaging assumes
that a large number of unit dipoles are evenly positioned in the
brain volume or over the cortical sheet of gray matter, and each
dipole represents a candidate source [24]. Under this assump-
tion, the first step of inverse imaging is the forward modeling of
the brain sources and head volume conduction to establish a
linear source-to-measurement relationship. Specifically, for the
model shown in Figure 4, the jth row of X is an observed EEG

signal from the jth sensor. The ith
column of the matrix A [a lead
field matrix (LFM)], corresponding
to the 7th grid, describes how a unit
dipole with a certain location and
orientation is related to the EEG
measurements [24]. The ith row of
S is a brain source associated with
the ith grid through the /th column
of A. In practice, the number of
grids can range from 3,000 to 9,000
depending on several factors, e.g., the data analysis task and
whether the grids are evenly distributed in the brain volume or
over the cortical sheet of gray matter. Given the configuration
of the grids, the placement of the sensors and the head model,
the transfer property a; between the ith grid and the jth sensor
can be calculated using either a boundary element model (BEM)
or a finite element model (FEM) [24]. Thus, the matrix A is
determined. The head model can be constructed from single
spherical shell, multiple spherical shells or the structural MRI.
The second step is to identify the brain sources from the observed
EEG data based on the linear model.

Because the number of electrodes n is much lower than the
number of grids m, there are infinite solutions for the linear
inverse problem. Various methods have been developed to

obtained, which showed memory-related
synchronization and desynchronization.

EEG INVERSE IMAGING 'I

EEG signals are generally considered to
be generated from the synchronized acti-
vation of cortical pyramidal neurons.
Through forward modeling of brain
sources and head volume conduction,
EEG inverse imaging can identify these
sources and their localizations [see Fig-
ures 1(b) and 4] [24]. EEG inverse imag-
ing is useful for the study of brain
mechanisms and diseases detection. For
example, high-resolution EEG inverse
imaging can be used to identify the origin
and propagation of dynamic epileptic

Weights

i @ | ithSource Sources

¥
ith Grid

[FIG4] A diagram for EEG inverse imaging.
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Min

[FIG5] The results for EEG inverse imaging (extracted from Figure 4 in [25] with permission). (a) Direct subdural ECoG recordings,
(b) imaging results from LORETA, and (c) imaging results from the sparse method. Dotted lines indicate the central sulcus.

obtain an “optimal” source estimate by introducing biophysical
and/or physiological constraints. Under the assumption that the
brain sources are sparse, the inverse imaging problem can be
solved through sparse representation (1-norm minimization)
[25]. Once the sparse brain sources are obtained, they can be
localized by the corresponding grids.

Using ECoG mappings as a gold standard for evaluation, it
has been shown that the results of the sparse method are com-
parable to those of other methods, e.g., 2-norm-based low-reso-
lution brain electromagnetic tomography (LORETA) for EEG
inverse imaging [25]. We present the partial results from this
study in Figure 5. Figure 5(a) shows the direct subdural ECoG
recordings, whereas (b) and (c) show the imaging results from
the LORETA and sparse methods, respectively. The results are
displayed with the threshold set at 70% of the maximum cur-
rent density (A/mm?). The hot spots (yellow areas) indicate that
the source activities, estimated by the sparse and the LORETA
methods, were located on the sensory cortex. However, the hot
spot for the sparse method corresponded more closely with the
area identified by the subdural ECoG map. This experiment
demonstrates that the sparse method provides better specificity
than the LORETA method for focal sources. However, for spatial
extended sources, multiple distributed source imaging methods
have been tested in well-controlled simulations [26]. For
sources with large spatial extents (10 mm?— 40 cm?), the
LORETA method could provided effective results. In conclusion,
2-norm-based methods including LORETA are suited to imag-
ing spatially distributed sources, whereas sparse methods are
suited to imaging sparse and focal sources. Considering the dif-
ferent advantages of these two classes of methods, several
inverse imaging algorithms combining 1-norm and 2-norm
have been developed [24].

FEATURE SELECTION AND
CLASSIFICATION OF EEG SIGNAL

FEATURE SELECTION

Although the EEG signals are contaminated by noise and arti-
facts caused by volume conduction effects, EEG patterns still
have typical spatial, temporal, and spectral distribution charac-
teristics. For example, the motor imagery of the left/right hand
gives rise to contralateral attenuation (or accentuation) in mu

and beta rhythm activities in EEG, known as event-related
desynchronization (or synchronization) (ERD/ERS) [27], which
can be located in sensorimotor areas. P300 potentials occur
approximately 300 ms after the attended stimulation and exist
primarily in the parietal area, which means that signals col-
lected from certain electrodes at certain time intervals or fre-
quency bands are easier to discriminate than other signals.
Therefore, it is desirable to build a spatial/temporal/spectral fil-
ter for feature extraction/selection. Furthermore, dimension
reduction based on feature extraction/selection may lead to bet-
ter generalization performance for the corresponding classifier.

Feature selection from EEG data can be performed by sparse
representation, as shown in Figure 1(d). Take the feature extrac-
tion for motor imagery-based ERD/ERS as an example. We often
use labeled EEG data to train a common spatial pattern (CSP) fil-
ter. To distinguish the features of the two classes of data corre-
sponding to the left- and right-hand motor imageries,
respectively, the CSP algorithm finds the spatial filters that maxi-
mize the variance for one class and at the same time minimize
the variance for the other class [27]. Because the CSP method is
based on the optimization of signal variance, which is 2-norm,
the resultant filter weights are nonsparse, which implies that all
of the channels are used in the following classification. However,
because the ERD/ERS is located in specific areas (e.g., the senso-
rimotor area), only nearby channels have good discrimination for
the two classes. The other channels need to be removed before
classification. In this case, sparse representation is well tailored
for channel selection. Selection can be achieved by simply modi-
fying the optimization problem in the CSP method by introduc-
ing the 1-norm of the filter weights in the objective function [28].
The lower-weighted channels can be viewed as irrelevant and can
thus be removed. This method is called sparse CSP (SCSP).
Experiments have shown that the classification accuracy based on
SCSP is greater than the accuracy of regular CSP [28]. This out-
standing performance can be explained by the fact that sparse
representation reduces the number of participating channels,
with a concomitant denoising effect.

CLASSIFICATION

Sparse representation-based classification (SRC) can be con-
ducted as shown below [see Figure 1(d)]. Suppose that the basis
matrix A is composed of two component submatrices
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corresponding to the two classes, i.e., A= [A1|Az]. The
mutual coherence of the two submatrices is defined by

MC (A1, Az) = max{|(aisaz;)|:i=1,..., Ny; j=1,..., N} (12)

where a1 ; is the i/th column of A,

az; is the jth column of A, and

N1 and N: are the numbers of col-

umns in A; and As, respectively.

The inner product of the two vec-

tors is denoted by (-, -). When MC

is low, i.e., the basis matrix is inco-

herent, a test data vector from one

class can be predominantly represented by the columns of the
same class in the basis matrix [6]. Thus, the classification
based on the sparse coefficients, which can be obtained by
sparse representation, is prone to producing the correct label.
In ERD/ERS, for example, the CSP features can be used to
construct the basis matrix because CSP filtering maximizes
the incoherence between the two classes. Using the basis
matrix for sparse regression of a test feature vector, a sparse
solution is obtained for further classification. Specifically, the
class label is determined by computing the energy of the coef-
ficients for each class and assigning the class label of the
larger one to the test data. SRC was applied in the data analy-
sis of several motor imagery-based brain—computer interface
(BCI) data sets and showed better classification performance
than the well-known linear discriminant analysis method [6].

CONCLUDING REMARKS
This article discussed the applications of sparse representation
in brain signal processing, including BSS, EEG inverse imag-
ing, feature selection, and classification. Although we mainly
focused on fMRI and EEG data, sparse representation can also
be applied to other brain signals such as neural spike data [29],
magnetoencephalography [30], and MRI [31]. When sparse rep-
resentation is used to separate sources from brain signals in
BSS and EEG inverse imaging, recoverability of the sources is a
basic problem. This problem can be transformed to the equiva-
lence between the 0-norm solution and the 1-norm solution.
We first reviewed the recoverability/equivalence results obtained
by probabilistic methods. Next, we reviewed several fMRI studies
to illustrate how to improve the GLM-SPM, a common method
in fMRI data analysis, through sparse component analysis, and
how to perform feature selection based on LP or OMP methods.
For EEG signal processing, we reviewed several sparse represen-
tation methods and experimental results for BSS, inverse imag-
ing, feature selection, and classification.
We identified several challenging problems for further study:
® Brain signals are highly dynamic. Several sparse represen-
tation methods have been proposed to capture the dynamic
properties of the brain signals, e.g., a mixed-norm estimate
method based on the structured sparsity of the sources [30].
Because of the high complexity of brain signals, this problem
still needs further investigation. It may also be possible to

establish time-varying sparse representation methods in
which the basis matrix is time-varying.
m For high-dimensional brain signals, the existing sparse
representation algorithms are generally time consuming. For
some applications including BCls,
fast/real-time sparse representation
algorithms are expected. One option
is to reduce the dimensionality by
considering the neurophysiological
mechanisms of brain activities, e.g.,
brain functional areas, and develop
or choose fast sparse representation
algorithms such as fast ISTA.
m Because brain signals are highly noisy, it is challenging to
evaluate the obtained brain sources. The existing recoverabil-
ity results (deterministic/probabilistic) need to be extended to
highly noisy cases, and indirect but more effective methods
need to be developed to explore the neurophysiological rea-
sonability of the brain sources associated with the corre-
sponding experimental conditions.
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From Blind to Guided

Audio Source Separation

How models and side information

can improve the separation of sound

udio is a domain where signal separation has long
been considered as a fascinating objective, poten-
tially offering a wide range of new possibilities
and experiences in professional and personal
contexts, by better taking advantage of audio
material and finely analyzing complex acoustic scenes. It has
thus always been a major area for research in signal
separation and an exciting challenge for
industrial applications.
Starting with blind separation of -
toy mixtures in the mid-1990s,
research has progressed to
real-world scenarios today,
with applications to speech
enhancement and recogni-
tion, music editing, three-
dimensional sound render-
ing, and audio information
retrieval, among others. This
has mostly been made possible by
the development of increasingly
informed separation techniques incorpor-

Source Separation and Applications

IMAGE LICENSED BY

models and techniques designed so as to guide the audio source
separation process toward efficient and robust solutions.

AUDIO SOURCE SEPARATION: BASIC CONCEPTS
Initially, audio source separation was formulated as a standard
source separation problem, i.e., as a linear system identification
and inversion problem. In the following, we assume
that the sources do not move, and we denote
the number of sources and micro-
phones by J and I, respectively,
which are assumed to be known.
We adopt the following nota-
| o tion: scalars are represented
L}\ by plain letters, vectors by
2 bold lowercase letters, and
matrices by bold uppercase
letters. The mixture signal
x(t) = [x1(®),..., x1()]" ob-
served at time ¢ when record-
ing the source signals s(f) =
[s1(6),...,s(8)]" can be modeled by

the convolution process

|
. o,
/ \

INGRAM PUBLISHING

ating knowledge about the sources and/or the
mixtures at hand. For instance, speech source separation for
remote conferencing can benefit from prior knowledge of the room
geometry and/or the names of the speakers, while music remaster-
ing will exploit instrument characteristics and knowledge of sound
engineers’ mixing habits.

After a brief historical account, we provide an overview of
recent and ongoing research in this field, illustrating a variety of

Digital Object Identifier 10.1109/MSP.2013.2297440
Date of publication: 7 April 2014

x(t) = (Axs)(1), 1)

where A(f) = [ai1(f),...,a,s(f)] is the matrix of room impulse
responses or mixing filters associated with sound propagation
from each source to each microphone, 7 denotes matrix trans-
position, and = is the convolution operator, i.e., x;(f) = Z;:I
a;i(t)s;(t—71).

o

=0

SPATIAL IMAGES AND TIME-FREQUENCY PROCESSING
It soon became clear that this formulation had intrinsic limita-
tions, especially with respect to audio specificities. First, the
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modeling of the system as impulse
responses between each source loca-
tion and each microphone location
implicitly assumes that each source
emits sound from a single point in
space, preventing the modeling of
spatially diffuse sources [1]. Second,
unless extra information is available,
the sources may be recovered at best
up to indetermined permutation and
filtering. Third, the linear system
A(f) may be inverted only in deter-
mined scenarios involving fewer sources than the number of
microphones (J <1).
In 1998, Cardoso [2] proposed to reformulate the mixing pro-

cess as
J

x(6) = ¢i(d) @)

j=1
so that source separation became the problem of extracting the
contribution ¢;(f) = [cj1(#),...,cir(#)]T of each source to the
mixture. The quantity c¢;(f) was later called the spatial source
image of the jth source [3]. This reformulation circumvented
the filtering indeterminacy by joining a;(f) and s;(¢) into a
single quantity

¢;(t) = (aj=s))(t) 3)

and the general model (2) became applicable to spatially diffuse
sources, which cannot be expressed as (3).

At the same time, several researchers proposed switching to
the time-frequency domain by means of the complex-valued
short-time Fourier transform (STFT). By rewriting the mixing
process in each time frame n and each frequency bin 7 as

J
x(n, N =2 cin, 0, (4)
j=1

source separation was recast as a problem akin to clustering,
whereby sound in a given time-frequency bin must be allocated to
the one or few active sources in that bin, and separation became
achievable in underdetermined scenarios with more sources than
microphones (J > I) [4]. In the following, x, s, A, ¢, sj, and a;
refer to time-domain variables when used with the time index #
and to their time-frequency domain counterparts when used with
the frame and frequency bin indices 7 and 7.

While early source separation techniques relied on spatial
diversity, i.e., the assumption that the sources have different direc-
tions of arrival, the move to time-frequency domain processing
enabled the exploitation of spectral diversity, i.e., the assumption
that their short-term spectra follow distinct distributions. This
made it possible to handle single-channel mixtures and mixtures
of sources sharing the same direction of arrival, such as vocals and
drums which are often both mixed to the center in pop music.

LEVELS OF GUIDANCE
Over the past few years, successive breakthroughs have resulted
from the development of audio source separation techniques

increasingly suited to the properties
of audio sources and to the specifici-
ties of the acoustic mixing condi-
tions: more and more sophisticated
models and algorithms have been
developed to incorporate available
side information (or to estimate it on
the fly) about the sources and the
mixing environment so as to guide
the separation process. Today, some
of the most advanced source separ-
ation systems integrate a fair num-
ber of spatial and spectral models into a single framework [5], [6].
Figure 1 visually summarizes this evolution.

According to conventional terminology, blind source separ-
ation does not exploit any information about the sources nor
about the mixing process. Its application domain is essentially
restricted to dealing with determined instantaneous mixtures,
which practically never arise in audio.

Conversely, various terms such as semiblind or informed
have been used to characterize separation techniques based on
some level of informedness. For instance, the use of the adjec-
tive informed is restricted to separation techniques relying on
highly precise side information coded and transmitted along
with the audio, e.g., the mixing filters and the short-term power
spectra of the sources, which can be seen as a form of audio
coding and is not covered hereafter (see [7] for a review). As
these terms happen to be used either quite specifically or rather
inconsistently, we will use the term guided source separation in
this article.

In that sense, algorithms employing information about the
general behavior of audio sources and/or of the acoustic mixing
process in general, e.g., “the sources are sparsely distributed” or
“the mixture was recorded outdoors,” can be described as weakly
guided. By contrast, algorithms taking advantage of specific
information about the mixture to be separated, e.g., the source
positions, the names of the speakers or the musical score, may
be coined as strongly guided.

MODELING PARADIGMS

Before we focus on specific types of guidance, let us introduce the
common foundations of blind and guided algorithms. It was
proved early on that separation is unfeasible if more than one
source has a stationary white Gaussian distribution [8]. Separation
hence relies on two alternative modeling paradigms: non-Gaussi-
anity or nonstationarity, where nonstationarity may manifest itself
over time, over frequency, or over both [8]. These two paradigms
are essentially interchangeable: choosing one of them does not
restrict the type of information that may be included as guidance
or the practical scenarios that can be considered.

SPARSE NONGAUSSIAN MODELING

In the time-frequency domain, the convolutive mixing model (3)
may be approximated under a narrowband assumption by com-
plex-valued multiplication in each frequency bin
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cj(n, ) =a;(Ns;n,0, (5)

where the Fourier transform a;(f) of a;(f) is the so-called mixing
vector for the jth source or, in matrix form, x(n, /) = A(f)s(n, ),
where A(f) = [a1(f),...,as(f)] is the so-called mixing matrix.

Assuming that the source STFT coefficients have a stationary
non-Gaussian distribution P(.), separation may be achieved in the
maximum likelihood (ML) sense as [9]

mm Z—logP (sj(n, hH)

jnr’
subject to x(n, /) = A(H)s(n,f).
(6)

In the absence of specific information

over A or s, minimization is typically

achieved under a scaling constraint to

avoid divergence of A and s to infin-

itely large or small values. A similar

objective may be derived from a deterministic inverse problem per-
spective [9]

ming lxn, ) =ADs( N E+ AT PG00, (0

where #(.) (in calligraphic font) is a penalty term. The choice of
the tradeoff parameter A is not a trivial task. When the constraint
x(n, ) =A(f)s(n, f) holds, the minimum of z n, )
subject to this constraint is obtained in the limit when /1 O
For typical STFT window lengths on the order of 50-100 ms
[4], the STFT coefficients of audio signals exhibit a sparse

distribution, with a sharp peak at zero and heavy tails compared to
a Gaussian. The generalized Gaussian distribution P(s;(1, f)) oc
exp(—A |sJ n,f)|?) and the associated ¢, sparsity inducing
norm P (s (n, /) = s (0, Ny =327_,[s;(n, AP with 0 <p <2
are popular choices to model this behavior [9], [10].

In the determined case, the objective (6) has been shown to

maximize the statistical independence of the sources, hence
the name independent component
analysis (ICA). In the underdeter-
mined case, both objectives are
called sparse component analysis
(SCA), and they are typically
addressed by first estimating A(f)
and then deriving s(n,f) using
greedy algorithms such as match-
ing pursuit, convex optimization
algorithms such as iterative soft
thresholding, or nonconvex opti-

mization algorithms depending on the chosen distribution

P(.) or penalty P(.).

If the sources are sufficiently sparse, there is a good chance
that each time-frequency bin is dominated by a single source, i.e.,
x(n,f) = aj(f)s;j(n, f) for one source j. This leads to approxi-
mate SCA as a clustering problem. The mixing vectors a;(f) are
first estimated by clustering the observations x(n, /) and the
sources s(n, f) are derived by grouping the time-frequency bins
dominated by the same source, an operation known as fime-fre-
quency masking. For a more detailed introduction to ICA and
SCA, see [11].
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Starting from generic techniques used in simple situations, the progress made in audio source separation over
the past 15 years has relied on the gradual incorporation of constraints and models specific to the audio signal

and to the particularities of the acoustic mixing conditions.

The current challenges include the integration of the existing approaches into a generic framework, the development of efficient
adaptation techniques and/or model selection schemes, and the design of methods for handling interactions with the user

and/or with other modalities (for instance, video).

[FIG1] Audio source separation: a general overview of the evolution in the field.
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GAUSSIAN NONSTATIONARY MODELING

An alternative paradigm is to assume that the vectors of STFT
coefficients of the source spatial images have a zero-mean non-
stationary Gaussian distribution

P(e;(,N | Zomn) = Gy 7 (m:lc 5 e N e (g)

where 7 denotes conjugate trans-
position. The covariance X;(1n, )
depends on time and frequency. It
can be factored into the product of a
scalar spectrotemporal power
vj(n,f) and a spatial covariance
matrix R;(f) [1]

Lo, ) =v,n, AR;(A).  (9)

Separation is typically achieved by estimating the model parame-
ters in the ML sense

J
min Y —logP(c;(n, /) | R, v) subject tox(n, N = D c;(n,
Ry jnf j=1 (10)

using an expectation-maximization (EM) algorithm. Once R and v
have been estimated, c;(n, f) can be derived in the minimum
mean square error (MMSE) sense by multichannel Wiener filtering

€m0 = ot 20| x0an. )

For more detailed presentation of this paradigm, see [1].

INTRODUCING INFORMATION

ABOUT THE MODEL PARAMETERS

Equations (6), (7), and (10) form the basis for all guided algo-
rithms presented hereafter. Without any further information
about A, s, R, or v, the spatial source images c¢; (7, f) may be
recovered at best up to arbitrary permutation in each frequency
bin 7. This so-called permutation problem was historically the
first reason to investigate the incorporation of more information

into the models. However, guiding separation does not only
address this problem but also improves the accuracy of the par-
ameter estimates, which in turn improves separation.
Information may be introduced either in the form of determin-
istic constraints over A, s, R, or , which restrict the values that
these parameters may take, or in the form of penalty functions or
probabilistic priors, which are added
to the objective functions in (6), (7),
and (10) and used to estimate A, s,
R, and v in the maximum a posteri-
ori (MAP) sense. These contraints,
penalties, and priors involve their
own parameters, which we call
hyperparameters. The key difference
between weakly guided and strongly
guided separation is that the values
of the hyperparameters must be estimated from the mixture in the
former case, while they are fixed using expert knowledge or train-
ing in the latter case.

MODELING AND EXPLOITING SPATIAL INFORMATION
One way to introduce information in audio source separation is
to account for the fact that the mixing vectors a;(f) and the spa-
tial covariance matrices R;(f) are not independent across fre-
quency, but that they are linked by the spatial properties of the
source and the recording room. We review a number of increas-
ingly complex properties that may be used in this context, from
the spatial location of the source to the full acoustics of the
room. Each presented model embeds the information carried by
the previous model plus some new information.

SPATIAL LOCATION
In the free field, the mixing vectors a;(f) would be collinear with
P I 1 i
dj(f) = rlje A r[je (12)

that is the steering vector modeling the sound attenuation and
delay from the source to the microphones, with ¢ the sound vel-
ocity and r; the distance from the jth source to the /th micro-
phone. In practical recording conditions, a;(f) deviates from
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[FIG2] An example distribution over the whole frequency range of the phase and intensity differences between a;(f) and d;(f) as a
function of RTeo for two microphones spaced 20-cm apart recording a source at 1-m distance at a sampling frequency of 8 kHz.
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d; () due to reflections on the boundaries of the room, which
include early echoes and dense late echoes known as reverbera-
tion. Figure 2 shows the amount of deviation as a function of the
reverberation time RTs, i.e., the time taken by late echoes to
decay by 60 dB.

Parra and Alvino [12] were the first to exploit the proximity of
a;(f) to d;(f) by defining a penalty term P (A(f)) over the mix-
ing matrix. Many other penalties and priors were then suggested,
including Euclidean distances and Gaussian priors on the inter-
channel phase and intensity differences by Yilmaz et al. [4] and
Mandel et al. [13]. One of the simplest is the squared Euclidean
distance between a;(f) and d; (/)

P(a;(h) =a;) —d; 5. (13)

Sawada et al. [14] showed that minimizing (13) with respect to
ry is equivalent to source localization via the generalized cross-
correlation (GCC) technique. This led to a joint iterative
approach to source localization and separation where the source
signals and the source locations are alternately updated.

SPATIAL WIDTH

Duong et al. [1] later observed that the narrowband approxima-
tion (5) is invalid for reverberated and/or spatially diffuse
sources: the sound emitted by each source reaches the micro-
phones from many directions at once at each frequency instead
of a single apparent direction a;(f), so that the channels of
cj(n, f) are partly uncorrelated. The spread of the distribution of
incoming directions governs the perceived spatial width of the
source at that frequency. They introduced the concept of full-
rank spatial covariance matrices R;(f) which, in comparison
with the rank-1 spatial covariance matrices R;(f) = a;(f)a% ()
resulting from (5), account not only for the spatial location of
the sources but also for their width.

Assuming that the distances from the sources to the micro-
phones are known but that their absolute location in the room is
unknown, the mean of R;(f) over these unknown absolute loca-
tions is approximately equal to [15]

ur; () = d;(Nd7 (N + o Q). (14)

The first term accounts for direct sound, as modeled by the
steering vector d;(f) in (12), and the second term for echoes and
reverberation, as modeled by the power of echoes and reverbera-
tion o2y and by the covariance matrix of an isotropic sound
field Q (/). For omnidirectional microphones, the entries of
€Q.(f) are given by the sinc function

_sin(2afdi/c)

Qirlh) = 2nfd;r/c (15)

with d; the distance between microphones 7 and 7’. Theoretical
expressions are also available for o, depending on the room
dimensions and reflection coefficients. Duong et al. [15]
exploited this fact to estimate R;(f) in the MAP sense under an
inverse-Wishart prior P(R;(f)).
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[FIG3] A schematic illustration of the magnitude of a room
impulse response between a source and a microphone for a
reverberation time RTg = 250 ms.

EARLY ECHOES AND REVERBERATION
Although the full-rank model (9) improved upon the narrowband
model (5), it remains an approximation of the true mixing process
(3). Figure 3 illustrates the shape of a room impulse response
a;i(t) over time. In typical reverberation conditions, these
responses are several hundred milliseconds long, so that they
extend over several time frames. This prompted authors to gener-
alize (9) in the single-channel case as the convolution of v;(n, f)
and a nonnegative exponentially decaying filter ¢;(/, f) represent-
ing the power of a;(f) for a delay of / time frames [16]. This
model has been used for single-source dereverberation given
knowledge of RTsy and it is making its way into source separation.
Going one step further, Kowalski et al. [17] argued for a move
back to time-domain modeling of the mixing filters, while still
exploiting the sparsity of the sources in the time-frequency
domain. This was achieved by replacing the narrowband loss
term in (7) by the exact wideband loss term

ming L%~ A+ O B+AT PG00 (16

and by deriving an iterative soft thresholding algorithm that
effectively alternates between the time domain and the time-fre-
quency domain at each iteration, assuming that P (s (12, f)) is a
convex penalty.

This study was the starting point for subsequent studies aim-
ing to define penalties over the mixing filters in the time
domain. Benefiting from the fact that early echoes are sparsely
distributed over time, as can be seen from Figure 3, Benichoux
et al. [18] exploited an ¢, penalty over the filters

Pa)=Xlas0]” (17)
with 0 < p < 2. The exponential decaying shape of reverbera-
tion was later included by time-dependent rescaling of (17). The
key difference with previous models is that the deviations of
a;(f) from d;(f) are not modeled as random anymore, but they
must result in sparse early echoes.
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FULL ROOM ACOUSTICS

Lately, in a major departure from

conventional audio source separ-

ation, a number of researchers pro-

posed to stop modeling the room

impulse responses between individ-

ual sources and microphones but to

learn them between all possible

pairs of points in the room instead,

under the constraint that the source separation system is always
to be used in that room. The rationale is that room impulse
responses span a manifold (said differently, a small movement in
the room results in a small deviation of the impulse response),
so that measuring impulse responses for a few points may suffice
to predict them for other points. This accounts for all possibly
available spatial information, including the direct path, the
delays and amplitudes of early echoes, and the shape of reverber-
ation. Asaei et al. [19] consider each point in the room as a
source and constrain most sources to be inactive by means of a
group sparsity penalty (see below). More recently, Deleforge et al.
[20] attempted to learn a smaller-dimensional representation of
the manifold by probabilistic local linear embedding. The latter
approach achieved impressive source separation results given
thousands of room impulse response measurements, and its
extension to practical setups with a smaller number of measure-
ments constitutes a great avenue for research.

MODELING AND EXPLOITING

SPECTROTEMPORAL INFORMATION

Besides spatial information, the source spectra and their evolu-
tion across time are the second main supply of information for
audio source separation. We review increasingly complex proper-
ties of s;(n, f) and v;(n, f) that may be used to guide separation,
from local persistence to long-term dependencies.

TIME-FREQUENCY PERSISTENCE

In audio signals, significant STFT coefficients are not randomly
distributed in the time-frequency plane but they tend to cluster
together. This is illustrated in Figure 4, where vertical and hori-
zontal lines appear, corresponding to transient and tonal parts of

n(s)

[FIG4] A spectrogram of a xylophone melody.

musical notes, respectively. Similar
and more complex structures can
be found in speech.

This persistence over time or
frequency can be promoted by the
use of group sparsity or other struc-
tured sparsity penalties on s;(n, f)
[21]. For instance, the ¢12 norm

Pls) =2 /;|5j(n,f)|2

imposes sparsity over time but no constraint over frequency. An
alternative technique is to set a hidden Markov model (HMM)
prior on sequences of STFT coefficients. Févotte et al. [22]
showed that the latter approach outperforms unstructured pri-
ors in a denoising task.

(18)

SHORT-TERM SPECTRA
Beyond frequency persistence, sound sources are characterized
by their short-term spectra, i.e., the dependencies between
vj(n, f) over the whole frequency range . A popular approach is
to represent the source short-term spectra v;(n, f) as the sum of
nonnegative basis spectra w i (f), scaled by nonnegative time-
varying activation coefficients 4 jx (n) [23], [24]
K

vjln,f) = kzl wjk (N hj(n). (19)
This model has been indifferently applied to magnitude spectra
or to power spectra in the single-channel case, however only the
latter easily generalizes to the multichannel case. Each basis
spectrum may represent, e.g., part of a speech phoneme or a
musical note, as illustrated in Figure 5(a). Due to its equivalent
matrix form V; = W;Hj, this model is better known as nonneg-
ative matrix factorization (NMF). Considering the fact that only
one speech phoneme or few musical notes may be active at once,
sparsity was enforced by reducing the sum to a single compo-
nent & [25] or by adding penalties such as the ¢; norm
PH) = o | hjk(n)]| [23]. Group sparsity penalties and priors
were also introduced to favor simultaneous activity of basis spec-
tra associated with the same phoneme or note, or to select the
correct speaker or instrument among a collection of basis spec-
tra trained on different speakers or instruments [26].

FINE SPECTRAL STRUCTURE AND SPECTRAL ENVELOPE
Several extensions were brought to NMF to further constrain the
basis spectra. A first idea is to decompose the basis spectra them-
selves by NMF as the sum of narrowband spectral patterns
bikm (f) weighted by spectral envelope coefficients ejim:
Mk
wik() = . bjn (h)ejm. (20)
m=1

The narrowband spectra may be fixed so as to enforce harmonicity
(i.e., spectral peaks at integer multiples of a given fundamental fre-

quency) or smoothness, which are common structures to many
sound sources, and to adapt the spectral envelope coefficients to
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the mixture, which are specific to each
source. These structures are suitable for
sustained and transient musical sounds, as
shown in Figure 5(b).

Another refinement complying with
the physical production of many natural
sounds is to decompose the source short-
term spectra via the excitation-filter model

vin, ) =v§n, N}, f, (21)

where v§(n, f) and vﬂ-‘ (n, f) represent the
excitation signal (e.g., the glottal source)
and the response of the filter (e.g., the
vocal tract) and they are modeled by NMF
[27]. This constraint enforces similar spec-
tra for different fundamental frequencies,
in a similar way as the shift-invariance

Frequency Index f

5)

constraint in [28], i.e., the constraint that 250
all basis spectra are spectrally translated = 200
versions of a single spectrum. §
Ozerov et al. [5] recently proposed a > 150
comprehensive multilevel NMF framework & 100
. . . qe . 3
integrating (19)—(21) by multiplication of up T
r 50

to eight matrices, each of them capable of
embodying specific knowledge or con-
straints in a flexible way. All these extensions
can be compactly formalized as nonnegative
tensor factorization (NTF), an extension of
NMF to multidimensional arrays.

20

Temporal Pattern Weights G;

TEMPORAL EVOLUTION
The aforementioned models do not
directly model the temporal evolution of
the spectra. At a short time scale, Virtanen
[23] enforced the continuity of NMF acti-
vation coefficients by adding the penalty
PH;) = zn\hjk(n +1) —hj(n) [ while
Ozerov et al. [5] modeled them in a simi-
lar fashion as (20) as the product of time-
localized patterns and sparse temporal
envelopes, as depicted in Figure 5(c). Con-
tinuous or HMM priors on Aj(n) were
also used to this end.

At a medium time scale, Smaragdis
[29] generalized (19) into the convolutive
NMF model

15

10

Basic Index k

50
Pattern Index p

Basis Spectra W,

Basis Index k

Narrowband Spectral Patterns B;

Pattern Index m

Temporal Activations H;

80 40
60 ~< 30

x

3
402 ﬁ 202

2
20 o0 10
0 0

10 15 20 40 60 80
Time Index n
(a)
Spectral Pattern Weights E;

40 80
s & 60

3

m £ o

205 - 40 5

g
10 g 20
0 0

40 60 5 10 15
Basis Index k
(b)
Time Localized Patterns T;
20 60
150

15 Q

& 40

o T 100 =

108 £ g

g 20
5 T 50

o
0 0

20 40 60 80
Time Index n

100 150

()

[FIG5] The multilevel NMF decomposition of the spectrogram in Figure 4. (a) The
decomposition as the product of basis spectra W; and temporal activations H;. (b) The
second-level decomposition of W; as the product of harmonic and noisy narrowband
spectral patterns B; and associated spectral envelopes E;. (c) The second-level

decomposition of H; as the product of time-localized patterns T; activated at some

K . .
vi(n, f) = z zwjk(l, Nhx(n—1), (22) time weights G;.
k=11

where the basis elements wi(/,f) are now spectrotemporal
patches rather than single-frame spectra, thus explicitly encoding
the temporal evolution of sound events at each frequency. Musico-
logical models and spoken language models were also exploited to
favor certain note and chord progressions or certain sequences of
words using longer-term HMM priors on A j(n). Mysore and

Sahani [26] provided an efficient algorithm to separate multiple
sources, each modeled by an HMM.

In another major departure from conventional audio
source separation, several researchers recently proposed to
exploit the information encoded by redundancy and repetitive
patterns at very long time scales, so as to optimize the use of
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available information over the whole signal duration. Robust
principal component analysis (RPCA), which decomposes an
input spectrogram as the sum of a

low-rank matrix and a sparse mat-

rix, was used by Huang et al. [30] to

separate (sparse) drum and melody

sources from a (low-rank) repetitive

tonal accompaniment. The search

for repeating patterns in music was

also exploited by Rafii et al. [31]

through the identification of repeat-

ing segments (of up to a duration of

40 s), their modeling, and their extraction via time-frequency
masking. In the future, such ideas may be applied to automatic
learning of fine-grained models from larger and larger amounts
of audio data eventually covering the sounds arising in the mix-
ture to be separated.

IMPACT AND PERSPECTIVES

Over the past 15 years, audio source separation has recorded
constant progress and today it has reached a level of maturity
that enables its integration in real-life application contexts. For
instance, multichannel NMF and NTF have improved perform-
ance by 3-4 dB signal-to-distortion ratio (SDR) compared to
SCA in certain scenarios, and they have made it possible to sep-
arate real-world music recordings using weakly guided models
for typical instruments (vocals, drums, bass) and for the
remaining instruments [3]. Joint spatial and spectral modeling
[5], [6] and convolutive NMF have contributed to the reduction
of the keyword error rate for small-vocabulary automatic speech
recognition (ASR) from 44% down to as little as 8% in a
strongly guided real-world domestic scenario involving know-
ledge of the speaker and his/her spatial position [32]. Finally,
weakly guided separation of percussive and harmonic content in
music has helped several music information retrieval (MIR)
tasks, reducing, e.g., the relative error rate for chord recogni-
tion by 28% [33].

These and other results show that improved separation per-
formance in many scenarios can be obtained by modeling and
exploiting spatial and spectral properties of sounds, i.e., by
designing models and constraints which account for the specif-
icities of audio sources and acoustic mixing conditions. Two
trends can be seen: developing complex, hierarchical models
with little training so as to adapt to unknown situations with
little amounts of data, or training simpler models on huge
amounts of data, e.g., thousands of room impulse responses
and dozens of hours of speech, so as to benefit from the power
of big data and turn parameter estimation into a model selec-
tion problem.

In either case, the design of clever, computationally efficient
convex relaxations and nonconvex optimization algorithms has
given increasing attention to handle the optimization of all model
parameters and hyperparameters at once and to escape extra local
optima that may hinder the benefit of such models. In certain sce-
narios, some hyperparameters can be set using expert knowledge

or training on separate data, and only the remaining hyperparam-
eters need to be estimated from the mixture.

With few exceptions [5], [6], most
separation systems currently exploit
only a limited set of constraints, pen-
alties, or priors. Research is ongoing
on the improvement of the above
models, as well as on the incorpor-
ation of side-information that has lit-
tle been exploited so far, e.g., visual
information about the source move-
ments. Ultimately, the integration of

the variety of developed models and schemes into a complete, fully
versatile system constitutes a challenge in itself.
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