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Rugged, repeatable performance.
At Mini-Circuits, we’re passionate about transformers. We even 
make own transmission line wire under tight manufacturing 
control, and utilize all-welded connections to maximize 
performance, reliability, and repeatability. And for signals up 
to 8 GHz, our rugged LTCC ceramic models feature wrap-
around terminations for your visual solder inspection, and 
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Continued innovation: Top Hat. 
A Mini-Circuits exclusive, this new feature is now available on
every open-core transformer we sell. Top Hat speeds 
customer pick-and-place throughput in four distinct ways: 
(1) faster set-up times, (2) fewer missed components, 

(3) better placement accuracy and consistency, 
and (4) high-visibility markings for quicker visual 
identification and inspection.

More models, to meet more needs 
Mini-Circuits has over 250 different SMT models in 
stock. So for RF or microwave baluns and transformers,
with or without center taps or DC isolation, you can 
probably find what you need at minicircuits.com. Enter 
your requirements, and Yoni2, our patented search 
engine, can identify a match in seconds. And new custom
designs are just a phone call away, with surprisingly 
quick turnaround times gained from over 40 years of 
manufacturing and design experience!

¢
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[from the EDITOR]
Abdelhak Zoubir

Editor-in-Chief 
zoubir@spg.tu-darmstadt.de

http://signalprocessingsociety.org/
publications/periodicals/spm 

I
EEE Technical Activities (IEEE-TA) is 
a major component of the IEEE that 
includes all programs of the 45 Societ-
ies of the IEEE and technical councils, 
as well as programs of the Technical 

Activities Board (TAB) and the Technical 
Activities Department. The board, as well 
as each committee, plays a vital role in the 
success of IEEE-TA. One of these commit-
tees is the TAB Periodicals Review and 
Advisory Committee (PRAC). Under the 
“Scope” of the TAB PRAC, it is stated [1]:

The objectives of the Committee are 
to provide suggestions for improve-
ments; determine how well the IEEE 
Society/Council (S/C)-sponsored peri-
odicals perform in terms of quality 
and timeliness, and meet the policies
and procedures for IEEE periodicals; 
conduct a financial “health check,” 
and make recommendations for 
changes, if required. In carrying out 
the above objectives, the TAB Periodi-
cals Review and Advisory Committee, 
on an ongoing basis, will identify best 
practices and assist/encourage S/Cs in 
identification of potential improve-
ments to their publishing programs. 
On 13 February, I, as well as my col-

leagues and fellow editors-in-chief (EiCs) of 
the IEEE Signal Processing Society (SPS) 
journals, and IEEE SPS senior leaders, 
such as the current President Alex Acero,  
Past-President Ray Liu, and VP Publica-
tions Mari Ostendorf, attended the five-year 
review meeting in Los Angeles. Compre-
hensive five-year review reports, which 
were compiled by the EiCs with the assis-
tance of IEEE SPS staff and the oversight 
of the IEEE SPS VP Publications, were 

submitted at an earlier stage to the PRAC. 
These reports are similar to those submit-
ted for an SPS technical committee five-
year review. 

Publications volunteers from other 
IEEE Societies conducted the reviews of 
IEEE Signal Processing Magazine (SPM)
and SPS transactions and letters. The 
meeting was collaborative and collegial 
and, indeed, it was conducive to improve-
ments in many ways, including best prac-
tices used by other IEEE periodicals. 
During and after the meetings, it was 
mentioned by the review committee mem-
bers that SPS is to be commended for its 
best practices.

Clearly, this is the result of the hard 
work of the many volunteers in the SPS. 
Editorial boards play a vital role in main-
taining the high quality of journals and the 
magazine. SPM consists of a senior editorial 
board with members who are academics 
and industrialists and who tirelessly assist in 
ensuring the high quality of feature articles 
and special issues. In addition, the editorial 
boards for columns and forum as well as the 
eNewsletter play a crucial role in ensuring 
timely and high-quality publications. I wish 
to thank all members of the editorial boards 
for their support and dedication. 

Editorial boards rely on external vol-
unteers who conduct reviews of articles 
and columns. I take this opportunity to 
wholeheartedly thank all of the colleagues 
and friends that are always willing to help 
with reviews of articles for SPM.

I also wish to thank the members of the 
senior editorial board whose term finished 
in 2013. Their support was instrumental 
for ensuring high-quality feature articles 
and special issues. 

It gives me great pleasure to introduce 
the new 2016 class of editorial board mem-

bers: Patrick Flandrin, Hamid Krim, Hing 
Cheung So, Isabel Trancoso, Pramod 
Varshney, and Z. Jane Wang. With these 
energetic and dedicated professionals, we 
shall move SPM to an even higher level 
with more innovations to come.

It is one of our main duties as re-
searchers to guide young graduate stu-
dents and introduce professionals to new 
areas by providing them with invaluable 
archival resources. This issue of SPM in-
cludes a feature article on physical layer 
service integration in wireless networks, 
indeed a timely topic for next-generation  
wireless networks. The authors provide an 
excellent overview of state-of-the-art solu-
tions and identify signal processing chal-
lenges and some promising research 
directions. Also, this special issue is on a 
topic that has become extremely impor-
tant in engineering practice: source sepa-
ration. Five experts guest edited this 
issue, which provides an overview on the 
most important advances, as well as some 
key areas of development in this area in 
theory and applications. With the energy, 
dedication, and enthusiasm of all volun-
teers, working together with guest editors 
and authors, we shall move SPS’s flagship 
magazine to greater heights and serve our 
research and professional communities 
par excellence.

REFERENCE
[1] IEEE Technical Activities Board Operations 
Manual. [Online]. Available: https://www.ieee.org/
documents/tab_operations_manual.pdf
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

GlobalSIP and ChinaSIP: New Conferences 
Developed by the IEEE Signal Processing Society

T
hrough member surveys, we 
have learned that you value 
attending conferences and 
workshops as an opportunity 
to present your work, learn 

the latest advances in the field, and have a 
chance to network with colleagues. As the 
signal processing field grows, more and 
more members join our Society, and our 
conferences and workshops attract more 
and more attendees. We are always look-
ing for opportunities to serve you better, 
and that includes offering more technical 
meetings from which you can choose. 

The International Conference on 
Acoustics, Speech, and Signal Processing 
(ICASSP) is the largest conference orga-
nized by the IEEE Signal Processing Soci-
ety and the only one that covers all of the 
Society’s fields of interest. Since its found-
ing in 1976, ICASSP has taken place in the 
spring of every year. To cater to the more 
specialized needs within the signal pro-
cessing field, many of our 12 technical 
committees (TCs) have workshops in the 
fall. Running a workshop is a time-con-
suming process for the volunteer organiz-
ers, as it involves many nontechnical 
activities such as setting up contracts with 
hotels for meeting space and meals, regis-
tration, local arrangements, etc. To 
address these responsibilities, the Society’s 
Board of Governors decided to offer 
another option to such workshop organiz-
ers: the IEEE Global Conference on Signal 
and Information Processing (GlobalSIP). 

GlobalSIP is a collection of symposia 
proposed by our TCs that all take place at 
the same venue and the same time during 

the fall, so that many of the nontechnical 
logistics can be shared. TCs are not forced 
to set up their workshops at GlobalSIP 
though; they can continue running their 
workshops independently if they so wish. 
Our first GlobalSIP took place in Austin, 
Texas, United States, in December 2013. 
I want to thank General Chairs Robert 
Heath and Ahmed Tewfik, as well as the 
rest of the organizing committee for the 
enthusiasm and work they put in running 
a very successful conference. GlobalSIP 
2013 was a collection of 18 separate sym-
posia, each run by a separate technical pro-
gram committee with its own technical 
theme, format, and acceptance rate. Glo-
balSIP 2013 attracted 466 attendees, many 
of whom came from other fields. We 
received positive feedback from the attend-
ees, especially that GlobalSIP provided 
them an opportunity to meet people with 
different expertise.

The IEEE Signal Processing Society is 
becoming more and more international. 
The first ICASSP took place in Philadel-
phia, Pennsylvania, United States, in 1976 
and, of the first ten ICASSPs, only one 
took place outside the United States 
(Paris, France) in 1982. The situation has 
changed dramatically in the last 40 years. 
In fact, of the five upcoming ICASSPs, 
only one will take place in the United 
States. ICASSP 2014 will be held in Flor-
ence, Italy; ICASSP 2015 in Brisbane, 
Australia; ICASSP 2016 in Shanghai, 
China; ICASSP 2017 in New Orleans, 
Louisiana, United States; and ICASSP 
2018 in Seoul, South Korea. At the same 
time, roughly 50% of the Society’s mem-
bers are coming from the United States 
(Regions 1–6). So, the Society’s Board of 
Governors decided to hold GlobalSIP in 

the United States, at least for the next few 
years, since many of our Region 1–6 
members wanted to have access to a pre-
mier signal processing conference closer 
to their home base. GlobalSIP 2014 will 
take place in Atlanta, Georgia, United 
States, on 3–5 December 2014. We look 
forward to seeing you there.

Also, tremendous growth in China 
prompted us to create a conference in that 
country. The first IEEE China Summit 
and International Conference on Signal 
and Information Processing (ChinaSIP) 
took place in Beijing in July 2013, and it 
attracted over 400 attendees. I want to 
thank General Chairs Thomas Fang Zheng 
and Zhi Ding as well as the rest of the 
organizing committee for their hard work. 
I encourage you to attend ChinaSIP 2014, 
which will take place in Xi’ian, China, on 
9–13 July 2014. 

ICASSP 2013 in Vancouver, Canada, 
had over 2,400 attendees and offered plenty 
of interesting papers and stimulating dis-
cussions. I’m looking forward to seeing 
you at ICASSP 2014 in the beautiful city of 
Florence, Italy, on 4–9 May 2014. ICIP 
2013 took place in Melbourne, Australia, 
with over 1,000 attendees. ICIP 2014 will 
take place in another beautiful city, Paris, 
France, on 27–30 October 2014. There are 
many more specialized workshops happen-
ing this year. I hope you find time in your 
busy schedule to attend at least one of 
these conferences or workshops.
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SPS Members Recognized with Awards 

T
he IEEE Signal Processing 
Society (SPS) congratulates 
the following SPS members 
who are being recognized 
with the Society’s prestigious 

awards during the International Confer-
ence on Acoustics, Speech, and Signal Pro-
cessing (ICASSP) 2014 in Florence, Italy, 
on 4–9 May.

2013 IEEE SPS AWARDS TO BE
PRESENTED IN FLORENCE, ITALY
The Society Award honors outstanding 
technical contributions in a field within 
the scope of the SPS and outstanding 
leadership within that field. The Society 
Award comprises a plaque, a certificate, 
and a monetary award of US$2,500. It is 
the highest-level award bestowed by the 
IEEE SPS. This year’s recipients are Al 
Bovik, “for fundamental contributions to 
digital image processing theory, technol-
ogy, leadership and education” and Alan S. 
Willsky “for fundamental contributions to 
probabilistic modeling and for pioneering 
work in the development and application 
of multiresolution statistical methods.” 

Two Technical Achievement Awards 
are presented this year. Yonina Eldar will 
receive the award “for fundamental con-
tributions to sub-Nyquist and com-
pressed sampling, convex optimization, 
and statistical signal processing.” Al Hero 
will be recognized “for information-theo-
retic advances in statistical signal pro-
cessing and machine learning.” The 
Technical Achievement Award honors a 
person who, over a period of years, has 
made outstanding technical contribu-
tions to theory and/or practice in techni-
cal areas within the scope of the Society, 
as demonstrated by publications, patents, 

or recognized impact on this field. The 
prize for the award is US$1,500, a plaque, 
and a certificate.

Two Meritorious Service Awards will 
be presented this year to Ali H. Sayed and 
Rabab Ward “for exemplary service to 
and leadership in the IEEE Signal 
Processing Society.” The award com-
prises a plaque and a certificate; judging 
is based on dedication, effort, and contri-
butions to the Society.

The SPS Education Award honors edu-
cators who have made pioneering and sig-
nificant contributions to signal processing 
education. Judging is based on a career of 
meritorious achievement in signal pro-
cessing education as exemplified by writ-
ing scholarly books and texts, course 
materials, and papers on education; inspi-
rational and innovative teaching; and 
creativity in the development of new curri-
cula and methodology. The award com-
prises a plaque, a monetary award of 
US$1,500, and a certificate. The recipient 
of the SPS Education Award is Dimitris 
Manolakis, “for fundamental contribu-
tions to education in signal processing 
and algorithms for adaptive filtering and 
hyperspectral target detection.”

The IEEE Signal Processing Magazine 
Best Paper Award honors the author(s) of 
an article of exceptional merit and broad 
interest on a subject related to the 

Society’s technical scope and appearing in 
the Society’s magazine. The prize com-
prises US$500 per author (up to a maxi-
mum of US$1,500 per award) and a 
certificate. In the event that there are more 
than three authors, the maximum prize 
shall be divided equally among all authors, 
and each shall receive a certificate. This 
year, the IEEE Signal Processing Magazine 
Best Paper Award recipients are Zhou 
Wang and Alan C. Bovik for their article 
“Mean Squared Error: Love it or Leave it? 
A New Look at Signal Fidelity Measures,” 
published in IEEE Signal Processing 
Magazine, vol. 26, no. 1, Jan. 2009.

Five Best Paper Awards were awarded, 
honoring the author(s) of a paper of excep-
tional merit dealing with a subject related 
to the Society’s technical scope and 
appearing in one of the Society’s transac-
tions, irrespective of the author’s age. The 
prize is US$500 per author (up to a maxi-
mum of US$1,500 per award) and a certifi-
cate. Eligibility is based on a five-year 
window preceding the year of election, and 
judging is based on general quality, origi-
nality, subject matter, and timeliness. Up to 
six Best Paper Awards may be presented 
each year. This year, the awardees are:

■ Amir Beck, Petre Stoica, and Jian Li, 
“Exact and Approximate Solutions of 
Source Localization Problems,” IEEE 
Transactions on Signal Processing,
vol. 56, no. 5, May 2008 
■ Matthew A. Herman and Thomas 
Strohmer, “High-Resolution Radar via 
Compressed Sensing,” IEEE Trans-
actions on Signal Processing, vol. 57, 
no. 6, June 2009  
■ Chunming Li, Chiu-Yen Kao, John C. 
Gore, and Zhaohua Ding, “Minimization 
of Region-Scalable Fitting Energy for 
Image Segmentation,” IEEE Transac-
tions on Image Processing, vol. 17, 
no. 10, Oct. 2008

Digital Object Identifier 10.1109/MSP.2014.2298092
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■ Robert W. Heath, Jr., Tao Wu, Young 
Hoon Kwon, and Anthony C.K. Soong, 
“Multiuser MIMO in Distributed An-
tenna Systems with Out-of-Cell Inter-
ference,” IEEE Transactions on Signal 
Processing, vol. 59, no. 10, Oct. 2011  
■ George E. Dahl, Dong Yu, Li Deng, 
and Alex Acero, “Context-Dependent 
Pre-Trained Deep Neural Networks for 
Large-Vocabulary Speech Recognition,” 
IEEE Transactions on Audio, Speech, 
and Language Processing, vol. 20, no. 
1, Jan. 2012.
The Young Author Best Paper Award 

honors the author(s) of an especially meri-
torious paper dealing with a subject related 
to the Society’s technical scope and ap-
pearing in one of the Society’s transactions 
and who, upon date of submission of the 
paper, is under 30 years of age. The prize is 
US$500 per author (up to a maximum of 
US$1,500 per award) and a certificate. Eli-
gibility is based on a three-year window 
preceding the year of election, and judging 
is based on general quality, originality, 

subject matter, and timeliness. Three 
Young Author Best Paper Awards are being 
presented this year:

■ Yuejie Chi, for the paper coauthored 
with Louis L. Scharf, Ali Pezeshki, and 
A. Robert Calderbank, “Sensitivity to 
Basis Mismatch in Compressed Sens-
ing,” IEEE Transactions on Signal Pro-
cessing, vol. 59, no. 5, May 2011 
■ Kalpana Seshadrinathan, for the 
paper coauthored with Alan Conrad 
Bovik, “Motion Tuned Spatio-Temporal 
Quality Assessment of Natural Videos,” 
IEEE Transactions on Image Process-
ing, vol. 19, no. 2, Feb. 2010 
■ Lin Li, for the paper coauthored 
with Anna Scaglione and Jonathan H. 
Manton, “Distributed Principal Sub-
space Estimation in Wireless Sensor 
Networks,” IEEE Journal of Selected 
Topics in Signal Processing, vol. 5, 
no. 4, Aug. 2011. 
One IEEE Signal Processing Letters 

Best Paper Award was awarded, honor-
ing the author(s) of a letter article of 

exceptional merit and broad interest on a 
subject related to the Society’s technical 
scope and appearing in IEEE Signal Pro-
cessing Letters. The prize shall consist of 
US$500 per author (up to a maximum of 
US$1,500 per award) and a certificate. To 
be eligible for consideration, an article 
must have appeared in IEEE Signal Pro-
cessing Letters in an issue five years pre-
ceding the year of election. Judging shall 
be on the basis of the technical novelty, 
the research significance of the work, 
quality, and effectiveness in presenting 
subjects in an area of high impact to the 
Society’s members. The recipient of the 
IEEE Signal Processing Letters Best Paper 
Award is

■ Gan Zheng, Kai-Kit Wong, Arogyas-
wami Paulraj, and Björn Ottersten, 
“Collaborative-Relay Beamforming 
with Perfect CSI: Optimum and Dis-
tributed Implementation,” IEEE Sig-
nal Processing Letters, vol. 16, no. 4, 
Apr. 2009.

[SP]
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Signal Processing Leads a Photographic and Imaging Revolution

P
hotography and imaging have 
been radically transformed 
over the past couple of decades 
in ways that 19th-century pio-
neers such as Louis-Jacques-

Mandé Daguerre (Figure 1) and Henry 
Fox Talbot could have scarcely imagined. 
Traditional photography and imaging, 
rooted in chemical processes, have now 
largely given way to digital methodolo-
gies and technologies. The result has 
been faster, less expensive, and more 
convenient ways of acquiring and pre-
senting images, and in many cases the 
creation of clearer, more detailed, and 
less distorted pictures on many different 
types of media.

Signal processing plays an important 
role in virtually all types of digital photog-
raphy and imaging. In consumer, profes-
sional, industrial, and scientific still 
cameras, sophisticated integrated algo-
rithms help determine how images are 
collected, interpreted, and stored. Algo-
rithms, for example, ensure that captured 
raw sensor data are efficiently translated 
into color-corrected image data that can 
then be stored either in raw pixels or as 
compressed images. Image processing 
algorithms are also involved in image cap-
ture and compression, focus and exposure 
control, managing white balance, demo-
saicsing, image storage, preview display 
rendering and scaling, and various post-
processing tasks.

FREEZING STREAKS
As researchers work to extend the capabil-
ities of existing imaging systems, as well 
as blaze new technologies, signal process-
ing provides ways of adding new capabili-
ties and improving the performance of 

existing features and functions. Research-
ers at Laguna Hills, California-based Met-
roLaser, for instance, used signal 
processing in the creation of a camera that 
captures full-color images of projectiles 
traveling at speeds of up to 3,350 m/s, 
approximately ten times the speed of 
sound. The digital galvo mirror streak 
camera, designed to replace now-obsolete 
film-based streak cameras, records the 
motion of a projectile as it passes in front 
of its lens, creating a long, continuous 
composite image of the object.

Now that digital technology has com-
pleted its sweep across the photography 
industry, the specialized film required for 
analog streak photography cameras is no 
longer being manufactured. In 2007, the 
U.S. Air Force asked MetroLaser to design 
a modern digital system that could pro-
duce high-quality ballistic images. “The Air 
Force wanted a highly rugged digital cam-
era system that would allow them to get 
full-color, high-resolution photos of rocket 
sleds moving up to Mach 10 with schlieren 
effects (optical inhomogeneities in trans-
parent material that aren’t necessarily visi-
ble to the human eye) included,” says Ben 
Buckner, MetroLaser’s chief scientist.

The imaging system Buckner devel-
oped with coresearcher Drew L’Esperance, 
utilizes a precisely controlled mirror galva-
nometer to follow a rapidly moving object 
and freeze its image. Buckner explains that 
the mirror tracks the ballistic object as it 
moves past the camera lens and directs 
appropriate portions of the image onto 
specified areas of the image sensor to form 
a complete, undistorted picture. “It enables 
full-color 15-plus megapixel photography 
of objects moving at high speeds with stan-
dard photographic flashes, or even strong 
natural light, with schlieren photography 
of disturbances in the surrounding air,” 
Buckner says.

Since the mirror is synchronized to 
the ballistic object, the biggest challenge 
the researchers faced when developing the 
system was finding a way of accurately 
measuring the object’s speed and calculat-
ing the swing of the mirror to precisely 
match that object’s trajectory. “The main 
challenge is that the software has to con-
trol a galvanometer mirror very precisely 
and very quickly,” Buckner says. “The 
rocket sled velocity is variable, so you have 
to measure [the sled] as it’s coming down 
the track, and in a few milliseconds, the 
software has to calculate the required tra-
jectory for the mirror to match the speed 
and generate the control signals,” he con-
tinues. At such high speeds, the mirror 
response tends to be nonlinear. “So in 
addition to working out the basic kine-
matic equations for the motion, you have 
to put in some corrections and then gen-
erate the required control waveform on 
the fly,” he says.

“I put a fair bit of time into optimizing 
the code for fast execution, since it’s on a 

Digital Object Identifier 10.1109/MSP.2014.2301793

Date of publication: 7 April 2014

[FIG1] Photography pioneer Louis-Jacques-
Mandé Daguerre. (Photo courtesy of 
www.wikipedia.com.) 
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[special REPORTS]continued

fairly low-end embedded processor,” Buck-
ner says. Other challenges were optimiz-
ing the acceleration curve and deriving 
the nonlinear response corrections. “We’re 
pushing the galvo controller to its limits, 
so the way you accelerate it is important,” 
Buckner says.

Buckner foresees other potential appli-
cations for the galvo mirror streak camera, 
such as determining the finishing order in 
high-speed races. “There are other ways of 
doing high-speed imaging, but this one is 
particularly effective at doing very high-
resolution images, color images, schlieren 
images, and large-scale subjects where it’s 
very difficult to get a submillisecond flash 
of sufficient energy,” he explains.

Most other types of high-speed imaging 
techniques are hampered by resolution 
and color reproduction limitations, Buck-
ner says. The galvo mirror streak camera, 
however, has many of the same benefits as 
conventional professional-level cameras. 
“We can work with the same flash rigs that 
any commercial photographer uses, and 

largely [with] the same camera back,” 
Buckner explains. “Our system really just 
replaces the camera lens, and all the rest of 
it is the same equipment you would find 
being used to take school pictures or mag-
azine glamour shots.” The system’s modu-
lar design also allows it to be easily 
upgraded. “Commercial camera backs are 
always improving,” Buckner says. “We 
could easily get [the system] up to 80 
megapixels now just by putting one of the 
newer camera backs on it.”

UPGRADING MICROSCOPES
Researchers at the California Institute of 
Technology (Caltech) relied on signal pro-
cessing techniques to help develop a 
method of converting relatively inexpen-
sive conventional microscopes into high-
end billion-pixel imaging systems. The 
new approach, called Fourier ptycho-
graphic microscopy (FPM), promises to 
significantly enhance the efficiency of dig-
ital pathology, particularly in situations 
where specialists need to review large 

numbers of tissue samples (Figure 2). 
The researchers also hope that the tech-
nology will bring high-performance 
microscopy capabilities to medical clinics 
that can’t currently afford high-density 
imaging systems.

“A microscope’s pixel count is funda-
mentally limited by the physical nature of 
the optical lenses—all physical lenses have 
aberrations that ultimately degrades the 
imaging process,” says Changhuei Yang, a 
Caltech professor of electrical engineering, 
bioengineering, and medical engineering. 
A standard digital microscope typically cre-
ates images with approximately ten mega-
pixels of resolvable pixels. “You can choose 
between a large field of view and a poor 
resolution, or small field of view and a high 
resolution,” Yang says. “If we are simply 
examining microscope slides with our 
eyes, this pixel count is quite sufficient, but 
this pixel count is woefully low to address 
digital pathology needs.” 

FPM provides a computational-oriented 
approach that aims to free microscope 
developers from the physical limitations of 
optical lenses. The microscopy industry’s 
current approach for creating high-quality 
microscopes is to use very complicated—
and expensive—stacks of exotic glass 
lenses to cross-compensate for aberration. 
FPM makes this type of development 
model unnecessary. “To FPM, the distor-
tions in optical elements are simply math-
ematical functions that it can manipulate 
computationally and zero out of the final 
processed image,” Yang says. “We can take 
a [poor] microscope, make some cheap 
modification to its lighting scheme, and 
use it to collect a sequence of poor-quality 
images. “The algorithm will then take the 
data and render a high-quality and high 
pixel count image.”

FPM stitches the low-resolution images 
together to create high-resolution inten-
sity and phase information, providing a 
more complete picture of a particular clini-
cal sample’s entire light field. To create a 
complete image of a particular sample, the 
system acquires approximately 150 low-
resolution images with each image corre-
sponding to a single element in the 
light-emittion diode (LED) array. 

When their work began several years 
ago, the researchers struggled to reach 

Raw Data

Reconstructed Image
(b)

(c)(a)

20 μm

200 μm

[FIG2] (a) An FPM installation that converts a relatively inexpensive conventional 
microscope into a billion-pixel imaging system. The inset in (a) shows a magnified 
image of the LED chip that contains a red-green-blue LED. A raw image of human 
blood smear taken with a 2X objective lens is shown in (b) along with (c) the 
reconstructed image produced by the FPM system. (Photo courtesy of the California 
Institute of Technology.)
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their goal by completely eliminating 
lenses from microscopes. The approach 
found them trying a variety of chip-scale 
microscope systems, none of which met 
their performance or cost targets. “In the 
past couple of years, we started asking 
ourselves whether we can tackle optical 
aberrations head-on rather than side-step-
ping the problem,” Yang says. “If we could, 
we would not have to throw out the com-
pelling advantages of using lenses in 
microscopes.” Benefits associated with 
lenses include the ability to concentrate 
light and easier color handling. By follow-
ing a computational-oriented approach 
and developing FPM, the researchers were 
able to bring the resolution of a conven-
tional 2X objective lens to the level of a 
20X objective lens.

FPM’s main design strategy is similar 
to that of interferometric synthetic aper-
ture microscopy: expanding summation 

by parts (SBP) in Fourier space through 
multi-image fusion. However, because no 
measured phase information is needed for 
FPM, the researchers’ approach eliminates 
the design challenges associated with in-
terferometric detection. Yet FPM’s image 
recovery procedure follows a strategy 
common with ptychography scanning dif-
fraction microscopy, iteratively solving for 
a sample estimate that is consistent with 
many intensity measurements. Unlike pty-
chography, however, FPM’s object support 
constraints are imposed in the Fourier do-
main, offering several unique advantages 
and opportunities.

FPM’s data collection procedure is 
straightforward, according to Yang. The 
process involves placing a two-dimen-
sional (2-D) sample at the focal plane of a 
low-numerical aperture microscope objec-
tive and collecting a sequence of images, 
with the sample successively illuminated 

by plane waves at different angles. Unlike 
other synthetic aperture techniques, the 
procedure acquires intensity images of the 
sample, so no interferometric measure-
ments are required. The use of a low-
numerical aperture objective lens allows a 
large field of view to be captured at the 
expense of a low spatial resolution.

A major advantage of the new 
approach is relatively pain-free hardware 
compatibility. Manufacturers only need to 
add an LED array to an existing micro-
scope—no other hardware modifications 
are necessary. A computer then handles 
the rest of the work. The researchers say 
that their method could have wide appli-
cations not only in digital pathology but 
also in everything from hematology to 
wafer inspection to forensic photography. 
“A broad swath of imaging modalities can 
benefit from this computational approach 
of tackling imaging,” Yang says. Satellite 
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[special REPORTS]continued

imaging is a particular area of interest. 
“The features we can resolve in satellite 
images is tied to the size of the camera 
you send up to space,” Yang says. “We 
think FPM can ... allow satellite imaging at 
unprecedented resolution.” X-ray imaging 
is another potential application. “X-ray 
imaging is confounded by the lack of high-
quality lenses,” Yang says. FPM makes this 
a nonissue since it simply treats the dis-
tortions as a mathematical function. 

Yang is optimistic that FPM micros-
copy will soon become a scientific main-
stay. “Because the hardware is so simple, 
we hope it will be commercially available 
in a couple of years,” he says.

FIXING PHOTOS
Sophisticated computational processing 
also promises to benefit the everyday 
users of smartphones and various other 
types of consumer-level cameras. Target-
ing such individuals, researchers at the 
Massachusetts Institute of Technology 
(MIT) have developed a chip-based pro-
cessor that’s dedicated to helping almost 
any camera user—amateur or pro—cre-
ate high-quality photographs.

At MIT’s Microsystems Technology 
Laboratory, Rahul Rithe, a graduate stu-
dent in the school’s Department of Electri-
cal Engineering and Computer Science, 
recently worked on the team that devel-
oped the “Maxwell” processor (named after 
James Clerk Maxwell, who in 1855 first 
proposed creating color photographs by 
using red, green, and blue filters to merge 
together three captured images). The chip 
(Figure 3) aims to help shutterbugs by 

almost instantaneously creating more 
realistic or enhanced lighting in a shot 
without destroying the scene’s ambience. 
“This energy-efficient and scalable imple-
mentation is ideal for integration with 
mobile devices such as smartphones, tab-
lets, digital cameras, and even laptops, to 
enable live computational photography on 
these energy-constrained devices,” says 
Rithe, who was lead author of a paper on 
the project.

Most current computational photogra-
phy applications are software based. “Per-
forming [image optimization] tasks on 
general purpose CPUs and GPUs consumes 
a significant amount of power and is typi-
cally not fast enough to support real-time 
performance,” Rithe says. He states that 
the Maxwell processor can perform optimi-
zation operations in real-time while con-
suming dramatically less power. “While 
software-based systems typically take sev-
eral seconds to perform an operation like 
high dynamic range (HDR) imaging, the 
chip can do it in a few hundred millisec-
onds on a ten-megapixel image,” says 
Rithe, who notes that the high-perfor-
mance chip can also enhance video output. 

To create an HDR image, Maxwell tells 
the camera to take three individual low 
dynamic range photos: a normally exposed 
image, an overexposed image capturing 
details in the dark areas of the scene, and 
an underexposed image capturing details 
in the bright areas. The processor then 
merges the photos to create a single image 
that captures the scene’s full color and 
brightness range.

The processor uses bilateral filtering, 
Rithe says, a nonlinear filtering technique 
that effectively reduces noise and smooths 
out an image’s defects without blurring 
sharp edges, thereby preserving important 
details. “Nonlinear filtering techniques 
like bilateral filtering are used in a wide 

range of computational photography 
applications,” he notes. Unfortunately, due 
to its high computational complexity, bilat-
eral filtering is generally inefficient and 
slow. “We leveraged the bilateral grid 
structure ... and developed an optimized 
hardware implementation that represents 
a 2-D image using a three-dimensional 
(3-D) data structure and performs the pro-
cessing in the 3-D domain,” Rithe says. 
“This significantly reduces both the com-
putational complexity and the amount of 
memory required to process large images.”

Rithe notes that signal processing 
techniques like nonlinear filtering are 
essential to the processor’s operation. 
“Signal processing is vital to our research 
in the form of image processing tech-
niques that enable us to manipulate and 
create images that could have only come 
from a handful of prolific artists, like 
Ansel Adams, in the past,” Rithe says. The 
algorithms implemented on the chip were 
inspired by the computational photogra-
phy work of Fredo Durand and Bill Free-
man (an associate professor and professor, 
respectively), at MIT’s Computer Science 
and Artificial Intelligence Laboratory.

Multimedia processing applications 
such as computational photography have 
very high computational complexity and 
memory requirements. “The major chal-
lenge was to come up with a combination of 
algorithmic-, architectural-, and circuit-
level innovations that significantly brought 
down the computational complexity, mem-
ory requirement, and bandwidth,” Rithe 
says. “To enable real-time processing while 
being extremely power efficient, we devel-
oped a highly parallel architecture that is 
able to support real-time processing of high-
definition (HD) images while operating at 
less than 100 MHz frequency, as opposed to 
CPUs and GPUs that operate at several 
GHz.” One of the key components in maxi-
mizing the processor’s energy-efficiency is 
voltage/frequency scaling. “Careful circuit 
design for low-voltage operation ensured 
reliable performance from 0.9 V down to 0.5 
V,” Rithe explains. “This enables voltage/fre-
quency scaling to maximize the energy-effi-
ciency for a required performance level.”

Rithe developed the processor on a 
team that included Anantha Chan-
drakasan, MIT’s Joseph F. and Nancy P. 

RITHE NOTES THAT  
SIGNAL PROCESSING

TECHNIQUES LIKE
NONLINEAR FILTERING

ARE ESSENTIAL TO
THE PROCESSOR’S

OPERATION.

[FIG3] A printed circuit board containing 
MIT’s “Maxwell” computational photog-
raphy processor. (Photo courtesy of MIT.)
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Keithley Professor of Electrical Engineer-
ing. Other members included fellow grad-
uate student Priyanka Raina, research 
scientist Nathan Ickes, and undergraduate 
student Srikanth Tenneti.

Work on the processor began in Janu-
ary 2011 when Rithe and his coresearch-
ers started exploring different types of 
computational photography algorithms. 
After the team completed algorithmic 
optimizations, developed a highly parallel 
architecture to enable real-time process-
ing, and finalized circuit implementations, 
the chip was sent for fabrication in April 
2012 through Taiwan Semiconductor 
Manufacturing Company’s University 
Shuttle Program. 

The researchers presented their work 
at the IEEE International Solid-State 
Circuits Conference in February 2013. 

The live demonstration system prototype 
combined the processor with external 
memory, camera, and display (Figure 4). 
“We received significant interest from 

the leading mobile processor and device 
makers,” Rithe says.

Future processors designed along the 
lines of Maxwell will permit more complex 
computational photography applications, 
Rithe says. He notes that Raina is cur-
rently leading an effort to develop a pro-
cessor capable of sharpening images that 
are blurred due to camera shake during 
image capture. “We are also exploring 
ways of extending computational photog-
raphy and computer vision techniques to 
enable portable smartphone-based medi-
cal imaging applications,” he says.

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based in 
the Phoenix area.

[SP]

[FIG4] A demonstration system that 
integrates the processor with DDR2 
memory and connects with a camera 
and a display through the USB inter-
face. The system provides a platform 
for live computational photography. 
(Photo courtesy of Nathan Ickes/MIT.)
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Source Separation and Applications

D
ata-driven methods are 
based on a simple generative 
model such as matrix or ten-
sor decompositions and 
hence can minimize the 

assumptions on the nature of the data and 
the latent variables. They have emerged as 
alternatives to the traditional model-based 
approaches whenever the unknown 
dynamics are hard to characterize. Source 
separation has been at the heart of data-
driven approaches and has found wide 
applicability in areas as diverse as biomedi-
cine, communications, finance, geophys-
ics, and remote sensing.

Historically, the source separation 
problem has been posed with flexible and 
general assumptions and minimal priors, 
hence leading to the designation blind 
source separation (BSS). The first method-
ology for successful BSS was independent 
component analysis (ICA), and today, 
source separation includes a broader range 
of topics that emphasize incorporation of 
various priors and different types of 
decompositions to take the natural dimen-
sionality of the observed data into account. 
New trends of research include the joint 
analysis of large-scale heterogeneous mul-
tidimensional sets of data, e.g., associated 
to multimodal data acquisition as in 
hyperspectral or brain imaging. In addi-
tion, underdetermined problems, i.e.,
those with a weak diversity and a large 
number of sources, are practically very 
interesting and can be solved through the 
use of additional priors such as sparsity. 
Indeed, many connections between source 
separation and the fields of sparse repre-
sentations, compressive sensing, and dic-
tionary learning have emerged, leading 
to new avenues for research. Hence, 

addressing the theory and problems at the 
junction of these topics, along with other 
exciting directions such as sparse compo-
nent analysis and nonnegative matrix fac-
torization (NMF), is of particular interest. 

Our aim in this special issue is to pro-
vide a comprehensive view of the main 
advances in the field through a number of 
overview articles as well as contributions 
that emphasize the key topics of develop-
ment in the area, both in terms of theory 
and applications. The issue contains 12 
articles, where the focus of the last five is 
on applications. 

The first two articles are overviews. 
The first article “Diversity in Independent 
Component and Vector Analyses” by Adalı 
et al. provides an overview of ICA and its 
extension to multiple data sets, indepen-
dent vector analysis (IVA). Mutual infor-
mation rate is used as the cost that allows 
the use of both non-Gaussianity and sam-
ple dependence as the form of diversity—
statistical property—for achieving the 
decomposition, which in the case of IVA, 
adds the use of one more type of diversity, 
statistical dependence of the sources 
across the data sets. For this general case, 
identification conditions are given for 
both ICA and IVA, underlining the paral-
lels between the two, and noting that 
both can identify multiple Gaussians 
under certain conditions when non-
Gaussianity is not the only form of diver-
sity that is used. Many existing algorithms 
and results are discussed as special cases 
under this broad umbrella along with per-
formances of a few using medical imaging 
as the motivating example. While the 
focus in terms of algorithms for the first 
overview article is on iterative methods 
that maximize the likelihood, the second 
article shifts the focus to another impor-
tant class—source separation through 
joint diagonalization. 

The joint diagonalization of a set of 
matrices has been a prominent tool in lin-
ear ICA and BSS since, in many mixing 
models, the underlying key features of the 
mixed sources—such as their mutual sta-
tistical independence—can be expressed in 
terms of diagonal matrices. In fact, exact 
or approximate joint diagonalization is an 
important particular case of a broader fam-
ily of joint matrix decompositions and 
transformations, which can be useful in a 
variety of source separation scenarios. The 
article “Joint Matrices Decompositions and 
Blind Source Separation” by Chabriel et al. 
provides a description of some of the the-
ory and practice behind the different signal 
models and approaches in which advanced 
techniques for joint matrix decomposi-
tions become instrumental.

In recent years, the field of source sepa-
ration benefited from the gradual assimila-
tion of multilinear algebra into signal 
processing, in the form of tensors in gen-
eral and tensor decompositions in particu-
lar. In many practical source separation 
contexts, the observed signals can be 
arranged in multiway arrays, and much 
can be gained by considering them as ten-
sors and by applying tensor analysis and 
decomposition tools—which, in many 
cases, can produce not only estimates of 
the mixing parameters but also denoised 
versions of the underlying source signals. 
In his article “Tensors,” Comon overviews 
some of the fundamental properties of ten-
sors, such as their relations with polyno-
mials and different concepts of tensor 
ranks. Several exact and approximate ten-
sor decomposition approaches are 
reviewed in a way that can hopefully serve 
as a solid basis for readers interested in 
further pursuing these appealing tools.

Nonnegativity is a natural property that 
one can take into account when achieving 
source separation, and NMF has indeed 
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been an active area. Three articles in the 
special issue have a focus on nonnegative 
factorizations. In “Nonnegative Matrix and 
Tensor Factorizations,” Zhou et al. present 
an overview of the current and novel effi-
cient algorithms for large-scale NMF and 
their extensions to nonnegative tensor fac-
torizations and decompositions. The per-
formances of the proposed algorithms are 
demonstrated by several illustrative exam-
ples. In “Static and Dynamic Source Sepa-
ration Using Nonnegative Factorizations,” 
Smaragdis et al.  discuss models beyond 
the standard NMF and provide a unifying 
approach to nonnegative source separation 
for both static and dynamic models. They 
show how they can be easily extended to 
temporal models that are either continu-
ous or discrete. Their approach enables 
many alternative formulations of dynamic 
source separation algorithms with non-
negativity constraints. Finally, in “Putting 
Nonnegative Matrix Factorization to the 
Test,” Huang and Sidiropoulos give a con-
cise tutorial style derivation for the Cra-
mér–Rao lower bound for standard 
symmetric and asymmetric NMF. By pro-
viding the performance bound, they pro-
vide the benchmark against which the 
performance of the competitive NMF algo-
rithms can be assessed. The proposed 
approach can be extended to facilitate 
analogous derivations for related bilinear 
matrix factorizations problems with con-
straints other than nonnegativity. 

Classical source separation mostly re-
lies on statistical properties of the sources 
and is usually effective only when the mix-
ing process is invertible, requiring the 
number of observed mixtures to be equal 
to (or larger than) the number of sources. 
Separation of sources from fewer mix-
tures, and even from a single mixture, is 
possible when some structural informa-
tion is available regarding the sources, es-
pecially when such information can be 
expressed using a convex operator—cost 
function—which promotes the desired 
structure. The article “Convexity in Source 
Separation” by McCoy et al. provides an 
elucidating overview of this emerging 
field, starting with simple motivating ex-
amples and following through with an 
explanation of underlying theoretical 

concepts, separability conditions and algo-
rithmic aspects. Li et al. also addresses the 
underdetermined problem in “Sparse Rep-
resentation for Brain Signal Processing” 
and considers an important application 
area—brain imaging. The problem that 
has no solution without extra priors has 
been addressed in the early 2000s based on 
sparsity assumption on the sources, and 
the work has led to a wide class of meth-
ods known as sparse component analysis, 
also related to sparse representation and 
dictionary learning, two very active areas 
of research. In their article, the authors 
provide a review and extension of main re-
sults in the area and then demonstrate 
how sparse representation methods can 
enhance ill-posed inverse problems in 
brain signal processing.

Audio processing, the original inspira-
tion to the source separation problem by 
the “cocktail-party problem,” has been ar-
guably the most active application area for 
source separation. Today, the area is still a 
very active one, and three of the articles in 
this issue have a focus on audio applica-
tions. While initially, most of the work in 
the area considered the convolutive nature 
of the mixtures and were based on ap-
proaches in the time or frequency domain, 
the current state of the art and recent ad-
vances exploit—most often jointly—many 
priors on signals, such as sparsity, positivi-
ty, and sophisticated models of speakers, of 
instruments or the rooms, leading to in-
formed source separation. The article 
“From Blind to Guided Audio Source Sep-
aration” by Vincent et al. provides an at-
tractive review of this evolution and 
critical perspectives for the field. The tran-
sition from blind, to semiblind, and semi-
informed separation is the focus of 
another article in the issue. In “Score-In-
formed Source Separation for Musical 
Audio Recordings,” Ewert et al. address 
the growing field of music signal process-
ing, which has applications in stereo-to-
surround up-mixing, remixing tools, 
instrument-wise equalizing, karaoke sys-
tems, and preprocessing in music analysis 
tasks. They review recent developments in 
the field that integrate the prior knowl-
edge encoded by the musical score, a sim-
ple prior that is typically available. In 

addition to use of different priors that lead 
to an “informed” solution, one can also 
make use of complementary information, 
more specifically, visual information, 
which can be considered to be insensitive 
to background noise. The article “Audiovi-
sual Speech Source Separation” by Rivet 
et al. provides an overview of the key 
methodologies in audiovisual speech 
source separation. It focuses on three as-
pects: modeling the audio-video coherence 
in a common probabilistic framework for 
modeling the audiovisual features distri-
bution; use of video as secondary modali-
ties for improving speech detection; and 
use of video information to regularize/con-
trol the audio enhancement based on ei-
ther ICA or time-frequency masking. 

Another application area where the 
mixing model has been useful is chemical 
analysis. Data recorded through various 
chemical sensing procedures can be mod-
eled as linear or nonlinear mixtures of 
concentrations of spectra. Classical meth-
ods of chemiometrics can then be en-
hanced with recent methods of source 
separation, taking into account special 
properties of the available data: nonnega-
tivity (of the concentrations, spectra), de-
pendence (due to chemical interactions), 
and sparsity (mass spectrum) among oth-
ers. In “Source Separation in Chemical 
Analysis,” Duarte et al. show how chemical 
data properties can be exploited through 
various methods, including ICA, geometri-
cal, and Bayesian methods.

We thank our contributors for their 
comprehensive and interesting articles 
and to Fulvio Gini for his support in put-
ting together this special issue. We would 
like to also extend our thanks to our 
reviewers for their detailed and insightful 
comments, to Rebecca Wollman for the 
great guidance along the way, and to Jessica 
Barragué for the care in putting together 
our special issue. 

Source separation, we believe, is an 
exciting area that keeps evolving. We hope 
that this special issue reflects that senti-
ment and will help identify some of the 
new and emerging directions in the area 
as well as providing critical perspectives 
on the existing ones. 

[SP]
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S
tarting with a simple generative model and the assump-
tion of statistical independence of the underlying com-
ponents, independent component analysis (ICA) 
decomposes a given set of observations by 
making use of the diversity in the 

data, typically in terms of statistical 
properties of the signal. Most of the 
ICA algorithms introduced to 
date have considered one of 
the two types of diversity: 
non-Gaussianity—i.e., 
higher-order statistics 
(HOS)—or, sample depen-
dence. A recent generaliza-
tion of ICA, independent 
vector analysis (IVA), general-
izes ICA to multiple data sets and 
adds the use of one more diversity, 
dependence across multiple data sets for 
achieving an independent decomposition, 
jointly across multiple data sets. Finally, both ICA and IVA, 
when implemented in the complex domain, enjoy the addition of 
yet another type of diversity, noncircularity of the sources—
underlying components. Mutual information rate provides a uni-
fying framework such that all these statistical properties—types of 
diversity—can be jointly taken into account for achieving the 
independent decomposition. Most of the ICA methods developed 
to date can be cast as special cases under this umbrella, as well as 

the more recently developed IVA methods. In addition, this formu-
lation allows us to make use of maximum likelihood theory to 
study large sample properties of the estimator, derive the Cramér–

Rao lower bound (CRLB) and determine the conditions 
for the identifiability of the ICA and IVA mod-

els. In this overview article, we first 
present ICA, and then its general-

ization to multiple data sets, IVA, 
both using mutual informa-

tion rate, present conditions 
for the identifiability of the 
given linear mixing model 
and derive the performance 
bounds. We address how 

various methods fall under 
this umbrella and give exam-

ples of performance for a few 
sample algorithms compared with 

the performance bound. We then discuss 
the importance of approaching the performance 

bound depending on the goal, and use medical image analysis 
as the motivating example.

INTRODUCTION
Data-driven methods typically start with a simple latent variable 
model—of which the linear mixing has been the most common—
and decompose a given set of V -dimensional P  observations, typ-
ically arranged as a P V#  observation matrix, into two matrices, 
a P M#  mixing matrix and an M V#  component/source matrix 
using a suitable cost. Since in this very general form, this is not a 
well defined problem, usually additional constraints are imposed 

[Tülay Adalı, Matthew Anderson, and Geng-Shen Fu]

[Identifiability, algorithms, and 

applications in medical imaging]

Diversity in 
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on the mixing and/or component matrices such as sparsity and 
nonnegativity. ICA is based on the assumption of statistical inde-
pendence of the underlying components, and because this is a 
strong assumption, it enables a solution subject to only scaling 
and permutation ambiguities. Independence is also a natural 
assumption in many problems and a set of features that are statis-
tically independent can be easily used for many tasks. This is the 
reason for the popularity of ICA and its wide use in areas as diverse 
as biomedicine, communications, finance, geophysics, and remote 
sensing, see, e.g., [1]–[3]. In this article, we use mutual informa-
tion rate to provide a common umbrella for ICA such that the two 
most commonly used types of diversity to achieve ICA, depend-
ence of samples and HOS are both taken into account. 

There are numerous applications where not only one set of 
observations but multiple data sets, which have some dependence 
among them, need to be jointly ana-
lyzed. Examples include the analysis 
of medical data such as functional 
magnetic resonance imaging (fMRI) 
and electroencephalography (EEG) 
collected from multiple subjects, 
remote sensing data such as hyper-
spectral images where each pixel pro-
vides spectral information over 
multiple frequency bands, analysis of multisensor or multimodality 
data that provide complementary information, and multisubject 
biometric data, among many others. In all of these cases, the under-
lying components within the data sets, and hence the observations 
themselves, exhibit statistical dependence, which is another form of 
diversity to exploit. One approach to analyze these multiple data 
sets is to perform an individual ICA on each data set separately. 
Since most applications require matching of the corresponding 
components from each data set, one should then use a permutation 
algorithm to align the estimated components/sources since the 
ordering of the sources cannot be determined by ICA. Such an 
approach becomes computationally prohibitive as the number of 
data sets and sources increases, but more importantly, it fails to take 
advantage of the additional diversity, statistical dependence across 
multiple data sets while performing the analysis. An approach for 
ICA of multiple data sets, called group ICA, which is introduced in 
the context of fMRI analysis [4], temporally concatenates multiple 
data sets, and after a dimension reduction step, performs ICA on 
this concatenated data set and then reconstructs the estimates for 
each data set separately. As we demonstrate in this article, while 
practical and useful, using a common subspace for performing ICA 
is likely to lead to information loss. Multiset canonical correlation 
analysis (MCCA) [5] alleviates the problem by making full use of all 
the available data and has found wide application; see, e.g., [6] and 
[7]. It can be also shown to achieve joint blind source separation [8]. 
However, MCCA makes use of only second-order statistics (SOS) 
and constrains the demixing matrix to be orthogonal, hence limit-
ing the search space for the optimal solution. 

IVA generalizes the ICA problem to multiple data sets in such a 
way that it allows making full use of the statistical dependence 
across multiple data sets, and can take not only SOS but HOS into 

account as well, and includes MCCA as a special case. Using the IVA 
framework, one can exploit the statistical dependence of each 
source across multiple data sets leading to performance beyond 
what is achievable with single-set ICA algorithms applied separately 
to each data set. Additionally, IVA automatically aligns dependent 
sources across the data sets hence bypassing the need for the use of 
a second permutation algorithm for the task. The original formula-
tion for IVA [9] assumes that sources across data sets have no sec-
ond-order dependence, and uses a multivariate Laplacian model for 
the source component vector (SCV)—which is defined in the sec-
tion “IVA: Cost Function.” In this overview article, we present a 
more general formulation for IVA, show that just like ICA, IVA can 
be cast using mutual information rate and thus all three key statis-
tical properties, sample dependence within a source, source depen-
dence within an SCV, as well as HOS are taken into account [10]. 

We give the identifiability conditions 
and present results on large sample 
properties using maximum likelihood 
theory for both ICA and IVA, and in 
the process, discuss the parallels 
between the two approaches in terms 
of the role statistical dependence 
plays. We emphasize the fact that it is 
the SOS that determine identifiability 

for both ICA and IVA, and that the correlation structure defines the 
diversity needed for establishing an independent decomposition for 
both, and discuss the parallels for the two. The results for identifi-
ability and large sample properties do consider another important 
diversity type, which is nonstationarity of the sources. Finally, the 
application of ICA and IVA to medical image analysis is discussed 
highlighting the importance of diversity in these studies. 

INDEPENDENT COMPONENT ANALYSIS
We consider the basic noiseless ICA problem based on instanta-
neous mixing where there are as many sources as mixtures—the 
most common case, the overdetermined one, also the case in fMRI 
analysis, can be easily reduced to this form using order selection 
as in [11] and [12]. The linear mixing model is then written as 

( ) ( ), , ( ), ( ) ,v v v V v v1x As x s RN# # != (1)

where v  is the sample index such as voxel, pixel, or time. The esti-
mates are given by ( ) ( ),v vu Wx=  which can be also written in 
matrix form as ,U WX=  where u Rn

V!<  is the nth  row of 
,U WX= i.e., [ , , ] ,U u uN1 f= <  and , .X U RN V! #  Since we 

consider the more general case that includes sample dependence 
in the ICA formulation and would like to keep the notation as sim-
ple as possible, we make the following definitions. We use 

( )vx RN!  to refer to the random vector that contains the N
mixtures ( ),x vn ,n N1 # #  and x Rn

V!  to denote the trans-
pose of the nth  row of the observation matrix .X RN V! #  When 
the reference is to a random quantity rather than observation, it 
will be clear from context. 

In ICA, we assume that the sources ( )vsn  in ( )vs =

[ ( ) ( ) ( )]s v s v s vN1 2 f <  are statistically independent, and make use 

ICA CAN HENCE 
IDENTIFY TWO OR MORE 

GAUSSIAN SOURCES WHEN 
NON-GAUSSIANITY IS NOT THE 
SOLE TYPE OF DIVERSITY USED.
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of different properties of the signal, such as non-Gaussianity, sam-
ple dependence, geometric properties, or nonstationarity of the sig-
nal, i.e., diversity in some form [1, Ch. 1]. Among those, the most 
commonly used type of diversity has been non-Gaussianity—
HOS—of the sources. Most of the popular ICA algorithms such as 
Infomax [13], FastICA [14], and joint approximate diagonalization 
of eigenmatrices (JADE) [15] as well as many of the variants of 
maximum likelihood (ML) techniques with different approaches for 
approximating the source density, such as [16] and [17], all fall 
under this umbrella. Even very recent surveys—such as [18]—pri-
marily consider ICA algorithms within this group. As a result, in 
the community, most often, fundamental results such as those for 
identifiability always consider this more limiting view of achieving 
ICA. It has been hence commonly noted that ICA can identify only 
a single Gaussian source. As we note next, this is true only when 
non-Gaussianity is the only form of diversity that is considered.

Besides those making use of non-Gaussianity, another import-
ant group is algorithms that make use of linear dependence 
among the samples, hence SOS. These include the algorithm for 
multiple unknown signal extraction (AMUSE) [19], second-order 
blind identification (SOBI) [20], and weights-adjusted SOBI 
(WASOBI) [21] among others. In this 
case, we use a random process rather 
than a random variable model for 
the sources, and use ( )s vn  where v
is an index such as time, pixel, or 
voxel. In this article, we use v  for 
voxel, as medical image analysis, i.e.,
volume data will be our main motiv-
ating example. 

Algorithms using only non-Gaussianity form a major portion 
of the ICA algorithms developed to date, while those using sample 
dependence come in second. An obvious question one may ask is 
“Why not make use of both types of diversity, non-Gaussianity 
and sample dependence together, at the same time?” As one 
would expect, this approach leads to algorithms with better per-
formance than those using only one type of diversity as demon-
strated in [22]–[26]. In addition, use of these two types of diversity 
jointly allows for more relaxed conditions for the identifiability of 
the ICA model in (1). 

This is our main goal in this section, to show how mutual 
information rate helps bring most of the ICA algorithms under 
one umbrella and helps determine identification conditions along 
with performance bounds so that the performance of various algo-
rithms can be compared against this benchmark. 

ICA: COST FUNCTION
Mutual information is a natural cost for ICA since the goal is 
the maximization of independence among the source estimates 

,u Wx=  and has been used commonly when providing a gen-
eral umbrella for approaches based on the use of HOS. Here, 
using the random process notation as in (1), we write the nth
source estimate as ( ) ( ),u v vw xn n= <  where wn

<  is the nth  row 
of the demixing matrix .W  We can then write the mutual infor-
mation rate as 

( ) ( ) ( )H u HW uIr r
n

N

n r
1

= -
=

/

( ) | | ( )log detH u HW xr
n

N

n r
1

= - -
=

/ (2)

and take into account both HOS and sample dependence to 
achieve ICA. In (2), we used the Jacobian expression 

( ) ( ) ( ) detp p pu Wx x Ws s X
1= = - , and hence the last term 

( )H xr  is a constant with respect to ,W  it can be replaced by C
resulting in 

( ) ( ) | | ,log detH u CW WIr r n
n

N

1
= - -

=

/ (3)

where H ur n^ h is the entropy rate, which is limH ur n v= "3^ h

( ), , ( ) /H u u v v1n nf6 @  and the entropy is written as ( )H un =

( ) .logE p w xs nn- <" ,  In the rest of the article, we refer to differen-
tial entropy simply as entropy since discrete-valued random vari-
ables are not considered in the article. When the process is 
stationary, we have ( ( ) | ( ), ,limH u H u v u v 1r n v n n f= -"3^ h

( )) .u 1n  Since entropy rate measures the per sample density of the 
average uncertainty of a random process, minimization of (3) 

makes use of both HOS—through 
the minimization of missing infor-
mation, entropy—and sample 
dependence by making samples eas-
ier to predict by increasing sample 
dependence, i.e., decreasing the 
entropy rate. The term | |log det W
acts as a regularization term preserv-
ing the volume across the directions 

of source estimation. Since entropy is not scale invariant, i.e.,
( ) ( )H x H x! a  for ,1!a  without the regularization term, the 

cost function could be minimized by simply scaling the source esti-
mates. Mutual information rate hence provides a broad umbrella 
under which one can study the properties of ICA algorithms by tak-
ing into account both HOS and sample dependence, the two types 
of diversity most commonly used for ICA. 

When we constrain the demixing matrix to be orthogonal, 
i.e., let ,WW I=<  we have | ( ) | ,det 1W =  and the cost in (3) re-
duces to 

( ) ,H u CWJ r r n
n

N

1
= -

=

^ h/ (4)

which maximizes the negentropy rate, the information-theoretic 
distance of a random process from that of a Gaussian for each 
source, under a variance constraint. 

For a given set of observations, ,X RN V! #  we can maximize 
the likelihood given by 

( ) ( ) | | ,log log detp VW u WL
n

N

s n
1

ICA n= +
=

/ (5)

where u Rn
V!  is the transpose of the nth  row of ,U WX= i.e., 

[ , , ] .U u uN1 f= <  By the general asymptotic equipartition prop-
erty [27], as ,V " 3  the maximization of likelihood function 

( )WLICA  becomes equivalent to the minimization of the mutual 

IVA GENERALIZES THE ICA 
PROBLEM TO MULTIPLE DATA SETS

IN SUCH A WAY THAT IT ALLOWS USE 
OF THE STATISTICAL DEPENDENCE 

ACROSS MULTIPLE DATA SETS. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [21] MAY 2014

information rate cost in (3). This is true if the probability den-
sity function (pdf) ( )p us nn  used in the ML formulation exactly 
matches the true pdf, which is implied when using mutual 
information rate as the cost. When there is a mismatch between 
the estimated pdf through likelihood and the true one, there is a 
bias that can be represented by the relative entropic—Kullback-
Leibler—distance of the true density to the estimated. Using a 
flexible density model such as those employed by the two algo-
rithms introduced in the section “ICA: Algorithms,” autoregres-
sive mixture of Gaussians (AR-MOG) [24], and entropy rate 
bound minimization (ERBM) [25], decreases this bias. At this 
point, and for the performance discussion in the next section, 
we assume that the source pdf is known. In the section “ICA: 
Algorithms,” we discuss different 
ways of estimating the source pdf 
during adaptation, which lead to a 
number of different ICA algorithms 
that can all be studied under the 
mutual information rate minimiza-
tion umbrella. In [17], a distinction 
is made between a true ML scheme that estimates the pdf and 
one that uses a fixed distribution where the latter is called a 
quasi-ML procedure.

In the rest of the development, to simplify the discussion, we 
assume that all variables are zero mean so that the definitions of 
correlation and covariance matrices coincide. 

ICA: IDENTIFICATION CONDITIONS 
AND THE PERFORMANCE BOUND
Given the log likelihood in (5), we can compute the Fisher infor-
mation matrix (FIM) using the expected value of its Hessian, 
which tells us how informative the given set of observations are 
for the estimation of the demixing matrix .W  The FIM also plays a 
key role in determining the identification conditions of the ICA 
model as well as the lower bound on the unbiased estimator, the 
CRLB. We consider the FIM locally around the optimal point, 

,G AW I= =  hence have .u sn n=  Due to the invariance of the 
induced CRLB with respect to ,G  the CRLB only depends on the 
statistics of the sources. Here, we note that since the quantity 
being estimated is W  rather than ,G  the estimated bound is actu-
ally the induced CRLB following [28]. 

By making use of the independence of the sources, one can 
show that the FIM has a block diagonal structure with N  scalars 
and ( ) /N N 1 2-  matrices that are .2 2#  The scalar diagonal 
entries are all positive, and hence, the properties of the FIM are 
determined by the 2 2#  matrices—pairwise interaction of 
sources—given by 

, ,m n N
1

1
1J ,

,

,
m n

m n

n m

ICA 1# #
l

l
= ; E (6)

where 

( ) ( ) ,Etrace s s R,n m n n m} }l = <^ h" ,

( )
( )

, { } .
log p

Eands
s

s
R s sR Rn

n

n V
n n n

V Vsn

2

2
! !} = - = #<

Hence, the FIM is a function of the key source statistics, the two 
types of diversity the formulation in (5) takes into account—sam-
ple dependence and HOS. In addition, source nonstationarity is 
another type of diversity, and the form in (6) considers the use of 
this third type of diversity as well since here the definitions are 
with respect to the complete source vector of dimensionality ,V
which matches the dimension of the samples in the given observa-
tion. The quantity :]^ h is called the score function and is defined 
as the derivative with respect to the source estimate .un This is a 
slightly different definition than in traditional ML theory where 
the score function is defined with respect to the parameter. 

Since the blocks ,J ,m n
ICA m n N1 1# #  are the diagonal 

blocks of a covariance matrix, the FIM, they are positive semidefi-
nite, and since FIM is block diagonal, 
they determine the condition for 
positive definiteness of the whole 
matrix. Evaluating the condition for 
which J ,m n

ICA  becomes singular hence 
yields the nonidentifiability condi-
tion for the ICA model—subject to 

the scaling and permutation ambiguities. It can be shown that 
J ,m n
ICA  remains positive definite as long as there are no two sources 

that are Gaussian with proportional autocovariance matrices, i.e.,
we do not have two Gaussians, sm  and sn  in the mixture that sat-
isfy R Rm n

2d=  [1, Ch. 4]. Hence, in the presence of this simple 
correlation diversity, i.e., when ,R Rm n

2! d  even Gaussian 
sources are separable using ICA when sample dependence and 
HOS are both considered. In addition, this result also includes use 
of nonstationarity as diversity—to keep the notation simple we 
have not included a time index in the definition of the autocovari-
ance matrices. 

For algorithms that only take sample dependence into account 
however, for algorithms such as AMUSE, SOBI, and WASOBI, any 
two sources—not only Gaussians—with “similar” covariance 
matrices cannot be separated [19], [28]. Obviously, using these 
algorithms, independent and identically distributed (i.i.d.) sources 
cannot be separated either. When the sources are i.i.d., or when 
only HOS are taken into account implicitly assuming i.i.d. sam-
ples—as is the case in most of the ICA algorithms—then effect-
ively, we have R Il l

2v=  for , .l n m=  In this case, we can only 
identify a single Gaussian source since the correlation diversity is 
no longer available. This is the commonly known condition for the 
identifiability of the ICA model since the majority of ICA algo-
rithms only exploit non-Gaussianity. However, as we note here, it 
is important to remember that this condition is true only for a 
specific case, and now there are effective algorithms that can take 
into account multiple types of signal diversity. 

Using the expression in (6), we can write the CRLB as 

( ) .w V
1var , , ,m n m n n m

1 1
$ l l- - -^ h (7)

Assuming that the mixtures are whitened such that { }E XX I=<

and ,1snv =  we can calculate the CRLB using the normalized 
interference-to-signal-ratio (ISR) 

THANKS TO THIS ADDITIONAL 
DIVERSITY, IVA CAN IDENTIFY I.I.D. 

GAUSSIAN SOURCES AS WELL.
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( )
{ },

N N
E g

1
1ISR

, ,
,

m n m n

N

m n
1

2=
- !=

/ (8)

where g ,m n  are the entries of ,G AW=  which we plot in Figure 1 
along with performances of two algorithms introduced in the next 
section against this bound. 

ICA: ALGORITHMS
Mutual information rate in (3) can be minimized using relative/
natural gradient updates [29], [30] as 

( ) ( ) ( { ( ) }) ( ),l l E l1W W I U U Wn W+ = + - < (9)

where ( ) [ ( ), , ( )] ,U u u RN N
N V

1 1
Tf !} }W = # 02n  is the 

step size, l  is the iteration index, and the score function n :} ^ h is 
defined in (6). In the update in (9), 
we include the complete source esti-
mate matrix ( )lU W X=  as we con-
sider sample correlation, rather than 
the commonly used random vector 
notation as in [29] and [30]. The 
form of this update is the same as the 
one proposed in [31] based on non-
linear decorrelations, the original 
approach for achieving ICA [32]. 

The bound given in (7) assumes 
that the exact density of each source 
is known. To approach this bound, a number of density matching 
methods are proposed, in particular for the i.i.d. case, where the 

problem is simpler as we need to estimate a univariate rather than 
the multivariate score n :} ^ h in (9). Solutions for the i.i.d. case 
include both parametric and nonparametric approaches as in effi-
cient variant of FastICA (EFICA) [33] and nonparametric ICA (NP-
ICA) [16], as well as a semiparametric approach, ICA by entropy 
bound minimization (EBM) [34]. 

EBM uses an efficient entropy estimator where rather than 
estimating the entropy directly, an upper bound is estimated 
among a number of competing candidates determined by the 
maximum entropy principle and by a finite number of prespecified 
measuring functions. Available prior information can be used in 
the selection of measuring functions, and even a simple selection 
of two odd and two even functions leads to a flexible algorithm 
that provides robust performance in a number of scenarios [34]. 
In [25], the flexible EBM density estimation strategy is combined 

with an invertible filter model such 
that both non-Gaussianity and sam-
ple dependence are taken into 
account to derive ERBM—originally 
introduced as full blind source separ-
ation—and hence to directly minim-
ize (3). Other approaches that take 
both types of diversity into account 
are Markovian ICA [22] where the 
Markovian source model is adopted, 
autoregressive mixture of Gaussians 
[24], entropy rate minimization 

using an AR source model driven by GGD (ERM-ARG) [35], and 
MULTICOMBI [23] where either non-Gaussianity or sample 
dependence is taken into account by switching between the EFICA 
and WASOBI algorithms. All of these solutions assume stationarity 
of the sources. 

The decoupling of the source estimates by assuming an 
orthogonal W  introduced in the section “ICA: Cost Function” 
leads to negentropy rate as the cost, and greatly simplifies the 
score/density matching problem as the estimation for a given 
source then does not interact—and hence complicates—the esti-
mation of others. This is the approach used in the FastICA algo-
rithm [14], which is noted for its fast convergence. In [33], 
generalized Gaussian distribution (GGD) 

( ) ( | | )expp s s 2? - b (10) 

has been used as the source model to derive EFICA. Besides help-
ing with density estimation, the assumption of orthogonality pro-
vides a number of other advantages such as making second-order 
algorithms such as Newton-variants become more practical and 
allowing for easier implementation of constrained ICA [36]. 

However, this decoupling through constraining W  to be 
orthogonal also limits the search space for the demixing matrices 
thus also limiting the achievable performance [37]. The decou-
pling approach given in [38] and [39] transforms the matrix opti-
mization problem to a series of vector optimization problems 
without having to constrain the matrix to be orthogonal. Here, it 
is also important to remember that the commonly used whitening 

WITH THE ADDITION OF EACH 
NEW TYPE OF DIVERSITY, NOT ONLY 
THE PERFORMANCE IMPROVES, BUT 
ALSO THE IDENTIFICATION BECOMES

EASIER, A BROADER CLASS OF 
SIGNALS CAN BE SEPARATED 

USING ICA OR IVA.

[FIG1] The induced CRLB and performance of two algorithms 
as a function of shape parameter b  (non-Gaussianity) for three 
levels of sample correlation, for AR coefficient , . ,a 0 0 4=  and 
0.7. Note the improvement in performance as the role of HOS 
(b  moves away from 1) and as sample correlation (value 
of )a  increase.
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step for the observations implies an orthogonal demixing matrix 
only when the number of samples ,V " 3  and hence does not 
guarantee an orthogonal demixing estimate unless it is embedded 
into the update mechanism. This decoupling approach is used in 
the EBM and ERBM algorithms that employ flexible density mod-
els for each source estimate. Finally, algorithms that only make 
use of sample dependence, and hence SOS, such as AMUSE, SOBI, 
and WASOBI jointly diagonalize multiple covariance matrices to 
determine an estimate for W  rather than directly maximizing the 
likelihood (5). A second-order ICA approach based on ML with a 
Gaussian density model is given in [40], and it is shown that 
besides this ML-based algorithm, WASOBI approaches the CRLB 
as well, when the sources are stationary AR processes. 

EXAMPLE: DIVERSITY, CRLB, AND THE
PERFORMANCE OF TWO ALGORITHMS
To demonstrate the role of diversity in attaining optimal perfor-
mance while designing an algorithm, we consider a simple exam-
ple, the separation of two linearly mixed sources, an i.i.d. source 
drawn from a GGD (10) and a second source, a first-order AR pro-
cess generated by a Gaussian process ( )vo  such that 

( ) ( ) ( ) .s v as v v1 o= - +  GGD assumes the form of a Gaussian 
for ,1b =  is super-Gaussian when 0 11 1b  and sub-Gaussian 
when .12b  Hence, as b  moves away from 1, the role of HOS 
increases, and similarly, the role of sample dependence increases 
as | | .a 1"  In Figure 1, we plot the CRLB given by (7) using the 
ISR (8). First note that for finite ISR, it suffices for one of the 
sources to have sample correlation—nonzero a—when both are 
Gaussian. The widely referenced and repeated condition for the 
real case that says “with ICA, one can identify only a single Gauss-
ian” hence is true only when sample dependence is not taken into 
account—or is absent in that the samples are i.i.d., which rarely is 
the case in practice. In the same figure, we also show the perfor-
mance of two algorithms that make use of both sample depen-
dence and HOS: one that exactly matches the underlying source 
models, entropy rate minimization using AR model with a GGD 
driving process (ERM-ARG) [35] and the more flexible ERBM algo-
rithm [25]. The results are shown for 1,000 samples and 500 inde-
pendent runs. While we observe that the exact match provides the 
best performance, the flexible ERBM does a decent job in 
approaching the bound as well and does not use prior information 
like the ERM-ARG. 

EXAMPLE: PERFORMANCE COMPARISON
IN SEPARATION OF NATURAL SOURCES
In Figure 2, we show the ISR of nine different algorithms in sepa-
ration of ten artificially mixed images from [41] to demonstrate 
the performance of different algorithms in separation of sources 
that come from a rich class of distributions. Since, for small sam-
ple sizes, there were a number of unstable runs, the results are 
plotted using the median rather than the mean. The algorithms 
used in the comparison are JADE; EFICA; Robust, Accurate, Direct 
ICA aLgorithm (RADICAL); and ICA-EBM that exploit the HOS, 
WASOBI that uses sample dependence, AR-MOG, ERM-ARG, and 
ERBM that use both, and finally MULTICOMBI that uses both but 

one at a time. The advantage of making use of both diversity 
jointly is clear as well as the superior performance of two algo-
rithms that use flexible density models, AR-MOG and ERBM—
though the performance of AR-MOG deteriorates with decreasing 
sample size due to its complexity. 

INDEPENDENT VECTOR ANALYSIS
In many applications, not only a single but multiple data sets with 
dependence among them need to be jointly analyzed. Examples 
include the analysis of medical data such as fMRI and EEG from 
multiple subjects or at different conditions, data from multiple fre-
quency bins when solving the convolutive ICA problem in the fre-
quency domain, and the analysis of multisensor or fusion of 
multimodality data with complementary information. IVA general-
izes the ICA problem to multiple data sets so that one can take 
advantage of this additional type of diversity, the one across mul-
tiple data sets when achieving the decomposition. 

Next, we show that IVA can be formulated using mutual infor-
mation rate minimization like ICA but now with the addition of 
one more diversity, dependence among sources across data sets. 
Also, as in the case of ICA, we consider the general case that does 
not constrain the demixing matrices to be orthogonal, and as 
such, IVA generalizes CCA and MCCA [5] as well, both through 
incorporation of statistics higher than two and also by allowing a 
general nonorthogonal demixing matrix. Using this general for-
mulation, we give the general conditions for identifiability of the 
IVA model as well as the performance bounds. The ICA result, as 
expected, becomes a special case when the number of data sets is 
set to one. We then present current algorithms for achieving IVA, 
and address the challenges in the area. 

[FIG2] The performance of nine algorithms using different types 
of diversity—either HOS or sample dependence, or both—in the 
separation of a mixture of sources that come from a rich density. 
Note the best performance by algorithms making use of both 
types of diversity.
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IVA: COST FUNCTION
The IVA problem is defined similar to ICA except that we now have 
K  data sets, each containing V  samples, and formed from linear 
mixtures of N  independent sources, 

( ) , , ,v v k K v V1 1x A s[ ] [ ] [ ]k k k # # # #= ^ h (11)

where ,A R[ ]k N N! # , ,k K1 f=  are invertible mixing matrices. 
The problem is finding K  demixing matrices W[ ]k  such that 
sources for each data set can be estimated through 

( ) ( )v vu W x[ ] [ ] [ ]k k k=  for , ,k K1 f=  as shown in Figure 3(a). 
For K  data sets ,X R[ ]k N V! #  we can recover the source esti-

mates for each data set using ,U W X[ ] [ ] [ ]k k k=  and by defining aug-
mented matrices X  and ,S , write the problem as 

.0
0

0

0

0
0 where

X

X

A

A

S

S
X AS A A

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

K K K

k

k

K
1 1 1

1
, 5h j h= = =

=

> > >H H H /

(12)

The estimates are given by U WX=  and the demixing matrix is 
also block diagonal, .W W[ ]k

k
K

1
5=

=
/  The decomposition is per-

formed on this augmented matrix X  so that the dependence of 
components of the source matrices S[ ]k  across data sets can be 
taken into account. In this model, the components within each 
S[ ]k  are assumed to be independent while we allow for dependence 
across corresponding components of S[ ]k  in multiple data sets. In 
fact, it is this additional dependence that IVA takes advantage of, 
and the following definition helps clarify the idea and is key for the 
whole development to follow. 

We define the SCV for the nth  SCV sn  as 

( ) ( ), ( ), , ( ) ,v s v s v s vs R[ ] [ ] [ ]
n n n n

K K1 2 f !=
<6 @

i.e., by concatenating the nth  source from each of the K  data 
sets, or similarly, define the source component matrix (SCM) Sn

shown in Figure 3(a), through concatenation of each row of S[ ]k

as [ , , , ] .S s s s[ ] [ ] [ ]
n n n n

K1 2 f= <  The SCV takes into account sample 
dependence through the inclusion of index v  in its notation and 
we use both definitions, SCV and SCM, in the discussion to follow. 
As an example, in the fMRI analysis we introduce in the section 
“Application to Medical Image Analysis,” the nth  SCM contains 
the spatial activation maps of the nth  source, such as the motor 
component, for all K  subjects in the study. One would expect the 
activation maps of different subjects to be statistically dependent, 
as for each subject, voxels at corresponding locations would show 
comparable levels of activation. This is the additional diversity that 
the general IVA formulation makes use of when achieving the 
decomposition. It is, however, important to note that while IVA 
makes use of this additional diversity, it does not require that it 
exists, and in its absence, reduces to individual ICAs on each data 
set. This additional diversity is also what helps with the resolution 
of permutation ambiguity among the sources estimated across the 
data sets. The identification condition we introduce in the next 
section specifies when all the sources in an IVA model can be iden-
tified, and is a quite relaxed condition. However, the identification 
of sources does not imply that the sources will be aligned as well, 
and sources across data sets—components of each SCV—can be 
aligned only if the sources across the data sets are statistically 
dependent [10]. 

At this point it is also useful to note that the IVA formulation is 
a special case of the multidimensional ICA (MICA) problem [42], 
also defined as an independent subspace problem [43]. Though 
MICA is not necessarily defined for multiple data sets as IVA, we 
can use the augmented matrix definition in (12) to understand 
how MICA considers a more general model. For the MICA formu-
lation, the mixing matrix is not assumed to have a block diagonal 

[FIG3] For the IVA problem given in (a), note the improvement in performance shown in (b) as the values of v  (source dependence) 
and a  (sample dependence) increase and shape parameter moves away from 1, i.e., the role of HOS increases. (a) IVA for analysis of 
multiple data sets and the two key signal properties available in addition to HOS: sample dependence and dependence among sources 
within an SCM Sn. (b) The role of three types of diversity on performance in terms of induced CRLB (normalized ISR).
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form and the number of components within each SCV can be dif-
ferent. Hence, the problem is one of finding independent sub-
spaces where in each, there might be different number of 
dependent components. There are many challenges for solving the 
general MICA problem. A major one among them is determining 
the number of subspaces and components within each SCV. A 
recent overview of MICA is given in [44] where an effective solu-
tion is offered for the multivariate-Gaussian case. Assuming the 
correct number of components within each SCV can be deter-
mined, MICA then identifies the independent subspaces and does 
not identify the individual components within each subspace, i.e.,
the components within an SCV like IVA does. The IVA formulation 
provides enough additional restrictions to the MICA formulation 
so as to achieve identifiability of individual components while still 
creating a more general framework than ICA. 

Since W has far fewer nonzero parameters than its full 
KN KN#  dimension implies, we define ,RW N N K! # #  a three-
dimensional array, to denote the set of parameters to be estimated. 

Given the definition of an SCV, we formulate the IVA problem 
similar to that of ICA in (3) as 

( ) ,log detH Cu WI W [ ]
r r

n

N

n
k

k

K

1 1

IVA = - -
= =

^ ^h h/ / (13)

where the main difference is that we are now seeking to minimize 
the mutual information among SCVs rather than individual 
sources. To provide a clear view of the role of this additional diver-
sity, we rewrite (13) as 

( ) ( ) .log detH u Cu WI W I[ ] [ ]
r r n

k

k

K

r n
n

N
k

k

K

11 1

IVA = - - -
== =

^e ^ho h// /
(14)

Without the second term ,uIr nn

N

1=
^ h/  the expression in (14) 

is exactly equivalent to the sum of the cost in (3) across K  data 
sets, hence performing independent ICAs on each data set. It is 
this second term, sum of mutual information within each SCV, 

( )uIr nn

N

1=/  that takes the diversity across data sets into 
account. The minimization of (14) hence increases mutual 
information among components of an SCV, thus making use of 
the natural dependence among data sets. 

If we consider no sample dependence—hence the cost is 
mutual information I^ h rather than mutual information rate 
Ir^ h—and use the multivariate Gaussian model for the SCV, we 

have ( ) ( / ) ( )logH e1 2 2u [ ]
n

K
n
k

k
K

1
r m=

=8 B%  where [ ]
n
km  is the kth

eigenvalue of the covariance matrix of the nth  SCV, then (13) 
reduces to 

( )
( )log

log
NK e

2
2

2
1I W [ ]G

n
k

k

K

n

N

11

IVA r
m= +-

==

e o%%

.log det CW[ ]k

k

K

1
- -
=

^ h/ (15)

This is exactly equivalent to the generalized variance method 
(GENVAR) cost function proposed for achieving MCCA [5] when 
we constrain the demixing matrices to be orthogonal 

hence eliminating the term detlog W[ ]k
k

^ h/  but imposing a 
constraint on the sum of estimates, hence the eigenvalues. In [5], 
five cost functions are introduced for maximizing correlation 
among linearly transformed multiple data sets, which in our IVA 
formulation are the SCVs. The cost functions introduced in [5] all 
have the common objective of estimating W[ ]k  such that the SCV 
covariance matrix becomes as ill conditioned as possible, since this 
maximizes the correlation among the components within an SCV. 
Obviously the term log [ ]

n
k

k
K

n
N

11
m

==
` j%%  achieves this goal 

when we let the sum of the eigenvalues be constant, i.e., constrain 
the demixing matrix. In (15), the term log det W[ ]k

k
^ h/

achieves this purpose and is written using the theoretically well-
justified cost of mutual information. 

For given , , , ,k K1X[ ]k f=  we can write the likelihood as 

( ) ( )log log detp VU WWL [ ]

n

N

n n
k

K
k

1 1
IVA = +

= =

^ ^h h/ / ,

where now the score function for the SCM Un  is written as 

.
log p

U U
U

Rn n
n

n n K VIVA

2
2

!W =- #^
^

h
h

(16)

Now, we can proceed as in ICA to derive the performance bound 
and determine the conditions for the identifiability of the IVA 
model by working within ML theory. 

IVA: IDENTIFICATION CONDITIONS 
AND THE PERFORMANCE BOUND
We evaluate the FIM by the expected value of the Hessian of LIVA

at the optimal point ,G W A G Ik
K

k k k
K

k1 15 5= = == =  which is 
now KN KN2 2#  in dimension, since W  has a total of KN2

parameters. Since, the IVA formulation replaces the sources with 
SCMs that are mutually independent, and each SCM includes K
components, the FIM is again block diagonal but now with N
block matrices that are K K#  and ( ) /N N 1 2-  matrices of 
dimension .K K2 2#  The properties are again determined by the 
latter blocks, those that describe the interaction of now the SCMs, 
the K K2 2#  block matrices 

,J I
I

R
K

K
,

,

,
m n

m n

K

K

n m

K K2 2IVA _ ! #= G

w h e r e /V E1 S SK ,
,[ ] [ ] [ ] ,[ ]

,m n k k m
k

n
k

n
k

m
kIVA T IVAT

1 2
1 1 2 2} }= ^ ^ ^h h h" ", ,

when ,m n! ( ,) e,[ ]
n

k
n k

IVA IVA T} W=  where n
IVAW  is given in (16), 

the subscript for the identity matrix I  denotes its dimension, and 
ek  is the kth  basis vector. Again, the FIM is a function of the key 
SCM statistics, and in this case, all three types of diversity—sam-
ple dependence, dependence within an SCM, and the HOS—that 
are considered in this IVA formulation. Since the SCM is writ-
ten for V  samples, i.e., is ,K V#  nonstationarity is taken into 
account as well. 

The FIM is a block diagonal matrix for this case as well and 
the identification condition for the IVA model is obtained by 
evaluating when J ,m n

IVA  remains positive definite. It is shown 
that [10], [45] identification of the IVA model in (11) is possible 
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as long as no two SCMs have a -Gaussian components for 
which ,R I D R I D, ,m V n V7 7=a a^ ^h h  for ,m n N1 !# #  where 
D RK K! #a a  is any full rank diagonal matrix, Ka  the number of 
a -Gaussian components, { },ER S Sn n n= <  and 7  is the Kro-
necker product. An a -Gaussian component is defined as the 
subset of rows of an SCM that are independent from the others 
and have multivariate Gaussian distribution, and a  refers to the 
index of this subset within { , , },K1 f  and R ,n a  refers to the 
covariance matrix of the matrix formed from the a-Gaussian 
rows of an SCM. Hence, it is again a second-order condition that 
determines the identifiability of the model, and the major role played 
by the source covariance matrix in ICA is now replaced by the SCM 
covariance matrix. As in the case of 
ICA, the result holds for the use of 
nonstationarity as a diversity type. 

A useful special case to consider 
is when the samples are i.i.d., which 
is equivalent to considering V 1=
so that IV  is a scalar and unity and 
we now consider SCVs where each 
entry is a random variable rather 
than SCMs or an SCV with entries 
that are random processes. This is 
the basic assumption in most ICA algorithms where only HOS 
are taken into account, and it leads to practical and effective 
solutions that work well for most cases, including many where 
the samples are actually dependent. However, for ICA, with the 
i.i.d. assumption, we can only identify a single Gaussian source. 
For IVA, however, the condition for this case is more general 
and now we can identify the IVA model as long as there are no 
two a -Gaussian SCVs for which .R DR D R, ,m n

K K!= #
a a

a a

Hence, the identification of multiple Gaussians is possible 
with IVA provided that the covariance diversity is available, in 
the sense that covariance matrices of sources that are Gauss-
ian across data sets are not essentially identical, i.e., satisfy 

.R DR D R, ,m n
K K! ! #

a a
a a

Finally, for ,K 1=  the condition reduces to that for ICA and 
we cannot identify any two Gaussians that have ,R Rm n

2d=

0!d  where now the covariance is defined for a single source 
rather than an SCV. A comparison of these two conditions reveal 
the dual nature of the role of diversity in these two cases, diversity 
in the form of source dependence for IVA versus sample depend-
ence in ICA. The diagonal matrix D  for IVA and 2d  for ICA are 
present in the conditions simply due to the inherent scaling ambi-
guity of the problem. The given identification conditions for the 
i.i.d. case coincide with those derived assuming a multivariate 
Gaussian model in [46] and [47] since they are determined by sec-
ond-order statistics.

The CRLB for IVA is given by 

,w
V
1var e eK K,

[ ]
, ,m n

k
k m n m n k

1 1
$ -< - -^ ^h h (17)

which has a similar form to (7), and, again similarly, can be com-
puted using the sum of ISR values, now defined as ( ) .E g ,

[ ]
m n
k 2" ,

( ) .E g ,
[ ]
m n
k 2" ,

EXAMPLE: ROLE OF THREE TYPES OF DIVERSITY FOR IVA
The simple example shown in Figure 3(b) plots the CRLB in 
terms of ISR for two sources and two data sets, where the first 
set of sources—common to both data sets—is drawn from a 
multivariate GGD, which is Gaussian when the shape parameter 

,1b =  and has super-Gaussian marginals for 0 11 1b  and 
sub-Gaussian for .12b  The second set of sources are an i.i.d. 
Gaussian and a first-order AR process ( ) ( ) ( ),s v as v v1 o= - +

where ( )vo  is a white Gaussian process. Hence, the AR param-
eter a  characterizes influence of sample correlation and the 
shape parameter b  of non-Gaussianity, i.e., HOS. Finally, we 
introduce correlation for the first group of sources through a 

correlation coefficient .v  As observed 
in Figure 3(b), performance—as 
measured by the ISR—improves as 
sample source correlation and de-
pendence across data sets—values of 
a  and v  respectively—increase, and 
as the sources become more non-
Gaussian—i.e., as the value of b
moves away from 1. We also note the 
condition for identifiability of the IVA 
model in that when the sources are 

all Gaussian ( )1b =  and i.i.d., a finite ISR is still possible as long as 
there is correlation among the sources, in this example introduced 
only to the first set of GGD sources through v .

IVA: ALGORITHMS
In algorithm development, while it is desirable to consider 
together all types of diversity expressed in the cost (13), current 
solutions available for the problem only take HOS and source 
dependence across data sets into account, primarily due to com-
putational and modeling challenges. Hence, they minimize 
mutual information rather than mutual information rate. A gen-
eralization of joint diagonalization proposed in [48] is the only 
solution we know of that exploits sample dependence for the joint 
source separation problem in addition to the other two diversity, 
HOS and source dependence. 

We write the relative/natural gradient updates for IVA to min-
imize the mutual information—hence not accounting for sample 
dependence—as 

( ) ( ) ( { ( ) }) ( ),l l E l1W W I u W[ ] [ ] ,[ ] [ ] [ ]k k k k kIVA}n+ = + - < (18)

where now the score function has the simpler form ,[ ]kIVA} =

( ) / , , ( ) / .log logp u p uu u[ ] [ ]k
N N N

k
1 1 1

T
2 2 f 2 2- ^ ^h h6 @  Again, a key 

problem is the estimation of the score function, i.e., the source 
pdf, during the adaptation. For IVA, as opposed to ICA, all solu-
tions to date have emphasized parametric methods as non-
parametric approaches can easily become prohibitive for the 
multidimensional case. 

IVA is originally formulated for solving the convolutive 
ICA problem in the frequency domain [9], which is an appli-
cation where resolution of the permutation ambiguity across 
frequency bins is critical to the success of the solution. 

THE IVA FORMULATION CAN BE 
CONSIDERED A SPECIAL CASE OF THE 

MORE GENERAL MICA PROBLEM, 
WHICH ALLOWS IDENTIFICATION OF 
NOT ONLY INDEPENDENT SUBSPACES

AS IN MICA BUT OF INDIVIDUAL 
COMPONENTS AS WELL.
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Hence, the main application domain that is considered has 
been the separation of acoustic sources resulting in an 
emphasis on models attractive for this case starting with the 
multivariate Laplace model [9], [49]. In [50], a mixture of 
Gaussians is proposed where the noisy IVA problem and an 
online solution are considered as well. However these solu-
tions fail to consider all-order statistical dependence within 
an SCV and in certain cases constrain the demixing matrix to 
be orthogonal/unitary as in [50] and [51]. As discussed ear-
lier, constraining the demixing matrix limits the perfor-
mance and the decoupling trick introduced in the section 
“ICA: Algorithms”  allows for advantages of orthogonality 
without having to constrain the matrix, and provides a num-
ber of additional advantages such as easier density matching, 
better convergence properties, and enabling easier derivation 
of second-order iterative algorithms. In (18), a single step 
size n  is used to update the entire demixing matrix while 
each row corresponds to a different source as in the case of 
ICA. In [47], a number of algorithms—including vector gra-
dient descent and vector Newton algorithms—are derived 
using the decoupling trick so that the demixing matrices are 
not constrained to be orthogonal. They are then imple-
mented using a multivariate Gaussian SCV model to derive a 
class of algorithms called IVA-G, and later using a the Kotz 
family [52] that includes the GGD, and hence Gaussian and 
Laplace as special cases. All of these solutions account for 
all-order statistical dependence for an SCV. 

Iterative approaches to optimizing the IVA cost function 
are subject to similar convergence issues as iterative algo-
rithms for ICA. It is shown that the Hessian matrix for the IVA 
cost with the multivariate Gaussian model always remains 
positive definite [47] and thus IVA-G has very desirable conver-
gence properties. Hence, it is a good candidate for initializa-
tion of other algorithms, and is used for initializing the 

solution of IVA with multivariate Laplace implemented as in 
[9] for the results we present in the section “Application to 
Medical Image Analysis.” For non-Gaussian sources, it is 
known that local minima exist in the cost function. These 
local minima correspond to demixing solutions that have dif-
ferent permutations across data sets [10]. Thus, even if a local 
minimum occurs, it is observed that the sources within each 
data set have been separated but the dependent sources across 
data sets are not aligned. This issue is addressed in [53] for the 
special case of spherical and super-Gaussian sources. 

EXAMPLE: PERFORMANCE OF TWO IVA SOLUTIONS
In Figure 4, we show the CRLB for separation of sources that are 
drawn from a multivariate GGD, and the performance of the IVA 
algorithm of [52] for different sample sizes. We implement two ver-
sions of the algorithm, one that estimates the covariance matrix but 
assumes that the true shape parameter b  is known, and a second 
version that selects one of two { . , }0 5 2b =  during the adaptation, 
which is a practical implementation. As expected, in both cases, the 
performance improves approaching the CRLB as the number of 
samples increase. In addition, while the first “clairvoyant” version of 
the algorithm in Figure 4(a), as expected, provides better perfor-
mance, the second and practical implementation shown in Figure 
4(b) provides quite satisfactory performance as well. 

In terms of algorithms that only make use of linear depend-
ence across multiple data sets, MCCA is the oldest, an extension of 
CCA [54] defined for two data sets. The algorithms given in [5] 
assume orthogonal demixing and are deflationary in nature such 
that each row of weights are estimated sequentially. IVA using 
multivariate Gaussian model also makes use of only linear depend-
ence and can be derived within an ML framework [47], [55]. Since 
CCA can be achieved using generalized eigenvalue decomposition, 
it can also be posed as a diagonalization problem, which can be 
readily extended to achieve IVA using generalized joint 

[FIG4] The performance of two IVA algorithms that take source dependence and HOS into account for separation of three GGD sources 
of dimension K 5=  with shape parameter b  and a random covariance matrix compared to the induced CRLB (normalized ISR) for 
different sample sizes. (a) Shape parameter b  is assumed to be known. (b) Shape parameter is selected from b  = {0.5, 2}.
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diagonalization [48]. A review of extensions of CCA to include non-
linear dependences is given in [45]. 

APPLICATION TO MEDICAL IMAGE ANALYSIS
FMRI has enabled us to directly study temporal and spatial 
changes in both the healthy and the diseased brain as a function 
of various stimuli, and has contributed greatly to our understand-
ing of the most complex organ of the human body. Relatively low 
image contrast-to-noise ratio of the blood oxygenation level 
dependent fMRI signal, head movement, and undesired physio-
logical sources of variability (cardiac, pulmonary) make detection 
of the activation-related signal changes difficult. The standard 
approach for the analysis of fMRI data has been correlating the 
time-series data with an assumed reference signal, i.e., perform-
ing a simple linear regression as implemented in the popular stat-
istical parametric mapping (SPM) software [56]. Even though it is 
robust, use of such a reference time course requires prior infor-
mation, which most often is not reliable, and more importantly, 
in most cases it simply is not available. This is the case for data 
that are acquired when subjects are at rest or performing natural-
istic behavior such as watching a movie. Hence, following its first 
application to fMRI analysis [57], ICA has become an attractive 
solution and is now widely used for fMRI analysis—for a recent 
review on ICA of fMRI, see [58]. 

Spatial ICA finds systematically nonoverlapping, temporally 
coherent brain networks without constraining the temporal 
domain, hence can effectively recover functional networks. Func-
tional connectivity refers to temporal correlations between spa-
tially distinct regions of the brain, and ICA has been very effective 

in the study of networks of such intrinsic 
activity since it naturally takes all the voxels 
into account when achieving the decompo-
sition and provides a summary statistics for 
brain activity as well as its modulation 
across time. Besides, the linear superpos-
ition assumption holds for fMRI; see, e.g.,
[59], and the data-driven nature of ICA 
helps minimize unrealistic assumptions 
about the temporal domain and brain 
hemodynamics. 

Figure 5 shows the application of ICA to 
fMRI analysis for finding spatially indepen-
dent components, which has been by far 

the most common use of ICA for the problem. The observation 
matrix X RT V! #  is formed by flattening the volume image data 
of V  voxels at each time point. The time dimension is typically 
reduced from ,T  typically in the hundreds, to ,N  a value around 
30–60 to improve the estimation performance. Information-theo-
retical criteria (ITC) using principal component analysis (PCA) is 
most commonly employed for this step [11], i.e., to determine the 
dimensionality of the signal subspace, usually with a correction for 
dependence among the samples (voxels) [12] so that a better esti-
mate of ML can be used for the ITC. The spatially independent 
components—activation maps—form the sources, and the col-
umns of the mixing matrix correspond to the temporal modula-
tion of the corresponding source in the given time frame, [ , ] .T1
In Figure 5, we show a sample time course after reconstruction to 
its original dimension ,T  and its corresponding Z -thresholded 
spatial activation map. 

EXAMPLE: TAKING SAMPLE DEPENDENCE
AND HOS IN ICA OF fMRI DATA
The activation maps, the underlying independent sources, are 
typically super-Gaussian since they include heavy tails due to 
active voxels, those with high intensity values, and include sam-
ple dependence due to point spread function as well as low pass 
filtering, a common preprocessing step used for fMRI data. 
Hence, it would make sense to account for both types of diversity, 
HOS and sample dependence, when performing ICA of fMRI data. 
In Figure 6, we show the performance of three ICA algorithms in 
estimating the default mode network (DMN): 1) Infomax that 
uses a sigmoidal nonlinearity, a good match to super-Gaussian 

Volume Index

T
im

e 
In

de
x 1

1 V

N

XN × V AN × V SN × V

Infomax EBM ERBM Infomax EBM ERBM

Number of Voxels
Overlapping with the Mask 2,386 3,291 3,328

Sensitivity of t-Map
with the DMN Mask 0.73 0.82 0.82

Estimated t-Values on
Time Regression Coefficients −0.18 −1.10 −2.08

[FIG5] The spatial ICA of fMRI data. Note the presence of both sample dependence and 
HOS as forms of diversity.

[FIG6] Estimated t-maps for DMN using Infomax, EBM, and ERBM, and quantitative measures of their performance.
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sources; 2) EBM that uses a flexible density model, and 3) ERBM 
that combines the flexible density estimation of EBM with a filter-
ing approach to account for sample dependence. DMN is part of 
intrinsic networks, and one that has received much attention 
lately as it is regarded to be an important biomarker for different 
disorders. It activates preferentially when individuals focus on 
internal tasks, when the mind is wandering, and hence it is 
expected to be negatively correlated with the task time-course, 
when data are collected during a task. In this example, the data 
are collected from 20 subjects performing the auditory oddball 
task [60]. As shown in the figure, all three algorithms have com-
petitive performance, however both EBM and ERBM estimate 
more voxels than Infomax that correlate with the DMN mask. 
Also, when we perform a t -test on the multiple regression coeffi-
cients of the estimated time courses to determine their task-relat-
edness, ERBM yields the highest negative value for DMN, hence 
highest negative correlation with the task, indicating best perfor-
mance using this metric [60]. 

Since the need to jointly analyze data from multiple subjects 
is inherent to most problems in medical data analysis, following 
the introduction of ICA for fMRI analysis [57] and its success, a 
simple but effective method, called group ICA [4], is introduced 
for multisubject fMRI data analysis. Group ICA performs a first-
level dimension reduction at the individual subject level, and 
then temporally concatenates dimension-reduced subject data, 
to perform a second-level PCA to find a common subspace for 
data from all subjects. Then a single ICA is performed after 
which individual subject maps and time-courses are recon-
structed as shown in Figure 7(a). There are a number of 
approaches for reconstructing the subject maps, which are 

evaluated and discussed in detail in [61] as well as a number of 
ways to perform concatenation of data sets [62]. While robust 
and practical, the projection to a common subspace of data 
from different subjects can potentially cause loss of information 
in terms of subject variability. In the application of IVA to fMRI 
analysis shown in Figure 7(b), individual subject data are 
directly analyzed following the subject-level dimension reduc-
tion. Hence, all individual subject maps are estimated concur-
rently, and are aligned across subjects when there is dependence 
among them. This is typically the case for all components of 
interest, i.e., components corresponding to meaningful func-
tional areas such as DMN and motor areas, since these naturally 
have statistical dependences across subjects. Components 
related to artifacts such as the motion artifact, however, might 
not be aligned for all subjects as these are less likely to have a 
similar dependence structure across subjects, and are more 
likely to be subject specific. Next we demonstrate the advantage 
of IVA over the widely used group ICA approach with two exam-
ples, one with simulated fMRI-like data and a second one using 
real fMRI data. 

EXAMPLE: CAPTURING SUBJECT
VARIABILITY WITH IVA
To test the ability of IVA in capturing subject variability, we use 
the fMRI simulation toolbox, SimTB [63], and generate ten 
components shown in Figure 8(a) for two groups, with 12 sub-
jects in each. For each subject, components are randomly gen-
erated with small variations in terms of translation, rotation, 
and spread. For the first component, however, we introduce sig-
nificant difference in terms of spread between the two groups of 
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Subject-Level
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[FIG7] Group ICA and IVA for multisubject fMRI analysis. Note how IVA avoids projecting multisubject data to a common space after 
subject-level PCA as well as the additional back-reconstruction step of group ICA. (a) Multisubject fMRI analysis with group ICA. 
(b) Multisubject fMRI analysis with IVA.
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subjects, so as to simulate a typical difference in brain network 
volume change between the healthy and patient groups found 
in fMRI studies. The difference in spread is kept at two levels, 
one indicating a smaller difference between the groups, and a 
second one with greater difference in spread. Then, the perfor-
mance is tested between the two approaches: group ICA using 
Infomax with a nonlinearity matched to Laplacian pdf and IVA 
using a multivariate Laplacian model following initialization 
with IVA-G, which we call IVA-GL [64]. In Figure 8(b), we show 
the receiver operating characteristics curves for the detection of 
the difference between the two groups at two levels of spread. To 
obtain the reference map, we perform a two-sample t -test 
between the two simulated groups, which is thresholded at 0.05 
significance. By changing the threshold for t -values, we plot 
the receiver operating characteristics by counting the number 
of voxels within Ntrue^ h and outside the reference map .Nfalse^ h

The ratios of these values to the total number of voxels within 
the map and outside, respectively, yields the true positive—
detection power—and false alarm values. IVA performs better 
than the group ICA approach at both lower and higher group 
variability, and its performance improves when there is higher 

group variability. Because with higher group variability, diver-
sity in terms of source dependence has more statistical power, 
improving the performance of the IVA approach. 

EXAMPLE: PERFORMANCE OF IVA 
AND GROUP ICA WITH REAL fMRI DATA
To test the performance of IVA for the analysis of real fMRI data 
from subjects that exhibit significant variability, we used data col-
lected from patients who suffered a stroke that primarily affected 
their motor areas. Data were collected while subjects performed a 
motor task that had alternating cycles of rest (30 s) and task (24 s), 
which was squeezing a ball. After standard preprocessing using 
SPM [56] as in [62], data from ten subjects in two sessions, hence 
providing a total of 20 data sets, are analyzed using the two 
approaches for multisubject analysis, group ICA and IVA with the 
same algorithms as in the previous example, IVA-GL and Infomax 
with a nonlinearity matched to a Laplace pdf implemented using 
group ICA of fMRI Toolbox (GIFT) [65]. In Figure 9, we show the 
t -maps thresholded at a significance level of 0.05. 

As clearly observed from the figures, for both components, IVA 
leads to better estimation of the functional areas as indicated by 
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[FIG8] A group analysis study using fMRI-like data. IVA leads to better performance especially with increasing group variability, hence 
the role of source dependence. (a) SimTB experimental setup. (b) and (c) Receiver operating characteristic curves for IVA and group ICA.
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levels and spatial extent of the estimated maps using IVA.  
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more connected regions and better correlation with the masks 
generated for these areas as discussed in [66]. 

DISCUSSION
In this article, we provided an overview of ICA by emphasizing 
two types of diversity, HOS and sample dependence, which have 
been the two most typically used for achieving ICA. By using 
mutual information rate, we showed that a number of ICA 
approaches can be brought under one umbrella. We then intro-
duced IVA that extends ICA to multiple data sets, and presented a 
general formulation for IVA that adds a third type of diversity, 
dependence of sources across data sets to these two. We empha-
sized the parallels between ICA and IVA in the way diversity plays 
a role for both and discussed how a number of existing algo-
rithms fit as special cases under this umbrella. Even though this 
is a rather broad umbrella, this has been a partial survey given 
the vast activity in the area. For example, algorithms that explic-
itly compute HOS such as JADE as well as those that make use of 
other types of diversity such as nonstationarity, noncircularity, 
and geometrical properties are not considered. Nonstationarity, 
however, is taken into account in our discussion on identifiability 
and it has been used with other types of diversity in algorithm 
development, e.g., along with HOS in [67], and HOS and sample 
dependence in [68]. 

Another important diversity type—which we could not dis-
cuss here due to space constraints—is noncircularity of the 
signals when ICA or IVA is implemented in the complex 
domain, which can be also studied under the mutual informa-
tion rate umbrella [69]. Since it is the SOS that determine 
identifiability for ICA and IVA, again in this case, it is the 
impropriety, second-order noncircularity, that plays a key role. 
A random vector x is called second-order circular—or, 
proper—if its complementary covariance matrix { }E xx<  van-
ishes. For improper signals, identification of i.i.d. Gaussians is 
possible if all circularity coefficients are distinct using strongly 
uncorrelating transform [70], and in addition, if we make use 
of HOS and sample dependence, it can be shown that the iden-
tification conditions we have given here become more relaxed. 
Then the ICA problem becomes nonidentifiable only when 
there are Gaussian sources with both the covariance and com-
plementary covariance matrices that are proportional, and 
proportional through a complex constant for the latter, as 
implied by the analyses in [71] and [72]. A conjecture for IVA 
would be that the condition given here will also include the 
complementary covariances of SCVs. As one would expect, 
with the addition of each new type of diversity, identification 
becomes easier, a broader class of signals can be separated 
using ICA or IVA. A recent review of complex-valued ICA can 
be found in [69], and a comprehensive review of the field of 
blind source separation in [1]. 

ICA has found a fruitful application in fMRI analysis, and 
IVA promises to be another attractive solution. ICA has been 
widely applied to fMRI and EEG analyses, two domains where 
the linear superposition assumption of ICA holds. A recent 
review [58] underlined the now wide use of ICA for fMRI 

analysis by showing the exponential growth in publications 
on the topic following its first application in 1998 [57]. An 
interesting recent claim was that ICA for fMRI has been suc-
cessful because the widely used algorithms Infomax and 
FastICA—with kurtosis nonlinearity—select for super-
Gaussian sources, hence it is sparsity that determines the 
final decomposition, and not independence [73]. A response 
to the article [74] showed that the examples in [73] were 
flawed and with the correct interpretation of underlying 
models in ICA, it is indeed independence that achieves a use-
ful decomposition of the fMRI data. Still, it is worth noting 
that Infomax has been the most widely used algorithm for 
fMRI analysis, first, due to historical reasons—it was the first 
algorithm used—and then because its simple fixed score 
function is a good match for the fMRI sources and provides 
robustness. However, as the examples we give in this article 
demonstrate, maximizing independence by using an algo-
rithm with a flexible density matching mechanism can lead 
to improved performance. In addition, the fact that there is 
good support for the inherent linear superposition assump-
tion of the basic ICA model of (1) suggests that the spatial 
maps can be regarded as hidden variables in the model, just 
like audio sources in a cocktail-party problem. In these cases, 
maximizing the independence though flexible density match-
ing, and making use of multiple types of diversity to 
approach the performance bound is meaningful. In applica-
tions such as data fusion, however, the approach is mostly 
exploratory in that the sources do not necessarily have phys-
ical meaning, they primarily help explain the data, relation-
ships among modalities. Then, in this case, using a robust 
algorithm such as Infomax might be sufficient, as discussed 
in detail in a review on data-driven fusion [75]. 

The formulation of IVA we present here provides an attrac-
tive framework for joint blind source separation with numer-
ous potential applications. These include those where MCCA 
has been applied such as medical data analysis and fusion, 
hyperspectral data analysis, blind equalization, and of course 
the first motivation for the IVA formulation, solution of the 
convolutive ICA problem. Among many others, multimodality 
data fusion is an important application area for IVA as it would 
extend the successful application of MCCA [76] to include 
HOS without constraining the demixing matrix. 

IVA also presents number of challenges and interesting 
venues for future research. The well-defined structure of IVA 
might allow a more flexible solution to the MICA—also 
called subspace ICA—problem where components within 
each independent subspace are allowed to have dependences. 
Estimation of the density during adaptation—to truly 
approach the CRLB and improve performance—is a more dif-
ficult task than for ICA. The multivariate nature of the pdf 
makes the problem more challenging especially when the 
goal is not only modeling flexible marginals but also taking 
dependence among the components of an SCV into account. 
Hence, if successfully extended to the multivariate case, a 
flexible density model like EBM can achieve this desired 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [32] MAY 2014

balance, and potentially allow one to also account for sample 
dependence in the model and estimate an SCM. This is not to 
say there are not challenges for ICA either. The performance 
of most ICA algorithms deteriorate when the number of 
sources increases as well as the noise level. The noisy and the 
undetermined cases still deserve much attention, and also 
the problem of nonlinear ICA. Hence, even though the field 
of blind source separation has now reached a maturity, there 
are still a good number of important challenges and prob-
lems that require our attention.
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M
atrix decompositions such as the eigenvalue 
decomposition (EVD) or the singular value 
decomposition (SVD) have a long history in 
signal processing. They have been 
used in spectral analysis, 

signal/noise subspace estimation, prin-
cipal component analysis (PCA), 
dimensionality reduction, and 
whitening in independent 
component analysis (ICA). 
Very often, the matrix under 
consideration is the covari-
ance matrix of some obser-
vation signals. However, 
many other kinds of matrices 
can be encountered in signal 
processing problems, such as 
time-lagged covariance matrices, 
quadratic spatial time-frequency matrices 
[21], and matrices of higher-order statistics. 

In concert with this diversity, the joint diagonalization 
(JD) or approximate JD (AJD) of a set of matrices has been recently 
recognized to be instrumental in signal processing, mainly 
because of its importance in practical signal processing problems 
such as source separation, blind beamforming, image denoising, 
blind channel identification for multiple-input, multiple-output 
(MIMO) telecommunication system, Doppler-shifted echo 

extraction in radar, and ICA. Perhaps one of the first such algo-
rithms is the joint approximate diagonalization of eigenmatrices 
(JADE) algorithm proposed in [8]. In this algorithm, the matri-

ces under consideration are Hermitian and the 
considered joint diagonalizer is a unitary 

matrix. More recently, generalizations 
and/or new decompositions were 

found to be of considerable 
interest. They concern new 

sets of matrices, a nonuni-
tary joint diagonalizer, and 
new decompositions. 

INTRODUCTION
In the context of noncircular 

complex-valued signals, com-
plex symmetric (non-Hermitian) 

matrices provide information that 
can be useful and even sufficient for blind 

beamforming or source separation. One exam-
ple is the complementary covariance matrix, also called the 

pseudocovariance matrix. With such complex symmetric matrices, 
one ends up with jointly diagonalizing a set of matrices via either 
the transpose congruence transform or Hermitian congruence 
transform. For the special two-matrix case with one Hermitian and 
one complex symmetric matrix, there are particularly fast JD algo-
rithms based on EVD and SVD. 

This article provides a comprehensive survey of matrix joint 
decomposition techniques in the context of source separation. 
More precisely, we first intend to elaborate upon the signal 
models leading to different useful sets of matrices and their 
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joint decompositions. Second, we present recent identifiability 
results and algorithms in distinguishing important classes. 

SIGNAL MODEL, MATRICES, AND DECOMPOSITIONS
To motivate the JD problem from the perspective of blind source 
separation (BSS), let us consider the classical linear memoryless 
source mixing model with additive noise described by 

( ) ( ) ( ),t t tx As n= + (1)

where ( )tx CM!  is the observation vector, ( )ts CN!  the source 
(component) vector, ( )tn CM!  the 
noise vector, and A CM N! #  the 
mixing matrix assumed full column 
rank (we shall not address the under-
determined case of fewer rows than 
columns until the section on direct 
fit methods). Since we suppose that 
we have more than one source, this 
leads to .M N 2$ $  The index t
characterizes the variability of the 
signals. It is very often the time index 
but it can be the frequency index or the position index for an 
image, or any physical variables describing the considered signals. 
For convenience, it is considered in the sequel as the time index. 

In BSS, the mixing matrix is assumed unknown and the 
sources not observable. The problem is then the estimation of the 
sources given only the observations. 

When statistical (or other) information is available regarding 
the noise, such information can be accounted for in the estima-
tion of the unknown mixing matrix, as well as in the estimation of 
the sources (even when the mixing matrix is known). However, to 
capture the essence of the problem and of its links to JD, we shall 
ignore the noise in here and assume ( ) .t 0n =

Since the mixing model is not unique, it is well known that 
estimation of the sources is possible only up to some indetermin-
acies about the sources’ scaling and ordering (see the section 
“Identifiability Issues for the Symmetric Case”). Among other 
things, this can be done by estimating a (left) pseudo-inverse (or 
simply the inverse in the square case) of A  denoted (generically) 
by .B  Basically there are two ways for that: the first one consists of 
estimating ,A  followed by the calculation of its pseudo-inverse 
whereas the second one consists of estimating B  directly. Notice 
that the estimation of A  corresponds to the so-called blind identi-
fication problem in signal processing while the direct estimation 
of B  corresponds to the classical BSS. 

The estimation of A  or B  can be formulated as a joint decom-
position of a set of well-chosen matrices, to which we shall refer as 
target-matrices. Hence the first step is to choose target-matrices 
admitting a specific decomposition with respect to (w.r.t.) the mat-
rix for which we are looking. The choice of useful matrices 
depends on a source model. 

Quite commonly, the target-matrices are constructed from sta-
tistics of the observation. It is common practice to assume that the 
sources have zero mean, hence first-order statistics are of no 

interest. Thus second-order statistics (SOS) is considered. For a 
complex-valued random observation vector, one can define two 
kinds of SOS matrices, 

( , ) { ( ) ( )} , ( , ) { ( ) ( )}t t t t t tR E x x R E x xx
H

x
Tx x x x= - = -M ,

where ( ) T$  and ( ) H$  are the transpose operator and the transpose 
conjugate operator, respectively, and { }E $  denotes the expectation 
operator. The first matrix ( , )tRx x  is the classical correlation mat-
rix, whereas the second one ( , )tRx xL  is the so-called complemen-
tary correlation matrix. The usefulness of the complementary 

correlation matrix is directly related 
to a noncircularity property of the 
sources since for circular sources 
this matrix would be null. 

One can also consider higher-
order statistics (HOS) described by 
cumulants. Since third-order statis-
tics are not so useful in practice 
mainly because the probability den-
sity function (PDF) of the sources is 
often close to symmetric, fourth-

order statistics are often considered. In a very general way, they 
are defined as 

( , { }) { ( ), ( ), ( ), ( )},C t x t x t x t x tCum,
(*) (*)

x i j k l1 2 3ijkl
1 2

x x x x= - - -

where (*) 1  and (*) 2  denote optional complex conjugates and 
{ } { , , } .1 2 3/x x x x  One way to construct matrices from cumulants 
consists of considering a linear combination of the above cumu-
lants while keeping free the first two indices that will be used as row 
and column indices for the constructed matrix. This is written as 

( ( , { })) ( , { }),t G C tC
,

,x
k l

M

x
1

ij kl ijklx x=
=

/

where ( )GG kl=  is a fixed coefficients matrix. All of the above sta-
tistics generally depend on the time index .t  In such a case the 
sources are called nonstationary. In the special case where the 
dependence w.r.t. t  is periodic, the sources are called cyclosta-
tionary. When the statistics do not depend on ,t  the sources are 
called stationary.

In the noiseless case, using (1), the matrices ( , )tRx x  and 
( , { })tCx x  with (*) * ,1 /  denoted generically as ,Mx  all admit the 

factorization ,M AM Ax s
H=  whereas the matrices ( , )tRx xL  and 

( , { })tCx x  with (*) ,11 /  denoted generically as ,MxN  all admit the 
factorization .M AM Ax s

T=N N  With no further assumptions regard-
ing the sources, the matrices M s  and M sN  do not possess any special 
algebraical structures compared to Mx  and ,MxN  so these decompo-
sitions are noninformative. However, quite often some plausible 
assumptions regarding certain properties of the sources imply a spe-
cial and “simplified” structure (diagonal or other) of M s  and .M sN
This is directly linked to an identifiability property that has to be 
considered to be able to separate the sources. Basically, for stochas-
tic sources, the classical identifiability assumption is their statistical 
independence, leading to the ICA problem. For independent 

IN CONCERT WITH THIS DIVERSITY, 
THE JOINT DIAGONALIZATION 

OR APPROXIMATE JOINT 
DIAGONALIZATION OF A SET 

OF MATRICES HAS BEEN RECENTLY 
RECOGNIZED TO BE INSTRUMENTAL 

IN SIGNAL PROCESSING.
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sources, the matrices M s  and M sN  are always diagonal [5], [8], [15], 
[20], [29], giving rise to the concept of “JD” of the selected target-
matrices, as the result of representing each of these matrices as the 
corresponding transformation of a respective diagonal matrix. 

In practice, however, the set of “true” target-matrices (specific-
ally, the respective true SOS or HOS of the observations) is not 
available. Only sample-estimates of these matrices may be availa-
ble, and these estimated matrices may no longer admit an exact 
JD transformation. In such cases one must resort to AJD, in an 
attempt to find a transformation being “as close as possible” to JD, 
with various measures for the quality of the approximation. 

Simplifying the notations, we can always consider a set of K
complex matrices ,Mk  to be decomposed as 

, , ,k K1M AD Ak k k
‡ fP= + = (2)

where ( )$ A  corresponds to either the transpose or the conjugate 
transpose of the matrix argument and matrices Dk  all share 
some prescribed common structure. Depending on the signal 
model, the matrices Dk  can be either all diagonal, all block diag-
onal, or all zero diagonal, as we shall explain in the sequel. The 
residual matrices kP  are perturbation matrices which are linked 
to estimation errors and/or to modeling errors. This is referred to 
as the symmetric case; see Figure 1. Note that another model 
M AD Ak k k

1 P= +-  has been studied as well [24] but is less popu-
lar in applications. A more general formulation, which is some-
times found to be more useful, reads 

,M A D Ak L k R kP= + (3)

where the matrices AL  and AR  are a priori arbitrary; see, e.g., 
[12]. This is referred to as the nonsymmetric case since AR  is not 
directly (or explicitly) linked to .AL

The main problem consists of estimating A  (or )AL  or its left 
inverse up to acceptable indeterminacies. In practice, these 

indeterminacies correspond to the estimation of all columns of A
up to a scaling factor and up to ordering. This is the concept of 
essential uniqueness, which will be discussed in the section “Iden-
tifiability Issues for the Symmetric Case.” 

In all of the following sections, we denote ,B A= @ B AR R= @ ,
and B AL L= @  where ( )$ @  stands for the pseudo-inverse of the mat-
rix argument or directly the inverse in the square case. 

IDENTIFIABILITY ISSUES FOR THE SYMMETRIC CASE
One fundamental question in the context of the BSS problem is: 
“Under what conditions on the sources can the mixing process be 
uniquely identified up to ordering and scaling?” This is evidently 
a question of general identifiability conditions, which are inde-
pendent of a particular separation approach, and have been 
derived, e.g., in [15], [30], and [41]. However, in the context of JD-
based BSS, the identifiability issue is closely related to the 
uniqueness (up to the trivial ambiguities) of the JD solution, 
which in turn relies on properties of the target-matrices. An 
underlying assumption is that under asymptotic conditions the 
estimated target-matrices can become arbitrarily close to the true 
target-matrices, and therefore the uniqueness of the joint diago-
nalizer has to be explored w.r.t. the true target-matrices, in the 
context of exact, rather than approximate JD. When the mixing 
matrix is invertible, identifiability of the mixing matrix implies 
the ability to separate the sources and is therefore often associ-
ated with separability. However, even when it is not invertible, the 
mixing matrix may still be identifiable (even by AJD), but such 
identifiability would not imply separability of the sources in such 
cases. Additionally, in some scenarios that are beyond the scope of 
this article, some sources may be separable from the mixture 
based on their special key properties (e.g., sparsity) but still with-
out the need for identifiability of the full mixing matrix. In this 
section, we only focus on the symmetric case with an invertible 
mixing matrix. 

Identifiability conditions for some specific scenarios have been 
provided, e.g., for the unitary case [5] and for the nonorthogonal 
real-valued case [2]. In this section, we summarize the necessary 
and sufficient conditions for the joint diagonalizer to be unique up 
to permutation and scaling for the noiseless, symmetric JD case 
(2). While general identifiability conditions for the nonsymmetric 
case (3) are still an open question, for particular nonsymmetric 
algorithms [12], [13] a necessary and sufficient condition can be 
provided (see the sections “Nonunitary Joint Diagnalization” and 
“Nonunitary Joint Zero Diagonalization,” respectively, for the 
diagonal and zero-diagonal cases). 

In the noiseless case, and under the assumption of full column 
rank of ,A  whenever M N2  one can easily find N  of the M
observed mixtures that would be linearly independent and ignore 
the other observed mixtures without loss of information. There-
fore, without loss of generality, we consider the square (or “deter-
mined”) BSS problem, i.e., .M N=  Given , ,B B CN N! #l B  is 
said to be essentially equivalent to ,Bl  and vice versa, if B  is only 
different from Bl by at most a row-wise ordering and scaling. 
Moreover, we say that the solution of a JD problem is essentially 
unique, if all solutions are essentially equivalent. 

Mk A Dk AT× ×

× ×

× ×

× ×

×

≈

≈

≈

≈

≈ ×

[FIG1] An illustration of AJD of four 3 3#  symmetric target-
matrices , , , ( , ) .N K3 4M M M M1 2 3 4 = =
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HOMOGENEOUS MODELS AND THEIR 
UNIQUENESS RESULTS
The uniqueness of JD under transpose congruence transform has 
been considered for real matrices in [2]. Recently, the extension to 
complex matrices has been studied in [3] and [25]. We first discuss 
the case where all matrices are to be diagonalized with the same 
transformation [i.e., ‡  is exclusively either T  or H  in (2)] and 
refer to this as the homogeneous case. For that, we require a 
measure of collinearity for diagonal matrices, which is obtained by 
means of the complex angle between the vectors formed by stack-
ing the entries at corresponding positions together. The relation in 
(4) illustrates an example with ( )2 2#  diagonal matrices. Let 

: ( , ..., )d ddiagD Ck k kN
N N

1 != #  for , , .k K1 f=  For a fixed diag-
onal position ,i  we denote by : [ , , ]d dd Ci i Ki

T K
1 f !=  the vector 

consisting of the thi  diagonal element of each matrix, respectively, 

, , ,
[ , , , ] :
[ , , , ] :

 .
d

d
d

d
d

d
d d d
d d d0

0
0

0
0

0 d
d

K

K

K
T

K
T

11

12

21

22

1

2

11 21 1 1

12 22 2 2
D D DK1 2

&f
f

f

=

=
; ; ;E E E
1 2 344 44 1 2 344 44 1 2 344 44

(4) 

Recall that the cosine of the complex angle between two nonzero
vectors ,v w CK!  computed as ( , ) : ( ) / ( ),c v w v w v wH=

where v  denotes the Euclidean norm of a vector .v  (If one of 
the two vectors is zero, the cosine is defined to be one by conven-
tion.) The uniqueness result states that, for a given set of matri-
ces ,Mk  the joint diagonalizer B  is essentially unique, if and 
only if ( , )c 1d di j !  for all pairs ( , )i j  with .i j!  In particular, 
for ,K 2=  this condition allows to uniquely solve the JD prob-
lem simply via a generalized EVD approach, i.e., ,M B M B1 2 K=

where K  is diagonal [33]. 

A HYBRID MODEL AND ITS 
UNIQUENESS RESULTS
The uniqueness results above state that, when there exists one 
pair of collinear concatenated vectors ( , ),d di j  the solutions 
under homogeneous transforms are not essentially unique. 
However, it is known that signals with distinct second-order 
circularity coefficients are uniquely identifiable via a nonhomo-
geneous JD of only one covariance matrix (using the conjugate 
transpose operator ( ) )H$  and one pseudo-covariance matrix 
(using the transpose operator ( ) ) .T$  The corresponding method 
is known as strong uncorrelating transform (SUT) [20]. 

Recent works in [47] and [39] generalize the SUT approach to 
jointly diagonalize both Hermitian and complex symmetric matri-
ces. The following statement provides a necessary and sufficient 
condition for the JD problem with a mixture of Hermitian congru-
ence and transpose congruence. For given matrices :M AD Ak k

H=

with , ,k K1 f=  and :M AD Al l
T=N L  with , , ,l L1 f=  the com-

mon joint diagonalizer B  is essentially unique, if and only if there 
exists no pair ( , )i j  with ,i j!  such that the following two condi-
tions hold: 

) ( , ) ( , ) ; ) .c c 11 2d d d d d d d di j i j i j i j= = =K K K K

In other words, when there is at least one pair of collinear con-
catenated vectors ( , ),d di j  then the essential uniqueness implies 
that the respective norms are not proportional. 

In the simplest case, where only one Hermitian and one 
complex symmetric matrix are considered, ,di ,d j diK , and d jK
are all scalars, so all pairs are trivially collinear. Then the previ-
ous result boils down to the following. Given two matrices 

:M ADAH=  and :M ADAT=N L  with ( , , )d ddiagD M1 f=  and 
( , , )d ddiagD M1 f= u uL , the joint diagonalizer B  is essentially 

unique if and only if the condition d d d di j i j! u u  holds for 
all pairs ,i j^ h  with .i j!  This result simply recovers the 
uniqueness condition for SUT, where the matrix M  is Hermitian 
and positive definite. We refer to [25] for a study of a further 
generalization of SUT, known as the pseudo-uncorrelating 
transform (PUT) and to [52] for the separation performance of 
the SUT for specific signal models. 

The identifiability results yield a sufficient theoretical condi-
tion on the properties of the sources, such that the BSS prob-
lem is uniquely solvable, independent of any JD algorithms. 
Meanwhile, depending on the properties of the sources, it allows 
to determine a set of matrices, such that an exact JD solution 
yields the correct demixing matrix. In the presence of noise, 
AJD algorithms are used to find a matrix that minimizes some 
diagonality measures. 

MATRIX NORMALIZATION FOR 
JOINT DIAGONALIZATION
For simplicity, let us only consider the symmetric case. A normal-
izing linear transformation Bn  can be applied to the observations 
as ( ) ( )t tx B xnn =  or directly onto the set of target-matrices as 

/ , , , ,k K1M and orB M B M B M B,,k k
H

k k
T

n n n n nn f= = =N N
(here the subscript ( ) n$  denotes “normalization”) in such a way 
that the overall problem is normalized or simplified. The normaliz-
ing matrix Bn  is usually determined by selecting a particular Her-
mitian matrix denoted ,M0  which would be exactly diagonalized 
by this transformation, and may (or may not) coincide with one of 
the target-matrices , , .M MK1 f  It is well known [23] that any 
such matrix admits diagonalization as ,M U UH

0 K=  where K  is a 
real-valued diagonal matrix of eigenvalues and U  is a unitary mat-
rix of orthonormal eigenvectors in its columns, i.e.,
UU U U IH H= =  where I  is the identity matrix. In the context of 
BSS, and especially when M0  coincides with one of the target-
matrices, the matrix U  can often serve as a reasonable initial guess 
for the approximate joint diagonalizer of the entire set, or can at 
least serve to “simplify” the matrix set by considering .B UH

n =

Now, if the number of sources N  is known (or well estimated), 
then one can do a little more. If N  eigenvalues of M0  are nonzero 
and all the M N-  others are zero, then we denote sK  the diago-
nal matrix corresponding to these N  nonzero eigenvalues and U s

the matrix of corresponding eigenvectors (spanning the so-called
signal subspace). Then we directly have .M U Us s s

H
0 K=  Now we 

can consider B U s
H

n = , which corresponds to a projection of the 
observations onto the signal subspace. Hence all new matrices 
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M ,kn  and/or M ,knN  are of size .N N#
This is essentially a PCA operation, 
which corresponds to a useful 
dimension reduction when .M N2

Finally, we point out that M0  is 
often positive semidefinite, that is 
all nonzero components of K  (spe-
cifically, the diagonal components 
of )sK  are positive. This is usually 
the case when M0  is selected as the 
(zero lag) sample-covariance matrix of the observations. Then 
we can set B V U/

s s
H1 2

n K= -^ h , where V  is any N N#  unitary 
matrix. This operation is known as whitening, and it can be 
shown (as evident from the above definition using a nondeter-
mined unitary matrix V ) that following such a whitening step, 
any unitary diagonalizer of the normalized (“whitened”) set 

, ,M M ,, K1 nn f  would maintain the whiteness of the transformed 
.M0  Therefore, when a whitening stage is used, the diagonalizer 

of the whitened set is usually constrained to be unitary, which 
simplifies the search. 

NONUNITARY JOINT DIAGONALIZATION
In this section, we address the nonunitary AJD problem as the 
most important and common case. Following the alternating 
columns, diagonal centers (ACDC) algorithm [50], many AJD 
algorithms have been proposed over the last decade; see, e.g., 
[13], [21], [38], [43], and [49]. These papers only consider the 
symmetric version with .B B BL R

T= =  Since, however, an 
extension to the nonsymmetric version is possible (straightfor-
ward for some of these algorithms), we present the problem in 
the latter form. In the existing literature, we can distinguish 
four groups of nonunitary AJD algorithms. 

1) Minimizing the so-called indirect least-squares criterion, 
which may be a possibly weighted square norm of off-diago-
nal elements of the transformed matrices .B M BL k R  To use 
this criterion the matrices BL  and BR  must be properly 
constrained so as to avoid the trivial zero solution and/or 
degenerate solutions. 
2) Minimizing the direct least-square criterion (which can 
also be weighted), measuring the squared difference between 
the matrices and their representations, specifically the 
norms of the residual matrices kP  in (2) or (3). 
3) A combination of these two criteria. Here, one seeks 
matrices BL  and BR  that transform the given set of matri-
ces into a set of nearly diagonal matrices, which cannot be 
diagonalized any further in the direct-fit sense, specifically 
such that the best direct-fit diagonalizer of the transformed 
set is the identity matrix. 
4) Minimizers of an approximate log-likelihood criterion. So 
far the log-likelihood criterion was derived only for the case 
where the given matrices reflect second-order statistics of a 
mixture of Gaussian vector processes.
In many applications, performance of the nonunitary AJD algo-

rithms can be significantly enhanced by appropriate weighting, 
introduced in the optimization criterion. When a statistical model 

for the sources is fully known, the 
optimal weighting may be deduced in 
advance (e.g., [51]). Usually, however, 
the proper weights are not known in 
advance but may be estimated from 
the observed data, e.g., when a statis-
tical model for the sources is only 
known up to some parameters, which 
nonetheless can be estimated as a by-
product of the diagonalization pro-

cess (e.g., [42]), or when multiple snapshots of the data are 
available for nonparametric estimation of the weights [53]. 

MINIMIZING THE INDIRECT-FIT CRITERION
Historically, the first, natural choice of an indirect-fit criterion is 

, { } ,C ZdiagB B B M BL R L k R
k

K

F1
1

2
J =

=

^ h / (5)

where {·}Zdiag  sets the diagonal entries of the matrix argu-
ment to zero. Since, however, trivial minimization by down-
scaling towards B B 0L R= =  is clearly not interesting, one has 
to consider some constraint or barrier function to evade this. 
The following options have been proposed in the literature, 
together with appropriate minimization procedures, derived for 
the symmetric case where B BL =  and :B BR

T=

1) B  is unitary. This choice has already been discussed in 
the previous section. 
2) The rows of B  have unit norm. This constraint is weaker 
than the former one and was used in [19]. 
3) BM BT

0  must have an all-ones main diagonal [48], where 
M0  may or may not be included among { } .Mk  In the BSS 
context, if M0  is the zero-lag covariance matrix of the obser-
vations, this constraint corresponds to the constraint on the 
separated sources, that they should have equal (unit) power. 
The proposed method of optimization uses iterative general-
ized matrix eigenvector computation. 
4) B  has a unit determinant. The optimization can be 
attained through Givens and hyperbolic rotations [40]. 
5) In [28], a penalty term (proportional to )log det B  is 
added to (5). The optimization proceeds by alternating 
between optimization w.r.t. individual rows of matrix .B
6) Another suitable AJD criterion, which is scale-invariant in 
B , was proposed in [1] and [2], 

{ }  .C DiagB M B BM B Bk k
T T

F
k

K

2
1

1

2
J = - -

=

-^ h / (6) 

The scale invariance means that the criterion is not affected by 
changing scale of any rows of .B  The optimization was achieved by 
combination of triangular Jacobi matrices and Givens rotations.

MINIMIZING THE DIRECT-FIT CRITERION
The direct-fit criterion is a measure of difference between the 
given matrices Mk  and their assumed model in terms of the 

IN MANY APPLICATIONS, 
PERFORMANCE OF THE 

NONUNITARY AJD ALGORITHMS
CAN BE SIGNIFICANTLY ENHANCED 

BY APPROPRIATE WEIGHTING, 
INTRODUCED IN THE 

OPTIMIZATION CRITERION. 
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estimating the left and right mixing matrix AL  and AR  and 
diagonal matrices ,Dk , , ,k K1 f=

, , { } .C A A D M A D AL R k k L k R
k

K

F3
1

2
J = -

=

^ h / (7) 

Minimization of this criterion is directly linked to tensor 
decompositions, as we explain shortly. The noiseless part 
A D AL k R  of the target-matrices Mk  together represents a third-
order tensor T  of dimensions ,M M K# #  with elements ,Tijk

, , ,i j M1 f=  and , ,k K1 f=  such that its thk  slice T:,:,k

equals ,A D AL k R i.e.,

.( ) ( )A A DT L
r

M

R k
1

ijk ir rj rr=
=

^ h/ (8) 

In the tensor terminology, T  is a tensor of rank at most ,M
because it can be written as a sum of M  rank-1 tensors, each of 
them being an outer product of three vectors, specifically the 
rth column of ,AL rth row of AR , and a vector composed of the 
( , ) thr r  elements of ,Dk , , .k k1 f=  The decomposition of this 
kind is called canonical polyadic or CANDECOMP-PARAFAC
(CP) decomposition [9], [22]. The special case when two or 
more factor matrices coincide (in our case, the coinciding factor 
matrices might be AL  and )AR

T  is called individual differences 
in scaling (INDSCAL) [10] (see Figure 2 for an illustration).

The direct-fit criterion, or the CP decomposition, offers 
more flexibility than the indirect fit: it allows for treating situa-
tions where the number of separated sources is not necessarily 
equal to the dimension of the mixture. If the number of sources 
is smaller than ,M  it is still possible to use an indirect-fit criter-
ion and identify the sources among spurious (noisy) ones. A less 
trivial task is to separate underdetermined mixtures, where the 
number of sources exceeds the number of mixtures. CP decom-
position allows such a separation [16], [45]. 

The area of CP tensor decompositions is a rapidly growing 
field, and many techniques have been proposed. A traditional 
and still the most popular technique is the alternating least 
squares. Other methods include enhanced line search, damped 
Gauss–Newton method (also called Levenberg–Marquardt), 
and others; see, e.g., references in [36]. A link between the CP 
decomposition and AJD (even in the underdetermined case, 
rank greater than the dimension) was shown in [17], and more 
recently was exploited in [37]. It was shown that CP decompo-
sition can be attained through approximate JD of certain sets 
of matrices. 

Beside the CP decomposition approach, a suboptimum direct-
fit optimization of (7) was proposed in [13] (called DIEM for “diag-
onalization using equivalent matrices”), offering a closed-form 
(noniterative) solution. Moreover, DIEM can deal with the non-
symmetric case since the matrices AL  and AR  are not constrained 
or linked in the derivations. A necessary and sufficient condition 
for the uniqueness of the DIEM solution is that the set of K
underlying diagonal matrices , ...,D DK1  spans the N-dimensional 
subspace of diagonal matrices in .CN N#  New BSS applications 
using nonsymmetric JD are discussed in the last section. 

COMBINATION OF THE DIRECT
AND INDIRECT-FIT CRITERIA
Combining the indirect and direct fit of JD is conceptually simple 
and computationally efficient. A generic algorithm of this type 
works with a partially diagonalized set of matrices ,B M B[ ] [ ]

L
i

k R
i

, , ,k K1 f= i  is the iteration index. Initially, one can start with 
.B B I[ ] [ ]

L R
0 0= =  Each step consists of one iteration of a direct-fit 

procedure, which may or may not use weighting. In the 
unweighted (or uniformly weighted) version, we have 

, ,argminA A D AA B M B[ ] [ ]
,

[ ]

,

[ ]
k

i i
L k RR RL

i
L
i

k

K
2

1
FB

A AL R

-=
=

" , / (9)

where .DiagD B M B,
[ ] [ ]

k L
i

k R
i

B =
9 " ,  The direct-fit procedure can be 

of Gauss–Newton type, for fast convergence in a neighborhood 
of the true local minimum and is sought close to .A A IL R= =

Only one iteration of the Gauss–Newton procedure is applied in 
each step because, at the initial point A A IL R= = , the Hessian 
matrix has an attractive decoupled form that enables its inver-
sion through solving distinct sets of 2 2#  linear equations. 

Once an approximation of the best fitting mixing matrices 
A[ ]
L
i  and A[ ]

R
i  is found, the estimated demixing matrices are 

updated as ( )B A B[ ] [ ] [ ]
L
i

L
i

L
i1 1=+ -  and .B B A[ ] [ ] [ ]

R
i

R
i

R
i1 1

=+ -
` j  This 

algorithm was named WEDGE (for “weighted exhaustive diago-
nalization with Gauss iteration”), or U-WEDGE in its uniformly 
weighted version, in [43]. 

MAXIMIZATION OF A LOG-LIKELIHOOD CRITERION
The last principle of AJD is a maximum likelihood (ML) 
approach. It was developed by Pham [35] for JD of a set of sam-
ple covariance matrices taken from distinct signal-blocks, where 
the statistical model assumes independent Gaussian distributed 
sources with variances that are constant within each block but 
varying between blocks. For real-valued signals and mixtures, 
the ML method with B B BL R

T= =  leads to the criterion 

( )
( )

,
{ }

log
det

det
C

Diag
B

BM B
BM B

k

K

k
T
k

T

1
LL =

=

/ (10)

which is scale-invariant in B and does not require any con-
straints. This criterion may also be used as a generic AJD criter-
ion (outside the ML framework), however it is meaningful only 
for positive definite target-matrices { } .Mk

M ≈

≈

a1 ο a1 ο d1 + a2 ο a2 ο d2 + a3 ο a3 ο d3

ο ο ο++

[FIG2] The AJD of the target-matrices of Figure 1 viewed as a 
partially symmetric CP decomposition (INDSCAL).
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COMPUTATIONAL COMPLEXITY
The fastest nonorthogonal AJD algorithms such as U-WEDGE/
WEDGE [43], fast AJD (FAJD) [28], and Pham’s [35] have asymp-
totic computational complexity of ( )O KM2  operations per itera-
tion. This is the lower bound for any algorithm that should have 
access to all elements of the target-matrices. Some other algo-
rithms have slightly higher complexity, ( )O KM3  operations per 
iteration, such as quadratic AJD (QAJD) [48], Souloumiac’s [40] 
or Afsari’s [1]. The number of iterations is varying. Among the 
algorithms, U-WEDGE/WEDGE, Pham’s, Souloumiac’s, and Afsa-
ri’s algorithm exhibit a quadratic convergence, as inherited from 
the approximate Gauss–Newton methods, and usually only need a 
few dozens of iterations to converge; FAJD and QAJD are based on 
alternating minimization, exhibit only linear convergence, and 
usually require hundreds of iterations. 

For fixed and moderate K  and ,M  a very fast AJD algorithm 
is the noniterative DIEM algorithm of Chabriel and Barrère [13] 
that, however, only attains an approximate optimum of the 
direct fit, and works with matrices of the size ,M M2 2#  so that 
its complexity is at least ( ) .O KM6

All direct-fit algorithms have complexity of at least ( )O KM3

per iteration because this is the complexity of one least-squares 
solution step (fixing two factor matrices and minimizing w.r.t. the 
third one). Indeed, more complex algorithms require a higher 
number of operations per iteration. For example, the fastest avail-
able implementation of the Levenberg–Marquardt algorithm has 
complexity ( )O KM M3 6+  operations per iteration.

APPROXIMATE JOINT BLOCK DIAGONALIZATION
In this subsection, we briefly mention the concept of approximate 
joint block diagonalization that was first introduced in [54]. 
Indeed it might happen that for some given sets of target-matri-
ces it is not possible to find mixing or demixing matrices such 
that the indirect or direct-fit error is satisfactorily small, but it is 

possible to fit them well by a block diagonal model. The latter 
model resembles (3), but the matrices Dk  are block diagonal, 
with diagonal blocks of appropriate size; see Figure 3(a). Such a 
model is usually relevant in cases where not all sources are inde-
pendent, but several groups of sources exist, with intragroup 
dependence but with intergroup independence. As in the ordinary 
diagonalization task, the block diagonalization can be either uni-
tary or nonunitary. The first block-diagonalization algorithms 
were unitary, [7]. Later, nonunitary algorithms were proposed as 
well: direct-fit methods by Nion [31], indirect methods by 
Tichavsky et al. [44], and ML methods by Lahat et al. [27].

NONUNITARY JOINT ZERO DIAGONALIZATION
In this section, we consider the case where, in (2) or (3), the 
matrices Dk  are zero diagonal for all k  and where the searched 
matrix is a priori nonunitary; see Figure 3(b). This problem is 
termed approximate zero diagonalization (AZD). The matrices 
Dk  for all k  are denoted Zk  here for a direct interpretation. We 
consider both the symmetric and the nonsymmetric cases when 
all matrices are square .N N#  This can always be considered in 
using a first-dimension reduction operation. 

In the symmetric case, the problem can be addressed by con-
sidering the indirect least squares criterion [21] ( )BC =

{ }Diag BM Bk
H

k
K

1

2

=
/  that has to be minimized. As initially 
proposed in [21], the optimization of ( )BC  can be performed 
row by row in searching iteratively for eigenvectors associated 
to matrices built from the target-matrices. Even if the optimiza-
tion scheme is rather simple, it can lead to nonuseful solutions 
(certainly corresponding to local minima). However since JD 
algorithms are more robust, very interestingly, it can be shown 
that the above problem can be cast as an ordinary nonunitary 
JD problem [11]. This is possible when the set of K  underlying 
zero-diagonal matrices , ...,Z ZK1  spans the N N2-  dimensional 
subspace of zero-diagonal matrices in .CN N#  In fact, this 

[FIG3] (a) The approximate joint block diagonalization of four 3 3#  symmetric target-matrices , , , ,M M M M1 2 3 4  with one 2 2#  block 
and one 1 1#  “block.” (b) The approximate joint zero diagonalization of four 3 3#  symmetric target-matrices , , , .M M M M1 2 3 4
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condition is also a sufficient for essential uniqueness of the joint 
zero diagonalizer. Note that the number of target-matrices has 
to be relatively large, K N N2$ -  for this condition to hold. 

In the nonsymmetric case, matrices AR  and AL  are a priori 
not linked. Following [11], a nonsymmetric algorithm [12] can 
be derived in turning the problem into a nonsymmetric JD one 
that can be solved using, e.g., the nonsymmetric version of 
DIEM mentioned earlier. 

EXAMPLES OF BSS APPLICATIONS
In this section, we mention examples of two applications of AJD-
based BSS techniques, one for symmetric AJD and the other 
one for symmetric or nonsymmetric AJD. As an application of 
joint zero diagonalization, we can mention the zero-division 
multiple access wireless telecommunications system [12] where 
all the signals to be sent use the same bandwidth. 

BLIND AUDIO SOURCE SEPARATION
Since modern AJD algorithms allow the JD of sets of large 
matrices with dimensions such as 100 #  100 or 500 #  500 
within time of order fraction of seconds or few seconds, they 
enable us to solve blind audio source separation (BASS), also 
known as the “cocktail-party problem”; see Figure 4(a), in the 
time domain [26]. 

Most of the existing BASS algorithms work in the frequency 
domain by transforming the convolutive mixture model into an 
instantaneous mixture model using the short-time Fourier 
transform. The individual sources were separated in each fre-
quency bin independently. Since, however, the order of sources 
obtained in each bin is arbitrary, it is necessary to resolve the 
permutation ambiguity simultaneously in all the bins. Random 
errors in the estimated order of the components in different bins, 
which are inevitable in practice, lead to nonlinear distortion of 
the estimated signals. 

Time-domain BSS methods do not produce nonlinear distor-
tions in the data but estimate linear MIMO filters that separate the 
sources. In short, the input signals measured by the microphones 
are augmented by their time-shifted replicas to become a multidi-
mensional input of an BSS algorithm. The number of the time-
shifted replicas should be large enough to cover mutual time 
delays of arrival of the individual source signals at the micro-
phones and their reflections. An insufficient number of the time 
replicas would lead to poor performance of the whole system. 

In principle, it is possible to use any ICA algorithm to trans-
form the input data set (microphone outputs with their time-
shifted replicas), in “pseudo-independent” components; the 
“pseudo-independent” components are further grouped and used 
to reconstruct the source images (contributions of all sources at 
all microphones) [26]. A successful ICA algorithm in this applica-
tion was the block Gaussian separation algorithm, which consists 
in applying a nonunitary AJD algorithm UWEDGE/WEDGE to the 
set of covariance matrices of the input signals at nonoverlapping 
time windows. 

In [14], the cocktail-party problem is addressed differently, 
using a compact array of microphones. It is shown that if the 

distance between any pair of microphones is sufficiently small 
(relatively to the coherence time of each source), a linear instant-
aneous mixing model, as the one in (1), holds, but w.r.t. an 
extended mixture model, where the temporal derivatives of the 
sources are added as “additional” (pseudo-independent) sources. 

OPERATIONAL MODAL ANALYSIS
Operational modal analysis (OMA) is concerned with the ana-
lysis of a mechanical or electrical vibration system in terms of 
individual vibration modes; see Figure 4(b). The analysis is 
based on the system output, assuming white input noise. It was 
shown in [4] that SOS-based BSS methods are able to separate a 

[FIG4] (a) An llustration of the cocktail-party problem with 
three speakers and three microphones. (b) An analytical 15 
degrees-of-freedom system. (Figure reprinted from [4], with 
permission from Elsevier.)
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set of system responses into modal coordinates from which the 
system poles can be extracted by single-degree-of-freedom tech-
niques. In addition, these methods return a mixing matrix 
whose columns are the estimates of the system mode shapes. 

The method is based on JD of the set of time-lagged covari-
ance matrices of the observations. The authors of [4] considered 
the algorithm for multiple unknown signals extraction (AMUSE) 
(based on generalized eigendecomposition of a pair of the covari-
ance matrices with lags 0 and )0!x  [46] and second-order 
blind identification [5] algorithms in forming the AJD problem. 
Next, they proposed their own nonsymmetric AJD algorithm, 
which was shown to be more adequate for this problem. 

CONCLUSIONS
We presented a survey of AJD methods and related joint matrix 
decomposition methods that can be used in various BSS applica-
tions, together with conditions for uniqueness of the solutions. In 
addition, we pointed out the option of weighted AJD methods, 
which might yield optimized performance through proper selec-
tion of the weights. The selection of the most suitable AJD/AZD 
method will always depend on the target application because cri-
teria of success might be quite different. Finally, we mentioned 
joint nonsymmetric matrix decompositions that should lead to 
new (promising) BSS or array processing applications.
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T
ensor decompositions are at the core of many blind 
source separation (BSS) algorithms, either explicitly 
or implicitly. In particular, the canonical polyadic 
(CP) tensor decomposition plays a central role in the 
identification of underdetermined mixtures. Despite 

some similarities, CP and singular value decomposition (SVD) are 
quite different. More generally, tensors and matrices enjoy differ-
ent properties, as pointed out in this brief introduction. 

MOTIVATION
Originally, BSS exploited mutual statistical independence between 
sources [20]. Among possible approaches based on the sole hypoth-
esis of source statistical independence, several use 
cumulants. In fact, when random variables 
are independent, their cumulant tensor 
is diagonal [57]. When the source 
mixture is linear, the decomposi-
tion of the data cumulant ten-
sor into a sum of outer 
products yields the columns 
of the mixing matrix. This 
is the first instance of ten-
sor decomposition applied 
to BSS, even if it is not 
always explicit. In that case, 
the tensor is actually symmetric. 
In the presence of noise, the extrac-
tion of sources themselves needs another 
procedure, based for instance on a spatial 
matched filter (SMF) [20]. 

BSS has then been addressed later in different manners. A 
quite interesting class of approaches consists of exploiting an 
additional diversity [74]. More precisely, measurements are usu-
ally made in two dimensions, generally space and time. But if 
they are made as a function of three (or more) dimensions, e.g.,
frequency, polarization, and time repetition, the data are stored in 
a multiway array. By treating this array as a matrix, information 

is lost. Yet, in some real-world applications, it is meaningful to 
assume a multilinear model for this multiway array, which justi-
fies considering it as a tensor. The decomposition of the latter 
into a sum of outer products yields not only the columns of the 
mixture, but also an estimate of the sources. So contrary to the 
first generation of BSS algorithms, there is no need to resort to 
an extracting filter. In addition, no statistics are to be estimated, 
so that the performance is expected to be better for short samples 
or correlated sources. 

Beside numerous books dedicated to applications in physics, 
there already exist some surveys that can be used in the signal 
processing field. To begin, some background is presented in [46],

i.e., basic engineering tools and a good panel of appli-
cations; a more signal processing-oriented 

tensor overview may be found in [16]. 
A quite complete digest, more the-

oretical and oriented toward 
algebraic geometry, can be 

found in [49]. This article 
aims at motivating the sig-
nal processing community 
to dive into the promising 
world of tensors. 

THE WORLD 
OF TENSORS

Tensors were introduced at the end 
of the 19th century with the develop-

ment of the differential calculus. They have 
then been omnipresent in physics, to express laws independ-

ently of coordinate systems. Yet, a tensor is essentially a mapping 
from a linear space to another, whose coordinates transform mul-
tilinearly under a change of bases, as subsequently detailed. For an 
easier reading, we shall resort to arrays of coordinates, when this 
indeed eases presentation; interested readers may want to refer to 
[23] and [49] for a more advanced coordinate-free presentation. 

LINEARITY
Linearity expresses the property of a map n  defined on a vector 
space S  onto another vector space Sl built on the same field K

[Pierre Comon]

[A brief introduction]

Tensors
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that: ( ) ( ) ( ),x y x yn a b an bn+ = + , , , .x y KS6 ! !a b  (As far 
as we are concerned, K will be either the field of real numbers R
or complex numbers .)C If S  and Sl are of finite dimension, then 
this map can be represented by a matrix of coordinates, once the 
bases of S  and Sl have been fixed. We see that every linear map 
can be associated with a matrix, say ,A  so that ( ) .Ax xn =  On the 
other hand, every matrix does not uniquely define a map. In fact, a 
matrix A  could, e.g., define a bilinear form from S S# l onto ,K
i.e., ( , ) .f x x x Ax1 2 1 2= <  Hence, the correspondence between maps 
and arrays of coordinates is not one to one. 

BILINEARITY
Let’s start with a simple example. 

EXAMPLE 1
Consider two multidimensional zero-mean random vari-
ables z1  and ,z2  and denote the cross-covariance matrix 
by .{ }z zEG 1 2= <  We see that the covariance is linear with 
respect to z1  and ,z2  which is referred to as bilinearity.
Now suppose that z1  and z2  represent two phenomena 
that are measured in a given coordinate system. G  gives 
an indication of their correlation. If we change the coordi-
nate system, the covariance matrix changes. More pre-
cisely, if z Az2 2=l  and ,z Bz2 2=l  then z zEG 1 2= <l l l" , can 
be written .A BG G= <l  We see that ,G G!l  whereas the 
phenomena remain the same. So we must distinguish 
between the physical phenomena that are coordinate 
free, and the arrays of measurements we made. And 
because of bilinearity, we know how to go from one 
matrix representation to another. We may say that the 

covariance object is a tensor of order 2, and can be repre-
sented by a matrix in any given coordinate system. 

What we just saw in Example 1 can be put in more formal 
terms. Now assume a linear change of coordinates is made in 
spaces S  and Sl defined by matrices { }A, B  so that the new 
coordinates express as x Ax1 1=l  and .x Bx2 2=l  A tensor G  rep-
resented in the original basis with an array G  will be represented 
(as in Example 1) in the new basis by the new array Gl whose 
coordinates are: 

G A B G
,p q

ij ip jq pq=l /

This can be compactly denoted by ( ) · .A, BG G=l  Another nota-
tion, equally acceptable, is sometimes used: ; , .A BGG =l $ . This 
will now be extended to orders higher than 2. 

MULTILINEARITY
Now assume Sd  are D  vector spaces, ,d D1 # #  and suppose f
is a map from S SD1# #f  onto .K  Map f  is said to be multi-
linear if ( , , )f x xD1 f  is linear with respect to every variable 

,xd .d D1 # #  In other words, ( , , , , )f x x y xd d D1 f fa b+ =

( , , , , ) ( , , , , ),f fx x x x y xd D d D1 1f f f fa b+ , , .d K6 6 !a b  This 
map is actually a multilinear form. As in the previous section, map 
f  can be represented by an array of coordinates, once the bases of 
Sd  have been fixed, ,d D1 # #  and this array needs D  indices. 

TENSORS
For the sake of simplicity, let us focus on ,D 3=  which is sufficient 
to give us an idea. Because of multilinearity, special properties are 
satisfied. For instance, ( , , ) ( , , ),f fx x x x x x1 2 3 1 2 3a a=  so that the 
two triplets of vectors ( , , )x x x1 2 3a  and ( , , )x x x1 2 3a  have the same 
image. When dealing with multilinear forms, it is then relevant to 
consider the equivalence classes defined by the relation 
( , , )~( , , )x y z x y zl l l  if there exist , , K!a b c  such that 
( , , ) ( , , ),x y z x y za b c=l l l  with .1abc =  Each class may be 
regarded as a decomposable tensor (decomposable tensors are also 
called pure or simple). The space spanned by these classes is 
denoted as ,S SS1 2 37 7  where 7  is called the tensor product.
An element of this space is called a tensor of order 3. (In physics, the 
word rank is also sometimes used, but we shall avoid it because of 
the possible confusion with the more standard meaning related to 
rank of a linear operator.) In more mathematical words, one would 
say that S S S1 2 37 7  is the quotient space /~.S S S1 2 3# #

EXAMPLE 2
Let ,x S1 1! ,x S2 2!  and .x S3 3!  Tensors 6x x x1 2 37 7

and 2 3x x x1 2 37 7  are the same, but in ,S S S1 2 3# #

vectors ( , , )6x x x1 2 3  and ( , , )2 3x x x1 2 3  are different. 

If a linear change of basis is made in space S1  (respectively, 
S2  and ),S3  as x Ax=l  (resp. y By=l  and ),z Cz=l  then the 
array T l defining multilinear form f  in the new coordinate 
system expresses as a function of .T  For so-called contravari-
ant tensors, the relationship is 

T A B C Tijk ip
pqr

jq kr pqr=l / (1)

as in Example 1, or in compact form: ( ) · ., ,A B CT T=l  On the 
other hand, there also exist covariant tensors for which the 
inverses of the above matrices are instead involved (cf. Example 4), 
and even mixed tensors that are partly covariant and partly con-
travariant [23], [71]. However, we shall concentrate only on 
contravariant tensors in this article, which follow (1) under a 
multilinear transformation. Note that (1) holds true for contra-
variant tensors even if the linear transforms ( , , )A B C  are not 
invertible; they can even be rectangular matrices. This property 
is crucial in BSS when mixtures are underdetermined [20], [83].

EXAMPLE 3
Consider three multidimensional random variables ,x ,y
and .z  Then the third-order moment tensor M  is repre-
sented by the third-order array { } .M x y zE i j kijk =  As in the 
case of second-order moments, it is a contravariant tensor. 
In fact, if ,x Ax=l ,y By=l  and ,z Cz=l  then M =l

( ), , ·A B C M  as in (1). It turns out that cumulants may also 
be seen as tensors as pointed out in [57]. Because cross-
cumulants of independent random variables are null at any 
order, they have been extensively used in BSS. For instance, 
the cumulant tensor of order 2 is nothing else but the 
covariance matrix, and accounts for the correlation at 
order 2 only; it is not sufficient to account for statistical 
independence unless variables are Gaussian. 
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EXAMPLE 4
The derivatives of order D  of a multivariate scalar func-
tion can be stored in a covariant tensor of order .D  For 
instance at order 2, if / ,A f x xi j

2
ij 2 2 2= ,x Mx=l  and 

/ ,A f x xp q
2

pq 2 2 2=l l l  then ,A N ANT=l  with .N M 1= -  From 
now on and for the sake of simplicity, we shall only con-
sider contravariant tensors in this article. 

More generally, a tensor of order D  is an element of 
,SS D17 7f  and can be represented by a D -way array T

once bases of spaces Sd  have been fixed. Under multilinear 
transforms, these arrays of coordinates change similarly to (1). 

EXAMPLE 5
In physics, Hooke’s law relates the deformation (strain) of 
a solid under the action of forces (stress). It states that 
stress F  is related to strain X  by the elasticity tensor as: 

,F C X=  where  is a contraction operator (see the 
section “Transformations” for a formal definition). Once 
bases are fixed in the stress and strain spaces, this rela-
tionship can be written in terms of arrays of coordinates  

.F C X
,p q

ij ijpq pq=/

The elasticity tensor C  is of order 4. Strain and stress are 
tensors of order 2, which are represented by matrices. 

As illustrated above, it should be kept in mind that an array of 
coordinates alone does not suffice to define a tensor: spaces and 
bases need to be defined. Since we are interested mainly in manip-
ulating arrays, and not so much in the map they may represent, 
arrays will be subsequently associated with multilinear forms, i.e., 
maps from a product of spaces to their construction field .K  Even 
if most results can be stated without introducing arrays of coordi-
nates [49], bases are required in engineering applications because 
calculations are made with arrays of numbers. 

NOTATION
In the literature, indices of D-way arrays are sometimes put in 
superscripts or in subscripts, depending on the covariant or 
contravariant character of corresponding subspaces; this nota-
tion also allows the use the Einstein summation convention. 
Because we consider essentially fully contravariant tensors in 
this article, we do not need to make the distinction. 

Throughout the article, arrays of numbers will be printed in 
boldface. More precisely, one- and two-way arrays will be denoted 
in bold lowercase and bold uppercase, respectively, like, e.g., v
and .M  Arrays with more than two indices will be denoted by bold 
calligraphic symbols, as .A  Sets and spaces will be noted in script 
font, like ,S  whereas tensors will be printed in calligraphic font, 
as .A  Entries of arrays ,v ,M  and A  will be noted ,vi ,Mij  and 

,A ..kij  without bold font because they are scalar numbers. In prac-
tice, a tensor A  is often assimilated to its array representation A
[16], [21], [46], which is generally not very confusing. Neverthe-
less, we shall make the distinction in the sequel, to keep the pres-
entation as clear as possible. 

TRANSFORMATIONS
The tensor product A B7  between two tensors A SS1 27!

and S SB 3 47!  is a tensor of .S S S S1 2 3 47 7 7  The conse-
quence is that the orders add up under tensor product. 

EXAMPLE 6
Let A  be represented by a three-way array [ ]AA ijk=  and B
by a four-way array [ ];BB mnp= ,  then tensor C A B7=  is 
represented by the seven-way array of components 

.C A Bijk mnp ijk mnp=, ,  With some abuse of notation, the tensor 
product is often applied to arrays of coordinates, so that nota-
tion C A B7=  may be encountered. 

If the tensor product increases the order, the contraction
decreases it by two. The contraction consists of a summation over 
a pair of indices. This operation permits to define the mode-k
product between tensors, and can be denoted by ,k  where k  indi-
cates which index should be summed. 

EXAMPLE 7
If A  and Al are tensors of order D  and ,Dl  the tensor 
B A Ak= l is a tensor of order D D 2+ -l  obtained by 
summing over the kth index. For instance, if ( , , )D D k =l

( , , ),3 3 2  this yields .B A Aijpq i j p q= ,
,

,l/  For ( , , )D D k =l

( , , ),2 2 1  we would have the matrix product A AA A1 = <l l

However, when the product is between a matrix and a ten-
sor of higher order, it has been the usual practice to always 
sum over the second matrix index. For instance, if M  is a 
matrix, MA 3  means that the sum is performed on the 
third tensor index and the second matrix index. 

It may be convenient to store D-way arrays in matrices. This 
transformation is called matrix unfolding or flattening, and can be 
performed in different manners, depending on the arbitrarily cho-
sen ordering [27], [46]. Here, the ordering of [46] has been 
retained, but the choice of [27] would work equally well. In fact, 
the exact definition is not so important, provided the inverse map 
is defined consistently. We shall limit ourselves to matrices whose 
number of rows equals one of the tensor dimensions; this is some-
times referred to as mode-n unfolding [46]. Example 8 illustrates 
how to relate a third-order tensor to its three flattening matrices. 
But it is also possible to associate a D-way array, ,D 32  to a mul-
tilinear operator of lower order; see, e.g., [9], [29], [64], and [69]. 

EXAMPLE 8
Let a 2 2 2# #  array of coordinates .Aijk  Its mode-n
unfoldings A( )n  are 

.

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

A

A

( )

( )

( )

1 11

11

21

21

12

12

22

22

2 1 1

1 1

2 1

2 1

12

1 2

2 2

2 2

3 1 1

11

2 1

21

12

12

22

22

1

2

1

2

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

=

=

=

=

=

=

G

G

G
Remark that the row number of matrix A( )n  corre-
sponds to the n th index of tensor .A
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The Kronecker product between two matrices A  and B  of 
size I J#  and ,K L#  respectively, is the matrix A BX  of size 
IK JL#  defined blockwise by 

.
A

A

A

A
A B

B

B

B

BI

J11

1

1

IJ

X h

f

f

h= > H
The Kronecker product is used to represent the tensor product 
when bases are fixed and when tensors are represented by their 
array of coordinates unfolded into matrices. It should be borne in 
mind that the Kronecker product usually applies to matrices 
(although an extended definition has recently been proposed in 
[63]), whereas the tensor product is more general and coordinate 
free. Hence they should not be confused. 

SPECIAL TENSORS
A particularly important class of tensors is that of decomposable
tensors, which are tensor products of vectors. As previously stated in 
the section “Tensors,” they are of the form ,u v wD 7 7 7f=

and span the whole tensor space. The corresponding array of coordi-
nates is .. .D u v w..k i j kij =  One can view these tensors as a discre-
tization of a multivariate function whose variables separate. 

EXAMPLE 9
Take a function of two variables with separated vari-
ables: ( , ) ( ) ( ) .f x y u x v y=  Then its discretization takes 
the form ( , ) ( ) ( ),f x y u x v yi j i j=  and these numbers can 
be stored in a rank-1 matrix .D uv= <

A tensor is cubical if all its spaces of construction are identical, 
with the same basis. (The term homogeneous is also used in phys-
ics.) A cubical tensor A  is symmetric if its array of coordinates is 
invariant under permutation of its indices: , .A A( .. ) ..k kij ij 6v=v

EXAMPLE 10
The tensor of moments and the tensor of derivatives, 
defined in Examples 1, 3, and 4, are symmetric. 

The simplest symmetric array is the diagonal one, defined by 
0..kijD =  if ( , , .., ) ( , , .., ) .i j k i i i!

DECOMPOSITIONS AND RANKS

TENSOR RANK
Any tensor T  can be decomposed (nonuniquely) into a linear 
combination (with coefficients in )K  of decomposable tensors 

( ),rT Dr
r

R

1
m=

=

/ (2)

.( )r a b cD r r r7 7 7f=  If tensor spaces are endowed with 
scalar products, one can impose decomposable tensors ( )rD  to 
be built with unit norm vectors, which permits us to impose 

Rr !m +  if desired. The smallest value R  for which (2) holds is 
called the tensor rank. The definition of tensor rank can be 
traced back to the beginning of the 20th century [38], but it has 

been reintroduced in other disciplines under various names [7], 
[12], [36], [39], [66], [82]. 

EXAMPLE 11
Let the arrays A  and B  of dimensions 2 2 2# #  be 
defined by their mode-1 unfoldings 

0
1

0
0

0
1

0
0

1
0

0
1

0
1

0
0

A

B

( )

( )

1

1

=

=

>
>

H
H

Tensor [ , ] [ , ] [ , ]1 0 1 0 1 1A 7 7=  has rank 1. Tensor B  is 
symmetric and has rank 3, as will be seen with T0  in 
Example 18. 

Note that, by definition, a tensor is decomposable if and only 
if it has rank 1. If the order of a tensor T  is ,3$  the rank may 
depend on the field, in the sense that a real tensor of rank R
may have smaller rank if we allow the decomposition (2) to be 
complex, as demonstrated in Example 12. 

EXAMPLE 12
Take a real symmetric array Y  of dimensions ,2 2 2# #

defined by its mode-1 unfolding 

0
2

2
0

2
0

0
2Y( )1 =

- -
-> H.

Then, we need three decomposable tensors in :R

4
1
0

1
1

1
1

Y
3 3 3

= +
-

-
+
-

7 7 7= = =G G G
but only two in ,C  setting :1. = -

1 1
Y

3 3

. .
= +

-

7 7= =G G .

Hence its tensor rank in R  is 3 whereas it is 2 in .C

Other examples may be found in [18], [46], and [48]. Exam-
ples 11 and 12 incidentally show that, unlike matrix rank, ten-
sor rank may exceed all dimensions. 

TUCKER DECOMPOSITION
At this stage, it is interesting to make a connection with the matrix 
SVD. Two important features characterize the SVD of a matrix :M

,M U VR= < (3)

specifically 1) U  and V  have orthonormal columns, and 2) R  is 
diagonal. Consider the decomposition below of a three-way 
array, introduced by Tucker in the 1960s [85]: 

,A B C GT
rqp

ijk ip jq kr pqr= /// (4)

which we shall compactly denote ( ) · ., ,A B CT G=  It is clear 
that if the number of free parameters in the right-hand side of (4) 
is smaller than the number of equations, then there will generally 
be no solution. This happens to be the case if ,A ,B  and C  are 
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orthonormal and G  is diagonal. In the quest for existence, we 
have to choose: either G  is diagonal, but we have to relax the 
orthogonality constraint on factor matrices, which will be 
allowed to have more columns than rows [this corresponds to 
decomposition (2)], or we keep the orthonormality constraint, 
but allow G  to have nonzero extra-diagonal entries as elaborated 
in the next section. 

HOSVD AND MULTILINEAR RANKS
If we impose matrices { }, ,A B C  to have orthogonal and unit-
norm columns in the Tucker decomposition (4), then we can 
make several observations. First, denote by Rn  the rank of ,T( )n

the nth  unfolding matrix of ,T .n D1 3# # =  Rank Rn  is 
called mode-n rank of ,T  or n-rank in short. Then the number of 
columns of A  (respectively, ,B )C  does not need to exceed R1

(respectively, ,R2 ),R3  and the dimension of the core tensor may 
be imposed to be .R R R1 2 3# #  In addition Rn  cannot exceed the 
tensor rank R  defined in (2), nor the nth dimension. This prop-
erty is not a surprise, if we view decomposition (2) as a decomposi-
tion of the nth unfolding matrix into a sum of rank-1 matrices 
where rows are imposed to have a special structure. The D-uple of 
n-ranks is the multilinear rank of .T  Another property is less 
immediate to capture: the core array G  can be imposed to be all-
orthogonal, which means that all tensor slices of order D 1-  are 
orthogonal to each other in every mode; when D 3=  this means: 

G G G G G G 0
, , ,j k

i k
i k

i k
i j

jk jk ij ij= = =a b a b a b/ / /

if .!a b  See [27] and references therein for more details. It is 
worth noticing the elementary fact that for tensors of order 2 
(i.e., matrices), ,R R R1 2= =  and all equal the matrix rank. 

EXAMPLE 13
The multilinear rank of array B  defined in Example 11 
is (2, 2, 2), whereas that of A  is (1, 1, 1). 

CP DECOMPOSITION
On the contrary, if we keep a diagonal form for ,G  we end up 
with the polyadic decomposition [38], also sometimes called 
CANDECOMP or PARAFAC because of its rediscovery in the 1970s: 

A B CT
r

R

r
1

ijk ir jr krm=
=

/ (5)

or, in compact form, ( ) · ,, ,A B CT L=  where L  is diagonal. If 
R  is not loo large, this decomposition can be unique (cf. the 
section “Exact Decompositions”) and deserves to be called 
canonical polyadic (CP). Following a practice now adopted in 
applied mathematics and engineering [5], [42], we shall subse-
quently use the acronym CP, which can also cleverly stand for 
CANDECOMP/PARAFAC. After inspection, it may be seen that 
(5) is nothing else but decomposition (2) in array coordinates. 
In other words, the CP decomposition reveals the tensor rank. 

SYMMETRIC RANK
As already pointed out in the section “Special Tensors,” a tensor 
T  is symmetric if its coordinate array T  is invariant by permuta-
tions of indices. If we impose tensors ( )rD  in (2) to be themselves 
symmetric, then we might end up with a larger value of rank, 
denoted ,R s  which is referred to as the symmetric rank of .T  It is 
clear that R Rs $  for any symmetric tensor ,T  since any con-
straint on decomposable tensors may increase rank; we have 
already observed this fact with the real constraint in Example 12. 
It has been conjectured in [19] that rank and symmetric rank are 
always equal, but this has not yet been proved in the general case. 

NONNEGATIVE RANK
When an array is real nonnegative, one may want to impose 
rank-1 terms in its CP decomposition to be themselves non-
negative. The minimal number of terms is then called the non-
negative rank and is generally strictly larger than the rank in .R
This is already the case for matrices D 2=^ h as shown in Exam-
ple 14, due to Herbert E. Robbins. The same phenomenon is 
observed for tensors, although theoretical results are still lacking. 

EXAMPLE 14
The following matrix has rank 3 since vector [ , , , ]1 1 1 1- -

belongs to its kernel. But it can be proved that its nonnega-
tive rank is four 

1
1
0
0

1
0
1
0

0
1
0
1

0
0
1
1

M =

R

T

S
S
S
SS

V

X

W
W
W
WW
.

STRUCTURED RANKS
More generally, when matrix factors are imposed to have a special 
structure, such as banded, van der Monde, Toepltiz, or Hankel, the 
tensor rank may increase, just as in the nonnegative case. Struc-
ture can also have an impact on computational issues [49], [78]. 

BORDER RANK
A tensor has border rank R  if it is the limit of tensors of rank R
and not the limit of tensors of smaller rank. Rank and border 
rank always coincide for matrices, but not for tensors of order 
larger than two, as shown in the next example. 

EXAMPLE 15
Let u  and v  be fixed real or complex numbers, and f  a 
small positive number. Then / ( )u v u u v1 33 3 2f f+ - = +^ h 6 @

( ) .O f  Now if multiplication is not commutative, we have 
three distinct terms on the right-hand side; this is what hap-
pens for the tensor product, so that :06 2f

( ) ( ),O1 u v uT T3 3
0f

f f= + - = +7 7
f 6 @

u u v u v u v u uT0 7 7 7 7 7 7= + +

hold for any vectors u  and .v  If the latter are not collin-
ear, it can be proved that T0  is of rank ,R 3=  but is the 
limit of tensors ,Tf  which are all of rank 2. Hence the bor-
der rank of T0  is .R 2=
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The border rank has been defined and utilized by many 
authors, especially in arithmetic complexity [7], [52], [72], [82]. 
This concept is crucial in tensor approximation problems, as 
addressed in the section “Approximate Decompositions.” 

RELATION WITH POLYNOMIALS
Homogeneous polynomials are bijectively related to tensors, which 
allows to transpose existing results of algebraic geometry; see, e.g.,
[10], [15], [17], [19], [23], [49], [80], and references therein. In fact, 
one can associate the following polynomial with any array :T

( , ) .p T x y z,x y z ..
, ,..

k
i j k

i j kijf f= /
Conversely, any homogeneous polynomial of degree D  and par-
tial degree 1 in every variable can be associated with a (nonsym-
metric) tensor .T

Through this bijection, a decomposable tensor of order D  is 
translated into a product of D  linear forms, and the CP decompo-
sition can be translated into a linear combination of such terms: 

( ) ( ) ( ) ( ) .p , ,x y z a x b y c zr
r

R

r r r
1

f fm= < < <

=

/ (6)

In the case of symmetric tensors, .x y zf= = =  More pre-
cisely, a symmetric tensor T  of order D  can be identified with 
the homogeneous polynomial of degree :D

( )p T x x xx ..
, ,..

k
i j k

i j kij f= /

in the indeterminates , , .x xn1 f  It can be easily checked that 
symmetric tensors of rank 1 are associated with a polynomial 
of the form ( ) ,a x D  where ( )a x a x= <  is a linear form. In other 
words, they are exactly the Dth  powers of a homogeneous lin-
ear form. The CP decomposition of T  reduces in this case to 

( ) ( ) ,p ax xi
i

R
D

1

s

=
=

/ (7)

which has been classically called a Waring decomposition [40]. 
The minimum number of summands R s  in a Waring decompo-
sition is the symmetric rank of ,T  which we defined earlier. 

EXAMPLE 16
The polynomials associated with tensors A  and B  of 
Example 11 are, respectively, ( , , , , , )a x x y y z z1 2 1 2 1 2 =

( )x y z z1 1 1 2+  and ( , ) .b x x x x31 2 1
2

2=

EXAMPLE 17
Take the polynomial of degree :D 3=

( ) ( )

( ) ( ) ( ) ,

x x x x x x x

x x x x x

2 6

4

1
3

1 2
2

1 2
3

1 2
3

1
3

1 2
3

1 2
3

. .- = + + -

= - + - -

where .1. = -  It has complex symmetric rank equal to 
two and real symmetric rank equal to three. This polynomial 
is actually associated with tensor Y  given in Example 12. 

EXAMPLE 18
Example 15 can be written in terms of polynomials, and is 
even easier to understand this way. Take [ , ]1 0u =  and 

[ , ] .0 1v =  Then u 37  and v 37  are associated with polynomi-
als x1

3  and x2
3  respectively, whereas ( )u v 3f+ 7  is associ-

ated with ( ) ,x x1 2
3f+  which can be expanded as 

( ) .x x x o31
3

1
2

2f f+ +  This shows that Tf  is associated with 
( ) .x x o3 1

2
2 f+  Hence Tf  tends to ,T0  because T0 is associ-

ated with .x x3 1
2

2  Moreover, the rank of T0 is three because 
x x3 1

2
2 cannot be written as a sum of fewer than three cubes. 

EXACT DECOMPOSITIONS
Now one can ask whether the CP decomposition defined in (2) 
and (5) is unique or not. First of all, the D-way array associated 
with a Dth  order decomposable tensor D  is not uniquely rep-
resented by an outer product of vectors: there remain D 1-
scaling factors of unit modulus. So we are rather interested in 
the uniqueness of coefficients Rr !m +  and tensors ( ),rD
which is more meaningful; this is sometimes called essential 
uniqueness. In this section, we will see two ways of assessing 
uniqueness: almost surely or deterministically. 

EXPECTED RANK
A naive approach is to count the number of degrees of freedom on 
both sides of (6), which is a rewriting of (2) in terms of polynomi-
als, and say that the number of equations should be at least as 
large as the number of unknowns. To fix the ideas, take a tensor of 
order D  and dimensions .n nD1# #f  It is clear that a necessary 
condition for uniqueness of the CP decomposition is that 

( ) ,R n D N1i
i

D

1
#- +

=

e o/ (8)

where .N nii
=%  We can proceed similarly for symmetric ten-

sors and count equations and unknowns in (7). This leads to 

,R n Ns s# (9)

where DNs = n D 1+ -` j corresponds to the number of free parame-
ters in a symmetric tensor. Equations (8) and (9) induce an upper 
bound on rank, which is called the expected rank, and is defined as 

R R
D n

N
1

o

ii

# =
- +e o/ (10)

R R n
N

s s
o s# = e o. (11)

When the fraction above is not an integer, there will always 
be an infinity of solutions, because of too many free parameters. 

E. Waring
(1736–1798)

J.J. Sylvester
(1814–1897)

A. Clebsch
(1833–1872)

[FIG1] Some contributors to the field of tensors. 
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When it is an integer, the number of unknowns is equal to the 
number of equations, and we could expect that there is a finite 
number of solutions. However, things are not so simple, as  
pointed out by Clebsch in the 19th century (Figure 1). In fact, 
there are exceptions [1], [3], [23], [58]. 

EXAMPLE 19
Consider fourth-order symmetric tensors of dimension three. 
In that case, 4/ /N n 3 5s = =

6` j  is an integer. Our hope is not 
realized since five forms are generally not sufficient in their 
decomposition. This exception was first noticed by Clebsch 
(Figure 1) from the polynomial framework: the “generic 
rank” of ternary quartics is in fact six [33]. This means that 
most homogeneous polynomials of degree four in three 
variables in C  can be written as a sum of six linear forms 
raised to the fourth power, and not fewer with probability 1. 

TYPICAL AND GENERIC RANKS
Generic (resp. typical) ranks are the ranks that we encounter with 
probability one (resp. nonzero probability), when their entries are 
drawn independently according to a continuous probability distri-
bution, hence their importance. Contrary to the matrix case, they 
are not maximal; tables of rank values may be found in [24], as 
well as simple codes to compute numerically the generic rank of a 
large panel of tensors. (Codes can be downloaded from [94].) 

A striking fact is that only one rank occurs with probability 
one (the so-called generic rank) in ,C  whereas several typical 
ranks may exist in .R  The generic rank in C  is always equal to 
the smallest typical rank one would find in .R  This problem 
was first addressed by Sylvester (Figure 1) in the 19th century. 
The case of real symmetric tensors of dimension two is now well 
understood [13], [22], [67]. In fact, all the integers between 

/D 2 2+^ ^h h6 @ and D  have been shown to be typical ranks [8]. If 
the tensor rank is smaller than a bound depending on the 
generic rank [typically R 1o-  as defined in (10) and (11)], there 
exist almost surely finitely many CP decompositions. See [23] 
for a survey of recent results on almost sure uniqueness. 

UNIQUENESS RESULTS BASED ON LINEAR ALGEBRA
Instead of associating tensors with polynomials and making use 
of results borrowed from algebraic geometry, uniqueness condi-
tions can be obtained by considering particular factor matrices. 
However, these conditions are generally only sufficient [41], and 
often much more restrictive. The most well known is that pub-
lished by Kruskal [47] and extended later in [73] and [81]; alter-
nate proofs have been derived in [49] and [68]. It requires the 
following definition: The Kruskal rank of a matrix is the largest 
number l  such that any subset of l  columns is full rank. By 
construction, Kruskal’s rank cannot exceed matrix rank. 

EXAMPLE 20
The matrix 

1
0
0

0
1
1

0
1
0

0
0
1

A =

R

T

S
S
SS

V

X

W
W
WW

has rank 3, but its Kruskal rank is .2l =

The CP decomposition is unique if the sufficient condition holds: 

,R D2 1 d
d

D

1
# l+ -

=

/ (12)

where dl  denotes the Kruskal rank of the dth  factor matrix in 
the CP decomposition. Further recent deterministic results may 
be found in [25], [31], and [32]. These results do not need alge-
braic geometry but advanced linear algebra (i.e., compound 
matrices formed of minors). They are sometimes much more 
powerful than Kruskal’s bound. 

EXACT COMPUTATION
Due to the space restrictions in this article, various existing algo-
rithms will not be described. However, we provide below some 
guidance to related literature, among many others. In [6], algo-
rithms to compute the symmetric rank of symmetric tensors of 
small border rank are proposed. When the rank is small, the sym-
metric CP decomposition can be computed with the help of 
Sylvester’s algorithm [10]; when it is not unique, one CP decompo-
sition can still be delivered. In [60], approaches based on special 
eigenvector computations are proposed. Direct computation is pro-
posed in [4] for n n2 # #  arrays. 

When one tensor dimension is large compared to its rank and 
to other dimensions, it is possible to compute the CP decomposi-
tion via a joint congruent diagonalization of its matrix slices; this 
has been first proposed in [50] for two matrix slices. In the pres-
ence of errors with more than two slices, such a diagonalization 
becomes approximate [25] and needs more care (see the next sec-
tion). In a similar spirit, for low-rank tensors of order larger than 
three, one can also decrease the order by working jointly on ten-
sor slices of lower orders [29], or by rearranging the original ten-
sor into another of lower order but larger dimensions [64]. 

APPROXIMATE DECOMPOSITIONS
In practice, measurements are always corrupted by some noise, 
which almost always has a continuous probability distribution. 
For this reason, the tensor rank is generic or typical, and the CP 
decomposition is generally not unique. That’s why a best rank-r
approximation must be computed [21], [44]. General-purpose 
optimization algorithms will generally suffice to solve the prob-
lem, e.g., [21], [46], [65], [77], and [84]; they are widely used 
but their convergence toward a minimum is not guaranteed, 
because the objective function may have only an infimum. 

In fact, low-rank approximations are useful and even 
unavoidable, but unfortunately ill posed in general [37], [75], 
except for special cases of tensors under constraints, like non-
negativity [54]. Most algorithms presently utilized by engineer-
ing communities ignore this fact, which may raise serious 
practical problems in a small fraction of cases. 

Ill posedness comes from the fact that the set of tensors of 
rank at most R  is not closed, as pointed out in section “Border 
Rank.” Some remedies have been proposed in the literature to 
face or circumvent this difficulty. In practice, this means that 
another problem is solved, often by imposing constraints in the 
CP decomposition. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [51] MAY 2014

These include: 
■ Impose orthogonality between columns of factor matrices 
[20]—in BSS, this takes the form of a spatial prewhitening. 
■ Impose orthogonality between decomposable tensors [45]. 
■ Prevent divergence by bounding coefficients rm  [54], [61]. 
■ If the tensor is nonnegative, use a nonnegative CP [54]. 
■ Impose a minimal angle between columns of factor matri-
ces [55]. 
■ Compute an exact CP of another tensor, which has under-
gone a multilinear compression via truncated HOSVD [11], 
[21]. It may happen that the problem remains ill posed after 
this type of compression, because reducing the mode-ranks 
does not necessarily reduce tensor rank. 
■ Compute another decomposition where the core tensor is 
block diagonal instead of diagonal [26], [79].
■ Compute a joint approximate diagonalization (JAD) of 
matrix slices, which may be viewed as another decomposition 
where the core tensor is not diagonal [2], [14], [20], [30], [51], 
[56], [62], [69], [86], [87], [89], as depicted in Figure 2. The 
drawbacks of this family of approaches, which become more 
and more popular, are threefold. First, rank must be smaller 
than two dimensions; in [25], the latter constraint is neverthe-
less relaxed. Second, replacing the core tensor by its diagonal 
yields an approximate CP decomposition whose optimality is 
not known. Third, a closed subclass of invertible matrices 
needs to be (arbitrarily) chosen, and indeed varies from one 
algorithm to another. 
■ When one dimension is much larger than the others, the 
optimality of this kind of approach can be significantly improved 
by imposing a structure in the diagonalization process [25]. 
Some codes are freely available on the Internet. See, e.g., the  

home pages of R. Bro, L. De Lathauwer, T. Kolda, A.H. Phan, and 
P. Comon [90]–[94]. A good site to find applications and related 
references is the Three-Mode Company’s maintained by P. 
Kroonenberg [95]. 

THE CASE OF RANK-1 APPROXIMATE
The rank-1 approximation problem is of interest for at least two 
reasons: first it is always well posed, and second it shows up in the 
deflation approach of BSS [20]. In addition, it is much easier to 
compute than a full CP decomposition [28], [43]. This problem 
may be seen to be related to tensor eigenvalues [17], [35], [53], 
[59], [88]. It has been proved recently that the best rank-1 
approximation of a symmetric tensor is symmetric [34]; a shorter 
proof can be found in [35], as well as uniqueness issues. So a 
question deserves to be raised: can the exact or approximate CP 
decompositions be computed by successive rank-1 approxima-
tions? It is already known that this does not generally work. 

In fact, attention should be paid to the fact that subtracting 
the best rank-1 approximate does not decrease tensor rank in 
general [80], contrary to the matrix case. Simple examples may 
be found in [18]; similar examples also exist for nonsymmetric 
or nonnegative tensors. The consequence is that the rank-1 
terms appearing in the best rank- k  tensor approximation are 
not the same for different values of .k  Hence, it is not possible 

to compute a full CP decomposition by solving successive best 
rank-1 approximations, contrary to what has been claimed by 
some authors. This procedure, called deflation, works in BSS 
for other reasons. In fact, BSS does not only reduce to a low-
rank tensor approximation, but also includes a regression stage.
However, whether deflation works in special cases (such as 
structured CP decompositions) is still an open question. 

EXAMPLE 21
The tensor defined by its mode-1 unfolding 

0
1

2
0

1
0

0
1T = > H

is of rank 2. Its best rank-1 approximate is [80]: 

0
0

2
0

0
0

0
0Y = = G.

One checks out that the difference 

0
1

0
0

1
0

0
1T Y- = = G

is of rank 3. In this example, deflation does not permit to 
decrease tensor rank. 

APPLICATIONS
Applications of tensor decompositions (essentially CP) include 
arithmetic complexity, separation of variables, blind identification 
of linear mixtures, BSS, data mining, spectroscopy, antenna array 
processing, and phylogenetics, among others. Tucker and HOSVD 
have other application fields in which uniqueness is not 
requested, like data compression. Due to the space constraints of 
this article, we shall now detail only one application of the CP 
decomposition, particularly fluorescence spectroscopy [76], for 
which very few theoretical results can apply, unfortunately. The 
reader is invited to consult, e.g., [16], [20], and [46] for pointers 
to other applications. 

An optical excitation applied to a solution produces several 
effects, including Rayleigh and Raman diffusions, and fluores-
cence. If the latter effect can be isolated, it may allow to accu-
rately measure the relative concentrations of fluorescent 
solutes. In fact, at low concentrations and in the presence of R

[FIG2] Because the optimization criteria are different in JAD and 
CP decompositions, one does not attempt to zero the same 
entries. This figure shows the location of the entries that are (a) 
not minimized in the core tensor in the CP decomposition of a 
third-order 4 4 4# #  tensor, and (b) during the execution of a 
JAD algorithm. Note that JAD algorithms deliver two factor 
matrices; the entries of third one remain in the core tensor.

(b)(a)
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fluorescent solutes, the Beer–Lambert law can be linearized and 
takes the form 

( , , ) ( ) ( ) ( )x y z T x y c zT o

R

1
c e= ,

,

, ,

=

/ ,

where ,x ,y  and z  denote the fluorescence emission wavelength, 
the excitation wavelength, and the sample number, respectively, 
T  is the fluorescence intensity measured as a function of the lat-
ter variables, ( )xc,  denotes fluorescence emission spectrum of the 
,th solute, ( )yf,  its absorbance spectrum (sometimes called exci-
tation spectrum), and ( )c z,  its relative concentration. In practice, 
only a finite number of samples are available, and measurements 
are made on discrete values within a limited spectral range, so that 
variables ,x ,y  and z  take a finite number of values. In other 
words, we deal with a CP decomposition of a finite three-way array, 
often of rather large dimensions (several hundreds). The particu-
larity of this CP decomposition is that T  is real nonnegative, as 
well as all the terms involved in its CP decomposition. Hence, R  is 
the nonnegative rank of .T  The good news is that 1) the best low-
rank approximate always exists [54], and that 2) there are simple 
efficient numerical algorithms available for its computation [70]. 
The bad news is that known uniqueness results, which we have 
reviewed in this article, are not appropriate for nonnegative CP 
decompositions. For instance, if nonnegative rank is plugged in 
place of rank in (12), the obtained sufficient condition is more 
restrictive, and does not even guarantee that factor matrices are 
nonnegative. This is the subject of ongoing research. 
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common thread in various approaches for model 
reduction, clustering, feature extraction, classifica-

tion, and blind source separation (BSS) is to 
represent the original data by a lower-dimensional 
approximation obtained via matrix or tensor 

(multiway array) factorizations or decompositions. The notion of 
matrix/tensor factorizations arises in a wide range of important 
applications and each matrix/tensor factorization makes different 
assumptions regarding component (factor) matrices 
and their underlying structures. So choosing 
the appropriate one is critical in each 
application domain. Approximate 
low-rank matrix and tensor fac-
torizations play fundamental 
roles in enhancing the data 
and extracting latent (hid-
den) components. 

In the nonnegative mat-
rix and tensor factorization 
approaches, high-dimen-
sional data such as non-
negative time series or images 
are factorized to find meaningful 
latent nonnegative components [1]. The 
motivation behind them is that besides the 
dimensionality reduction sought in many applications, the 
underlying data ensemble is nonnegative and can be better mod-
eled and interpreted by means of nonnegative and, preferably, 
sparse or smooth components to achieve a unique additive parts-
based representation (nonsubtractive combinations of non-
negative basis) [2]. 

Nonnegative matrix factorization (NMF) has been investigated 
by many researchers, especially Paatero and Tapper [3], for more 

than 15 years, but it has gained popularity through the works of 
Lee and Seung published in Nature [2]. Based on the argument 
that the nonnegative components are important in human brain 
visual perception, they proposed simple multiplicative update algo-
rithms for finding meaningful parts-based localized additive repre-
sentations of face images (such as the eyebrows, mouth, and nose). 
After that, NMF received extensive study and the idea has been 
extended to multiway models (i.e., multilinear models that perform 

tensor decompositions) including nonnegative Tucker 
decompositions (NTDs) and nonnegative poly-

adic decompositions (NPDs) [1]. 
In signal processing and data 
analysis, nonnegative matrix and 

tensor factorizations are 
important and pervasive top-
ics due to their unique 
properties and numerous 
applications [1]. As the the-
ory and new applications of 

nonnegative matrix and ten-
sor factorizations are still 

under development and are sub-
ject of extensive research (including 

uniqueness, performance, and estimation 
of nonnegative rank), our aim is to present algo-

rithmic and computational frameworks for the analysis and 
development of reliable, efficient, and robust algorithms for NMF/
NPD/NTD for sparse representation of signals, particularly, based 
on low-rank approximations of high-dimensional data. These top-
ics are key factors for development of many emerging real-life 
applications, e.g., three-dimensional (3-D) video tensor displays 
[4], text mining, and classification and clustering [1], [5], [6]. 

GEOMETRIC INTERPRETATION AND UNIQUENESS OF NMF
In NMF, a given nonnegative matrix Y RM N! #

+  is modeled as 
,Y AB ET= +  where A RM R! #

+  and B RN R! #
+  are called the 
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basis matrix and the encoding matrix, respectively, and E RM N! #

denotes the noise (See Table 1 for the notations we adopted in this 
article). The minimum value of R  leading to 0E =  is called the 
nonnegative-rank of .Y  Apparently nonnegative-rank is always no 
less than the rank of .Y We assume that ,R M N% #  as we often 
can use only a small number of nonnegative components to 
approximate the original high-dimensional data. 

Unfortunately, NMF does not always give correct decompo-
sition into parts [7], which gives 
rise to the issue of uniqueness. We 
say that the NMF is (essentially) 
unique if the factor matrices A
and B  are estimated only up to 
arbitrary positive scaling and per-
mutation ambiguities of their col-
umns. Uniqueness of NMF is the 
foundation for NMF to be used as 
a BSS tool. The first sufficient 
uniqueness conditions were given by Donoho and Stodden [7] 
in the context of separable NMF, and later a stronger version 
was given by Laurbert et al. based on sufficient spread and 
boundary closeness of factors [8]. New uniqueness results 
were derived by Gillis and Huang et al. very recently, together 
with comprehensive reviews and new insights into the unique-
ness of NMF (see [9], [10], and references therein). Here we 
omit the mathematical details but illustrate intuitively when 
NMF is likely to be unique via a geometric interpretation of 
NMF. Considering the NMF of Y ABT=  with the given non-
negative-rank ,R  each column of Y  can be expressed as 

by an r nrr

R

1
=

=
/  where ,b 0nr $  which means that all the 

points yn  are enclosed by the conic hull cone(A) defined by 
{ }ar r

R
1=  (see Figure 1 for ),M R 3= =  and these points are 

either located on the boundary of cone(A), or inside cone(A).
From the figure, we can observe [11], [5]. 

SPARSITY
The sparsity of B  are reflected by the points on the boundary of 
cone(A) [11]. In Figure 1, the points marked by blue dots are 
located on the lines collinear with the basis vectors ar  (i.e.,   
extreme rays), which means ,by an r nr=  and the corresponding 

coefficients b :n  are 1-sparse (we call a vector k-sparse if it just 
contains k  nonzero elements). The points marked by green “o” 
are located on the hyperplanes spanned by any two basis vectors 
and the corresponding b :n  are 2-sparse. The red asterisks are 
located inside cone(A) and the corresponding 0b :n 2  are dense. 

UNIQUENESS
It is obvious that the NMF is not unique if there exists another 

conical hull cone Au^ h  such that 
( )cone A 1 ( ) ( ) .cone coneA I1u  If 

Au  is chosen as the basis matrix 
with ,Y ABT= u u Bu  will be nonnega-
tive but less sparse than B as all the 
points are enclosed by cone A^ h and 
consequently are inside ( ) .cone Au

Conversely, suppose that we have 
an NMF such that Y ABT= u u  with 
dense factor .0B 2u  We can keep 

shrinking ( )cone Au  until some points reside on its boundary 
while the others are inside it, thereby leading to a sparser NMF. 

[FIG1] A geometric interpretation of NMF Y ABT=  with
M R 3= =  in the data space. The columns of A form a conic 
hull cone(A

A) govern the sparsity and uniqueness of NMF.

Extreme Ray a3

a2 a1

1
2

Dimension I

1

0.5

0

0

0.5

1

1.5

D
im

en
si

on
 II

I

Dimension II

One Sparse
Two Sparse
Dense

Cone(A)

yt = a3bt3

yn = ∑
3

r = 1
arbnr

[TABLE 1] NOTATIONS AND DEFINITIONS.

, , , [ ]A a a A:r m mr A MATRIX, THE rth  COLUMN, mth  ROW, AND THE ,m r th^ h  ENTRY OF MATRIX ,A  RESPECTIVELY. 

I, 1, 0 THE IDENTITY MATRIX, THE MATRIX WITH ALL OF ITS ELEMENTS BEING ONE, ZERO. 

IN THE INDEX SET OF NONZERO INTEGERS NO LARGER THAN ,N  I.E., { , , , } .N1 2IN f= SIMILARLY FOR .IRn

RR R RN1 2# #g
+ SET OF R1-BY-R2f  BY-RN  NONNEGATIVE TENSORS OR MATRICES.

0A $ NONNEGATIVITY OF ,A  I.E.,. [ ] .0A ij $

AP+ ^ h [ ] ([ ] , ),max 0A Aij ij= , .i j6

, YY ( )n A TENSOR, THE MODE-n  MATRICIZATION OF TENSOR .Y

,U 8 ELEMENT-WISE (HADAMARD) PRODUCT, DIVISION OF MATRICES OR TENSORS. 

,7 9 KRONECKER PRODUCT AND KHATRI-RAO PRODUCT (COLUMN-WISE KRONECKER PRODUCT) OF MATRICES

,zA sA NUMBER OF ZEROS IN ,A RM N! #  THE SPARSITY DEFINED AS / [ , ] .Z MNs 0 1A A0 !^^ hh

~ ( , )U 0 1A ELEMENTS OF A ARE DRAWN FROM INDEPENDENT UNIFORM DISTRIBUTIONS BETWEEN ZERO AND ONE. 

IN SIGNAL PROCESSING AND DATA 
ANALYSIS, NONNEGATIVE MATRIX 

AND TENSOR FACTORIZATIONS ARE 
IMPORTANT AND PERVASIVE TOPICS 
DUE TO THEIR UNIQUE PROPERTIES 
AND NUMEROUS APPLICATIONS.
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In general the NMF is nonunique. However, intuitively, the NMF 
with sufficiently sparse nonnegative components of B, associated 
with the “smallest” conic hull cone A^ h enclosing all points ,yn  is 
likely to be unique, and under which NMF can be used as a BSS 
tool. Particularly, if there exist 
1-sparse points on each extreme ray, 
we call it separable NMF, which 
restricts the columns of A  to be par-
tial columns of Y  and will be dis-
cussed later. 

In summary, sparsity not only 
directly reflects the learning-parts 
ability of NMF, but also plays a key 
role in the essential uniqueness analysis of NMF. 

NMF ALGORITHMS BASED ON NONNEGATIVE 
ALTERNATING LEAST SQUARES
NMF is implemented by minimizing a cost (loss) function 

( )D Y ABT  that measures the discrepancy or distance between 
the factorization ABT  and the data matrix .Y  In this article, the 
Euclidean distance is used because it is the most widely applied in 
practice. Then NMF can be performed by minimizing the cost 
function DNMF = / ,1 2 Y AB F

T 2
-^ h  where A  and B  are con-

strained to be nonnegative. As DNMF  is not convex, alternating the 
minimization of DNMF  with respect to either A  or B  while fixing
the other one has been widely adopted, which is referred to as 
alternating nonnegative least squares (ANLS) [12]. For example, 
when B  is fixed, the optimal A  is estimated by solving the follow-
ing nonnegative least squares (NLS): 

, . . .min D s t
2
1 0Y AB AT

F

2
NLS

A
$= - (1)

For simplicity, we focus on the update rule of nonnegative mat-
rix A  with fixed B  by solving (1), but keep in mind that by con-
sidering / ,D 1 2 Y BA F

T T 2
NMF = -^ h  the roles of A  and B  are

exchanged and the update rule of B  can be obtained similarly. 
Theoretically, second-order methods that exploit both the Hes-

sian matrix and the gradient give more accurate solutions and 
enjoy a higher rate of convergence than first-order methods. How-
ever, the Hessian matrix is huge for large-scale problems. More-
over, the algorithms that need to search step-size involve frequent 
evaluation of the cost function, which is computationally expen-
sive. Hence we only consider low-complexity algorithms that are 
free of searching step-size and essentially use the first-order infor-
mation only, i.e., the gradient / .D A YB AB BTNLS2 2 =- +^ h

MULTIPLICATIVE UPDATE ALGORITHM
In the multiplicative update (MU) method [2], the matrix A  is
updated by using /DA A ANLSA! U 2 2h- ^ h with a smart choice 
of step-size (learning rate) ( ),A AB BT

A 8h =  which leads to the 
MU rule [2], [13]: 

( ) ( ) .A A YB AB BP T! U 8+ (2)

As such, A  remains nonnegative and DNLS  is nonincreasing dur-
ing iterations (here P+  is used to accommodate the case where 

Y  occasionally contains some negative entries caused by noise
[13]). The MU method converges relatively slowly but it is simple 
and easy to implement. Hence, based on it many extended ver-
sions were proposed [1], [13], [14]. 

ACTIVE-SET METHODS
Kim and Park proposed the efficient
block principal pivoting (BPP) method 
based on the active set method [15], 
which needs to solve the linear inverse 
problem /D 0ANLS2 2 =^ h  defined 
over the active set of variables. Differ-
ent from the standard active set 

method, this method exchanges multiple variables between working 
sets per iteration and effectively exploits the multiple columns fea-
ture of variable matrices to achieve high efficiency. 

ACCELERATED PROXIMAL GRADIENT METHOD
Taking into account that DNLS  is convex and its gradient is Lip-
schitz continuous, Guan et al. developed the NMF algorithm based 
on Nesterov’s optimal gradient method (NeNMF) [16], i.e., the 
accelerated proximal gradient (APG) method to solve (1). In the 
AGP approach, the step-size is selected as the reciprocal of the Lip-
schitz constant and hence is free of line search [16]. 

HIERARCHICAL ALTERNATING 
LEAST SQUARES ALGORITHM
In each iteration, the hierarchical alternating least squares
(HALS) [1] algorithm updates only one column of A  (or ),B
which leads to the following set of optimization problems:

, ,min r2
1 Y a b Ir

T
Fr r R
2

0ar
!-

$
(3)

where .Y Y a bT
r ii r i0 -

!
/  Equation (3) is strictly convex when 

0br F !  and it leads to 

( ) , .r1a a
b b

Yb AB bP Ir r
r
T

r
r

T
r R! !+ -+ c m (4)

The NMF algorithms based on the above NLS solvers belong 
to block coordinate descent methods. This type of method con-
verges if the optimal solution of each subproblem is unique 
[17]. Note that once the subproblem (1) is strictly convex, its 
optimal solution will be unique. Hence, these NMF algorithms 
have the guarantee of local convergence if we can maintain the 
full column rank of factors during the iterations. In the case 
where the NMF is not unique, existing NMF algorithms are 
often blamed for their lack of global convergence. Nevertheless, 
this drawback does not prevent NMF from performing success-
fully in many practical applications. 

To increase the sparsity of results and/or enforce the unique-
ness, we often add penalty or regularization terms to the cost 
function ,DNMF  typically l1-norm penalty, which leads to 

/D 1 2 Y AB AT
F 1
2

NLS m= - +^ h  with 02m  in (1). As ,0A $
we have ( )1traceA AT

1 =  and /N A YB AB BTNLS2 2 =- + +^ h

,1m  which allows to apply the aforementioned NLS solvers 

SPARSITY NOT ONLY DIRECTLY 
REFLECTS THE LEARNING-PARTS 

ABILITY OF NMF, BUT ALSO PLAYS 
A KEY ROLE IN THE ESSENTIAL 

UNIQUENESS OF NMF.
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straightforwardly. Another popular regularized model is 
/ / ,D 1 2 2Y AB A F

T
F

22
NLS m= - +^ ^h h .02m  In this case, 

DNLS  is strictly convex and equivalent to applying the Tikhonov 
regularization. This model generally results in a denser factor A
and consequently a sparser factor B  in the ANLS-based NMF. In 
these methods, how to select the parameter m  is crucial to 
achieve satisfactory results, and readers are referred to [18] and 
references therein for an in-depth analysis.

All the NLS solvers we introduced above involve the computa-
tion of YB  and AB BT  [i.e., the terms of the gradient / ]NNLS A2 2^ h

explicitly or implicitly in each iteration. The time complexity of 
computing YB  is as high as .MNRO^ h  One key factor to achieve 
fast NMF is to compute YB  and Y AT  (used for minimizing 

/D 1 2 Y BA F
T T 2

NLS = -^ h  with respect to B ) efficiently. 

NMF FOR LARGE-SCALE PROBLEMS

NMF BASED ON LOW-RANK APPROXIMATION
In this approach, we consider a two-stage procedure to perform 
NMF [13] (see Figure 2): 

1) Obtain the low-rank approximation (LRA) of Y  such that
,Y ABT. u u  where A RM R! #u  and .B RN R! #u  This can be done 

by solving the unconstrained optimization problem 
,min Y ABT

q-  where · q  denotes a suitable matrix norm. 
2) Solve /min 1 2 AB AB F

T T 2
0A 0,B -$ $

u u^ h  with fixed Au  and 
,Bu  i.e., perform NMF on .ABTu u

The purposes of LRA in Step 1 are twofold. First, it signifi-
cantly reduces the subsequent computational complexity of ANLS. 
After Y  is replaced by ,ABTu u  the gradient /D ANLS2 2^ h becomes 

( ) ( ),D
A A B B A B BT TNLS

2
2 =- +u u (5)

which can be computed in the complexity of ( )NRO 2  and theor-
etically is about /M R  times faster than the original version, pro-
vided that R M N% #  [13]. 

The second important purpose of applying LRA is to reduce the 
noise in data matrix ,Y  which is realized often by choosing a 
proper matrix norm · q  in Step 1 according to the distribution 
of noise. Popular LRA techniques include principal component 
analysis (PCA) and robust PCA (RPCA) [19] (see, e.g., [13] and ref-
erences therein). Moreover, if Y contains missing values, one may 
use matrix completion techniques to complete it by exploiting its 
intrinsic low-rank structure [19]. Then NMF is applied to the low-
rank representation of data. Of course, this two-stage procedure 
may not give the optimal solution. However, it is easy to 

implement and provides an immediate and ad hoc suboptimal 
solution. Inevitably, the quality of LRA will affect the resulting 
accuracy of NMF. If the LRA is exact, there is no difference 
between the direct methods and the two-stage methods. However, 
if the error caused by LRA is significant, the final accuracy can be 
poor. In [13], the error bounds of LRA-based NMF has been theor-
etically investigated for .q 2=  By exploiting the equivalence of 
matrix norms, similar results may be obtained easily for other .q
Anyway, the LRA procedure should be performed very carefully in 
practice. 

SEPARABLE NMF
The core idea of separable NMF is simple: it assumes that all col-
umns of Y  reside in a cone generated by R  columns of Y  (i.e.,
there exists at least one 1-sparse point on each extreme ray in 
Figure 1). Although separable NMF has been widely studied in the 
context of hyperspectral unmixing [20], [21], only since very 
recently has separable NMF shown great potential in handling 
very large-scale data by using linear programs [5], [22], [23]. Sep-
arable NMF has many attractive properties: 1) ordinary exact 
NMF is NP-hard, whereas separable NMF can be solved in polyno-
mial time [22], [23], and can be parallelized and tailored for very 
large-scale problems; and 2) separable NMF is always essentially 
unique. Although separability is a strong assumption, unlikely to 
be satisfied exactly in many practical applications, however, in 
this case the large-scale data matrix often can be well approxi-
mated by separable NMF [22]. So far, separable NMF has been 
successfully applied to discover topics, find representative objects 
in a   large-scale database, and improve clustering analysis [5], 
[22], [23]. In BSS, separable NMF corresponds to the pure-source 
dominance condition, which means that for some sample 
instants only one source is active or strongly dominant, i.e., 
assuming source sparsity. Under such an assumption, the non-
negative sources can be efficiently separated by using (near) sepa-
rable NMF, no matter whether they are statistically independent 
or not. Note that separable NMF also has a close relation with 
convex NMF [24] and convex hull NMF [6], where Y  is approxi-
mated as Y YABT.  under nonnegativity constraints on factors. 
When A  is restricted to be R  columns of a permutation matrix, 
convex NMF boils down to separable NMF. 

NONNEGATIVE COMMON FEATURE 
EXTRACTION OF MULTIBLOCK DATA
Very often the data we encounter is a collection of matrices 
rather than a single matrix, e.g., the electrophysiological signals 

[FIG2] A diagram of the nonnegative matrix/tensor factorizations based on the LRA of high-dimensional noisy data.
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recorded from different subjects and trials responding to spe-
cific stimuli. These multiblock data often share some common 
features and, at the same time, they have their own individual 
features, due to the background in which they are measured 
and collected. It is therefore meaningful to analyze such data 
blocks in a linked way rather than separately [25], [26]. By 
assuming that the multiblock data are spanned by a set of com-
mon components, group independent component analysis (ICA) 
and independent vector analysis have been proposed and achieved 
great success in multiblock functional magnetic resonance
imaging data analysis [27], [28]. Besides sharing common com-
ponents, however, we think the multiblock data also contain their 
individual components. To model such phenomena, given a set of 
nonnegative matrices { , },nY RY In

I J
N

n! != #
+  we consider a 

linked NMF model such that (see Figure 3) 

, ,nY AB A B In
T

n
T

n n N. !+r r { { (6)

where A R I C! #
+

r  denotes the common components shared by 
all data, while A R ( )

n
I R Cn! #
+

-{  denotes the individual compo-
nents contained by the data Yn  only, Rn  is the positive-rank of 

,Yn C R0 n# #  is the number of common components, and 
the nonnegative matrices , BB nnr {  are the coefficients. Nonnega-
tivity constraints and permission of existence of both common 
and individual components distinguish model (6) from existing 
group ICA methods [27], [28]. 

To solve (6), a straightforward approach is to minimize 
/1 2 Y AB A Bn

T
n
T

Fn n n
2

N
- -

!
r r { {^ h/  with respect to , , ,A B A Bn n nr r { {

by applying the ANLS memthod, which is similar to the joint 
and individual variation explained (JIVE) method [26] but with 
nonnegativity constraints. However, due to local convergence 
this approach may fail to extract the common components, 
especially when the common components are relatively weak. 

Another way is to use a two-stage procedure. In the first step, 
the common and individual subspaces are separated such that 

,Y UR U Rn
T

n
T

n n. +r r { {  where Ur  and Un
{  are bases of the common 

and individual subspaces, respectively, and ,Rnr Rn
{  are the cor-

responding coefficients. This step can be done by using the JIVE 
[26] or common orthogonal basis extraction (COBE) methods 
[29], where U U 0T

n =r {  is imposed to achieve a perfect separ-
ation of the common and individual subspaces, and this restric-
tion itself will not introduce any additional factorization error 
[29]. In Step 2, the nonnegative common and individual compo-
nents are extracted from the respective subspaces. To extract 
nonnegative common components, we need to solve the follow-
ing minimization problem: 

min UR AB
,

n
T

n
T

F
n

2

0 0A Bn

-
$ $

r r r r
r r

/ (7)

by applying the ANLS framework for NMF. If we define 
R R R RT T T T

N1 2 f=r r r r6 @  and ,B B B BT T T T
N1 2 f=r r r r6 @  (7) is equiv-

alent to NMF of URTr r  by applying the LRA and matrix partition 
techniques, where the latter is a quite useful technique when the 
matrices are too big to fit into a computer physical memory. Due to 
the restriction 0U UT n =r { , we have ,0A An

T
n .r {  which enforces 

perfect separation of the nonnegative common and individual com-
ponents, but could lead to larger fitting error (on the contrary, the 
first approach achieves better fitting while permitting some interac-
tions between the nonnegative common and individual compo-
nents). Note also that this approach can be viewed as a relaxed 
version of orthogonal NMF that requires that the nonnegative mat-
rix A A An n= r {6 @ to be orthogonal [30], if we treat each data Yn

separately. As orthogonal NMF is equivalent to K-means clustering 
([30, Th. 1]), the proposed method could be extended to perform 
linked clustering analysis of multiblock data. 

NONNEGATIVE TENSOR DECOMPOSITIONS
In analogy to matrix factorizations, tensor decompositions 
are developed to analyze high-dimensional tensor data, which 
have been given increasing importance in recent signal pro-
cessing and machine-learning applications [1], [31]–[33]. In 
the past, high-order tensors were reshaped and formatted as 
matrices such that standard matrix factorization techniques 
could be applied directly. However, this treatment often 
causes the loss of useful multiway structure information of 
data. It is more favorable to analyze these data in their own 
domain, i.e., tensor domain. In Table 2 we list some basic 
notations and operations for tensors; readers may refer to [31] 
for more details. 

One of the most widely used model for tensor decomposi-
tions is the Tucker model (see [1], [31], and references therein), 
where a given tensor RY I I IN1 2! # #g  is decomposed as 

.A A A AY G G( ) ( ) ( ) ( )
N

N
n

n
1

1
2

2
IN# # # #g= = ! (8)

A R( )n I Rn n! #  is the mode- n (factor, component) matrix consist-
ing of latent components ar

n^ h as its columns, ,n IN! ,r IRn!

and RG R R RN1 2! # #g  is the core tensor reflecting interactions 

[FIG3] An illustration of nonnegative common and individual 
feature extraction. Each data matrix is represented as

[ ] ,Y A A Bn n n
T. r {  where [ ],B B Bn n n= r { Ar  denotes the common 

components shared by all the matrices and An
{  are their 

individual components.

Y1

YN
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between the components in each factor matrix. Generally, 
R In n%  to achieve data compression. The Tucker model is 
quite flexible and it is the foundation of many multiway data 
analysis tools [34]. However, Tucker decomposition suffers from 
rotation ambiguity. To achieve essentially unique decomposition 
with physically meaningful components additional constraints 
are often essential. 

In the special case of (8) where R R R RN1 2 g= = = =  and 
the core tensor G  is diagonal, we obtain the polyadic decompo-
sition (PD), also known as parallel factor analysis (PARAFAC) 
(see [1], [31], and references therein). In PDs, a given tensor Y
is represented as the sum of rank-1 terms 

.a a aY r r r
N

r
r

R

1

1 2 %% gm=
=

^ ^ ^h h h/ (9)

For simplicity, we use , , ,A A AY ( ) ( ) ( )N1 2 g= " , as a shorthand 
notation of (9), where rm  are absorbed into .A n^ h  The minimum 
R  making (9) exact is called the rank of the tensor ,Y  and in 
this case (9) is called canonical PD (CANDECOMP or CPD) of 

.Y Different from Tucker decompositions, CPD is free of rota-
tion ambiguity and essentially unique under mild conditions 
[35]. Moreover, the minimum value of R  making (9) exact 
under nonnegativity constraints is called the nonnegative-rank 
of .Y  Apparently, for any non-
negative tensor the tensor rank is 
always no greater than the non-
negative rank. 

Hereafter we focus on tensor 
decompositions with nonnegativity 
constraints imposed on the factors, 
which is referred to as nonnegative 
tensor decompositions that not only 
inherit all the advantages of NMF, 
but also enjoy additional multilinear structure benefits of multi-
way data. The general scheme for nonnegative tensor decompo-
sitions based on ANLS is illustrated in Figure 4, while details 
are given in the following sections based on the polyadic and 
Tucker models. 

FAST NTD BASED ON LRA AND SEQUENTIAL NMF
For a given tensor ,Y by NTD we seek a nonnegative tensor 

AY G ( )
n

n
IN#= !

t  that minimizes the cost function DNTD =

/ ,1 2 Y Y F
2

- t^ h  such that both A n^ h and G  are nonnegative 
[see (8)]. Considering the mode- n  matricizations of Y  and Yt  in 

,DNTD  i.e., Y n^ h and ,Y n
t
^ h  we have 

,D 2
1 Y A B( )

( ) ( )
n

n n T
F
2

NTD = - (10)

where )B A G( ) ( )
\{ } n

Tn
p n

p
IN7= ! ^ h6 @  and G n^ h is the mode-n  matri-

cization of G  [31]. By vectorizing Y  and ,Yt DNTD can also be 
wr i t ten  as  / ( ,vec ) vec( )D 1 2 AY G( )

Fn
n 2

NTD IN7= - !^ h 6 @
where vec( )$  is the vectorization operator [31]. These two equiva-

lent forms of DNTD allow us to per-
form NTD by applying the ANLS 
straightforwardly with respect to 
A( )n  and .G  For example, in [36] the 
multiplicative update rules have 
been applied to perform NTD. How-
ever, computing the matrix B( )n  in 
each iteration is too expensive, and 
frequent matricization of tensor Y
is also quite time- and space-con-

suming for large-scale data. 
One efficient approach that allows us to significantly reduce 

the time and space complexity is to apply the idea of LRA to 
NTD. Suppose we have achieved a compressed unconstrained 
Tucker representation of Y  such that ,AY Y G ( )

n
n

IN#. = !
u u u

where A R( )n I Rn n! #u  (This can be done, e.g., by using truncated 
multilinear singular vector decomposition (MLSVD) [37]). Then 
we minimize / ,D 1 2 Y Y F

2
NTD = -u t^ h  where the gradients can 

be computed efficiently as 

[TABLE 2] NOTATIONS AND PROPERTIES FOR TENSORS.

GIVEN AN nth-ORDER TENSOR ,RG R R RN1 2! # # #g  THE NOTATIONS AND PROPERTIES LISTED BELOW WILL BE USED [31]: 

FIBERS: A MODE-n  FIBER OF A TENSOR IS A COLUMN VECTOR DEFINED BY FIXING EVERY INDEX EXCEPT FOR .n

MATRICIZATION :G( )n THE MODE-n  MATRICIZATION OF G  YIELDS A Rn -BY- Rpp n!
%  MATRIX DENOTED BY ,G( )n  WHOSE COLUMNS CONSIST OF ALL MODE-n

FIBERS OF .G

MODE PRODUCT :n# THE MODE-n  PRODUCT OF G AND A R I Rn! #  YIELDS A TENSOR A RY G n
R R I R Rn n N1 1 1# != # # # # # #g g- +  WHOSE ENTRIES ARE DEFINED 

BY .y g ar r ir r r r rr

R
ir1n n N N

n

n

n1 1 1 1 2=g g g
=- + / NOTE THAT .A Y AGY G ( ) ( )n n n+#= =

OUTER PRODUCT :% THE OUTER PRODUCT OF n  VECTORS YIELDS A RANK-1 nth-ORDER TENSOR. FOR EXAMPLE, a b c% %  YIELDS A THIRD-ORDER TENSOR 
Y  WHOSE ELEMENTS ARE DEFINED AS ,y a b ci j kijk =  WHERE a, b, AND c ARE COLUMN VECTORS. 

LET { , , , }i i iK K1 2 f=  BE ANY NONEMPTY SUBSET OF IN  WITH FIXED ORDER OF ELEMENTS, WE SYMBOLICALLY DEFINE 
1) A A A AG G( ) ( ) ( ) ( )

k
k

i
i

i
i

i
i

K K
K

1
1

2
2# # # #g0!

2) A A A A( ) ( ) ( ) ( )
k

k i i i
K

K K 1 17 7 7g0!
-  (THE INVERSE ORDER OF );ik SIMILARLY FOR 9AND .U

[FIG4] A general ANLS scheme for nonnegative tensor 
decompositions.

Matricization/Unfolding

1) Converting to NLS
 Subproblems of (2)

2) Computing
 Gradients

NLS Solvers

LRA

3) Alternating Update of Factors

ONE EFFICIENT APPROACH THAT 
ALLOWS US TO SIGNIFICANTLY 
REDUCE THE TIME AND SPACE 

COMPLEXITY IS TO APPLY 
SUITABLE LOW-RANK 

APPROXIMATION OF DATA.
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,

,

D

D
A

X G X G

C C
G

G G

( ) ( ) ( )

( ) ( )

n
T

n
T

n n n

n
n

n
n

NTD

NTD
I IN N# #

2
2

2
2

=- +

=- +! !

u

u u

^ ^h h

(11)

where ,C A A( ) ( ) ( )n n T n= ,C A A( ) ( ) ( )n n T n=u u X( )nu  and X n^ h are mode-n
matricizations of Xu and ,X respectively, and 

,
.

C A
C AX

X G
G

\{ }
( ) ( )

\{ }
( ) ( )

p n
p

n
n

p n
p

n
n

I

I

N

N

# #

# #

=

=
!

!

u u uu

(12)

Based on (11), any NLS solver can be applied to optimize A( )n

and G  but without directly accessing the large-scale tensor ,Y
thereby leading to significantly 
reduced time and space complexity. 
We call this method LRANTD. 

Another alternative efficient solu-
tion is to avoid frequently unfolding 
operations by applying unique NMF 
algorithms to extract each non-
negative factor sequentially rather 
than simultaneously, typically by 
starting with the sparsest factors A( )n

incorporating on it a sparsity penalty. Suppose that the factor A( )n

can be essentially uniquely estimated by running a suitable NMF 
algorithm on .Y n^ h  Then Y  is updated as AY Y n

n! # @^ h  and we 
move to the next factor. This method is similar to the multilinear 
SVD, but orthogonality is replaced by nonnegativity and here is 
referred to as NTD based on sequential (unique) NMF (NTDSNMF) 
(see [13]). 

FAST NPD BASED ON DIMENSIONALITY 
AND MODE REDUCTION
Historically, NPD is also referred to as nonnegative tensor factoriza-
tion in the literature [1], [31], [38], [39]. Quite different from 
unconstrained PDs, a nonnegative tensor with nonnegative-rank R
always has the best nonnegative-rank-r  approximations for any 
r R#  [38]. Consequently, in the case where the unconstrained PD 
is not unique or ill posed, NPD may help to extract desired unique 
components [38], [39]. Moreover, NPD is able to give sparse, parts-
based, and physically meaningful representation of high-order ten-
sors. NPD is therefore a very important research topic and has been 
found many practical applications. 

For a given tensor ,Y  by NPD we seek a tensor Y =|

, , ,A A A( ) ( ) ( )N1 2 g" ,  minimizing the cost function DNPD =

/ ,1 2 Y Y F
2

- t^ h  where ,A R( )n I Rn! #
+ .n IN!  By considering 

the mode- n  matricizations of Y  and Yt  in ,DNPD  i.e., Y n^ h and 
,Y n

t
^ h  we need to solve 

, ,min D n
2
1 Y A B I( )

( ) ( )

A
Fn

n n T
N

2

0
NPD

( )n
!= -

$
(13)

where B A( ) ( )
\{ }

n
p n

p
IN9= !  [31]. Based on (13) we can apply the 

ANLS with respect to A n^ h to perform NPD [1], [40]. However, 
direct computations of the gradients /D A Y B( )

( )
( )n

n
n

NPD2 2 =- +^ h

A B B( ) ( ) ( )n n T n  are quite expensive 
and it is therefore crucial to find 
more efficient way to compute the 
gradients [41]. 

NPD BASED ON LRA
Noticing that unconstrained PD
generally converges significantly 
faster than NPD, we update Y   
by its LRA such that Y Y. =u

, , ,A A A( ) ( ) ( )N1 2 gu u u" , in ,DNPD  thereby leading to /D 1 2NPD = ^ h

,A B A B( ) ( ) ( ) ( )
F

n n T n n T 2
-u u  where ,B A( ) ( )

\{ }
n

p n
p

IN9= !
u u  and hence

/ [ ] [ ] .D A A B B A B B( ) ( ) ( ) ( ) ( ) ( ) ( )n n n T n n n T n
NPD2 2 =- +u u^ h

The key point is that, due to the special structure of B( )nu  and ,B( )n

( ),B B A A( ) ( )
\{ }

( ) ( )n T n
p n

p T p
INU= !

u u  similarly for ,B B( ) ( )n T n  both of 
which can be economically computed during the iterations. 

NPD USING MODE REDUCTION
Another key factor affecting the efficiency of NPD is the order of 
the data tensor .N  NPD algorithms that are based on the ANLS 
framework require to unfold (matricize) the tensor N  times in 
each iteration, which consumes considerable memory and time 
when .N 3&  To overcome this problem, the mode reduction 
method [42] can be applied to NPD of high-order tensors. To 
explain this idea, suppose , , , .A A AY ( ) ( ) ( )N1 2 g= " ,  We can 
reshape the N th-order tensor Y  properly to yield a third-order
tensor Y 3" , by merging (combining) some modes of .Y It turns 
out that the components of , ,H H HY{ } ( ) ( ) ( )3 1 2 3= " , satisfy that 

, , , ,k 1 2 3H A( ) ( )k
p

p
Sk9= =! (14)

where Sk  are pair-wisely disjoint, nonempty subsets of IN  with 
.S I, ,k k N1 2 3, ==  The mode reduced tensor Y 3" ,  has many 

interesting properties [42]. Particularly, if Y satisfies the unique-
ness conditions given in [35], there always exists at least one mode 
reduced tensor Y 3" , whose CPD is also unique. Moreover, the 
components of Y 3" , are generally of less collinearity than those of 
Y  (these properties are also true for any ,Y K" , K N3 1#  [42]). 
Equation (14) allows us to estimate ,A p^ h ,p Sk!  from H k^ h effi-
ciently and uniquely via a Khatri–Rao product approximation [42]. 
This motivates us to perform NPD on a properly mode-reduced 
tensor Y 3" , that has unique NPD of Y{ }3 = , , ,H H H( ) ( ) ( )1 2 3" ,  and 

Nth Order (N > 3)
Tensor  

Reshape

1) Mode
Reduction 2) NPD

Third-Order Tensor {3}

ar
(n)

n ∈ , r ∈N R

h(k )
r

Rk = 1, 2, 3, r ∈h(k )
r a(p)

r= p∈ k

3) Khatri-Rao Product Approximation

[FIG5] The diagram of NPD based on mode reduction of high-
order tensors .N 32^ h

NONNEGATIVE TENSOR 
DECOMPOSITIONS NOT ONLY 

INHERIT THE ADVANTAGES OF NMF,
BUT ALSO ENJOY ADDITIONAL 

MULTILINEAR STRUCTURE BENEFITS 
OF MULTIWAY DATA.
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then to recover the factors A n^ h from 
H k^ h , ,k 1 2 3=^ h by exploiting the 
Khatri–Rao product structure (14); 
see Figure 5 for the diagram of this 
method. This method can be much 
faster than direct NPD of the original 
high-order tensor, because frequently 
unfolding to each of the N  modes is 
avoided and the mode-reduced tensors often have well-condi-
tioned factor matrices. 

How to merge the modes is crucial to the mode reduction-
based method [42]. Theoretically, the two factor matrices hav-
ing the smallest Kruskal ranks should be merged first to largely 
maintain the uniqueness property. However, as the Kruskal 
ranks of factors are unknown before factorization, we often 
merge the modes whose corresponding matricizations have the 
smallest ranks first [42]. 

Next, we briefly discuss how to recover A n^ h from H k^ h using 
(14). For simplicity, we let ,H H( )k0 , , ,k 1 2 3=  and consider 
the following Khatri–Rao product approximation problem 

.min H A( )

A
Fp

p 2

0
S

( )
k

p
9-

$
! (15)

Let H( )r  be the tensor formed by reshaping the r th column of 
H  according to the dimension of ,ar

p^ h .p Sk!  Then the tenso-
rial power iteration method followed by nonnegative projection 
can be used to update ar

p^ h [42]

.a
a

a
P
H

\{ }

( )
\{ }

r
p

r
j

r
j

j p

r
j p

T

2

2

S

S

k

k!
#

!

!
+ f

^

^

^

p
h

h

h

% (16)

Repeat (16) for all p Sk!  until convergence, the r th columns 
of A p^ h will be estimated. Then, we repeat the procedure for all 

, , ,k 1 2 3=  which can be done in a parallel way for all k  and .r

FAST NPD BASED ON ESSENTIALLY UNIQUE NMF
Below we discuss the possibility of using ,H HY{ } ( ) ( )2 1 2= " ,  
in the aforementioned mode-reduction method. Note that Y 2" ,

is actually a matrix such that 
H HY{ } ( ) ( )T2 1 2=  that generalizes 

the concept of standard matriciza-
tion of tensors [cf. (13)]. Hence, we 
may perform NMF on matrix Y 2" ,

first to obtain factor matrices H 1^ h

and ,H 2^ h  and then we recover A n^ h

from H 1^ h and H 2^ h by solving (15). 
However, this approach works only if the NMF of Y 2" ,  is essen-
tially unique, e.g., both H 1^ h  and H 2^ h  are sufficiently sparse. 
Fortunately, in general, the Khatri–Rao products (14) substan-
tially improve the sparsity level. 

PROPOSITION 1
Let a RM 1! #  and .b RN 1! #  Then za b =9 Nz Mz z za b a b+ -

and ,s s s s sa b a b a b= + -9  which means that ( , ) .max s s sa b a b# 9

In other words, both H 1^ h and H 2^ h can be very sparse and 
the NMF of Y 2" ,  is very likely to be essentially unique, provided 
that A n^ h are sufficiently sparse. In [43], we considered the spe-
cial case where one specific factor matrix can be essentially 
uniquely estimated by incorporating suitable a priori informa-
tion on this factor. Particularly, it can be shown that if one fac-
tor matrix satisfies the separable condition, Y 2" ,  also satisfies 
the separable condition. In such a case, the NMF of Y 2" ,  is 
essentially unique and the above method can be applied. 

IMPROVED SPARSITY AND UNIQUENESS 
OF NONNEGATIVE TENSOR DECOMPOSITIONS
It is worth noticing that multilinear structures in nonnegative 
tensor decompositions intrinsically enforce sparse representa-
tions. By NPD, a tensor Y  can be represented as Y B A( ) ( )

n
T n n T=^ h

by using the mode- n  matricization, where .B A( ) ( )
\{ }

n
p n

p
IN9= !

Hence if B n^ h  is interpreted as the basis matrix, from Propos-
ition 1, it is usually very sparse. This sparsity comes from the 
sparsity of A p^ h ,p n!^ h  and is enhanced by the Khatri–Rao prod-
uct structure of .B n^ h  We call B n^ h a Khatri–Rao product basis. By 
NTD a tensor Y  can be represented as Y R G A( ) ( )

n
T

n
Tn n T=^ ^h h  by 

[FIG6] A very sparse and parts-based Kronecker basis (i.e., )A{ , , }
( )

n
n

1 2 37 !  extracted from the COIL-100 database obtained by the 
LRANTD based on HALS, which is often used for feature extraction in clustering and classification tasks.

IT IS WORTH NOTICING THAT 
MULTILINEAR STRUCTURES 
IN NONNEGATIVE TENSOR 

DECOMPOSITIONS INTRINSICALLY 
ENFORCE SPARSE REPRESENTATIONS.
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using the mode- n  matricization, where ,R A( ) ( )
\{ }

n
p n

p
IN7= !

.n IN!  If R n^ h is interpreted as the basis matrix, it can also be 
very sparse due to its Kronecker product structure, and we called 
it a Kronecker product basis of .Y In summary, compared with 
NMF, nonnegative tensor decompositions are able to provide 
sparser bases, which have multilinear structures. See Figure 6 for 
a visualization of a very sparse Kronecker product basis of real-
world data. Such sparse representation often allows us to perform 
efficient classification or clustering tasks [1]. 

As NPD is a special case of unconstrained PD, the unique-
ness conditions of PD [35] can be applied to NPD straightfor-
wardly once the nonnegative-rank is equal to the rank. 
However, the nonnegativity constraints may lead to more 
relaxed uniqueness conditions. We believe that both NPD and 
NTD should be essentially unique as long as the latent factors 
are sufficiently sparse, nevertheless, comprehensive analysis on 
uniqueness of nonnegative tensor decompositions is still an 
open issue. 

SIMULATIONS
All the simulations were performed in MATLAB 2008a on a PC 
with i7CPU 3.33 GHz and 24-GB memory running Windows 7. 

SYNTHETIC DATA BENCHMARK
We compared the introduced NMF algorithms using synthetic 
data generated by ,Y AB ET= +  where ,A B R ,10 000 50! #

+  and 
~ ( , ),U 0 1A ~ ( , ) .U 0 1B  Note that all the NMF algorithms using 

the Euclidean distance are essentially based on the independent 
and identically distributed Gaussian noise assumption. To inves-
tigate their flexibility and robustness to non-Gaussian noise, we 
added Gaussian noise (with SNR=20 dB) to the only randomly 
selected 1,000 entries of Y  to be outliers. In other words, the 
noise term E  contained only 1,000 nonzero entries. The ele-
ments of A  and B, which were less than 0.5, were set to zero to 
generate sparse factors. The algorithms we compared included 
the MU algorithm [2], the BPP based on the active-set method 
[15], the NeNMF using the APG method [16], the greedy coord-
inate descent (GCD) algorithm [44], and the HALS algorithm 
[1]. For each NMF algorithm we tested three modes: 1) the 
plain mode that applied NMF to the noisy data directly; 2) the 
RPCA mode that applied NMF to the cleaned data preprocessed 
by using the RPCA [19]; 3) the LRA mode that used the LRAs 

(obtained by using truncated SVD) of cleaned data to acceler-
ate each NMF algorithm, in addition to 2). In each run all the 
algorithms started from the same initial matrices with the 
maximum iteration number 500. Their performance averaged 
over ten Monte Carlo runs was shown in Table 3, where the 
signal-to-interference ratio (SIR) evaluates how well the 
estimated components match their original ones, and the
fit= ( %./1 100Y AB YT

F F #- -^ h  From the table, we can 
conclude that 

■ using suitable LRA techniques to reduce noise prior to 
NMF is crucial to improve the accuracy. In this case, it is 
often unnecessary to develop special NMF algorithms for dif-
ferent noise distributions. Instead, we may use suitable LRA 
methods to substantially reduce noise without considering 
the nonnegativity constraints prior to applying NMF. 
■ for cleaned data (i.e., the RPCA mode and the LRA mode), 
all algorithms with or without LRA achieved almost the same 
factorization accuracy in terms of fits and SIRs. However, 
their LRA-based implementations were always much faster 
than their original ones (the time consumed by RPCA was 
not counted in both cases). This improvement can be very 
remarkable for large-scale data. 
■ as the factors were very sparse (50% entries were zeros) 
and the number of observations was significantly larger 
than the number of components, all the true sources were 
accurately estimated by all NMF algorithms with the RPCA 
preprocessing. This justifies that NMF may be used a BSS 
tool when the sources and/or mixing matrix are very sparse 
and nonnegative. 

COIL-100 IMAGES ANALYSIS
In this simulation, we used NTD methods to extract sparse
bases of the Columbia Object Image Library (COIL-100, 
available at http://www.cs.columbia.edu/CAVE/software/soft-
lib/coil-100.php), which is a database of color images of 100 
objects, and each object has 72 images. Each image was res-
caled as 128 #  128. These images formed a big tensor with 
the size of 128 #  128 #  3 #  7200. We compared the higher-
order NMF (HONMF) algorithm [36], the NTDSNMF algo-
rithm [13], and the new proposed LRANTD based on the MU 
and the HALS updates, respectively. As our purposes were to 
illustrate the learning-parts ability of NTD and to compare 

[TABLE 3] THE PERFORMANCE COMPARISON OF THE NMF ALGORITHMS ON SYNTHETIC DATA. THE SIR VALUES AND TIME OF 
THE PLAIN MODE WERE NOT LISTED AS ALL THE ALGORITHMS FAILED TO RECOVER THE ORIGINAL SOURCES (THE CORRE-
SPONDING SIR VALUES WERE LOWER THAN 10 dB) IN THIS MODE. 

ALGORITHMS

FIT (%) SIR (dB) TIME (S)

PLAIN RPCA LRA RPCA LRA RPCA LRA

MU 74.3 !  0.4 93.8 !  0.0 94.1!  0.1 24.5 !  6.7 24.5 !  6.8 560.6 170.5 

BPP 74.1 !  0.4 99.1 !  0.5 99.1 !  0.5 28.4 !  7.1 28.4 !  7.1 848.1 286.8 

NENMF 74.1 !  0.4 99.2 !  0.3 99.4 !  0.3 29.4 !  6.1 33.0 !  5.7 345.0 156.7 

GCD 74.6 !  0.4 99.4 !  0.3 99.3 !  0.3 33.0 !  5.7 31.8 !  6.1 325.8 111.1 

HALS 74.2 !  0.4 99.3 !  0.3 99.4 !  0.3 32.8 !  6.1 33.1 !  5.7 329.9 57.9 
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the efficiency of NTD algorithms, we simply set the numbers 
of components as , ,R R R R10 3 1001 2 3 4= = = =  for all 
algorithms (in practical applications, however, we may use 
the Bayesian information criterion or generalized informa-
tion criterion [18] to select these parameters) for better visu-
alization, which results in A{ , , }

( )
n

n
1 2 37 !  composed of 300 

basis images (128 #  128 #  3) as its columns. We set the 
maximum iteration numbers to be 100. In the LRANTD, the 
multilinear SVD [37] was applied to perform LRA. See 
Table 4 for their performance, where fit is defined similarly 
as for matrices. Obviously, the NTDSNMF algorithm and the 
proposed LRANTD algorithms significantly outperformed the 
standard NTD algorithm HONMF. Figure 6 visualized the 
Kronecker product basis extracted by LRANTD based on 
HALS, showing that NTD can provide very sparse bases that 
are useful in clustering and classification tasks [1]. 

FACE IMAGES CLUSTERING ANALYSIS
We applied the nonnegative common feature extraction (NCFE) 
to cluster analysis of human face images. Intuitively, all face 
images should share some common features as they have com-
mon facial characteristics such as cheeks, eyes, and a mouth, 
whose locations and shapes are similar to some extent. These 
common features that are presented in all faces are less impor-
tant for clustering as they do not provide any discriminative 
information. It is therefore reasonable to remove these common 
or similar features at first and then use the individual features 
only to cluster the faces. We validated this idea on the Carnegie 
Mellon University (CMU) pose, illumination, and expression 
(PIE) face database (available at http://vasc.ri.cmu.edu/idb/html/
face/), which is a collection of face images of 68 persons taken 
under different poses, illumination conditions, and expressions. 
We used the preprocessed version considered in [45], which 
consists of 2,856 full frontal face gray-scale images taken at the 
front pose labeled as c27. Each time we randomly selected K
clusters/persons { , , , , } .K 30 40 50 60 68!^ h  To extract their com-
mon features, in each run we permuted the images randomly 
first and then split them into, for simplicity, K  groups to obtain 

,Y k^ h ,k IK!  (each group consisted of face images from 
unknown different clusters). Then we used the common orthog-
onal basis extraction [29] to extract the common subspace and 
then used the NCFE to extract the nonnegative common fea-
tures. The number of common components was empirically 
specified as two. After removing the nonnegative common sub-
space, i.e., the term ABn

Tr r  in (6), we obtained their individual 
features. Finally, two components extracted by using the t-dis-
tributed stochastic neighbor embedding (tSNE) method [46] 
from their individual subspace were used to cluster the faces by 
using the K -means method. As K-means is sensitive to initial 
centers of clusters, we replicated K-means 20 times in each 
run. The proposed method was compared with the PCA using 
50 principal components, the graph regularized NMF [45], the 
tSNE, and the improved MinMax Cut method [47]. 

The mean values and the standard variations of accuracy 
over 20 Monte Carlo runs were detailed in Figure 7 (the 
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[FIG7] A comparison of clustering performance on the PIE
database. In the NCFE-based method, the nonnegative common 
components were removed first and then the individual 
components were used for clustering analysis. The NCFE method 
achieved considerable improvement of performance.

[FIG8] A visualization of clustering results using the two tSNE
components of individual information after removing two 
common nonnegative components from all data. The faces 
images were from the CMU PIE database (pose c27) and the 
number of clusters was 68.

[TABLE 4] THE PERFORMANCE OF THE NTD ALGORITHMS
IN COIL-100 IMAGES DECOMPOSITIONS.

ALGORITHM HONMF NTDSNMF LRANTD_MU LRANTD_HALS

FIT (%) 63.1 75.3 75.5 75.6
TIME (s) 50,351 232 112 103
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performance index accuracy was defined as in [45]), showing 
that after removing the common features in all faces, the accu-
racy was significantly improved. Figure 8 visualizes the clusters 
by using the two tSNE components of the individual subspace 
of all 68 categories. In fact, all clusters were quite well sepa-
rated. More details about this method can be found in [29]. 

CONCLUSIONS
In this article, we reviewed state-of-the-art nonnegative matrix and 
tensor factorization algorithms, which not only provide faster con-
vergence speed but also can be scaled up for very large-scale prob-
lems, particularly by incorporating distributed computing 
techniques [48]. We discussed how robust, powerful, and efficient 
LRA techniques (e.g., PCA/truncated 
SVD, multilinear SVD, RPCA, matrix/
tensor completion methods) can be 
applied to substantially reduce noise 
and computational complexity in 
nonnegative matrix and tensor 
decompositions. Moreover, we intro-
duced several new and promising 
methods to compute large-scale non-
negative PDs, including the methods 
that reshape a high-order data tensor 
to a matrix or a third-order tensor, 
and in the next step, we estimate non-
negative factor matrices sequentially. We also proposed fast and 
efficient algorithms for NTDs, which outperform most existing 
algorithms. Moreover, we discussed how to perform NMF for linked 
multiblock data and how to extract the nonnegative common and 
independent components. By representative simulations, we com-
pared performance of state-of-the-art algorithms and illustrated 
their applications on both synthetic and real-world data. 

Supplementary materials containing the pseudocode of 
selected NPD/NTD algorithms and the MATLAB code are avail-
able at http://bsp.brain.riken.jp/zhougx/tensor.html. 
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S
ource separation models that make use of nonnegativity 
in their parameters have been gaining increasing popu-
larity in the last few years, spawning a significant number 
of publications on the topic. Although these techniques 
are conceptually similar to other matrix decompositions, 

they are surprisingly more effective in extracting percep-
tually meaningful sources from complex mix-
tures. In this article, we will examine the 
various methodologies and exten-
sions that make up this family of 
approaches and present them 
under a unified framework. 
We will begin with a short 
description of the basic con-
cepts and in the subsequent 
sections we will delve in 
more details and explore 
some of the latest extensions. 

USING NONNEGATIVE 
FACTORIZATION 
MODELS FOR SEPARATION
The basic model we will use to get started is a bilinear factor-
ization of a nonnegative input V  into two nonnegative matrices W
and ,H  i.e., ,V WH.  where both of the two factor matrices can be 
of lower rank than .V  This is known as the nonnegative matrix fac-
torization (NMF) [1] model, and it is conceptually similar to other 
well-known matrix factorizations such as principal component ana-
lysis, independent component analysis, sparse linear models, or 
even vector quantization, which can all be expressed using the same 

equation [2]. What makes this model particularly interesting is the 
constraint that the matrices ,V ,W  and H  are all nonnegative. This 
constraint ensures that the vectors making up the two factor matri-
ces W  and H  can be interpreted as constructive building blocks of 
the input. Such an interpretation often does not apply to decompo-

sitions that employ negative-valued entries; in such 
decompositions, the elements of W  and H

can cancel each other out, obscuring the 
latent components’ perceptual 

meaningfulness [1]. When NMF 
is applied to data that was gen-

erated by mixing a number of 
nonnegative sources, the 
components NMF discovers 
often correspond remark-
ably well to those sources, 

and the decomposition is able 
to separate out the contribu-

tions of each source to the data. 
Since NMF can operate even without 

any prior information about the nature of 
the sources in the data, it is particularly well 

suited to unsupervised or blind source separation problems. 
Some examples of interpretable components discovered by NMF are 
presented in Figure 1. 

Sometimes it is more natural to represent complex sources 
using a linear combination of multiple latent components that 
collectively make up source dictionaries. In this case, we need one 
more level of hierarchy to group these components in terms of 
sources. Although in some cases this grouping could be obvious 
or analytically tractable, it is in principle not easy to compute. 
One can overcome this problem by using nonnegative factoriza-
tion models in a supervised manner and explicitly providing cues 
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to the nature of the sources. This involves learning a dictionary for 
each target source by using the above model on clean training 
data that presents that source in isolation, and then identifying 
where in a mixture the dictionary elements associated with each 
source lie. If our data is not nonnegative already, to employ a non-
negative factorization we need to transform our inputs to an addi-
tive (or approximately additive) nonnegative representation. For 
many kinds of time series, such a domain can be a time-frequency 
localized energy measure computed 
via a harmonic decomposition such 
as the Gabor transform, or a wavelet 
decomposition. Since most natural 
signals tend to be sparse in the mag-
nitude or power, by using these 
transforms we can often guarantee 
with high probability that the trans-
form of the sum of two sources will 
be equal or approximately equal to 
the sum of the transforms of the two 
sources separately, which can satisfy the additivity constraint. As 
we show later, depending on the exact NMF model and the 
representation used, the additivity assumption can be one that is 
either weak or strong.

To demonstrate the separation process with a tangible exam-
ple, let us look at a hydrophone mixture containing a whale 
song (target source) and sea clutter (background sources). We 

represent this mixture using a magnitude short-time Fourier 
transform (STFT), which is shown in Figure 2(c). To learn a target 
source dictionary we use a clean recording of whale songs 
[Figure 2(a)]. This is done by analyzing the matrix containing 
the STFT representation using any of the models that we detail 
in the remainder of this article. A learned dictionary is shown in 
Figure 2(b), and as one can see its elements represent salient 
spectral features that comprise the whale song recording. We 

can repeat this process for the sea 
clutter source to get components 
that describe it too. In practice, a 
few seconds of training data is usu-
ally enough to learn an adequate 
model of a source, although this 
can vary depending on the domain 
and source characteristics we are 
dealing with. The number of com-
ponents per dictionary determines 
how accurately we want to model 

the sources, with more components giving us more expressive 
power but at the cost of making a dictionary so rich that it 
could describe other sources as well. 

Given the approximate additivity assumption and a represen-
tative set training data, we can now hypothesize that the mixture 
recording will be explained by a linear combination of the ele-
ments in the source dictionaries, i.e., that ,X W W H1 2. 6 @  will 

[FIG1] Extracted NMF components from various domains. (a) The analysis of handwritten digital data results in parts of penstrokes, 
(b) the analysis of chemometric data results in the spectral profiles of the three constituent components (oxylene, napthalene, 
dibenzothiophene), and (c) the analysis of music spectrograms results in spectra of musical notes.
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ALTHOUGH THESE TECHNIQUES ARE 
CONCEPTUALLY SIMILAR TO OTHER 
MATRIX DECOMPOSITIONS, THEY 

ARE SURPRISINGLY MORE EFFECTIVE 
IN EXTRACTING PERCEPTUALLY 
MEANINGFUL SOURCES FROM 

COMPLEX MIXTURES.
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approximately hold, where X  contains the magnitude STFT of 
the mixture and W1  and W2  are the learned left factors from the 
training data of the two sounds. We thus only need to compute 
the matrix H. Given the ability to compute the full NMF model, 
the estimation of the H  matrix can be easily obtained by fixing 

,W W1 26 @ and only updating the estimate for .H  Once this is 
computed we can reconstruct the mixture using only the diction-
ary of one source at a time, which will produce in a time-fre-
quency representation of the two sources separately, which can 
then be inverted back to the time domain. The only assumption 
that needs to hold at this point is that the two source dictionaries 
are sufficiently different from each other so that they do not 
model the same elements in the mixture. Although there is no 
easy way of quantifying the required degree of dissimilarity in 
real-world examples, this is a process that works even in cases 
where the sources are very similar (e.g., two speakers of the same 
gender), and by incorporating the ideas in the remainder of this 
article we can even separate sources that share identical diction-
aries by making use of their temporal statistics. In this particular 
case, the dictionaries that characterize the two sources have min-
imal similarities and produce a very clean separation. The result 
of extracting the whale song from the hydrophone mixture is 
shown in Figure 2. The details of this process and its generaliza-
tion in the case where we might not have dictionaries for all the 
sources is described in [3]. 

This basic approach of supervised separation has spawned 
much subsequent research using varying approaches and method-
ologies, often seemingly incompatible with each other. In the fol-
lowing sections we will take a closer look at the details of various 
formulations of nonnegative factorization models, and will show a 
unified progression of techniques that spans from the simple static 
models (such as the ones shown above) to more complex dynamic 
approaches that incorporate more temporal information and can 
produce higher-quality results. We will predominantly focus on 
the statistical interpretation (and variation) within NMF algo-
rithms and then we will show how these can be extended to two 
kinds of useful temporal models: continuous state and discrete 
state models, which in turn can take advantage of temporal infor-
mation to improve the performance of source separation tasks. 

STATIC MODELS

A PROBABILISTIC VIEW OF NMF
Traditionally NMF is applied by solving the optimization prob-
lem defined by 

( | ) , ,min D 0 0s.tV WH W H
,W H

$ $ (1)

where ,V ,W  and H  are nonnegative matrices of size ,F T#
,F K#  and ,K T#  respectively. The notation 0M $  denotes 

[FIG2] Extracting a target source from a hydrophone ocean mixture using a nonnegative dictionary. The training data in (a) are 
isolated whale songs used to learn the dictionary shown in (b). Not shown are the equivalent plots for sea clutter sounds. These 
dictionaries are then used to extract their respective sources from a mixture that includes them, shown in (c). The extracted whale 
song is shown in (d).
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element-wise nonnegativity of M  (and not semidefinite positiv-
ity) and ( |D )V WH  is a separable measure of fit such that 

( | ) ( | ) .D DV WH v Wh
t

T

t t
1

=
=

/ (2)

( | )D x y  is a divergence between vectors x  and ,y  i.e., a non-
negative function of y RF! +  given ,x RF! +  with a single minimum 
(zero) for .x y=  For convenience we will use the same notation 

( | )D $$  to denote the divergence between vectors or matrices, with 
the convention that in the matrix case the divergences between col-
umns simply add up as in (2). Common divergences used in NMF 
include the squared Euclidean distance (see [46]), variants of the 
Kullback–Leibler (KL) divergence [1], 
and the Itakura–Saito (IS) divergence 
[4]. More general families of diver-
gences considered for NMF include 
alpha-beta [5] and Bregman diver-
gences [6]. A comprehensive review of 
divergences and algorithms used for 
NMF can be found in [7]. 

In many cases divergences are 
likelihoods in disguise (and are as 
such sometimes referred to as pseu-
dolikelihoods) in the sense that they underlie a probabilistic gener-
ative model of the data. The correspondence is such that there 
exists a probability density function (pdf) ( | , )p V W H  that satisfies 

( | ) ( | ) ,log p a D bV WH V WH- = + (3)

where a  and b  are constants with respect to .WH  Some examples 
of correspondences are given in Table 1. Note that this correspond-
ence does not automatically imply a coherent generative model for 
nonnegative real-valued data; e.g., although the generalized KL 
divergence is a valid measure of fit on the whole positive orthant, 
the corresponding Poisson likelihood is only a true likelihood on 
the nonnegative integers, and in the large-variance setting the 
additive Gaussian model could generate negative data. However, 
these theoretical issues can usually be resolved; see, e.g., [8]. 

In this article we focus on two probabilistic NMF models that 
have been widely used in source separation: probabilistic latent com-
ponent analysis (PLCA), which is closely related to NMF with the KL 
divergence [9], and the Gaussian composite model (GCM), which is 
closely related to NMF with the IS divergence [4]. A common feature 
of these models, shared by the models in Table 1 as well, is that the 
conditional expectation of V  is WH  (i.e., | ),V WH WHE =6 @  and 
that the data points are conditionally independent given WH  [i.e.,

( | ) ( | )] .pp V WH v Wh
t t t= %  These simple factorization models 

are “static” in the sense that data points (columns of V ) could be 
exchanged without any effect on the estimates other than a permu-
tation of .H  Dynamic, nonexchangeable models will be introduced 
later in the article using temporal priors on .H

PROBABILISTIC LATENT COMPONENT ANALYSIS
PLCA is an extension of probabilistic latent semantic indexing 
(PLSI) for signal processing applications [9]. PLSI is a method 

for text analysis based on word counts from documents [10]. In 
PLCA, the input matrix V  is a magnitude spectrogram 

| | ,v xft ft=  where xft  is the complex-valued STFT of some time-
domain data. PLCA interprets the entries of each column vt  of 
V  as a sort of histogram of independent identically distributed 
(i.i.d.) frequency “quanta” { , , }f F1 f!  in each time frame .t
The data distribution in PLCA is therefore 

~ ( | , ),Multv v v vt t t t1 t (4)

where || | | vv ff1 =/  is the 1,  norm, ,v Wht t=t  and ( , )NMult p
denotes the multinomial distribution. In PLCA it is imposed that 

,1w hk t1 1= =  which in turn implies that .1vt 1 =t  A draw 
from ( , )NMult p  returns an integer-
valued vector of dimension F  whose 
entries sum to .N  The fth entry of 
this vector corresponds to the num-
ber of times event f  was sampled in 
N  independent draws from the dis-
crete distribution defined by .p
Although usual inputs in source sep-
aration problems are not integer val-
ued, the negative log-likelihood of the 
data and parameters in PLCA provides 

a valid divergence for nonnegative real-valued data. Specifically, 
under (4) and introducing the normalized data / ,v v vt t t 1=r  the 
negative log-likelihood is given by 

( | ) ( | ) ,log p DV V v v cstvt t t
t

1 KL- = +t r t/ (5)

where “cst” denotes terms constant with respect to Vt  and 
( | )D x yKL = ( / )logx x y

f f f f/  is the KL divergence between dis-
crete distributions. As such, PLCA essentially minimizes a 
weighted KL divergence between the normalized input and its fac-
torized approximation, where every data point is given a weight 
equal to its sum. 

IS-NMF AND THE GAUSSIAN COMPOSITE MODEL  
Underlying IS-NMF is a multiplicative noise model of the form 

. ,v vfn fn fne= t  where fne  has a Gamma distribution with 

[TABLE 1] COMMON DIVERGENCES AND THEIR CORRESPOND-
ING PROBABILISTIC GENERATIVE MODELS. WE DEFINE 

,v Wht t=t WHOSE COEFFICIENTS ARE DENOTED .vftt ALL 
THREE MODELS VERIFY .[ | ]E v v vt t t=t t

DIVERGENCE
( | )D v vt tt

LATENT GENERATIVE MODEL
( | )p v vt tt

SQUARED EUCLIDEAN DISTANCE

( )v v
2
1

f ft ft2
2

v
- t/

ADDITIVE GAUSSIAN
( | , )v vN

f ft ft
2vt%

GENERALIZED KL DIVERGENCE

( )logv v
v v v

f ft
ft

ft
ft ft- +t
t/

POISSON
( | )v vP

f ft ftt%

IS DIVERGENCE

logv
v

v
v 1

f ft

ft

ft

ft- -t tc m/
MULTIPLICATIVE GAMMA

( | , / )G v v
f ft fta a t%

WHEN NMF IS APPLIED TO 
DATA THAT WAS GENERATED 

BY MIXING A NUMBER OF 
NONNEGATIVE SOURCES, THE 

DISCOVERED COMPONENTS OFTEN 
CORRESPOND REMARKABLY 
WELL TO THOSE SOURCES.
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expectation one. The resulting data distribution is given in 
Table 1 and the negative log-likelihood is such that 

( | ) ( | ) ,log p DV V V cstV ISa- = +t t (6)

where ( | )DIS $ $  is the IS divergence defined in Table 1. 
When ,1a =  i.e., when the multiplicative noise has an expo-

nential distribution, the multiplicative noise model can be related to 
a generative model of real- or complex-valued data coined Gaussian 
composite model (GCM) [4]. The model is in particular a valid prob-
abilistic model of STFTs. Let xft  be the complex-valued STFT of 
some time-domain signal. The GCM is defined by cx fktkft =/  and 

~ ( , ),c w h0Nfkt c fk kt  where ( , )0Nc m  refers to the circular complex 
Gaussian distribution with zero mean. 
A random variable has distribution 

( , )0Nc m  if its real and imaginary 
parts are independent centered Gauss-
ian variables with variance / .2m  In 
other words, the GCM models the 
STFT as a sum of uncorrelated cen-
tered Gaussian components struc-
tured through their variance. The variance of the kth  component is 
characterized by the spectral pattern ,wk  amplitude-modulated in 
time by the coefficients { } .hkt t  The centered assumption reflects an 
equivalent assumption in the time domain, which holds for many 
signals (in particular audio signals). The latent components cfkt  can 
trivially be marginalized from the generative model, yielding 

~ , .x w h0N
kft c fk kt` j/  It follows that the power spectrogram 

| |v xft ft
2=  of xft  is exponentially distributed with mean 

,v w h
kft fk kt=t /  and can thus be written as a special case of the 

multiplicative Gamma model given in Table 1 with .1a =  Under 
this model, minimum mean squares estimate (MMSE) of the com-
ponents can be obtained by Wiener filtering and given by 

[( ) / ] .c w h v xfkt fk kt ft ft=t t

WHICH MODEL TO USE?
An important feature of the GCM is that the phase of the original
complex-valued data is preserved in the generative model 

(though it is modeled in an uninformative way, owing to the cir-
cular assumption) rather than discarded, as in PLCA. Addition-
ally, the additivity assumption holds strongly in the original 
STFT domain. The IS divergence turns out to be a scale-invariant 
measure, i.e., ( | ) ( | ),d x y d x yIS ISm m =  where ,x ,y  and m  are 
positive scalars. This makes it well suited to audio spectrograms 
and their widely varying ranges of magnitudes; a more detailed 
discussion is in [4]. In contrast, PLCA will rely more heavily on 
data vectors with large norms, as can been seen from the diver-
gence expression in (5). Whether this is a desirable property or 
not depends on the data and specific task. A downside of the IS 
divergence with respect to the weighted KL divergence of PLCA 

is its lack of convexity with respect 
to its second argument, which leads 
more often to local solutions in 
practice, as explained in the next 
section. PLCA and IS-NMF were 
benchmarked in [11] for speech sep-
aration and audio interpolation 
tasks. However, a consensus did not 

clearly emerge from the experiments as to which method is best, 
and the conclusions were often data or task dependent. 

ESTIMATION
We now discuss estimation in PLCA and IS-NMF, i.e., the opti-
mization of the objective functions (5) and (6) with respect to W
and .H  Like virtually all NMF algorithms, PLCA and IS-NMF rely 
on a block-coordinate descent structure that alternates between 
updating W  holding H  fixed and updating H  holding W  fixed. It 
is easy to see that the updates of W  and H  are essentially the 
same by transposition ( ) .V WH V H WT T T+. .  Each update 
can be carried out by majorization-minimization (MM) [12]. MM 
consists in upper bounding the objective function with an auxil-
iary function that is tight at the current estimate and that can 
be minimized in closed form. The principle of MM is illustrated 
in Figure 3. Details of the algorithms can be found in [9] for 
PLCA and in [13] for IS-NMF. The resulting updates are given in 
Table 2. Their multiplicative structure automatically ensures 
the nonnegativity of the updates given positive initialization. 

It should be pointed out that in every NMF problem the 
objective function ( | )D V WH  is not jointly convex with respect 
to W  and .H  When the divergence ( | )D x y  is convex with 
respect to its second argument ,y  like in PLCA, the problem is at 
least convex with respect to H  given W  and vice versa. However 
it is never convex with respect to both. This means that the block-
coordinate approach may converge to local solutions that will 
depend on initialization. Some recent work (e.g., [14] and [15]) 
has explored alternate estimation algorithms that avoid formulat-
ing NMF as a nonconvex optimization and thereby sidestep the 
local-optima problem. The guarantees associated with these algo-
rithms are dependent on separability and/or sparsity assumptions 
that may be more appropriate for extremely high-dimensional 
data like document word counts than for moderately high-dimen-
sional data like audio spectra. However, as shown in [16], separ-
ability is not necessary for uniqueness in NMF, and such a 

[FIG3] An illustration of the MM principle on a unidimensional 
problem. Given a current estimate of ,W  the blue curve acts as 
the objective function ( ) ( )H V WHC D |=  to be minimized with 
respect to .H The MM approach relies on the iterative 
minimization of tight upper bounds (dashed red curves). The
algorithm is initialized at ,H( )0  at which the first upper bound is 
minimized during the first iteration to yield ,H( )1  and so on until 
convergence.

h(*) h(3) h(2) h(1) h(0)

A MORE FLEXIBLE APPROACH 
FOR MODELING TEMPORAL STATISTICS
IS TO IMPOSE CONSTRAINTS ON THE 

MODEL ACTIVATIONS.
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constraint can be too restrictive when using convex formulations. 
Regardless, for our purposes, the block-coordinate approach is 
practical and effective on a wide range of problems, despite its 
lack of theoretical guarantees. 

So far we have presented a basic version of NMF in which the 
data is approximated as V WH.  without any structural priors 
(aside from nonnegativity) on either W  or .H  However, in many 
cases one is expecting the latent factors to have a certain structure, 
such as smoothness or sparsity. As such, a large part of the NMF 
literature has concentrated on penalized variants of NMF, in which 
penalty functions of either W  or H  are added to the divergence 

( | ) .D V WH  In our probabilistic setting, this can be viewed as set-
ting prior distributions for the latent factors. In particular, the next 
section will review temporal priors ( )p H  that have been used in 
the literature. In most cases, penalized NMF can be handled with 
MM, by simply adding the penalty term, or a local majorization of 
the latter, to the auxiliary function obtained in the static case. 

DYNAMIC MODELS
Temporal continuity is one of the most important features of 
time-series data. Our aim here is to present some of the basic as 
well as advanced ideas to make use of this information by mode-
ling time dependencies in NMF. These dependencies between 
consecutive columns of V  can be imposed either on the basis 
matrix W  or on the activations .H  The former case is known as 
the convolutive NMF [17]–[19]. In these approaches, the repeat-
ing patterns within data are represented with multidimensional 
bases which are not vectors anymore, but functions that can span 
an arbitrary number of dimensions (e.g., both frequency and time 
in examples like the previous one). These models can be seen as a 
deterministic way to model temporal dependencies. Although 
they are useful in extracting temporal components, they most 
often result in very structured representations that do not gener-
alize well enough to be successfully employed for source separ-
ation. A more flexible approach for modeling temporal statistics is 
to impose constraints on the model activations. Such methods 
are very much in line with traditional dynamic models that have 
been studied extensively in signal processing, and in this section 
we will turn our attention to these. 

Most models considered in the literature are special cases of 
the general dynamic model given by 

~ | , ,ph h ht t t 1 i-^ h (7)
~ | .pv v Wht t t^ h (8)

We assume that (8) defines a probabilistic NMF observation model 
such that | .V WH WHE =6 @  As such, it may refer to any of the 
static models discussed in the previous section. Equation (7) intro-
duces temporal dynamics by assuming a Markov structure for the 
activation coefficients. i  denotes the prior parameters. The aim of 
this section is to describe the general concepts of dynamic NMF 
and provide references for specific instantiations related to given 
probabilistic NMF models (PLCA, IS-NMF, generalized KL-NMF, 
etc.). Two broad classes of models are discussed next, continuous 
and discrete models. 

CONTINUOUS MODELS

SMOOTH NMF
A straightforward approach to use temporal continuity is to 
apply some constraints that reduce fluctuations in each individ-
ual row of .H  This corresponds to assuming that different rows 
of H  are independent. 

In these approaches, the general equation (7) can be written as 

~ | , .p h hh ( )t
k

K

kt k t
1

1 i
=

-^ h% (9)

A natural choice for | ,p h h ( )kt k t 1 i-^ h is a pdf that either takes its 
mode at h ( )k t 1-  or is such that .| ,h h hE ( ) ( )kt k t k t1 1i =- -6 @  Vari-
ous papers have dealt with smooth NMF and they typically differ 
by the choice of observation models and priors (or in nonproba-
bilistic settings, penalty term) that is used [4], [20]–[27]. Gauss-
ian priors (or equivalently, squared differences) of the form 

( | ) ( | , )p h h h hN( ) ( )kt k t kt k t1 1
2v=- -  are used in [20], [21], and 

[26]. Nonnegativity-preserving Gamma or inverse-Gamma Markov 
chains are considered in [4], [23], [25], and [27]–[30] and Markov 
random fields in [31]. 

[TABLE 2] PLCA AND IS-NMF FOR THE GCM SUMMARIZED. IN THE UPDATE RULES, wfku  AND hkt
u  DENOTE CURRENT PARAMETER 

VALUES. vftu  DENOTES THE CURRENT DATA APPROXIMATION, I.E., w hfkk kt
u/  IN THE UPDATE OF H  AND w hfkk ktu/  IN THE 

UPDATE OF .W

PLCA IS-NMF FOR THE GCM

NONNEGATIVE DATA | |V X= | |V X 2=

OBJECTIVE FUNCTION ( | ) ( | )D DV WH v v vtt t t1 KL= r t/ ( | ) ( | )D DV WH V WHIS=

CONSTRAINTS 1w hk t1 1= = —

LATENT GENERATIVE MODEL ( | | , )p ) Mult (v v v v vt t t t t1=t t ( | ) ( | , )p x v0x v Nt t c ft ftf
=t t%

UPDATES
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NONNEGATIVE STATE-SPACE MODELS
Smooth NMF does not capture the full extent of frame-to-frame
dependencies in its input. In practice we will observe various tem-
poral correlations between adjacent 
time frames that will be more 
nuanced than the continuity that 
smooth NMF implies. In other words, 
there is correlation both within
(smoothness) and between (transi-
tions) the time frames of the coeffi-
cients of .H  For real-valued time series, this type of structure can 
be handled with the classical linear dynamical system, using 
dynamics of the form ,h Aht t t1 e= +-  where te  is a centered 
Gaussian innovation. This model is not natural in the NMF setting 
because it may not maintain nonnegativity in the activations. 
However it is possible to design alternative dynamic models that 
maintain nonnegativity while preserving 

| .h Ah AhE t t t1 1=- -6 @ (10)

The statistical models considered in the section “Static Models”
are good candidates by exchanging vt  for ht  and vtt  for .ht 1-

Following that idea, a nonnegative dynamical system (NDS) 
with multiplicative Gamma innovations was proposed in [32], in 
conjunction with multiplicative Gamma noise for the observa-
tion (IS-NMF model). Note that in the case of the Gaussian lin-
ear dynamical system, integration of the activation coefficients 
from the joint likelihood ( , | )p V H W  is feasible using the Kal-
man filter. Such computations are unfortunately intractable 
with NDS, and a MAP approach based on an MM algorithm is 
pursued in [32]. 

Dynamic filtering of the activation coefficients in the PLCA 
model has also been considered [33], [34], where the proposed 
algorithms use Kalman-like prediction strategies. 

The technique in [34] considers a more general multistep pre-
dictor such that ,h A h

jt j t j. -/  and describes an approach for 
both the smoothing (which relies on both past and future data) 
and causal filtering (which relies only on the past data) problems. 

DISCRETE MODELS
Time-series data often has hidden structure in which each time 
frame corresponds to a discrete hidden state .qt  Moreover, there is 
typically a relationship between the hidden states at different time 
frames, in the form of temporal dynamics. For example, each time 
frame of a speech signal corresponds to a subunit of speech such 
as a phoneme, which can be modeled as a distinct state. The subu-
nits evolve over time as governed by temporal dynamics. Hidden 
Markov models (HMMs) [35] have been used extensively to model 
such data. They model temporal dynamics with a transition matrix 
defined by the distribution ( | ) .p q qt t 1-  There has been a recent 
thread of literature [36]–[40] that combines these ideas with NMF 
to model nonnegative data with such structure. 

The notion of a state is incorporated in the NMF framework by 
associating distinct dictionary elements with each state. This is 
done by allowing each state to determine a different support of 

the activations, which we express with the distribution ( | ) .p qht t

This is to say that given a state, the model allows only certain dic-
tionary elements to be active. Some techniques [36], [39] define 

the support of each state to be a sin-
gle dictionary element, while other 
techniques [37], [38], [40], called 
nonnegative HMMs (N-HMMs), 
allow the support of each state to be 
a number of dictionary elements. 
Since only a subset of the dictionary 

elements are active at each time frame (as determined by the 
state at that time frame), we can interpret these models as impos-
ing block sparsity on the dictionary elements [41]. 

As in (7), there is a dependency between ht  and .ht 1-  How-
ever, unlike the continuous models, this dependency is only 
through the hidden states, which are in turn related through 
the temporal dynamics. Therefore ht  is conditionally independ-
ent of ht 1-  given qt  or .qt 1-  In the case of discrete models, we 
can therefore replace (7) with 

~ ,|q p q qt t t 1-^ h (11)
~ .|p qh ht t t^ h (12)

Since these models incorporate an HMM structure into an 
NMF framework, one can make use of the vast theory of Mar-
kov chains to extend these models in various ways. For exam-
ple, one can incorporate high-level knowledge of a particular 
class of signals into the model, use higher-order Markov 
chains, or use various natural language processing techniques. 
Language models were recently incorporated in this frame-
work [42] as typically done in the speech recognition litera-
ture [35]. Similarly, one can incorporate other types of 
temporal structure like music theory rules when dealing with 
music signals. 

The above techniques discuss how to model a single source 
using an HMM structure. However, to perform source separ-
ation, we need to model mixtures. This is typically done by com-
bining the individual source models into a factorial HMM [28], 
[36]–[38], [40], which allows each source to be governed by a 
distinct pattern of temporal dynamics. One issue with this strat-
egy is that the computational complexity of inference is expo-
nential in the number of sources. This can be circumvented 
using approximate inference techniques such as variational 
inference [43], which makes the complexity linear in the num-
ber of sources. 

THE USE OF DYNAMIC MODELS 
IN SOURCE SEPARATION
To demonstrate the utility of dynamic models in context, we will 
once again use a real-world source separation example. This time 
it will be an acoustic mixture of speech mixed with background 
noise from a factory (using the TIMIT [47] and NOISEX-92 [48]
databases). The mixture is shown using a magnitude STFT 
representation in Figure 4. This particular case is interesting 
because of the statistics of speech. We note that human speech 

TEMPORAL CONTINUITY IS ONE 
OF THE MOST IMPORTANT FEATURES

 OF TIME-SERIES DATA.
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tends to have a smooth acoustic trajectory, which means that 
there is a strong temporal correlation between adjacent time 
frames. On the other hand, we also know that speech has a strong 
discrete hidden structure that is associated with the sequence of 
spoken phonemes. These properties make this example a good 
candidate for demonstrating the differences between the methods 
discussed so far and their effects on source separation. 

We performed source separation using the three main 
approaches that we covered in this 
article. These include a static PLCA 
model [44], a dynamic PLCA model 
[34], and an N-HMM [37]. In all 
three cases, we trained a model for 
speech and a model for background 
noise from training data. The dic-
tionary size for the noise was fixed 
to 30 elements, whereas the speech 
model had 60 dictionary elements 
for PLCA and dynamic PLCA, and 
40 states with ten dictionary ele-
ments each for the N-HMM. For the dynamic models, we 
learned the temporal statistics as well. To separate a mixture 
of test data of the sources, we fixed the learned W  matrices for 
both the speech and noise models and estimated their respect-
ive activations H  using the context of each model. In Figure 4, 
we show the reconstruction of speech using each model. We 
also show a set of objective metrics that evaluate the quality of 
separation in each case. These include the source-to-distortion 
ratio (SDR), the source-to-interference ratio (SIR), and the 
source-to-artifacts ratio (SAR) as defined in [45]. These results 
are averaged over 20 different speakers to reduce biasing and 
initialization effects. 

For the static PLCA model, we see that there is a detectable 
amount of visible suppression of the background noise, which 
amounts to a modest SIR of about 5 dB. The dynamic PLCA 
model on the other hand, by taking advantage of the temporal 
statistics of speech, does a much better job resulting in more 
than double the SIR. Note however that in the process of adher-
ing to the expected statistics, it introduces artifacts, which 
result in a lower SAR as compared to the static model. The 

N-HMM results in an even higher 
SIR and a better SAR than the 
dynamic PLCA model. This is 
because the specific signal we are 
modeling has a temporal structure 
that is well described by a discrete 
dynamic model as we transition 
from phoneme to phoneme. By 
constraining our model to only use 
a small dictionary at each discrete 
state, we obtain a cleaner estimate 
of the source. An example of that 

can be seen when comparing the separation results in Figure 4, 
where unwanted artifacts between the harmonics of speech in 
the dynamic PLCA example are not present in the N-HMM 
example since the dictionary elements within a state cannot 
produce such complex spectra. 

WHICH MODEL TO USE?
Now, in addition to pondering on which divergence function is 
the most appropriate to employ, we also have a decision to make 
on which model is best fo,r a source separation approach. As 
always, the answer depends on the nature of the sources in the 
mixture. In general, the static model has found success 

[FIG4] An example of dynamic models for source separation. (a) The four spectrograms show the mixture and the extracted speech for 
three different approaches. (b) A quantitative evaluation of the separation performance of each approach.
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in a variety of areas but does not take advantage of temporal 
correlations. In domains where we do not expect a high degree 
of correlations across time (e.g., short, burstlike sources) this 
model works well, but in cases where we expect a strong sense 
of continuity (e.g., a smooth source like a whale song), then a 
continuous dynamic model would work better. Furthermore, if 
we know that a source exhibits a behavior of switching through 
different states, each with its own unique character (e.g., 
speech), then a model like the N-HMM is more appropriate 
since it will eliminate the concurrent use of elements that 
belong at different states and produce a more plausible recon-
struction. Of course, by using the generalized formulation we 
present in this article, there is nothing that limits us from 
employing different models concurrently. It is entirely plausible 
to design a source separation system where one source is mod-
eled by a static model and other by a dynamic one, or even have 
both being described by different kinds of dynamic models. 
Doing so usually requires a relatively straightforward applica-
tion of the estimation process that we outlined earlier. 

CLOSING THOUGHTS
In this article we presented a unifying look at source separation 
approaches that employ nonnegative factorizations, and showed 
how they can be easily extended to temporal models that are 
either continuous or discrete. Using this methodology one can 
come up with many more alternative formulations, e.g., factorial 
HMMs, switching models, etc. and incorporate even more com-
plex priors to better model sources in mixtures. We hope that by 
presenting this streamlined formulation we can help readers to 
experiment with the many other possibilities in formulating 
dynamic source separation algorithms and to help highlight rela-
tionships between a family of approaches that can initially seem 
divergent despite their common roots. 
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N
onnegative matrix factorization (NMF) is a useful 
tool in a broad range of applications, from signal sep-
aration to computer vision and machine learning. 
NMF is a hard (NP-hard) computational 
problem for which various 

approximate solutions have been devel-
oped over the years. Given the 
widespread interest in NMF and 
its applications, it is perhaps 
surprising that the pertinent 
Cramér–Rao lower bound 
(CRLB) on the accuracy of 
the nonnegative latent fac-
tor estimates has not been 
worked out in the literature. 
In hindsight, one reason may 
be that the required computa-
tions are more subtle than usual: the 
problem involves constraints and ambi-
guities that must be dealt with, and the Fisher 
information matrix is always singular. We provide a concise 
tutorial derivation of the CRLB for both symmetric NMF and 
asymmetric NMF, using the latest CRLB tools, which should be of 
broad interest for analogous derivations in related factor analysis 
problems. We illustrate the behavior of these bounds with respect 
to model parameters and put some of the best NMF algorithms to 
the test against one another and the CRLB. The results help illumi-
nate what can be expected from the current state of art in NMF 

algorithms, and they are reassuring in that the gap to optimality is 
small in relatively sparse and low rank scenarios. 

INTRODUCTION
NMF is the problem of (approximately) factor-

ing an element-wise nonnegative matrix 
,X WHT.  where W  is ,I K# H

is ,J K# ( , ),minK I J1  and 
,0W $ 0H $  element-wise 

[1], [2]. Symmetric NMF is 
the problem of factoring a 
square matrix ,X WWT.

where the I K#  matrix 
0W $  element-wise. Both 

general (asymmetric) and 
symmetric NMF have a long 

history and various applications; 
they were more recently introduced 

to the signal processing community, pri-
marily as means to restore identifiability in bilin-

ear matrix factorization/blind source separation (BSS). 
The CRLB [3, Ch. 3] is the most widely used estimation 

benchmark in signal processing. In many cases it is relatively 
easy to compute, and it is asymptotically achievable by maxi-
mum likelihood (ML) estimators in high signal-to-noise ratio 
(SNR) scenarios [3, pp. 164]. In other cases, there may be tech-
nical difficulties in deriving (or complexity issues in comput-
ing) the pertinent CRLB; but due to the central role of this 
bound in signal processing research, work on developing CRLB 
tools continues [4]–[7], thereby enlarging the set of problems 
for which the CRLB can be used in practice. 

[Kejun Huang and Nicholas D. Sidiropoulos]

[A tutorial derivation of pertinent Cramér–Rao 

bounds and performance benchmarking]

Putting Nonnegative 
Matrix Factorization 

to the Test
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INGRAM PUBLISHING

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [77] MAY 2014

Interestingly, despite the popularity of NMF, the pertinent 
CRLB on the latent factors has not been studied, to the best of our 
knowledge. This is surprising, especially because ML NMF is NP-
hard, and it is natural to wonder how far from the best achievable 
estimation performance existing (suboptimal) NMF algorithms 
operate, under different scenarios. The missing link can perhaps 
be explained by the fact that most NMF researchers come from dif-
ferent communities, and, even for someone versed in statistical 
signal processing, the CRLB computations for NMF are subtle, 
requiring modern tools, as we will see. The aim of this article is 
threefold: first, to fill this gap; second, to put some of the leading 
NMF algorithms to the test using the CRLB as a benchmark; and 
third, to do so in an easily accessible way that can serve as a start-
ing point for analogous derivations in related constrained matrix 
and tensor factorization problems. 

FUNDAMENTALS

IDENTIFIABILITY
Rank-constrained matrix factorization is highly unidentifiable with-
out additional constraints. For any given factorization X WHT=

and any invertible ,Q X WHT= t t  with WQW T=t  and .H HQ 1= -t

For symmetric factorization ,X WWT=  we need only further 
require Q  to be unitary. To force the factorization to be unique, one 
must put additional constraints on the latent factors (the columns 
of W  and ),H  e.g., orthogonality in the case of singular value 
decomposition (SVD). With W := , , ,w wK1 g6 @ H := , , ,h hK1 g6 @
WHT = ;w h w hT

K K
T

1 1 g+ +  hence we may permute the rank-one 
outer products ,w hk k

T
k
K

1=" ,  and/or scale wk  by s 02  and coun-
terscale hk  by /s1  without changing .WHT  These ambiguities are 
inherent to NMF, requiring additional conventions (as opposed to 
conditions) to resolve, similar to ordering the singular values in the 
SVD. These inherent ambiguities are often inconsequential in 
applications, and we will say that a model is essentially identifiable 
or essentially unique when it can be identified up to these inher-
ently unresolvable ambiguities. Still, these ambiguities are reflected 
in, and in fact dominate the CRLB, unless they are properly 
accounted for. In this article, for asymmetric NMF, we assume the 
columns of W  are scaled to sum up to one, i.e., 

w w w 1i
i

I

i
i

I

i

I

1
1

2
1 1

iKg= = = =
= = =

/ / / (1)

to overcome the scaling ambiguity. Once we get estimates of 
W  and ,H  denoted Wt  and ,Ht  respectively, using any NMF algo-
rithm, we scale the columns of Wt  to satisfy (1), and counter-
scale the corresponding columns of .Ht  Then least-squares 
matching of the columns of Wt  to those of W  is equivalent to 
the so-called linear assignment problem [8], whose solution can 
be found by the Hungarian algorithm [9], [10]. The MATLAB 
code is available at http://www.mathworks.com/matlabcentral/
fileexchange/11609-hungarian-algorithm. In the symmetric 
case, there is no scaling ambiguity, so we directly use the Hun-
garian algorithm to find the best column permutation. 

Conditions for (essential) uniqueness of NMF (ensuring 
that Q  can only be a positively scaled permutation matrix in the 

asymmetric case, or simply a permutation matrix in the symmet-
ric case) have previously been studied in [11]–[13], and are sum-
marized in [14]. In a nutshell, NMF is not always unique, and 
pertinent conditions ensuring uniqueness are complicated (e.g., a 
sufficient condition for uniqueness requires the conic hull of the 
row vectors of W  to be a superset of a specific second-order cone 
[14]). The following corollary is a useful rule of thumb: if the suffi-
cient condition given in [14, Th. 4] is satisfied for the symmetric 
NMF ,X WWT=  then 

■ the supports (sets of indices of nonzero entries) of any two 
columns of W  are not contained in one another. 
■ each column of W  contains at least K 1-  zeros.
The same holds for both W  and H  in the asymmetric case 

.X WHT=  These two properties together are neither sufficient 
nor necessary for uniqueness; in practice however, as shown 
empirically in [14, Examples 3 and 4], it is very likely that NMF 
will give an essentially unique solution if these two conditions are 
both satisfied. Notice that if we set the zero entries of W (and H  in 
the asymmetric case) randomly, with density (number of nonzero 
entries over the number of entries) less than / ,I K I-^ h  then for 
large I  these conditions will be met with high probability. 

ALGORITHMS
Owing to the NP-hardness of asymmetric NMF [15], numerous 
approximation algorithms have been developed (cf. [16] and ref-
erences therein). On the contrary, there are relatively few algo-
rithms available for symmetric NMF (cf. [17] and references 
therein and [14]). If a symmetric matrix admits an exact sym-
metric NMF (not necessarily low rank), it is called completely 
positive (CP) [18]. It was recently proven that checking whether 
a matrix is CP is also NP-hard [19]. 

He et al. [17] summarized existing algorithms for symmetric 
NMF, which turned out being very similar (all based on so-called 
multiplicative updates). They concluded that those algorithms 
all belong to two basic kinds of algorithms: a -symmetric NMF 
and b -symmetric NMF, where a  and b  are tuning parameters 
that moderate performance (e.g., the algorithm in [20] belongs 
to a -symmetric NMF with / ,1 4a =  and the algorithm in [21] 
belongs to b -symmetric NMF with / ) .1 2b =  A very different 
algorithm based on Procrustes rotation was proposed in [14]. 

The algorithms for asymmetric NMF can be broadly classi-
fied as optimization-based and geometry-based. The cost func-
tion in optimization-based methods usually measures the 
quality of factorization, e.g., in terms of Euclidian distance, K-L 
divergence, etc., and may include regularization terms that cap-
ture presumed properties of the sought latent factors, e.g., spar-
sity, smoothness, etc. None of these formulations is jointly 
convex in W  and H (WHT  is a bilinear form); but in most cases 
they are conditionally convex over one factor given the other. 
Most optimization-based methods therefore adopt an alternat-
ing optimization approach—a few algorithms employ all-at-
once (joint) parameter updates using gradient or Newton steps, 
but these require careful parameter tuning to ensure conver-
gence to a local optimum. In the context of alternating opti-
mization algorithms, for the update of one factor, one can take a 
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gradient direction but with a very conservative step-size such 
that positivity is always satisfied; this can be reduced to a multi-
plicative update [22], [23]. Alternatively, a more aggressive step-
size can be used, but then a projection back to the nonnegative 
orthant is required [24]. A less popular way is to take the sec-
ond-order derivative into account [25]. 

The most commonly used cost function is Euclidean distance. 
One reason for this is that when one factor is fixed, and if we 
ignore the nonnegativity constraint, the problem reduces to lin-
ear least squares, in which case we know the solution in closed 
form. Therefore, a straightforward way is to simply replace the 
negative entries of the least squares result with zeros in each 
update [26]—which is, however, suboptimum, and not guaran-
teed to converge. Taking the nonnegativity constraints back into 
consideration, the conditional update problem is nonnegative 
least squares, which is convex but the solution is not in closed 
form. Existing methods use quadratic programming [27], active 
set [28], [29], and coordinate descent [30]. 

Geometry-based methods stem from the geometric interpreta-
tion of NMF by Donoho [11]. The basic idea is to find a simplicial 
cone, with a certain number of extreme rays, that is contained in 
the nonnegative orthant and contains all the data points. The 
effectiveness of geometry-based methods is application dependent; 
in cases where the so-called separability assumption [11] is rea-
sonable, the extreme rays of the simplicial cone can be found by 
selecting from the data vectors per se [31], [32]. In other cases, 
nonnegativity is not strictly required for one factor, and the aim is 
to find the minimum volume simplicial cone that contains the 
data points [33], [34]. A polytope approximation method [35] 
seems to be more general compared to the others in this genre. 

MODERN CRLB TOOLS
Suppose a set of measurements X  is drawn from a probability 
density function ( ; )p X i  parameterized by ,i  and our goal is 
to estimate i  given the realizations of .X  If the regularity 
condition { ( ; )}lnp 0E XX d i =i  is satisfied, then we can define 
the Fisher information matrix (FIM) as [ ( ; )]lnpF E XX d_ ii i$
[ ( ; )] ,ln p X Td ii .  and the CRLB on the covariance matrix of any 
unbiased estimator of i  on the basis of X  is the inverse of the FIM 

[3, Ch. 3], i.e., the difference between the estimator covariance 
matrix and the inverse of the FIM is positive semidefinite. From 
this, it follows that { } { },trE F2

2 1
X $i i- i

-t  where it  is any unbi-
ased estimator of i  on the basis of .X  More detailed discussion of 
the CRLB, including conditions under which there exists an esti-
mator that can attain the bound, can be found in classic textbooks 
on estimation theory, e.g., [3, Ch. 3]. 

When the FIM is singular, Stoica and Marzetta [6] have shown 
that we can use the Moore–Penrose pseudoinverse instead (in 
hindsight, this can be deduced from the Schur complement gen-
eralized to singular matrices [36, p. 651]). The pseudoinverse is 
still a lower bound, albeit it is generally looser, and more difficult 
to attain. Important references on the CRLB for problems with 
constraints on the unknown parameters, represented by equalities 
and inequalities, include [4], [5], and [7]. Their results show that 
inequality constraints do not affect the CRLB, whereas equality 
constraints do. (Strictly speaking, inequalities do not affect the 
CRLB if they are not equivalent to equalities. For example, the two 
inequality constraints 0$i  and ,0#i  are equivalent to .0i =

See the definition of a regular point in [4] for details.) Suppose the 
equality constraints are ( ) ,0g i =  then we can define U  as an 
orthonormal matrix whose columns span the null space of 

( ),gd ii  the Jacobian matrix of ( ),g i  i.e., ( ) 0g Ud i =i  and 
.IU UT =  Then the constrained CRLB is modified as 

{ } ( ) ,trE U U F U UT T
2
2

X $i i- @
i

t $ .

where the superscript “†” denotes the pseudoinverse. A simple 
derivation of the CRLB under affine equality constraints is 
given in “Cross-Checking the Constrained CRLB.” 

CRAMÉR–RAO BOUNDS FOR NMF
In this section, we derive the CRLB for both symmetric and 
asymmetric NMF, under an additive white Gaussian noise 
(AWGN) model. Note that at low SNRs, Gaussian noise may gen-
erate observations having negative values, albeit the probability 
that this happens is negligible at higher SNRs. Yet the same is 
true for any additive noise model that is not one sided. A multi-
plicative noise model can capture two-sided perturbations with 
nonnegative noise, but if the signal elements are ,1$  then tak-
ing the logarithm one obtains a NMF model with two-sided 
additive noise in the log domain. Hence the possibility of having 
negative data is unavoidable. Furthermore, Gaussian noise is 
implicitly assumed in all NMF applications where least squares 
is adopted for model fitting—including, e.g., the hierarchical 
alternating least squares (HALS) algorithm [30]. This is so 
because the least squares criterion can be interpreted as ML 
under a Gaussian noise model. Beyond this, it is interesting to 
note that for general signal models observed in  independent 
and identically distributed (i.i.d.) additive noise, the CRLB 
under any noise distribution that possesses everywhere continu-
ous first and second derivatives is the same as the correspond-
ing Gaussian CRLB up to a constant multiplicative factor that 
depends on the noise distribution [37]. Hence, our results are 
more general than meets the eye. 

CROSS-CHECKING THE CONSTRAINED CRLB
It is instructive to check the constrained CRLB for the special case 
of affine ( )g i  via the CRLB under transformation [3, Sec. 3.8]. 
Suppose ( ) ,0g bGi i= - =  and suppose U  satisfies that it is an 
orthonormal basis of the nullspace of .G  Then any feasible i  can 
be represented by the unconstrained variable a  as U 0ii a= + &

( ),UT
0i ia = -  where 0i  is one feasible point. Thus, 

( ; ) ( ; ) .ln lnp px xU F U F UT T&d di a= =i a a i

Now a  is an unconstrained parameter to estimate, and the 
CRLB of i  via transformation of a  is 

( ) ( ) ( ) .F U U F U UT T Td da a =@ @
i a i i
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As a warm-up, a derivation of the CRLB for scalar NMF is pre-
sented in “Identifiability, FIM, and CRLB for the Scalar Case.” 

A CRLB FOR SYMMETRIC NMF
Consider the I I#  symmetric matrix X  generated as 

,X WW NT= + (2)

where W  is ,I K# ,0W $  and the elements of N  are drawn 
from an i.i.d. Gaussian distribution with zero-mean and vari-
ance .2v  The IK IK#  Fisher information matrix for W  is 

( ( ) ( ) ),2F W W I I W P I WT
I K K

T
2W 7 7 7
v

= + (3)

where I I  is the identity matrix of size ,I I#  and likewise for IK

and all the boldface I  with a subscript indicating its size in the 
rest of the article, “7” indicates matrix Kronecker product [38, 
Sec. 10.2.1], and P  is a specific permutation matrix; see the 
supporting supplementary material that accompanies this arti-
cle in IEEE Xplore. Here the constraints are ,0W $  which do 
not affect the CRLB. In addition, FW  is rank deficient (see the 
supporting supplementary material), so we need to compute its 
pseudoinverse to get the CRLB. 

In practice, when the size of W  is large, we are usually inter-
ested in the overall reconstruction error ,W W F

2
- t  and the 

CRLB implies that { } { } .trE W W FF
2

X W$- @t  We also look at 
the relative error, normalized by ,W F

2  so that the scale and 
the size of W  are taken into account. Thus, the normalized 
aggregate CRLB for symmetric NMF is given by 

{ { } .} tr
W

E
W
FW W

F

F

F
2 2

2
X W$

- @t
(4)

For ,K 1=  the symmetric decomposition is unique even 
without nonnegativity constraints, and the FIM is invertible. 
The CRLB can be calculated in closed form, as provided in 
“Identifiability, FIM, and CRLB for the Symmetric Vector Case.” 

Figure 1 illustrates how this normalized CRLB changes as 
a function of the outer dimension I  (the number of rows of 

,)W  the inner dimension K  (the number of columns of ,)W
and the density (the amount of nonzero entries). The pattern 
of (non)zeros in W  were drawn from an i.i.d. Bernoulli distri-
bution, and the nonzero entries of W  were drawn from an 
i.i.d. exponential distribution. In Figure 1(a), the inner dimen-
sion is fixed to be ten, while the outer dimension increases 
from 50 to 150, for different densities; in (b), the outer dimen-
sion is fixed at 100, while the inner dimension increases from 
five to 25, with different densities. In all cases, the SNR 

log
I

10SNR WWT
F

10 2 2

2

v
=

IDENTIFIABILITY, FIM, AND CRLB FOR THE SCALAR CASE
Before we delve into FIM and CRLB computations for NMF, it is 
instructive to consider the scalar case first, particularly 

,x wh n= +  where w  and h  are nonnegative reals. This is 
clearly unidentifiable unless, e.g., we fix .w 1=  Then this is 
equivalent to the linear estimation problem ,x h n= +  and if n
is Gaussian with variance ,2v  the CRLB is .2v  But for now, let us 
treat it as an estimation problem with two unknown parameters 
[ ] ,wh T  with the constraint .w 1=  Then the FIM is 

,
h
hw

wh
w

h
h

h1 1
1

F ,w h 2

2

2 2

2

v v
= =; ;E E

while [ ]01u T=  spans the null space of the Jacobian of the 
equality constraint. Therefore, the CRLB is 

( ) ,
0
0

0
u u F u u,

T
w h

T1
2v

=- = G
which is consistent with what we get by treating it as a single 
parameter problem. The symmetric scalar model x w n2= +  is 
sign-unidentifiable, but with the nonnegativity constraint w 0$
it becomes identifiable. For n  zero-mean Gaussian with variance 

,2v  it is easy to compute the Fisher information for ,w  which is 

.F w4
w 2

2

v
=

Notice that the Fisher information is zero if ,w 0=  and as a 
special case of pseudoinverse, .0 0=@  Since the parametric con-
straint is an inequality, the CRLB is unaffected according to [4], so 
for any unbiased estimator ,wt

{( ) }
,

.w w w

w

w

0

4

0

0Ex
2 2

2 !
$ v-

=

-t *

This is illustrated in Figure S1. Notice that the pseudoinverse 
of the FIM is a legitimate bound, albeit far from being attaina-
ble when .w 0=  The situation is not as bad in the matrix 
case—in fact, we will see that existing algorithms come close to 
attaining the optimistic CRLB obtained from the pseudoin-
verse, under certain conditions.
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0
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[FIGS1] The CRLB for scalar symmetric NMF.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [80] MAY 2014

is fixed at 10 dB. Each CRLB with the specified size and den-
sity is calculated as the average of 100 Monte Carlo draws of 

.W  Note how the density of W  affects the CRLB—the sparser 
the latent factors, the lower the CRLB. Not surprisingly, the 
CRLB increases as the ratio between the outer dimension and 
the inner dimension decreases. 

CRLB FOR ASYMMETRIC NMF
Consider the I J#  asymmetric matrix generated as 

,X WH NT= + (5)

where W  is ,I K# ,0W $ H  is ,J K# ,0H $  and the ele-
ments of N  are drawn from an i.i.d. Gaussian distribution with 
zero-mean and variance .2v  The ( ) ( )I J K I J K#+ +  Fisher 
information matrix of W  and H  is (cf. supporting supplemen-
tary material in IEEE Xplore, which also shows that FW,H  is 
rank deficient) 

( ) ( )
( ) ( )

.1F
H H I

I H P I W
I W P I H

W W I

T
I

K K
T

K K
T

T
J

2,W H
7

7 7

7 7

7v
= = G (6)

Here, the constraints on the parameters are ,0W $ ,0H $
and (1). In calculating the CRLB, we only need to take into 
account the equality constraints. The Jacobian of the equality 
constraints over W  is 

,
w

w

1

1
1I( )

ii

I

iKi

I
K

T
11

1

vec W 7d h

-

-

=
=

=

R

T

S
S
SS

V

X

W
W
WW

/

/
where 1 is the all 1 vector with dimension .I  Upon defining 

, ,e e
i i

i1v V v v vi l
l

i

i I2
1

1 1 2 1g=
+

- =
=

+ -e o 6 @/ (7)

we have 1 0VT =  and .V V IT
I 1= -  Therefore, let 

,
0

0
U

I V
I

K

JK

7
= ; E

satisfying 

,  .
w

w

1

1
0U U U I

( )
( )

( )

ii

I

iKi

I

T
I J K

11

1

1
vec
vec

W
H

h

-

-

= =
=

=

+ -

d

J

L

K
K
K

N

P

O
O
O

R

T

S
S
SS;

V

X

W
W
WWE

/

/

IDENTIFIABILITY, FIM, AND CRLB FOR THE
SYMMETRIC VECTOR CASE
Consider the vector case 

.X ww NT= +

Obviously, this problem is also identifiable if ,0N =  apart from 
a sign ambiguity. We do not need to impose nonnegativity con-
straints on all the elements of w to resolve the ambiguity, but 
only on one element, e.g., .w 01 $  The FIM can be computed as 
a special case of the formula (3), whose derivation can be found 
in the supplementary material in IEEE Xplore, yielding 

,w wwI2Fw I
T

2
2

v
= +^ h

which is nonsingular for ,0w !  and we can calculate its 
inverse in closed form, using the matrix inversion lemma [38], 

.ww
2 2

1F w I wI
T1

2
2 4

w
v= -- - -
e o

Thus,

{ { } .
}

w
w w

w
wI

2 2
1trE F

2 2

1 2
4

2
wX

$ v= -
- -

-
t

e o

Notice here that italic I  is the dimension of w (not to be con-
fused with the identity matrix .)I
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[FIG1] (a) and (b) The symmetric NMF CRLB—how the outer dimension, inner dimension, and density affects the CRLB, for SNR=10 dB.
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Using the FIM F ,W H  and the null basis U  above, we obtain the 
CRLB for W  and H  as ( ) .U U F U U,

T T
W H

@

In practice, the reconstruction errors W W F
2

- t  and H H F
2

- t

are usually assessed separately since W  and H  model different 
entities (e.g., loadings and scores). Partition ( )U F U,

T
W H

@  into blocks 

( ) ,U F U,
T

T
1

2

2

3
W H

U
U
U
U

=@ ; E
where 1U  is IK IK#  and 3U  is .JK JK#  Then 

{ {( ) ( ) } ,( } tr
W

E
W

I V I VW W
F

F

F

K K
T

2 2
1

2
X 7 7

$
U- t (8a)

{ { } ,} tr
H

E
H

H H
F

F

F
2 2

3
2

X
$

U- t (8b)

with similar normalization as in the symmetric case. 
Similar to the symmetric case, for K 1=  the asymmetric 

decomposition is essentially unique, and the matrix we need to 
pseudoinvert for calculating the CRLB is actually nonsingular. The 
closed form CRLB for this case is given in “Identifiability, FIM, and 
CRLB for the Asymmetric Vector Case.” 

Figure 2 plots the CRLB for asymmetric NMF for various sizes 
and densities. Figure 2(a) and (b) shows the CRLB for ,W  which is 
constrained such that each column sums up to one, while (c) and 
(d) show the CRLB for ,H  which does not have any scaling con-
straints. Figure 2(a) and (c) shows the CRLB when the size of W  is 
fixed at ,100 10#  and the number of rows in H  increases from 
50 to 150, with different densities.  Figure 2(b) and (d) shows the 
CRLB when the number of rows in W  and H  is fixed at 100 and 
120, respectively, and the number of columns in W  and H
increases from five to 25, with different densities. As usual, SNR 

log
I J

10SNR WHT
F

10 2

2

v
=

is fixed at 10 dB. Each CRLB point for a specified size and density is 
calculated as the average of 100 Monte Carlo draws. Figure 2(c) 

may seem curious: it shows the normalized CRLB with respect to 
H  when we fix W  and gradually increase the number of rows of 

,H  and we observe that the normalized CRLB does not change 
very much. It slowly increases as the outer-dimension of H
increases, as opposed to the normalized CRLB for ,W  which seems 
to decrease exponentially. This is because the block in the FIM 
F ,W H  that corresponds to H  is ,W W IT

J7  where the dimension of 
I J  changes according to the dimension of ,H  which contributes 
the most to the block of the CRLB that corresponds to .H  The 
W WT  part is fixed, and the size of I J  grows approximately linearly 
with ,H F

2  which explains intuitively why the normalized CRLB 
for H  does not change very much. Apart from that, the overall ten-
dency of the CRLB versus the size is similar to the symmetric case: 
it goes down as one of the outer dimensions increases, and it goes 
up as the common inner dimension increases, as intuitively 
expected from “equations versus unknowns” considerations. Note, 
however, that here as the number of observations increases, so 
does the number of unknown parameters. For example, if a new 
column is appended to X  then a new row is appended to H  as 
well, and the CRLB may worsen, depending on the new entries and 
other factors [e.g., the way we resolve the scaling ambiguity; see 
Figure 2(a) and (c)].

What is more, the sparser W  and ,H  the lower the CRLB 
in all cases. 

PUTTING NMF ALGORITHMS TO THE TEST

SYMMETRIC NMF
We compared three algorithms for symmetric NMF with the 
CRLB derived in the section “Cramer–Rao Bounds for NMF.” 
These are a -symmetric NMF and b -symmetric NMF with 

.0 99a b= =  [17], and the algorithm recently proposed in [14]. 
The true W  is generated such that a certain proportion of its 
entries are randomly set to zero, and the rest are drawn from an 
i.i.d. exponential distribution. Using the generative model (2) the 

IDENTIFIABILITY, FIM, AND CRLB FOR THE ASYMMETRIC VECTOR CASE
For ,K 1=  i.e., when w  and h  are vectors, asymmetric factori-
zation is identifiable from noiseless (rank-one) data, similar to 
the symmetric case. There is still a scaling issue, and we can 
resolve this by fixing the scaling of one factor, e.g., setting 

w1 1T =  as we did in the matrix case. Then, using (6), the FIM is 

.1F
hw

wh
w I

h I I
T

T

J
2 2

2

,w h
v

= = G
The corresponding U  matrix is 

,
0

0
U

V
I J

= ; E
with the same V  as defined in (7). Let us first try to calculate 
the following inversion 
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where 1U  and 3U  are the inverse of the Schur complement [36, 
p. 650] of h I I

2 2
1v- -  and ,Iw J

2 2v-  respectively, in ,U F UT
w,h  i.e., 
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Again, the inverses can be calculated in closed form by using 
the matrix inversion lemma. Using the Pythagorean theorem 

/ I1 1 ww V wT T2 2 2
= + ^ ^h h  (details omitted), we obtain 

{ { } ( ( ( ),
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w w
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resulting X  will not be symmetric, so we use / ( ),1 2 X XT+^ h  since 
all algorithms are designed specifically for symmetric nonnegative 
matrices. Reference [17] did not provide a termination criterion, 
so both a-symmetric NMF and b-symmetric NMF are left to run 
for a large number of iterations (104), to ensure the best possible 
results. For the algorithm in [14], we used the termination criter-
ion described in [14, Fig. 4] with the tolerance set to machine pre-
cision eps. We used a single draw of W  for each (size, density) 
combination reported. Under various SNRs, the normalized 
squared error /W WWF F

22-t^ ^h h is calculated and averaged 
over 100 Monte Carlo tests, so that we can get a better approxima-
tion to the expected error / .E W W WF F

22
X -t^ ^h h" ,

The results are plotted in Figure 3, where (a) shows the nor-
malized squared error benchmarked by the CRLB, (b) shows the 
(aggregate) bias for each estimate, defined as 

( ) ,T
1bias W W

t

T

t

F1
= -

=

t/ (9)

where T  is the number of trials, in this case 100, and (c) shows 
the model fitting error for each algorithm. The dashed lines in (c) 
show the total noise power; a good approximation should yield a 
fitting error close to the noise power. The plots in the left column 

show a case where the symmetric NMF problem is relatively 
“overdetermined,” since the inner dimension (30) is small com-
pared to the outer dimension (200), and the latent factors are 
quite sparse (density 0.5). The two other columns show more dif-
ficult cases—low rank (30 versus 200) but relatively dense latent 
factors for the middle column, not-so-low rank (50 versus 100) 
but relatively sparse latent factors for the right column. Recall the 
discussion in the section “Fundamentals” for the rule of thumb 
for when identifiability can be expected—the middle and right col-
umns illustrate cases where this requirement is barely satisfied. 

In all cases, the aggregate bias is small and goes to zero as 
SNR increases, indicating that the estimates provided by these 
algorithms are asymptotically unbiased, and we can use the 
CRLB to approximately bound the performance. Generally 
speaking, a /b -symmetric NMF slightly outperform the Pro-
crustes rotation algorithm [14] in the low SNR regime but fail 
to reach the CRLB in the high SNR regime. The algorithm in 
[14] exhibits classic threshold behavior—for SNR higher than 
some threshold, the mean square error (MSE) stays close to the 
CRLB. The reason is that it employs eigenanalysis to estimate 
the column space of W  as a first step and then applies Procrus-
tes rotations in the estimated subspace. On the other hand, both 
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[FIG2] (a)–(d) The asymmetric NMF CRLB—how the outer dimensions, inner dimension, and density affects the CRLB, for SNR=10 dB.
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symmetric NMF variants are modifications of the multiplicative 
update algorithm using X WWT

F
2

-  (Gaussian log-likelihood) as 
the objective, so that it is not surprising that they perform better 
in the low-SNR regime. We can also see this from Figure 3(b), as 
the biases of a /b-symmetric NMF are lower than that of the Pro-
crustes method under low SNR. 

ASYMMETRIC NMF
In this section, we compare several asymmetric NMF algorithms 
aiming to minimize the Euclidian distance. Notice that the data 
we synthetically generated were corrupted by additive i.i.d. Gauss-
ian noise, so using Euclidian distance as the objective actually 
gives us the ML estimate. This is why algorithms that use other 
divergence functions as the objective were not considered here. 
The algorithms tested are:

■ multiplicative update (MU) proposed by Lee and Seung [22]
■ alternating least squares (ALS) proposed by Berry et al. [26]

■ projected gradient (PG) proposed by Lin [24] (the MATLAB 
code can be downloaded from http://www.csie.ntu.edu.
tw/~cjlin/nmf/index.html)
■ fast HALS proposed by Cichocki and Phan [30, Algor. 2]
■ block principle pivoting (BPP) alternating nonnegative least 
squares using BPP proposed by Kim and Park [29] (the MAT-
LAB code can be downloaded from http://www.cc.gatech.
edu/~hpark/nmfsoftware.php).
For all algorithms, we used the optimality condition in [39] to 

check for termination, i.e., calculate 

(( ) )
(( ) )W

H X HW W
X WH HT

T T
F

U

U -

-= G

in each iteration and terminate when it is smaller than the 
machine precision eps, with a maximum number of iteration set as 
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[FIG3] (a) The normalized squared error of three existing symmetric NMF algorithms versus the CRLB; similarly, (b) shows the 
(aggregate) bias, and (c) shows the fitting error.
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104. In the expression, U stands for the Hadamard (element-wise) 
matrix product. Similar to the symmetric case, the entries of W
and H  were generated such that a certain proportion of them are 
randomly set to 0, and the rest are drawn from an i.i.d. exponential 
distribution. Then the columns of W  are scaled to sum up to one. 

Three tests were conducted and illustrated in Figures 4 and 5 
for W  and H , respectively—low-rank and sparse latent factors on 
the left, low rank but moderately dense in the middle, and an 
unbalanced case (J much larger than I) where the rank is not 
small compared to the smaller outer dimension, with density set 
relatively small to ensure identifiability. Similar to Figure 3, 
Figures 4(a) and 5(a) show the normalized squared error for each 
algorithm benchmarked by the CRLB, Figures 4(b) and 5(b) show 

the (aggregate) bias of W  as defined in (9), and similarly for ,H
and Figure 4(c) shows the fitting error for each algorithm.

As we can see from Figures 4(b) and 5(b) the biases are gener-
ally small and approach zero with increasing SNR, indicating that 
we can use the CRLB to approximately bound performance. In all 
three cases, HALS, BPP, and PG were able to provide a good esti-
mate with MSE close to the CRLB, under all SNRs tested. On the 
other hand, MU and ALS are not guaranteed to work well even 
under very high SNR. All methods separate the variables into 
blocks, and HALS, BPP, and PG aim to find the conditionally opti-
mal point before moving to the next block, whereas the updates of 
MU and ALS cannot guarantee this. Interestingly, in the “well-
posed” case shown in the left columns of Figures 4 and 5, ALS 
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[FIG4] In (a), the normalized squared error for W using various asymmetric NMF algorithms versus the CRLB is shown; similarly, 
(b) shows the (aggregate) bias for W and (c) the fitting error.
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gave similar results to those three methods, indicating that if we 
know a priori that the latent factors are both low rank and sparse, 
it is worth trying ALS, since its updates rules only require linear 
least-squares followed by simple projection to the nonnegative ort-
hant, which is much simpler than the rest. 

RECAP AND TAKE-HOME POINTS

WHAT WE LEARNED
NMF entails a singular FIM as well as constraints and ambiguities 
that must be dealt with in the computation of the pertinent 
CRLB. We learned how to tackle those and used the results to 
benchmark and develop insights on what can be expected from 
some of the best available algorithms. For symmetric NMF, the 
CRLB can be approached using the Procrustes rotation algorithm 
[14] in the high SNR regime, or a /b -symmetric NMF in low 
SNR cases. For asymmetric NMF, the best-performing algorithms 
were able to give results with MSE close to the CRLB. In both 
cases, approaching the CRLB is possible when the signal rank is 
small and the latent factors are not dense, i.e., when there is a 
small number of latent components whose loadings contain suffi-
ciently many zeros. This is quite remarkable given that the CRLB 
with a singular FIM is generally unattainable; see Figure S1. 

There may be room for improvement in cases involving moderate 
SNR and/or moderate rank and/or moderate density.

WHY IT IS IMPORTANT
Beyond NMF, the approach and techniques we learned can be used 
to facilitate analogous derivations for related factor analysis prob-
lems. For example, the FIMs provided here can be applied to more 
general bilinear matrix factorizations, e.g., using other types of 
constraints on .W  The FIM will remain the same, but the U
matrix will be different. Also, we can exploit a basis of the 
nullspace of the FIM to reduce the complexity of computing its 
pseudoinverse, and this idea is more broadly applicable to other 
bilinear matrix factorizations. The results can also be extended 
toward, e.g., nonnegative tensor factorization. 

SUPPLEMENTARY MATERIAL
The supplementary material that is available through IEEE 
Xplore contains detailed FIM derivations, as well as auxiliary 
results on FIM rank and efficient numerical computation of its 
pseudoinverse. These results reduce the complexity of comput-
ing the CRLB from (( ) )O IK 3  to ( )O IK5  in the symmetric case, 
and from ((( ) ) )O I J K 3+  to (( ) )O I J K5+  in the asymmetric 
case (recall , ,I J K$  and usually , ) .I J K&  The supplementary 
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[FIG5] (a) The normalized squared error for H  using various asymmetric NMF algorithms versus the CRLB; similarly (b) shows the 
(aggregate) bias for .H
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material also includes streamlined and optimized MATLAB code 
for computing these CRLBs. 
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S
ource separation, or demixing , is the process of 
extracting multiple components entangled within a 
signal. Contemporary signal processing presents a 
host of difficult source separation problems, from 
interference cancellation to background subtraction, 

blind deconvolution, and even dictionary learning. Despite the 
recent progress in each of these applications, advances in high-
throughput sensor technology place demixing algorithms 
under pressure to accommodate extremely high-dimensional 
signals, separate an ever larger number of sources, 
and cope with more sophisticated signal 
and mixing models. These difficulties 
are exacerbated by the need for 
real-time action in automated 
decision-making systems. 

Recent advances in con-
vex optimization provide a 
simple framework for effi-
ciently solving numerous 
difficult demixing prob-
lems. This article provides 
an overview of the emerging 
field, explains the theory that 
governs the underlying procedures, 
and surveys algorithms that solve them 
efficiently. We aim to equip practitioners with a 
toolkit for constructing their own demixing algorithms that 
work, as well as concrete intuition for why they work.

FUNDAMENTALS OF DEMIXING
The most basic model for mixed signals is a superposition model,
where we observe a mixed signal z Rd

0 !  of the form 

,z x y0 0 0= + (1)

and we wish to determine the component signals x0  and .y0  This 
simple model appears in many guises. Sometimes, superimposed 
signals come from basic laws of nature. The amplitudes of electro-
magnetic waves, for example, sum together at a receiver, making 
the superposition model (1) common in wireless communica-
tions. Similarly, the additivity of sound waves makes superposition 
models natural in speech and audio processing. 

Other times, a superposition provides a useful, if not literally 
true, model for more complicated nonlinear phenomena. Many 

images can be modeled as the sum of constituent fea-
tures—think of stars and galaxies that sum to 

create an image of a piece of the night 
sky [1]. In machine learning, 

superpositions can describe hid-
den structure [2], while in 

statistics, superpositions can 
model gross corruptions to 
data [3]. These models also 
appear in texture repair [4], 
graph clustering [5], and 

line-spectral estimation [6]. 
A conceptual understanding 

of demixing in all of these applica-
tions rests on two key ideas. Natural 

signals in high dimensions often cluster 
around low-dimensional structures with few 

degrees of freedom relative to the ambient dimension [7]. 
Examples include bandlimited signals, array observations from seis-
mic sources, and natural images. By identifying the convex functions 
that encourage these low-dimensional structures, we can derive con-
vex programs that disentangle structured components from a signal. 

Of course, effective demixing requires more than just struc-
ture. To distinguish multiple elements in a signal, the components 
must look different from one another. We capture this idea by say-
ing that two structured families of signal are incoherent if their 
constituents appear very different from each other. While demix-
ing is impossible without incoherence, sufficient incoherence 
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typically leads to provably correct demixing procedures. The two 
notions of structure and incoherence above also appear at the core 
of recent developments in information extraction from incomplete 
data in compressive sensing and other linear inverse problems [8], 
[9]. The theory of demixing extends these ideas to a richer class of 
signal models, and it leads to a more coherent theory of convex 
methods in signal processing. 

While this article primarily focuses on mixed signals drawn 
from the superposition model (1), recent extensions to nonlinear
mixing models arise in blind deconvolution, source separation, 
and nonnegative matrix factorization [10]–[12]. We will see that 
the same techniques that let us demix superimposed signals reap-
pear in nonlinear demixing problems. 

THE ROLE OF CONVEXITY
Convex optimization provides a unifying theme for all of the demix-
ing problems discussed above. This framework is based on the idea 
that many structured signals possess corresponding convex func-
tions that encourage this structure [9]. By combining these func-
tions in a sensible way, we can develop convex optimization 
procedures that demix a given observation. The geometry of these 
functions lets us understand when it is possible to demix a superim-
posed observation with incoherent components [13]. The resulting 
convex optimization procedures usually have both theoretical and 
practical guarantees of correctness and computational efficiency. 

To illustrate these ideas, we consider a classical but surpris-
ingly common demixing problem: separating impulsive signals 
from sinusoidal signals, called the spikes and sines model. This 
model appears in many applications, including star–galaxy separa-
tion in astronomy, interference cancellation in communications, 
inpainting and speech enhancement in signal processing [1], [14]. 

While individual applications feature additional structural 
assumptions on the signals, a simple low-dimensional signal 
model effectively captures the main idea present in all of these 
works: sparsity. A vector x Rd

0 !  is sparse if most of its entries 
are equal to zero. Similarly, a vector y Rd

0 !  is sparse-in-
frequency if its discrete cosine transform (DCT) Dy0  is sparse, 
where D Rd d! #  is the matrix that encodes the DCT. Sparse vec-
tors capture impulsive signals like pops in audio, while sparse-in-
frequency vectors explain smooth objects like natural images. 
Clearly, such signals look different from one another. In fact, an 
arbitrary collection of spikes and sines is linearly independent or 
incoherent provided that the collection is not too big [14]. 

Is it possible to demix a superimposition z x y0 0 0= +  of spikes 
and sines into its constituents? One approach is to search for the 
sparsest possible constituents that generate the observation z0

, : ,:x y x Dy z x y
,x y

0 0 0

Rd
arg min m= + = +

!

s s6 @ $ . (2)

where the 0, -“norm” measures the sparsity of its input, and 
02m  is a regularization parameter that trades the relative spar-

sity of solutions. Unfortunately, solving (2) involves an intractable 
computational problem. However, if we replace the 0,  penalty 
with the convex 1, -norm, we arrive at a classical sparse approxi-
mation program [14] 

[ , ] : : .arg minx y x Dy z x y
,x y

1 1 0
Rd

m= + = +
!

t t $ . (3)

This key change to the combinatorial proposal (2) offers numer-
ous benefits. First, the procedure (3) is a convex program, and a 
number of highly efficient algorithms are available for its solution. 
Second, this procedure admits provable guarantees of correctness 
and noise-stability under incoherence. Finally, the demixing pro-
cedure (3) often performs admirably in practice. 

Figure 1 illustrates the performance of (3) on both a synthetic 
signal drawn from the spikes-and-sines model above, as well as on 
a real astronomical image. The resulting performance for the basic 
model is quite appealing even for real data that mildly violates the 
modeling assumptions. Last but not least, this strong baseline per-
formance can be obtained in fractions of seconds with simple and 
efficient algorithms. The combination of efficient algorithms, rig-
orous theory, and impressive real-world performance are hall-
marks of convex demixing methods. 

DEMIXING MADE EASY
This section provides a recipe to generate a convex program that 
accepts a mixed signal z x y0 0 0= +  and returns a set of demixed 
components. The approach requires two ingredients. First, we must 
identify convex functions that promote the structure we expect in 
x0  and .y0  Second, we combine these functions together into a 
convex objective. This simple and versatile approach easily extends 
to multiple signal components and undersampled observations. 

STRUCTURE-INDUCING CONVEX FUNCTIONS
We say that a signal has structure when it has fewer degrees of free-
dom than the ambient space. Familiar examples of structured 
objects include sparse vectors, sign vectors, and low-rank matrices. 
It turns out that each of these structured families have an associ-
ated convex function, called an atomic gauge, adapted to their spe-
cific features [9]. 

The general principle is simple. Given a set of atoms ,RA d1

we say that a signal x Rd!  is atomic if it is formed by a sum of a 
small number of scaled atoms. For example, sparse vectors are 
atomic relative to the set of standard basis vectors because every 
sparse vector is the sum of just a few standard basis vectors. For a 
more sophisticated example, recall that the singular value decom-
position implies that low-rank matrices are the sum of a few rank-
one matrices. Hence, low-rank matrices are atomic relative to the  
set of all rank-one matrices. 

We can define a function that measures the inherent complex-
ity of signals relative to a given set .A  One natural measure is the
fewest number of scaled atoms required to write a signal using 
atoms from ,A  but unfortunately, computing this quantity can be 
computationally intractable. Instead, we define the atomic gauge

x A  of a signal x Rd!  by 

,: : · ( )infx x0 conv AA 2 !m m= $ .

where ( )conv A  is the convex hull of .A  In other words, the 
level sets of the atomic gauge are the scaled versions of the con-
vex hull of all the atoms A  [Figure 2(a)]. 
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By construction, atomic gauges are “pointy” at atomic vec-
tors. This property means that most deviations away from the 
atoms result in a rapid increase in the value of the gauge, so 
that the function tends to penalize deviations away from simple 
signals [Figure 2(b)]. The pointy geometry plays an important 
role in the theoretical understanding of demixing, as we will see 
when we discuss the geometry of demixing below. 

A number of common structured families and their associ-
ated gauge functions appear in Table 1. More sophisticated 
examples include gauges for probability measures, cut matrices, 
and low-rank tensors. We caution, however, that not every 
atomic gauge is easy to compute, and so we must take care to 
develop tractable forms of atomic gauges [9], [16]. Surprisingly, 
it is sometimes easier to compute the value of atomic gauges 
than it is to compute the (possibly nonunique) decomposition 
of a vector into its atoms [12]. We will return to the discussion 
of tractable gauges when we discuss demixing algorithms below. 

THE BASIC DEMIXING PROGRAM
Suppose that we know the signal components x0  and y0  are 
atomic with respect to the known atomic sets Ax  and .A y  In 
this section, we describe how to use the atomic gauge functions 

· Ax  and · Ay  defined above to help us demix the compo-
nents x0  and y0  from the observation .z0

Our intuition developed above indicates that the values 
x0 Ax  and y0 Ay  are relatively small because the vectors x0

and y0  are atomic with respect to the atomic sets Ax  and .A y

This suggests that we search for constituents that generate the 

Observation z0 Sparse Component x0 DCT-Sparse Component y0

(d) (e) (f)

(a) (b) (c)

[FIG1] (a)–(c) We obtain perfect separation of spikes from sinusoids by solving (3). The original signal is perfectly separated into 
(b) its sparse component and (c) its DCT-sparse component. (d)–(f) We also achieve high-quality star-galaxy separation by solving 
(3) with an astronomical image. (d) The original is separated into (e) a starfield corresponding to a nearly sparse component and 
(f) a galaxy corresponding to a nearly two-dimensional DCT-sparse component. (Galaxy image courtesy of NASA/JPL-Caltech and 
used with permission.)

⎥⎥x⎥⎥ = 1

⎥⎥x⎥⎥ > 1

⎥⎥x⎥⎥ < 1

(a) (b)

[FIG2] (a) An atomic set ,A  consisting of five atoms (stars). The 
“unit ball” of the atomic gauge · A  is the closed convex hull of 
A  (heavy line). Other level sets (dashed lines) of the gauge are 
dilations of the unit ball. (b) At an atom (star), the unit ball of 

· A  tends to have sharp corners. Most perturbations away 
from this atom increase the value of ,· A  so the atomic gauge 
often penalizes complex signals that are comprised of a large 
number of atoms.
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observation and have small atomic gauges. That is, we deter-
mine the demixed constituents ,x yt t  by solving 

[ , ]:  : .arg minx y x y x y z0A A
,x y

x y
Rd

m= + + =
!

t t $ . (4)

The parameter 02m  negotiates a tradeoff between the relative 
importance of the atomic gauges, and the constraint x y z0+ =

ensures that our estimates xt  and yt  satisfy the observation 
model (1). The hope, of course, is that x x0=t  and ,y y0=t  so 
that the demixing program (4) actually identifies the true com-
ponents in the observation .z0

The demixing program (4) is closely related to linear inverse 
problems and compressive sampling (CS) [8], [9]. Indeed, the 
summation map ( , )x y x y7 +  is a linear operator, so demixing 
amounts to inverting an underdetermined linear system using 
structural assumptions. The main conceptual difference between 
demixing and standard CS is that demixing treats the components 
x0  and y0  as unrelated structures. Also, unlike conventional CS, 
demixing does not require exact knowledge of the atomic decom-
position, but only the value of the gauge. 

The only link between the structures that appears in our rec-
ipe comes through the choice of tuning parameter m  in (4), 
which makes these convex demixing procedures easily adaptable 
to new problems. In general, determining an optimal value of m
may involve fine-tuning or cross-validation, which can be quite 
computationally demanding in practice. Some theoretical guid-
ance on explicit choices of the regularization parameter appears 
in [2], [3], and [17]. 

EXTENSIONS
There are many extensions of the linear superposition model (1). 
In some applications, we are confronted with a signal that is only 
partially observed—compressive demixing. In others, we might 
consider an observation with additive noise, for instance, or a sig-
nal with more than two components. The same ingredients that 

we introduced above can be used to demix signals from these 
more elaborate models. 

For example, if we only see z0 = ( ),x y0 0U +  a linear map-
ping of the superposition, then we simply update the consistency 
constraint in the usual demixing program (4) and solve instead 

[ , ]: . : ( )arg minx y x y x y z
,x y

0
R

A A
d

x ym U= + + =
!

t t $ . (5)

Some applications for this undersampled demixing model 
appear in image alignment [18], robust statistics [5], and graph 
clustering [19]. 

Another straightforward extension involves demixing more 
than two signals. For example, if we observe ,z x y w0 0 0 0= + +

the sum of three structured components, we can determine the 
components by solving 

[ , , ] :

 : ,

arg minx y w x y w

x y w z

1 2

0

A A A
, ,x y w

x y w
Rd

m m= + +

+ + =

!

t t t $

. (6)

where Aw  is an atomic set tuned to ,w0  and as before, the param-
eters 0i 2m  trade off the relative importance of the regularizers. 
This model appears, for example, in image processing applications 
where multiple basis representations, such as curvelets, ridgelets, 
and shearlets, explain different morphological components [1]. 
Further modifications along the lines above extend the demixing 
framework to a massive number of problems relevant to modern 
signal processing. 

GEOMETRY OF DEMIXING
A critical question we can ask about a demixing program is “When 
does it work?” Answers to this question can be found by studying 
the underlying geometry of convex demixing programs. Surpris-
ingly, we can characterize the success and failure of convex demix-
ing precisely by leveraging a basic randomized model for 
incoherence. Indeed, the geometric viewpoint reveals a tight char-
acterization of the success and failure of demixing in terms of geo-
metric parameters that act as the “degrees of freedom” of the 
mixed signal. The consequences for demixing are intuitive: demix-
ing succeeds if and only if the dimensionality of the observation 
exceeds the total degrees of freedom in the signal. 

DESCENT CONES AND THE STATISTICAL DIMENSION
Our study of demixing begins with a basic object that encodes the 
local geometry of a convex function. The descent cone ( , )xD A
at a point x  with respect to an atomic set RA d1  consists of the 
directions where the gauge function · A  does not increase near 

.x  Mathematically, the descent cone is given by 

( , ) : : .x x h xh 0for someD A A A 2#x x= +$ .

The descent cone encodes detailed information about the local
behavior of the atomic gauge · A  near .x  Since local optimality 
implies global optimality in convex optimization, we can charac-
terize when demixing succeeds in terms of a configuration of 
descent cones. See Figure 3 for a precise description of this opti-
mality condition. 

[TABLE 1] EXAMPLE SIGNAL STRUCTURES AND THEIR ATOMIC 
GAUGES [9], [15]. THE TOP TWO ROWS CORRESPOND TO 
VECTORS WHILE THE BOTTOM THREE REFER TO MATRICES. 
THE VECTOR NORMS EXTEND TO MATRIX NORMS BY 
TREATING m n#  MATRICES AS LENGTH-mn  VECTORS. THE 
EXPRESSION x 2  DENOTES THE EUCLIDEAN NORM OF THE 
VECTOR ,x WHILE ( )Xiv  RETURNS THE i TH SINGULAR VALUE 
OF THE MATRIX .X

STRUCTURE ATOMIC SET ATOMIC GAUGE · A

SPARSE
VECTOR

SIGNED BASIS
VECTORS { }ei!

1,  NORM
x xii1 =, /

BINARY SIGN
VECTOR

SIGN VECTORS { }1 d! ,3  NORM
maxx xi i=,3

LOW-RANK
MATRIX

RANK-1 MATRICES
{ : }uv uv 1t t

F =
SCHATTEN 1-NORM

( )X XS ii1 v=/
ORTHOGONAL
MATRIX

ORTHOGONAL
MATRICES { : }O OO It =

SCHATTEN 3 -NORM
( )X XS 1v=3

ROW-SPARSE
MATRIX

MATRICES WITH
ONE NONZERO
ROW { : }e v v 1i

t
2 =

ROW- 1,  NORM
X /1 2, ,
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To understand when the geometric optimality condition is 
likely to hold, we need a measure for the “size” of cones. The most 
apparent measure of size is perhaps the solid angle, which quanti-
fies the amount of space occupied by a cone. The solid angle, how-
ever, proves inadequate for describing the intersection of cones 
even in the simple case of linear subspaces. Indeed, linear sub-
spaces are cones that take up no space at all, but when their 
dimensions are large enough, any two subspaces will always inter-
sect along a line. Imagine trying to arrange two flat sheets of paper 
so that they only touch at their centers: it’s impossible! 

We find a much more informative measure of size, called the 
statistical dimension, when we measure the proportion of space 
near a cone, rather than the proportion inside the cone. 

DEFINITION 1 (STATISTICAL DIMENSION)
Let C Rd1  be a closed convex cone, and denote by 

( ) : arg minx x yyC CP = -!  the closest point in C  to .x  We 
define the statistical dimension ( )Cd  of a convex cone C Rd1  by 

( ): ( ) ,gC E C 2
2d P= (7)

where ~ ( , )g 0Normal I  is a standard Gaussian random variable 
and the letter E  denotes the expected value. 

The statistical dimension gets its name because it extends 
many properties of the usual dimension of linear subspaces to 
convex cones [20], and it is closely related to the Gaussian width 
used in [9]. Our interest here, however, comes from the interpre-
tation of the statistical dimension as a “size” of a cone. A large sta-
tistical dimension ( )C d.d  means that ( )gC 2

2P  is usually 
large, i.e., most points lie near or inside the cone. Conversely, a 
narrow cone C  possesses a small statistical dimension because the 
nearest point to C  is typically close to zero, which drives down the 
average norm. We will see below that the statistical dimension of 
descent cones provides the key parameter for understanding the 
success and failure of demixing procedures. 

Of course, a parameter is only useful if we can compute it. For-
tunately, the statistical dimension of descent cones is often easy to 
compute or approximate. Several ready-made statistical dimension 
formulas and a step-by-step recipe for accurately deriving new for-
mulas appear in [20]. Some useful approximate statistical dimen-
sion calculations can also be found in the works [9] and [17]. As an 
added bonus, recent work indicates that statistical dimension cal-
culations are closely related to the problem of finding optimal 
regularization parameters [17, Th. 2]. 

PHASE TRANSITIONS IN CONVEX DEMIXING
The true power of the statistical dimension comes from its ability 
to predict phase transitions in demixing programs. By phase tran-
sition, we mean the peculiar behavior where demixing programs 
switch from near-certain failure to near-certain success within a 
narrow range of model parameters. While the optimality condition 
from Figure 3 characterizes the success and failure of demixing, it 
is often difficult to certify directly. To understand how demixing 
operates in typical situations, we need an incoherence model. One 
proposal to model incoherence assumes that the structured sig-
nals are oriented generically relative to one another. This is 

achieved, for example, by assuming that the structured compo-
nents are drawn structured relative to a rotated atomic set ,QA
where Q Rd d! #  is a random orthogonal matrix [13]. Surpris-
ingly, this basic randomized model of incoherence leads to a rich 
theory with precise guarantees that complement other phase tran-
sition characterizations in linear inverse problems [21], [22]. Many 
works propose alternative incoherence models applicable to spe-
cific cases, including [3] and [9], but these specific choices do not 
possess known phase transitions. Under the random model of [13], 
however, a very general theory is available. The following result 
appears in [20, Th. III].

THEOREM 1
Suppose that the atomic set of x0  is randomly rotated, i.e., that 

QA Ax x= u  for some random rotation Q  and some fixed atomic 
set .Axu  Fix a probability tolerance ( , ),0 1!h  and define the nor-
malized total statistical dimension 

: [ ( ( , )) ( ( , ))] .x y
d
1 D A D Ax y0 0d dD = +u

Then there is a scalar C 02  that depends only on h  such that 

/C d1 1demixing can succeed with probability&# $ hD - -

/ .C d1 1demixing always fails with probability&$ $ hD + -

In fact, we can take : ( / ) .logC 4 4 h=  By “demixing can suc-
ceed,” we mean that there exists a regularization parameter 

02m  so that ( , )x y0 0  is an optimal point of (4). “Demixing 
always fails” means that ( , )x y0 0  is not an optimal point of (4) for 
any parameter .02m

Theorem 1 indicates that demixing exhibits a phase transition
as the normalized statistical dimension D  increases beyond the 
one. The first implication above tells us that if D  is just a little less 
than one, then we can be confident that demixing will succeed for 
some tuning parameter .02m  On the other hand, the second 
implication says that if D  is slightly larger than one, then demix-
ing is hopeless. See Figure 4 for an example of the accuracy of this 

x0 – ( y, y0)

x0

x0 + ( x, x0)

x0x <x x

z0 – x z0 – x0y y<

[FIG3] The geometric characterization of demixing. When the 
descent cones ( , )xD Ax 0  and ( , )yD Ay 0  share a line, then 
there is an optimal point xt  (star) for the demixing program 
(4) not equal to .x0  Conversely, demixing can succeed for 
some value of 02m  if the two descent cones touch only at 
the origin. In other words, demixing can succeed if and only 
if ( , ) ( , ) { }x y 0D A D Ax y0 0+- =  [13].
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theory for the sparse approximation model (3) from the introduc-
tion when the DCT matrix D  is replaced with a random rotation 

.Q  The agreement between the empirical 50% success line and 
the curve where 1D =  is remarkable. 

This theory extends analogously to the compressive and mul-
tiple demixing models (5) and (6). Under a similar incoherence 
model as above, compressive and multiple demixing are likely to 
succeed if and only if the sum of the statistical dimensions is 
slightly less than the number of (possibly compressed) measure-
ments [23, Th. A]. This fact lets us interpret the statistical dimen-
sion ( ( , ))xD A 0d  as the degrees of freedom of a signal x0  with 
respect to the atomic set .A  The message is clear: Incoherent 
demixing can succeed if and only if the total dimension of the 
observation exceeds the total degrees of freedom of the constitu-
ent signals. 

PRACTICAL DEMIXING ALGORITHMS
In theory, many demixing problem instances of the form (4) admit 
efficient numerical solutions. Indeed, if we can transform these 
problems into standard linear, cone, or semidefinite formulations, 
we can apply black-box interior point methods to obtain high-accu-
racy solutions in polynomial time [24]. In practice, however, the 
computational burden of interior point methods makes these meth-
ods impracticable as the dimension d  of the problem grows. Fortu-
nately, a simple and effective iterative algorithm for computing 
approximate solutions to the demixing program (4) and its exten-
sions can be implemented with just a few lines of high-level code. 

SPLITTING THE WORK
The simplest and most popular method for iteratively solving 
demixing programs goes by the name alternating direction 
method of multipliers (ADMM). The key object in this algorithm is 
the augmented Lagrangian function Lt  defined by 

( , , ) : ,

,

x y w x y w x y z

x y z

L

2
1

0

0
2

A Ax y G Hm

t

= + + + -

+ + -

t

where , ··G H  denotes the usual inner product between two vectors 
and 02t  is a parameter that can be tuned to the problem. Start-
ing with arbitrary points , , ,x y w Rd1 1 1 !  the ADMM method 
generates a sequence of points iteratively as 

( , , )
( , , )

( ) / .

arg min
arg min

x
y
w

x y w
x y w

w x y z

L
L

x

y

k

k

k

k k

k k

k k k

1

1

1

1

1 1
0

R

R

d

d

t

=

=

= + + -

!

!

t

t

+

+

+

+

+ +

*
(8)

In other words, the x- and y-updates iteratively minimize the 
Lagrangian over just one parameter, leaving all others fixed. The 
alternating minimization of Lt  gives the method its name. 
Despite the simple updates, the sequence ( , )x yk k  of iterates gen-
erated in this manner converges to the minimizers ( , )x yt t  of the 
demixing program (4) under fairly general conditions [25]. 

The key to the efficiency of ADMM comes from the fact that the 
updates are often easy to compute. By completing the square, the 
x- and y-updates above amount to evaluating proximal operators
of the form 

,

arg min

arg min

x x u x

y y v y

2
1

2
1

andk k

k k

1 2

1 2

A

A

x

y

x

y

R

R

d

d

t

t
m

= + -

= + -

+

+

!

!

(9)

where :u z y wk k k
0 t= - -  and : .v z x wk k k

0
1 t= - -+  When 

solutions to the proximal minimizations (9) are simple to com-
pute, each iteration of ADMM is highly efficient. 

Fortunately, proximal operators are easy to compute for many 
atomic gauges. For example, when the atomic gauge is the 1,

-norm, the proximal operator corresponds to “soft thresholding”

( , )
,

,
,

,
| | ,

.
arg min x u x u

u

u

u
u

u
2
1 0soft

x

i

i

i

i

i

2

Rd
1

2

1
#

t
t

t

t

t

t

t

+ - = =

-

+
,

!

*

If we replace the 1, -norm above with the Schatten-1 norm, then 
the corresponding proximal operator amounts to soft threshold-
ing the singular values. Numerous other explicit examples of prox-
imal operations appear in [25, Sec. 2.6]. 

Not all atomic gauges, however, have efficient proximal opera-
tions. Even sets with finite number of atoms do not necessarily lead 
to more efficient proximal maps than sets with an infinite number 
of atoms. For instance, when the atomic set consists of rank-one 
matrices with unit Frobenius norm, we have an infinite set of 
atoms and yet the proximal map can be efficiently obtained via sin-
gular value thresholding. On the other hand, when the atomic set 
consists of rank-one matrices with binary 1!  entries, we have a 
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[FIG4] Phase transitions in demixing. Phase transition diagram 
for demixing two sparse signals using 1,  minimization [20]. This 
experiment replaces the DCT matrix D  in (3) with a random 
rotation .Q The color map shows the transition from pure 
success (white) to complete failure (black). The 95%, 50%, and 
5% empirical success contours (tortuous curves) appear above 
the theoretical phase transition curve (yellow), where .1D =
See [13] for experimental details. (Figure used with permission 
from [20].)
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finite set of atoms and yet the best-known algorithm for computing 
the proximal map requires an intractable amount of computation. 

There is some hope, however, even for difficult gauges. Recent 
algebraic techniques for approximating atomic gauges provide 
computable proximal operators in a relatively efficient manner, 
which opens the door to additional demixing algorithms for richer 
signal structures [9], [16]. 

EXTENSIONS
While the ADMM method is the prime candidate for solving prob-
lem (4), it is not usually the best method for the extensions (5) or 
(6). In the first case, if U  is a general linear operator, it creates a 
major computational bottleneck since we need an additional loop 
to solve the subproblems within the ADMM algorithm. In the lat-
ter case, ADMM even loses convergence guarantees [26]. 

One possible way to handle both (5) and (6) is to use decompo-
sition methods. Roughly speaking, these methods decompose (5) 
or (6) into smaller components and then solve the convex sub-
problem corresponding to each term simultaneously. For exam-
ple, we can use the decomposition method from [27] 

( ( ) )

,

( ( ) ) .

,arg min

arg min

v

x

y

w

w x y z

y v y y y

w x y z

x v x x x

2
1

2
1

x

y

k

k

k

k

k k k

k k

k k

k k k

1

1

1
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2
2

1 1
0

2
2

R
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A
d

x

d
y G H
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t

t

t
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U

U

U

U

m

= + + -

=

= + + -

= + + -

+ + -!

!

+
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Z

[

\

]
]
]

]
]] (10)

When the parameter t  is chosen appropriately, the generated 
sequence {( , )}x yk k  in (10) converges to the solution of (5). Since 
the second and the third lines of (10) are independent, it is even 
possible to solve them in parallel. This scheme easily extends to 
demixing three or more signals (6). 

Another practical method appears in [28]. In essence, this 
approach combines a dual formulation, Nesterov’s smoothing 
technique, and the fast gradient method [24]. This technique 
works both for (5) and (6), and it possesses a rigorous ( / )k1O
convergence rate. 

EXAMPLES
The ideas above apply to a large number of examples. Here, we 
highlight some recent applications of convex demixing in signal 
processing. The first example, texture inpainting, uses a low-rank 
and sparse decomposition to discover and repair axis-aligned tex-
ture in images. The second example uses the low-rank and diago-
nal demixing of a sensor array correlation matrix to improve 
beamforming. 

TEXTURE INPAINTING
Many natural and man-made images include highly regular tex-
tures. These repeated patterns, when aligned with the image 
frame, tend to have very low rank. Of course, rarely does a natural 
image consist solely of a texture. Often, though, a background tex-
ture is sparsely occluded by a untextured component. By model-
ing the occlusion as an additive error, we can use convex demixing 
to solve for the underlying texture and extract the occlusion [4]. 

In this model, we treat the observed digital image Z Rm n
0 !

#

as a matrix formed by the sum ,Z X Y0 0 0= +  where the textured 
component X0  has low rank and Y0  is a sparse corruption or 
occlusion. The natural demixing program in this setting is the 
rank-sparsity decomposition [2], [3]  

[ , ]  ,arg minX Y X Y X Y Zsubject toS 1 0
,X Y

1
Rm n

m= + + =
! #

t t (11)

This unsupervised texture-repair method exhibits a state-of-the-
art performance, exceeding even the quality of a supervised pro-
cedure built in to Adobe Photoshop on some images [4]. When 
applied, e.g., to an image of a chessboard, the method flawlessly 
recovers the checkerboard from the pieces (Figure 5). 

BEAMFORMING
We describe a convex demixing program for signal estimation via 
beamforming. Beamforming uses an array of n sensors to acquire 
a source signal from a given direction while suppressing the 
sources interfering from distinct directions. Denoting the signal of 
a sensor array with ( )S Cn 1d #  where  is the number of snapshots, 
the desired signal is estimated with ),( Swt  where )( Cw n 1d #  is 
known as the beamforming weights. Assuming that the signal 
impinges on the array from the direction ( ),d  the optimal weights 
for signal prediction are obtained as ( )Z d0

1n -  where 
( [ ])S SZ E t

0 =  is the correlation matrix and ( )n  stands for a cor-
rection factor to cancel the distortions [29]. When the sources are 
independent, the joint expected correlation matrix Z0  of the sen-
sor array signals takes the form ,Z A A Yt

0 0 0 0= +  where the col-
umn space of the n r#  matrix A0  encodes the bearing 
information from r  sources, and Y0  is the covariance matrix of 
the noise at the sensors. 

When the number of sources r  is much smaller than the num-
ber of sensors ,n  the matrix :X A At

0 0 0=  is positive semidefinite 
and has low rank. Moreover, when the sensor noise is uncorre-
lated, the matrix Y0  is diagonal. Using the atomic gauge recipe 
from above, we can demix X0  and Y0  from the empirical covari-
ance matrix Z0

t  by setting 

[ , , ]

 ,

arg minX Y E X Y E

X Y E Zsubject to
,X Y

S
2

0

diag Fro
Rn n 1

m= + +

+ + =

! #

+t t t

t (12)

where E  absorbs the deviations in the expectation model due to 
the finite sample size. Here, · S1

+  is the atomic gauge generated 
by positive semidefinite rank-one matrices, which is equal to the 
trace for positive semidefinite matrices, but returns 3+  when its 
argument has a negative eigenvalue. Similarly, the gauge · diag

is the atomic gauge generated by the set of all diagonal matrices, 
and so it is equal to zero on diagonal matrices but 3+  otherwise. 
The norm · Fro  is the usual Frobenius norm on a matrix. The 
results of [11] relate the success of a similar problem to the geo-
metric problem of ellipsoid fitting, and show that, under some 
incoherence assumptions, the method (12) succeeds. 

In beamforming, the array correlation matrix plays a key 
role in estimating the optimal weights. For instance, minimum 
variance distortionless response (MVDR) beamforming exploits 
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the correlation matrix to estimate the source signals at a given 
direction. The presence of noise corrupts the empirical correla-
tion matrix estimate, which deteriorates the beamforming per-
formance by MVDR. 

The approach in [31] assumes a low-rank correlation matrix 
and discusses source estimation using atomic regularization. 
Hence, the demixing results perfectly dovetail with this beam-
forming approach. To see synergy, we simulate a scenario where 
three sources impinge on a uniform linear array of ten sensors 
from far-field in free space. The input source-to-interference 
ratio (SIR) is –5 dB. In addition, we add isotropic noise to the 
sensor measurements at –10 dB source-to-noise ratio (SNR). 

The results are quite encouraging. The average output SIR 
of the standard MVDR beamformer using the empirical correla-
tion Z0

t  turns out to be 5 dB. The beamforming approach [31] 
with the empirical correlation estimate yields 6.3 dB SIR, while 
using the demixed estimate Xt  of (12) results in an impressive 
9.4 dB SIR—with an approximate improvement of 3 dB in inter-
ference suppression for source detection.

HORIZONS: NONLINEAR SEPARATION
We conclude our demixing tutorial with some promising direc-
tions for the future. In many applications, the constituent signals 
are tangled together in a nonlinear fashion [10], [12]. While this 
situation would seem to rule out the linear superposition model 
considered above, we can leverage the same convex optimization 
tools to obtain demixing guarantees and often return to a linear 
model using a technique called semidefinite relaxation.

We describe the basic idea behind this maneuver with a con-
crete application: blind deconvolution. Convolved signals appear 
frequently in communications due, e.g., to multipath channel 
effects. When the channel is known, removing the channel effects 
is a difficult but well-understood linear inverse problem. With 
blind deconvolution, however, we see only the convolved signal 
z x y0 0 0)=  from which we must determine both the channel 
x Rm

0 !  and the source .y Rd
0 !

While the convolution x y0 0)  involves nonlinear interactions 
between x0  and ,y0  the convolution is in fact linear in the matrix 
formed by the outer product .x yt

0 0  In other words, there is a lin-
ear operator :R RC m d m d"# +  such that 

( ) : .z X X x ywhereC t
0 0 0 0 0= =

The matrix X0  has rank one by definition, so it is natural use 
the Schatten 1-norm to search for low-rank matrices that gen-
erate the observed signal  

( ) .arg minX X z Xsubject to C
X

S 0
Rm d

1= =
! #

t

This is the basic idea behind the convex approach to blind 
deconvolution of [10]. 

The implications of the nonlinear demixing example above 
are far-reaching. There are large classes of signal and mixing 
models that support efficient, provable, and stable demixing. 
Viewing different demixing problems within a common frame-
work of convex optimization, we can leverage decades of research 
in various diverse disciplines from applied mathematics to signal 
processing, and from theoretical computer science to statistics. 
We expect that the diversity of convex demixing models and geo-
metric tools will also inspire the development of new kinds of scal-
able optimization algorithms that handle nonconventional cost 
functions [30].
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[FIG5] Texture inpainting (white to move, checkmate in two). The rank-sparsity decomposition (11) perfectly separates the chessboard 
from the pieces. (a) The original image. (b) The low-rank component. (c) The sparse component. 
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I
n many cases, observed brain signals can be assumed as the lin-
ear mixtures of unknown brain sources/components. It is the 
task of blind source separation (BSS) to find the sources. How-
ever, the number of brain sources is generally larger than the 
number of mixtures, which leads to an under-

determined model with infinite solutions. 
Under the reasonable assumption that 
brain sources are sparse within a 
domain, e.g., in the spatial, 
time, or time-frequency do-
main, we may obtain the 
sources through sparse rep-
resentation. As explained in 
this article, several other 
typical problems, e.g., fea-
ture selection in brain signal 
processing, can also be formu-
lated as the underdetermined lin-
ear model and solved by sparse 
representation. This article first reviews the 
probabilistic results of the equivalence between two 
important sparse solutions—the 0-norm and 1-norm solutions. In 
sparse representation-based brain component analysis including 
blind separation of brain sources and electroencephalogram (EEG) 
inverse imaging, the equivalence is related to the recoverability of 
the sources. This article also focuses on the applications of sparse 
representation in brain signal processing, including components 
extraction, BSS and EEG inverse imaging, feature selection, and 
classification. Based on functional magnetic resonance imaging 
(fMRI) and EEG data, the corresponding methods and experimental 
results are reviewed. 

INTRODUCTION
In recent years, sparse representation has received a great deal 
of attention in brain signal processing. Many biological findings 
support sparse representation/coding in the brain. For example, 

for simple cells in the primary visual cortex, it 
was shown that a set of receptive fields 

learned by maximizing the sparsity 
of the output of a neural net-

work model is spatially local-
ized, oriented, and selective 
to the spatial structure at a 
specific scale similar to 
cortical simple cells [1]. 
Sparsity of the neural 
response has been observed 

in neurons and in fMRI [2]. 
Therefore, sparsity characteris-

tic of brain activities provides a 
basis for sparse representation-based 

brain data analysis. Many problems in brain 
signal processing can be formulated by the sparse 

representation models 

( ),
( ),x
noiseless model
noisy model

x As
As v
=

= +

(1)
  (2)

where Rx n!  is a given signal vector, RA n m! # n m1^ h is a 
basis/dictionary matrix, Rs m!  is the sparse coefficient vector to 
be found, and Rv n!  represents the noise. The basis matrix A
can be randomly generated, or produced, from the union of sev-
eral known bases such as Fourier and wavelet bases, and it can 
also be estimated from the data. Equations (1) and (2) can be in a 
matrix format, in which ,x s , and v  are replaced by a signal 
matrix, a coefficient matrix and a noise matrix, respectively. 
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For example, we often assume that the observed brain signals 
are the linear mixtures of brain sources, where both the mixing 
matrix, i.e., the basis matrix A  in (1), and the brain sources are 
unknown/to be estimated [see Figure 1(a)]. This hypothesis has 

been demonstrated for EEG signals [3]. Generally, the number of 
brain sources is larger than the number of the mixtures. The 
brain sources can be assumed to be sparse in a domain such as 
the time domain or the time-frequency domain. Through sparse 

x = As

x: Observed, A: Given or Estimated, s: Sparse Solution to Be Found

Brain Signal Analysis (fMRI, EEG, Neural Spike, . . .)
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[FIG1] The framework for the applications of sparse representation in brain signal analysis.
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representation BSS, we can identify the brain sources based on 
the observed brain signals [4]. The brain sources can also be 
obtained and localized by sparse representation-based EEG 
inverse imaging, where the mixing matrix A  is first estimated 
based on a head model, and the brain sources are then separated 
and localized [see Figure 1(b)]. For component extraction, a 
channel of brain signal can be treated as a linear mixture of a 
sparse set of dynamic components, each of which corresponds to 
a column of the basis matrix A  [2] 
[see Figure 1(c)]. In feature selec-
tion, a target function (e.g., a stimu-
lus function in an fMRI experiment) 
can be linearly regressed using a 
data/feature matrix ,A  of which the 
data for each column are derived 
from a feature dimension (e.g., a 
voxel in the fMRI data). In other 
words, each row of the matrix A  is a 
feature vector [5], as shown in 
Figure 1(d). The number of features (e.g., the voxels in fMRI data) 
is generally larger than the number of observations (e.g., the 
scanning time points for each voxel in the fMRI data). For the 
classification of brain signals, we may also employ the model 
shown in Figure 1(d), in which the target function is a test sam-
ple/feature vector and each column of the data matrix is a train-
ing sample/feature vector of a certain class [6]. These typical 
problems in brain signal processing can be solved under the 
framework of sparse representation. 

The sparsity of a vector s  can be measured by p,  norm 
|| | | ,s p  which is defined as 

p
s

/
ii

m p
1

1

=
` j/  for ,p0 11 #  and 

the number of nonzeros of s  for .p 0=  As shown in Figure 1, 
there are main four classes of algorithms for finding a sparse 
solution to (1): 

■ the algorithms for 0-norm minimization, including 
orthogonal matching pursuit (OMP) and matching pursuit 
(MP), where the corresponding 0-norm solution, denoted as 

,s( )0  is the sparsest among all possible solutions of (1)  
■ the algorithms for 1-norm minimization, e.g., linear pro-
gramming (LP) [7], where the corresponding 1-norm solu-
tion, denoted as ,s( )1  is also sparse but may not be the 
sparsest and is relatively easy to obtain
■ the algorithms for p-norm minimization ,p0 11 1^ h  e.g., 
focal underdetermined system solver (FOCUSS) and the 
thresholding algorithm [8], where the p-norm minimization is 
a nonconvex optimization problem with a global optimal solu-
tion that is difficult to be found [9] but is still of interest [10] 
(some studies have discussed /1 2^ h-norm minimization [8])
■ the algorithms for finding an approximate solution through 
relaxing the constraints, including least absolute shrinkage 
and selection operator (LASSO), iterative reweighted least 
square (IRLS), separable surrogate functionals (SSFs), and the 
iterative shrinkage and thresholding algorithm (ISTA). 

Previous studies have provided detailed reviews on the sparse rep-
resentation algorithms [9]. These algorithms have been applied in 
image processing, compressive sensing, and BSS [9]. In 

brain signal processing, the choice of an algorithm depends on the 
specific task. For instance, if BSS/EEG inverse imaging is to be per-
formed, it may be beneficial to use LP algorithms because there 
have been a lot of corresponding recoverability results and there is 
no need to set any regularization parameters for the algorithms. 
For feature selection/classification, all of the above-described sparse 
representation algorithms may be used, as the objective is gener-
ally to improve the classification accuracy, and only part of the rele-

vant features may be required. 
Considering both the processing 
speed and accuracy, if the number of 
equations is small (e.g., 11,000), 
greedy algorithms can produce good 
results with high speed. For a larger 
number of equations, approximation 
methods such as ISTA, fast ISTA, and 
SSF are preferred. 

When sparse representation is 
applied to brain signal processing, 

an important objective is to find the sparsest solution, i.e., the 
0-norm solution. For instance, under the assumption that the 
brain sources are sparse, we may obtain the brain sources by find-
ing the 0-norm solution through either sparse representation-
based BSS or EEG inverse imaging. Although 0-norm 
minimization is NP-hard [9], the 0-norm solution can be 
obtained by 1-norm minimization in many cases. Equivalence 
between the 0-norm solution and the 1-norm solution thus 
becomes a key problem (see Figure 1). For sparse representation-
based BSS and EEG inverse imaging, the equivalence is related to 
the recoverability of the brain sources. As shown in Figure 1, this 
problem can be analyzed using two different types of methods: 
deterministic methods (see [9] and the references therein) and 
probabilistic methods (see [4], [7], and [11]–[14]). Compared with 
the deterministic methods, the conditions under which the two 
sparse solutions are equivalent with a high probability in the 
probabilistic methods may be weaker. This is because the condi-
tions obtained by the deterministic methods are sufficient for the 
equivalence but the probabilistic conditions are not. 

RECOVERABILITY RESULTS BASED  
ON PROBABILISTIC METHODS
In BSS and EEG inverse imaging, it is necessary to consider the 
recoverability of the brain sources. As stated above, this problem 
is transformed into the equivalence between the 0-norm solu-
tion and the 1-norm solution when sparse representation is 
applied. Herein, we review several equivalence results obtained 
by probabilistic methods. 

PROBABILISTIC METHODS BASED 
ON SUFFICIENT CONDITIONS
In references such as [10], [13], and [14], a set of sufficient con-
ditions for the equivalence between the 0- and 1-norm solutions 
were proposed with respect to the basis matrix and the sparsity 
of the 0-norm solution. The probability that these sufficient 
conditions would hold for a random basis matrix was 
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subsequently analyzed. For instance, in [10], it was shown that 
the proposed sufficient conditions, in particular, the CS condi-
tions, hold for a random basis matrix with an overwhelming 
probability. In [14], a probability result for the equivalence was 
obtained based on both an invertibility condition and a magni-
tude condition, which were imposed on a partial Fourier matrix 
and a particular polynomial, respectively. To illustrate the prob-
abilistic method, we present several results related to a so-called 
restricted isometry property (RIP) condition [13], [15]. 

RIP can be described, as shown in [15], via the following 
definitions. 

DEFINITION 1
For each integer , , , ,j n1 2 g=  the matrix A ! Rn m#  satisfies 
the RIP of order j  if there exists a ( , )0 1j !d  such that 

1 1s As sj j2
2

2
2

2
2# #d d- +` `j j (3)

holds for all j -sparse vectors s . A vector is said to be j -sparse if 
it has at most j  nonzero entries. The isometry constant jdr  of a 
matrix A  is defined as the smallest jd  satisfying (3). 

Recently, it was proven that the equivalence holds if a j-sparse 
solution exists for (1) and the isometry constant /1 3j 1dr ^ h

[16]. When the matrix A  is given randomly, using the John-
son–Lindenstrauss lemma and width theory, R. DeVore et al. 
provided a probability estimation that (3) holds as below [13]. 

THEOREM 1  
Suppose that for given , ,n m  and ,0 11 1d  the probability 
distribution generating the n m#  random matrices A  satisfies 
the concentration inequality, i.e., ı ( , )0 16 !  and ,Rs m6 !

there exists a ( ) ,c 00 2f  such that 

,P e2As s s ( )nc
2
2

2
2

2
2 0$ #f- f-^ h (4)

where the probability is taken over all n m#  matrices .A  Then 
there exist constants ,c c 01 2 2  depending only on d  such that 
the RIP condition (3) holds for A  with the prescribed d  and any 

/ ( / )logj c n m j1#  with a probability e1 2 c n2$ - -  [13]. 

Remark 1
There are a number of random matrices including random 
Gaussian and Bernoulli matrices, with distributions satisfying 
the concentration inequality (4) [13]. Using Theorem 1 and the 
bound of the isometry constant that guarantees the equiva-
lence, we may obtain a lower bound for the equivalence proba-
bility. For example, let /1 3j 1d d= ^ h and s( )0  be j -sparse with 

/ ( / ) .logj c n m j1#  Following Theorem 1 and Theorem 3.1 in 
[16], .P e1 2s s( ) ( ) c n1 0 2$= - -` j  Because the parameters c1  and 
c2  in Theorem 1 are difficult to explicitly express, the probabil-
ity (or the lower bound) that the RIP condition holds is difficult 
to obtain, especially for fixed n  and .m  In fact, the probability 
in Theorem 1 shows an overwhelming likelihood with respect to 

.n  The recoverability results based on the RIP condition can be 
extended to a noisy case (2), as shown in [16]. 

EQUIVALENCE PROBABILITY ESTIMATION
Different from the above approach, Li et al. proposed an alterna-
tive method to directly estimate the probability that the two 
sparse solutions are equivalent [4], [7], [11], [12]. Several equiva-
lence probability estimates were presented in [11] for a fixed basis 
matrix and in [12] for a random basis matrix both with a random 
0-norm solution. We present several equivalence probability esti-
mations and the corresponding simulation results for a fixed 
basis matrix with a random 0-norm solution. 

THEOREM 2 [12] 
Let ,RA n m! # ,Rs( ) m0 !  and s( )1  be the 1-norm solutions satis-
fying (1) with : .x As0=  Then ,s s( ) ( )0 1=  if and only if the optimal 
value of the following optimization problem is less than /1 2

, ,max s z 0 1sign s.t. Az z( )
k k

k m

0

1
1= =

# #
+

^ h8 B/ (5)

where [ ] ( , )maxy y 0=+  for all .y R!
It is also NP-hard to check the sufficient and necessary condi-

tion in Theorem 2 and to precisely specify the set for which the 
maximum in (5) is computed [11], [12]. However, from Theorem 
2, given the basis matrix A  the recoverability of the 0-norm solu-
tion through 1-norm minimization depends only on the index set 
and the signs of its nonzero entries, i.e., the sign vector/pattern. 
The equivalence probability can be obtained by determining how 
many sign vectors can be recovered through 1-norm minimiza-
tion, as illustrated in the following three cases [11]. 

Case 1
The number of nonzero entries for the 0-norm solution s( )0  is 
fixed, e.g., j . In this case, there are a total of C2 j

m
j  sign vectors 

with 0-norm .j  Suppose that q j  is the number of sign vectors 
with 0-norm j  which can be recovered by 1-norm minimization. 
We have 

| ,s sp P s j
C

q
2

( ) ( ) ( )
j j

m
j

j1 0 0
0= = ==` j (6)

where q j  can be obtained by checking the equivalence of each 
sign vector with 0-norm j  and its corresponding 1-norm solu-
tion. This can be performed either by Theorem 2 or by directly 
comparing the 0-norm solution with its corresponding 1-norm 
solution obtained by 1-norm minimization. 

Case 2
The number of nonzero entries for s( )0  is unknown, but the prob-
ability that every entry of s( )0  is equal to zero is known and 
denoted as .a  In this case, P s j( )0

0 ==` j ( )C 1m
j j m ja a- -  and 

( ) .s sP C p1( ) ( )
m
j

j

m
j m j

j
1 0

0
a a= = -

=

-` j / (7)

Case 3
All entries for s( )0  are drawn from a Laplacian distribution with 
the probability density function ( / ) ( | |) .exp x2m m-  In this case, 
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( ) ,s sP C p1( ) ( )
m
j

j m

j m j
j

1 0

0
. a a= -

# #

m m
-` j / (8)

where | | ( )expP s 1( )
k
0

001a mf e= = - -m ` j  and 00 2f  is a 
sufficiently small constant. 

We review several simulation results [11]. The basis matrix 
RA 7 9! #  was arbitrarily given in advance. Figure 2 shows the 

estimated equivalence probability curves (solid curves with 
“*”) and the true equivalence probability curves (dashed 
curves with “o”) for the above three cases. Note that each true 
probability value was obtained by randomly generating 1,000 
corresponding source vectors (0-norm solutions) and count-
ing the number of source vectors recovered by 1-norm mini-
mization. It follows from Figure 2 that the probability 
estimates from (6)–(8) accurately reflected the true probability 
that a 0-norm solution was recovered by 1-norm minimization 
in Cases 1–3, respectively. 

Remark 2
Based on the equivalence probability estimates described above, 
it is still NP-hard to obtain the exact values for a large .m  How-
ever, approximations can be obtained by applying a sampling 
method to the set of sign vectors [17]. In addition to the above-
described equivalence problem, another important problem in 
sparse representation is the uniqueness of the 0-norm solution 
of (1). In [7], it was shown that for model (1), a 0-norm solution 
with less than n  nonzeros is unique with a probability of one if 
the basis matrix A  is randomly given. 

In brain signal processing, noise generally can not be 
neglected. According to the discussion in [7], the 1-norm solu-
tion of (1) is robust to noise to some degree. In particular, for a 
given ,A  there exists an M 02  such that || | |s s( ) ( )

v
1 1

1 1-

| | | | ,M v 1  where s( )
v
1  is the 1-norm solution of the noisy model 

(2). Therefore, for a case with low noise, we can determine the 
0-norm solution through 1-norm minimization, provided that 

the equivalence holds. Furthermore, the above probability esti-
mations on the equivalence have been extended to the noise case 
in [17]. Simulation results showed that these probability estima-
tions of the equivalence hold at noise levels of approximately 18 
dB. However, for brain signals, it is difficult to estimate the noise 
level, which may be very high. Further studies are needed to 
demonstrate the effectiveness of the above-described probability 
estimations and to evaluate the brain sources obtained by sparse 
representation-based BSS/EEG inverse imaging. Additionally, the 
above-described probability estimates are based on the sparsity of 
the 0-norm solution, which is generally difficult to directly deter-
mine. It has been shown that the sparsity of sources can be esti-
mated based on the sparsity of the mixtures [17]. 

FUNCTIONAL MRI DATA ANALYSIS
In this section, we discuss two applications of sparse representa-
tion in fMRI data analysis: the modification of a general linear 
regression model (GLM) with statistical parameter mapping 
(SPM), and brain decoding. 

MODIFIED GLM-SPM APPROACH 
BASED ON SPARSE REPRESENTATION
An important objective of fMRI data analysis is to detect the weak 
blood-oxygen-level dependent (BOLD signal from the noisy data 
and localize the activated regions in the brain. GLM-SPM is a com-
mon method for fMRI data analysis [18] that is based on 

,x G ei i ib= + (9)

where Rxi
N!  is a time series of the ith voxel , , ,i M1 f=^ h

RG N K! #  is a so-called design matrix of which each column 
corresponds to an explanatory variable related to the specific 
experimental conditions under which the data were collected, 

Ri
K!b  is an unknown weight vector to be estimated for each 

voxel, and Rei
N!  is a noise vector. At the end of the GLM 

learning process, the statistical parameter map is obtained 
based on t- or F-statistics calculated 
using the regression coefficients, and it 
can be used to display the activated brain 
areas and the importance of each voxel. 

Several studies have been conducted to 
improve the GLM-SPM method based on 
sparse representation. One method for 
improving GLM is to modify the design 
matrix to overcome its drawbacks. The 
design matrix is generally constructed using 
the canonical hemodynamic response func-
tion (HRF). However, this function does not 
fully reflect the individual and experimental 
variances that occur during the task period 
[2]. To overcome this issue, Hu et al. pro-
posed an SPM-ICA framework with a design 
matrix composed of the components 
learned by an independent component anal-
ysis (ICA) algorithm [19]. In [2], a data-
driven sparse GLM method was proposed 
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[FIG2] Curves for estimated equivalence probabilities (solid curves with “*”) and true 
equivalence probabilities (dash-dotted curves with “o”). (a) Case 1, (b), Case 2, and 
(c) Case 3.
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for maximum likelihood (ML) estimation of spatially adaptive 
design matrices and sparse response signals. In this method, the 
BOLD signal at a specific voxel can be regarded as a linear combi-
nation of a sparse set of dynamic components [see Figure 1(c)]. A 
K-SVD-based iterative algorithm was used to identify these compo-
nents and to perform sparse coding at the same time. Based on the 
learned design matrix and sparse response signals, a statistical test 
was then used to detect the activated voxels. Using simulated and 
real fMRI data, this method was demonstrated to adapt to individ-
ual variations better than canonical HRF and spatial ICA. 

SPARSE REPRESENTATION-BASED MVPA
METHODS FOR BRAIN DECODING
Multivariate pattern analysis (MVPA) has recently become a 
popular approach for analyzing fMRI data. MVPA approaches 
open the possibility of separating and localizing spatially dis-
tributed patterns, which are generally too weak to be detected 
by univariate methods, such as 
GLM [20]. By effectively pooling the 
information available across many 
fMRI voxels, MVPA methods allow 
the perceptual, cognitive, and 
behavioral parameters or features 
to be decoded. The results of brain 
decoding can be used to further 
assess how precisely cognitive 
information is encoded by the activ-
ity of neural populations within the 
whole brain [21]. Because there are 
far more voxels (e.g., 30,000) than fMRI volumes/scanning time 
points for each of the voxels (e.g. 1,000), voxel selection plays 
an important role in the MVPA-based brain decoding of fMRI 
data [see Figure 1(d)]. It has been shown that sparse represen-
tation is an effective method for voxel selection. The sparseness 
leads to a simple prediction function useful for avoiding overfit-
ting. For instance, a LASSO regression was used to reconstruct 
muscle activity from human cortical fMRI data, where the cor-
related voxels were selected through the learned sparse weights 
[22]. In the following, we briefly present a sparse representa-
tion-based voxel selection algorithm and its two variants/exten-
sions. Specific details for these algorithms can be obtained from 
[5] and [23]. 

LINEAR PROGRAMMING-BASED
FEATURE SELECTION ALGORITHM
Let RA n m! #  denote an fMRI data matrix, where each column 
is the time series of a voxel. Let Rx n!  denote a stimulus/task 
function convolved with an HRF. A stimulus function can be 
constructed by setting its value to one when the stimulus is 
available; otherwise the value is set to zero. The following algo-
rithm is designed to identify the columns of A  (i.e., voxels in 
the fMRI data) that are relevant to .x

Algorithm 1 (LP-Based Feature Selection Algorithm):
Step 1: For , ,k K1 0g=  (a predefined integer, e.g., 100), 

perform Steps 1.1 and 1.2. 

Step 1.1: Randomly choose L  (e.g., 0.3 )n  rows from the 
matrix A  to construct an L  by m  submatrix denoted as ,Ak

with the corresponding L  entries of x  forming a column vector 
denoted by .Rxk

L!

Step 1.2: Solve the optimization problem (denote the opti-
mal solution as ),s ( )k

| | | | , . . .min s ts A s xk k1 = (10)

Step 2: Let 

.K
1s s( )k

k

K

0 1

0

=
=

/ (11)

Step 3: Using the weight vector ,s  we either select a fixed 
number (e.g., 100) of voxels with large absolute weights or 
select voxels with absolute weights higher than a given positive 
constant .0i  The threshold parameter 0i  can be chosen in vari-

ous ways, e.g., through the cross-
validation method [5]. 

Because of noise, the weight 
vector s  obtained by a single opti-
mization may not accurately reflect 
the importance of the features. 
Thus, we calculate an average 
weight vector by boosting the 
1-norm minimization in Algorithm 
1. With the selected voxels, decod-
ing of the stimulus/task parameters 
can be performed using a classifica-

tion/regression algorithm such as SVM. 

OMP-BASED FEATURE SELECTION ALGORITHM
In Step 1.2 of Algorithm 1, we can replace the LP/basis pursuit 
(BP) algorithm with the OMP algorithm [9] to conduct sparse 
representation and obtain the OMP-based feature selection algo-
rithm. For fMRI data, we find that the OMP-based algorithm is 
faster than Algorithm 1 because the number of time samples is 
generally much smaller than the number of voxels and the OMP 
algorithm avoids a large-scale LP problem. 

SPARSE REPRESENTATION-BASED
PATTERN LOCALIZATION ALGORITHM
There are three unsolved problems in Algorithm 1: the abilities 
to 1) select all informative features, 2) differentiate those 
selected features according to two stimuli classes/brain states, 
and 3) remove incorrectly selected features (irrelevant/noisy fea-
tures). A sparse representation-based pattern localization (SPL) 
algorithm was used to address these problems [23]. The SPL 
algorithm contains a K -fold cross-validation procedure. In each 
fold, a recursive iterative feature elimination method relying on 
the weights obtained by sparse representation (e.g., Algorithm 1 
or the OMP-based feature selection algorithm) is used to iden-
tify as many informative features as possible. Each iteration 
selects those informative features for removal. The next itera-
tion is based on the remaining features. After the selected 

MVPA APPROACHES OPEN 
THE POSSIBILITY OF SEPARATING 

AND LOCALIZING SPATIALLY 
DISTRIBUTED PATTERNS, WHICH 
ARE GENERALLY TOO WEAK TO 
BE DETECTED BY UNIVARIATE 

METHODS, SUCH AS GLM.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [102] MAY 2014

features from all of the iterations are removed, the decoding 
accuracy based on the remaining features is close to the chance 
level. According to the signs of the weights, the selected fea-
tures are divided into two sets corresponding to two stimuli 
classes/brain states. Next, two probability maps/density func-
tions are constructed using the two classes of features selected 
across the K  folds. Inside each probability map, the probability 
value of a feature is obtained by counting the number of times 
that the feature is selected across all folds. Finally, to remove 
the irrelevant features, the two probability maps are tested with 
a permutation test either at the individual level or at the group 
level if group data are available. In this way, two patterns corre-
sponding to the two stimuli classes/brain states are obtained. 

EXPERIMENTAL RESULTS
First, we individually applied Algorithm 1 and the OMP-based fea-
ture selection algorithm to the fMRI data of PBAIC 2007 for voxel 
selection. The details for the data can be found at http://pbc.lrdc.
pitt.edu/?q=taxonomy/term/45. The subject performed several 
tasks in a virtual reality world during scan acquisition (e.g., Hits: 
whenever the subject picked up fruits or weapons; Instruction: 
whenever task instructions were presented; Faces: whenever the 
subject looked at faces; Velocity: whenever the subject was mov-
ing). For each task, a stimulus function was provided by PBAIC 
2007. The corresponding task function was computed by convolv-
ing this stimulus function with an HRF, which reflected the delay 
of the hemodynamic responses with respect to the onsets of the 
stimuli. The data analysis predicted the task functions from the 
fMRI data. 

For each of the three sub-
jects, two runs of data, collected 
in different time intervals, were 
analyzed. After data processing, 
each run of fMRI data corre-
sponded to a matrix with 500 
rows (time points) and approxi-
mately 32,000 columns (voxels). 
Based on the BP (Algorithm 1) or 
OMP-based feature selection 
algorithm, we performed twofold 

cross-validation. In each fold, voxel selection was performed 
based on the training data (data from Run 1/Run 2) in two steps, 
i.e., an initial selection based on Pearson correlation coefficients 
between the time series of voxels and the task function and a sec-
ond selection based on our algorithm. Using the selected voxels 
(ranging from two to 100), we predicted the task function of the 
test data (data from Run 2/Run 1) through ridge regression. The 
prediction performance was measured as the Pearson correlation 
between the actual task and the predicted task functions. For the 
purpose of comparison, we used the GLM-SPM method to replace 
our method to select the voxels. The average prediction accuracies 
across all the numbers of the selected voxels are shown in Table 1. 
The high accuracy values demonstrate the effectiveness of our 
algorithms. Based on Table 1, our algorithms overperformed 
GLM-SPM method in the majority of cases, with only two excep-
tions: the accuracies obtained by the OMP-based method for sub-
ject 2 in the instruction task and for subject 3 in the face task. One 
important reason for this finding is that GLM-SPM is a univariate 
method, whereas our algorithms are multivariate. Multivariate 
methods simultaneously consider a set of variables, and their 
advantages have been shown in numerous studies [20]. For the 
face task, the results for the three subjects were significantly dif-
ferent, possibly because of the different levels of attention that the 
subjects paid to this task. 

Second, we present results obtained by applying the SPL 
algorithm to an optical imaging data set that was collected from 
a macaque monkey. The detailed experimental procedure was 
described elsewhere [23]. Based on data from 40 horizontal and 
40 vertical axis-of-motion trials, we used a leave-one-out 
method to search the informative pixels and obtained two prob-
ability maps. The difference between the two probability maps, 
which reflects the class information, is shown in Figure 3(a), 
(based on Algorithm 1) and Figure 3(b) (based on the OMP-
based feature selection algorithm). As shown in Figure 3(c), we 
also obtained a differential map between the two conditions 
using an established method for optical imaging data analysis 
(the so-called differential mapping method). The dark and 
bright blobs in Figure 3(c) represent the two classes of informa-
tive features. In Figure 3, a comparison of (a) and (b) to (c) 
reveals that our algorithms can find all of the informative fea-
tures and further separate them into two classes corresponding 
to the two experimental conditions. These results show that the 
columnar structures in the V1 area of the visual cortex of the 
monkey can be detected by the SPL algorithm. 

[TABLE 1] PREDICTION ACCURACIES (PEARSON CORRELATION) FOR FOUR TASK FUNC-
TIONS (HITS, INSTRUCTIONS, FACES, AND VELOCITY), OBTAINED BY THREE METHODS: 
GLM-SPM, LP, AND OMP-BASED ALGORITHMS.

TASK SUBJECT 1 SUBJECT 2 SUBJECT 3
GLM-SPM LP OMP GLM-SPM LP OMP GLM-SPM LP OMP

HITS 0.18 0.31 0.33 0.35 0.39 0.47 0.25 0.33 0.33
INSTR. 0.51 0.75 0.60 0.63 0.66 0.57 0.32 0.83 0.60
FACES 0.06 0.15 0.12 −0.01 0.31 0.28 0.61 0.65 0.42
VELOCITY 0.25 0.38 0.63 0.38 0.38 0.69 0.16 0.35 0.61

(a) (b) (c)

[FIG3] The dark and bright blobs in (a)–(c) are shown for two 
classes of stimuli, i.e., the horizontal axis-of-motion stimuli and 
the vertical axis-of-motion stimuli. (a) and (b) The difference 
maps reconstructed using our BP-based and OMP-based SPL
algorithms, respectively. (c) A difference map between the two 
stimulus conditions.
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EEG DATA ANALYSIS
In this section, we discuss the application of sparse representa-
tion in EEG data analysis including component analysis and 
pattern classification. 

EEG COMPONENT ANALYSIS

BLIND SOURCE SEPARATION
EEG signals can be considered as the linear mixtures of unknown 
sources with an unknown mixing matrix. In this case, the true 
sources can be obtained through 
sparse representation-based BSS [see 
Figure 1(a)]. Under the condition 
that the sources are sparse within a 
domain such as the time-frequency 
domain, the sparse representation-
based BSS can be conducted using a 
two-step method ([7], [11], and the 
references therein). The mixing 
matrix is first estimated using, e.g., a 
clustering algorithm. The sources 
are then obtained using a sparse representation algorithm. In the 
two-step method, it is difficult to estimate the mixing matrix pre-
cisely. For sparse representation-based BSS, the number of 
sources can be larger than the number of the mixtures and the 
sources can be correlated, provided that the sources are suffi-
ciently sparse. In [4], a wavelet packet transformation was first 
applied to an EEG data set collected in an experiment with a 
modified Sternberg memory task for producing sparsity. Specifi-
cally, in the experiment, the subjects were instructed to memo-
rize three numbers successively presented at random positions 
on a computer monitor. The effectiveness of the subjects’ mem-
ory was evaluated using a “test number” presented 2.5 s later. 
Next, the ratio matrix was constructed as the mixing matrix 
using wavelet packet transformation coefficients. Third, the 
sources were estimated by 1-norm mini-
mization. Furthermore, several pairs 
of almost uncorrelated sources were 
obtained, which showed memory-related 
synchronization and desynchronization. 

EEG INVERSE IMAGING
EEG signals are generally considered to 
be generated from the synchronized acti-
vation of cortical pyramidal neurons. 
Through forward modeling of brain 
sources and head volume conduction, 
EEG inverse imaging can identify these 
sources and their localizations [see Fig-
ures 1(b) and 4] [24]. EEG inverse imag-
ing is useful for the study of brain 
mechanisms and diseases detection. For 
example, high-resolution EEG inverse 
imaging can be used to identify the origin 
and propagation of dynamic epileptic 

activity and to provide information for presurgical planning for 
the patients [24]. 

The distributed source model for inverse imaging assumes 
that a large number of unit dipoles are evenly positioned in the 
brain volume or over the cortical sheet of gray matter, and each 
dipole represents a candidate source [24]. Under this assump-
tion, the first step of inverse imaging is the forward modeling of 
the brain sources and head volume conduction to establish a 
linear source-to-measurement relationship. Specifically, for the 
model shown in Figure 4, the jth row of X  is an observed EEG 

signal from the jth sensor. The ith 
column of the matrix A  [a lead 
field matrix (LFM)], corresponding 
to the ith grid, describes how a unit 
dipole with a certain location and 
orientation is related to the EEG 
measurements [24]. The ith row of 
S  is a brain source associated with 
the ith grid through the ith column 
of .A  In practice, the number of 
grids can range from 3,000 to 9,000 

depending on several factors, e.g., the data analysis task and 
whether the grids are evenly distributed in the brain volume or 
over the cortical sheet of gray matter. Given the configuration 
of the grids, the placement of the sensors and the head model, 
the transfer property jia  between the ith grid and the jth sensor 
can be calculated using either a boundary element model (BEM) 
or a finite element model (FEM) [24]. Thus, the matrix A  is 
determined. The head model can be constructed from single 
spherical shell, multiple spherical shells or the structural MRI. 
The second step is to identify the brain sources from the observed 
EEG data based on the linear model. 

Because the number of electrodes n  is much lower than the 
number of grids ,m  there are infinite solutions for the linear 
inverse problem. Various methods have been developed to 
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[FIG4] A diagram for EEG inverse imaging. 

EEG SIGNALS CAN BE 
CONSIDERED AS THE LINEAR 

MIXTURES OF UNKNOWN SOURCES 
WITH AN UNKNOWN MIXING MATRIX. 
IN THIS CASE, THE TRUE SOURCES 

CAN BE OBTAINED THROUGH SPARSE 
REPRESENTATION-BASED BSS.
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obtain an “optimal” source estimate by introducing biophysical 
and/or physiological constraints. Under the assumption that the 
brain sources are sparse, the inverse imaging problem can be 
solved through sparse representation (1-norm minimization) 
[25]. Once the sparse brain sources are obtained, they can be 
localized by the corresponding grids. 

Using ECoG mappings as a gold standard for evaluation, it 
has been shown that the results of the sparse method are com-
parable to those of other methods, e.g., 2-norm-based low-reso-
lution brain electromagnetic tomography (LORETA) for EEG 
inverse imaging [25]. We present the partial results from this 
study in Figure 5. Figure 5(a) shows the direct subdural ECoG 
recordings, whereas (b) and (c) show the imaging results from 
the LORETA and sparse methods, respectively. The results are 
displayed with the threshold set at 70% of the maximum cur-
rent density (A/mm2). The hot spots (yellow areas) indicate that 
the source activities, estimated by the sparse and the LORETA 
methods, were located on the sensory cortex. However, the hot 
spot for the sparse method corresponded more closely with the 
area identified by the subdural ECoG map. This experiment 
demonstrates that the sparse method provides better specificity 
than the LORETA method for focal sources. However, for spatial 
extended sources, multiple distributed source imaging methods 
have been tested in well-controlled simulations [26]. For 
sources with large spatial extents ,mm cm10 402 2-^ h  the 
LORETA method could provided effective results. In conclusion, 
2-norm-based methods including LORETA are suited to imag-
ing spatially distributed sources, whereas sparse methods are 
suited to imaging sparse and focal sources. Considering the dif-
ferent advantages of these two classes of methods, several 
inverse imaging algorithms combining 1-norm and 2-norm 
have been developed [24]. 

FEATURE SELECTION AND 
CLASSIFICATION OF EEG SIGNAL

FEATURE SELECTION
Although the EEG signals are contaminated by noise and arti-
facts caused by volume conduction effects, EEG patterns still 
have typical spatial, temporal, and spectral distribution charac-
teristics. For example, the motor imagery of the left/right hand 
gives rise to contralateral attenuation (or accentuation) in mu 

and beta rhythm activities in EEG, known as event-related 
desynchronization (or synchronization) (ERD/ERS) [27], which 
can be located in sensorimotor areas. P300 potentials occur 
approximately 300 ms after the attended stimulation and exist 
primarily in the parietal area, which means that signals col-
lected from certain electrodes at certain time intervals or fre-
quency bands are easier to discriminate than other signals. 
Therefore, it is desirable to build a spatial/temporal/spectral fil-
ter for feature extraction/selection. Furthermore, dimension 
reduction based on feature extraction/selection may lead to bet-
ter generalization performance for the corresponding classifier. 

Feature selection from EEG data can be performed by sparse 
representation, as shown in Figure 1(d). Take the feature extrac-
tion for motor imagery-based ERD/ERS as an example. We often 
use labeled EEG data to train a common spatial pattern (CSP) fil-
ter. To distinguish the features of the two classes of data corre-
sponding to the left- and right-hand motor imageries, 
respectively, the CSP algorithm finds the spatial filters that maxi-
mize the variance for one class and at the same time minimize 
the variance for the other class [27]. Because the CSP method is 
based on the optimization of signal variance, which is 2-norm, 
the resultant filter weights are nonsparse, which implies that all 
of the channels are used in the following classification. However, 
because the ERD/ERS is located in specific areas (e.g., the senso-
rimotor area), only nearby channels have good discrimination for 
the two classes. The other channels need to be removed before 
classification. In this case, sparse representation is well tailored 
for channel selection. Selection can be achieved by simply modi-
fying the optimization problem in the CSP method by introduc-
ing the 1-norm of the filter weights in the objective function [28]. 
The lower-weighted channels can be viewed as irrelevant and can 
thus be removed. This method is called sparse CSP (SCSP). 
Experiments have shown that the classification accuracy based on 
SCSP is greater than the accuracy of regular CSP [28]. This out-
standing performance can be explained by the fact that sparse 
representation reduces the number of participating channels, 
with a concomitant denoising effect. 

CLASSIFICATION
Sparse representation-based classification (SRC) can be con-
ducted as shown below [see Figure 1(d)]. Suppose that the basis 
matrix A  is composed of two component submatrices 

1

–1

Max

Min

(a) (b) (c)

[FIG5] The results for EEG inverse imaging (extracted from Figure 4 in [25] with permission). (a) Direct subdural ECoG recordings, 
(b) imaging results from LORETA, and (c) imaging results from the sparse method. Dotted lines indicate the central sulcus.
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corresponding to the two classes, i.e., [ | ] .A A A1 2=  The 
mutual coherence of the two submatrices is defined by 

( , ) {| , | : , , ; , , }maxMC i N j N1 1A A a a, ,i j1 2 1 2 1 2f fG H= = = (12)

where a , i1  is the ith column of ,A1

a ,j2  is the jth column of ,A2  and 
N1  and N2  are the numbers of col-
umns in A1  and ,A2  respectively. 
The inner product of the two vec-
tors is denoted by , .$ $  When MC
is low, i.e., the basis matrix is inco-
herent, a test data vector from one 
class can be predominantly represented by the columns of the 
same class in the basis matrix [6]. Thus, the classification 
based on the sparse coefficients, which can be obtained by 
sparse representation, is prone to producing the correct label. 
In ERD/ERS, for example, the CSP features can be used to 
construct the basis matrix because CSP filtering maximizes 
the incoherence between the two classes. Using the basis 
matrix for sparse regression of a test feature vector, a sparse 
solution is obtained for further classification. Specifically, the 
class label is determined by computing the energy of the coef-
ficients for each class and assigning the class label of the 
larger one to the test data. SRC was applied in the data analy-
sis of several motor imagery-based brain–computer interface 
(BCI) data sets and showed better classification performance 
than the well-known linear discriminant analysis method [6]. 

CONCLUDING REMARKS
This article discussed the applications of sparse representation 
in brain signal processing, including BSS, EEG inverse imag-
ing, feature selection, and classification. Although we mainly 
focused on fMRI and EEG data, sparse representation can also 
be applied to other brain signals such as neural spike data [29], 
magnetoencephalography [30], and MRI [31]. When sparse rep-
resentation is used to separate sources from brain signals in 
BSS and EEG inverse imaging, recoverability of the sources is a 
basic problem. This problem can be transformed to the equiva-
lence between the 0-norm solution and the 1-norm solution. 
We first reviewed the recoverability/equivalence results obtained 
by probabilistic methods. Next, we reviewed several fMRI studies 
to illustrate how to improve the GLM-SPM, a common method 
in fMRI data analysis, through sparse component analysis, and 
how to perform feature selection based on LP or OMP methods. 
For EEG signal processing, we reviewed several sparse represen-
tation methods and experimental results for BSS, inverse imag-
ing, feature selection, and classification. 

We identified several challenging problems for further study: 
■ Brain signals are highly dynamic. Several sparse represen-
tation methods have been proposed to capture the dynamic 
properties of the brain signals, e.g., a mixed-norm estimate 
method based on the structured sparsity of the sources [30]. 
Because of the high complexity of brain signals, this problem 
still needs further investigation. It may also be possible to 

establish time-varying sparse representation methods in 
which the basis matrix is time-varying. 
■ For high-dimensional brain signals, the existing sparse 
representation algorithms are generally time consuming. For 

some applications including BCIs, 
fast/real-time sparse representation 
algorithms are expected. One option 
is to reduce the dimensionality by 
considering the neurophysiological 
mechanisms of brain activities, e.g., 
brain functional areas, and develop 
or choose fast sparse representation 
algorithms such as fast ISTA. 

■ Because brain signals are highly noisy, it is challenging to 
evaluate the obtained brain sources. The existing recoverabil-
ity results (deterministic/probabilistic) need to be extended to 
highly noisy cases, and indirect but more effective methods 
need to be developed to explore the neurophysiological rea-
sonability of the brain sources associated with the corre-
sponding experimental conditions.
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udio is a domain where signal separation has long 
been considered as a fascinating objective, poten-

tially offering a wide range of new possibilities 
and experiences in professional and personal 
contexts, by better taking advantage of audio 

material and finely analyzing complex acoustic scenes. It has 
thus always been a major area for research in signal 
separation and an exciting challenge for 
industrial applications. 

Starting with blind separation of 
toy mixtures in the mid-1990s, 
research has progressed to 
real-world scenarios today, 
with applications to speech 
enhancement and recogni-
tion, music editing, three-
dimensional sound render-
ing, and audio information 
retrieval, among others. This 
has mostly been made possible by 
the development of increasingly 
informed separation techniques incorpor-
ating knowledge about the sources and/or the 
mixtures at hand. For instance, speech source separation for 
remote conferencing can benefit from prior knowledge of the room 
geometry and/or the names of the speakers, while music remaster-
ing will exploit instrument characteristics and knowledge of sound 
engineers’ mixing habits. 

After a brief historical account, we provide an overview of 
recent and ongoing research in this field, illustrating a variety of 

models and techniques designed so as to guide the audio source 
separation process toward efficient and robust solutions. 

AUDIO SOURCE SEPARATION: BASIC CONCEPTS
Initially, audio source separation was formulated as a standard 
source separation problem, i.e., as a linear system identification 

and inversion problem. In the following, we assume 
that the sources do not move, and we denote 

the number of sources and micro-
phones by J  and ,I  respectively, 

which are assumed to be known. 
We adopt the following nota-

tion: scalars are represented 
by plain letters, vectors by 
bold lowercase letters, and 
matrices by bold uppercase 
letters. The mixture signal 
( ) [ ( ), , ( )]t x t x tx I

T
1 f=  ob-

served at time t  when record-
ing the source signals ( )ts =

[ ( ), , ( )]s t s tJ
T

1 f  can be modeled by 
the convolution process

( ) ( ) ( ),t tx A s*= (1)

where ( ) [ ( ), , ( )]t t tA a a J1 f=  is the matrix of room impulse 
responses or mixing filters associated with sound propagation 
from each source to each microphone, T  denotes matrix trans-
position, and *  is the convolution operator, i.e., ( )x t

j

J
i 1
=

=
/

( ) ( ) .a s tij j0
x x-

3

x=
/

SPATIAL IMAGES AND TIME-FREQUENCY PROCESSING
It soon became clear that this formulation had intrinsic limita-
tions, especially with respect to audio specificities. First, the 
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modeling of the system as impulse 
responses between each source loca-
tion and each microphone location 
implicitly assumes that each source 
emits sound from a single point in 
space, preventing the modeling of 
spatially diffuse sources [1]. Second, 
unless extra information is available, 
the sources may be recovered at best 
up to indetermined permutation and 
filtering. Third, the linear system 

( )tA  may be inverted only in deter-
mined scenarios involving fewer sources than the number of 
microphones ( ) .J I#

In 1998, Cardoso [2] proposed to reformulate the mixing pro-
cess as 

( ) ( )t tx c j
j

J

1
=

=

/ (2)

so that source separation became the problem of extracting the 
contribution ( ) [ ( ), , ( )]t c t c tc j j jI

T
1 f=  of each source to the 

mixture. The quantity ( )tc j  was later called the spatial source 
image of the jth source [3]. This reformulation circumvented 
the filtering indeterminacy by joining ( )ta j  and ( )s tj  into a 
single quantity 

( ) ( ) ( )t s tc aj j j*= (3)

and the general model (2) became applicable to spatially diffuse 
sources, which cannot be expressed as (3). 

At the same time, several researchers proposed switching to 
the time-frequency domain by means of the complex-valued 
short-time Fourier transform (STFT). By rewriting the mixing 
process in each time frame n  and each frequency bin f  as 

( , ) ( , ),cn f n fx j
j

J

1
=

=

/ (4)

source separation was recast as a problem akin to clustering, 
whereby sound in a given time-frequency bin must be allocated to 
the one or few active sources in that bin, and separation became 
achievable in underdetermined scenarios with more sources than 
microphones ( )J I2  [4]. In the following, ,x ,s ,A ,c j ,s j  and a j

refer to time-domain variables when used with the time index t
and to their time-frequency domain counterparts when used with 
the frame and frequency bin indices n  and .f

While early source separation techniques relied on spatial 
diversity, i.e., the assumption that the sources have different direc-
tions of arrival, the move to time-frequency domain processing 
enabled the exploitation of spectral diversity, i.e., the assumption 
that their short-term spectra follow distinct distributions. This 
made it possible to handle single-channel mixtures and mixtures 
of sources sharing the same direction of arrival, such as vocals and 
drums which are often both mixed to the center in pop music. 

LEVELS OF GUIDANCE
Over the past few years, successive breakthroughs have resulted 
from the development of audio source separation techniques 

increasingly suited to the properties 
of audio sources and to the specifici-
ties of the acoustic mixing condi-
tions: more and more sophisticated 
models and algorithms have been 
developed to incorporate available 
side information (or to estimate it on 
the fly) about the sources and the 
mixing environment so as to guide 
the separation process. Today, some 
of the most advanced source separ-
ation systems integrate a fair num-

ber of spatial and spectral models into a single framework [5], [6]. 
Figure 1 visually summarizes this evolution. 

According to conventional terminology, blind source separ-
ation does not exploit any information about the sources nor 
about the mixing process. Its application domain is essentially 
restricted to dealing with determined instantaneous mixtures, 
which practically never arise in audio. 

Conversely, various terms such as semiblind or informed
have been used to characterize separation techniques based on 
some level of informedness. For instance, the use of the adjec-
tive informed is restricted to separation techniques relying on 
highly precise side information coded and transmitted along 
with the audio, e.g., the mixing filters and the short-term power 
spectra of the sources, which can be seen as a form of audio 
coding and is not covered hereafter (see [7] for a review). As 
these terms happen to be used either quite specifically or rather 
inconsistently, we will use the term guided source separation in 
this article.

In that sense, algorithms employing information about the 
general behavior of audio sources and/or of the acoustic mixing 
process in general, e.g., “the sources are sparsely distributed” or 
“the mixture was recorded outdoors,” can be described as weakly 
guided. By contrast, algorithms taking advantage of specific 
information about the mixture to be separated, e.g., the source 
positions, the names of the speakers or the musical score, may 
be coined as strongly guided.

MODELING PARADIGMS
Before we focus on specific types of guidance, let us introduce the 
common foundations of blind and guided algorithms. It was 
proved early on that separation is unfeasible if more than one 
source has a stationary white Gaussian distribution [8]. Separation 
hence relies on two alternative modeling paradigms: non-Gaussi-
anity or nonstationarity, where nonstationarity may manifest itself 
over time, over frequency, or over both [8]. These two paradigms 
are essentially interchangeable: choosing one of them does not 
restrict the type of information that may be included as guidance 
or the practical scenarios that can be considered. 

SPARSE NONGAUSSIAN MODELING
In the time-frequency domain, the convolutive mixing model (3) 
may be approximated under a narrowband assumption by com-
plex-valued multiplication in each frequency bin 

OVER THE PAST FEW YEARS, 
SUCCESSIVE BREAKTHROUGHS 

HAVE RESULTED FROM THE 
DEVELOPMENT OF AUDIO SOURCE 

SEPARATION TECHNIQUES 
INCREASINGLY SUITED TO THE 

PROPERTIES OF AUDIO SOURCES 
AND TO THE SPECIFICITIES OF THE 
ACOUSTIC MIXING CONDITIONS.
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( , ) ( ) ( , ),n f f s n fc aj j j= (5)

where the Fourier transform ( )fa j  of ( )ta j  is the so-called mixing 
vector for the jth source or, in matrix form, ( , ) ( ) ( , ),n f f n fx A s=

where )fA( = [ ( ), , ( )]f fa a J1 f  is the so-called mixing matrix.
Assuming that the source STFT coefficients have a stationary 

non-Gaussian distribution (.),P  separation may be achieved in the 
maximum likelihood (ML) sense as [9] 

( ( , ))

( , ) ( ) ( , ) .

min logP s n f

n f f n fsubject to x A s
, ,j n f

j
,A s

-

=

/

(6)

In the absence of specific information 
over A  or ,s  minimization is typically 
achieved under a scaling constraint to 
avoid divergence of A  and s to infin-
itely large or small values. A similar 
objective may be derived from a deterministic inverse problem per-
spective [9] 

( , ) ( ) ( , ( ( , )),)min n f f n f n f2
1 x A s sP

, ,n f n f
2
2

,A s
m- +/ / (7)

where (.)P  (in calligraphic font) is a penalty term. The choice of 
the tradeoff parameter m  is not a trivial task. When the constraint 

( , ) ( ) ( , )n f f n fx A s=  holds, the minimum of ( ( , ))n fsP
,n f
/

subject to this constraint is obtained in the limit when .0"m
For typical STFT window lengths on the order of 50–100 ms 

[4], the STFT coefficients of audio signals exhibit a sparse

distribution, with a sharp peak at zero and heavy tails compared to 
a Gaussian. The generalized Gaussian distribution ( ( , ))P s n fj ?

( | ( , ) | )exp s n fj
pm-  and the associated p,  sparsity inducing 

norm ( ( , )) ( , )n f n fs sP p
p= = ( , )s n fj

p
j
J

1=/  with p0 21 1
are popular choices to model this behavior [9], [10]. 

In the determined case, the objective (6) has been shown to 
maximize the statistical independence of the sources, hence 

the name independent component 
analysis (ICA). In the underdeter-
mined case, both objectives are 
called sparse component analysis
(SCA), and they are typically 
addressed by first estimating ( )fA
and then deriving ( , )n fs  using 
greedy algorithms such as match-
ing pursuit, convex optimization 
algorithms such as iterative soft 
thresholding, or nonconvex opti-

mization algorithms depending on the chosen distribution 
(.)P  or penalty (.) .P
If the sources are sufficiently sparse, there is a good chance 

that each time-frequency bin is dominated by a single source, i.e., 
( , ) ( ) ( , )n f f s n fx a j j.  for one source .j  This leads to approxi-

mate SCA as a clustering problem. The mixing vectors ( )fa j  are 
first estimated by clustering the observations ( , )n fx  and the 
sources ( , )n fs  are derived by grouping the time-frequency bins 
dominated by the same source, an operation known as time-fre-
quency masking. For a more detailed introduction to ICA and 
SCA, see [11]. 

[FIG1] Audio source separation: a general overview of the evolution in the field.
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Starting from generic techniques used in simple situations, the progress made in audio source separation over
the past 15 years has relied on the gradual incorporation of constraints and models specific to the audio signal
and to the particularities of the acoustic mixing conditions.

The current challenges include the integration of the existing approaches into a generic framework, the development of efficient
adaptation techniques and/or model selection schemes, and the design of methods for handling interactions with the user
and/or with other modalities (for instance, video).
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GAUSSIAN NONSTATIONARY MODELING
An alternative paradigm is to assume that the vectors of STFT 
coefficients of the source spatial images have a zero-mean non-
stationary Gaussian distribution 

( ( , ) | ) ( ( , )) ,detP n f n f e1c ( , )
( , ) ( , )

j n f
n f n f

c
c

c c( , )
j

j

j
H

n f j
1

c j

r
R

R
= R-

-

(8)

where H  denotes conjugate trans-
position. The covariance ( , )n fc jR
depends on time and frequency. It 
can be factored into the product of a 
scalar spectrotemporal power 

( , )v n fj  and a spatial covariance 
matrix ( )fR j  [1] 

( , ) ( , ) ( ) .n f v n f fRj jc jR = (9)

Separation is typically achieved by estimating the model parame-
ters in the ML sense 

( ( , ) | , ) ( , ) ( , )min logP n f v n f n fsubject toc R x c
, , ,v j n f

j j
j

J

1R
- =

=

/ /
(10)

using an expectation-maximization (EM) algorithm. Once R  and v
have been estimated, ( , )n fc j  can be derived in the minimum 
mean square error (MMSE) sense by multichannel Wiener filtering 

( , ) ( , ) ( , ) ( , ) .n f n f n f n fc xj
j

J

1

1

c cj jRR=
=

-

t e o/ (11)

For more detailed presentation of this paradigm, see [1]. 

INTRODUCING INFORMATION 
ABOUT THE MODEL PARAMETERS
Equations (6), (7), and (10) form the basis for all guided algo-
rithms presented hereafter. Without any further information 
about ,A ,s ,R  or ,v  the spatial source images ( , )n fc j  may be 
recovered at best up to arbitrary permutation in each frequency 
bin .f  This so-called permutation problem was historically the 
first reason to investigate the incorporation of more information 

into the models. However, guiding separation does not only 
address this problem but also improves the accuracy of the par-
ameter estimates, which in turn improves separation. 

Information may be introduced either in the form of determin-
istic constraints over ,A ,s ,R  or ,v  which restrict the values that 
these parameters may take, or in the form of penalty functions or 

probabilistic priors, which are added 
to the objective functions in (6), (7), 
and (10) and used to estimate ,A ,s

,R  and v  in the maximum a posteri-
ori (MAP) sense. These contraints, 
penalties, and priors involve their 
own parameters, which we call 
hyperparameters. The key difference 
between weakly guided and strongly 
guided separation is that the values 

of the hyperparameters must be estimated from the mixture in the 
former case, while they are fixed using expert knowledge or train-
ing in the latter case. 

MODELING AND EXPLOITING SPATIAL INFORMATION
One way to introduce information in audio source separation is 
to account for the fact that the mixing vectors ( )fa j  and the spa-
tial covariance matrices ( )fR j  are not independent across fre-
quency, but that they are linked by the spatial properties of the 
source and the recording room. We review a number of increas-
ingly complex properties that may be used in this context, from 
the spatial location of the source to the full acoustics of the 
room. Each presented model embeds the information carried by 
the previous model plus some new information. 

SPATIAL LOCATION
In the free field, the mixing vectors ( )fa j  would be collinear with 

( ) , ,f r e r e1 1d / /
j

j

i fr c

Ij

i fr c
T

1

2 2j Ij1 f= r r- -; E (12)

that is the steering vector modeling the sound attenuation and 
delay from the source to the microphones, with c  the sound vel-
ocity and rij  the distance from the jth source to the ith micro-
phone. In practical recording conditions, ( )fa j  deviates from 
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[FIG2] An example distribution over the whole frequency range of the phase and intensity differences between ( )a fj  and ( )d fj  as a 
function of RT60  for two microphones spaced 20-cm apart recording a source at 1-m distance at a sampling frequency of 8 kHz.

GUIDING SEPARATION DOES 
NOT ONLY ADDRESS THIS PROBLEM

BUT ALSO IMPROVES THE ACCURACY 
OF THE PARAMETER ESTIMATES, 

WHICH IN TURN IMPROVES 
SEPARATION.
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( )fd j  due to reflections on the boundaries of the room, which 
include early echoes and dense late echoes known as reverbera-
tion. Figure 2 shows the amount of deviation as a function of the 
reverberation time ,RT60  i.e., the time taken by late echoes to 
decay by 60 dB. 

Parra and Alvino [12] were the first to exploit the proximity of 
( )fa j  to ( )fd j  by defining a penalty term ( ( ))fAP  over the mix-

ing matrix. Many other penalties and priors were then suggested, 
including Euclidean distances and Gaussian priors on the inter-
channel phase and intensity differences by Yılmaz et al. [4] and 
Mandel et al. [13]. One of the simplest is the squared Euclidean 
distance between ( )fa j  and ( )fd j

( ( )) ( ) ( ) .f f fa a dP j j j 2
2= - (13)

Sawada et al. [14] showed that minimizing (13) with respect to 
rij  is equivalent to source localization via the generalized cross-
correlation (GCC) technique. This led to a joint iterative 
approach to source localization and separation where the source 
signals and the source locations are alternately updated. 

SPATIAL WIDTH
Duong et al. [1] later observed that the narrowband approxima-
tion (5) is invalid for reverberated and/or spatially diffuse 
sources: the sound emitted by each source reaches the micro-
phones from many directions at once at each frequency instead 
of a single apparent direction ( ),fa j  so that the channels of 

( , )n fc j  are partly uncorrelated. The spread of the distribution of 
incoming directions governs the perceived spatial width of the 
source at that frequency. They introduced the concept of full-
rank spatial covariance matrices ( )fR j  which, in comparison 
with the rank-1 spatial covariance matrices ( ) ( ) ( )f f fR a aj j j

H=

resulting from (5), account not only for the spatial location of 
the sources but also for their width. 

Assuming that the distances from the sources to the micro-
phones are known but that their absolute location in the room is 
unknown, the mean of ( )fR j  over these unknown absolute loca-
tions is approximately equal to [15] 

( ) ( ) ( ) ( ) .f f f fd dj j
H 2

echR jn v X= + (14)

The first term accounts for direct sound, as modeled by the 
steering vector ( )fd j  in (12), and the second term for echoes and 
reverberation, as modeled by the power of echoes and reverbera-
tion 2

echv  and by the covariance matrix of an isotropic sound 
field ( ) .fX  For omnidirectional microphones, the entries of 

( )fX  are given by the sinc function 

( ) /
( / )sin

f fd c
fd c

2
2

ii
ii

ii

r
r

X =l
l

l (15)

with diil the distance between microphones i  and .il  Theoretical 
expressions are also available for 2

echv  depending on the room 
dimensions and reflection coefficients. Duong et al. [15] 
exploited this fact to estimate ( )fR j  in the MAP sense under an 
inverse-Wishart prior ( ( )) .P fR j

EARLY ECHOES AND REVERBERATION
Although the full-rank model (9) improved upon the narrowband 
model (5), it remains an approximation of the true mixing process 
(3). Figure 3 illustrates the shape of a room impulse response 

( )a tij  over time. In typical reverberation conditions, these 
responses are several hundred milliseconds long, so that they 
extend over several time frames. This prompted authors to gener-
alize (9) in the single-channel case as the convolution of ( , )v n fj

and a nonnegative exponentially decaying filter ( , )q l fj  represent-
ing the power of ( )a tj  for a delay of l  time frames [16]. This 
model has been used for single-source dereverberation given 
knowledge of RT60  and it is making its way into source separation. 

Going one step further, Kowalski et al. [17] argued for a move 
back to time-domain modeling of the mixing filters, while still 
exploiting the sparsity of the sources in the time-frequency 
domain. This was achieved by replacing the narrowband loss 
term in (7) by the exact wideband loss term 

( ) ( ) ( ) ( ( , ))min t t n f2
1 x A s sP

,t n f
2
2

,A s
* m- +/ / (16)

and by deriving an iterative soft thresholding algorithm that 
effectively alternates between the time domain and the time-fre-
quency domain at each iteration, assuming that ( ( , ))s n fP  is a 
convex penalty. 

This study was the starting point for subsequent studies aim-
ing to define penalties over the mixing filters in the time 
domain. Benefiting from the fact that early echoes are sparsely 
distributed over time, as can be seen from Figure 3, Benichoux 
et al. [18] exploited an p,  penalty over the filters 

( ) | ( ) |a taP
,

j
i t

ij
p=/ (17)

with .p0 21 #  The exponential decaying shape of reverbera-
tion was later included by time-dependent rescaling of (17). The 
key difference with previous models is that the deviations of 

( )fa j  from ( )fd j  are not modeled as random anymore, but they 
must result in sparse early echoes. 

[FIG3] A schematic illustration of the magnitude of a room 
impulse response between a source and a microphone for a 
reverberation time 250RT60 =  ms.
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FULL ROOM ACOUSTICS
Lately, in a major departure from 
conventional audio source separ-
ation, a number of researchers pro-
posed to stop modeling the room 
impulse responses between individ-
ual sources and microphones but to 
learn them between all possible 
pairs of points in the room instead, 
under the constraint that the source separation system is always 
to be used in that room. The rationale is that room impulse 
responses span a manifold (said differently, a small movement in 
the room results in a small deviation of the impulse response), 
so that measuring impulse responses for a few points may suffice 
to predict them for other points. This accounts for all possibly 
available spatial information, including the direct path, the 
delays and amplitudes of early echoes, and the shape of reverber-
ation. Asaei et al. [19] consider each point in the room as a 
source and constrain most sources to be inactive by means of a 
group sparsity penalty (see below). More recently, Deleforge et al. 
[20] attempted to learn a smaller-dimensional representation of 
the manifold by probabilistic local linear embedding. The latter 
approach achieved impressive source separation results given 
thousands of room impulse response measurements, and its 
extension to practical setups with a smaller number of measure-
ments constitutes a great avenue for research. 

MODELING AND EXPLOITING 
SPECTROTEMPORAL INFORMATION
Besides spatial information, the source spectra and their evolu-
tion across time are the second main supply of information for 
audio source separation. We review increasingly complex proper-
ties of ( , )s n fj  and ( , )v n fj  that may be used to guide separation, 
from local persistence to long-term dependencies. 

TIME-FREQUENCY PERSISTENCE
In audio signals, significant STFT coefficients are not randomly 
distributed in the time-frequency plane but they tend to cluster 
together. This is illustrated in Figure 4, where vertical and hori-
zontal lines appear, corresponding to transient and tonal parts of 

musical notes, respectively. Similar 
and more complex structures can 
be found in speech. 

This persistence over time or 
frequency can be promoted by the 
use of group sparsity or other struc-
tured sparsity penalties on ( , )s n fj

[21]. For instance, the ,1 2,  norm 

( ) | ( , ) |s s n fP j
f

j
n

2= // (18)

imposes sparsity over time but no constraint over frequency. An 
alternative technique is to set a hidden Markov model (HMM) 
prior on sequences of STFT coefficients. Févotte et al. [22] 
showed that the latter approach outperforms unstructured pri-
ors in a denoising task. 

SHORT-TERM SPECTRA
Beyond frequency persistence, sound sources are characterized 
by their short-term spectra, i.e., the dependencies between 

( , )v n fj  over the whole frequency range .f  A popular approach is 
to represent the source short-term spectra ( , )v n fj  as the sum of 
nonnegative basis spectra ( ),w fjk  scaled by nonnegative time-
varying activation coefficients ( )h njk  [23], [24]

( , ) ( ) ( ) .v n f w f h nj jk
k

K

jk
1

=
=

/ (19)

This model has been indifferently applied to magnitude spectra
or to power spectra in the single-channel case, however only the 
latter easily generalizes to the multichannel case. Each basis 
spectrum may represent, e.g., part of a speech phoneme or a 
musical note, as illustrated in Figure 5(a). Due to its equivalent 
matrix form ,V W Hj j j=  this model is better known as nonneg-
ative matrix factorization (NMF). Considering the fact that only 
one speech phoneme or few musical notes may be active at once, 
sparsity was enforced by reducing the sum to a single compo-
nent k  [25] or by adding penalties such as the 1,  norm 

( ) ( )h nHP
,j k n jk=/  [23]. Group sparsity penalties and priors 

were also introduced to favor simultaneous activity of basis spec-
tra associated with the same phoneme or note, or to select the 
correct speaker or instrument among a collection of basis spec-
tra trained on different speakers or instruments [26]. 

FINE SPECTRAL STRUCTURE AND SPECTRAL ENVELOPE
Several extensions were brought to NMF to further constrain the 
basis spectra. A first idea is to decompose the basis spectra them-
selves by NMF as the sum of narrowband spectral patterns 

( )b fjkm  weighted by spectral envelope coefficients :e jkm

( ) ( ) .w f b f e
m

M

1
jk jkm jkm

k

=
=

/ (20)

The narrowband spectra may be fixed so as to enforce harmonicity
(i.e., spectral peaks at integer multiples of a given fundamental fre-
quency) or smoothness, which are common structures to many 
sound sources, and to adapt the spectral envelope coefficients to [FIG4] A spectrogram of a xylophone melody.
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BESIDES SPATIAL INFORMATION, 
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the mixture, which are specific to each 
source. These structures are suitable for 
sustained and transient musical sounds, as 
shown in Figure 5(b).  

Another refinement complying with 
the physical production of many natural 
sounds is to decompose the source short-
term spectra via the excitation-filter model 

( , ) ( , ) ( , ),v n f v n f v n fft
j j j

ex= (21)

where ( , )v n fj
ex  and ( , )v n fj

ft  represent the 
excitation signal (e.g., the glottal source) 
and the response of the filter (e.g., the 
vocal tract) and they are modeled by NMF 
[27]. This constraint enforces similar spec-
tra for different fundamental frequencies, 
in a similar way as the shift-invariance
constraint in [28], i.e., the constraint that 
all basis spectra are spectrally translated 
versions of a single spectrum. 

Ozerov et al. [5] recently proposed a 
comprehensive multilevel NMF framework 
integrating (19)–(21) by multiplication of up 
to eight matrices, each of them capable of 
embodying specific knowledge or con-
straints in a flexible way. All these extensions 
can be compactly formalized as nonnegative 
tensor factorization (NTF), an extension of 
NMF to multidimensional arrays. 

TEMPORAL EVOLUTION
The aforementioned models do not 
directly model the temporal evolution of 
the spectra. At a short time scale, Virtanen 
[23] enforced the continuity of NMF acti-
vation coefficients by adding the penalty 

( ) ( ) ( )h n h n1HP j n
2

jk jk= + -/  while 
Ozerov et al. [5] modeled them in a simi-
lar fashion as (20) as the product of time-
localized patterns and sparse temporal 
envelopes, as depicted in Figure 5(c). Con-
tinuous or HMM priors on ( )h njk  were 
also used to this end. 

At a medium time scale, Smaragdis 
[29] generalized (19) into the convolutive 
NMF model 

( , ) ( , ) ( ),v n f w l f h n lj
lk

K

1
jk jk= -

=

// (22)

where the basis elements ( , )w l fjk  are now spectrotemporal 
patches rather than single-frame spectra, thus explicitly encoding 
the temporal evolution of sound events at each frequency. Musico-
logical models and spoken language models were also exploited to 
favor certain note and chord progressions or certain sequences of 
words using longer-term HMM priors on ( ) .h njk  Mysore and 

Sahani [26] provided an efficient algorithm to separate multiple 
sources, each modeled by an HMM. 

In another major departure from conventional audio 
source separation, several researchers recently proposed to 
exploit the information encoded by redundancy and repetitive 
patterns at very long time scales, so as to optimize the use of 

[FIG5] The multilevel NMF decomposition of the spectrogram in Figure 4. (a) The
decomposition as the product of basis spectra W j  and temporal activations .H j  (b) The 
second-level decomposition of W j  as the product of harmonic and noisy narrowband 
spectral patterns B j  and associated spectral envelopes .E j  (c) The second-level 
decomposition of H j  as the product of time-localized patterns T j  activated at some 
time weights .G j
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available information over the whole signal duration. Robust 
principal component analysis (RPCA), which decomposes an 
input spectrogram as the sum of a 
low-rank matrix and a sparse mat-
rix, was used by Huang et al. [30] to 
separate (sparse) drum and melody 
sources from a (low-rank) repetitive 
tonal accompaniment. The search 
for repeating patterns in music was 
also exploited by Rafii et al. [31] 
through the identification of repeat-
ing segments (of up to a duration of 
40 s), their modeling, and their extraction via time-frequency 
masking. In the future, such ideas may be applied to automatic 
learning of fine-grained models from larger and larger amounts 
of audio data eventually covering the sounds arising in the mix-
ture to be separated. 

IMPACT AND PERSPECTIVES
Over the past 15 years, audio source separation has recorded 
constant progress and today it has reached a level of maturity 
that enables its integration in real-life application contexts. For 
instance, multichannel NMF and NTF have improved perform-
ance by 3–4 dB signal-to-distortion ratio (SDR) compared to 
SCA in certain scenarios, and they have made it possible to sep-
arate real-world music recordings using weakly guided models 
for typical instruments (vocals, drums, bass) and for the 
remaining instruments [3]. Joint spatial and spectral modeling 
[5], [6] and convolutive NMF have contributed to the reduction 
of the keyword error rate for small-vocabulary automatic speech 
recognition (ASR) from 44% down to as little as 8% in a 
strongly guided real-world domestic scenario involving know-
ledge of the speaker and his/her spatial position [32]. Finally, 
weakly guided separation of percussive and harmonic content in 
music has helped several music information retrieval (MIR) 
tasks, reducing, e.g., the relative error rate for chord recogni-
tion by 28% [33]. 

These and other results show that improved separation per-
formance in many scenarios can be obtained by modeling and 
exploiting spatial and spectral properties of sounds, i.e., by 
designing models and constraints which account for the specif-
icities of audio sources and acoustic mixing conditions. Two 
trends can be seen: developing complex, hierarchical models 
with little training so as to adapt to unknown situations with 
little amounts of data, or training simpler models on huge 
amounts of data, e.g., thousands of room impulse responses 
and dozens of hours of speech, so as to benefit from the power 
of big data and turn parameter estimation into a model selec-
tion problem. 

In either case, the design of clever, computationally efficient 
convex relaxations and nonconvex optimization algorithms has 
given increasing attention to handle the optimization of all model 
parameters and hyperparameters at once and to escape extra local 
optima that may hinder the benefit of such models. In certain sce-
narios, some hyperparameters can be set using expert knowledge 

or training on separate data, and only the remaining hyperparam-
eters need to be estimated from the mixture. 

With few exceptions [5], [6], most 
separation systems currently exploit 
only a limited set of constraints, pen-
alties, or priors. Research is ongoing 
on the improvement of the above 
models, as well as on the incorpor-
ation of side-information that has lit-
tle been exploited so far, e.g., visual 
information about the source move-
ments. Ultimately, the integration of 

the variety of developed models and schemes into a complete, fully 
versatile system constitutes a challenge in itself. 
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I
n recent years, source separation has been a central research 
topic in music signal processing, with applications in stereo-
to-surround up-mixing, remixing tools for disc jockeys or pro-
ducers, instrument-wise equalizing, karaoke systems, and 
preprocessing in music analysis tasks. Musical sound sources, 

however, are often strongly correlated in time and frequency, and 
without additional knowledge about the sources, a de-
composition of a musical recording is often 
infeasible. To simplify this complex 
task, various methods have recent-
ly been proposed that exploit the 
availability of a musical score. 
The additional instrumenta-
tion and note information 
provided by the score 
guides the separation pro-
cess, leading to significant 
improvements in terms of 
separation quality and robust-
ness. A major challenge in utiliz-
ing this rich source of information 
is to bridge the gap between high-level 
musical events specified by the score and their 
corresponding acoustic realizations in an audio recording. In 
this article, we review recent developments in score-informed 
source separation and discuss various strategies for integrating 
the prior knowledge encoded by the score. 

INTRODUCTION
In general, audio source separation methods often rely on assump-
tions, such as the availability of multiple channels (recorded using 

several microphones) or the statistical independence of the source 
signals, to identify and segregate individual signal components. In 
music, however, such assumptions are not applicable in many 
cases. For example, musical sound sources often outnumber the 
information channels, such as a string quartet recorded in two-
channel stereo. Also, sound sources in music are typically highly 

correlated in time and frequency: instruments follow 
the same rhythmic patterns and play notes 

that are harmonically related. Purely 
statistical methods such as inde-

pendent component analysis 
(ICA) or nonnegative matrix 

factorization (NMF) there-
fore often fail to completely 
recover individual sound 
objects from music mix-
tures [1]. 

High-quality source sepa-
ration for general music 

remains an open problem. One 
approach is to exploit known spec-

trotemporal properties of the sources to 
facilitate the segregation [1], [2]. For example, 

in a time-frequency representation, percussive instruments 
typically exhibit structures in the frequency direction (short 
bursts of broadband energy) while harmonic instruments usually 
lead to structures in the time direction (slowly changing harmon-
ics). Many instruments, however, emit similar energy patterns, 
and thus they are hard to distinguish based on spectrotemporal 
characteristics alone. To overcome these problems, various 
approaches presented in recent years exploit (user-generated) 
annotations of a recording as additional prior knowledge. For 
example, to simplify the separation process, one can specify the 
fundamental frequency of instruments [3], manually assign 
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harmonics in a spectrogram to a specific source [4], or provide 
timing information for instruments [5], [6]. However, while such 
annotations typically lead to a significant increase in separation 
performance, their creation can be a laborious task. 

In this article, we focus on a natural and particularly valuable 
source of prior knowledge that exists for many pieces: a musical 
score. The score contains information about the instruments and 
notes of the musical piece and can be used to guide and simplify 
the separation process even if the sources are hard to distinguish 
based on their spectrotemporal 
behavior. In particular, information 
about pitch and timing of note events 
can be used to locate and isolate cor-
responding sound events in the audio 
mixture (Figure 1). For example, note 
events for a guitar, clarinet, and piano 
[Figure 1(a)] can be used to direct the 
extraction of corresponding instru-
ment sounds from a given recording 
[Figure 1(c)]. Knowledge about the 
instrumentation can also aid in 
selecting appropriate source models or training data. For example, 
the spectrotemporal characteristics of the clarinet [the orange 
graph in  Figure 1(c)] are different from those of the piano and 
should be modeled accordingly.

The score also gives an intuitive and user-friendly representa-
tion for musically experienced users to specify the target sources 
to be separated. For example, by partitioning the score into 
groups of note events, one can easily specify that the main mel-
ody should be separated from the accompaniment or that all 

string instruments should be separated from the wind instru-
ments. This concept led to novel ideas and application scenarios 
in the context of instrument-wise equalization [8], personal 
music remixing [9], music information retrieval [10], and intelli-
gent audio editing [7]. Figure 2 gives an example where a user 
can easily specify the desired audio manipulation within the score 
simply by editing some of the notes. These manipulations are 
then automatically transferred to a given audio recording using 
score-informed audio parametrization techniques [7] (see the 

demonstration Web site with videos 
at http://www.audiolabs-erlangen.de/
resources/2013-ACMMM-AudioDe-
comp/ for more information). Addi-
tionally, applications such as singing 
voice removal for karaoke [11] or 
parametric coding of audio objects 
[12] can significantly benefit from 
the increase in separation robust-
ness resulting from the integration 
of score. 

While integrating score informa-
tion bears the potential for a significant gain in separation quality, 
dealing with real data remains a major issue. In particular, score-
informed separation methods often have only been tested on 
recordings synthesized from the score, such that many practical 
issues are not reflected in the test data. Some of these issues can 
be observed on the following demo Web sites, which provide lis-
tening examples using nonsynthetic data: http://www.mpi-inf.
mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/ [14], 
http://www.ece.rochester.edu/~zduan/jstsp2011/examples.html 
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[FIG1] Score-informed source separation: instrument lines as specified by (a) a musical score are employed as prior knowledge for the 
decomposition of (b) a mixture audio recording into (c) individual instrument sounds. The mixture consists of a guitar (blue), clarinet 
(orange), and piano (green).
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[13], and http://www.eecs.qmul.ac.uk/~jga/eusipco2012.html [15]. 
In a real-world scenario, a score specifies relative positions for note 
events on a musical time and pitch grid using an abstract, high-
level language with a lot of leeway for interpretation by a per-
former. The score specifies neither exact frequencies nor the 
precise timing and duration of the musical tones. Also, the timbre 
and the loudness are only specified in terms of coarse instructions 
such as forte meaning loud. Additionally, a musician may deviate 
from the score by adding extra notes (ornaments and grace notes), 
or there may be playing errors or even structural differences such 
as skipped sections. Further, while full scores are freely available 
for many classical pieces as a result of substantial digitization 
efforts (for example, the International Music Score Library Project, 
which can be found at http://imslp.org), there are often only so-
called lead sheets available for pop music, which only specify parts 
of the score including the melody, lyrics, and harmony. Altogether, 
such issues and uncertainties lead to significant challenges in 
score-informed source separation, which current approaches have 
just started to address.

USING NMF FOR SOURCE SEPARATION
Among the various methods for blind source separation, NMF 
has been one of the most successful [16]. The method is easy to 
implement, computationally efficient, and has been success-
fully applied to various problem areas, ranging from computer 
vision to text mining and audio processing. Let us see how 
NMF-based techniques can be used for audio source separation, 
and how they behave when applied to music.

CLASSIC NMF
Let Y RM N! #

+  denote the magnitude spectrogram of a music 
recording, where M N!  and N N!  denote the number of 
frequency bins and number of time frames, respectively. Given 
a parameter ,K N!  NMF derives two nonnegative matrices W
! RM K#

+  and H RK N! #
+  such that ,WH Y.  or more precisely, 

such that a distance function between Y  and WH  is mini-
mized. This distance is often a modified Kullback–Leibler 
divergence [16]. To compute a factorization, the matrices W
and H  are first initialized with random values and then itera-
tively updated using multiplicative update rules [16]. After the 
update process, each column of W  (also referred to as template 
vector) corresponds to the prototype spectrum of a certain 
sound component (e.g., a C4 note played on a piano), and the 
corresponding row of H  (also called activation) encodes when 
that sound was active and its volume. When using NMF to sep-
arate musical sound sources, we assume that each pair of tem-
plate vector and activation describes a sound that was produced 
by a single instrument, and that this instrument can easily be 
identified, to allow all the sounds from that instrument to be 
grouped together. 

However, there are various issues with this approach. Consider 
Figure 3(a) showing a spectrogram of a music recording of a piano 
and a guitar. The piano plays the notes C4, E4, and C4 and, at the 
same time, the guitar plays the notes G4, C4, and G4 (see also 
“Reading a Musical Score”). Figure 3(b) shows an NMF-based 
decomposition of the spectrogram, with the parameter K  manu-
ally set to four allowing for one template for each of the two 
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[FIG2] The score-informed audio editing (see [7]). (a) For each note in the score, the corresponding sound is extracted from a recording 
of Chopin’s op. 28, no. 4. (b) By applying pitch-shifting techniques to the individual notes, the piece is changed from minor to major.
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different musical pitches used by the two instruments. Looking at 
the template matrix W  and the activation matrix ,H  some prob-
lems become apparent. It is not clear to which sound, pitch, or 
instrument a given template vector corresponds. Furthermore, 
the activation patterns in H  indicate that the templates corre-
spond to mixtures of notes (and instruments). The first two tem-
plates seem to represent the note combinations piano-C4/
guitar-G4 and piano-E4/guitar-C4, while the last two templates 
seem to correspond to short-lived broadband sounds that occur at 
the beginning of these notes. Based on such a factorization, the 
two instruments cannot readily be separated. 

SCORE-INFORMED CONSTRAINTS
To overcome these issues, most NMF-based musical source sepa-
ration methods impose certain constraints on W  and .H  A typical 
approach is to enforce a harmonic structure in each template in 
W, and temporal continuity in each activation in H [1], [17]. Fur-
ther, if the instruments occurring in a recording are known, one 
can use monophonic training material to learn meaningful tem-
plates [17]. While such extensions typically lead to a significant 
gain in separation quality over classic NMF, they do not fully solve 
the problem. 

Therefore, if strong prior knowledge is available, it should be 
exploited to further increase the separation performance. In this 
context, a musical score is particularly valuable. On a coarse level, 
we can extract global information from the score, such as which 
instruments are playing or which and how many pitches occur 

over the course of a piece of music. In our example, this informa-
tion can be used to set the number of templates automatically to 
K 4=  (two instruments each with two different pitches). We can 
also assign an instrument and pitch attribute to each template 
[Figure 3(c)]. On a finer level, one may also exploit local informa-
tion on when notes are actually played. Suppose we could assume 
that a score prealigned to a corresponding audio recording is avail-
able, i.e., that the note events specified by the score are aligned to 
the time positions where they occur in the audio recording. Using 
this score information, one can impose constraints on the times 
that certain templates may become active by initializing those 
activation entries with zero, where a certain instrument and pitch 
are known to be inactive. Once an entry in W  or H  is initialized 
to zero, it will remain set to zero during the subsequent multipli-
cative update steps [16]. As an example, consider Figure 3(c), 
where all entries in H  outside the yellow rectangles were initial-
ized with zero values. 

In some cases, such an approach will be sufficient to separate 
many of the notes. However, in our example, the resulting factor-
ization is almost identical to the unconstrained one; compare Fig-
ure 3(b) and (c). Since the piano-C4/guitar-G4 and piano-E4/
guitar-C4 combinations always occur together, the constraints on 
the time activations H have no significant effect, and the first two 
templates still represent these note combinations. Indeed, individ-
ual sounds in music recordings often only occur in certain combi-
nations, which limits also for real recordings the benefits of 
applying constraints on H alone. 
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with nonzero values.
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To overcome this problem, we can apply dual-constraints, 
where both templates and activations are constrained in parallel 
[6], [14]. The idea to constrain the templates W  is based on the 
observation that most instruments written in a score produce har-
monic sounds and that the templates should reflect this structure. 
In general, a harmonic sound is one whose energy in a time-fre-
quency representation is concentrated around integer multiples of 
the so-called fundamental frequency. These energy concentrations 
are also referred to as harmonics. To enforce such a structure in 
the templates, we can constrain the spectral energy between har-
monics to be zero [18]. More precisely, after assigning an instru-
ment and musical pitch to each template vector using the score 
information, we can use the standard frequency associated with 
each pitch as an estimate of the fundamental frequency (see 
“Reading a Musical Score”), and the rough positions for the har-
monics can then be derived. As the exact frequencies are not 
known, a neighborhood around these positions can then be initial-
ized with nonzero values in the templates, while setting the 
remaining entries to zero; see [14] and [18] for details. Figure 3(d) 
shows the resulting factorization, with the nonzero neighbor-
hoods around the harmonics indicated by red rectangles in W . All 
four template vectors in W  have now a clearly defined harmonic 
structure and most disturbing interferences from other sounds 
have been eliminated, such that the two instruments can finally be 
separated based on this factorization. Listening examples using 
full-length piano recordings and publicly available score-data can 
be found at http://www.mpi-inf.mpg.de/resources/MIR/
ICASSP2012-ScoreInformedNMF/.

ALIGNING AUDIO AND SCORE DATA
In the previous section, we assumed that we had a temporal align-
ment between the score’s note events and the physical time posi-
tion where they actually occur in a given audio recording. While 
musical scores are available for many songs, they are rarely 
aligned to a given recording, and aligning them manually is very 
laborious. To automate this process, there are various methods for 

computing a temporal alignment between score and audio repre-
sentations, a task also referred to as score-audio synchronization.

Rather than giving strict specifications, a score is rather a 
guide for performing a piece of music, leaving scope for different 
interpretations (see “Reading a Musical Score”). Reading the 
instructions in the score, a musician shapes the music by varying 
the tempo, dynamics, and articulation, thus creating a personal 
interpretation of the piece. The goal of score-audio synchroniza-
tion is to automatically match the musical timing as notated in 
the score to the physical timing used in audio recordings. Auto-
matic methods typically proceed in two steps: feature extraction 
from both audio and score, followed by temporal alignment [19].

The feature representations should be robust to irrelevant vari-
ations yet should capture characteristic information that suffice to 
accomplish the subsequent synchronization task. Chroma-based 
music features have turned out to be particularly useful [20]. Cap-
turing the short-time energy distribution of a music representa-
tion across the 12 pitch classes (see “Reading a Musical Score”), 
chroma features closely correlate to the harmonic progression 
while showing a large degree of robustness to variations in timbre 
and dynamics. Thanks to this property, chroma features allow for a 
comparison of score and audio data, where most acoustic proper-
ties in the audio that are not reflected in the score are ignored. 
Figure 4 illustrates chroma feature sequences derived from (a) 
score data and (b) audio data. 

In the second step, the derived feature sequences are brought 
into temporal correspondence, using an alignment technique 
such as dynamic time warping (DTW) or hidden Markov models 
(HMMs) [19]. Intuitively, as indicated by the red bidirectional 
arrows shown in Figure 4, the alignment can be thought of a 
structure, which links corresponding positions in the score and 
the audio and thus annotates the audio recording with available 
score data. 

Various extensions to this basic scheme have been proposed. 
For example, additional onset cues extracted from the audio 
can be used to significantly improve on the temporal accuracy 

READING A MUSICAL SCORE
Modern music notation uses an abstract language to specify 
musical parameters. Pitch is indicated by the vertical placement of 
a note on a staff, which consists of five horizontal lines. Each 
musical pitch is associated with a name, such as A4 (correspond-
ing to the note between the second and the third line from the 
bottom in Figure S1), and a standard frequency in Hz (440 Hz for 
the A4). If the standard frequency of a pitch is twice as high com-
pared to another, they are said to differ by an octave. In this case, 

the two pitches share the same letter in their name, also referred 
to as chroma, and only differ in their number (e.g., A3 with 220 
Hz is one octave below the A4). In most Western music, a system 
referred to as equal temperament is used that introduces 12 dif-
ferent chromas by the names C, C#, D, …, B, which subdivide each 
octave equidistantly on a logarithmic frequency scale. A special 
symbol at the beginning of a staff, the clef, is used to specify 
which line corresponds to which pitch (e.g., the first symbol in 
Figure S1 specifies that the second line from the bottom corre-
sponds to G4). Temporal information is specified in a score using 
different shapes for the note, which encode the relative duration 
of a note. For example, a whole note or semibreve (denoted by 
the symbol ) is played twice as long as a half note or minim ( ), 
which again is played twice as long as a quarter note or crotchet 
( ). Additional information on music notation can be found at 
http://en.wikipedia.org/wiki/Musical_notation.

A4 G4 E4

[FIGS1] An example of a simple score consisting of three notes.
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of the alignment [21], [22]. Other 
approaches address the problem of com-
puting an alignment in real time while 
the audio is recorded [19], [23]. Further-
more, methods have been proposed for 
computing an alignment in the presence 
of structural variations between the score 
and the audio version, such as the omis-
sion of repetitions, the insertion of addi-
t ional  parts  (sol i ,  cadenzas) ,  or 
differences in the number of stanzas [24]. 
Such advanced score-audio synchroniza-
tion methods are an active area of cur-
rent research [21], [23]. 

DEALING WITH VIBRATO AND 
FREQUENCY DRIFT
While the approach outlined in the section 
“Using NMF for Source Separation” yields 
good results in many cases, it relies on the 
assumption that the fundamental fre-
quency associated with a musical pitch is 
approximately constant over time, since 
the frequency position of harmonics in 
each template is fixed and cannot move up 
or down. While this assumption is valid for 
some instruments such as a piano, it is not 
true in general. Figure 5 shows an audio 
recording of a piano and a clarinet. The 
piano (green) indeed exhibits stable horizontal frequency trajec-
tories, whereas the clarinet produces strong frequency modula-
tions due to the way it is played (“vibrato”). These are clearly 
visible, for example, between seconds 3 and 4 in a spectral band 
around 1,200 Hz. Additionally, the clarinet player continuously 
glides from one note to the next, resulting in smooth transitions 
between the fundamental frequencies of notes (e.g., between sec-
ond 4 and 5). As a result, while a single note in the score is associ-
ated with a single musical pitch, its realization in the audio can 
be much more complex, involving a whole range of frequencies. 

To deal with such fluctuating fundamental frequencies, para-
metric signal models have been considered as extensions to NMF 
[17], [25]. In these approaches, the musical audio signal is mod-
eled using a family of parameters capturing, for example, the 
fundamental frequency (including its temporal fluctuation), the 
spectral envelope of instruments or the amplitude progression. 
Such parameters often have an explicit acoustic or musical inter-
pretation, and it is often straightforward to integrate available 
score information. 

As an example for such a parametric approach, we consider a 
simplified version of the harmonic temporal structured cluster-
ing (HTC) strategy [17], [26]. Variants of this model have been 
widely employed for score-informed source separation [8]–[10], 
[27]. In an HTC-based approach, specialized model components 
replace NMF template vectors and activations. Each HTC tem-
plate consists of several Gaussians, which represent the partials 

of a harmonic sound [Figure 6(a)]. To adapt the model to differ-
ent instruments and their specific spectral envelopes, the height 
of each Gaussian in an HTC template can be scaled individually 
using a set of parameters [ , ...,1 5c c  in Figure 6(a)]. An additional 
parameter f( )n

0  specifies the fundamental frequency of an HTC 
template in each time frame .n  Assuming a harmonic relation-
ship between the partials, the parameter f( )n

0  also controls the 
exact location of each Gaussian [Figure 6(a)]. 

HTC activations are also constructed using Gaussians. Their 
position is typically fixed such that only some height parameters 
can be adapted [parameters , ,1 7fa a  in Figure 6(b)]. By choos-
ing suitable values for the variance of these Gaussians, one can 
enforce a significant overlap between them, which leads to an 
overall smooth activation progression. 

Combining the HTC templates and activations in a way simi-
lar to NMF yields a spectrogram model that suppresses both 
nonharmonic elements in frequency direction and spurious 
peaks in time direction [Figure 6(c)]; see [17] and [26]. HTC-
based approaches model the spectral envelope independently 
from the fundamental frequency, such that both can be adapted 
individually. As an illustration, we used a constant fundamental 
frequency parameter in Figure 6(c) and a fluctuating fundamen-
tal frequency in Figure 6(d). 

The explicit meaning of most HTC parameters enables a 
straightforward integration of score information [8]–[10], [27]. 
For example, after assigning a musical pitch to an HTC template, 
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[FIG4] Score-audio synchronization: positions in the (a) score are aligned (red arrows) to 
positions in the (b) audio recording based on a comparison of chroma features, which 
were derived from both representations.
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the fundamental frequency parameter can be constrained to lie in 
a small interval around the standard frequency of the pitch [9], 
[10]. Using the score’s instrument information, the c-parameters 

can be initialized using sound examples for the specific instru-
ment [8], [27]. Finally, using the position and duration of note 
events specified by the score, constraints on the activity parame-
ters a  can be imposed by setting them to zero whenever the cor-
responding instrument and pitch are known to be inactive [8], [9]. 

To model a given recording using the HTC approach, most 
methods minimize a distance between the spectrogram and the 
model to find suitable values for the parameters. To this end, 
most approaches employ minimization methods that are also 
used in the NMF context: multiplicative updates [9], expectation-
minimization [8], [27], or interior points methods [10]. Con-
straints on the parameters are typically expressed using priors [8], 
[27] (in probabalistic models) or penalty terms [10] (in determin-
istic methods). 

Many other parametric models are possible. For example, 
several score-informed source separation methods have used 
variants of the source/filter (S/F) model as their underlying sig-
nal model [25], [28]. In the S/F-model a sound is produced by 
an excitation source, which is subsequently filtered. When 
applied in speech processing, the source corresponds to the 
vocal chords while the filter models the vocal tract. Applied to 
musical instruments, the source typically corresponds to a 
vibrating element, e.g., the strings of a violin, and the filter cor-
responds to the instrument’s resonance body. Since the parame-
ters used to model the filter and the excitation source have an 
explicit meaning, they can often be initialized or constrained 
based on score information [29], [30]. 
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[FIG5] A spectrogram of a recording of a piano and a clarinet. The 
position of the fundamental frequency and the harmonics is 
illustrated for the piano (in green) and for the clarinet (in orange). 
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[FIG6] A simplified HTC model. (a) The HTC template with parameters. (b) The HTC activation with parameters. Parts (c) and (d) show 
illustrations of the full spectrogram model combining the submodels shown in (a) and (b), using a constant and a fluctuating 
fundamental frequency in (c) and (d), respectively.
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EXAMPLE-BASED SOURCE SEPARATION
The approaches discussed in previous sections were based on the 
assumption that all instruments notated in a score produce purely 
harmonic sounds. However, this assumption is not perfectly true 
for many instruments, including the piano or the guitar. Percussive 
instruments, such as drums or bongos, also exhibit complex 
broadband spectra instead of a set of harmonics. As an alternative 
to enforcing a harmonic structure in the signal model, we can use 
a data-driven approach and guide the separation based on exam-
ples for the sound of the segregated sources [5], [15]. Using the 
score information, we can provide these examples by employing a 
high-quality synthesizer to render a separate instrument audio 
track for each instrumental line specified by the score. For each 
instrument track, an NMF decomposition of the corresponding 
magnitude spectrogram can be computed, resulting in an instru-
ment template matrix and an instrument activation matrix.
Finally, by horizontally stacking the instrument template matri-
ces, one large prior template matrix Wu  can be created. Similarly, a 
large prior activation matrix Hu  can be built up by vertically stack-
ing all instrument activation matrices. These two prior matrices 
essentially give an example of how a meaningful factorization of 
the magnitude spectrogram of the real audio recording could look 
like. Therefore, the separation of the real recording can be guided 
by employing the matrices Wu  and Hu  as Bayesian priors for the 
template matrix W  and the activation matrix H  within the proba-
bilistic latent component analysis framework, a probabilistic for-
mulation of NMF [3], [31]. This way, the matrices W  and H  tend 
to stay close to Wu  and .Hu

While such an example-based approach to separation enables 
nonharmonic sounds to be modeled, there are drawbacks if the 
synthetic examples are not sufficiently similar to the real sounds. 
For example, if the fundamental frequency of a synthesized har-
monic sound is different from the corresponding frequency in the 
real audio recording, the matrices Wu  and Hu  impose false priors, 
for the position of the fundamental frequency as well as for the 
position of the harmonics, such that separation may fail. However, 
combining example-based source separation with harmonic con-
straints in the signal model (as discussed in the section “Score-
Informed Constraints”) can mitigate these problems, often 
resulting in a significant increase in separation quality [32], [33]. 

FURTHER EXTENSIONS AND FUTURE WORK
In this article, we showed how information provided by a musical 
score can be used to facilitate the separation of musical sound 
sources, which are typically highly correlated in time and fre-
quency in a music recording. We demonstrated how score and 
audio data can automatically be aligned and how score informa-
tion can be integrated into NMF. Further extensions addressed 
fluctuating fundamental frequencies or enabled the separation of 
instruments based on example sounds synthesized from the score. 

The general idea of score-informed source separation leaves 
room for many possible extensions. For example, all of the 
approaches discussed above operate offline, where the audio record-
ing to be processed is available as a whole. For streaming scenarios, 
the audio stream can only be accessed up to a given position, and 

the computational time is also limited to allow the separation result 
to be returned shortly after the audio data has been streamed. 

As a first approach to online score-informed separation, Duan 
and Pardo [13] combine a real-time score-audio alignment 
method with an efficient score-informed separation method. 

Besides information obtained from a score, various other 
sources of prior knowledge can be integrated. Examples include 
spatial information obtained from multichannel recordings [6], 
[34] or side information describing the mixing process of the 
sources [35]. A distant goal could be a general framework where 
various different kinds of prior knowledge can be plugged in as 
they are available. 

Since the prior knowledge provided by a score stabilizes the 
separation process significantly, one could use this stability to 
increase the level of detail used to model sound sources. For 
example, most current signal models typically do not account 
for the fact that the energy in higher partials of a harmonic 
sound often decays faster than in lower partials. Also, room 
acoustics or time-varying effect filters applied to the instru-
ments are often not considered in separation methods. In such 
cases, score-informed signal models might be stable enough to 
robustly model even such details. 

Further, since it is not always realistic to assume that an 
entire score is available for a given recording (in particular, for 
pop music), exploiting partially available score information will 
be a central challenge. For example, so-called lead sheets often do 
not encode the entire score but only the main melody and some 
chords for the accompaniment. Furthermore, the score could be 
available only for a specific section (e.g., the chorus) and not for 
the rest of the recording, such that suitable approaches to inte-
grating partial prior knowledge, such as [4], have to be developed. 
Also, lyrics are often available as pure text without any informa-
tion about notes or timing. Addressing these scenarios will lead to 
various novel approaches and interesting extensions of the strate-
gies discussed in this article. 
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T
he separation of speech signals measured at multiple 
microphones in noisy and reverberant environments 
using only the audio modality has limitations because 
there is generally insufficient information to fully dis-
criminate the different sound sources. Humans miti-

gate this problem by exploiting the visual modality, which is 
insensitive to background noise and can provide contextual infor-
mation about the audio scene. This advantage has inspired the cre-
ation of the new field of audiovisual (AV) speech source separation 
that targets exploiting visual modality alongside the 
microphone measurements in a machine. 
Success in this emerging field will 
expand the application of voice-
based machine interfaces, such 
as Siri, the intelligent personal 
assistant on the iPhone and 
iPad, to much more realis-
tic settings and thereby 
provide more natural 
human–machine interfaces. 

INTRODUCTION
The purpose of this article is to 
provide an overview of the key 
methodologies in AV speech source sepa-
ration building from early methods that simply 
use the visual modality to identify speech activity to sophisti-
cated techniques which synthesise a full AV model. New directions 
in this exciting area of signal processing are also identified. 

Separating speech signals that are only observable as mixtures 
requires techniques such as blind source separation (BSS). This 
topic has been investigated extensively in the signal processing 
community during the past two decades and has had impact upon 
many applications such as speech enhancement and machine 

audition [1]. A well-known example for demonstrating BSS appli-
cations is the so-called cocktail-party problem coined by Cherry 
[2]. His desire was to build a machine to mimic a human’s ability 
in separating target speech sources from a superposition of multi-
ple sound signals including interfering sounds and background 
noise, often coupled by sound reflections from room surfaces. 
This problem is usually addressed within the framework of convo-
lutive BSS taking into account room reverberations in the separa-
tion model. In this framework, the vector observations ( )tx  are 

modeled as a linear convolutive mixture of the vector 
sources ( ):ts ( ) ( ) * ( ),t H t tx s=  where ( )H t

is the matrix of impulse responses 
between each source and each mix-

ture, and t is the discrete time 
index. For simplicity, ( )H t   

is assumed to be square so 
that the number of micro-
phones and sources is 
equal, but this is not neces-
sary to achieve separation. 

The aim is thus to estimate 
the demixing matrix ( )W t  so 

that ( ) ( ) * ( )t W t ts x=t contains 
an estimate of each source ( ),s ti

where subscript i  is the index of the 
source. Alternatively, it is solved in a transform 

domain by converting the full-band speech mixtures into sub-
band components that are then separated either individually or 
jointly, leading to a computationally more efficient method, e.g., 
frequency-domain BSS. In this latter case, assuming static sources, 
the frequency-domain counterparts of mixing and demixing 
equations are ( , ) ( ) ( , )m f H f m fx s=  and ( , ) ( ) ( , ),m f W f m fxs =t   
respectively, where ( , )m f·  is the short-term discrete-time Fourier 
transform (STFT) of ( ),t· ( )f·  is the Fourier transform of ( ),t·
and m  and f  are the time frame and frequency bin indices, 
respectively. This, however, introduces the permutation and scal-
ing ambiguity problems due to the potentially inconsistent orders 
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and scales of the separated source components at the individual 
frequency bands that are inherent to the instantaneous BSS mod-
els: in other words, ( ) ( ) ( ) ( ) ,W f f P f H f 1K= -  where ( )fK  is a 
diagonal matrix (i.e., modeling the scaling indeterminacy) and 

( )P f  is a permutation matrix (i.e., modeling the permutation 
ambiguity). Many methods have been developed to mitigate these 
ambiguities before reconstructing the full-band source signals 
(more details can be found in [1]). A more recent approach is inde-
pendent vector analysis (IVA), whereby the permutation problem 
is mitigated via a coupling of the adaptation across all the fre-
quency bands [3]. 

These convolutive BSS techniques can be broadly attributed 
to a category of linear filtering-based methods. Another power-
ful method for separating convolutive mixtures is based on a 
form of time-varying filtering using time-frequency (T-F) mask-
ing where the aim is to form a probabilistic (soft) or binary 
(hard) mask ( , )m fM  for each source, and then applying the 
mask to the T-F representation of the mixtures for the extrac-
tion of that source: ( , ) ( , ) ( , ) .m f m f m fs xM=t  The mask can 
be estimated by the evaluation of various cues from the mix-
tures, such as statistical, spatial, temporal and/or spectral cues, 
using an expectation maximization (EM) algorithm [4] under a 
maximum likelihood or a Bayesian framework. The T-F masking 
techniques can often be applied directly on underdetemined 
mixtures for the extraction of a larger number of sources than 
the observed signals. Despite these efforts and the promising 
progress made in this area, the state-of-the-art algorithms 
commonly suffer in the following two practical situations: 
highly reverberant and noisy environments, and when multiple 
moving sources are present. For example, most existing meth-
ods of frequency-domain BSS are practically constrained by the 
data length limitation, i.e., the number of samples available at 
each frequency bin is not sufficient for learning algorithms to 
converge [5], while the various cues, such as the spatial cues 
that are used to calculate the likelihood of the source being 
present for the T-F mask estimation, become more ambiguous 

with the increasing reverberation and background noise. The 
performance of most existing algorithms degrades substantially 
in these adverse acoustic environments. 

The methods mentioned previously exploit only single 
modality signals in the audio domain. However, it is now widely 
accepted that human speech is inherently at least bimodal 
involving interactions between audio and visual modalities [6]. 
For example, the uttering activities are often coupled with the 
visual movements of vocal organs, while reading lip movement 
can help a human to infer the meaning of a spoken sentence in 
a noisy environment [7]. The well-known McGurk effect also 
confirms that visual articulatory information is integrated into 
the human speech perception process automatically and uncon-
sciously [8]. For example, under certain conditions, a visual /ga/ 
combined with an auditory /ba/ is often heard as /da/. As also 
suggested by Cherry [2], fusing the AV information from different 
sensory measurements would be the best way to address the 
machine cocktail-party problem. The intrinsic AV coherence has 
been exploited previously to improve the performance of auto-
matic speech recognition [13] and identification [14]. The term 
coherence is used here to describe the dependency between the 
audio and visual modalities, to be consistent with the conven-
tional use of the term in previous works in the literature, such 
as [9]–[12]. As discussed in subsequent sections, the depen-
dency can be modeled as either joint distribution of the AV fea-
tures or joint AV atoms (i.e., signal components). 

In the study in [9], a speech signal corrupted by white noise is 
enhanced with filters estimated from the video input. The aim is 
to estimate a time-varying Wiener filter based on a linear regres-
sion [linear predictive coding (LPC)] between the audio and 
visual signals from a regressor trained with a clean database 
(Figure 1) and therefore is termed an AV-Wiener filter. This pre-
liminary study has been shown to be efficient on very simple data 
(succession of vowels and consonants). For instance, with an 
input signal-to-noise ratio (SNR) of -18 dB, a simple linear dis-
criminant analysis of the filtered signals leads to a word 

LPC Enhanced Filter Enhanced AudioLPC Inverse FilterNoisy Audio Residual Signal

LW

LH

A
AV

V

Estimation

[FIG1] The AV estimation of the Wiener filter from [9]. The LPC method is used to model the noisy speech. The audio feature based on 
the LPC inverse filtered spectrum is fused with the visual features such as the lip width (LW) and height (LH) for enhancing the LPC
spectrum of the noisy speech. The enhanced speech signal can therefore be obtained based on this LPC enhanced filter and the residual 
signal obtained from the inverse filtering of the noisy speech.
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classification accuracy (CA) of 40% after the AV enhancement 
compared to the CA of 10% with the classical audio enhancement 
while the unfiltered data leads to a CA of 5%. However, due to the 
complex relationship between audio and video signals, this simple 
approach is found to have limitations when applied on more com-
plex signals such as natural speech and other noise sources. Nev-
ertheless, this pioneering approach has shown that it can be 
extremely beneficial to combine video information when dealing 
with speech enhancement mirroring the advantage gained in 
automatic speech recognition systems [13]. 

During the last decade, integrating visual information into an 
audio-only speech source separation system has been emerging as an 
exciting new area in signal processing: AV (i.e., multimodal) speech 
source separation [10]. The activities in this area include robust 
modeling of AV coherence [12], [15]; fusing of AV coherence with 
independent component analysis (ICA) or T-F masking [16]; using 
AV coherence to resolve ambiguities in BSS [15], [17]; employing 
visual information for the detection of voice activities [18], [19]; 
exploiting redundancy within the AV data to design efficient speech 
separation algorithms based on sparse representations [16], [20]; 

and more recently, AV scene analysis for addressing the challeng-
ing problem of speech separation from moving sources [5], [21] or 
in environments with long reverberation time [22]. 

A number of different of approaches have clearly been devel-
oped to tackle the speech source separation problem using both 
audio and visual modalities. To present these in a coherent man-
ner, the remainder of this tutorial is organized according to the 
increasing sophistication in the way in which video is used to 
help speech source enhancement as summarized in Table 1. The 
advantages and disadvantages of the methods are also highlighted 
in the table, and references are added to papers where the full 
details can be found of experimental studies that present the per-
formance gains achievable by adding video in the processing. 

METHODS BASED ON VISUAL VOICE ACTIVITY
A very simple approach to model the link between audio and 
video signals is to utilize the voice activity of the time domain 
speech signal. Indeed, there exist pauses during natural speech: 
for instance, during breathing or before a plosive (such as /p/). 
Such silences can importantly be partially predicted by the 

[TABLE 1] AN OVERVIEW OF AV METHODS FOR SPEECH ENHANCEMENT/SEPARATION. THE METHODS ARE CLASSIFIED
ACCORDING TO THE INCREASING SOPHISTICATION IN THE WAY IN WHICH VIDEO IS USED TO HELP SPEECH SOURCE SEPARA-
TION: FROM A COARSE BINARY INDEX (SECTION II) TO FULL JOINT AV MODEL (SECTION IV) INCLUDING VISUAL SCENE 
ANALYSIS (SECTION III), AND REFERENCES ARE GIVEN WHICH DETAIL COMPARATIVE PERFORMANCE EVALUATION STUDIES.

METHODS MAIN ADVANTAGES MAIN DISADVANTAGES 
DETAIL OF AV 
REPRESENTATION

BINARY SECTION:
“METHODS BASED
ON VISUAL VOICE
ACTIVITY”

SPECTRAL
SUBTRACTION
[23], [24] 

EFFECTIVE IN NOISE
REDUCTION; EASY
TO IMPLEMENT 

INTRODUCES PROCESSING 
ARTEFACTS; DIFFICULT TO  
ESTIMATE THE NOISE POWER
FOR NONSTATIONARY SIGNALS

AV POSTPROCESSING  
OF AUDIO ICA [17] 

LOW COMPUTATIONAL
COST; STRENGTH OF ICA
FRAMEWORK; CORRECT
(ALMOST) ALL PERMUTATIONS

INCREASES DELAY (I.E., LATENCY);
POTENTIAL PROCESSING
ARTEFACTS

EXTRACTION BASED
ON TEMPORAL VOICE
ACTIVITY [18] 

LOW COMPUTATIONAL
COST; SIMPLE ASSUMPTIONS

LIMITED TO LOW REVERBERATION

VISUAL
SCENE
ANALYSIS 

SECTION:
“VISUAL SCENE
ANALYSIS-BASED
METHODS”

AV BEAMFORMING/
ICA/IVA [5], [21],  
[25]–[27]

POTENTIAL FOR SEPARATING
MOVING SOURCES; CORRECT
THE PERMUTATIONS; IMPROVE
CONVERGENCE OF ICA/IVA 
ALGORITHMS

DEGRADES WITH HIGH
REVERBERATIONS

AV T-F MASKING [22] EXPLOITS TIME-VARYING PROPERTY 
OF SOURCES; NOT AFFECTED BY
THE PERMUTATION PROBLEM

HIGH COMPUTATIONAL
COMPLEXITY; CHALLENGING IN 
RESOLVING SPECTRAL OVERLAPS

FULL
JOINT AV  
MODEL

SECTION:
“INTRODUCTION”

AV-WIENER FILTER [9] LOW COMPUTATIONAL COST LIMITED TO SIMPLE SIGNALS;
DIFFICULTY IN LEARNING
ACCURATE AV MODEL

SECTION:
“STATISTICAL
AV-BASED
METHODS”

MAXIMIZATION OF AV  
LIKELIHOOD [10], [28] 

CAN EXTRACT SPEECH
SOURCES FROM
UNDERDETERMINED MIXTURES 

LIMITED TO INSTANTANEOUS
MIXTURES; DIFFICULTY IN  
LEARNING ACCURATE AV MODEL

AV REGULARIZATION
OF ICA [11] 

EXPLOITING THE STRENGTH
OF THE ICA FRAMEWORK

LIMITED IMPROVEMENT COMPARED
TO AUDIO-ONLY ICA IN PARTICU-
LAR FOR CONVOLUTIVE MIXTURES 

AV POSTPROCESSING  
OF AUDIO ICA [12] 

MODERATE COMPUTATIONAL
COST

DIFFICULTY OF LEARNING
ACCURATE AV MODEL; INCREASES
DELAY (I.E., LATENCY)

SECTION:
“SPARSE
MODELING”

AVDL + T-F
MASKING [16] 

CAN CAPTURE THE LOCAL
INFORMATION WITHIN THE
SIGNALS; NOT AFFECTED BY
THE PERMUTATION PROBLEM

HIGH COMPUTATIONAL
COMPLEXITY; ONLY BIMODALITY
INFORMATIVE PARTS OF THE 
SIGNALS ARE LEARNED
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movements of the lips [19]. Based on this idea, several purely 
video-based voice activity detectors (V-VADs) have been developed 
[29]: they are generally based on the velocity of face features, usu-
ally motions of the lips. The main advantage of such V-VADs com-
pared to an audio VAD is that they are not corrupted by 
concurrent audio sources such as environmental noise, or other 
speakers. It is worth noting that such models do not aim at link-
ing audio and video features, but they try to infer very coarse 
information on silence [i.e., the probability that speech is present

( ( ) | ( ))]P s t t0i i
v! g  or not [i.e., ( ( ) | ( ))]P s t m0i i

vg=  in the 
audio modality from the video one, where ( )ti

vg  is the visual sig-
nal associated with the i th source ( ) .s ti  Examples of speech 
enhancement methods that exploit a V-VAD are discussed next. 

SPECTRAL SUBTRACTION
A simple method is to extend classical spectral subtraction by 
embedding visual features [23], [24]: the spectrum of the enhanced 
signal is expressed as | ( , ) | | ( , ) | | ( , ) | ,s m f x m f d m f2 2 2a= -t

where ( , )x m f  is the STFT of a measured microphone signal 
( ),x t ( , )d m f  is the estimated interference noise spectrum, 

and a  is a parameter to adjust the subtraction level. The spec-
trum of the interference noise ( , )d m f  is estimated from the 
windows related to the silence of the target source (i.e., the set

{ | ( ( ) | ( ))}) .t P s t t0Ti i i
vg= =  These windows are efficiently 

detected by a V-VAD, which is thus not corrupted by the inter-
fering audio noise. 

AV POSTPROCESSING OF AUDIO ICA
Another use of such high-level information (speech/nonspeech 
frames) is to embed it into the efficient ICA framework. In this 
method, the visual information is used as postprocessing after 

applying an audio ICA algorithm. Frequency-domain source sepa-
ration generally suffers from the permutation indeterminacy at 
each frequency bin: the ICA framework allows the recovery of the 
sources up to a global permutation (i.e., the order of the estimated 
sources is arbitrary). As a consequence, to recover the sources, this 
issue must be solved (i.e., permutation matrices ( )P f  must be the 
same for all ) .f  A very intuitive and efficient method is to estimate 
the permutations in relation to the output power of the sources 
[17]. Indeed, the V-VAD provides a binary indicator that shows 
when a specific speaker is silent. Using this information, one can 
then solve the permutation indeterminacy by simply minimizing 
the power of the target source during these frames. This method 
thus exploits the AV dependence, i.e., the joint distribution of AV 
features, in a very minimal way, but it has been shown to cancel 
almost all the permutation ambiguities. Compared to purely audio 
methods, this requires relatively low computational cost to miti-
gate the permutation ambiguities and allows the extraction of only 
a specific speech source instead of trying to recover all the sources. 

AV EXTRACTION BASED ON 
TEMPORAL SPEECH ACTIVITY
A more effective use of such high-level information (speech/non-
speech frames) is to directly incorporate it into a separation crite-
rion [18] to extract particular speakers to provide even less 
computational cost than ICA methods. Indeed, considering a set of 
time samples D  so that the sources can be split into silent ones 
( ), , ( )Di t s t 0S isilent6 6! ! =  and active ones ( ,i Sactive6 !

, ( ) ),Dt s t 0i6 !!  purely audio algebraic methods based on gen-
eralized eigendecomposition of two covariance matrices can iden-
tify 1) the number of silent speakers (i.e., the cardinality of ),Ssilent

and 2) the associated support subspace (i.e., the subspace spanned 
by { } ) .si i Ssilent!  In other words, considering 
any time samples including some not in D
(i.e., the sources in Ssilent  can become 
active), the projection of the audio record-
ings ( )tx  onto the latter identified subspace 
cancels all sources in Sactive  while sources 
in Ssilent  remain unchanged. However, this 
method can not identify which source is 
silent and thus cannot be used to extract a 
specific speaker. To overcome this, a 
weighted kernel principal component analy-
sis can be used to improve this approach, 
where the weights are a mixture between 
the audio probability of silence (given by the 
eigenvalues) and the video probability of 
silence provided by the V-VAD for a particu-
lar speaker [18]. This simple property pro-
vides a very efficient and elegant AV method 
to extract speech sources. 

VISUAL SCENE ANALYSIS-BASED 
METHODS
In the previous section, AV extraction 
methods use the visual modality in a very 

[FIG2] A block diagram of a visual scene analysis-based method for speech enhancement. 
Video localization is based on face and head detection. A video tracker is implemented 
for the tracking of multiple humans and based on the MCMC-PF. The output of the video 
processing is position, direction of arrival, and/or velocity information. On the basis of 
the visual scene, the preprocessed audio mixtures are separated either by a data-
independent beamformer or intelligently initialized video-aided source separation 
method. Finally, postprocessing is applied to enhance the separated audio sources.
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coarse way: simple binary information defining whether or not a 
specific speaker is silent. In this section, this extra modality is used 
in a deeper way by visually analyzing the scene for speech 
enhancement [25], [26]. Such visual scene analysis thereby 
informs the source separation algorithms of the locations of the 
speakers, especially when dealing with moving sources, which is a 
more challenging issue since the mixing filters are now time vary-
ing. Thus, the classical ICA framework may be ineffective due to 
the large number of time samples required to accurately estimate 
the statistics of the mixtures. These methods are implemented in 
two stages: mainly video scene analysis (VSA) based on multiple 
human tracking (MHT) to estimate the position, direction of 
arrival (DOA), and velocity information of the people in a room or 
enclosed environment; and audio source separation depending on 
the scene as illustrated in the schematic diagram in Figure 2. 

VIDEO PROCESSING FOR MHT
Video-based face and head detection is applied for multiperson 
observations from a single image as initialization. Then a Mar-
kov chain Monte Carlo-based particle filter (MCMC-PF) is used 
for MHT in the video. More details of the three important parts 
of the probabilistic MHT—the state model, the measurement 
model, and the sampling mechanism—are provided in [5]. Con-
trary to the V-VAD described in the section “Methods Based on 
Visual Voice Activity,” it is highlighted that the full-frontal 
close-up views of the faces of the speakers, which are generally 
not available in a room or an enclosed environment, are not 
required for these trackers. The above-mentioned MHT meth-
ods provide a very good framework for AV scene modeling for 
source separation: the output of the video-based tracker is the 
three-dimensional (3-D) position of each speaker ,p  the eleva-
tion pi^ h, and azimuth pb^ h angles of arrival to the center of 
the microphone array. The direct-path weight vector 

( , , )fd p p pi b  can then be computed for frequency bin f and for 
source of interest , ,p P1 f=  and the velocity information 
that can then be used in the AV source separation scheme. 

AV SOURCE SEPARATION OF MOVING SOURCES
Speech source separation is a challenging issue when dealing with 
moving sources [26]. The proposed extraction of a particular 
speaker in an AV context depends on the velocity of this speaker. 

PHYSICALLY MOVING SOURCES
After VSA, if the people are moving, then the challenge of separat-
ing respective audio sources is that the mixing filters are time 
varying; as such, the unmixing filters should also be time varying, 
but these are difficult to determine from only audio measure-
ments. In [21], a multistage method has been developed for 
speech separation of moving sources based on VSA. This method 
consists of several stages including the DOA tracking of speech 
sources based on video processing, separation of sources based on 
beamforming with the beampatterns generated by the DOAs, and 
T-F masking as postprocessing. From the video signal, the direct 
path parameter vector d p  can be obtained, as discussed above, 
which is then used for the design of a robust least squares fre-
quency invariant data independent (RLSFIDI) beamformer to sep-
arate the audio sources. The T-F masking is used as postprocessing 
to further improve the separation quality of the beamformer by 
reducing the interferences to a much lower level. However, such 
time-varying filtering techniques may introduce musical noise 
due to the inaccurate estimate of the mask at some T-F points. To 
overcome this problem, smoothing techniques such as cepstral 
smoothing may be used as in [21]. 

PHYSICALLY STATIONARY SOURCES
After video processing, if the speakers are judged to be physi-
cally stationary for at least two seconds, then the direct path 
parameter vector d p  with the whitening matrix obtained from 
the audio mixtures is used to intelligently initialize the learning 
algorithms, such as FastICA/IVA (many learning algorithms are 
sensitive to initializations) [3], [5], which solves the inherent 
permutation problem in ICA or block permutation in IVA algo-
rithms and yields improved convergence [27]. 

[FIG3] Speech recording is obtained from two microphones. The direct path parameter vector is calculated with the help of 
video cameras. The ILD, the IPD, and the mixing vectors that utilize the direct path parameter vector are used to estimate the 
model parameters with the EM algorithm. The final probabilistic mask formed from the resulting probabilistic model is used for 
source separation.
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T-F MASKING BASED ON VSA
More recently, a video-aided model-based source separation 
technique for underdetermined cases when the reverberation 
time is significant has been proposed [22]. This probabilistic T-F 
masking approach is motivated by both computational auditory 
scene analysis (CASA) and BSS, which relies on the assumption 
of signal sparseness (Figure 3). The interaural level difference 
(ILD), the interaural phase difference (IPD), and the mixing vec-
tors are modeled as in [30], and the direct path parameter vec-
tor d p  is used as the mean parameter of the mixing vectors that 
is obtained from video processing. The parameters are updated 
iteratively with the EM algorithm. Since the EM algorithm is 
also sensitive to initialization, we initialize the direction vector 
parameter with the location information of the speakers 
obtained from video processing. 

To form an AV probabilistic T-F mask ( , )m fMi
av  for each 

static source ( )s ti , the IPD and ILD models as well as the model 
for the mixing vectors that utilize the direct-path weight vector 
obtained with the aid of video are used. It is a hidden maximum-
likelihood parameter estimation problem and thus the EM algo-
rithm can provide the solution. Extensive evaluations can be 
found in [22], which confirm the advantage of exploiting the 
visual modality to analyze the scene. 

FULL JOINT AV MODELING-BASED METHODS
The most sophisticated approach to use the multimodality is then 
to build a full AV model of speech rather than the binary modeling 
of V-VAD (see the section “Methods Based on Visual Voice Activ-
ity”) or the VSA (see the section “Visual Scene Analysis-Based 
Methods”). Two of these models and their uses for speech extrac-
tion are presented in this section: 1) AV statistical models, and 2) 
AV-dictionary-learning (DL)-based sparse representations models. 
With the statistical modeling approach, the AV coherence is often 
established explicitly on a feature space, which provides a holistic 
representation across all the observation frames of the AV signals 
[10], [11], [28], [31]. On the other hand, with the sparse represen-
tation-based methods, the AV coherence is implicitly modeled 
through the decomposition of an AV signal as a linear combina-
tion of a small number of signal components (i.e., atoms) chosen 
from a dictionary [16], [32]. The sparse model has shown to be 
effective in capturing the local information, such as temporal 
dynamic structures of the AV signals, which otherwise may be lost 
in the statistical modeling methods, but yet could be crucial for 
speech perception. Note that we distinguish these two models 
from the perspectives of modeling and optimization algorithms 
rather than the property of signals since sparsity can be considered 
as a statistical property of a signal. The two models could be used 
together if, e.g., the sparse models are built on a feature space 
described by some statistical models. 

STATISTICAL AV-BASED METHODS

AV MODEL
The coherence between audio and visual modalities can be 
jointly modeled by, e.g., a Gaussian mixture model (GMM) 

where the coherence is expressed as a joint AV probability den-
sity function (AV-PDF) 

( ( ), ( )) ( ( ), ( ) | , ),p m m w p m ma v
k

k

K

G
a v

k k1
1

av av avg g g g n R=
=

/ (1)

where the superscripts a  and v  refer to the audio and visual 
modalities, respectively, and ( )mag  and ( )mvg  are the audio and 
visual observation vectors at the mth frame, respectively; k

avn  and 
k
avR  are the mean vector and the covariance matrix of the kth 

Gaussian kernel defined by its probability density function (PDF) 
(· | , ),pG n R wk  is the weight of the related kernel, and k  is the 

number of mixture terms. (For simplicity in development, we 
will use the same notations to denote the AV feature vectors and 
AV sequence.) Classically, ( )mag  can be chosen as an audio fea-
ture vector, such as the modulus of the Fourier transform or the 
Mel-frequency cepstrum coefficients [33] of a windowed frame 
signal with frame index ,m  while ( )mvg  is a visual feature vec-
tor, containing some shape parameters, e.g., the width and height 
of the lips or active appearance-based visual features [34]. When 
dealing with log scale audio parameters in the frequency domain, 
a more suitable model is the Log–Rayleigh PDF since this PDF 
explicitly models the nonsymmetric property of the logarithmic 
scale. The AV-PDF can thus be expressed as [31] 

( ( ), ( )) ( ( ) | ) ( ( ) | , ),p m m w p m p ma v
k

k

K

LR
a

k
a

G
v

k
v

k
v

2
1

av g g g g nC R=
=

/
(2)

where ( ( ) | )p mLR
ag C  is the Log–Rayleigh PDF of localization 

or power coefficients defined by the diagonal elements of k
aC

(see [31] for more details). Such AV-PDFs not only jointly model 
the two modalities but they can also take into account the 
ambiguity of speech (i.e., the fact that the same shape of lips can 
produce several sounds such as /u/ and /y/ in French). The AV-
PDF parameters are usually obtained from a clean training AV 
database using the EM algorithm. 

EXTRACTION BY DIRECT AV CRITERIA
One of the first methods for AV source separation [10], [28] was 
based on the maximization of the AV coherence model described 
by the joint AV-PDF as in (1) 

( ( ), ( )),arg max p t tb b xav T v
1

b
g=V (3)

where b  is the extraction vector for a particular speaker in the 
instantaneous case, and the superscript ·T  denotes the trans-
pose operator. Even though such an approach is shown to be 
efficient when dealing with the simple succession of vowels and 
consonants [10], this method suffers from two important draw-
backs: 1) a relevant AV probabilistic model is quite difficult to 
obtain for natural speech and 2) a direct maximization of the 
AV-PDF becomes rapidly computationally inefficient due to the 
dimensions of the separation filters when considering reverber-
ant environments.

On the other hand, ICA [1] is an extraordinarily effective 
framework to separate sources from several mixtures. As a 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [131] MAY 2014

consequence, it is natural to embed AV constraints into a more 
classical frequency domain ICA criterion ({ ( )} )J B f fICA  by defin-
ing an AV-penalized ICA criterion [11]: { ( )} arg minB f { ( )}f B f f=t

({ ( )} ) ( ),J B f P pf
av
1ICA AV+  where the constraint term ( )PAV $  is a 

function of the AV-PDF as in (1). Note that we intentionally 
keep ({ ( )} )J B f fICA  to be general as many frequency-domain 
ICA criteria defined in the literature, such as in [1], can be 
used. As one can see, this criterion is a tradeoff between the statis-
tical independence of the estimated sources (first term) based on 
ICA and the AV coherence of the estimated sources and the video 
features (second term). This AV constraint only slightly improves 
the signal-to-interference (SIR) ratio compared to a purely audio 
criterion [11]: this is mainly due to the difficulty to propose a rele-
vant AV-PDF and appropriate AV constraints.

AV POSTPROCESSING OF AUDIO ICA
One natural way is to estimate the global permutation by max-
imizing the AV coherence [12] defined by ( , )p2

av $ $  (2). How-
ever, even if these algorithms are shown to be effective to solve 
the permutation ambiguities, they suffer from their computa-
tional costs and from the difficulty to train accurately the 

statistical parameters that represent all the characteristics of 
natural speech. 

SPARSE MODELING
While the previous methods seem to be quite natural AV extrac-
tion methods, the AV coherence used in these methods is often 
modeled in the feature space from the “global” point of view across 
all the frames of the AV data. These methods often fail to provide 
accurate estimation of audio signals due to the difficulty to train a 
relevant AV statistical model. To address this limitation, an alter-
native method for capturing the AV coherence has been consid-
ered in [16] and [32], using DL-based sparse approximation, which 
we call sparse modeling. As pointed out in [16], this technique can 
capture the ‘local’ information, i.e., the interconnection between 
neighboring samples, which is important for speech perception in 
a noisy environment.

SPARSE CODING OF AV SIGNALS AND DL OF THE AV
ATOMS BASED ON A GENERATIVE AV MODEL
To obtain sparse representation of an AV signal, a generative 
model [16], [32] can be used, where an AV sequence ( ; )a vg g g=
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[FIG4] A schematic diagram generated artificially to show the use of a generative model to represent an AV sequence as a linear 
combination of a small number (two in this case) of atoms. The audio sequence (the spectrogram) is shown in (a) and the video 
sequence (a series of image frames, depicted as rectangles with solid lines) in (b). The patterns A, B, and C and the dots correspond to 
the two visual atoms. As highlighted by the rectangles with dot-dashed lines, the AV-coherent part in the sequence is represented by 
scaling and allocating the atoms at two positions. The audio stream is shown in log scale. The audio atom is a randomly generated 
spectrogram pattern, rather than a realistic phoneme or word in speech. The figure is modified from [16], where examples of AV 
sequence and AV atoms from real AV speech data can be found. 
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is described by a small number of AV atoms ( ; )k k
a

k
vz z z=  cho-

sen from an overcomplete dictionary ,{ }D k k
K

1z= =  where the 
discrete time index t  is omitted here for notational conve-
nience. The audio atoms k

az  are usually the log-modulus of the 
STFT of the audio signal component and the video ones k

vz  are 
the mouth region (i.e. the area in the image frames where the 
mouth is located) of the video signal. We use a schematic dia-
gram to explain the relationship between the AV sequence and 
AV atoms as shown in Figure 4, where each audio atom appears 
in tandem with its corresponding visual atom at a temporal-spa-
tial (TS) position in the related video. In this example, the AV 
sequence is represented by only two AV atoms with some over-
lap between the two in a particular TS position.

Given an AV signal and a dictionary ,D  the coding process-
ing aims to find the sparse coefficients set that leads to a suit-
able approximation of the original sequence according to a 
matching criterion. This can be achieved by many algorithms 
including the greedy algorithms such as the well known match-
ing pursuit (MP) or orthogonal MP algorithms. In [32], the MP 
algorithm has been extended to an AV-MP version to obtain the 
coding coefficients, where the matching criterion is defined as 
the inner product ,G H  between the residue of the AV sequence 
Rng^ h at the n -th iteration and the translated AV atom :kz

( , ) | , | | , | ,J R R RT T , ;
av n

k
n a

m
a

k
a n v

i j l
v

k
v

1 G H G Hg z g z g z= +{ { (4)

where Tm
a
{  is the temporal translation operator of the audio 

atom (i.e., shifting an audio atom by m{  time frames) and T , ;i j l
v
{

is the temporal-spatial translation operator of the video atom 
(i.e., shifting the video atom l{  time frames along the time axis 
and ( , )i j  pixels along the horizontal and vertical axes of the 
image frames). However, as shown in [16], the latter matching 
criterion may lead to a monomodal criterion due to the imbal-
ance between the two modalities (due to the scale difference). 
The following criterion is therefore proposed in [16]: 

( , ) | , | { },expJ R R IJL R1 TT , ;
av n

k
n a

m
a

k
a n v

i j l
v

k
v

2 1#G Hg z g z g z= - -{ {

(5)

where I  and J  are the number of width and height pixels of the 
video atom ,k

vz  respectively, and L  its time duration; · 1  is the 
1, -norm. 

The learning process is to adapt the K  dictionary atoms 
{ , , }k K1z g!  to fit the training AV sequence. Several well-known DL 

algorithms can be used for this purpose, such as singular value 
decomposition (K-SVD) [35]. In [16], the K-SVD and K-means 
algorithms are used in each iteration for updating the audio and 
visual atoms respectively, so as to take into account the different 
sparsity constraints enforced on these two modalities. The sparse 
coding and DL stages are often performed in an alternating 
manner until the predefined criterion such as (5) is optimized. 

SPARSE AV-DL-BASED AV SPEECH SEPARATION
From the AV-DL methods, T-F masking-based BSS methods are 
proposed [16], where the audio T-F mask ( , )m fMa  generated by 

the purely audio algorithm [36] is fused empirically with a mask 
( , )m fMv  defined from the visual modality by the power-law 

transformation to define an AV T-F mask 

( , ) ( , ) ,m f m fM M ( ( , ))av a r m fMv

= (6)

where the power coefficients r  are obtained by applying a nonlin-
ear mapping function to ( , )m fMv  based on how confident 
the visual information is in determining the source occupation 
likelihood of each T-F point of the mixtures [16]. There are alter-
native methods for fusing the audio and visual masks, such as a 
simple linear combination of these two masks. Such a simple 
scheme is, however, less effective in taking into account the confi-
dence level of the visual information, as compared with the power-
law tranformation (more discussions about the motivation of 
using power-law transformation can be found in [16]). The mask 
defined from the video can be obtained as  

( , )
,
( , ) / ( , ),

if ( , ) ( , )
.

m f
m f m f

m f m f1
otherwise

Mv
a a

a a2
g g

g g
= t

t
) (7)

Here ( , )m fagt  is the audio signal reconstructed from the speech 
mixtures by mapping the mixtures (together with the visual 
sequence) onto the AV dictionary. Note that, even if the latter 
mask is defined from audio-only sequences ( , )m fag  and ( , ),m fagt

it can be considered as a visually inspired mask since ( , ),m fagt^  is 
taken from ( , ), ( , , )m f y x la vg gt t` j, which represents the AV approx-
imation of the new AV sequence ( ; ) .a vg g g=  In other words, 

( , )m fagt  is the best estimation of the audio signal from the AV 
sequence g  obtained from its sparse decomposition on the AV dic-
tionary .D  Finally, the noise-robust AV mask ( , )m fMav  can be 
applied to the T-F spectrum of the mixtures for the target speech 
separation. Figure 5 shows an example of ,( , )m fMv ( , ),m fMa

and AV masks ,( , )m fM ( ( , ))a r m fMv

 as compared with the ideal 
binary mask (IBM). It can be seen that the fused AV masks 
improve the quality of the audio mask and the resolution of the 
visual mask. In [16], it is shown that the power-law transform per-
forms better than the average operation, i.e., ( ) / .2M Ma v+

CONCLUSIONS AND FUTURE DIRECTIONS
Over the past decade, AV speech source separation has emerged 
as a particularly interesting area of research in signal process-
ing. It aims at improving the classical BSS methods for speech 
extraction by also using information from video and thereby 
mimicking the multimodal approach of humans. As shown in 
this article, the bimodality of speech can be used at different lev-
els of sophistication to help audio source separation: from very 
coarse binary information through to a complete AV model, or 
from simple joint lip shape parameters to data-dependent acoustic 
features represented in an AV dictionary. As a result, the meth-
ods using the various level of information show different 
strength and weakness, as highlighted in Table 1. The main 
advantage of using the extra information from video is to tackle 
the problems that cannot be easily solved by audio-only algo-
rithms: handling background noise and interference in strongly 
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reverberant environments, together with multiple, potentially 
moving sources. 

There are many directions for further research. The AV 
coherence based on statistical methods requires high-quality, 
low-dimensional features for accurate and computationally 
efficient modeling, therefore emerging methods from mani-
fold or deep learning could be exploited. The current methods 
in AV DL that attempt to capture the AV informative structure 
in the bimodal data are computationally expensive due to the 
intensive numerical operations required in sparse coding algo-
rithms. Low-complexity and robust algorithms are highly 
desirable and need to be developed. Moreover, to be embedded 
in everyday devices such as smartphones, real-time approaches 
must be proposed to overcome the batch nature of many cur-
rent algorithms. In the longer term, building richer models 
exploiting psychoacoustic-visual properties on the basis of the 
fields of brain–science and psychology can potentially further 
improve the AV speech separation systems, but this presents a 
particular challenge for future research in this area. 

Finally, as speech source separation is clearly profiting from 
the bimodality of sources, other fields of source separation/
extraction should also be explored using multimodal data, for 
instance, brain imaging, which can record brain activity by elec-
troencephalography, magnetoencephalography, magnetic reso-
nance imaging, and positron emission tomography. The next 
generation of intelligent multimodal signal processing tech-
niques will combine such information to provide radically 
improved performance not achievable with methods based on 
single-modality data. 
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S
ince its origins in the mid-1980s, the field of blind 
source separation (BSS) has attracted considerable 
attention within the signal processing community. One 
of the main reasons for such popularity is the existence 
of many problems that can be addressed in a BSS frame-

work. Two noteworthy examples of applications can be found in 
audio and biomedical signal processing, for which a number of effi-
cient solutions are now available. There are relevant BSS problems 
in other domains but on which less effort has been put.
In this article, we deal with one of these fields, 
specifically the field of analytical chemis-
try (AC), whose goal of is to identify 
or quantify, or both, chemical 
components present in a given 
analyte, i.e., the sample 
under analysis. As recently 
discussed in [1], several 
tasks in AC keep some rela-
tionship to the broad classes 
of detection and estimation 
problems typically found in 
signal processing. 

INTRODUCTION
Source separation is one of the most relevant 
estimation problems found in chemistry. Indeed, dealing 
with mixtures is paramount in different kinds of chemical anal-
ysis. For instance, there are some cases where the analyte is a 
chemical mixture of different components, e.g., in the analysis 
of rocks and heterogeneous materials through spectroscopy. 
Moreover, a mixing process can also take place even when the 
components are not chemically mixed. For instance, in the 
ionic analysis of liquid samples, the ions are not chemically 

connected, but, due to the lack of selectivity of the chemical 
sensors, the acquired responses may be influenced by ions that 
are not the desired ones. Finally, there are some situations 
where the pure components cannot be isolated chemically since 
they appear only in the presence of other components. In this 
case, BSS may provide these components that cannot be 
retrieved otherwise. 

In AC, there is a trend that advocates acquiring data through 
sensor arrays or by other instruments that are able to 

exploit diversity, which is essential in the 
application of source separation meth-

ods. In particular, chemometrics 
[2], a subfield of AC, aims at 

extracting the relevant infor-
mation from the multivariate 
signals provided by the 
chemical measurement 
sensor. Chemometrics is an 
established domain of 

research based on different 
backgrounds (physics, statis-

tics, computer science). Several 
approaches that are now popular in 

signal processing arose in chemomet-
rics—a typical example is a problem introduced 

in the 1970s known as multivariate curve resolution (MCR)
[3], which bears strong resemblance to nonnegative matrix factor-
ization (NMF) [4]. 

Classically, the available methods in chemometrics for deal-
ing with mixtures work in a supervised fashion, thus requiring 
a set of training samples. The application of supervised methods 
in this context has been proving successful in tasks such as 
odor and taste automatic recognition systems (electronic noses 
and tongues, respectively). However, despite this success, this 
approach suffers from at least two important practical prob-
lems. First, the acquisition of training samples is usually a 
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cost- and time-demanding task. Sec-
ond, due to the drift in the response 
of chemical sensors, which is usually 
caused by aging and variation of the 
acquisition conditions (temperature, 
pH), the calibration procedure must 
be performed before each new chem-
ical analysis. Due to these limita-
tions, there is a growing interest in 
solutions in which the calibration 
stage may be eliminated or, at least, simplified. This can be 
achieved by methods, like source separation or multiway data 
analysis, able to exploit the measurement diversity for discover-
ing latent variables. The goal in considering these approaches is 
to ultimately have chemical sensing systems that work in a plug-
and-measure fashion, which may pave the way for devices oper-
ating in more challenging situation, e.g., a calibration-free 
system would be quite helpful in the context of invasive physio-
logical monitoring by means of miniaturized sensors. 

Given the panorama described above, our aim is to shed 
some light on the use of BSS in chemical analysis. Although 
dealing with a relatively new field of applications, this article is 
not an exhaustive survey of source separation methods and 
algorithms since there are solutions originated in closely 
related domains (e.g., remote sensing and hyperspectral imag-
ing) that suit well several problems found in chemical analysis. 
Moreover, we do not discuss the supervised source separation 
methods, which are basically multivariate regression tech-
niques, that one can find in chemometrics. 

SOURCE SEPARATION IN CHEMICAL ANALYSIS
Let us briefly recall the problem of source separation. The 
observed signals, which are represented by the vector ( )x n =
[ ( ), ( ), , ( )] ,x n x n x nM

T
1 2 f  are given by 

( ) ( ( )),x n s nA= (1)

where ( )A $  represents the operator associated to the mixing 
process, and the vector ( ) [ ( ), , ( )]s n s n s n T

N1 f=  denotes the 
source signals. The goal in source separation is to provide a 
good estimation of ( ) .s n  In a blind (or unsupervised) context, 
one has access neither to training points, i.e., a set of pairs
( ( ), ( )),x n s ni i  nor to the mixing system ( ) .A $  Therefore, based 
only on observations ( ),x n  solving (1) for ( )s n  becomes an ill-
posed inverse problem whose handling requires further infor-
mation [5, Ch. 7, 10, 11, and 13]. For instance, a possible 
approach is to exploit measurement diversities such as time-fre-
quency representations of nonstationary signals (see, e.g., [5, 
Ch. 11]). 

SOURCE ASSUMPTIONS
Source separation can be solved with independent component 
analysis (ICA) [6], [7], in which the sources are modeled as 
mutually independent random variables. Under some mild con-
ditions, including the non-Gaussianity of the sources, the appli-
cation of ICA ensures a correct retrieval of the sources. It is also 

possible to achieve source separa-
tion by exploiting properties other 
than statistical independence, e.g., 
sparsity or nonnegativity [5]. More-
over, one can separate sources that 
are only mutually uncorrelated 
provided that additional temporal 
priors on the source signals hold, 
e.g., nonstationary or temporally 
correlated sources. This is very 

important in chemical applications since there are some cases in 
which the source independence assumption fails. For instance, 
when a chemical reaction takes place, the components exhibit 
dependency since either they are made of the same chemical ele-
ments or their concentrations vary according to stoichiometric 
coefficients, which stands for the coefficients in a balanced chem-
ical equation. 

In chemical analysis, the sources present some features that 
can be exploited when developing a novel separation method. 
For instance, in ionic activity analysis (the effective concentra-
tion of an ion), the source signals correspond to time-series 
associated with the activities of each ion within the solution 
under analysis. Therefore, a first remarkable aspect is that the 
sources here are always nonnegative, since there is no physical 
meaning in having a negative concentration. A second prior 
information is the fact that source signals are smooth, i.e., suc-
cessive samples are temporally correlated. Indeed, concentra-
tions usually present slow variations of amplitude along time. 
To illustrate these features, we show in Figure 1(a) an example 
of sources related to the concentrations of potassium and 
ammonium ions and acquired in two different experiments. 
These data are publicly available at the ion-selective electrode 
array data set [8]. 

Another category of chemical source signals are those 
obtained in optical spectroscopy (Raman, infrared). Again, there 
are some valuable information that can be exploited: 1) the 
sources are again nonnegative since they correspond to absorp-
tion, reflectance, or diffusion spectra, and 2) there exist many 
libraries containing the spectra of different chemical compo-
nents. This information can be used to adapt BSS algorithms 
based on sparse representation over a huge dictionary whose 
atoms are the pure component spectra. However, it would be 
difficult to use a reference library since the component spectra 
may present some variability in actual experiments depending 
on parameters such as temperature or pH condition. In 
Figure 1(b), an example of spectral source (infrared reflectance 
of calcite) is provided. 

MIXING MODELS
Much effort was undertaken to develop methods tailored to linear 
and instantaneous mixing systems in which the number of sources 
is equal to the number of mixtures .N M=^ h  Practically, this 
assumption implies that the number of sources is known, which is 
often a tricky issue. In this case, the operator ( )A $  is given by a 
square matrix .A RN N! #  Moreover, there are many works that 

THERE ARE RELEVANT BSS
PROBLEMS IN OTHER DOMAINS, 
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deal with the convolutive case, in which each entry of the mixing 
matrix corresponds to a linear filter. Finally, there is an important 
topic in BSS where the aim is to set up separation methods in the 
case of nonlinear (NL) mixing models. In this context, one must 
bypass many difficulties that do not arise in the linear case. For 
instance, ICA does not ensure separation in a general NL context, 
i.e., retrieving independent components is not enough to recon-
struct the actual sources. As a consequence, some researchers have 
been considering constrained classes of NL model for which ICA is 
still valid. For instance, ICA-based solutions ensure source separa-
tion in an important class of constrained models known as post-
nonlinear (PNL) models [5, Ch. 14]. In 
chemical mixture analysis, one can 
find in the literature works on both 
linear and NL mixing models. In the 
sequel, we provide an (nonexhaustive) 
overview of source separation prob-
lems arising in each situation. 

LINEAR MODELS
Measurement techniques such as 
optical spectroscopy and/or chroma-
tography are frequently used in chemical analysis to extract rel-
evant information related to the chemical composition of an 
heterogeneous material (identify the components and assess 
their relative abundance [9]). The data processing corresponds 
to a source separation problem where the linear instantaneous 
mixture model holds with relatively small concentrations of the 
components in absorption spectroscopy, thanks to the Beer–
Lamber law [10]. In such model, each measured spectrum 

( )xi m  is a linear combination of the component spectra ( ),s j m

and the mixing coefficients aij  are related to the abundances of 
each component 

( ) ( ) .x a si ij
j

N

j
1

m m=
=

/ (2)

In practice, M  spectra [i.e., i M1f=  in (2)] are measured 
for different chemical conditions and L  values of a spectral vari-
able (frequency, wavelength, or wavenumber) .m  Figure 2(b) 
illustrates three absorption spectra resulting from the linear mix-
ing of two spectral sources, shown in Figure 2(a). By considering 
a matrix notation for (2) and a noise term, the measured spectra 
can be stored in the rows of the data matrix X RM L! #  that can 
thus be factorized according to .X AS E= +  The pure compo-
nent spectra are identified as the sources (rows of matrix 

)S RN L! #  and the abundance frac-
tion of each component are the ele-
ments of the mixing matrix 

.A RM N! #  The matrix E RM L! #

represents measurement errors and 
any deviation from the linear mixing 
model. In the chemical analysis 
community, the problem of estimat-
ing S  and A  knowing only matrix 
X  is termed MCR, spectral mixture 
analysis, and factor analysis while 

in signal and image processing field this problem is called source 
separation and spectral unmixing.

To develop a linear spectral mixture separation method, an 
objective function must be obtained by formulating some 
assumptions on the sought component spectra (the sources) and 
on their abundances (the mixing coefficients). Then, one must 
define a mathematical algorithm to optimize this objective func-
tion. The main information in spectral mixture data analysis is 
the nonnegativity of both the pure component spectra and abun-
dances. However, even with a linear mixing model, only account-
ing for these constraints does not lead to a unique solution [3]. 
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[FIG1] Some examples of sources in chemical analysis. (a) Ionic activities (in molar concentration) of potassium and ammonium. Note 
that the time scale is in minutes, and the signals were obtained from two different experiments. (b) The infrared reflectance of calcite.
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Additional constraints or assumptions are thus used to select a 
particular (and meaningful) solution among the feasible ones 
[11]. The existing methods differ on the way the constraints and 
the additional assumptions are formulated and how the separa-
tion is performed. A short overview of the different approaches is 
firstly given in this section and an example illustrates the appli-
cation of one of these techniques to the separation problem. 

INDEPENDENT COMPONENT ANALYSIS
As mentioned before, since BSS is an ill-posed inverse problem, 
prior knowledge and/or additional assumptions should be used to 
get a unique and correct solution. Principal component analysis 
(PCA) [12] assumes that the signals to be reconstructed are 
mutually uncorrelated, but this orthogonality constraint does 
not ensure the nonnegativity of the solution. A more constrain-
ing statistical assumption used for source separation is the 
mutual independence of the sources, leading to the ICA concept 
[5], for which many algorithms have been developed (see [5]). If 
the sought source signals are mutually statistically independent, 
they can be separated successfully by ICA methods and their non-
negativity will be ensured implicitly (at least, only few negative 
values appear in the estimates) as reported in [13], where a sec-
ond-order blind identification algorithm [14] was applied to the 
analysis of nuclear magnetic resonance (NMR) data. But, when 
the source signals are not mutually independent or when their 
mutual independence is not observed due to the finite and small 
number of samples, the nonnegativity information should be 
considered. In [15], Plumbley showed that it is possible to 

incorporate jointly nonnegativity and mutual independence of 
the sources (see also [5, Ch. 13]). This method yields a correct 
solution providing the condition of well-grounded sources (i.e., 
sources having nonvanishing probability distributions around 
zero) is fulfilled. 

MULTIVARIATE CURVE RESOLUTION
This approach, proposed by Lawton and Sylvestre [3], termed  
MCR, first decomposes the data matrix, using PCA, VX U .=

Then, a linear transformation T  is calculated to transform the 
principal components V  and their weight matrix U  into nonneg-
ative estimates of pure spectra S TV=  and mixing coefficients 

,A UT 1= -  respectively. Since accounting for nonnegativity alone 
does not ensure the uniqueness of the solution, this approach 
leads to several possible values of matrix T  that provide the set of 
admissible (feasible) solutions [3]. To reduce this set, Sasaki et al.
[16] suggest adding further constraints, in addition to the non-
negativity, and propose to search a linear transformation T  by 
minimizing a two-term criterion, in which a first part penalizes 
negative estimates of the pure spectra and mixing coefficients, 
and the second part uses an entropic cost function to make the 
estimated spectra smoother and mutually independent. The 
resulting optimization is given by 

,( , ) ( , ) ( ) ( )min min min logS A s n s n0 0
T F F j

j

N

n

L

j
2 2

11
b+ +

==

e o//

where · F  stands for the Frobenius norm and b  is a regulariza-
tion parameter that allows the adjustment of the tradeoff between 
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[FIG2] An example of three absorption spectra resulting from the linear mixing of two components with abundance fractions (75%, 
25%), (60%, 40%), and (30%, 70%), respectively. (a) Pure component spectra and (b) the mixture spectra.
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the two parts. The optimization of the whole objective function is 
performed by using the Nelder–Mead algorithm. However, this 
method may converge to local or spurious minima since this cri-
terion in nonconvex, and the criterion shape highly depends on 
the regularization parameters that should be specified manually. 
This method was revisited in [17] where a simulated annealing 
optimization algorithm is used. In the signal processing commu-
nity, the algebraic approach for ICA is very similar to that of Law-
ton–Sylvestre, but it is based on the statistical independence of 
the source signals (pure spectra). To get mutually independent 
signals, the transformation matrix is reduced to a unitary rota-
tion matrix by minimizing a contrast function [5, Ch. 3]. Assum-
ing the independence of the sources leads to a unique solution, 
but it does not guarantee its nonnegativity. 

NONNEGATIVE MATRIX FACTORIZATION
This approach performs a constrained least squares estimation 
of S  and A

( , ) | | | | .argminS A X AS
,S A

F
2= -t t

This (nonconvex) optimization problem can be solved using 
alternating least square (ALS) with alternate exact solving [11] or 
multiplicative [4] alternate update methods. At each iteration ,k
ALS algorithms minimize alternatively the above criterion with 
respect to ,S  keeping A  fixed, or to ,A  keeping S  fixed, with 
nonnegativity constraints [18] on S  and .A  It leads to solve the 
following optimization problems 

 | | | | . .argminS X A S S 0s t( ) ( )

S

k k
F

1 2 H= - -t t (3)

 | | | | . . .argminA X AS A 0s t( ) ( )

A

k k
F
2 H= -t t (4)

Multiplicative methods update iteratively the estimates of 
the sources and the mixing coefficients using a particular multi-
plicative learning rule that ensures the nonnegativity [4]. How-
ever, since the criterion is nonconvex, NMF algorithms do not 
lead a unqiue solution, unless in some particular conditions 
[19]. Therefore, the NMF results highly depend on the algo-
rithm initialization. Several contributions proposed to initialize 
the algorithm by the results obtained with an unconstrained 
decomposition method such as PCA, factor analysis algorithms, 
or using pure variable detection methods such as simple-to-use 
interactive self modeling mixture analysis (SIMPLISMA) [20] 
and orthogonal projection approach (OPA) [21]. In [13], for 
NMR spectroscopy, it has been shown that ICA methods can be 
used successfully for the initialization of the ALS approach. 
However, each initialization leads to a local minimum of the cri-
terion and none of these methods has proven to outperform the 
others since the result of each method highly depends on the 
data at hand. 

Similarly to the case of curve resolution methods, addi-
tional constraints such as sum-to-one (also called closure or 
full additivity) and unimodality (i.e., presence of only one 
maximum in each column of matrix A)  may be added to 

reduce the set of admissible solutions [22]. The sum-to-one 
constraint corresponds to assuming that the sum of the ele-
ments of each row of matrix A  is equal to one (or to a known 
constant). This is the case for instance in reaction-based sys-
tems, where a mass balance equation is obeyed by the concen-
tration profiles of the species present in the system; see, for 
instance, [23]. However, adding this constraint can alter the 
separation performance if the number of sources is not cor-
rectly selected or if the mixture data are subject to attenuation 
and variability. A discussion on this point can be found in [24]. 
Another constraint that reduces the set of admissible solution 
is the local rank or selectivity [22], which refers to the fact 
that for certain rows or columns of the data matrix, some mix-
ing coefficients are known to be nonzero while other coeffi-
cients are known to have zero values. 

There are other constraints that can be taken into account 
through a penalized least squares estimation approach. This 
idea is used in positive matrix factorization (PMF) [25] (this 
work was historically the first one dealing with spectral mixture 
analysis as a matrix factorization problem under positivity con-
straints) where the criterion to minimize is 

|| | | | | | |

| | | | ( ) .

min

log log

X AS A

S s n a

,S A
F F

F
j

N

n

L

j
j

N

i

M

ij

2 2

2

11 11

a

b c d

- +

+ - -
== ==

e

o// // (5)

The hyperparameters c  and d  control the strength of the loga-
rithmic barrier function that prevents negative values of the 
source samples and mixing coefficients. Hyperparameters a  and 
b  allows to adjust the weight of the quadratic regularization cri-
teria. Contrarily to the constrained least squares methods, the 
PMF approach leads to an unconstrained optimization problem. 

It is also possible to consider the sparsity constraint through 
a penalized least squares approach. Such an idea gives rise to 
nonnegative sparse coding (NNSC) [26], which searches for 
minimizing the following cost function 

|| | | | | | | .min X AS S A S0 0s.t. and
,S A

F
2

1 H Hb- +^ h (6)

This approach was applied by [27] for the analysis of magnetic 
resonance chemical shift imaging data. There are other alterna-
tive approaches for reducing the set of admissible solutions; see, 
for instance, [28] and [29]. 

BAYESIAN APPROACHES
The formulation of source separation using Bayesian estimation 
theory is reported in [5, Ch. 12]. Its first application to the sepa-
ration of spectral mixture data has been proposed in [30]. The 
spectral mixture separation in a Bayesian framework consist in 
describing the statistical properties of the measurement noise 
and assigning parametric a priori distributions ( | )Sp i  and 

( | )Ap i  on the pure component spectra and abundances, 
respectively. These distribution are defined with some hyperpa-
rameters represented by .i  A multivariate Gaussian distribution 
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is generally used to model the noise statistics, which yields the 
likelihood 

( | , , ) ( ; ),X A S X ASp NR R= -

where ( , )N n R  stands for the Gaussian distribution with mean 
n  and covariance matrix .R  This matrix reduces to IL

2v  when 
the noise samples are assumed to be independent and identically 
distributed. To account for the nonnegativity and the sparsity of 
the component spectra, a Gamma distribution model was used 
in [30], while a truncated Gaussian distribution or a Dirichlet 
distribution can be used to encode the sum-to-one constraint on 
the mixing coefficients [31]. 

The key point of the Bayesian approach is to apply Bayes’ 
theorem to express the a posteriori density 

( , | , , ) ( | , , , ) ( | ) ( | , ) / ( ),S A X X A S A S Xp p p p pi i i iR R R= (7)

from which a statistical inference is conducted to perform the 
separation. This distribution combines explicitly the available 
assumptions on the pure component spectra and their abun-
dances with the information coming from the measured data. The 
inference of the unknown quantities can be conducted by mini-
mizing ( , ) ( , | , )logS A S A XJ p i=-  or calculating empirical pos-
terior means of S  and A  after drawing samples from 

( , | , )S A Xp i  using Monte Carlo Markov chain (MCMC) methods 
(see [30] and [31] for details). The first approach is equivalent to 
minimizing a criterion similar to (6) with regularization criteria 

( )AR  and ( )SR  linked to the prior distributions according to 
( ) ( | )logA ApR i=-  and ( ) ( | ),logS SpR i=-  while the sec-

ond approach allows to infer all the weighting parameters at the 
price of a significant increase of the computation time. The Bayes-
ian method was successfully applied for the analysis of hyperspec-
tral data in [32] and chemical reaction monitoring [33]. 

GEOMETRICAL METHODS
Geometrical methods are based on the empirical distribution 
(geometrically speaking, the scatter plot) of the mixture data. 

Since these data result from a nonnegative mixing of nonnegative 
data, the scatter plot of the mixed data is contained in the simpli-
cial cone generated by the columns of the mixing matrix [19]. 
Figure 3 illustrates three examples of mixture data distribution for 
different types of sources. It can be noted that in the case of sparse 
sources, each row of S  has a dominant peak at some location (col-
umn number) where other rows have zero elements, then the 
problem of finding the columns of the mixing matrix A  reduces 
to the identification of the edges of a simplicial cone, edges where 
the data are concentrated in Figure 3(b). In the case of sum-to-one 
mixing, the mixture data will be distributed on a simplex whose 
vertices correspond to mixture data containing only one compo-
nent. Thus, each vertice is associated with a column of the mixing 
matrix .A  In [34], efficient algorithms are designed for data where 
the sources are not well grounded and the mixing matrix does not 
satisfy the sum-to-one or the pure pixel assumptions. This method 
can also handle noisy data and was applied to positron emission 
tomography (PET) imaging and mass spectroscopy. 

In chemical imaging spectrometry and remote sensing by 
hyperspectral imaging [35], [36], the spectral mixture analysis is 
often handled using a two-step procedure: the pure spectra esti-
mation and the abundance fraction assessment, respectively. In 
the first step, the pure components of the mixture are identified 
by using an endmember extraction algorithm (EEA). See, for 
instance, [37] for a recent performance comparison and discus-
sion on EEAs. The most popular EEA is the N-FINDR algorithm. 
N-FINDR estimates the pure component spectra by identifying 
the largest simplex whose vertices are taken from the convex hull 
of the data. Another popular and faster alternative is the vertex 
component analysis (VCA) method, which has been proposed in 
[38]. It works by iteratively estimating the vertices of the simplex 
without calculating the convex hull. A common assumption in 
VCA and N-FINDR is the existence of pure pixels (pixels com-
posed of a single component) in the observed data. Alternatively, 
the minimum volume transform (MVT) finds the smallest sim-
plex that contains all the pixels [39], [40]. The second step of the 
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[FIG3] An illustration of the simplicial cone and the empirical distribution of the mixture data for three types of nonnegative sources: 
(a) uniform well-grounded sources, (b) sparse sources, and (c) uniform sources with sum-to-one mixing constraint. 
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spectral unmixing can use various strategies such as those based 
on constrained least squares estimation [24], [41]. 

TENSORIAL METHODS
Most of the methods mentioned earlier simply exploit one type 
of diversity: it leads to a two-way array of data, easily repre-
sented by a matrix. The previous examples consider two-way 
arrays based on space and time (mixtures of signals) or space 
and frequency (spectral mixtures) dimensions. But in many 
chemical experiments, one or more additional diversities can be 
considered, leading to a three-way (or, more generally, a multi-
way) array of data, which can be represented by a tensor. As an 
example, in fluorescence spectroscopy, the (measured) fluores-
cence intensity dependents on three variables: the fluorescence 
emission spectrum, the absorbance spectrum, and the relative 
concentration of the components. Of course, tensorial decom-
position is not restricted to fluorescence, and other applications 
include time resolved spectroscopy [42], multidimentional NMR 
[43], or polarized Raman spectroscopy [44]. 

Historically, parallel factor analysis, or canonical polyadic 
decomposition (CPD), inspired from early works on factor 
analysis in psychometrics, has been intensively studied in che-
mometrics since the 1990s and was popularized by Bro [18]. 
Currently, many theoretical contributions and applications are 
addressing the CPD decomposition of three-way arrays. More 
details and references of tensorial methods [45] and an appli-
cation in fluorescence spectroscopy [46] are provided in 
accompanying articles also found in this issue of IEEE Signal 
Processing Magazine.

APPLICATION EXAMPLE
Calcium carbonate is a chemical material used for a large variety 
of applications such as filler for plastics or paper. Depending on 
operating conditions, calcium carbonate crystallizes as calcite, ara-
gonite, or vaterite. The formation of calcium carbonate by mixing 
two solutions containing, respectively, calcium and carbonate ions 
takes place in two steps. The first is the precipitation step, which is 
very fast and provides a mixture of calcium carbonate polymorphs. 
The second step (a slow process) represents the phase transforma-
tion from the unstable polymorphs to the stable one (calcite). The 
physical properties of the crystallized product depend largely on 
the polymorphic composition, so it is necessary to quantify these 
polymorphs when they are mixed. The main purpose of this appli-
cation is to study the relation of polymorphs and temperature and 
to explore favorable conditions for calcite formation. 

Calcium chloride and sodium carbonate separately dissolved 
in sodium chloride solutions of the same concentration were rap-
idly mixed to precipitate calcium carbonate. A sample was col-
lected two minutes after the beginning of the experiment to 
determine the polymorphic composition at the end of the precipi-
tation step. Raman spectra of this sample have been measured for 
various temperatures ranging between 20 to 70˚C to determine 
the influence of temperature on the polymorphs precipitation. 
Moreover for each temperature, Raman spectra were collected at 
regular time intervals for monitoring the phase transformation. 

Finally, a total of M 37=  spectra (each one obtained for a given 
temperature and phase transformation time) of L 477=  wave-
lengths are obtained. Details on the experiment can be found in 
[33]. Figure 4(a) shows six spectra measured at the beginning the 
phase transformation step. 

Figure 4(b) shows the estimated sources using a Bayesian sepa-
ration approach with a Gamma distribution prior on the sources 
and a Dirichlet distribution as prior on the mixing coefficients [30], 
[31]. From the spectroscopic point of view and according to the 
locations of the vibrational peaks, the identification of the three 
components is easy. The evolution of the concentration profile ver-
sus the temperature is shown in Figure 4(c). It can be deduced that 
pure vaterite is observed at 20 ˚C and a quite pure aragonite is 
obtained at 60˚C. However, between 20 to 60˚C, ternary mixtures 
are observed. The abundance of calcite is maximal at 40˚C, which 
is in agreement with results reported in the literature. Let us now 
consider the phase transformation evolution at this temperature 
value. The concentration profile versus precipitation time at 40˚C 
is shown in Figure 4(d). At the beginning of the phase transforma-
tion (two minutes), the ternary mixture is composed of 50% vater-
ite, 35% aragonite, and 15% calcite. Then, after two hours, the 
vaterite is transformed to aragonite and calcite. Finally, after seven 
hours, vaterite and aragonite are almost totally transformed to cal-
cite. So, aging time promotes the formation of calcite. 

NONLINEAR MODELS
Although linear mixing models provide a satisfactory first-order 
approximation of the measurement process in several applica-
tions, there are some cases in which an NL model is mandatory. 
Indeed, exploiting the physical theory behind the measurement 
transducer allows the increase of the amount of information that 
can be extracted from the data. For example, the sensitive mem-
brane of potentiometric sensors such as ion-selective electrodes 
(ISEs) or ion-selective field effect transistors (ISFETs) can be 
described by the classical Nernst equation [47], which establishes 
a logarithmic relation between ionic activity and the membrane 
potential. In this section, we shall discuss how source separation 
methods can be set to deal with NL mixing models, paying special 
attention to the illustrative example of ISE arrays. Afterward, 
some considerations on other types of sensors are made. 

ISEs, which are the most used chemical sensors in industry, 
are simple devices for measuring ionic activity. A well-known 
example of ISE is the glass electrode, which is used for measur-
ing the pH of a given solution. Besides, one can find ISEs tai-
lored to different ions such as ammonium, potassium, and 
sodium. These devices have been intensively used, for instance, 
in food and soil inspection, clinical analysis, and water quality 
monitoring. One of the reasons that explains the success of ISEs 
in such applications is the simplicity of this approach. Indeed, 
ISE-based analyses do not require sophisticated laboratory 
equipment and procedures and, thus, can be carried out in the 
field if necessary. Although attractive, potential electrodes such 
as ISEs and ISFETs suffer from an important drawback: they are 
not selective, i.e., the generated potential depends on a given 
target ion but also on other undesirable ions, which are called 
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interfering ions [47]. There are some situations in which this 
interfering process is so weak that it can be neglected. However, 
this phenomenon may become important when the target ion 
and the interfering ones have similar physical and/or chemical 
properties. A possible solution to eliminate this interference 
effect is to consider the diversity provided by an ISE array using 
a source separation approach. 

The interference in ISE can be modeled through an empirical 
extension of the Nernst equation called the Nicolsky–Eisenman 
(NE) equation [47]. According to this model, the response of the 
ith sensor (dedicated to measure the ith ion) within the array is 
given by 

( ) ( ) ( ) ,logx n e d s n a s n
,

/
i i i i ij

j j i
j

z zi j= + +
!

c m/ (8)

where di  and ei  are constants that depend on some physical 
parameters, zi  and ( )s ni  denote the valence and the activity of 
the ith ion, respectively. The nonnegative parameters ,aij  the 

selectivity coefficients, explain the influence (interference) of the 
jth ion on the ith sensor; and n  stands for the temporal index. 

There are some pairs of ions for which high values of selectiv-
ity coefficients are observed. When the valences of the ions are 
different, the model (8) becomes difficult to deal with because a 
nonlinearity (power term) appears inside the logarithm term 
[48]. However, when the valences are equal, which is the most 
common situation, (8) becomes a special NL model known as the 
PNL model [49]. Indeed, in PNL systems, there is a linear mixing 
stage followed by a set of component-wise NL function, which in 
the case of ISE arrays correspond to logarithms. As mentioned 
before, an interesting property of PNL models is that, under con-
ditions that are close to those required in the linear case [5], the 
application of ICA leads to source separation. 

NONLINEAR INDEPENDENT COMPONENT ANALYSIS
For equal valences, when the number of mixtures and sources is 
the same, the mixing process described in (8) can be 
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[FIG4] The separation of Raman spectra of calcium carbonate: mixture data and separation results. (a) The collected mixture spectra at 
2 min after the beginning of the phase transformation for different temperature values. (b) A comparison between the estimated 
sources (continuous) and the reference spectra (dashed) of the three components. (c) Abundances of the three components at the 
beginning of the phase transformation for different temperature values. (d) The temporal evolution of the three component 
abundances at T ˚C40= .
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counterbalanced by a separating system in which each estimated 
source is given by 

( ) ( ( )), , , ,expy n w f h x n k N1fork ki
i

M

i i i
1

f= + =
=

/ (9)

where ,wki fi , and hi  are unknown parameters that must be 
adjusted and M  the number of sensors and N  the number of tar-
get ions—actually, the parameters fi  only introduce a scale ambi-
guity, which is usual in BSS, and, therefore, can be fixed a priori to 
a given value. 

As in the linear case, the adjustment of PNL separating 
models can be performed by means of ICA, but some care 
must be taken while developing the separation algorithm. 
For instance, one must resort to stronger independence mea-
sures such as the mutual information. The adjustment of the 
separating system is thus carried out by the following opti-
mization problem 

( ( ), , ( )),min y n y nI
,w h

N1
ki i

f (10)

where ( , , )y yI N1 f  denotes the mutual information between 
the estimated signals ( ) .y n  There are several algorithms for 
solving (10), where main difficulties are related to the 

estimation of the mutual information and to the existence of 
spurious local minima in this cost function. In [50], for 
instance, the optimization problem expressed in (10) was tack-
led by a bioinspired optimization method that is robust to con-
vergence to local minima and does not require the calculation 
of the derivatives of (10). Moreover, [50] adopts a mutual 
information estimator based on order statistics. 

To illustrate the application to a real situation of the ICA 
method [50], we considered an experiment where the data was 
acquired by an array composed of a sodium and a potassium 
ISE (two mixtures). Therefore, there are two mixtures and two 
sources (the activities of potassium and sodium). Data acquisi-
tion was achieved via a flow-injection analysis system, which 
usually increases the stability and the sensitivity of the array. 
In Figure 5(a), the actual sources are depicted. As a result of 
the low selectivity of each sensor within the array, the 
acquired signals correspond to NL mixtures of the sources, 
which is illustrated in Figure 5(b). After solving the problem 
(10), the retrieved sources are shown in Figure 5(c). Despite 
the reduced number of samples (41 points), the ICA technique 
was able to provide signals that are good approximations of the 
original sources. A more detailed description of this experi-
ment is provided in [51].

[FIG5] An experiment with data acquired by an array composed of a sodium and a potassium ISE. Sources: (a) activities of sodium and 
potassium, (b) array response, and (c) retrieved sources.
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BAYESIAN APPROACH
Bayesian source separation can also be applied in the context of 
ISE arrays. Actually, differing from ICA, whose basis lies in the 
independence assumption, the 
Bayesian approach does not intro-
duce a measure of independence but 
it searches a solution allowing to 
jointly explain the data according to 
the mixing model and fulfill some 
prior knowledge. Similarly to the lin-
ear case [see (7)], the posterior distri-
bution in the NL case is given by 

( , , | ) ( | , , ) ( ) ( ) ( ) / ( ),s A g x A s g A s g xp p p p p px = (11)

where the vector g  includes the parameters associated with the 
logarithmic functions [see (8)]. As in the linear case, the infer-
ence step can be done based on a set of samples drawn from the 
posterior distribution via MCMC methods. The main difficulty 
when dealing with NL models using MCMC methods is the need 
to draw samples from distributions for which a classical sam-
pling method may be inefficient. In [49], by relying on lognor-
mal prior distributions on ( ),sp  limited support Gaussian 
densities on ( ),gp  we showed the relevance of accounting for 
the nonnegativity constraint and introducing auxiliary variables 
to handle the sampling difficulties. 

EXPLOITING OTHER PRIOR INFORMATION
In addition to the nonnegativity of the sources, other prior infor-
mation can be considered when developing NL source separation 
methods. For example, in [52], a method exploiting the assump-
tion that the sources are bandlimited is proposed to compensate 
the NL stage of PNL systems. The advantage brought by this 
approach is that, once the NL component-wise functions are 
counterbalanced, the resulting separation problem becomes linear 
and, therefore, can be dealt with by means of linear BSS methods. 
In the context of ISE arrays, assuming bandlimited sources is real-
istic since the signals of interest have a spectral content concen-
trated on low-frequency bands. The approach proposed in [52] was 
applied in the analysis of the ions ammonium and potassium, 
leading to a good estimation of the sensors’ nonlinearities. 

Other prior information that can be considered is the existence 
of silent periods of a given ion, i.e., time windows in which the 
concentration of a given ion is approximately zero. Interestingly, 
this scenario is close to that of found in speech separation and can 
be interpreted as a sparsity-based approach. In [48], a method that 
uses this information was proposed to estimate the parameters di

of (8) in the case where the valences of the ions are different. In 
this situation, as can be noted in (8), the mixing model is much 
more complex than PNL model, and, thus, estimating the nonlin-
earities at first usually simplifies the problem. 

LINEAR-QUADRATIC MIXING MODEL
In addition to the complex model (8) considered in the con-
text of ISE arrays for analyzing ions with different valences, 

there is another relevant class of models that arises in chem-
ical analysis: the linear-quadratic (LQ) model ([5, Ch. 14]). 
An interesting aspect of the LQ mixture is that it can be seen 

as a linear mixture of dependent 
sources. Such a feature simplifies 
the derivation of separation algo-
rithms in this case. According to 
the Clifford–Touma equation [53], 
the mixing process that takes 
place in the analysis of two gases 
by using a tin oxide gas sensor 
can be described by an LQ model. 

Moreover, LQ models also arise in the context of hyperspec-
tral imaging, especially when there are multiple reflexions 
caused by the presence of buildings or trees [36]. This is an 
interesting problem since hyperspectral imaging is closely 
related to the above-mentioned problems of separating spec-
tra. Such a model is also considered in fluorescence spectros-
copy of highly concentrated solution, involving a screen 
effect, and a possible method for solving this problem is 
proposed in [54]. 

CONCLUSIONS AND FURTHER CHALLENGES
In this article, we presented an overview on how source sepa-
ration methods can be applied in chemical analysis. We briefly 
discussed some kinds of chemical data and presented several 
approaches that can be applied. A typical characteristic of 
chemical data is the existence of prior information on the 
sources and the mixing process. These priors have motivated 
researchers working on the subject to consider alternatives to 
the framework of ICA, thus showing that, besides being an 
exciting field of application to classical BSS methods, chemi-
cal analysis may also be inspiring environment for novel BSS 
paradigms. Another interesting aspect of this relatively new 
field of applications is related to the challenges that are found 
when developing separation methods, e.g., NL mixtures and 
dependent sources. 

Despite the current advances achieved in source separation for 
chemical data, there are still many issues that must be tackled. 

MIXING MODELS
A first important point concerns the mixing models that 
should be adopted. Indeed, transducer physics gives realistic 
mixing models whose processing in a raw version or even after 
some simplifications will provide very challenging signal pro-
cessing problems. Moreover, most of the models give a static 
description, i.e., we assume that the mixtures follow an instan-
taneous model. Therefore, if a dynamical mixing model were 
available, it would be possible to take advantage of the sensor’s 
dynamics to obtain better separation results. This could be 
achieved by considering convolutive models. 

NOISE AND MEASUREMENT PROCESS MODELING
Another difficult aspect that must be handled in chemical 
analysis is the existence of noise and other complex 
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phenomena. In ISEs, for instance, 
since there are NL elements in the 
transducer stage, there may be a 
strong noise amplification during 
the separation process—one can 
show that a separation method 
based on inversion leads to a mul-
tiplicative noise model [49]. More-
over, in the context of spectral 
unmixing, finding realistic noise 
models for nonnegative sources is 
still an open issue. Finally, when dealing with chemical sen-
sors one may find hysteresis, which is an NL and dynamical 
phenomenon that is very difficult to model. 

SOURCE NUMBER
Assessing how many sources are present in a mixture data is 
one of the oldest questions in signal analysis and remains of 
huge interest for the application of source separation methods 
to real applications. In the linear mixing model, additive noise 
and mutually uncorrelated sources, it is generally addressed 
by a subspace analysis approach. However, the theory behind 
such analysis breaks down when dealing with either NL mix-
ing models or nonnegative sources. For instance, by consider-
ing nonnegativity in the linear mixing model the source 
number corresponds to the nonnegative rank, which is differ-
ent from the classical matrix rank. Fortunately, when dealing 
with mixture data obtained from some chemical reaction 
monitoring, the number of sources can be known in advance, 
thanks to the chemical theory. 

ENHANCING THE DATA ACQUISITION SETUP
The performances of any signal processing method will highly 
depend on how much the data fulfill the method hypotheses. For 
instance, the application of NMF will be more efficient when the 
sources are well grounded, when there is some pure pixels in the 
spectral image, and, more generally, when the uniqueness condi-
tions are respected. It would be therefore useful to pay attention 
on how to design the measurement setup in such a way to meet, 
at best, theses conditions or how to introduce additional measure-
ment modalities to make the mixture analysis problem more trac-
table. In that respect, chemists play a fundamental role here 
especially in data acquisition. There is a great number of different 
acquisition techniques, even for the same kind of analysis, and 
many properties, such as temperature, pH, pressure, and humid-
ity, that when correctly controlled by a chemist, may lead to a 
good diversity within the acquired data. Therefore, to further 
advance in the application of source separation in chemistry, the 
collaboration between researchers in the fields of AC and signal 
processing should be reinforced, even more than before. 
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I
t is becoming more important that next-generation wireless networks wisely integrate mul-
tiple services at the physical layer to increase spectral efficiency. In this article, physical 
layer service integration in wireless networks is considered, where senders not only trans-
mit individual data to certain receivers but also integrate additional multicast or confiden-
tial services that have to be kept secret from nonlegitimate receivers. In this context, 

physical layer security techniques are becoming a promising complement to cryptographic 
techniques since they establish security using only the physical properties of the wireless chan-
nel. State-of-the-art solutions for certain important communication scenarios are discussed, 
and signal processing challenges and promising research directions are identified. 
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MOTIVATION
Significant progress has recently been made in improving the 
performance of current third-generation/fourth-generation cel-
lular networks. Techniques such as high-speed downlink packet 
access/high-speed uplink packet access; multiuser multiple 
input, multiple output (MIMO); channel adaptive scheduling; 
cooperative multipoint transmission; and relaying can increase 
spectral efficiency. 

An additional research area that is gaining importance is the 
efficient implementation of services at the physical layer. For 
example, in current cellular systems, operators offer not only 
traditional services such as (bidirectional) voice communication 
but also multicast services and/or confidential services that are 
subject to certain secrecy con-
straints. Today, the integration of 
multiple services is realized by 
higher-layer policies that allocate 
different services on different logi-
cal channels. The security issue is 
usually addressed by applying cryp-
tographic techniques at higher lev-
els. In general, this is quite 
inefficient, and there is a trend to 
merge multiple coexisting services 
efficiently so that they work on the 
same wireless resources. This is 
referred to as physical layer service integration and has the 
potential to significantly increase the spectral efficiency for 
next-generation wireless networks and, especially, fifth-genera-
tion cellular networks. These networks will not only be designed 
to realize traditional communication but will also be applied to 
machine-to-machine communication or sensor networks, 
which have strict requirements on security and robustness. This 
is being intensively discussed by the Third Generation Partner-
ship Project (3GPP) Long-Term Evolution Advanced (LTE-
Advanced) group [1].

Multicast services can efficiently be realized by common mes-
sages. For example, the Multimedia Broadcast Multicast Service, 
as specified by the 3GPP organization [2], [3], or the Multicast and 
Broadcast Service in Worldwide Interoperability for Microwave 
Acess, commonly known as WiMax [4], benefit from such studies. 
This substantiates the concern of merging such services efficiently 
on the physical layer so that the broadcast nature of the wireless 
medium is advantageously exploited.

If such services are not required to be kept secret from nonle-
gitimate receivers, they are classified as public services. Accord-
ingly, services that have this additional secrecy requirement are 
classified as confidential services. Currently, secrecy techniques on 
higher layers such as cryptographic-based techniques have a wide 
variety of uses and usually rely on the assumption of the unproven 
hardness of certain problems or on the insufficient computational 
capabilities of nonlegitimate receivers. Because of increasing com-
putational power, recent advances in number theory, and 
improved algorithms, there is also interest in identifying alterna-
tive approaches for establishing security. 

The security of confidential information becomes even more 
important in wireless networks since such systems are inher-
ently vulnerable to eavesdropping due to the open nature of the 
wireless medium. On the other hand, the physical properties of 
the wireless channel make the communication easily accessible 
to external wiretappers, but they also offer possibilities for 
establishing security by approaches other than cryptographic 
techniques. 

In this context, the concept of physical layer security is 
becoming more attractive since it solely uses the physical prop-
erties of the wireless channel to establish security [5]–[8]. So 
regardless of what transformation is applied to the signals that 
are received by nonlegitimate receivers, the original message 

cannot be reproduced. Therefore, 
such approaches provide so-called 
unconditional security and, not 
surprisingly, are identified by oper-
ators and national agencies as 
promising and important tasks for 
next-generation mobile networks 
[9], [10]. Since the wireless channel 
has a huge impact on the perfor-
mance of wireless systems, the 
analysis of information theoretic 
security for different models of 
channel uncertainty is an impor-

tant research field and, thus, indispensable for bringing this 
concept into practice. Thereby, uncertainty models that take 
both kinds of effects into account are needed: those that are 
based on the nature of the wireless medium and those that are 
due to implementational issues. 

There are currently many research activities that analyze 
the efficient integration of different services at the physical 
layer, but most of them tackle this problem from an informa-
tion theoretic point of view. This means that their main goal is 
to derive capacity results or to characterize coding strategies 
that result in certain rate regions. Along with this comes the 
unsatisfying fact that most activities end when a certain char-
acterization of a rate region is obtained. Unfortunately, for the 
practically relevant case of multiple transmit and receive 
antennas, such descriptions are usually given by a union over 
all possible transmit covariance matrices satisfying certain 
power constraints. 

For further implementational developments, it is also 
important to treat physical layer service integration from a sig-
nal processing point of view and analyze such capacity descrip-
tions in more detail. In particular, spatial MIMO techniques as 
well as optimal or complexity-efficient transmit strategies have 
to be characterized. Such strategies are usually given by optimi-
zation problems. For the simultaneous integration of multiple 
services and, especially, of confidential services, such optimiza-
tion problems turn out to be generally nonconvex. 

To pave the way for practical implementation, there is the 
need to intensify the efforts analyzing physical layer service 
integration from a signal processing point of view. Therefore, 
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the main objective of this article is to review the state-of-the-art 
solutions and to point out where further studies are needed and 
those that are promising.

PRINCIPLES OF PHYSICAL LAYER SERVICE INTEGRATION
We restrict the discussion to small networks to focus on the key 
ideas of how to efficiently integrate different services at the 
physical layer. To highlight the key ideas and insights, we usu-
ally consider the simplest possible scenario. However, the 
results are also relevant for larger networks since they provide 
valuable insights into how strategies or heuristics for service 
integration in larger networks should be designed. This is most 
obviously the case for multicast services, where ideas presented 
for two receivers naturally extend to more than two receivers. 
But general insights regarding the optimal processing struc-
ture, such as superimposing different data streams or rate split-
ting techniques obtained for simple scenarios, are also valuable 
for larger networks.

Unless otherwise noted, we consider a simple three-node net-
work with one transmitter and two receivers, as shown in Figure 
1. In the most general setup, the aim of the transmitter is to pro-
vide individual, multicast, and confi-
dential services simultaneously and 
as efficiently as possible. Since spa-
tial MIMO techniques can improve 
the performance significantly [11], 
we especially concentrate on the case 
where the transmitter and receivers 
are equipped with multiple anten-
nas. Therefore, let NT  be the num-
ber of transmit antennas and Ni  be 
the number of antennas at receiver ,i , .i 1 2=  The discrete-time, 
real-valued, input–output relation between the transmitter and 
receiver i  can then be modeled as

,x ny Hi i i= + (1)

where y Ri
N 1i! #  denotes the output at receiver i , H Ri

N Ni T! #

the multiplicative channel matrix, x RN 1T! #  the input at the 
transmitter, and n Ri

N 1i! #  the independent additive noise 
according to a Gaussian distribution ( , )I0N Ni  with zero mean 
and identity covariance matrix. We consider an average transmit 
power constraint ( ) ,Q Ptr #  where { }Q xxE T=  denotes the 
transmit covariance matrix. 

Individual and multicast services belong to the class of pub-
lic services, which means that they are not required to be kept 
secret from nonlegitimate receivers, and the only task is to inte-
grate them as efficiently as possible to allow for high data rates. 
On the other hand, services with such a security requirement 
belong to the class of confidential services. Here, we are con-
fronted with two different intentions: these services should be 
integrated as efficiently as possible, but more importantly, they 
have to be secure from nonlegitimate receivers. 

To guarantee the confidentiality of the transmitted message, 
we require that 

( ; ) ,I M Y 0c
n

n2 "
"3

(2)

where n  denotes the code block length. Thus, the mutual 
information between the confidential message Mc  and the 
output Yn

2  at the nonlegitimate receiver has to be small [5], 
[8], [12]. This is known as physical layer, or information theo-
retic, strong secrecy and ensures that even if the nonlegitimate 
receiver has its channel output ,Yn

2  it still has no knowledge 
about the transmitted confidential 
message .Mc  Recently, it has been 
shown that the strong secrecy cri-
terion has the following opera-
tional meaning: no matter how the 
nonlegitimate receiver tries to 
decode the confidential message, 
the average probability of error 
tends exponentially fast to one, cf., 
for example, [13]–[16]. This paves 

the way for operators to provide confidential services with 
guaranteed, i.e., provable, secrecy. 

There exists a weaker notion of secrecy where the mutual 
information term is additionally normalized by the block 
length ,n  i.e., we require ( / ) ( ; )n I M Y1 0c

n
2 "  as .n " 3  This 

criterion is known as weak secrecy and has the drawback that 
no operational meaning has been given to it yet. However, this 
secrecy criterion is widely assumed and was first analyzed by 
Wyner and subsequently by Csiszár and Körner in their land-
mark articles [17] and [18]. 

PUBLIC SERVICES
We start with the scenario where there are only public services 
to be integrated at the physical layer. The aim is to do it in such 
a way that the data rates are maximized to allow for high spec-
tral efficiency. 

UNICAST SERVICES
The broadcast channel (BC), which corresponds to the down-
link scenario in a cellular network, serves as a starting point. 
Here, the base station wants to transmit individual messages 
to several receivers, where each receiver is only interested in 
its own message. The BC with individual messages is well 
understood, and the optimal processing for multiple antennas 

Tx
NT

Rx1
N1

Rx2
N2 mc

m0m1mc

m0m2

m0m1m2mc H 2

H 1

[FIG1] The general scenario of physical layer service integration 
in a three-node network. The transmitter provides private, 
common, and confidential services.
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can be found in [19]. The capacity region CBC  of the two-user 
MIMO Gaussian BC is given by 

( ),coC R R12 21BC ,=

where R12  is given by all rate pairs ( , )R R R1 2
2! +  that satisfy 

log
I H Q H

I H Q H H Q HR 2
1

N
T

N
T T

1
1 2 1

1 1 1 1 2 1

1

1#
+

+ + (3a)

log I H Q HR 2
1

N
T

2 2 2 22# + (3b)

for some ,Q Q 01 2 *  with ( ) .Q Q Ptr 1 2 #+  Region R21  is 
obtained by exchanging the indices 1 and 2 in (3). 

The downlink scenario is well studied from a signal process-
ing point of view as well. It is shown that capacity can be 
achieved by dirty paper coding (DPC), where the regions R12

and R21  describe the different (dirty paper) encoding orders, cf., 
for example, [11], [20]. There is also a duality theory between 
the MIMO Gaussian BC and multiple-access channel (MAC), 
which allows the transfer of optimal processing strategies from 
the MAC to the corresponding BC [21]–[23]. Beamforming with 
individual signal-to-interference-plus-noise ratio constraints is 
discussed in [24]. 

MULTICAST SERVICES
Besides individual messages, operators of cellular systems also 
offer multicast services such as common video streams or com-
mon signaling data. 

Multicast communication can efficiently be realized by com-
mon messages. Thus, the aim of the transmitter is to transmit a 
common message in such a way that all receivers can decode it. 
Obviously, with the input–output relation given in (1), the max-
imal multicast rate R R0 ! +  is characterized by the following 
optimization problem: 

| | .max min log I H QHR 2
1

( ) { , }Q P i
N i i

T
0

1 2tr
i= +

# !
' 1 (4)

Such problems are known as max–min fair optimization prob-
lems since the overall aim is to maximize the smallest (single-
user) rate over the receivers subject to the transmit power. 

If the processing at the transmitter is restricted to beam-
forming, i.e., the transmit covariance matrix has to be rank one, 
we know the problem has been well studied in literature, cf., for 
example, [25]–[28] and the references therein. Unfortunately, 
even for beamforming, the problem in (4) is shown to be non-
deterministic polynomial-time hard or NP-hard [25], which 
makes it difficult to characterize the optimal transmit covari-
ance matrix in detail. Thus, convex relaxations of this problem 
have been considered [25], [28]. The feasible signal-to-noise 
ratio (SNR) region for multicast beamforming is analyzed in 
[26] and [27]. 

The problem of multicasting can also be interpreted from a 
channel state information (CSI) point of view. Instead of 

transmitting one common message to several receivers, the 
scenario can also be interpreted as a point-to-point transmis-
sion with one receiver, where the channel is not exactly known 
to the users. It is only known that the actual channel realiza-
tion belongs to a set of prespecified channels. In this case, the 
transmission rate has to be chosen such that it works for all 
channels simultaneously. This corresponds to the model of 
compound channels [29]–[31]. Thus, the optimization prob-
lem in (4) can also be interpreted as a robust optimization 
problem for a point-to-point link with channel uncertainty, cf., 
for example, [32] and [33]. 

While the transmission of a single multicast message to sev-
eral receivers is somewhat understood, the integration of multi-
cast and individual services is much more involved and less 
understood. The capacity region for the MIMO Gaussian BC 
with common and individual messages can be found in [34] and 
[35]. The achievability of this region was proposed in [34] and 
recently established as capacity region in [35] by showing its 
optimality. Although the efficient integration of multicast and 
individual services is known in terms of transmission rates, the 
optimal or complexity-efficient transmit strategies are still 
unknown and have to be analyzed. 

CONFIDENTIAL SERVICES
Next, we discuss the efficient integration of confidential ser-
vices. We concentrate on the simplest model incorporating 
secrecy, which is the so-called wiretap channel. Here, a sender 
wants to transmit a confidential message to a legitimate 
receiver while keeping this message completely secret from a 
nonlegitimate eavesdropper. Since the wireless channel has a 
huge impact on the communication, it is important to study 
information theoretic security for different models of CSI. 

PERFECT CSI
The wiretap channel [17], [36]–[44] can be regarded as the basic 
scenario of the efficient implementation of a secure point-to-
point transmission in the presence of an external eavesdropper. 
With the secrecy criterion (2), the secrecy capacity R RS ! +  of 
the MIMO Gaussian wiretap channel is given by 

| | | | ,max log logI H QH I H QHR 2
1

2
1

( )Q P
S N

T
N

T
1 1 2 2

tr
1 2= + - +

#
e o (5)

where H1  is the channel to the legitimate receiver, and H2  is 
the channel to the nonlegitimate eavesdropper. 

This specifies the maximal transmission rate for the MIMO 
Gaussian wiretap channel. Note that the optimal input is Gauss-
ian distributed with zero mean, but unfortunately, it does not 
directly characterize in detail the optimal signal processing, 
since the capacity-achieving transmit covariance matrix is given 
by an optimization over all matrices that satisfy the power con-
straint. In addition, the optimization problem in (5) is noncon-
vex in general, and the optimal transmit covariance matrix is 
only known for some special cases. 

For the multiple-input, single-output (MISO) scenario, where 
the transmitter has multiple antennas and the legitimate receiver 
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and eavesdropper have only a single antenna, the optimal transmit 
strategy is known in closed form, cf. [38], [39], [43]–[45]. Denot-
ing the channel vectors by h RN

1
1T! #  and ,h RN

2
1T! #  the opti-

mization problem reduces to 

,max log
h Qh
h QhR 2

1
1
1

( )Q
S

P T

T

2 2

1 1

tr
=

+
+

#

and the solution is given by 

( ( , )),log I h h I h hR P P2
1

maxS N
T

N
T

1 1 2 2T Tm= + +

where maxm  is the largest generalized eigenvalue of the two 
matrices I h hPN

T
1 1T +  and .I h hPN

T
2 2T +  In addition, the 

secrecy capacity is achieved by beamforming, i.e., the optimal 
transmit covariance matrix is of 
rank one, in the direction of the 
generalized eigenvector of maxm

[39], [43]. Subsequently, closed-
form solutions of the optimal 
beamforming vector and the corre-
sponding secrecy capacity have 
been established in [38] and [44]. 

For the general MIMO case, the 
problem becomes much more 
intricate. For a general matrix power constraint, the optimal 
transmit strategy is derived in [42] using the relation between 
mutual information and minimum mean square error 
(I-MMSE relation). The high SNR regime has been studied in 
[40]. But the general MIMO case is still an open problem, and 
only partial results are available [38], [45]–[47]. In particular, 
only properties of the optimal transmit covariance matrix are 
available. For example, a necessary condition for an optimal 
transmit strategy is to transmit in the positive directions of 

,H H H HT T
1 1 2 2-  i.e., the directions where the channel to the 

legitimate receiver is stronger than the one to the eavesdrop-
per [44], [45]. 

PARTIAL CSI
The assumption of perfect CSI at all nodes is quite unrealistic in 
practical wireless systems due to the nature of the wireless 
medium but also due to implementational issues such as imper-
fect or quantized channel estimation or limited feedback 
schemes. Moreover, CSI of the eavesdropper channel is especially 
questionable since a nonlegitimate receiver will not report its 
channel conditions to the transmitter. 

To model channel uncertainty, the concept of compound 
channels [29]–[31] is designated because it not only perfectly cap-
tures the phenomena of the wireless medium but also includes 
these implementational issues of practical systems. Moreover, the 
concept of compound channels ensures the reliability and secrecy 
for all possible channel realizations in the set. Thus, it provides a 
certain guaranteed performance. This is desirable, especially for 
the transmission of confidential information, since the informa-
tion must be kept secret under all circumstances. The usual 

procedure is to first study the compound scenario for a finite set 
of channels and then extend these results to arbitrary, possibly 
nonfinite, sets of channels. In general, this can be done as in 
[29]–[31] by approximation arguments. 

The corresponding compound wiretap channel is studied in 
[13], [14], [48], where the exact channels to the legitimate 
receiver and the eavesdropper are not known; rather, it is only 
known that they belong to the set of channels S  and .T  Such 
sets can be given in an abstract way by letting them contain a, 
possibly infinite, number of channel realizations. But there are 
also other more concrete uncertainty sets possible that fall in the 
framework of compound channels. For example, motivated by the 
fact that the true channel realization will always be in a certain 
area around its rough channel estimation, the channel 
uncertainty of the eavesdropper channel can be modeled by a 

(spherical) set 

: { : }H H HT , ,s s F2 2 2 2# e= - t (6)

with · F  the Frobenius norm. 
Here, H2

t  is the channel estima-
tion, and 2e  is the corresponding 
estimation error bound. Another 
valid model for the channel uncer-
tainty of the eavesdropper would be 

to assume that his received channel gain is bounded by a spec-
tral norm constraint as 

: { : | | }maxH H H xT , ,
| |

,
x

s s s2 2 2
1

2 2# e= =
=

with · 2  the spectral norm. Here, | |H x, s2  represents the 
channel gain in transmit direction x  and, hence, H , s2 2  corre-
sponds to the largest channel gain. This characterizes the sce-
nario where the eavesdropper cannot approach the transmitter 
beyond a minimum protection distance. All these examples fall 
in the concept of compound channels, where the transmitter 
has to ensure that reliability and secrecy is guaranteed for the 
whole (uncertainty) set of channels. 

The secrecy capacity of the degraded MIMO Gaussian com-
pound wiretap channel for the weak secrecy criterion with arbi-
trary finite uncertainty sets S  and T  is established in [48] and 
is given by 

| |

| | .

max min log

max log

I H QH

I H QH

R 2
1

2
1

( )
, ,

, ,

Q
S

P s
N s s

T

t
N t t

T

1 1

2 2

tr

T

S
1

2

= +

- +

# !

!

e

m

The compound wiretap channel under the strong secrecy crite-
rion is analyzed in [13] and [14], where an achievable secrecy 
rate is given for discrete memoryless channels as 

( ( ; ) ( ; ))max min maxI X Y I X Y, ,
X s t

s t1 2
S T

-
! !

,

where ( ; )I X Y , s1  denotes the mutual information between the 
transmitter and the legitimate receiver for channel realization 
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,s S!  and ( ; )I X Y , t2  denotes the mutual information between 
the transmitter and the eavesdropper for realization .t T!

The analysis reveals the characteristic structure of the 
secure communication. The secrecy rate is limited by the worst 
channel to the legitimate receiver and the best channel to the 
eavesdropper. This agrees with the intuition that one has to pre-
pare for the worst to ensure reliable and secure communication. 
Further, this shows that the com-
munication experiences a degrada-
tion in performance, but in 
principle, secure communication is 
possible under channel uncertainty. 

Although secure communication 
is often understood from the coding 
point of view, it is rarely studied from 
a signal processing point of view. The 
next important step is to analyze 
optimal and complexity-efficient transmit strategies. To obtain 
such transmit covariance matrices, an optimization problem has 
to be solved, which is, in general, nonconvex. There are connec-
tions to multicast scenarios, as the channel uncertainty to the 
legitimate receiver can be interpreted as transmitting to a whole 
group of legitimate receivers and, similarly, the uncertainty to the 
wiretapper can be interpreted as keeping a whole group of non-
legitimate receivers ignorant. 

At any rate, some preliminary studies have been done. The 
MISO wiretap channel under channel uncertainty is studied in 
[49], which tackles the nonconvex optimization problem by a 
semidefinite programming approach. The special case of 
spherical uncertainty, cf. (6), is studied in [50], where an 
explicit solution of the worst-case secrecy rate is derived. In 
[51], the worst-case secrecy rate is optimized by transferring 
the nonconvex optimization problem into a quasi-convex 
problem that can be efficiently solved. Some further work on 
the MIMO Gaussian compound wiretap channel can be found 
in [52]. The secrecy capacity in the high SNR regime is studied 
from a secrecy degree of freedom point of view in [48] and 
[53]. Robust beamforming in MIMO Gaussian wiretap chan-
nels under channel uncertainty is considered in [54]. The 
secrecy capacity for the MIMO Gaussian wiretap channel with 
eavesdropper channel uncertainty based on the spectral norm 
constraint is derived in [81].

ACTIVE EAVESDROPPERS
So far, we have only considered passive eavesdroppers, which 
are nonlegitimate receivers eavesdropping on the transmission 
to solely capture the confidential information. We want to 
briefly mention that one can also think of active eavesdroppers, 
or jammers, who have the ability to influence the channel con-
ditions of the legitimate users. 

The case where the eavesdropper is able to control his 
channel state is discussed in [55]–[57] for various scenarios. In 
[58]–[60], both channels—the one to the legitimate receiver 
and the one to the eavesdropper—may vary in an arbitrary and 
unknown manner. This can be interpreted as a scenario where 

the eavesdropper is able to control both channels. Thus, if he 
is not able to intercept the confidential information, he can try 
to disturb the communication between the transmitter and 
the legitimate receiver. Interestingly, in such scenarios, new 
phenomena of superactivation appear in the sense that two 
orthogonal arbitrarily varying wiretap channels, each with 
zero secrecy capacity, i.e., useless for secure transmission, can 

be superactivated to a useful chan-
nel allowing for secure communi-
cation at nonzero secrecy rates 
[61], [82]. 

Another scenario of active or 
more powerful wiretappers is the 
case where the nonlegitimate 
receiver has some certain prior 
knowledge, or side information, 
about the transmitted message avail-

able. This is studied in [62]–[64], and it is shown that side infor-
mation at the nonlegitimate receiver does not decrease the secrecy 
capacity of the wiretap channel. Again, there are only some pre-
liminary results available, and there is a need to study it in detail 
from a signal processing point of view. 

NETWORK STRUCTURE
We have discussed the basic principles of physical layer service 
integration. Next, we want to tackle more complicated networks 
and show how the existing network structure can be efficiently 
exploited to further increase the spectral efficiency. In particular, 
side information, which is available at transmitters or receivers 
due to a certain network structure, can be exploited efficiently to 
increase data rates and security. 

INTERACTION OF PUBLIC AND 
CONFIDENTIAL SERVICES
We want to go one step further and address the efficient integra-
tion of public and confidential services within the same net-
work. This is much more involved than the basic wiretap 
channel. Here, we are confronted with two different intentions: 
on the one hand, the services should be integrated as efficiently 
as possible to allow for high data rates; on the other hand, some 
services have to be secure from nonlegitimate receivers. 
Because of the security issue, the interaction of security-
achieving coding strategies with appropriate signal processing 
schemes becomes very important. 

OPTIMAL INTEGRATION
The efficient integration of multicast services and confidential ser-
vices was first considered in [18]. This is the first time that a strat-
egy for efficient service integration of public and confidential 
services is presented. In more detail, let us go back to our scenario 
with one transmitter and two receivers. The transmitter has a 
common message intended for both receivers and a confidential 
message for one legitimate receiver, which has to be kept secret 
from the other nonlegitimate receiver, cf. (2). The secrecy capacity 
region of the corresponding MIMO Gaussian BC with common 

BECAUSE OF THE SECURITY 
ISSUE, THE INTERACTION OF 

SECURITY-ACHIEVING CODING 
STRATEGIES WITH APPROPRIATE 
SIGNAL PROCESSING SCHEMES 
BECOMES VERY IMPORTANT.
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and confidential messages is studied in [65] and is given by all rate 
pairs ( , )R R Rc0

2! +  that satisfy 

| | | |log logI H Q H I H Q HR 2
1

2
1

c N c
T

N c
T

1 1 2 21 2# + - + (7a)

( )min log
I H Q H

I H Q Q H
R 2

1
N i c i

T
N i c i

T

0
0

{ , }i
i

i

1 2
#

+

+ +
!
) 3 (7b)

for some ,Q Q 0c 0 *  with ( ) .Q Q Ptr c 0 #+  Interestingly, it is 
shown that for multiantenna systems, this strategy is given 
by a superposition of efficient processing for the public communi-
cation, i.e., ,Q0  and for the confidential communication, i.e., .Qc

Although the general structure is known, the optimal transmit 
strategies still need to be analyzed and characterized in detail. 

There is also some work on the compound BC with confiden-
tial messages [66], where an achievable secrecy rate region is 
given by all rate pairs ( , )R R Rc0

2! +  that satisfy 

( ; | ) ( ; | )

{ ( ; ), ( ; )}

min max

min

R I X Y U I X Y U

R I U Y I U Y

, ,

,
, ,

s t

s t

c s t

s t

1 2

0 1 2

#

#

-

for random variables ( , ) .U X Y Y, ,s t1 2- -  Again, this indicates 
that integration of public and confidential services at the physi-
cal layer is also possible under channel uncertainty. 

Furthermore, this gives valuable insights for further studies, 
as in the case with more than one confidential message, such as 
the MIMO Gaussian BC with a common message and two confi-
dential messages [67], [68]. 

COMPUTATION OF OPTIMAL TRANSMIT 
COVARIANCE MATRICES
As argued above, the optimal transmit covariance matrices Qc

and Q0  in (2) are determined by nonconvex optimization prob-
lems, as are the weighted rate sum optimal rate pairs. Hence, 
obtaining the optimal transmit covariance matrices and the 
boundary of the capacity region is, in general, nontrivial. 

In the following, for the MISO scenario, we present one way 
the optimization problem can be reformulated such that it 
becomes convex and therewith tractable. Denoting the channel 
vectors by h1  and ,h2  the region in (2) can be rewritten as 

( ) ( )log logh Q h h Q hR 2
1 1 2

1 1c
T

c
T

c1 1 2 2# + - + (8)

( ) .min log
h Q h

h Q Q h
R 2

1
1

1
{ , }i i

T
c i

i
T

c i
0

1 2

0
#

+

+ +
!

e o) 3 (9)

As in [65], one can follow the framework in [69] and con-
sider a reparameterization of the rates as 

( )logR 1c cac= +

( ),logR 10 0ac= +

where a  is an auxiliary parameter, and cc  and 0c  can be 
interpreted as received SNR “weights.” Combining this 
one obtains a set of linear constraints 

( )h Q h h Q h h Q h1T
c

T
c c

T
c1 1 2 2 2 2$ ac- + (10a)

( ), ,h Q h h Q h i1 1 2i
T

i i
T

c i0 0$ ac + = (10b)

( )Q Q Ptr c 0 #+ (10c)

, .Q Q0 0c 0* * (10d)

Instead of using (7) to check if a rate pair is in the capacity 
region, one can alternatively look for positive semidefinite 
matrices Qc  and Q0  that satisfy the conditions above. Since all 
of these conditions are linear in Qc  and ,Q0  this problem 
belongs to the class of convex optimization problems that can 
be solved efficiently. 

Obviously, all rates increase as the auxiliary parameter a
increases. Thus, one obtains the weighted rate sum optimal rate 
pair on the boundary of the capacity region for fixed weights cc

and 0c  by finding the maximum a  such that (10) provides at least 
one feasible solution [65]. Finally, running through all weight vec-
tors with 1c 0c c+ =  yields all weighted rate sum optimal rate 
pairs and characterizes the boundary of the capacity region. 

This approach is based on the framework in [69] and has 
been applied to several communication scenarios to obtain opti-
mal transmit strategies for the MISO case. In [65], it was applied 
to the MIMO Gaussian BC with common and confidential mes-
sages and in [34] to the MIMO Gaussian BC with common and 
multiple individual messages. In [70] and [71], it was used in 
the context of bidirectional relaying. 

BIDIRECTIONAL RELAYING
We consider the scenario where two users within the same cell 
want to communicate with each other with the help of the base 
station. Here, the efficiency of the downlink phase can be signif-
icantly increased by exploiting available side information at the 
receivers. Both users transmit the messages they want to 
exchange in the initial uplink phase to the base station. In the 
succeeding downlink phase, both receivers can use their own 
message from the previous phase as side information for decod-
ing, as shown in Figure 2. This is known as bidirectional relay-
ing, or two-way relaying, and it leads to significant gains 
[72]–[74], showing that individual services can be much more 
efficiently integrated if available side information is exploited. If 

(a) (b)

R1
N1 NR N2

m1 m2
R2 R1

2 1
N1 NR N2

Rc
mc

m1 m2m1m2
m0mc

R1 R0 R0 R2
R 2

[FIG2] The physical layer service integration in decode-and-forward 
bidirectional relaying. In the initial MAC phase, nodes 1 and 2 transmit 
their messages m1  and m2  with rates R2  and R1  to the relay node. 
Then, in the bidirectional broadcast phase, the relay forwards the 
messages m1  and m2  and adds a common message m0  with rate R0  to 
the communication, and further, a confidential message mc  for node 1 
with rate ,Rc  which should be kept secret from node 2. (a) The MAC
phase and (b) the bidirectional broadcast phase.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [154] MAY 2014

the relay only establishes the bidirectional communication, the 
individual rates are given by 

| |

| |

log

log
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1 1 1
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for some Q 0*  with ( ) .Q Ptr #  This shows that the exploita-
tion of the available side information at the receiving nodes 
leads to significant gains in transmission rates compared to (3), 
which does not utilize available side information at the receiv-
ers. Optimal transmit strategies are further analyzed for the 
broadcast phase in [73] and [74], where it is shown that beam-
forming is always optimal for the 
MISO scenario. 

This extends to multicast services 
[75] and confidential services [16], 
[71], [76] as follows. Besides estab-
lishing the bidirectional communica-
tion, the relay integrates an additional 
common message for both nodes and 
a confidential message for one node, 
which has to be kept secret from the other nonlegitimate node. For 
an additional common message, the capacity region is given by all 
rate triples ( , , )R R R R0 1 2

3! +  that satisfy 

| | , , ,log I H QHR R i2
1 1 2i N i i

T
0 i#+ + =

for some Q 0*  with ( ) .Q Ptr #  Again, the available side 
information leads to significant gains compared to [34], which 
considers the corresponding scenario without side informa-
tion at the receivers. Interestingly, the available side informa-
tion at the receivers results in a shift in optimal processing. 
While in [34] there is a superposition coding-based approach 
applied, the side information at the receivers allows us to use a 
rate splitting approach. The result is that only one transmit 
covariance matrix has to be optimized. Moreover, it is shown 
that optimal transmit strategies for bidirectional relaying with 
and without a common message are closely related so that the 

optimal signal processing from one scenario carries over to 
the other one [75]. 

For the integration of additional confidential services, we 
obtain 
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for some ,Q Q 0c p *  with ( ) .Q Q Ptr c p #+  For the MISO case, the 
optimal transmit covariance matrices can be obtained using the 
same approach as discussed in the “Interaction of Public and Confi-

dential Services” section, cf. [70], [71]. 

BASE STATION COOPERATION
Another example is the cooperation 
between different base stations, 
where they coordinate their trans-
mission to the user terminals—also 
known as coordinated multipoint 
(CoMP) transmission. This can be 

modeled by a MAC with conferencing encoders [77]–[79], as 
shown in Figure 3. The capacity region for the single antenna 
case is given by all rate pairs ( , )R R R1 2

2! +  that satisfy 
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for all ,0 11 2# #b b  with .1i ib b= -r  The striking observa-
tion is that the capacities of the cooperation links lead directly 
to gains in the air. 

The ability of cooperation between the transmitters leads to 
significant gains in capacity. Not surprisingly, this can also be 
exploited to enable secure communication, as discussed in [80]. 

Again, this is mostly treated from a coding point of view, and 
there is a great demand for developing optimal transmit strate-
gies from a signal processing point of view that takes the coop-
eration capability into account. 

CONCLUSIONS
Because of recent research activities, there has been significant 
progress in the efficient integration of different services on the 
physical layer. To date, most of this work has been done only from 
an information theoretic point of view. This means that, for cer-
tain scenarios, capacity results are derived, or coding strategies 
and corresponding rate regions are characterized. Thereby, it is 
shown that the concept of physical layer service integration has 
the potential to significantly increase the spectral efficiency of 
wireless networks. To bring this concept into practice, it is 

Tx1

Tx2

Rx

N1

N2

NR
C12 C21

[FIG3] A CoMP transmission, where two senders can use their 
exchange pipes with capacities C12  and C21  to coordinate their 
transmission.

THE CONCEPT OF PHYSICAL 
LAYER SERVICE INTEGRATION HAS 
THE POTENTIAL TO SIGNIFICANTLY 

INCREASE THE SPECTRAL EFFICIENCY 
OF WIRELESS NETWORKS.
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important to treat physical layer service integration from a signal 
processing point of view as well. Thus, building on these (capacity) 
results, the next step must be to analyze spatial MIMO techniques 
and to characterize optimal or complexity-efficient transmit strat-
egies to make these results practically more relevant. 
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Spectrally Constrained Waveform Design

I
n active sensing, transmitters emit 
probing waveforms into the environ-
ment. The probing waveforms interact 
with scatters that reflect distorted 
copies of the waveforms. Receivers 

then measure the distorted copies to infer 
information about the environment. The 
choice of the probing waveform is impor-
tant because it affects slant range resolu-
tion, Doppler tolerance, clutter, and 
electronic countermeasures. A traditional 
performance metric for the probing wave-
form is the ambiguity function, which 
describes the correlation between the 
waveform and a delayed and (narrow-
band) Doppler shifted copy of the same 
waveform [1]. The direct synthesis of a 
waveform given a desired ambiguity func-
tion is exceedingly difficult [2]. Often 
designers focus on optimizing only the 
waveform’s autocorrelation function 
(which is the zero Doppler cut of the 
ambiguity function). Any method that 
optimizes the autocorrelation function is 
implicitly performing spectral shaping by 
trying to flatten the passband of the wave-
form’s spectrum [1], [2]. 

INTRODUCTION
For most practical applications, the wave-
form design problem is exacerbated by a 
constant amplitude constraint on the 
waveform that significantly increases the 
problem’s complexity. The reason for this 
constraint is that transmitters operate 
more efficiently when using a high-power 
amplifier in the saturation region rather 
than in the linear region. With the ampli-
tude of the probing waveform fixed, the 
only degree of freedom is the phase. 
Waveforms that utilize discrete phase 
shifts are referred to as phase-coded 

waveforms. Common examples of phase 
codes are Barker codes, maximum length 
sequences, Frank codes, Golumb codes, 
and pseudonoise codes [1]. 

Research into spectrally shaped wave-
forms has increased over the past decade 
due to the desire for wideband applica-
tions. In these applications the waveform 
was required to have nulls in specific 
bands (which we call notches in this col-
umn) to prevent interference with sys-
tems operating in those bands. The 
existing methods focused on placing 
notches in the spectrum while maintain-
ing good autocorrelation properties. 
However, the existing methods fall short 
because they are either limited by notch 
depth, notch width, or the number of 
notches. They also do not allow for arbi-
trary spectral shape, hence they may not 
be able to meet all the spectral require-
ments. Furthermore, most methods are 
based on linear frequency modulation 
(LFM) waveforms, which might not be 
ideal for all applications. See [2]–[4] for 
previous work in this area. 

In this article we present the SHAPE 
algorithm, a computationally efficient 
method of designing sequences with 
desired spectrum shapes. The algorithm 
uses alternating fast Fourier transforms 
(FFTs), element-wise comparison, and 
element-wise arithmetic such that it can 
easily be implemented using parallel 
computing methods. SHAPE solves the 
problem of finding a sequence with an 
arbitrary time-domain complex envelope 
and an arbitrarily shaped spectrum. The 
ubiquitous constant amplitude sequence 
design problem is a special case that 
SHAPE can solve. MATLAB scripts for 
SHAPE as well as further images and 
examples are available on the supple-
mentary material Web site, www.sal.ufl.
edu/shape. 

In this article we shall denote a vector 
with boldface lowercase letter x^ h and we 
denote the elements of the vector as 

.[ , , , ]x x xx N
T

1 2 f=  Similarly a matrix 
is denoted by a boldface uppercase letter 

.X^ h  Here ( ) T$  represents the transpose 
operation and the conjugate transpose 
operation is denoted by .( ) H$   The oper-
ator || · | | 2

2  represents the euclidean norm 
of a vector squared. A superscript on a 
variable such as xk  represents an itera-
tion counter and not a power operation. A 
hat symbol on a variable xt^ h represents 
the solution to a minimization problem. 
Finally, we denote a column vector of 
ones of size N  as .1N

SHAPE ALGORITHM
A least-squares fitting approach for the 
spectral shaping problem can be formu-
lated as 

, , , , ,

e

x h i N1 2

minimize x y

subject to for

F
,

H j

i i

2
2

2
x

9

f

-

= =

i

i

(1)

where 9  represents the element-wise 
product operation, x CN 1! #  is our 
sequence we seek to design, y R N

0
1! #+

is the desired spectrum magnitude, 
F CN N! #  is a unitary Fourier matrix, 
and the phase variable RN 1!i #  is an 
auxiliary variable. The envelope con-
straint on the time-domain sequence is 
represented by .[ , , , ]h h hh N

T
1 2 f=  In 

general, we allow h  to have any value, 
but it commonly only takes on values 
relating to window functions (e.g., box, 
Hamming, Taylor, or Tukey) [5]. This 
problem is well known and is easy to 
solve in an iterative manner since the 
matrix F  is unitary (see [2])  

: { }
: .
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e
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Given
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H

j eF y j

9

i

i

=

= 9 i

t

t

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

______

http://www.sal.ufl.edu/shape
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


[sp TIPS&TRICKS]continued

IEEE SIGNAL PROCESSING MAGAZINE [158] MAY 2014

Here the h  represents an element-wise 
square root operation. Using this 
approach for arbitrary spectrum shapes 
and arbitrary envelope functions may 
result in convergence of the cost function 
in (1) to significant nonzero values, which 
implies that the spectral requirements 
will not be met. Even when the conver-
gence is to a value near zero, the resulting 
spectrum may oscillate around the desired 
spectrum shape, ,y  which may not meet 
strict spectrum requirements either. 

We overcome the problems of the di-
rect fitting approach by using a relaxation 
on the desired spectrum shape to intro-
duce more degrees of freedom. Instead of 
fitting to a specific y  as in (1), we search 
for any sequence with a spectrum con-
tained within some upper and lower 
bounds, ( )f ~  and ( ),g ~  respectively. We 
denote the vectors f = [ , , ]f f fN

T
1 2 f  and 

[ , , , ]g g gg N
T

1 2 f=  as the bounding 
functions sampled on our frequency grid 
points. Then we can search instead for 
some spectrum z  with modulus con-
tained within the bounds. We also intro-
duce a scaler factor a  to account for any 
possible energy mismatch and/or con-
stant phase offset between the sequence x
and the spectrum .z  This results in the 
following minimization problem: 

|| | |

| | , , , ,
| | , , ,
| | , , , .

min

x h i N
z f i N
z g i N

1 2
1 2
1 2

imize

subject to for
for
for

F x z
, ,

H

i i

i i

i i

2
2

2
x z

f

f

f

#

$

a-

= =

=

=

a

(2)

The SHAPE algorithm minimizes (2) 
using an iterative approach. 

There are three main steps to solve in 
each iteration of the SHAPE algorithm: 
1) given ( , )xa  minimize with respect to 
(w.r.t.) z  such that z  satisfies the con-
straints, 2) given ( , )x z  minimize w.r.t. 

,a  and 3) given ( , )za  minimize w.r.t. x
such that x  satisfies the constraints. We 
start by examining the first minimiza-
tion subproblem that finds a satisfactory 
spectrum vector z  given some time-
domain sequence x  and energy scalar :a

|| | |
| | , , ,
| | , , , .
z f i N
z g i N

1 2
1 2

minimize
subject to for

for

F x zH

i i

i i

2
2

z

f

f

#

$

a-

=

=

(3)

If there were no constraints on ,z  the 
answer  i s  s imp ly  /z xopt a= u  o r 
( ) (| |) / (| |)z x e ( )

i i
j

opt
xia= z z- au u  w h e r e 

.x F xH=u  The constrained problem 
posed in (3) has a solution similar to the 
unconstrained problem. Let ( )c z1  be the 
cost function from (3) 

( ) ( ) ( )
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which we rewrite as 
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Since | | , | | , | |x z 0i i $au  and 1 #-

{ } ,e e 1( )j x zi i0 #z z z- -au  the minimum of 
( )c z1  will occur at { } .ee 1( )j x zi i0 =z z z- -au

This results in the same phase as the 
unconstrained optimal answer ziz =

.xiz z- au  Using the optimal phase in 
( )c1 $ results in a quadratic function for 

each | |zi

| | | | | | | | | | | |

| | | | | | .
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For each | |zi  the zero cost value is 
achieved at | | / | | ,xi au  but this point 
may not be in the feasible set [ , ] .g fi i  If 
| | / | |x gi i1au  then the minimum value 
of the cost function occurs at | | .z gi i=

Similarly, if | | / | |x fi i2au  then the mini-
mum value of the cost function occurs at 
| | .z fi i=  Then the solution to (3) is 
given by 

: | | / | | ,
: | | / | | ,

, , , .

: .

z

f e
g e

x

x f
x g

i N1 2for

otherwise

( )

( )

i

i
j

i
j

i

i i

i i

x

x

i

i

f

2
1

a

a

a
= =

z z

z z

-

-

a

a

t

u

u

u

u

u

Z

[

\

]
]]

]
]]

The second step in SHAPE is to min-
imize w.r.t a  given x  and z . The prob-
lem is written as 

| | | | .minimize F x zH
2
2a-

a
(5)

Since a  has no constraints, the solution 
to (5) is simply 

|| | |
.

z
z F xH H

2
2a =t

The third step in SHAPE is to minim-
ize w.r.t. x  given z  and a  such that x
has the desired envelope shape. The cost 
function is written as 

|| | |

| | , , , , ,x h i N1 2

minimize

subject to for

x Fz

i i

2
2

2
z

f

a-

= =
(6)

where we utilize the fact that F  is unitary 
and a matrix norm is invariant to a uni-
tary transformation. Then following an 
approach similar to the expansion in (4), 
the phase minimizer of the cost function 
is ,x zi iz z z= + au  where .z Fz=u  The 
amplitude of xi  is fixed by the constraints 
so then the resulting minimizer is given by 

, , , , .x h e i N1 2for( )
i i

j zi f= =z z+ at u (7)

The SHAPE algorithm is presented on 
the next page in a step-by-step guide. The 
supplementary material, which can be 
found at www.sal.ufl.edu/shape, also con-
tains a MATLAB function for SHAPE and 
scripts to demonstrate the implementa-
tion. SHAPE is computationally efficient 
since it utilizes only FFTs, inner products, 
and element-wise operations (magnitude, 
scalar division, scalar multiplication, and 
scalar comparisons). All of the for loops in 
the algorithm can be unrolled and imple-
mented using parallel processing further 
increasing the speed. 

PRACTICAL ISSUES
To successfully utilize the SHAPE algo-
rithm for a specific application, several 
practical issues need to be addressed. The 
first problem is the selection of the 
bounding functions ( )f ~  and ( )g ~  and 
how they affect the convergence of 
SHAPE. The second problem is that, in 
any real system, the sequence will be 
quantized, which distorts the spectrum. 
The third problem deals with sampling in 
the frequency domain. Finally, the initial-
ization of the SHAPE algorithm is also a 
critical consideration. 

CONVERGENCE
A priori there is no guarantee that a solu-
tion exists for a given spectral shape and 
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time-domain window. When SHAPE 
encounters scenarios where a solution 
does not exist, it will converge to a 
nonzero value of the cost function. How-
ever, we have found that we greatly 
increase our chances of finding a 
sequence x  that satisfy the constraints by 
allowing some bands X^ h to be unre-
stricted ( ( )f 3X =  and ( ) ) .g 0X =  How 
to choose X  is dependent upon the 
restrictions that are placed on the spec-
trum shape. There is no formula or 
method for an optimal selection of ,X
but a designer can typically find a solution 
by choosing X  to be small transition 
bands near sharp spectral jumps. A dem-
onstration using a notched random phase 

sequence is available on the supplemen-
tary material Web site. 

Another factor that helps improve the 
convergence of SHAPE to zero cost is 
the use of an offset for the spectral 
shapes. Suppose that we have the desired 
spectral shaping functions ( )f ~  and 

( ) .g ~  When SHAPE solves the minimi-
zation step it uses a least squares criteria 
fitting solution to fit to these bounds. 
This means that the answer may tend to 
oscillate around ( )f ~  and ( ) .g ~  This 
problem is especially prevalent in the 
notches, but it is easily accounted for by 
using a small offset .d  Note the subtle 
difference that the desired bounds are 
still f  and ,g  but we fit to offset bounds 

1f f Nd= -I  and .1g g Nd= +K  This 
modification forces the fit to a slightly 
more restrictive constraint. This allows 
for ripples to be contained within the 
desired values, which helps strictly meet 
the spectrum requirements. 

QUANTIZATION
The SHAPE algorithm assumes that we 
have access to infinite precision numbers, 
which is not true in any actual signal pro-
cessing application. The use of double pre-
cision (64-bit) numbers is more than 
adequate for finding sequences using 
SHAPE, but the problem is in truncation 
to lower-precision integer sequences. The 
spectral shape is determined by the phase 
and amplitude of the complex sequence, 
and bit truncation may distort the spectral 
shape. Similarly, the complex envelope 
may become distorted, which will intro-
duce amplitude fluctuations from the 
desired envelope. 

The quantization problem is relevant 
because digital-to-analog converters 
(DACs) of modest bandwidth will typi-
cally have bit precision fewer than 32 

bits and utilize fixed-point representa-
tions. The use of the fixed-point values 
results in a discrete set of phase values. 
Hence the reduced precision of the DAC 
is going to quantize our phase sequence 
and distort our spectrum. From our 
empirical results, the quantization by 
itself does not have a serious impact on 
the resulting spectrum until approxi-
mately 8–10 bits are used to represent 
each number. Some figures and scripts 
to explore the quantization behaviour 
are available for the readers examina-
tion on the supplementary material 
Web site. 

FREQUENCY SAMPLING
If we consider nonperiodic waveforms, 
then the spectra will be continuous [5]. 
SHAPE would have to approximate such 
a spectrum by using the DFT (FFT in 
SHAPE). Still there would hardly be any 
guarantee that spectral compliance 
could be met at every point in the fre-
quency domain. On the other hand, if we 
consider periodic waveforms, then the 
resulting spectra are actually discrete 
and can be matched perfectly by SHAPE. 

For example, consider an active sensing 
system that utilizes a pulsed mode of oper-
ation. We can consider this to be a periodic 
waveform design by accounting for the lis-
tening time between transmissions. That 
is, we design our sequence according to 
the appropriate amount of zeros needed 
during the listening time. Using this 
approach results in a discrete spectrum, 
which can match the designed spectrum 
and be in full spectral compliance. 

INITIALIZATION
SHAPE is dependent on the initial signal 

.x0  Recall that SHAPE searches for a 
pair ,z x^ h that satisfies the time domain 
and spectral constraints and there is an 
unknown number of pairs that actually 
satisfies the constraints. Then different 
initializations can lead to different out-
puts from the SHAPE algorithm. How to 
choose an initial signal is dependent 
upon a system’s requirements, but when 
the initial signal’s spectrum has features 
similar to the desired spectrum, SHAPE 
seems to converge faster to zero cost 
value. Further discussion, images, and 

The SHAPE Algorithm.

initialize: 
1) Set 10a =

2) Choose x0  such that 
| | , , , ,x h i N1 2fori i

2 f= =

3) Set the iteration index k 1=  and set 
max iteration K
4) Initialize temp variable /u F xH 0 0a=

repeat
  1) Calculate zk  given ,k 1a - xk 1-

using u
for i 1=  to N  do 

if | |u fi i2  then 
/ | |z f u ui

k
i i i=

else if | |u gi i1  then 
/ | |z g u ui

k
i i i=

else
z ui

k
i=

end if 
end for 

  2) Calculate ka  given xk 1-  and zk

as / | | | |z F x zH H
2
2a =

  3) Calculate xk  given ka  and zk

using v Fza=
for i 1=  to N  do 

if | |v hi i
2 !  then 

/ | |x h v vi
k

i i i=

else 
x vi

k
i=

end if 
end for 
4) /u F xH k ka=

5) k k 1= +

until g u fi i i# #  for , , ,i N1 2 f=

 or k K2

THE SHAPE ALGORITHM 
PROVIDES AN ANSWER 
TO THE QUESTION OF 

HOW TO FIND SEQUENCES
THAT STRICTLY SATISFY 

SPECTRAL REQUIREMENTS
AND HAVE A DESIRED

ENVELOPE.
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an example script are available on the 
supplementary material Web site. 

SHAPE waveforms can be used as 
good initial waveforms in scenarios where 
the spectrum constraints are very strict 
and a good initial waveform is not readily 
available. Here we design a lower sam-
pling rate waveform using SHAPE that 
has desired spectral properties. This wave-
form is then upsampled to the desired 
sampling rate and used as the initial 
waveform for SHAPE again. This concept 
will be explained in greater detail in the 
random phase sonar example. 

EXAMPLES OF WAVEFORM DESIGN 
FOR SPECTRAL COMPLIANCE

WIDEBAND RADAR
We demonstrate the utility of the SHAPE 
algorithm by considering a practical 
sequence design example for wideband 
radar imaging. We assume that we have 
access to the 225–328.6 MHz and 335–
400.15 MHz bands allocated for the U.S. 
Federal Government. The bands are 
quite limited for high-resolution imag-
ing; therefore, we seek to utilize the 
nearby white space in the unused por-
tions of the spectrum allocated for 
licensed television broadcasts that occur 
from 470 to 698 MHz. Each television 
station is allocated 6 MHz of bandwidth 
that we must not interfere with and ten 
stations are licensed for operation in 

[FIG1] The wideband radar waveform design example. (a) Initialization (gapped LFM waveform) and (b) SHAPE output.
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[FIG2] A flowchart of the tiered approach to SHAPE.
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Alachua County, Florida. We then wish 
to exploit the 473 MHz of available space 
by placing notches in the bands (MHz): 
(328.6–335), (400.15–470), (482–486), 
(500–506), (554–560), (572–578), (590–
596), (602–608), (638–644), (650–656), 
(674–680), and (680–686). For the radar 
waveform, we also shape the spectrum 
roll-off factor according to the National 
Telecommunications and Information 
Administration (NTIA) standards for 
group C radar [6]. Finally, in radar it is 
particularly important to have a con-
stant amplitude sequence and hence 
h 1i =  for , , , .i N1 2 f=

SHAPE is initialized with a gapped 
LFM waveform that does not meet the 
spectral shaping requirements ( )f ~  as 
shown in Figure 1(a). In this example, 

( )g 0~ =  since the LFM waveform has a 
fairly flat passband already and the 

notch requirements are numerous and 
deep. The LFM pulse width is 25 n /s 
with a total bandwidth of 473 MHz. The 
sampling frequency is set to be exactly 
twice the total bandwidth in this exam-
ple resulting in a length 23,645 phase-
coded waveform. The FFT size used was 
65,536 (216). The SHAPE waveform 
shown in Figure 1(b) strictly meets the 
spectral requirements. The script used 
to generate this waveform is available on 
the supplementary material Web site. 

RANDOM PHASE SONAR 
WAVEFORM
The application of SHAPE using a tiered 
approach will be demonstrated using a 
sonar example with very strict spectral 
requirements. The script used to gener-
ate these results is available on the sup-
plementary material Web site. The 
time-domain sequence in this particular 
example is a 1-s signal windowed with a 
Tukey window with parameter 0.1. The 
window shape allows for rise and fade 
times in the complex envelope. The spec-
trum passband is given as 1,050–1,950 
Hz; then the power spectrum must 
decrease by 100 dB at !5,000 Hz, and 
finally the spectrum must linearly 
decrease to −150 dB at !50 kHz. There 
are sequences that can meet this spectral 
requirement, but they typically resemble 
LFM waveforms. An adversary would 

[FIG3] The tiered SHAPE waveforms. (a) Stage 1 output, (b) stage 2 output, (c) stage 3 output, and (d) stage 4 output.
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ANOTHER FACTOR THAT 
HELPS IMPROVE THE

CONVERGENCE OF SHAPE 
TO ZERO COST IS THE

USE OF AN OFFSET FOR 
THE SPECTRAL SHAPES.
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likely recognize one of these sequences as 
a sonar waveform. Since a primary goal 
in sonar is also to be covert, we would 
like our sequence to be similar to a ran-
dom phase sequence to prevent recogni-
tion by an adversary. 

The design of this SHAPE waveform 
with a random phase signal initialization 
is difficult due to the small passband and 
the steep spectral roll-off requirements. 
We overcome this by using a tiered 
approach to SHAPE. The tiered approach 
breaks the waveform design problem 
down into smaller subproblems. For 
example, in this problem we will start by 
designing a 900-Hz passband (complex) 
waveform at a sampling rate of 1,000 Hz 
using SHAPE. The output from SHAPE is 
upsampled using a simple delay and hold 
approach to a sampling rate of 5,000 Hz. 
The upsampled waveform’s spectrum is 
the original spectrum repeated five times 
and modulated by a sinc function. The 
upsampled waveform’s spectrum is a good 
initializer since the majority of the energy 
we are interested in is already placed in 
our passband. We then design a new set of 
spectral constraints for our new sampling 
rate of 5,000 Hz that moves us closer 
toward our final spectral constraints that 
exist from !50 kHz. This design and 
upsample process is repeated until we 
meet our final sampling rate require-
ments. For simplicity, we call each usage 
of SHAPE and upsampling a stage. A basic 
block diagram showing layout of the 
tiered approach to SHAPE is shown in 
Figure 2 and a more technical explana-
tion is available on the supplementary 
material Web site. 

We utilize sampling rates of 1, 5, 10, 
and 100 kHz in stages 1–4. For stage 1, we 
have to first shape the spectrum to satisfy 
the 900-Hz passband. We initialize SHAPE 
with a random phase waveform and get 
the stage 1 output waveform shown in 
Figure 3(a). Notice that we have made our 
random phase waveform satisfy the 
900-Hz passband requirement. 

For the second stage, we upsample 
the stage 1 output by a factor of five 

using a sample and hold approach. We 
then shift the waveform to the carrier 
frequency of 1,500 Hz. We do not have a 
required spectral constraint until 5,000 
Hz so we simply restrict the stopband to 
−30 dB, and the stage 2 output is shown 
in Figure 3(b). For stage 3, the stage 2 
output is upsampled by a factor of two 
using the sample and hold approach 
again. Now we enforce a linear suppres-
sion of −30 dB to −100 dB from 2,550 Hz 
to 5,000 Hz and 450 to −5,000 Hz. 
Notice that between 1,950 to 2,550 Hz 
and 450 to 1,050 Hz there are no restric-
tions. This gives SHAPE some freedom 
when shaping the spectrum (see the dis-
cussion on the cost function’s conver-
gence to zero). The stage 3 output 
waveform is shown in Figure 3(c). 

For the final stage, we utilize an 
upsampling factor of ten using the sample 
and hold method again. We then intro-
duce the final and complete spectral 
requirements. The spectrum of the 
upsampled waveform is peaky, but the 
majority of the energy lies in the pass-
band. SHAPE is able to move the energy 
into the passband and unrestricted 
regions such that the spectral restrictions 
can be met. Figure 3(d) is the SHAPE 
waveform output. A discussion of the out-
put waveform’s properties is available on 
the supplementary material Web site. 

CONCLUSIONS
The RF spectrum is overcrowded, and 
static spectral management is not going 
to be able to efficiently use this limited 

natural resource. Dynamic spectrum 
management will allow for more systems 
to share the spectrum for higher band-
width applications. Many questions 
remain for how to implement such a 
standard across multiple systems, but the 
SHAPE algorithm provides an answer to 
the question of how to find sequences 
that strictly satisfy spectral requirements 
and have a desired envelope. 
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and Miloš Daković
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From the STFT to the Wigner Distribution

T
he analysis, processing, and 
parameters estimation of sig-
nals whose spectral content 
changes in time are of crucial 
interest in many applications, 

including radar, acoustics, biomedicine, 
communications, multimedia, seismic, 
and the car industry [1]– [11]. Various 
signal representations have been intro-
duced to deal with this kind of signals 
within the area known as time-frequency 
(TF) signal analysis. The oldest analysis 
tool in this area is the short-time Fourier 
transform (STFT), as a direct extension of 
the classical Fourier analysis. The other 
key tool is the Wigner distribution (WD), 
introduced in signal analysis from quan-
tum mechanics. The aim of this lecture 
note is to present and relate these two of 
the most important tools in the TF signal 
analysis, the STFT and the WD (intro-
duced by two Nobel prize winners, D. 
Gabor and E. Wigner, respectively). This 
relation is a basis for the S-method (SM), 
an efficient and simple TF signal analysis 
tool providing a gradual transition 
between these two representations. 

RELEVANCE
TF analysis is of great importance to 
researchers, students, and engineers deal-
ing, in their work or research, with pro-
cessing of signals with time-varying 
spectra. Two main approaches are used in 
the TF signal analysis. One of them is 
based on the STFT and its variations and 
parameter optimizations. The other is 
based on the WD, including its cross-terms 
reduced forms, defined through a general 
Cohen class of distributions. Since most of 

the classical TF analysis tools are based on 
the STFT calculation, an approach that can 
simply and efficiently upgrade the existing 
STFT based systems toward higher con-
centrated WD forms is of great practical 
and theoretical significance. 

PREREQUISITES
This article assumes a basic knowledge of 
linear algebra and the Fourier transforms 
(FTs), including the discrete FT (DFT). 

PROBLEM STATEMENT
The goal of this lecture note is to present a 
direct relation between the STFT and the 
WD. Using this relation, a gradual transi-
tion from the STFT toward the WD is 
implemented. A TF representation, com-
bining good properties of the cross-terms-
free STFT and the highly concentrated 
WD, is obtained. 

SHORT-TIME FOURIER TRANSFORM
The basic idea behind the STFT, as the ini-
tial and the simplest TF representation, is 
to apply the FT to a localized (truncated) 
signal ( ),x t  obtained by using a sliding 
window function ( ) .w t  It is defined by 

( , ) ( ) ( ) .S t x t w e djx x xX = +
3

3

xX

-

-# (1)

It is clear that the STFT satisfies proper-
ties inherited from the FT. 

In the discrete TF domain, the STFT, at 
an instant n  and frequency ,k  reads 

( , ) ( ) ( ) .S n k x n m w m eN

m N

N

j N mk

2

2 1
2

= +
r

=-

-

-/

The STFT ( , )S n kN  is calculated using 
signal samples within the window 

[ / , / ]n N n N2 2 1- + -  for /N k2 # #-

/ ,N 2 1-  corresponding to an even num-
ber of N  discrete frequencies from r-  to 

.r  For an odd ,N  the summation limits 
are ( ) / .N 1 2! -  A wide window includes 
signal samples over a wide time interval, 
losing the possibility to detect fast changes 
in time, but achieving high-frequency 
resolution. A narrow window in the STFT 
will track time changes, but with a 
low resolution in frequency. Two extreme 
cases are N 1=  when ( , ) ( )S n k x n1 =

and N M=  when ( , ) ( ),S n k X kM =  where 
M  is the number of all available signal 
samples and ( ) { ( )} .X k x nDFT=

Constant or, in general, varying win-
dow widths Ni  could be used for different 
time instants .ni  Assuming a rectangular 
window we can write, 

( , ) ( )S n k x n m eN i

m N

N

i
j N mk

2

2 1
2

i

i

i

i= +
r

=-

-

-/

( ) ( ),n nS W xN i N N ii i i= (2)

where ( )nSN ii  and ( )nxN ii  are column 
vectors with elements ( , ),S n kN ii k =

/ , , /N N2 2 1i if- -  and ( ),x n mi + m =
/ , ,N 2i f- / ,N 2 1i -  respectively. Matrix 

WNi  is an N Ni i#  DFT matrix with ele-
ments ( / ),exp j mk N2 ir-  where m  is the 
column index and k  is the row index of 
the matrix. The STFT value ( , )S n kN ii   
is presented as a block in the TF plane 
of the width Ni  in the time direction, cov-
ering all time instants [ / ,n N n2i i i-

/ ]N 2 1i+ -  used in its calculation. The 
frequency axis can be labeled with the 
DFT indices p = / , ,M 2 f- /M 2 1-  cor-
responding to the DFT frequencies 

/p M2r  [the blue dots in Figure 1(a) and 
(b)]. With respect to this axis labeling, the 
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block ( , )S n kN ii  will be positioned at the 
frequency / ( / ) / ,k N kM N M2 2i ir r=  i.e., 
at / .p kM Ni=  The block width in fre-
quency is /M Ni  DFT samples. Therefore 
the block area in time and DFT frequency 
is always equal to the number of all avail-
able signal samples M  as shown in 
Figure 1, where .M 16=

When Ni  changes with ni  we have the 
case of a time-varying window. In a nono-
verlapping STFT, covering all signal sam-
ples [ ( ), ( ), , ( )]x x x M0 1 1x Tf= -  with 

( ),nSN ii  the STFT should be calculated at 
/ ,n N 20 0= / ,n N N 21 0 1= + n N2 0= +

/ , ,N N 21 2 f+ / .n M N 2K K= -  A matrix 
form for all STFT values is 

,

0

0

0

0

0
0

S

W
W

W

x

S Wx WW X

N

N

N

M
1

K

0

1

h h

g

g

j

g

h
=

= = -u u

R

T

S
S
S
SS

V

X

W
W
W
WW ,

(3)

where S  is a column vector containing all 
STFT vectors ( ),nSN ii , , ,i 0 1 f= ,K
X W xM=  is a DFT of the whole signal 

( ),x n  while Wu  is a block matrix 
M M#^ h formed from the smaller DFT 

matrices ,WN0 , ,WN1 f ,WNK  as in (2). 
Since the time-varying nonoverlapping 
STFT corresponds to a decimation-in-time 
DFT scheme, its calculation is more 

efficient than the DFT calculation of the 
whole signal. An illustration of time-vary-
ing window STFTs is shown in Figure 1(a) 
and (b). For a signal with M  samples, 
there is a large number ( )F M 2M 1= -  of 
possible nonoverlapping STFTs with a 
time-varying window { , , , ..., }N M1 2 3i !

[11]. A simple way to compare various 
STFTs from the concentration point of 
view is described in “Example 1.” 

In general, for a nonrectangular win-
dow, (2) is slightly modified as 

( ) ( ),n nS W H xN i N N N ii i i i=  where HNi  is a 
diagonal N Ni i#  matrix with the window 
values on the diagonal, ( , )H m mi =

( ),w mi / , , / .m N N2 2 1i if=- -  In a full 
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[FIG1] The STFTs with (a), (b) a time-varying window, (c) frequency-varying window, and (d) time-frequency-varying window. 
The time index is presented on the horizontal axis, while the DFT frequency index is shown on the vertical axis.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [165] MAY 2014

EXAMPLE 1

Consider a signal ( )x n  with M 16=  samples, whose values are 
x =[0.5, 0.5, –0.25, j0.25, 0.25, –j0.25, –0.25, 0.25, –0.25, 0.25, 0.5, 
0.5, –j0.5, j0.5, 0, –1]. Some of its nonoverlapping STFTs are calculat-
ed according to (2) and shown in Figure 1. Different representa-
tions can be compared based on the concentration measures, e.g., 

[ ( , )] ( , ) | | .S n k S n k SN N
kn

1n = =//

The best STFT representation, in this sense, would be the 
one with the smallest [ ( , )]S n kNn  [8]. For the considered 

signal and its four representations shown in Figure 1, the best 
representation, according to this criterion, is the one shown 
in Figure 1(b). If we know the best concentrated STFT repre-
sentation of signal, we may use it to define an efficient filter 
form using TF mask ( , )B n k 1=  for the TF part of plane with 
significant signal values and ( , )B n k 0=  for noise-only parts. 
When the measure is used for concentration comparison of 
different representations, it is recommended to use their nor-
malized values. 

EXAMPLE 2

A nonoverlapping STFT is presented in Figure 1(a). Calculation 
instants are { , , } .n 2 6 12 Ni C! =  If we want to use only this STFT 
for a TF representation of a signal, then the STFT values calculat-
ed at n Ni C!  should be used for signal parameters estimation 
at instants { , , , , , , , , , , , , } .n 0 1 3 4 5 7 8 9 10 11 13 14 15i !  This could 
be too rough for many applications. Then, instead of using the 
STFTs calculated for n Ni C!  we would like to calculate STFT for 
some or all .n Ni C"  For example, we may also want to calculate 
STFTs at { , , , , , , },n 1 4 8 11 13 14 15i !  with respective window 
widths , , , , , ,N 2 4 4 2 2 1 1i =  [Figure 1(b)]. The overlapped STFT, 
calculated at { , , , , , , , , , },n 1 2 4 6 8 11 12 13 14 15i !  can be written 
in a matrix form (4) by using appropriate matrices WNi  and HNi

with overlapping in rows, corresponding to the signal overlap-
ping in time. In this case, there are M2  STFT values calculated 
for a signal with M  samples. These STFT values are not indepen-
dent. The dimension of the transformation matrix Wu  in (4) is 
now .M M2 #  Another possible way of writing an overlapping 
STFT is in splitting it into nonoverlapping STFTs (as in the STFTs 
presented in Figure 1(a) and (b) and denoted by Sa  and ,Sb

respectively, using the corresponding figure labels as a super-

script). The full STFT set ,S  with overlapping ,Sa  and ,Sb  is cal-
culated based on (3) as 

.
S
S

W
W

x
a

b

a

b=
u

u
; ;E E

For the analysis of signal inversion, by using the overlap and 
add method, we can write ( ) .S S W W xa b a b+ = +u u

For instants , , , , ,n 0 3 5 7 9 10= , we can use one of the existing 
STFTs that include these instants in calculation or calculate new 
STFTs, introducing the third, fourth, etc. overlapping layer. 

A special case of overlapping STFT with a constant rectangular 
window and step 1, n n 1i i 1= +-  can be calculated from (2) in a 
recursive way 

( , ) { ( , )S n k e S n k1/
N

j k N
N

2= - +r

( ) .x n N x n N1 2 1 2 1k- + - - - -`` jj8 B.
For the Hann(ing) window, the STFT is related to the STFT calcu-

lated with a rectangular window as ( , ) / ( , )S n k S n k1 2N
H

N= +^ h

/ ( , ) / ( , ) .S n k S n k1 4 1 1 4 1N N- + +^ ^h h  Similar relations may be 
written for the Hamming and the Blackman window. 

matrix notation, for nonoverlapping case, 
we get 

,S WHx= u u (4)

where Wu  and Hu  are M M#  matrices 
formed from smaller N Ni i#  matrices 
WNi  and ,HNi  respectively, as in (3). 
Another way of composing STFTs calcu-
lated with a rectangular window into a 
STFT with, e.g., the Hann(ing), Hamming, 
or Blackman window, is presented in 
“Example 2.” 

The STFT may use a frequency-varying 
window as well. For a given DFT frequency 

,pi  the window width in time is constant 
[Figure 1(c)]. Combining time-varying and 
frequency-varying windows, we get hybrid 
TF-varying windows with ( , )S n kN i l( , )i l

[Figure 1(d)]. They are efficiently used for 

adaptive estimation and filtering. For 
a graphical representation of the STFT 
with varying windows, the corresponding 
STFT value should be assigned to each 
instant , , ,n M0 1 1f= -  and each DFT 
f r e q u e n c y / , / , ,p M M2 2 1 f=- - +

/M 2 1-  within a block. In the case of a 
hybrid TF-varying window, the matrix 
form is obtained from the definition for 
each STFT value. For example, for the 
STFT calculated as in Figure 1(d), for 
each STFT value ( , ), ( , ),S S2 2 6 24 4- -

( , ), ( , ), ,S S10 2 13 14 2 f- -  and ( , ),S 12 38   
an expression based on (2) should be writ-
ten. Then the resulting matrix S Wx= u

can be formed. 
Nonoverlapping cases are important 

and easy for analysis. They also keep 
the number of the STFT coefficients 
equal to the number of the signal 

samples. However, there are several 
reasons for introducing overlapped 
STFT representations. Rectangular 
windows have poor localization in the 
frequency domain. The study of the 
well-localized window forms in the TF 
domain has been an important topic 
since the STFT concept was intro-
duced. In the case of nonrectangular 
windows, some of the signal samples 
are weighted in such a way that their 
contribution to the final representation 
is small. Then we want to use at least 
one more STFT with a window centered 
at these samples. Also, in the parame-
ters estimation and detection the task 
is to achieve the best possible estima-
tion or detection for each time instant 
instead of using interpolations for the 
skipped instants. Commonly, the 
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overlapped STFTs are calculated using, 
e.g., rectangular, Hann(ing), Ham-
ming, Bartlett, Kaiser, or Blackman 
window of a constant window width N
with steps / ,N 2 / ,N 4  and / ,N 8 f  in 
time. Computational cost is increased 
in the overlapped STFTs. An analysis  of 
overlapping cases may be considered as 

a superposition of the nonoverlapping 
cases (see “Example 2”). 

The dimensions of the STFT blocks 
(resolutions) are determined by the win-
dow width. The best STFT for a signal 
would be the one whose window form fits 
the best to the signal’s TF content. Con-
sider, e.g., an important and simple signal 

such as a linear frequency modulated 
(LFM) chirp. For simplicity of analysis, 
assume that its instantaneous frequency 
(IF) coincides with the TF plane diagonal. 
It is obvious that, due to symmetry, both 
time and frequency resolution are equally 
important. Therefore, the best STFT 
would be the one calculated by using a 

STFT |SN(0, k)|

+

−32 −16 0 16 31

k

|SN(0, k )|2 = SM0(0, k )

(b)

+

−32 −16 0 16 31

k

(b) + (c) = (d)

(d)
−32 −16 0 16 31

k

(f)

SM1(0, k ) (d) + (e) = (f) SM2(0, k )

(a) (c) (e)

First Correction Term

2Re[SN(0, k + 1) SN (0, k − 1)]∗
Second Correction Term

2Re[SN(0, k + 2) SN (0, k − 2)]∗

SM3(0, k )

−32 −16 0 16 31

k

(h)
−32 −16 0 16 31

k

(j)

(g) (i)

SM8(0, k )

SM5(0, k ) SM31(0, k ) = WD(0, k )

[FIG2] The analysis of a signal consisting of three LFM components (at the instant ) .n 0=  (a) The STFT with a cosine window of 
the width .N 64=  (b) The spectrogram. (c) The first correction term. (d) The SM with one correction term. (e) The second 
correction term. (f) The SM with two correction terms. (g) The SM with three correction terms. (h) The SM with five correction 
terms. (i) The SM with eight correction terms. (j) The WD (the SM with L 31=  correction term).
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constant window whose block has an 
equal number of samples in time and DFT 
frequency, /N M Ni i=  [4], [11]. For this 
LFM signal, e.g., with M 256=  samples 
in total, the best choice would be the 
STFT with .N M 16i = =  With such a 
window, both resolutions will be the same 
and equal to 16. These resolutions could 
be unacceptably low for many applica-
tions. It means that the STFT, including 
all of its possible time and/or frequency-
varying window forms, would be unaccep-
table as a TF representation of this signal. 
The overlapping STFT could be used for 
better signal tracking, without any effect 
on the resolution. A way to improve TF 
representation of this signal is in trans-
forming the signal into a sinusoid whose 
constant frequency is equal to the IF value 
of the LFM signal at the considered 
instant. Then, a wide window can be used, 
with a high-frequency resolution. The 
obtained result is valid for the considered 
instant only and the signal transformation 
procedure should be repeated for each 
instant of interest. 

WIGNER DISTRIBUTION
Quadratic TF representations are intro-
duced to improve TF concentration of 
signals with time-varying spectral con-
tent and to satisfy some other important 
properties, e.g., time and frequency mar-
ginal properties [2]–[11]. The most 
important member of quadratic repre-
sentations is the WD. It was defined in 
the quantum mechanics literature and 
later reintroduced in signal analysis 
by Ville. 

A simple way to introduce this distribu-
tion is presented. Consider an LFM signal, 

( ) ( ( )) ( ( /exp expx t A j t A j at bt22z= = +

)) .c+  Its IF changes in time as ( )tiX =

( ) / .d t dt at bz = +  One of the goals of TF 
analysis is to obtain a function that will 
fully concentrate the signal power along its 
IF. In this case an ideal representation 
would be ( ( )) .A t2 i

2r d X X-  For a quad-
ratic function ( ),tz  it is known that 

( )
dt

d t
t t2 2x

z
z x z x= + - -` `j j

( ) ( ) .at b tix xX= + =

This property can easily be converted into 
an ideal TF representation for an LFM sig-
nal by using 

{ ( / ) ( / )}x t x t2 2FT x x+ - =)
x

{ } ( ( )) .A e A t2FT ( )j t
i

2 2i r d X X= -x
xX

The FT of ( / ) ( / )x t x t2 2x x+ -)  over ,x
for a given ,t  is the WD. Its definition, in a 
pseudoform (including window), is 

( , )W D t x t x t2 2
x xX = + -)

3

3

-

` `j j#

.w w e d2 2
j# x x x- xX-`` jj (5)

Soon after it was introduced in signal pro-
cessing it has been concluded that, due to 
its quadratic nature, this distribution has 
very emphatic cross-terms, limiting its 
applications. The cross-terms correspond 
to the product of one signal component in 
a multicomponent signal ( / )x t 2x+  with 

the other component in ( / ) .x t 2x-)  The 
main research direction for decades was to 
attenuate the cross-terms once the WD or 
its two-dimensional FT [well-known ambi-
guity function (AF)] is calculated. Various 
forms of two-dimensional smoothing of 
the WD are proposed, using the property 
that the cross-terms are oscillatory in the 
TF domain; see Figures 2(j) and 3(b). After 
the WD or the AF is calculated, two-
dimensional low-pass kernels are used to 
suppress the cross-terms (such as the 
Choi–Williams, Butterworth, Sinc, opti-
mal Gaussian, Zao–Atlas–Marks kernels 
[2]–[6]). Keeping the values of the AF 
along the axes unchanged, the marginal 
properties are preserved. The reason for 
introducing so many distributions lies in 
the fact that the cross-terms reduction 
and high concentration of autoterms are 
two contradictory requirements. 

FROM THE STFT TO THE WD
A simple way to get a highly concentrated 
representation, while preventing the 
cross-terms appearance, is based on the 
relation between the STFT and the WD. It 
is established via the SM, [11], 

( , )SM t X =

( ) ( , ) ( , ) .P S t S t d1
r

i i i iX X+ -)

3

3

-

#

This relation easily follows from (5), 
replacing ( / ) ( / )x t w2 2x x+  by its inverse 
transform ( , ) ( / )expS t j 2i ix

3

3

-
# / ( )d 2i r

from (1). The special cases of the SM are 
the WD for ( )P 1i =  and the spectro-
gram (the STFT squared modulus) for 

[FIG3] The time-frequency representation of a four component signal: (a) the spectrogram, (b) WD, (c) Choi–Williams
distribution, and (d) S-method.
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( ) ( ) .P i rd i=  By increasing the width of 
( )P i  from the spectrogram case, we get a 

gradual transition toward the highly con-
centrated WD. The best choice of the 
width of ( )P i  is the one which enables 
complete integration over the auto-terms, 
without the cross-terms. Then, the SM 
produces a sum of the WDs of signal 
components. 

A discrete form of the SM reads 

( , ) ( , ) ( , )SM n k S n k i S n k iL N N
i L

L

= + -)

= -

/

for ( ) ,P i 1= L i L# #-  (a weighted 
form ( ) / ( )P i L1 2 1= +  could be used). A 
recursive relation for the SM calculation is 

( , )

( , )

SM

SM

n k

n k
L

L 1= -

[ ( , ) ( , )],Re S n k L S n k L2 N N+ + -)

The spectrogram is the initial distribu-
tion ( , ) ( , )SM n k S n kN0

2=  and Re2
[ ( , ) ( , )],S n k i S n k iN N+ -) , , , Li 1 2 f=

are the correction terms. Considering the 
parameter L  as a frame index, we can 
make a video of the transition from the 
spectrogram to the WD. 

There are two ways to implement sum-
mation in the SM. The first one is with a 
constant .L  Theoretically, to get the WD 
for each individual component, the num-
ber of correcting terms L  should be such 
that L2  is equal to the width of the widest 
autoterm. This will guarantee cross-terms 
free distribution for all components that 
are at least L2  frequency samples apart. 
The optimal number of correction terms 
can be found by measuring the SM con-
centration (sparsity), as a function of ,L
using the norm-one of the STFT or 

norm-one-half of the spectrogram and the 
SM, as in [8] (see “Example 3”). 

The second way to implement the SM 
is with a TF dependent .L L( , )n k=  The 
summation, for each point ( , ),n k  is per-
formed as long as the absolute values of 

( , )S n k iN +  and ( , )S n k iN -)  for that 
( , )n k  are above an assumed reference 
level (established, for example, as a few 
percents of the STFT maximal value). 
Here, we start with the spectrogram,

.L 0=  Consider the correction term 
( , ) ( , )S n k i S n k iN N+ -)  with .i 1=  If 

the STFT values are above the reference 
level then it is included in summation. 
The next term, with i 2=  is considered in 
the same way, and so on. The summation 
is stopped when a STFT in a correcting 

EXAMPLE 3

A signal consisting of three LFM components, ( )x n A
i i1

3
=

=
/

( / / ),exp ja n jb n32 1024i i
2r r+  with ( , , ) ( , , )a a a 21 1 201 2 3 = - -

and ( , , ) ( , . , . ),b b b 2 0 75 2 81 2 3 = - -  is considered at the instant 
.n 0=  The IFs of the signal components are ,k ai i=  while the 

normalized squared amplitudes of the components are indicat-
ed by dotted lines in Figure 2. An ideal TF representation of this 
signal, at ,n 0=  would be ( , ) ( ) ( )I k A k k A k k0 1

2
1 2

2
2d d= - + - +

( ) .A k k3
2

3d -  The starting STFT, with the corresponding spectro-
gram, obtained by using the cosine window of the width 
N 64=  is shown in Figure 2(a) and (b). The first correction term 
is presented in Figure 2(c). The result of summing the spectro-
gram with the first correction term is the SM with L 1=  [Figure 
2(d)]. The second correction term [Figure 2(e)] when added to 

( , ),SM k01  produces the SM with L 2=  [Figure 2(f)]. The SMs 
for ,L 3=  5, and 8, ending with the WD L 31=^ h are presented 
in Figure 2(g)–(j). Just a few correction terms are sufficient in 
this case to achieve a high concentration. The cross-terms start 
appearing at L 8=  and increase as L  increases toward the WD. 
They make the WD almost useless, since they cover a great part 
of the frequency range, including some signal components [Fig-
ure 2(j) and “Example 4”]. 

The optimal number of correction terms L  is the one that pro-
duces the best SM concentration (sparsity), using the norm-one-
half of the spectrogram and the SM (corresponding to the 
norm-one of the STFT) as in “Example 1” [8]. In this case, the best 
concentrated SM is detected for .L 5=

EXAMPLE 4

A four-component real-valued signal with M 384=  samples is 
considered. Its STFT is calculated with a Hann(ing) window of the 
width N 128=  with a step of four samples. The spectrogram 
L 0=^ h is shown in Figure 3(a). The alias-free WD /L N 2=^ h is 

presented in Figure 3(b). The Choi–Williams distribution of an 
analytic signal is shown in Figure 3(c). Its cross-terms are smoothed 
by the kernel that also spreads the autoterm of the LFM signal 
and chirps. The SM with L 10=  is shown in Figure 3(d). For 
graphical presentation, the distributions are interpolated by a fac-
tor of two. In all cases, the pure sinusoidal signal is well concen-
trated. In the WD and the SM the same concentration is achieved 
for the LFM signal. 

If the STFT matrix is rewritten as [ ( ), ..., ( )],n nS SSN N k0=  with 
rows corresponding to frequency and columns to time, then 
the SM, for a given L, can be implemented as a MATLAB 
function 

function SM=SM_calc(S,L) 

N=size(S,1);

SM=abs(S).^2;

for k=1:L; 

SM(1+k:N-k,:)=SM(1+k:N-k,:)+...

2*real(S(1:N-2*k,:).*...

conj(S(1+2*k:N,:)));

end

All programs for the presented examples, including multimedia 
files, can be downloaded from http://www.tfsa.ac.me/LN. A sim-
ple SM calculation form, through the STFT corrections, along 
with the recursive STFT realization (“Example 2”) is a basis for 
online SM realization.

(continued on page 174)
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T
he International Telecommu-
nication Union Radiocommu-
nication Sector (ITU-R) 
published Recommendation 
(Rec.) BT.2020 “Parameter 

Values for Ultra-High-Definition Television 
Systems for Production and International 
Programme Exchange” [1] in August 2012. 
The parameters for television (TV) systems 
are roughly equivalent to the image for-
mat, including pixel count, frame fre-
quency, and colorimetry. These basic 
system parameters determine what kind of 
visual experiences the system can provide 
to the viewers in terms of possible field of 
view (FOV) size, quality of motion por-
trayal, and accuracy of color reproduction.

Technologies progress in generations, 
and the duration of a generation for TV 
technology is longer than in many other 
areas such as information technology 
(IT). Major changes have happened only 
twice since the advent of black and white 
standard-definition TV (SDTV). These 
were the advent of color TV and the 
spread of high-definition TV (HDTV). 
The reason for the relatively slow 
changes in TV systems is due to the spe-
cial characteristics of the TV system or 
service: to reduce the overall system 
cost, a TV broadcast system consists of a 
few expensive transmission parts and 
many inexpensive reception parts. The 
system also requires strict standards to 
support exchange of programs over as 
wide an area as possible. Currently, 
HDTV is being spread worldwide over 
various phases. The interest for the next 
generation after HDTV is increasing 
among early-adopting countries and 
broadcasters. This new TV format is 
called ultra-HDTV (UHDTV), also known 

as 4K or 8K according to its approxi-
mated pixel counts in a horizontal direc-
tion. Rec. BT.2020 specifies the system 
parameters for such TVs. This article 
provides an introduction to UHDTV as 
defined in Rec. BT.2020, with emphasis 
on the background of how the major 
parameter values were determined.

BACKGROUND
One of the main objectives of the activi-
ties of ITU-R is to provide the environ-
ments for effective usage of the limited 
resource of radio spectrum by ensuring 
the required performance and quality for 
the operation of radiocommunication sys-
tems. This is the reason why the ITU-R, 
whose main scope is radiocommunica-

tion, deals with the standardization of TV 
image formats. Broadcasting services in 
particular require optimizing the system 
over the end-to-end chain from the pro-
gram origination at the broadcasters to 
the program presentation at the end 
users. They also require international 
program exchange. In the analog age, the 
TV image format was directly connected 
to the required bandwidth of radio wave 
and modulation methods. Now the broad-
cast chain has been digitalized, and the 
image format is mainly driven by the 

effort to improve the quality of end users’ 
visual experience.

Until now, there has been no perfect 
world-unified standard for TV systems, 
although it is desirable to facilitate 
smooth program exchange and low-priced 
equipment. For example, three color TV 
systems were standardized in ITU-R 
Rec. BT.470 [2] in 1970, and they evolved 
to what we call SDTV [3] now. Those stan-
dards specify the 625/50 and 525/60 sys-
tems with frame (or field) frequencies of 
50 and 60 Hz, respectively, where 625 or 
525 describe the number of scan lines and 
50 or 60 describe frame (or field) frequen-
cies. There were various reasons why a 
single format was not standardized. 
Regarding the frame frequency, the fact 
that the power line frequencies in Europe 
and the United States were 50 and 60 Hz, 
respectively, is supposed to have had a 
great influence on the decision because 
adopting the same value was advantageous 
for the technologies in that age.

A Japanese proposal in 1972 was the 
start of the study on HDTV in ITU-R [4]. 
The standardization of HDTV focused 
mainly on the increase of scan lines (pixel 
count) and frame frequencies, although 
other parameters such as colorimetry 
were studied. The process took a long time 
due to a conflict of opinions regarding the 
backward compatibility with SDTV. The 
first version of Rec. ITU-R BT.709 [5] was 
created in 1990. However, it specified only 
aspect ratio and colorimetry, while scan 
lines and frame frequencies remained 
under study. Finally, the fourth version 
was published in 2000 to realize the 
world-unified HDTV system parameters, 
except for frame frequencies. This has 
simplified the program exchange between 
50 and 60 Hz regions with the format con-
version in which frame frequency is the 
only element. 

Ultra-High-Definition Television (Rec. ITU-R BT.2020): 
A Generational Leap in the Evolution of Television

Digital Object Identifier 10.1109/MSP.2014.2302331

Date of publication: 7 April 2014 
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STANDARDIZATION PROCESS
The study on TV systems beyond HDTV 
began in ITU-R in 1993, soon after the 
HDTV standard Rec. BT.709 was estab-
lished. It was called extremely high-reso-
lution imagery at that time. It was 
intended to standardize the approach to 
video systems of very high resolution for 
both broadcasting and nonbroadcasting 
use. The study results were reflected in 
ITU-R Rec. BT.1201 [6]. One of the recom-
mendations of the standard is as follows:

Television system image spatial reso-
lution of the electronic devices for 
acquisition and display should be 
related to 1,920 pixels in the 
horizontal and 1,080 pixels in the 
vert ical directions based on 
Recommendation ITU-R BT.709 by 
simple integer ratios.
The next study on beyond-HDTV sys-

tems conducted in ITU-R was called large-
screen digital imagery (LSDI). LSDI was 
defined as a family of digital imagery sys-
tems applicable to programs such as dra-
mas, plays, sporting events, concerts, and 
cultural events from capture to large-
screen presentation in high-resolution 
quality in appropriately equipped the-
atres, halls, and other venues. The 
extended version of LSDI was studied and 
Rec. ITU-R BT.1769 was created. It speci-
fies 7,680 × 4,320 and 3,840 × 2,160 sys-
tems. The parameter values other than 
pixel count are the same as those speci-
fied in Rec. BT.709 or Rec. BT.1361 [7].

While the applications that use 
image formats beyond HDTV were 
under study, HDTV has been steadily 
spreading worldwide, and some pio-
neering countries and broadcasters 
have begun to consider the next-gener-
ation TV system and its standardization. 
In light of these developments, ITU-R 
started the study of UHDTV according 
to a proposal made at the ITU-R’s Study 
Group (SG) 6 meeting in 2008. The 
framework of the study was decided and 
a Rapporteur Group was established (a 
Rapporteur Group is a scheme to accel-
erate the study by conducting the work 
during the period between SG6 meet-
ings held twice a year). The efforts of 
four years’ study led to the establish-
ment of Rec. BT.2020 in August 2012. 

The detailed study results are compiled 
in ITU-R Rep. BT.2246 [8]. 

KEY FEATURES
The major parameters and their values 
specified in Rec. BT.2020 are listed in Table 
1. While the evolution from SDTV to 
HDTV changed the pixel count only, the 
evolution from HDTV to UHDTV involves 
an additional frame frequency and new col-
orimetry. In this regard, Rec. BT.2020 will 

bring important changes to this field that 
only happen once in a few decades. The 
conceptual basis for the study is described 
in Rep. BT.2246 as follows:

UHDTV is a television application that 
will provide viewers with a better visu-
al experience primarily by offering a 
wide FOV which virtually covers all of 

the human visual field, while main-
taining other features of HDTV or 
improving them. UHDTV could there-
fore be characterized as a TV system 
having a wide field of view supported 
by enhanced spatial resolution.

PIXEL COUNT
The primary aim of UHDTV is to expand 
the FOV. The pixel count is the main 
consideration when determining system 
parameters because it fulfills the pri-
mary aim of expanding the FOV while 
maintaining the picture quality, which 
is predominantly influenced by the 
angular resolution. Subjective and 
objective experiments were conducted 
to determine the required pixel count 
for UHDTV. These experiments focused 
on the relationship between the FOV 
and the sensation of reality (the sense of 
“being there”). The results show that 
sensation of reality goes up as the FOV 
increases to around 100° [9].

Another use-case can be assumed 
where the higher pixel count serves to 
increase not only the FOV but also the 
angular resolution. Higher pixel count 
leads to an increase in angular resolution 
for the same screen size and absolute 

[FIG1] The FOV and angular resolution offered by HDTV and UHDTV systems.
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[standards IN A NUTSHELL]continued

viewing distance. In conventional TV, the 
design viewing distance where the angu-
lar resolution is 30 cycles/degree (cpd) 
represents the condition where the pic-
ture quality is rated “five” on a five-grade 
quality scale [10]. This was generally 
regarded as the “optimal” viewing dis-
tance. However, experimental results 
show that discrimination ability (visual 
acuity measured with natural images) and 
increase perceived “realness” (subjective 
visual fidelity of reproduced images) were 
observed when the angular resolution 
exceeds 30 cpd [11].

Figure 1 plots the horizontal FOV 
and angular resolution that three sys-
tems with different pixel counts provide. 
The optimal viewing distance for the 
1,920 × 1,080 (full HDTV or 2K) system 
provides an angular resolution of 30 cpd 
at an FOV of 30°. The 3,840 × 2,160 (4K) 
and 7,680 × 4,320 (8K) systems can 
increase the FOV up to 60 and 100°, 
respectively while maintaining angular 
resolution. This leads to the stronger 
sensation of reality as mentioned earlier. 
When the higher pixel count is used for 
increasing the angular resolution, it 
leads to improved realness. Some experi-
mental results on the subjective effects 

of increased pixel counts are described in 
ITU-R documents [8], [12]. 

Meanwhile, according to Rec. BT.1201, 
it is desirable that systems beyond HDTV 
have an integer multiple of the number of 
pixels in HDTV. The number of pixels in 
UHDTV was chosen to be exactly two or 
four times that of HDTV both in a hori-
zontal and vertical direction. 

FRAME FREQUENCY
Progressive scanning was the only scan-
ning method under consideration 
because UHDTV is only likely to be used 
in digital systems. Up to 60 Hz, the 
frame frequencies are the same as for 
HDTV. Additionally, 120 Hz is also 
included in UHDTV. The need for this 
was asserted and observed from the 
results of an investigation of flicker and 
motion blur. These two characteristics 
for a particular frequency conflict in 
terms of the duty ratio, i.e., the ratio of 
the lighting period of the display to the 
whole frame duration. Flicker becomes 
more visible and motion blur decreases 
as the duty ratio decreases, and vice 
versa. Although many studies on flicker 
had been reported, a new experiment 
was conducted under varying conditions 

such as FOV, screen luminance, and duty 
ratios appropriate for current display 
technologies and UHDTV. The result 
shows that the wider FOV requires a 
higher frame frequency to suppress 
flicker perception [13]. The frame fre-
quency of 60 Hz (the frequency of 
HDTV) almost satisfies the critical fusion 
frequency (CFF) limit at an FOV of 30°, 
i.e., at the design viewing distance of 
HDTV. However, 8K UHDTV requires a 
frame frequency higher than 80 Hz to 
satisfy the CFF limit at an FOV of 100°.

Motion blur is one of the main arti-
facts caused by temporal sampling and 
finite temporal aperture. Conventional 
TV systems have been designed on the 
basis of an acquisition with 100% tem-
poral aperture and impulse-type dis-
plays. This means that motion blur is 
attributed to the acquisition side. How-
ever, the technology shift from cathode 
ray tube (CRT) to non-CRT has brought 
motion blur to the display side. Subjec-
tive test results show that a simulated 
motion blur of 6~11 pixels/frame is an 
acceptable limit. This corresponds to the 
temporal aperture duration of 1/320th of 
a second for an object moving at 32°/s, 
which is near the limits of the tracking 

[TABLE 1] THE COMPARISON OF UHDTV AND HDTV PARAMETERS.

PARAMETERS UHDTV (BT.2020) HDTV (BT.709 PART 2) 

PIXEL COUNT 7,680 X 4,320, 3,840 X 2,160 1,920 X 1,080 

FRAME FREQUENCY 120, 60, 60/1.001, 50, 30, 30/1.001, 25, 24, 24/1.001 60, 60/1.001, 50, 30, 30/1.001,
25, 24, 24/1.001 

SCANNING PROGRESSIVE PROGRESSIVE/INTERLACED

COLORIMETRY x y x y

R 0.708 0.292 0.640 0.330

G 0.170 0.797 0.300 0.600

B 0.131 0.046 0.150 0.060

W 0.3127 0.3290 0.3127 0.3290
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ability of human eyes and object speeds 
in TV programs. This can be realized by 
reducing the duty ratio or increasing the 
frame frequency. A minimal increase in 
frame frequency is desirable from the 
bandwidth viewpoint. It is therefore rea-
sonable to take the following approach. 
First, the frame frequency should be 
increased up to the point where no 
flicker is perceptible at any duty ratio. 
Accordingly, motion blur can be reduced 
by shortening the duty ratio at the cam-
era and/or display side. These are also 
reported in Rep. BT.2246, together with 
the overall motion picture quality evalu-
ation results. Harmonization with the 
existing HDTV system is also desirable. 
Consequently, the additional frame fre-
quency of 120 Hz is specified in 
Rec. BT.2020.

COLORIMETRY
The system colorimetry of conventional 
TV—both SDTV and HDTV—was limited 
by the type of display device. In short, the 
chromaticity coordinates of the red (R), 
green (G), blue (B) (RGB) primaries were 
determined on the basis of the properties 
of CRT phosphors. However, CRT tech-
nology is unlikely to be used for UDHTV 
displays. Moreover, it is difficult to imag-
ine a particular display technology that 
will be predominant in the future. Under 
such circumstances, the following three 
requirements were taken into account for 
the system colorimetry of UHDTV: 

1)  Wide-gamut TV colorimetry 
should handle all the colors covered 
by existing TV systems and other 
related nonbroadcasting systems. 
2)  The color-coding efficiency of 
wide-gamut TV should be comparable 
to that in the currently used broad-
casting systems. 
3)  Every color used in wide-gamut 
content should be displayable on a 
reference monitor so that broadcast-
ers can monitor and control the 
image quality.
Consequently, it was agreed upon to 

use real physical colors for the three pri-
mary colors, resulting in the values 
shown in Table 1 and Figure 2. These 
values correspond to the monochro-
matic colors at wavelengths of 467 nm, 

532 nm, and 630 nm for the blue, green, 
and red primaries, respectively. 

In HDTV and earlier standards, the 
luminance (Y) signal was not a true rep-
resentation of luminance (nonconstant 
luminance). This is due to the order of 
gamma-correction and Y signal calcula-
tion. In current systems, R, G, B signals 
are gamma-corrected before the Y signal, 
also called “luma,” is calculated. This 
deviates slightly from the true lumi-
nance, which can be derived by comput-
ing Y followed by gamma-correction. 
Although this only had a small effect on 
subjective picture quality, the issue was 
common knowledge among TV engineers, 
most of whom considered that a constant 
luminance system should be introduced 
sooner or later. On the other hand, the lit-
tle-known benefits of the current noncon-
stant luminance approach (for example, 
the fact that signal processing operations, 
such as adding two images, can be done in 
gamma-corrected luma and color-differ-
ence space because they are linear combi-
nation of gamma-corrected RGB signals) 
became clear through the ITU-R activities. 
Considering the benefits and drawbacks of 
the constant and nonconstant method, 
the BT.2020 was formulated to contain 
both methods alongside each other. 

With regard to chroma subsampling, 
the 4:2:0 and 4:4:4 ratios were added due 
to their applicability to progressive scan-
ning; with regard to bit depth, the 8-bit 
depth was dropped and a 12-bit depth was 
added, to better match the contrast sensi-
tivity of the human visual system (HVS). 

CONCLUSIONS
UHDTV is a generational change in TV 
and will provide viewers with a much bet-
ter audiovisual experience. New technolo-
gies are needed for implementing UHDTV 
systems effectively and efficiently to facili-
tate such an experience. Also, the receiv-
ers and the content have to be provided to 
the users at a reasonable cost. 

We believe that the specifications of 
Rec. BT.2020 meet these requirements 
with regard to video. Their performance 
matches well with the HVS, since the 
parameter values were determined by 
carefully considering HVS characteris-
tics. At the same time, recent prototypes 
of 4K- and 8K-resolution TV systems as 
well as digital cinema systems have 
proven their feasibility with current or 
near-term technologies.

The determination of system parame-
ters is the first step in the development 
of TV systems. The agreed upon set of 
system parameters and its international 
standardization will accelerate the devel-
opment of technologies and equipment 
aiming at the start of the UHDTV broad-
casting services. 

RESOURCES
The ITU home page (www.itu.int) has 
links to all ITU-R publications. ITU 
members can access the contribution 
documents for the study on UHDTV. 
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[FIG2] The chromaticity coordinate of 
RGB primaries and reference white for 
HDTV and UHDTV systems.
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term is below the reference level. This 
procedure will guarantee cross-terms-
free distribution for components that do 
not overlap in the STFT. 

Note that the SM calculation is alias 
free for any L  (including the alias-free 
WD), with the same signal sampling rate 
as in the STFT (see “Example 3” and Fig-
ure 2 and “Example 4” and Figure 3). 

GENERALIZATIONS
The smoothed spectrogram is composed
of two STFTs ( , ) ( , )S n k i S n k iN N+ +)  for 
several values of , ,i 0 1! f=  in the 
same direction of index .i  This kind of 
composition results in the distribution 
spread, in contrast to the SM, where two 
STFTs are composed in a counter-direc-
tion, ( , ) ( , ) .S n k i S n k iN N+ -)  These two 
forms of composing the STFTs were used 
as a basis for classification of all discrete 
time-varying processes estimators in [7]. 

The SM as a concept of composing two 
transforms in a counter-direction has 
been generalized and used in the realiza-
tion of cross-terms-free higher-order TF 

representations (e.g., the polynomial 
Wigner–Ville, the L-Wigner, or the com-
plex-time distributions). The same concept 
of composition has been used in the time-
direction, two-dimensional TF domain, 
fractional domain, local polynomial FT 
domain, and on the affine forms, [3], [11]. 

CONCLUSIONS
The STFT as a time- and frequency-local-
ized version of the FT is presented. It has 
been shown that this representation can 
be gradually transformed into better con-
centrated WD. From this transition pro-
cess, we can learn about the autoterms 
concentration improvement, cross-terms 
appearance, how to control them, and 
how to obtain a representation combining 
good properties of the cross-terms-free 
STFT and highly concentrated WD. 
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and Marco Luise
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General Chair: Brian Rigling
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Thanos Stouraitis
URL: http://isccsp2014.upatras.gr/
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Abd-Krim Seghouane
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24th IEEE International Workshop  
on Machine Learning for Signal 
Processing (MLSP)
21–24 September, Reims, France.
General Chair: Mamadou Mboup  
URL: http://mlsp2014.conwiz.dk/home.htm

16th IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
22–24 September, Jakarta, Indonesia. 
General Chairs: Susanto Rahardja and 
Zhengyou Zhang  
URL: http://mmsp2014.ilearning.me/call-for-
paper/
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IEEE Workshop on Signal Processing 
Systems (SIPS)
20–23 October, Belfast, Ireland.

[DECEMBER]
IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
3–5 December, Atlanta, Georgia.
General Chairs: Geoffrey Li 
and Fred Juang
URL: http://renyi.ece.iastate.edu/globalsip2014/

IEEE Spoken Language Technology 
Workshop (SLT)
6–9 December, South Lake Tahoe, 
California.
General Chairs: Murat Akbacak 
and John Hansen

2015

[APRIL]
IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
19–24 April, Brisbane, Australia.
General Cochairs: Vaughan Clarkson 
and Jonathan Manton
URL: http://icassp2015.org/
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IEEE International Conference on Image 
Processing (ICIP)
28 September–1 October, Quebec City, 
Quebec, Canada. 
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CALL FOR PAPERS
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Special Issue on Biometric Spoofing and Countermeasures
Guest Editors
Nicholas Evans EURECOM, France (evans@eurecom.fr)
Sébastien Marcel Idiap Research Institute, Switzerland (marcel@idiap.ch)
Arun Ross Michigan State University, USA (rossarun@cse.msu.edu)
Stan Z. Li Chinese Academy of Sciences, China (szli@nlpr.ia.ac.cn)

While biometrics technology has revolutionized approaches to person authentication and has evolved to play a 
critical role in personal, national and global security, the potential for the technology to be fooled or ‘spoofed’ is 
widely acknowledged.  Efforts to study such threats and to develop countermeasures are now well underway 
resulting in some promising solutions. While progress with respect to each biometric modality has attained varying 
degrees of maturity, there are some notable shortcomings in research methodologies. Current spoofing studies 
focus on specific, known attacks. Existing countermeasures designed to detect and deflect such attacks are often 
based on unrealistic a priori knowledge and typically learned using training data produced using exactly the same 
spoofing method that is to be detected. Current countermeasures thus have questionable application in practical 
scenarios where the nature of the attack can never be known. This special issue will focus on the latest research on 
the topic of biometric spoofing and countermeasures, with a particular emphasis on novel methodologies and 
generalized spoofing countermeasures that have the potential to protect biometric systems against varying or 
previously unseen attacks. The aim is to further the state-of-the-art in this field, to stimulate interactions between 
the biometrics and information forensic communities, to encourage the development of reliable methodologies in 
spoofing and countermeasure assessment and solutions, and to promote the development of generalized 
countermeasures. Papers on biometric obfuscation (e.g., fingerprint or face alteration) and relevant 
countermeasures will also be considered in the special issue. Novel contributions related to both traditional 
biometric modalities such as face, iris, fingerprint, and voice, and other modalities such as vasculature and 
electrophysiological signals will be considered. The focus includes, but is not limited to, the following topics 
related to spoofing and anti-spoofing countermeasures in biometrics:

vulnerability analysis with an emphasis on 
previously unconsidered spoofing attacks;
theoretical models for attack vectors;
advanced machine learning and pattern 
recognition algorithms for anti-spoofing;
information theoretic approaches to quantify 
spoofing vulnerability;
spoofing and anti-spoofing in mobile devices;
generalized countermeasures;

challenge-response countermeasures;
sensor-based solutions to spoof attacks;
biometric obfuscation schemes;
information forensic approaches to spoofing 
detection;
new evaluation protocols, datasets, and 
performance metrics;
reproducible research (public databases, open 
source software and experimental setups). 

Submission Procedure: Manuscripts are to be submitted according to the Information for Authors at 
http://www.signalprocessingsociety.org/publications/periodicals/forensics/forensics-authors-info/ using the IEEE 
online manuscript system, Manuscript Central. Papers must not have appeared or be under review elsewhere.
Manuscripts by the guest editors submitted to this SI will be handled by the EIC of IEEE-TIFS.

Schedule:
Submission deadline: 1st June 2014
First Review: 15th September 2014
Revisions Due: 1st November 2014
Final Decision: 15th December 2014
Final manuscript due: 15th January 2015
Tentative publication date: 1st April 2015
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The IEEE International Workshop on Information Forensics and Security (WIFS) is the primary annual
event organized by the IEEE SPS Information Forensics and Security Technical Committee. The objective
of WIFS is to provide the most prominent venue for researchers to exchange ideas and identify potential
areas of collaboration. WIFS’14 will feature keynotes, tutorials, special sessions, and lecture & poster
sessions. For the first time ever, WIFS is being organized with IEEE GlobalSIP, giving WIFS attendees a rich
selection of research symposia in addition to WIFS.

Topics of interest: Topics include, but are not limited to:

Paper submission deadline May 16, 2014
Announcement of review results June 27, 2014
Due date for camera ready papers September 5, 2014

Multimedia Content Hash
Security of Large Networked Systems
Steganography
Surveillance
Usability & Human Factors
Watermarking & Data Hiding
Covert Communication & Side Channel Attacks

Anonymity & Privacy
Applied Cryptography
Biometrics
Communication & Physical Layer Security
Forensics Analysis
Hardware Security
Information Theoretic Security

Submission of Papers: Prospective authors are invited to submit full length, 6 page papers, formatted
according to IEEE guidelines, including figures and references, to the WIFS Technical Program Committee.
Papers will be accepted only by electronic submission through the GlobalSIP 2014 conference web site.
Accepted papers may be scheduled in the lectures track or in the poster session. Prospective authors are
expected to present their papers at the conference.

Important Dates:

WIFS’14 IEEE Workshop on Information Forensics and Security
at IEEE GlobalSIP

Atlanta, Georgia, USA, December 3 5, 2014

Upcoming:

More details about WIFS’14 Technical Programs, Special Topics, Best Paper Awards will be available soon
at the GlobalSIP’14 website: http://renyi.ece.iastate.edu/globalsip2014.

Preliminary Call For Papers
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and Miloš Daković
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(Updated March 2012)

The IEEE TRANSACTIONS

Authors are encouraged to submit manuscripts of Regular papers (papers

dences (brief items that describe a use for or magnify the meaning of a single

TRANSACTIONS

RANSACTIONS, you

Such charges are not negotiable and cannot be suspended.

Manuscripts system.

1. Account in ScholarOne Manuscripts. If necessary, create an account in the

2. Electronic Manuscript

pages, including title; names of authors and their complete contact infor-

your manuscript. Proofreading is critical; once you submit your manu-

issues prior to completing the submission process.
3. Double-Column Version of Manuscript

column IEEE format (10 points for a regular submission or 9 points for

equations stick out). If accepted for publication,

ScholarOneManuscripts site.
4. Additional Material for Review

5. Submission.

6. Copyright Form and Consent Form.
to the technical contributions it publishes on behalf of the interests of the
IEEE, its authors, and their employers; and to facilitate the appropriate

RANSACTIONS. These items may not exceed 12
pages in double-spaced format (3 pages for Comments), using 11 point type,

contact information for authors, abstract, text, references, and an appropriate
number of illustrations and/or tables. Correspondence items are submitted in

for instructions).

length page charges. The IEEE Signal Processing Society has determined
that the standard manuscript length shall be no more than 10 published pages
(double-column format, 10 point type) for a regular submission, or 6 published

additions to the manuscript, it is strongly recommended that you practice
economy in preparing original submissions.
Exceptions to the 30-page (regular paper) or 12-page (Correspondences)

manuscript length may, under extraordinary circumstances, be granted by the

andyourAuthorCenter on theon-line submission system.

Author Misconduct Policy:

substantially in language or technical contribution.

It is acceptable for conference papers to be used as the basis for a more fully

Author Misconduct Procedures:

are described in the IEEE SPS Policies and Procedures Manual.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [44]  MAY 2014

Author Misconduct Sanctions:

manuscript:

innocent co-authors;

year from notice of suspension.

under the rules of Member Conduct.

Authors are encouraged to prepare manuscripts employing the on-line style

document is generated by including \documentclass[11pt,draftcls,onecolumn]

item.
Title page and abstract:
title, names and contact information for all authors (full mailing address, in-

An asterisk * should be placed next to the name of the Corresponding Au-

EDICS:

Illustrations and tables:

is understandable.
In preparing your illustrations, note that in the printing process, most

may result in as much as a 4:1 reduction from the original. Therefore, make

on graphs should be indicated.
Abbreviations: This TRANSACTIONS

Mathematics:

Upon formal acceptance of a manuscript for publication, instructions for

setup.
RANSACTIONS, the name of

(although this is acceptable for your initial submission). If submitting on

others, the TRANSACTIONS

Voluntary Page Charges. Upon acceptance of a manuscript for publication,

that comprise the standard length (six pages, in the case of Correspondences).
Mandatory Page Charges. The author(s) or his/her/their company or insti-

pages for regular papers and six published pages for correspondence items.

ingness to pay these charges simply by submitting his/her/their manuscript to
the TRANSACTIONS

Color Charges.

RANSACTIONS is
considered acceptance of this requirement.
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