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FROM THE EDITOR
Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

A Conversation About Signal Processing at Elementary School

hen you receive this issue of 
IEEE Signal Processing Magazine
(SPM), a number of readers will 

be heading to New Orleans, Louisiana, 
for the 42nd International Conference on 
Acoustics, Speech, and Signal Processing 
(ICASSP 2017). New Orleans is well 
known for its cross-cultural heritage 
embodied by its distinctive architecture, 
cuisine, and music. I look forward to 
this annual gathering and flagship con-
ference of members of the IEEE Signal 
Process  ing Society (SPS), and I hope 
to see our magazine team and many 
readers there. A number of SPS boards 
and committees will meet at ICASSP. 
Among them, several are related to edu-
cation and outreach for which the SPS 
has been making significant efforts to 
improve the understanding and apprecia-
tion of our field by outside communities. 

Speaking of education, the public 
school system where I live has a tradi-
tion of encouraging parents’ participation 
in their children’s learning. One of the 
weekly activities that my son’s elemen-
tary school invites parents to sign up for 
is called “Mystery Reader.” This is a fun 
way for parents to spend some time read-
ing a book or other appropriate material 
of their choice to the class. Adding to the 
mystery is the surprise factor: a parent 
does not share with his/her child that he/
she is the mystery reader and instead pro-
vides a clue to the teacher who will then 
share the clue with the class and ask them 
to guess whose parent is coming to read. 

When I did this last year, I picked a 
book from the “Who Was/Is?” series of 
biographies published by Random House
tailored to elementary school readers. I 
read to students excerpts of Who Was Dr. 
Seuss? (by Janet Pascal and illustrated by 
Nancy Harrison). As some of our read-
ers may know, Dr. Seuss is the pen name 
of Theodor Seuss Geisel, an American 
writer, cartoonist, and artist who authored 
some of the most popular children’s books, 
many of which have been used in Ameri-
can elementary classrooms today. One of 
his most beloved books, Green Eggs and 
Ham, consists of just 50 different words 
from a simple vocabulary for beginning 
readers. With bouncy rhymes, an imagi-
nary storyline, and fun visual characters, 
Dr. Seuss revolutionized children’s read-
ing material from the quite limited and 
boring collection of the past.

This time, I was inspired after see-
ing my son’s class “publish” a book 
nearly every year, whereby students de-
veloped every page with a drawing and a 
few lines of writing. I thought it would 
be fun to bring something that I wrote 
during my studies to share with the 
class, such as Multimedia Data Hiding
(Springer, 2003, with Prof. Bede Liu), a 
book extended from my doctoral thesis 
work; I also picked two issues of SPM,
to serve as more recent examples. 

As I entered the classroom, over two 
dozen third graders sat around a rock-
ing chair with curiosity and eagerness 
on their faces. I started by showing them 
the book’s cover, explaining in as simple 
language as I could about this research of 
putting invisible data in pictures. I then 

took a highly sparse “sampling” of a few 
pages in the book. I showed them a car-
toonish block diagram outlining the data 
embedding process, a pictorial example 
to visualize the before and after of data 
embedding and extraction, and a page 
containing an illustration of groupings of 
colored balls drawn randomly from a bag 
and many equations modeling this game. 
These examples showed the students that 
grown-up researchers try various ways to 
explain their work to readers, and their 
skills are built on top of what they learned 
in elementary school. 

Moving to the second half of my read-
ing, I took out the two issues of SPM.
When I explained the name of the maga-
zine, which is also the field of our study, I 
asked the students whether they had heard 
of signal processing and any examples 
they knew. A girl sitting in the front raised 
her hand high: “It is about radar and the 
signals it has …” Thanks to a number of 
R&D labs and companies in the Greater 
Washington, D.C. area, some of our 
young people have picked up an amazing 
amount of technical terms. “Also the pic-
tures! And music! And cell phones!” said 
several students, eager to contribute. Their 
minds are like a sponge—once stimu-
lated, they are so absorptive that they had 
already related to what we had discussed 
a short while ago on the digital revolution 
and the gadgets they have.

I showed them the cover of SPM’s  
September 2016 special issue on re -
searching new generations of cameras 
and displays. I flipped to the the guest 
editorial [1], a page containing a visual 
summary of the articles included in the 
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special issue. There, they saw a miniature 
camera that is smaller than a fingernail, 
a light-field camera that captures differ-
ent focus and depth of a scene, a dissec-
tion of a virtual reality (VR) headset, and 
an analysis of the invisible signatures in 
paintings, just to name a few. The class 
was excited about these: “Oh, yes, I tried 
new goggles, and it’s so cool!” said a boy 
about a VR headset he tested during the 
holiday season. “I have to have that cam-
era,” said a girl to me afterward. 

I then turned to the first page of the 
magazine and told them that I had an 
essay assignment for each magazine 
issue, just like the writing tasks they regu-
larly have, and that my editorials drew 
inspirations from interacting with other 
people, including them—my son’s elemen-
tary school class. To calm the puzzled 
expressions on many of the students’ 
faces, I read to them the first part of my 
editorial in the March 2015 issue of the 
magazine [2]. That particular editorial 
started by me sharing holiday traditions 
and cultural heritages that were done so 

well in my son’s elementary school. Then 
the editorial discussed the sharing of our 
technical field with the general public. 
There I was inspired by the computing 
community’s one-hour coding effort, in  -
cluding the enthusiastic reaction from the 
outreach at my son’s school. 

At the end of this reading session, I 
thanked the class for letting me share my 
technical area with them. To be honest, 
it was not an easy job in the traditional 
format of reading and conversation, with-
out using a projector, slides, or board as 
in a professional presentation and teach-
ing that many of us have gotten so used 
to. Yet, these young students participated 
with full curiosity and enthusiasm. A girl 
approached me right after and said, “You 
definitely should talk to our technology 
teacher,” (who teaches them the basics 
about computing, including one-hour 
coding as early as kindergarten). She 
paused and added, “How about writing 
a children’s book, a picture book about 
your signals, maybe about how it got the 
processing by that cool camera?” Well, 

while we might have thought that young 
minds would prefer video to print materi-
al, we as a community have just received 
a challenge from an eight-year-old: a 
signal processing book for children! 

Many of us have seen, with awe and, 
maybe, also a hint of jealousy, the high 
profile of the computer coding initiatives. 
If Dr. Seuss could win a bet with his pub-
lisher over the seemingly impossible task 
of using just 50 simple words to write a 
fun story, perhaps there is some truth to 
this surprise “assignment” that is worth 
our pondering!

References
[1] A. Agrawal, R. Baraniuk, P. Favaro, and A.
Veeraraghavan, “Signal processing for computational pho-
tography and displays [From the Guest Editors],” IEEE 
Signal Process. Mag. vol. 33, no. 5, pp. 12–15, Sept. 2016.

[2] M. Wu, “Sharing signal processing with the world 
[From the Editor],” IEEE Signal Process. Mag. vol. 32, 
no. 2, p. 4, Mar. 2015.
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PRESIDENT’S MESSAGE
Rabab Ward  |  SPS President  |  rababw@ece.ubc.ca

Introducing the IEEE Signal Processing Society 
Executive Committee

Much of the everyday business of the 
IEEE Signal Processing Society 
(SPS) runs like a well-oiled ma-

chine, with SPS staff in Piscataway, New 
Jersey, fielding requests and managing 
emergencies from volunteers and mem-
bers, editors and authors, students and 
fellows. The SPS executive staff is inte-
gral to running the Society’s business, 
whether it’s managing the peer-review 
process for our publications, updating 
the SPS website, or launching marketing 
campaigns to attract new members. 
However, they are also essential to what 
makes SPS a leader within the IEEE and 
signal processing professionals—execut-
ing the vision of the SPS Board of Gov-
ernors, as directed and implemented by 
the SPS Executive Committee.

The SPS Executive Committee is 
made up of six individuals, spanning 
various technical interests, geographic 
regions, and Society activities: Confer-
ences, Membership, Publications, and 
Technical Directions. Each of these ar-
eas has a vice president, all falling under 
the leadership of the SPS president and 
working alongside the SPS president-
elect to look forward and establish the 
strategic vision, direction, and impact of 
the Society for years to come. In addition, 
each vice president has several subcom-
mittees that enable Society programs 
and capture the collaborative spirit of 
SPS volunteerism. While getting all of 

these—sometimes conflicting—ideas, 
products, and people to work together 
can be a challenge, the level of coopera-
tion and synergy required is both unde-
niable and rewarding.

Conferences are the primary driver 
of SPS business, and Carlo Regazzoni of 
the University of Genoa, Italy, leads the 
SPS Conference Board in his role of vice 
president–Conferences. With three flag-
ship conferences, dozens of financially 
and technically sponsored and cospon-
sored workshops, exploring opportuni-
ties for growth, watching for new trends 
in technical meetings, and ensuring that 
the SPS stays at the forefront with excit-
ing events, SPS conferences are quite 
a task. A single conference takes many 
years, and many people, to plan suc-
cessfully. Managing dozens of budgets, 
venues, organizing committees, and 
sym  posia is a demanding task, requiring 
a level of meticulousness, patience, and 
foresight among the dozens of involved 
parties. However, if you’ve ever attended 
an SPS conference, you have experi-
enced the reward firsthand: SPS confer-
ences are world-class events, attended 
by thousands annually. Not only do they 
provide an opportunity to learn and share 
the highest caliber of research and knowl-
edge, but they are vibrant exchanges of 
information, a chance to network with 
colleagues, a chance to collaborate, build 
relationships, and grow our worldwide 
signal processing community.

The position of vice president–Mem-
bership is the newest addition to the SPS 

Executive Committee and has become 
increasingly significant since it was 
established in 2013. In January, we wel-
comed Nikos Sidiropoulos of the Uni-
versity of Minnesota into the position. 
Many standing committees sit under the 
SPS Membership Board, and, naturally, 
SPS membership activities are the heart 
of the SPS member experience. This  
board, like SPS membership, is broad 
and diverse, serving a growing and evolv-
ing member base with changing needs 
and values. From 183 Chapters world-
wide to student activities, to educational 
programs and seasonal schools, the 
multifaceted nature of the Membership 
Board and its services presents a unique 
set of challenges to remain relevant and 
valuable in a rapidly changing world of 
association membership and the profes-
sionals they support. Their impact is 
apparent in every graduate exposed to 
the breadth of available signal process-
ing careers at a student career luncheon; 
in every student attending an SPS con-
ference on an SPS travel grant; and in 
every connection made and community 
built at a local Chapter event, Young Pro-
fessionals workshop, or Women in Sig-
nal Processing luncheon.

SPS publications are the cornerstone 
of SPS educational materials, largely re-
sponsible for the Society’s longstanding 
esteem and authority among signal pro-
cessing professionals. Our vice president–
Publications, Thrasyvoulos Pappas of 
Northwestern University, Evanston, Illi-
nois, currently leads the SPS Publications 
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Board, made up of nine editors-in-chief of 
SPS publications alongside the SPS vice 
presidents of Conferences and Technical 
Directions, assuring that SPS’s periodi-
cals (including those that are jointly pub-
lished with other Societies) are meeting 
the high standard of quality, timeliness, 
and technical relevance that SPS mem-
bers and customers have come to expect 
out of our research. Looking ahead, the 
SPS vice-president–Publications plans 
how to keep the delivery of our publica-
tions modern and timely through our 
ever-expanding technological landscape 
and also ensures that our content, and the 
subject areas presented within it, remain 
relevant to the greater signal processing 
community. Whether it be the more tradi-
tional papers found in our journals, con-
ference proceedings in IEEE Xplore, or 
emerging news in IEEE Signal Process-
ing Magazine, SPS publications and the 
editorial boards that manage them honor 
the Society and our field with high-qual-
ity, trusted materials that have continued 
to cement the SPS as the leader among 
the many industries, applications, and 
technologies we enable.

And finally, the SPS Technical Di-
rections Board ties it all together. After 

all, engineering, technology, and the 
advancement of each are at the heart of 
the IEEE’s mission. Chaired by Walter 
Kellermann of the University Erlangen-
Nuremberg in Germany, the Technical 
Directions Board comprises the chairs 
of SPS’s 15 technical committees (TCs) 
and special interest groups (SIGs), as 
well as various other board and commit-
tee chairs across Conferences, Publica-
tions, and Membership, to ensure that 
all of the SPS’s products, services, and 
activities are in sync; aligned with our 
technical vision; and delivering the level 
of quality that our members and the sig-
nal processing community have come 
to expect. The vice president–Technical 
Directions is not only concerned with 
future directions of the state of the art for 
existing technologies but also with new 
emerging technologies that relate to our 
field. The Technical Directions Board, 
along with our TCs and SIGs, have a re-
sounding voice in all technical content, 
including conference symposia, publica-
tions, awards, and education programs. 
Their input is imperative to all Society 
activities and allowing us to remain on 
the cutting edge within the IEEE and the 
overall engineering community.

As a unit, the SPS Executive Com-
mittee forms a forward-thinking team 
to manage the Society’s products, pro-
grams, and benefits to set the course for 
the Society’s long-term strategic vision.  
Alongside the Board of Governors, the 
SPS Executive Committee identifies and 
aligns objectives to prepare for not only 
the next generation of SPS members but 
future generations of signal processing 
engineers who expect our products and 
services to reflect the pace innovation 
of the field itself. I am honored to work 
with SPS President-Elect Ali H. Sayed 
to prioritize and guide these objectives 
and initiatives into achievements that 
will serve the Society and its members 
for years to come. Whether the future is 
focused on public visibility, continuing 
education, industry engagement, or pro-
fessional development, we are all work-
ing together to—like signal processing 
as a field—lay the groundwork for a bet-
ter tomorrow.

SP

SPS Awards Nomination:

IEEE Medals

IEEE Technical Field Awards (TFA)

IEEE Fellow
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SOCIETY NEWS

In this column of IEEE Signal Process-
ing Magazine, 47 IEEE Signal Pro-
cessing Society (SPS) members are

recognized as IEEE Fellows and award 
recipients are announced.

47 SPS members elevated to Fellow
Each year, the IEEE Board of Directors 
confers the grade of Fellow on up to one-
tenth of 1% of the Members. To qualify 
for consideration, an individual must have 
been a Member, normally for five years 
or more, and a Senior Member at the time 
of nomination to Fellow. The grade of 
Fellow recognizes unusual distinction in 
IEEE’s designated fields.

The SPS congratulates the following 
47 SPS members who were recognized 
with the grade of Fellow as of 1 January 
2017.

Raviraj Adve, Toronto, Canada, for de-
velopment of signal processing techniques 
for airborne radar.

Sos Agaian, San Antonio, Texas, for 
contributions to biologically inspired vi-
sual data processing systems.

R. Michael Buehrer, Blacksburg, 
Virginia, for contributions to wideband 
signal processing in communications 
and geolocation.

Lap-Pui Chau, Singapore, for contri-
butions to fast computation algorithms 
for visual signal processing.

Douglas Cochran, Tempe, Arizona, for 
contributions to multichannel coherence in 
radar, sonar, and spectrum sensing.

Huaiyu Dai, Raleigh, North Carolina, 
for contributions to multiple-input, mul-
tiple-output communications and wire-
less security.

Ricardo De Queiroz, Brasilia, Bra-
zil, for contributions to image and video 
signal enhancement and compression.

Jose Dias, Lisboa, Portugal, for con-
tributions to imaging inverse problems 
in remote sensing.

Pier Luigi Dragotti, London, United 
Kingdom, for contributions to sparse sig-
nal representation and sampling theory.

Pablo Estevez, Santiago, Chile, for con-
tributions to feature selection and visual-
ization of large data sets.

James Fowler, Mississippi State, Mis-
sissippi, for contributions to lossy source 
coding and dimensionality reduction of 
multidimensional data.

Michael Gastpar, Lausanne, Swit-
zerland, for contributions to network 
information theory.

Uwe Hanebeck, Waldbronn, Germa-
ny, for contributions to nonlinear estima-
tion and control.

Julia Hirschberg, New York, for con-
tributions to text-to-speech synthesis and 
spoken language understanding.

Yo-Sung Ho, Gwangju, South Korea, 
for contribution to video coding and three-
dimensional image processing.

Tatsuya Kawahara, Kyoto, Japan, for 
contributions to speech recognition and 
understanding.

Takao Kobayashi, Yokohama, Japan, 
for contributions to expressive speech 
synthesis based on a statistical paramet-
ric approach.

Witold Krzymien, Edmonton, Canada, 
for contributions to radio resource manage-
ment for cellular systems and networks.

Li Li, Beijing, China, for contributions 
to intelligent transportation systems 
and vehicles.

Xin Li, Morgantown, West Virginia, 
for contributions to image coding, resto-
ration, and interpolation.

Yuanqing Li, Guangzhou, China, for 
contributions to brain signal analysis 
and brain computer interfaces.

Qilian Liang, Arlington, Texas, for 
contributions to interval type-2 fuzzy 
logic systems.

Teng Joon Lim, Singapore, for contri-
butions to statistical signal processing in 
wireless communications.

Wing-kin Ma, Hong Kong, for contribu-
tions to optimization in signal processing 
and communications.

Enrico Magli, Torino, Italy, for con-
tributions to compression and communi-
cation of remotely sensed imagery.

Aleksandra Mojsilovic, Yorktown 
Heights, New York, for contributions to 
signal processing for image analysis, 
data mining, and business analytics.

Srikantan Nagarajan, San Francisco, 
California, for contributions to neural engi-
neering and biomagnetic brain imaging.

Panos Nasiopoulos, Vancouver, Can-
ada, for leadership in DVD authoring and 
digital multimedia technologies.

Brett Ninness, Newcastle, Australia, for 
contributions to computational methods in 
system identification.

Phillip Pace, San Juan Bautista, 
California, for leadership in radar signal 

Digital Object Identifier 10.1109/MSP.2016.2642407
Date of publication: 3 March 2017

SPS Fellows and Award Winners Recognized

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


8 IEEE SIGNAL PROCESSING MAGAZINE | March 2017 |

processing, receiver design, and direction 
finding architectures.

Bhiksha Raj, Pittsburgh, Pennsylvania, 
for contributions to speech recognition.

Bhuvana Ramabhadran, Mount Kisco, 
New York, for contributions to speech rec-
ognition and language processing.

Gael Richard, Paris, France, for contri-
butions to analysis, indexing, and decom-
position of audio and music signals.

Seb Savory, Ely, United Kingdom, for 
contributions to digital coherent transceiv-
ers for optical fiber communication.

Behzad Shahraray, Middletown, New 
Jersey, for leadership in content-based 
processing and retrieval of multimedia 
information.

Steven Smith, Lexington, Massachu-
setts, for contributions to statistical sig-
nal processing and applications to radar 
and sonar.

Leif Sörnmo, Lund, Sweden, for con-
tributions to biomedical signal processing 
in cardiac applications.

Yannis Stylianou, Cambridge, United 
Kingdom, for contributions to speech 
analysis and communication.

Guaning Su, Singapore, for leader-
ship in defense technology and manage-
ment of educational institutions.

Sabine Susstrunk, Lausanne, Switzer-
land, for contributions to computational 
imaging, color image processing, and 
color computer vision.

Nuno Vasconcelos, La Jolla, Califor-
nia, for contributions to computer vision, 
image processing, and multimedia.

Xianbin Wang, London, Canada, for 
contributions to orthogonal frequency-
division multiplexing systems and distrib-
uted transmission technologies.

Zhen Wang, Vancouver, Canada, for 
contributions to statistical signal process-
ing for multimedia security and brain 
data analytics.

Ying Wu, Evanston, Illinois, for con-
tributions to motion analysis and pattern 
discovery in computer vision.

Shuicheng Yan, Singapore, for contri-
butions to subspace learning and visual 
classification.

Rui Zhang, Singapore, for contribu-
tions to cognitive radio and energy har-
vesting communications.

Ce Zhu, Chengdu, China, for contribu-
tions to video coding and communications.

2016 IEEE SPS Awards presented 
in New Orleans, Louisiana
The IEEE SPS congratulates the fol-
lowing SPS members who will receive 
the Society’s prestigious awards dur-
ing ICASSP 2017 in New Orleans, 
Louisiana.

P.P. Vaidyanathan

The Society Award 
honors outstanding 
technical contribu-
tions in a field within 
the scope of the IEEE 
SPS and outstanding 
leadership within that 
field. The Society 

Award comprises a plaque, a certificate, 
and a monetary award of US$2,500. It 
is the highest-level award bestowed by 
the IEEE SPS. This year’s recipient is 
P.P. Vaidyanathan, “for pioneering con-
tributions to signal processing theory 
and education.”

Jelena Kovac̆ević

The Technical Achieve-
ment Award is present-
ed this year to Jelena 
Kovac̆ević “for contri-
butions to the theory 
and practice of signal 
representations” and to 
Bhaskar D. Rao “for 
fundamental contribu-
tions to array process-
ing and sparsity-based 
signal processing.” 
The Technical Achieve-
ment Award honors 
a person who, over a 
period of years, has 

made outstanding technical contribu-
tions to theory and/or practice in techni-
cal areas within the scope of the Society, 
as demonstrated by publications, pat-
ents, or recognized impact on this field. 
The prize for the award is US$1,500, a 
plaque, and a certificate.

K.J. Ray Liu

The Meritorious Ser-
vice Award is present-
ed this year to K.J. Ray 
Liu “for exemplary 
service to and leader-
ship in the IEEE Signal 
Processing Society.” 
The award comprises a 

plaque and a certificate; judging is based 
on dedication, effort, and contributions 
to the Society.

The Sustained Impact Paper Award 
shall honor the author(s) of a journal 
article of broad interest that has had 
sustained impact over many years on 
a subject related to the Society’s tech-
nical scope. The prize shall consist of 
US$500 per author (up to a maximum of 
US$1,500 per award) and a certificate. 
In the event that there are more than 
three authors, the maximum prize shall 
be divided equally among all authors, 
and each shall receive a certificate. To 
be eligible for consideration, an article 
must have appeared in one of the IEEE 
SPS transactions or IEEE Journal of 
Selected Topics in Signal Processing,
in an issue predating the spring awards 
board meeting by at least ten years (typi-
cally held in conjunction with ICASSP). 
This year, the Sustained Impact Paper 
Award recipients are Zhou Wang, Alan 
Conrad Bovik, Hamid Rahim Sheikh, 
and Eero P. Simoncelli, “Image Qual-
ity Assessment: From Error Visibility to 
Structural Similarity,” IEEE Transac-
tions on Image Processing, vol. 13, no. 4, 
April 2004.

The Overview Paper Award hon-
ors the author(s) of a journal article of 
broad interest that has had substantial 
impact over several years on a subject 
related to the Society’s technical scope. 
A paper considered for the award should 
present an overview of a method or the-
ory with technical depth and application 
perspective. It should have a multiyear 
record of impact and also be relevant to 
current researchers and/or practitioners. 
The prize shall consist of US$500 per 
author (up to a maximum of US$1,500 
per award) and a certificate. This year, 
the Overview Paper Award recipients 
are Marco F. Duarte and Yonina C. 
Eldar, for “Structured Compressed Sens-
ing: From Theory to Applications,” IEEE 
Transactions on Signal Processing, vol. 
59, no. 9, September 2011.

The IEEE Signal Processing Maga-
zine Best Paper Award honors the 
author(s) of an article of exceptional 
merit and broad interest on a subject 
related to the Society’s technical scope 
and appearing in the Society’s magazine. 

Bhaskar D. Rao
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The prize comprises US$500 per author 
(up to a maximum of US$1,500 per 
award) and a certificate. In the event 
that there are more than three authors, 
the maximum prize shall be divided 
equally among all authors, and each shall 
receive a certificate. This year, the IEEE 
Signal Processing Magazine Best Paper 
Award recipients are David I. Shuman, 
Sunil K. Narang, Pascal Frossard, Anto-
nio Ortega, and Pierre Vandergheynst 
for their article “The Emerging Field of 
Signal Processing on Graphs: Extend-
ing High-Dimensional Data Analysis to 
Networks and Other Irregular Domains,” 
published in IEEE Signal Processing 
Magazine, vol. 30, no. 3, May 2013.

The IEEE Signal Processing Magazine 
Best Column Award honors the author(s) 
of a column of exceptional merit and 
broad interest on a subject related 
to the Society’s technical scope and 
appearing in the Society’s magazine. 
The prize shall consist of US$500 per 
author (up to a maximum of US$1,500 
per award) and a certificate. In the event 
that there are more than three authors, 
the maximum prize shall be divided 
equally among all authors, and each 
shall receive a certificate. This year, the 
IEEE Signal Processing Magazine Best 
Column Award recipient is Ronald W. 
Schafer for his article “What Is a Sav-
itzky-Golay Filter?” published in IEEE 
Signal Processing Magazine, vol. 28, 
no. 4, July 2011.

Five Best Paper Awards were given, 
honoring the author(s) of a paper of 
exceptional merit dealing with a subject 
related to the Society’s technical scope 
and appearing in one of the Society’s 
transactions, irrespective of the author’s 
age. The prize is US$500 per author (up 
to a maximum of US$1,500 per award) 
and a certificate. Eligibility is based on 
a five-year window preceding the year 
of election, and judging is based on 
general quality, originality, subject mat-
ter, and timeliness. Up to six Best Paper 
Awards may be presented each year. This 
year, the awardees are
■ Jun Yu, Yong Rui, and Dacheng Tao, for 

“Click Prediction for Web Image 
Reranking Using Multimodal Sparse 
Coding,” IEEE Transactions on Image 
Processing, vol. 23, no. 5, May 2014.

■ Chin Keong Ho, and Rui Zhang, for 
“Optimal Energy Allocation for 
Wireless Communications with Energy 
Harvesting Constraints,” IEEE Trans -
actions on Signal Processing, vol. 60, 
no. 9, September 2012.

■ Ossama Abdel-Hamid, Abdel-rahman 
Mohamed, Hui Jiang, Li Deng, Ger-
ald Penn, and Dong Yu, “Convolu-
tional Neural Networks for Speech 
Recognition,” IEEE/ACM Transac-
tions on Audio, Speech, and Lan-
guage Processing, vol. 22, no. 10, 
October 2014.

■ Cees H. Taal, Richard C. Hendriks, 
Richard Heusdens, and Jesper Jensen, 
“An Algorithm for Intelligibility Pre-
diction of Time–Frequency Weighted 
Noisy Speech,” IEEE Transactions 
on Audio, Speech, and Language 
Processing, vol. 19, no. 7, Septem-
ber 2011.

■ Jason T. Parker, Philip Schniter, and 
Volkan Cevher (two-part paper), 
“Bilinear Generalized Approximate 
Message Passing—Part I: Derivation”; 
“Part II: Applications,” IEEE Trans-
actions on Signal Processing, vol. 62, 
no. 22, November 2014.
The Young Author Best Paper Award 

honors the author(s) of an especially 
meritorious paper dealing with a subject 
related to the Society’s technical scope 
and appearing in one of the Society’s 
transactions and who, upon date of sub-
mission of the paper, is younger than 
30 years of age. The prize is US$500 per 
author (up to a maximum of US$1,500 
per award) and a certificate. Eligibility 
is based on a three-year window pre-
ceding the year of election, and judging 
is based on general quality, original-
ity, subject matter, and timeliness. Four 
Young Author Best Paper Awards are 
being presented this year:
■ Ahmed Alkhateeb and Omar El 

Ayach, for the paper coauthored with 
Geert Leus and Robert W. Heath, Jr., 
“Channel Estimation and Hybrid 
Precoding for Millimeter Wave 
Cellular Systems,” IEEE Journal of 
Selected Topics in Signal Processing,
vol. 8, no. 5, October 2014.

■ Saiprasad Ravishankar, for the paper 
coauthored with Yoram Bresler, 
“Learning Sparsifying Transforms,” 

IEEE Transactions on Signal Process-
ing, vol. 61, no. 5, March 2013.

■ Jack Ho, for the paper coauthored 
with Wee Peng Tay, Tony Q.S. Quek, 
and Edwin K.P. Chong, “Robust 
Decentralized Detection and Social 
Learning in Tandem Networks,” IEEE 
Transactions on Signal Processing,
vol. 63, no. 19, October 2015.

■ Yuanming Shi  and Brendan 
O’Donoghue, for the paper coau-
thored with Jun Zhang and Khaled 
B. Letaief, “Large-Scale Convex 
Optimization for Dense Wireless 
Cooperative Networks,” IEEE Trans-
actions on Signal Processing, vol. 
63, no. 18, September 2015.
The IEEE Signal Processing Letters 

Best Paper Award honors the author(s) 
of a letter article of exceptional merit 
and broad interest on a subject related 
to the Society’s technical scope and 
appearing in IEEE Signal Process-
ing Letters. The prize shall consist of 
US$500 per author (up to a maximum 
of US$1,500 per award) and a certifi-
cate. To be eligible for consideration, 
an article must have appeared in IEEE 
Signal Processing Letters in an issue 
predating the spring awards board 
meeting by five years (typically held 
in conjunction with ICASSP). Judging 
shall be on the basis of the techni-
cal novelty, the research significance 
of the work, and quality and effec-
tiveness in presenting subjects in an 
area of high impact to the Society’s 
members. The recipients of the IEEE 
Signal Processing Letters Best Paper 
Award are Ye Yang, Qiang Li, Wing-
Kin Ma, Jianhua Ge, and P.C. Ching, 
for “Cooperative Secure Beamforming 
for AF Relay Networks with Multiple 
Eavesdroppers,” IEEE Signal Process-
ing Letters, vol. 20, no. 1, January 2013.

2016 Chapter of the Year Award
The IEEE SPS Gujarat Chapter has 
been selected as the sixth recipient of the 
2016 Chapter of the Year Award, which 
will be presented at the ICASSP 2017 
Awards Ceremony in New Orleans, Loui-
siana. The award is presented annually 
to a Chapter that has provided its mem-
bership with the highest quality of pro-
grams, activities, and services. The SPS 
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Gujarat Chapter will receive a certificate 
and a check in the amount of US$1,000 
to support local Chapter activities. The 
Chapter will publish an article in a future 
issue of IEEE Inside Signal Processing 
e-Newsletter.

SPS members receive 
2017 IEEE awards
The IEEE has announced the recipients of 
the 2017 IEEE medals. IEEE medals 
are the highest honor of awards presented 
by the IEEE. The medals will be present-
ed at the 2017 IEEE Honors Ceremony. 
Three SPS members were awarded with 
IEEE medals for 2017.

Martin Vetterli

The IEEE Jack S. 
Kilby Signal Process-
ing Medal awarded 
for outstanding ac -
hievements in signal 
processing will be 
presented to Martin 
Vetterli (EPFL, Laus-

anne, Switzerland) “for fundamental con-
tributions to advanced sampling, signal 
representations, and multirate and multi-
resolution signal processing.”

H. Vincent Poor

The IEEE Alexander 
Graham Bell Medal 
awarded for excep-
tional contributions 
to communications 
and networking sci-
ences and engineer-
ing, will be presented 

to H. Vincent Poor (Princeton Univer-
sity, New Jersey) “for fundamental 
contributions to signal processing and its 
application to digital communications.”

John Baras

The IEEE Simon 
Ramo Medal award-
ed for exceptional 
achievement in sys-
tems engineering and 
systems science, will 
be presented to John 
Baras (University of 

Maryland, College Park) “for exceptional 
contributions to the conception and com-
mercialization of Internet-over-satellite 
systems, and for leadership in model-based 
engineering, systems science, and engineer-
ing research.”

In addition, the IEEE has announced the 
recipients of Technical Field Awards for 
contributions or leadership in specific 
fields of interest of the IEEE. The follow-
ing SPS members have received IEEE 
Technical Field Awards this year.

Mark Yoffe Liberman

The IEEE James L. 
Flanagan Speech and 
Audio Processing 
Technical Field Award 
will be presented to 
Mark Yoffe Liber-
man “for pioneering 
contributions to and 

continued leadership in robust, replicable, 
and data-driven speech and language sci-
ence and engineering.”

Russ Mersereau

The IEEE Fourier 
Award for Signal Pro-
cessing will be present-
ed to Russ Mersereau
“for sustained techni-
cal contributions to 
multidimensional digi-
tal signal processing.”

Jerome John Blair

The IEEE Joseph F. 
Keithley Award in 
Instrumentation and 
Measurement was 
awarded to Jerome 
John Blair “for con-
tributions to test 
procedures for ana-

log-to-digital and digital-to-analog 
converters and to enhanced-accura-
cy gamma-ray spectrometry.”

C.-C. Jay Kuo

The IEEE Leon K. 
Kirchmayer Graduate 
Teaching Award will 
be presented t o 
C.-C. Jay Kuo “for 
inspirational guid-
ance of graduate stu-
dents and curriculum 

development in the area of multimedia 
signal processing.”

The IEEE Donald O. Pederson 
Award in Solid-State Circuits was 
awarded to Takao Nishitani and John 
S. Thompson “for pioneering real-time 
programmable digital signal proces-
sor architectures.”

SP

John S. ThompsonTakao Nishitani
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READER’S CHOICE

Top Downloads in IEEE Xplore

E ach “Reader’s Choice” column focus-
es on a different publication of the 
IEEE Signal Processing Society 

(SPS). This month we are highlighting 
articles in IEEE Signal Processing 
Magazine (SPM).

SPM publishes tutorial-style arti-
cles on signal processing research and 
applications, as well as columns and 
forums on issues of interest. Its cover-
age ranges from fundamental principles 
to practical implementation, reflecting 
the multidimensional facets of inter-
ests and concerns of the community. 
The magazine’s mission is to bring up-
to-date, emerging, and active techni-
cal developments, issues, and events to 
the research, educational, and profes-
sional communities. It is also the main 
Society communication platform ad-
dressing important issues concerning 
all members.

We usually list the top ten most 
downloaded articles for the past two 
years at the time of the print deadline. 
To give readers a sense of timeliness 
and an awareness of newer published 
articles in SPM, we include five more 
articles in this issue’s “Reader’s 
Choice” column. Of the five additional 
articles, three of them are the most 
downloaded articles in 2015, and two 
are the most downloaded articles in 
2016. Your suggestions and comments 

are welcome and should be sent to 
Associate Editor Chungshui Zhang 
(zcs@mail.tsinghua.edu.cn).

An Introduction to 
Compressive Sampling
Candes, E.J.; Wakin, Michael B.
This article surveys the theory of com-
pressive sampling, also known as com-
pressed sensing (CS), which is a new 
sensing/sampling paradigm that goes 
against the common methods in data 
acquisition. The CS theory asserts 
that one can recover certain signals 
and images from far fewer samples or 
measurements than traditional meth-
ods use.

March 2008

Deep Neural Networks for Acoustic 
Modeling in Speech Recognition: The 
Shared Views of Four Research Groups
Hinton, G.; Deng, L.; Yu, D.; Dahl, 
G.E.; Mohamed, A.-R.; Jaitly, N.; 
Senior, A.; Vanhoucke, V.; Nguyen, P.; 
Sainath, T.N.; Kingsbury, B. 
Deep neural networks (DNNs) that are 
trained using new methods have been 
shown to outperform Gaussian mixture 
models on a variety of speech recogni-
tion benchmarks, sometimes by a large 
margin. This article provides an overview 
of this progress and represents the shared 
views of four research groups that have 
had recent successes in using DNNs for 
acoustic modeling in speech recognition.

November 2012

12
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Scaling Up MIMO: Opportunities
and Challenges with Very Large 
Arrays
Rusek, F.; Persson, D.; Lau, B.K.; 
Larsson, E.G.; Marzetta, T.L.; Edfors, 
O.; Tufvesson, F. 
In this article, the authors report that very 
large multiple-input, multiple-output 
(MIMO) offered the unique prospect 
within wireless communication of sav-
ing an order of magnitude, or more, in 
transmit power. This article points out a 
fundamental challenge of a very large 
MIMO system design and surveys some 
related algorithms.

January 2013

OFDM versus Filter Bank 
Multicarrier
Farhang-Boroujeny, B. 
This article addresses the shortcomings 
of orthogonal frequency-division multi-
plexing in some applications and shows 
that a filter bank multicarrier could be a 
more effective solution.

May 2011

Super-Resolution Image 
Reconstruction: A Technical Overview
Park, S.C.; Park, M.K.; Kang, M.G. 
One promising approach to increasing 
spatial resolution of an image is to use 
signal processing techniques to obtain a 
high-resolution image (or sequence) 
from observed multiple low-resolution 
images. This article introduces the con-
cept of super-resolution algorithms to 
readers who are unfamiliar with this area 
and to provide the technical review of 
various existing super-resolution meth-
ods for experts. 

May 2003

Modulation Formats and 
Waveforms for 5G Networks: 
Who Will be the Heir of OFDM? 
An Overview of Alternative 
Modulation Schemes for Improved 
Spectral Efficiency
Banelli, P.; Buzzi, S.; Colavolpe, 
G.; Modenini, A.; Rusek, F.; Ugolini, A. 
This article provides a review of some 
modulation formats suited to fifth-genera-
tion (5G) cellular communications, 
enriched by a comparative analysis of their 
performance in a cellular environment, and 

by a discussion of their interactions with 
specific 5G ingredients. 

November 2014

Modeling and Optimization for Big 
Data Analytics: (Statistical) Learning 
Tools for Our Era of Data Deluge 
Slavakis, K.; Giannakis, G.B.; Mateos, G. 
This article contributes to the ongoing 
cross-disciplinary efforts in data science, by 
putting forth encompassing models, captur-
ing a wide range of signal processing rele-
vant data analytic tasks. It offers scalable 
architectures and optimization algorithms 
for decentralized and online learning prob-
lems, while revealing fundamental insights 
into the various analytic and implementa-
tion tradeoffs involved. The close connec-
tions of the presented framework with 
several big data tasks are highlighted.

September 2014

Locating the Nodes: Cooperative 
Localization in Wireless Sensor 
Networks 
Patwari, N.; Ash, J.N.; Kyperountas, 
S.; Hero, O.; Moses, R.L.; Correal, N.S.
This article provides a window into coop-
erative localization, which has found con-
siderable applications in ad hoc and 
wireless sensor networks. It presents mea-
surement-based statistical models of time 
of arrival, angle of arrival, and received 
signal strength and uses them to generate 
localization performance bounds. It also 
surveys a large and growing body of 
sensor localization algorithms. This arti-
cle is intended to emphasize the basic sta-
tistical signal processing background, 
necessary to understand the state-of-the-
art methods, and to make progress in the 
new and largely open areas of sensor net-
work localization research.

July 2005 

Big Data Analysis with Signal 
Processing on Graphs: 
Representation and Processing 
of Massive Data Sets With 
Irregular Structure 
Sandryhaila, A.; Moura, J.M.F.
This article reviews fundamental con-
cepts of discrete signal processing on 
graphs, including graph signals and graph 
filters, graph Fourier transform, graph fre-
quency, and spectrum ordering, and com-
pares them with their counterparts from 
the classical signal processing theory. It 
considers product graphs as a graph model 
that helps extend the application to large 
data sets through efficient implementation 
based on parallelization and vectorization. 
The article also relates the presented 
framework to existing methods for large-
scale data processing.

September 2014 

Communicating While Computing: 
Distributed Mobile Cloud Computing 
Over 5G Heterogeneous Networks 
Barbarossa, S.; Sardellitti, S.; Lorenzo, P.D.  
In this article, the authors proposed a sys-
tem perspective of the next fifth-genera-
tion (5G) systems centered on the need to 
empower energy-hungry mobile termi-
nals with computation offloading capa-
bilities via proximity to radio access 
through small-cell base stations, en -
dowed with cloud functionalities. They 
also showed how the optimal resource al-
location involves a joint allocation of radio 
and computation resources, within a fully 
cross-layer approach. 

November 2014 

Speaker Recognition by Machines 
and Humans: A Tutorial Review
Hansen, J.H.L.; Hasan, T.
In this article, the authors review the lit-
erature on speaker recognition by ma-
chines and humans, with an emphasis 
on prominent speaker-modeling tech-
niques that have emerged in the last de-
cade for automatic systems. They 
conclude this review with a comparative 
study of human versus machine speaker 
recognition and attempt to point out 
strengths and weaknesses of each.

November 2015

(continued on page 122)
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SPECIAL REPORTS
John Edwards

1053-5888/17©2017IEEE

S ignal processing is helping to make 
life a little less scary. Cyberattacks, 
street crime, terrorist strikes, and 

other types of public threats have the 
potential to devastate lives, destroy busi-
nesses, and even bring down govern-
ments. Finding ways to defuse potential 
threats, as well as pinpoint perpetrators 
before they can act, is important for 
maintaining public security as well as 
ensuring a better quality of life for people 
worldwide. According to a recent report 
issued by the Institute for Econom-
ics and Peace, a think tank based in Syd-
ney, Australia, the global economic impact 
of violence was US$13.6 trillion in 2015, or 
13.3% of the world’s gross domestic product.

With the ultimate goal of creating a 
safer and more stable society, research-
ers worldwide are developing an array of 
innovative security tools and approaches 
that are rooted in or assisted by signal 
processing. “Security is a wild, wild west 
frontier where signal processing is one 
of the tools for explorer,” observes Yang 
Cai, a senior systems scientist at Carnegie 
Mellon University’s CyLab Institute and 
the director of CyLab’s Visual Intelli-
gence Studio. 

Visualizing cyberattacks
Distributed denial of service (DDoS) 
attacks pose a major threat to websites 
worldwide. A DDoS attack attempts 
to make an online service unavailable 
by overwhelming it with traffic from 

multiple sources. To help website opera-
tors thwart such potentially paralyzing 
attacks, a CyLab research team, led by 
Prof. Cai, has developed a novel interac-
tive visual analytics tool that scrutinizes 
large volumes of network metadata, log 
files, and security event logs to discover 
hidden data and suspicious dynamic 
behavioral patterns lurking within a large 
network infrastructure (Figure 1). 

Visual Analytics for Discovering 
Dynamic Patterns in Network Data—
code-named Meteor—enables semantic 
representations of cyberdynamic compo-

nents, such as packet and protocol se-
quences, attack behaviors, insider threats, 
and sequential patterns, as well as access 
points and cyber events. A three-dimen-
sional (3-D) navigation interface enables 
users to browse through and analyze a 
large volume of cyberdata, including net-
work traffic and historical data. 

The researchers have already used 
Meteor to study a typical malware dis-
tribution network (MDN), a connected 
set of maliciously compromised domains 
that’s used to disseminate compromised 
software to unknowing computers and 

Digital Object Identifier 10.1109/MSP.2016.2638478
Date of publication: 3 March 2017

Stepping Up Security with Signal Processing
Innovative tools and approaches address threats on multiple fronts

FIGURE 1. Prof. Yang Cai (left) and research assistant Sebastian Peryt examine a visualization at the 
Carnegie Mellon University CyLab Visual Intelligence Studio. (Photo courtesy of Carnegie-Mellon 
University.)
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users. The team defined the graph of 
an MDN to visualize top-level-domain 
(TLD) data collected from Google Safe 
Browsing reports in a temporal manner, 
characterizing the topological structure. 
From the collected data, they were able 
to identify and label a TLD’s role in 
malware distribution. The visual analyt-
ics provided insights into the topological 
structure of MDNs over time, including 
highly connected and persistent TLDs 
and subnetworks. “To visualize the time, 
frequency, and volume of the network 
events, we introduced a spectrogram of 
packet traffic,” Prof. Cai says. “This can 
help to illuminate the temporal patterns, 
similar to music patterns.” 

Prof. Cai notes that digital signal pro-
cessing is necessary to filter and prepro-
cess massive amounts of raw data prior to 
visualization. “It’s like finding a needle in 
a haystack,” he says. “We need to reduce 
the haystack to a manageable size before 
we can dive in for a detailed search.” 
Signal processing can also be used to 
characterize dynamic patterns such as 
periodicity and anomalies, he added. 

To process the massive data set, the 
researchers developed signal process-
ing algorithms designed to filter the data 
and illuminate potential patterns. “These 
algorithms include short-term Fourier 
transform, graph generation, and human 
visual signal processing speed match-
ing,” Prof. Cai says. 

Prof. Cai believes that the new visu-
alization method will enable users to 
discover threat clue patterns, such as 
missing data, malware spread patterns, 
and novel hacking tactics. He points to 
attack behavior profiling, inside threat 
analysis, situation awareness, malware 
spread pattern discovery, and real-time 
anomaly detection as potential Meteor 
applications. The system can be inte-
grated into existing platforms, such as 
data cloud virtual machines. It can also 
work with cyberphysical systems, such as 
the Internet of Things, in the context of 
data anonymity, user authentication, and 
phishing defense. 

Addressing data set complexity was 
the project’s biggest signal processing 
challenge. “To visualize the dynamics of 
evolving patterns, we needed to periodi-
cally sample the data with time stamps,” 

Prof. Cai says. In many cases, how-
ever, the data are not perfectly collected. 
“There are missing data points or over-
laid data—even fake data,” he continues. 
“Furthermore, many network events and 
anomalies are not repeated: the ‘Black 
Swan’ phenomena (an unpredictable or 
unforeseen event).” 

“Interactive visual analytics is a learn-
ing process,” Prof. Cai says. “After 
we learn meaningful visual patterns, 
we want to model the visual ontology 
computationally,” he 
notes. “We antici-
pate that digital signal 
processing will be a 
powerful tool to rep-
resent features and 
patterns in the data.” 
The researchers also 
plan to study the link 
between visual ana-
lytics and machine 
learning. “Once we learn the visual pat-
terns, we want to feed them into a machine 
that is able to learn automatically,” he 
states. “After all, we want to develop a 
human-computer interaction system that 
combines human visual intelligence 
with machine intelligence to maxi-
mize the efficiency of data analyses.” 

High-resolution facial detection
As video resolution increases, existing 
facial detection technologies struggle to 
perform rapid and accurate analytics on 
high-definition (HD) streams. “At pres-
ent, there is no shortage in the resolu-
tion of cameras,” says Ilya Kalinovskii, 
a doctoral student at Tomsk Polytechnic 
University in Tomsk, Russia, who has 
developed an algorithm that’s designed 
to bring fast and reliable facial detection 
to a new generation of HD surveillance 
systems. “Already available in the mar-
ket are cameras that can transmit an 8K 
video stream,” he said. 

The challenge HD video presents to 
existing video analytics technologies its 
need for very large computational re-
sources and high-bandwidth data chan-
nels. “My algorithm allows solving this 
problem, at least in biometric video ana-
lytics systems,” Kalinovskii says, noting 
that the technology will enable high-res-
olution automatic monitoring of a local 

environment, even potentially allow-
ing emergency situations to be detected 
quickly without operator attention. 

Existing video-based facial detection 
systems often rely on the Viola–Jones 
algorithm framework, which until re-
cently has allowed reliably high detection 
rates. “However, its performance is not 
enough to process 4K videos in real time; 
it also allows a great number of false pos-
itive detections,” says Kalinovskii, 
who believes that his new facial detec-

tion method marks a 
significant improve-
ment to Viola–Jones. 
“It provides greater 
accuracy in face de-
tection and up to a ten 
times higher rate of the 
frame processing,” he 
says. “It is the first 
algorithm capable to 
process 4K-video in 

real-time mode on low-power computing 
devices” (Figure 2). 

The new technology takes advantage 
of sophisticated deep learning methods. 
“A face detector is based on a compact 
convolutional neural network (CNN) 
cascade,” Kalinovskii says. Deep artifi-
cial neural networks, particularly a CNN, 
are rapidly gaining popularity, largely 
due to the fact that they can outperform 
human accuracy in solving a number of 
video image detection tasks. “Tradition-
ally, however, to achieve a high quality 
of classification, one needed to use very 
large neural networks with millions of 
parameters that require powerful and 
expensive graphics processing units to 
work,” Kalinovskii says. 

Working with Prof. Vladimir Spit-
syn of the school’s Computer Engineer-
ing Department, Kalinovskii developed 
CNN models requiring only a few thou-
sand parameters. “This determined the 
exceptional performance of the detector, 
which is capable of operating in real time, 
even on a central processing unit,” Kalin-
ovskii says. 

Optimizing CNN computations posed 
the project’s biggest challenge. “The CNN 
cascade itself does not provide the needed 
performance,” Kalinovskii says. “Only 
the combination of efficient algorithms 
for image filtering and computations of 

Existing video-based facial 
detection systems often 
rely on the Viola-Jones 
algorithm framework, 
which, until recently, 
has allowed reliably high 
detection rates.
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nonlinear transformations has allowed 
achieving the high rate of data process-
ing that made it possible to process HD 
video in real time.” CNN training, mean-
while, was a necessary but time consum-
ing process. “Training neural networks 
is a sophisticated problem and required 
fine-tuning of lot of hyperparameters,” 
Kalinovski says. 

Kalinovskii feels that there will be a 
growing demand for the type of technol-
ogy he has developed. “To detect a person 
by his facial image in a crowd, like in a 
stadium or subway, it is required to work 
with an image in a scene with very high 
detail,” he says. “4K resolution is suitable 
for this purpose.” 

Looking to the future, Kalinovskii 
hopes to bring the algorithm to Android 
and iOS devices, which could make 
high-resolution facial detection a mobile 
technology that could be used almost 
anywhere. “Currently I am working on 
porting the algorithm onto advanced 
RISC machine processors, which require 
more code optimization to improve per-
formance,” he says. 

Protecting vulnerable grids
Electrical power grids worldwide are 
aging, overburdened, and susceptible 

to attack and failure at any moment, 
potentially leaving millions of people, 
as well as essential public services, 
literally in the dark. With the goal 
of improving grid security and reli-
ability, Binghamton University, New 
York, researchers believe that a singu-
lar spectrum analysis (SSA) algorithm 
could become the best tool to help 
authorities remotely detect and locate 
power grid faults. 

A power grid—a collection of multiple 
complete circuits—is designed to keep 
electricity flowing even when an individ-
ual circuit fails. Although a power grid’s 
inherent redundancy creates a great deal 
of stability, the technology is also highly 
complex and populated with vulnerable 
points. By leveraging a power grid’s weak 
spots, an attacker can break in and subtly 
change electricity flow, creating a cascad-
ing and potentially catastrophic effect on 
the entire infrastructure. 

“The SSA algorithm enables quick 
and accurate detection of subtle changes 
in the sampled signal series without any 
knowledge of ‘normal’ or ‘abnormal’ sta-
tistic features,” says research team leader 
Prof. Yu Chen, a Binghamton University 
associate professor of electrical and com-
puter engineering. “It is an ideal match 

to power grid monitoring tasks, where 
it is very challenging to have a compre-
hensive model of behavior patterns.” The 
researchers call their approach model-
free online distributed disturbance loca-
tion (Figure 3). 

As things currently stand, any time or 
location anomalies lurking within a grid—
potential signs of a hidden problem—are 
determined by familiar formulas, such 
as the event start time (EST) algorithm, 
which calculates the arrival times of 
power changes at different geographic 
locations. Although the arrival differ-
ences are very small, they generally pro-
vide sufficient information to triangulate 
a location. The Binghamton researchers 
used simulation data to show that the 
SSA algorithm can be faster and more 
effective than EST at finding anoma-
lies in the power grid created by either 
generator or transmission line issues. 
According to Prof. Chen, SSA works 
better in noisy environments and is 
able to capture subtle disturbances that 
elude the EST algorithm. “Wide-area 
dynamic events are currently not well 
presented to operators,” Prof. Chen says. 
Project coresearchers are Prof. Aleksey 
Polunchenko from the Department of 
Mathematical Sciences, Prof. Ning Zhou 

FIGURE 2. A new algorithm developed by a Tomsk Polytechnic University researcher promises improved facial detection in high-resolution video streams. 
(Photos courtesy of Tomsk Polytechnic University.) 
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from the Department of Electrical and 
Computer Engineering, and doctoral stu-
dent Zekun Yan from the Department of 
Electrical and Computer Engineering. 

The SSA-based change point detection 
method is a nonmodel and structure-free 
data analysis technique, Prof. Chen says. 
“As a result, on one hand, theoretically, it 
can detect faults of any category because 
SSA don’t have a limitation for data struc-
ture.” On the other hand, Prof. Chen notes, 
history records and prior information 
about the fault condition are not needed to 
build the model. “In addition, experimen-
tal results have shown high accuracy for 
this method,” Prof. Chen says. 

At the individual local sensor level, 
the moment a disturbance arrives at 
the measured position is a critical fac-
tor in disturbance detection. “With the 
help of synchronization, the disturbance 
record data are marked by time instance 
such that it can be compared with other 
records,” Prof. Chen says. “Therefore, 
naturally, it’s a time series and suitable for 
a corresponding data analysis technique.” 

The new approach utilizes a traveling 
wave-based approach that’s both simple 
and well suited for use in the wide-area 
systems, such as power grids. “The trav-

eling wave-based method focuses on the 
waves generated by the disturbance and 
the correlation between the forward and 
backward wave arrival or direct detec-
tion of the arrival time on a single line,” 
Prof. Chen says. Specifically, the approach 
uses a time difference of arrival (TDOA) 
method. “The TDOA method assumes 
a unified wave traveling velocity and uti-
lizes the different arrival times at different 
sensors to locate the wave start point—the 
fault source,” Prof. Chen says. “The critical 
challenges for the method are the arrival 
time detection accuracy and the wave trav-
eling velocity error.” 

Developing a highly accurate power 
grid detection/location technology poses 
some unique challenges. “First, the prop-
agation speeds of the electromechanical 
signals vary from 100 miles to 1,000 
miles per second among different paths 
in the power grid due to the adoption of 
variant transmission technologies,” Prof. 
Chen says. “Second, absolute geological 
distance is used to simplify the calcula-
tion in spite of the fact that the electrome-
chanical waves propagate along with the 
power grid topology.” 

Although the individual measurement 
data has propagation error and modifica-

tion error, a proposed temporal scanning 
algorithm would take advantage of the 
abundant amount of information supplied 
by frequency disturbance recorders dis-
persed across the grid to reach an accu-
rate value. “According to the law of large 
number, with the large number of samples 
the estimate will gradually converge to the 
true value,” Prof. Chen says. 

The researchers continue to refine 
the system and are currently addressing 
two key issues: the fast detection of weak 
oscillations and the prediction of poten-
tial vibrations based on the detection of 
disturbances and oscillations. 

Meanwhile, the current SSA algo-
rithm can only detect and locate prob-
lems; it cannot predict what may happen 
in the future. The researchers hope that 
the current platform’s ability to detect 
subtle power grid change changes could 
someday be improved to the point where 
it will be able to forecast problems before 
they occur. 

Author
John Edwards ( jedwards@john
edwardsmedia.com) is a technology writ-
er based in the Phoenix, Arizona, area.
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FIGURE 3. Binghamton University researchers have proposed a new SSA algorithm-based model for remotely detecting and locating power grid faults. 
This diagram shows how a cloud-based monitoring system using the model might be configured. (Image courtesy of Binghamton University.)
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FROM THE GUEST EDITORS
John H.L. Hansen, Kazuya Takeda, Sanjeev M. Naik, Mohan M. Trivedi, 

Gerhard U. Schmidt, Yingying (Jennifer) Chen, and Wade Trappe

T he automobile has played an impor-
tant role in shaping our society for 
the past century, and signal process-

ing is playing an increasingly substantial 
role in shaping smart vehicle technolo-
gies today. Part 2 of the special section 
on signal processing for smart vehicle 
technologies provides additional six arti-
cles, complementing those in Part 1, 
which was published in the November 
2016 issue of IEEE Signal Processing 
Magazine (SPM) [1].

Part 2 starts with two articles that 
address radar-based sensing technologies. 
The first article, “Auto-
motive Radars,” by 
Patole et al., provides 
a tutorial overview 
on signal processing 
techniques used in 
radar sensing in auto-
mobiles. In “Advances 
in Automotive Radar,” 
Engels et al. focus on 
computationally effi-
cient algorithms to support high-resolu-
tion frequency estimation in automotive 
radar applications.

Given the importance of communi-
cation capabilities and location informa-

tion for users on the 
move, Schwarz et al. 
surveyed the related 
efforts and develop-
ments of the fourth-
generation (4G) wire-
less communications 
in their article “Signal 
Processing Challenges 
in Cellular-Assisted 
Vehicular Communi-

cations.” Additionally, “The Future of 
Automotive Localization Algorithms” by 
Karlsson and Gustafsson addressed the 

Signal Processing for Smart Vehicle Technologies: Part 2

Digital Object Identifier 10.1109/MSP.2017.2650299
Date of publication: 3 March 2017

Signal Processing Supporting Vehicular Control and Coordination
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Signal processing provides essential support in vehicular control and coordination: (a) digital signal processing (DSP) applications in engine con-
trol and onboard diagnostics (see the article by Wu and Naik, on page 70 of this issue), and (b) coordination of cooperative autonomous vehicles 
(see the article by Hult et al., page 74 in SPM’s November 2016 issue).

As a picture is worth 1,000 
words, this guest editorial 
includes a visual summary 
consisting of figures 
selected from articles in 
both parts in this two-part 
special issue.
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Driver Monitoring

Video
(360° View)

Video
(Ahead, Face, Feet)

Speech and Noise

3-D Acceleration

Velocity

GPS

Steering Angle

Laser Scanners
(Front, Back)

Pedal Pressure
(Gas, Brake)

Skin Conductance

Perspiration
(Palm and Sole)

Heart Rate

Video
(360° View)

Video
(Ahead, Face, Feet)

Speech and Noise

D Acceleration

Velocity

GPS

ser Scanners
Front, Back)

P d l P

Perspiration
(Palm and Sole

Heart Rate

P

Q S

R

T

ECG Signal

QRS Complex

15 cm

20 cm

15 cm

15 cm
1 2

3 4

5 6

P

Q S

R

T

G Signal

m

1111111 2

3333 4444444444444444444444444444444444444444444444444

5 6

(a) (b)

(c)

EEG
ECG

Respiration

GSR

1 Minute

10 Seconds

1 Second1 Second

A variety of signal sensing and analytic techniques are being developed to provide driver status monitoring to enhance the safety of driving: 
(a) driver-behavior modeling using on-road driving data (see the article by Miyajima and Takeda, page 14 in SPM’s November 2016 issue), (b) driver 
status monitoring systems for smart vehicles using physiological sensors (see the article by Choi et al., page 22 in SPM’s November 2016 issue), and 
(c) smart driver monitoring where signal processing meets human factors (see the article by Aghaei et al., page 35 in SPM’s November 2016 issue).
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Enhanced User Interface in Automobiles
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Signal processing techniques are essential in enhancing the user interface in an automobile: (a) conversational in-vehicle dialog systems (see the 
article by Weng et al., page 49 in SPM’s November 2016 issue), (b) active noise control inside automobile cabins (see the article by Samarasinghe 
et al., page 61 in SPM’s November 2016 issue), and (c) intelligent interactive displays in vehicles with intent prediction (see the article by Ahmad 
et al., page 82 of this issue).

technologies behind making localization 
available, reliable, and scalable anywhere 
and at any time.

Signal processing is also in the heart 
of keeping automobiles running and 
enabling greener automobiles. These 
aspects are surveyed in the article “DSP 
Applications in Engine Control and 
Onboard Diagnostics” by Wu and Naik. 
With the increasing adoption of interac-
tive displays in the vehicle, Ahmad et al. 
addressed the unique issues and a 

Bayesian framework in this user-inter-
face setting in the article “Intelligent 
Interactive Displays in Vehicles with 
Intent Prediction.”

As a picture is worth 1,000 
words, this guest editorial includes 
a visual summary consisting of fig-
ures selected from articles in both parts 
in this two-part special issue: see “Sig-
nal Processing Supporting Vehicular 
Control and Coordination,” “Driver 
Monitoring,” “Enhanced User Interface 

in Automobiles,” and “Processing in 
Automotive Radar Sensing, Commu-
nications, and Localization.” Thanks 
are given to SPM Editor-in-Chief Dr. 
Min Wu and IEEE Signal Processing 
Society Publications Administrator 
Rebecca Wollman for their support, 
as well as to the numerous anony-
mous reviewers. 

Once again, we welcome you to 
explore these articles, as well as the 
field of signal processing for vehicular 
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Signal processing techniques are used in automotive sensing, communications, and localization:  (a) an overview of automotive radars (see the 
article by Patole et al., page 22 of this issue), (b) computationally efficient high-resolution frequency estimation in automotive radars (see the 
article by Engels et al., page 36 of this issue), (c) cellular-assisted vehicular communications (see the article by Schwarz et al., page 47 of this 
issue), and (d) automotive localization algorithms (see the article by Karlsson et al., page 60 of this issue).

t echnologies. Happy reading—and 
happy driving!
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Sujeet Patole, Murat Torlak, Dan Wang, and Murtaza Ali

utomotive radars, along with other sensors such as lidar, (which stands for “light 
detection and ranging”), ultrasound, and cameras, form the backbone of self-driving 
cars and advanced driver assistant systems (ADASs). These technological advance-

ments are enabled by extremely complex systems with a long signal processing path from 
radars/sensors to the controller. Automotive radar systems are responsi-

ble for the detection of objects and obstacles, their position, and 
speed relative to the vehicle. The development of signal pro-

cessing techniques along with progress in the millime-
ter-wave (mm-wave) semiconductor technology plays 

a key role in automotive radar systems. Various 
signal processing techniques have been devel-

oped to provide better resolution and estima-
tion performance in all measurement 
dimensions: range, azimuth-elevation 
angles, and velocity of the targets sur-
rounding the vehicles. This article summa-
rizes various aspects of automotive radar 
signal processing techniques, including 
waveform design, possible radar architec-
tures, estimation algorithms, implementa-
tion complexity-resolution trade off, and 
adaptive processing for complex environ-
ments, as well as unique problems associat-

ed with automotive radars such as pedestrian 
detection. We believe that this review article 

will combine the several contributions scattered 
in the literature to serve as a primary starting 

point to new researchers and to give a bird’s-eye 
view to the existing research community.

Introduction
The history of radio detection and ranging, more commonly known 

as radar, starts with the experiments carried out by Hertz and Hülsmeyer on 
the reflections of electromagnetic (EM) waves and ideas advocated by Tesla and Mar-
coni in the late 19th and early 20th centuries. Earlier developments in radar  technology 
were limited to military applications such as aircraft/ship surveillance, navigation, and 
weapons guidance. Radar is now used in many applications, including civilian avia-
tion, navigation, mapping, meteorology, radio astronomy, and medicine. The main 
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objectives of a radar system are to detect 
the presence of one or more targets of 
interest and estimate their range, angle, and 
motions relative to the radar [1].

To the everyday person, tangible applica-
tions of radar include speed guns used by law 
enforcement officers to detect speeding driv-
ers. Action heroes in movies sometimes drive 
a fancy car with attractive features that can 
track an enemy’s speed and location, move 
swiftly and automatically amid obstacles, 
and debut its night vision feature during the 
movie’s climax. The ambition of having all of these add-ons to 
a car has become feasible with the flourishing mm-wave circuit 
technology and advanced signal processing techniques. Advances 
in circuit technology reinforced by new signal processing algo-
rithms, machine learning, artificial intelligence, and computer-
vision techniques have made self-driving cars a reality.

 Such cars also rely on different sensors such as a laser, a cam-
era, ultrasound, global positioning system, and radar. Among 
these sensors, radar offers the possibility of seeing long distances 
ahead of the car in poor visibility conditions, which can help avoid 
collisions [2]. For example, Google’s self-driving car [3] has radars 
mounted on both front and rear bumpers of the vehicle to detect 
objects in its surroundings.

Automotive radars were first deployed several decades ago. 
The evolution of automotive radar from its inception to the 
present has been thoroughly discussed in [4]. With highly inte-
grated and inexpensive mm-wave circuits implemented in silicon, 
compact automotive radar safety systems have become a popular 
feature [5], [6]. Since then, review articles written on automotive 
radar mostly covered the circuit implementation, market analysis, 
and architectural-level signal processing [7]–[9]. However, there 
are many aspects of automotive radar signal processing techniques 
scattered throughout the literature. For example, a part of the lit-
erature may concentrate on detecting the presence or absence of 

targets, while another might look at radar esti-
mation problems concerning their location and 
velocity in space relative to the radar [10], [11].

This article’s goal is to review principal 
developments in signal processing tech-
niques applied to estimating significant target 
parameters such as range, velocity, and direc-
tion. The article also discusses the charac-
terization of radar waveforms and advanced 
estimation techniques that enhance the oper-
ation of automotive radars. In particular, we 
review each topic with adequate mathemati-

cal framework so as to make this a good start-up document for the 
newcomer in the field.

Automotive radar classification
Both autonomous and human-driven cars are increasingly using 
radars to improve drivers’ comfort and safety. For instance, park 
assist and adaptive cruise control provide comfort, while warn-
ing the driver of imminent collisions and overriding control of 
the vehicle to avoid accidents improve the safety. Figure 1 depicts 
various such radar subsystems that form ADASs. Each subsys-
tem has unique functionality and specific requirements in terms 
of radar range and angular measurement capability (Table 1). 
The next section explains the fundamentals of location and speed 
estimation using the radar measurements.

Basic automotive radar estimation problems
A radar can simultaneously transmit and receive EM waves in 
frequency bands ranging from 3 MHz to 300 GHz. It is 
designed to extract information [i.e., location, range, velocity 
and radar cross section (RCS)] about targets using the EM 
waves reflected from those targets. Automotive radar systems 
typically operate at bands in 24 GHz and 77 GHz portions of 
the EM spectrum known as mm-wave frequencies so that higher 
velocity and range resolution can be achieved. Fundamental 

Cross Traffic Alert

Cross Traffic Alert
Park Assist

Rear Collision
Warning

Blind Spot
Detection

Long Range
Radar

Medium Range
Radar

Short Range
Radar

Precrash

Park Assist

Precrash

Blind Spot
Detection

Adaptive Cruise Control

FIGURE 1. An ADAS consists of different range radars.

Advances in circuit 
technology reinforced by 
new signal processing 
algorithms, machine 
learning, artificial 
intelligence, and computer-
vision techniques have 
made self-driving cars 
a reality.
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radar operation involves three main tasks: range (distance), rela-
tive velocity, and direction estimation, as discussed next. 

Range estimation
The range estimation is fundamental to automotive radars. The 
range R, to a target, is determined based on the round-trip time 
delay that the EM waves take to propagate to and from that tar-
get: ( / ),R c 2x=  where x  is the round-trip time delay in sec-
onds and c is the speed of light in meters per second 
( )c 3 10 m/s8#. . Thus, the estimation of x  enables the range 
measurement [1]. The form of the EM waves (signals) that a 
radar transmits is important for round-trip time delay estima-
tion. For example, pulse-modulated continuous waves (CWs) 
consist of periodic and short power pulses and silent periods. 
Silent periods allow the radar to receive the reflected signals 
and serve as timing marks for radar to perform range estima-
tion as illustrated in Figure 2. However, unmodulated CW sig-
nals (i.e., ( )cos f t2 cr ) cannot be used for range estimation 
since they lack such timing marks. Additionally, the signal 
reflected from a target should arrive before the next pulse 
starts. Hence, the maximum detectable range of a radar 
depends on pulse repetition interval TPRF. The transmitted sig-
nal from the radar until it is received back undergoes attenua-

tion due to the path loss and imperfect reflection from the 
target. In addition, received target signals are subject to inter-
nal noise in radar electronics and interference that may be a 
result of reflected signals from objects not of interest and may 
come from human-made sources (i.e., jamming). The typical 
round-trip time delay estimation problem considers only 
ambient noise in the form of additive white Gaussian random 
process. It is assumed that demodulation has already removed 
the carrier so that a target signal ( )x t  at baseband can be 
modeled as

( ) ( ) ( ),x t s t ta x ~= - + (1)

where a  is a complex scalar whose magnitude represents 
attenuation due to antenna gain, path loss, and the RCS of the 
target and ( )w t  is additive white Gaussian noise with zero 
mean and variance .2v  The goal is to estimate x  with the 
complete knowledge of the transmitted radar waveform ( )ts .
Assuming the signal ( )ts  has unit amplitude and finite energy 

,Es  the ideal radar receiver can be found using a matched fil-
ter with the impulse response ( ) ( )h t s t*= - , which maximiz-
es signal to noise ratio ( / ) ( / )E TSNR s p

2 2 2 2a v a v= =^ h at 
the output. Thus, the matched filter-based receiver finds the 
correlation between the transmitted signal and received 
reflected pulses

( ) ( ) ( ) .y x t s t dt*x x= -# (2)

The maximum likelihood (ML) estimate of the time delay 
is the time that the magnitude of the matched filter output 
peaks at

| ( ) |arg max yx x=
x

t . (3)

The presence of the noise can perturb the location of the 
peak, which will result in the estimation error. Furthermore, 
the radar needs to decide whether or not a received signal 
actually contains an echo signal from a target. A good deal of 
classical radar literature is devoted to developing strategies 
that provide the most favorable detection performance. 

Table 1. The classification of automotive radars based on range 
measurement capability.

Radar Type 
Long-Range 
Radars 

Medium-Range 
Radars 

Short-Range 
Radars 

Range (m) 10–250 1–100 0.15–30 

Azimuthal field 
of view (deg.) 

15! c 40! c 80! c

Elevation field 
of view (deg.) 

5! c 5! c 10! c

Applications Automotive 
cruise control 

Lane-change assist, 
cross-traffic alert, 
blind-spot detec-
tion, rear-collision 
warning

Park assist, 
obstacle detec-
tion, precrash 

Classification can be made based on the operating frequency into 24–29 GHz and 
76–81-GHz bands [12].
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FIGURE 2. A pulsed CW radar with a correlation-based receiver can measure range R of the target car.
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A typical decision strategy can be formulated based on statis-
tical hypothesis testing (a target present or not). This leads to 
a simple threshold testing at the matched filter output.

Range resolution, another key performance measure, 
denotes the ability to distinguish closely spaced targets. Two 
targets can be separated in the range domain only if they pro-
duce nonoverlapping returns in the time domain. Hence, the 
range resolution is proportional to the pulsewidth .Tp  In other 
words, finer pulses provide higher resolution. However, shorter 
pulses contain less energy, which implies poor receiver signal-
to-noise ratio (SNR) and detection performance. As explained 
in the section “Radar Waveforms,” this problem is overcome 
by the technique called pulse compression, which uses phase 
or frequency modulated pulses.

Velocity estimation
Estimation of the target velocity is based on the phenomenon 
called the Doppler effect. Suppose the car displayed in Figure 2
is moving ahead with differential velocity .v  With the existence 
of relative motion between two cars, the reflected waves are 
delayed by time ( ( ) / )cR vt2 !x = . The time dependent delay 
term causes a frequency shift in the received wave known as the 
Doppler shift ( )/f v2d ! m= . The Doppler shift is inversely pro-
portional to wavelength m , and its sign is positive or negative, 
depending on whether the target is approaching or moving away 
from the radar. While this frequency shift can be detected using 
CW radar, it lacks the ability to measure the targets range. Here, 
we discuss a pulsed radar configuration that uses frequency 
modulated (FM) CW pulses and provides simultaneous range-
velocity estimation in multitarget traffic scenarios.

The FMCW radar transmits periodic wideband FM pulses, 
whose angular frequency increases linearly during the pulse. 
For the carrier frequency fc  and FM modulation constant K , a 
single FMCW pulse can be written as [see Figure 3(a)]

( ) .s t e t T0( . )j f Kt t2 0 5c # #= r + (4)

The signal reflected from a target is conjugately mixed with 
the transmitted signal to produce a low-frequency beat signal, 
whose frequency gives the range of the target. This operation 
is repeated for P  consecutive pulses. Two-dimensional (2-D) 
waveforms in Figure 3(c) depict successive reflected pulses 
arranged across two time indices. The slow time index p sim-
ply corresponds to pulse number. On the other hand, the fast 
time index n  assumes that for each pulse, the corresponding 
continuous beat signal is sampled with frequency fs  to collect 
N  samples within the time duration .T  Assuming single tar-
get and neglecting reflected signal distortions, the FMCW 
radar receiver output as a function of these two time indices is 
given by

( , ) ( , ) .expd n p j
c

K R f
f
n f pT

c
f R

n p2 2 2
d

s
d

c
0. r ~+ + + +` j; E' 1

(5)

Therefore, as illustrated in Figure 3(c), discrete Fourier trans-
form across fast time n can be applied to obtain beat frequency 

( / )KR cf 2b =  coupled with Doppler frequency fd . This opera-
tion is also known as the range transform or range gating,
which allows the estimation of Doppler shift corresponding to 
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FIGURE 3. (a) A spectrogram of an FMCW waveform with modulation constant ( / )B TK = , reset time TR, and pulse period T0; transmitting P successive chirps. Round-
trip delay x  is converted to beat frequency fb. (b) Typical traffic scenario: stationary traffic sign, the radar, and passenger car moves at 20 mi/h (range and differential 
velocity are displayed). (c) A 2-D joint range-Doppler estimation with 77-GHz FMCW radar {[ , ] [ , ], , , TN P s64 64 10 300 300SNR  dB BW  MHz n= = = = }.
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unique range gate by the application of second Fourier transform 
across the slow time. A range-Doppler map can be found effi-
ciently by using 2-D fast Fourier transform (FFT) (5). A demon-
strative example based on the aforementioned discussion is 
shown in Figure 3.

Direction estimation
Use of wideband pulses such as FMCW provides discrimina-
tion of targets in both distance and velocity. The discrimina-
tion in direction can be made by means of an antenna array. 
Figure 4(a) depicts a realistic traffic scenario with several tar-
gets surrounding the radar that collects direct and multipath 
reflections from them. In such cases, to spatially resolve equi-
distant targets and deliver comprehensive representation of 
the traffic scene, angular location of targets should be esti-
mated. Therefore, in automotive radars, the location of a tar-
get is often described in terms of a spherical coordinate 
system ( , , ),R i z  where ( , )i z  denote azimuthal and elevation 
angles, respectively. However, in this case, the single antenna 
radar setup as used in the range-velocity estimation problems 
may not be sufficient, since the measured time delay 

( ( ) / )cR vt2 !x =  lacks the information in terms of angular 
locations of the targets.

To enable direction estimation, the radar should collect 
reflected wave data across multiple distinct dimensions. For 
example, locating a target using EM waves in 2-D requires the 
reflected wave data from the object to be collected in two dis-
tinct dimensions. These distinct dimensions can be formed in 
many ways using combinations of time, frequency, and space. 
For instance, a linear antenna array and wideband waveforms 
such as FMCW form two unique dimensions [13], [14]. Addi-
tionally, smaller wavelengths in mm-wave bands correspond to 
smaller aperture sizes and, thus, many antenna elements can 
be densely packed into an antenna array. Hence, the effective 
radiation beam, which is stronger and sharper, in turn increas-
es the resolution of angular measurements.

Consider an antenna array located in plane ,z 0=  and let l
be the abscissa corresponding to each receiver antenna position 

[see Figure 4(b)]. Let ( , )Rq qi  be the position of the qth tar-
get in spherical coordinates, moving with velocity vq  relative 
to the radar. With the help of far field approximation [15], for 
the qth target, the round-trip time delay between a transmitter 
located at the origin and the receiver positioned at coordinate 
l is given by

( ) sin
c

R v t ld2
lq

q q q
x

i
=

+ +
, (6)

where d  is the distance between antenna elements (usually 
half the wavelength) arranged in a linear constellation. Com-
bining (5) and (6) gives the three-dimensional (3-D) FMCW 
radar output signal, which enables estimation of range, veloci-
ty, and angle. For Q  number of targets, the signal can be rep-
resented as

( , , )

( , , ),

exp
sin

d l n p j
c

K R
f

f
n

c
f ld

f pT
c

f R
l n p

2
2

2
q

Q

q
q

dq
s

c q

dq
c q

0

1

0

. a r
i

~

+ +

+ + +

=

-

c m;
E

'

1

/

(7)

where a  and ~ correspond to same quantities as explained in 
the range estimation problem. The delay term lqx  creates uni-
form phase progression across antenna elements, which per-
mits the estimation of the angle by FFT in spatial domain, as 
shown in (7). Thus, 2-D location (range and angle) and speed 
of targets can be jointly estimated by 3-D FFT. The target 
location and velocity estimation problems are revisited later in 
the section “Advanced Estimation Techniques” with more 
emphasis on the high resolution algorithms and computational 
complexity analysis.

Radar waveforms
Various automotive radar classes, summarized in Table 1,
have diverse specifications in terms of several fundamental 
radar system performance metrics, such as range resolution, 
velocity resolution, angular direction, SNR, and the probabili-
ty of target detection. The type of waveform employed by a 

(a)
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q thTarget
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First Target
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R
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FIGURE 4. (a) A typical traffic scenario with reflections from different targets, including two cars at the same distance R. (b) The azimuth angle estimation 
setup using uniform linear antenna array.
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radar is a major factor that affects these metrics. The radar 
waveforms, as summarized in Table 2, can be characterized 
whether or not they are CW, pulsed and frequency, or phase 
modulated. Modulated radar waveforms include FM CW, 
stepped frequency (SF) CW, orthogonal frequency-division 
multiplexing (OFDM), and frequency shift keying (FSK). 
Each waveform type has a certain advantage in processing, 
implementation, and performance as follows:
■ In the CW radar, a conjugate mixing of a high-frequency 

transmitted and received signal produces the output signal at 
the Doppler frequency of the target. The resolution of fre-
quency measurement is inversely proportional to the time 
duration of the signal capture. The continuous nature of the 
waveform precludes round-trip delay measurement, which is 
necessary for range estimation of the target [see Figure 5(a)]. 

Hence, apart from ease of implementation and ability to 
detect target speed, the CW radar cannot provide the 
range information.

■ Pulsed CW radar can estimate the range information as 
explained previously in the section “Basic Automotive 
Radar Estimation Problems.” The Doppler frequency can 
be estimated by making each pulse longer and measuring 
the frequency difference between the transmitted and 
received pulses. As shown in Figure 5(b), the pulse duration 
and pulse repetition frequency (PRF) are the key parame-
ters in designing pulsed CW radar with desired range and 
velocity resolution.

■ FMCW, also known as linear frequency modulation
(LFM) or chirp, is used for simultaneous range and 
velocity estimation (refer to the “Velocity Estimation” 
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Radar

Mixer Output
at fd

Time

A
m

pl
itu

de

(a)

Time

A
m

pl
itu

de

(b)

(c) (d)

TP

TPRF

T0 Time

Fr
eq

ue
nc

y

f0

f1

f2

fN–1

Δf

Time
TN

T TCP

Fr
eq

ue
nc

y fN–1

f1

f0

Δf

FIGURE 5. (a) Doppler frequency measurement with the CW radar. (b) A pulsed CW radar waveform with pulse repetition time TPRF and pulsewidth Tp.
(c) An SFCW signal with period T0. (d) An OFDM block with symbols time T and cyclic prefix time .TCP

Table 2. Radar waveforms.

Waveform Type Transmit Waveform s(t) Detection Principle Resolution Comments 

CW ej f t2 cr Conjugate mixing /f T1d9 = No range information 

Pulsed CW ( )T ep
j f t2 cP r Correlation /R cT 2p9 = /f T1d p9 = Range-Doppler performance tradeoff 

FMCW ,e K T
B( . )j f Kt t2 0 5

0
c =r + Conjugate mixing /R c B29 = /f PT1d 09 = Both range and Doppler information 

SFCW , ( )e f f n f1j f t
n c

2 n 9= + -r Inverse Fourier transform /R c B29 = /f PT1d 09 = f9  decides maximum range 

OFDM 
( )I n e ( )

n

N
f n f t

0

1
2 c 9r

=

-
+/ Frequency domain 

channel estimation 
/R c N f9 9= /f PT1d N9 = Suitable for vehicular communication 

B denotes bandwidth of the radar. T is the amount of time for which data is captured.
N stands for a number of samples in CW and number of carriers in OFDM.

( )TpP  is rectangular pulse of duration .T Pp  is number of FM/SF-CW or OFDM blocks of duration  ,T Tand N0  respectively.
( )I n  is arbitrary sequence and f9  is carrier/frequency separation in OFDM/SFCW.
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section for details). Due to the pulse 
compression, the range resolution is 
inversely proportional to the band-
width of the FMCW signal and is 
independent of pulsewidth. For exam-
ple, the short-range FMCW radar uses 
ultrawideband (UWB) waveforms to 
measure small distances with higher 
resolution. The Doppler resolution is a 
function of pulsewidth and the number of pulses used 
for the estimation. Thus, with the ability to measure 
both range and speed with high resolution, FMCW radar 
is widely used in the automotive industry.

■ In contrast to FMCW waveforms, the frequency of FSK 
and SFCW varies in a discrete manner [see Figure 5(c)]. In 
this case, the range profile of the target and the data col-
lected at discrete frequencies form the inverse Fourier 
transform relationship. Also, hybrid waveform types can be 
employed to achieve additive performance. FSK waveform 
can be combined with multislope FMCW waveform to 
overcome ghost targets in radar processing [16]. Similarly, 
alternate pulses of CW and FMCW are used to accurately 
estimate range and Doppler [17].

■ OFDM can be viewed as another multifrequency wave-
form that offers unique features of the joint imple-
mentation of automotive radar and vehicle-to-vehicle 
communications [18], [19]. For the radar operation, the 
orthogonality between OFDM subcarriers is ensured by 
choosing carrier spacing more than maximum Doppler 
shift, and the cyclic prefix duration is selected greater than 
the longest round-trip delay [see Figure 5(d)]. The range 
profile is estimated through frequency domain channel 
estimation. OFDM radar processing along with simulation 
results is explained in [20].
Based on the knowledge of target statistics, radar wave-

forms can be optimized. Radar waveform design is revisited 
along with multiple-input, multiple-output (MIMO) radars in 
the “MIMO Radar” section.

Advanced estimation techniques
Advancements in silicon semiconductor technology have had 
the profound impact on the design of automotive radar sys-
tems, providing higher integration and performance at lower 
cost. This section reviews some sophisticated radar signal pro-
cessing algorithms, which have become feasible with such 
advancements, especially for real-time implementation. In this 
section, most commonly used FMCW radar architecture is 
assumed and targets are considered to be stationary. Hence, (7) 
is reduced to a range-azimuth estimation problem with the sig-
nal model given by

( , )
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(8)

To elucidate advanced estimation tech-
niques, the dimensionality of the problem 
is reduced to two dimensions. It should be 
noted that the discussed techniques can be 
extended to four-dimensional problems 
with mobile targets and elevation direction.

As discussed previously, the 2-D FFT of 
(8) can provide joint estimation of distance 
and angle. The FFT-based estimation has the 

least complexity of implementation, which is ( )logLN LNO ,
where N  is the number of time domain samples and L
denotes the number of elements in a one-dimensional (1-D) 
antenna array. However, the resolution of Fourier techniques 
is dictated by the Rayleigh limit. While the higher range res-
olution can be obtained with larger FMCW bandwidth, the 
higher angular resolution requires more antenna elements, 
adding to the cost of RF front end. Additionally, the radar 
has to process a larger set of signal samples. However, it is 
important to reduce the computational load while realizing 
the desired angular and range resolution. We first visit the 
ML formulation of joint estimation of range and direction of 
targets. Then, we review the so-called superresolution tech-
niques as suboptimal and lower complexity alternatives to 
the ML estimator.

ML estimation
The complex Gaussian observation noise in (8) is assumed 
to be temporally and spatially independent. ML estimation 
of 2-D parameters ( , )R i  can be found solving the follow-
ing equation:

( , )
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(9)

Thus, depending on the granularity of ( , )R i  search space, the 
ML estimator can offer the resolution beyond the Rayleigh limit 
set by system parameters such as bandwidth and number of 
antenna elements. However, the complexity of implementing 
this algorithm depends on the cardinality of the search-space as 
well as the number of targets. Since ( , )Rq qi  are continuous 
parameters, the computational complexity of ML algorithm 

(| ( , ) | )RO Qi  becomes prohibitive. In the subsequent para-
graphs, the superresolution techniques that can achieve high res-
olution at lower computational cost are illustrated.

Superresolution techniques
Due to their prohibitive computational cost, ML algorithms 
need to be implemented via suboptimal techniques. These tech-
niques rely on collecting enough signal samples. At a suffi-
ciently high SNR, eigenvalues and associated eigenvectors of 
sample covariance matrix C (defined in Algorithm 1) repre-
sent the ML estimate of their true values. Hence, these eigen-
vectors can be used to resolve the target with high resolution. 

The traffic imaging 
problem can be turned 
into a classical parameter 
estimation problem so 
that superresolution 
techniques such as 
MUSIC can be applied.
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The superresolution algorithms that rely on 
these techniques include multiple signal 
classification (MUSIC) [24] and estimation 
of signal parameters via rotational invari-
ance technique (ESPRIT) [25], [26]. Recall-
ing the 2-D ( , )R i  stationary target location 
estimation problem, the superresolution 
algorithms can be applied across each dimension separately. 
However, this approach might lead to the so-called associa-
tion problem [15]. Since the association of estimated parame-
ters is the key step in interpreting and delivering results to the 
driver assist system, joint processing can be implemented. As 
( , )R i  domain is jointly searched for its entire range, the pos-
sibility of ghost targets is eliminated and unambiguous results 
are obtained [27].

As discussed previously, the temporal frequency of (8) 
gives the range, and spatial frequency corresponds to the 
angular position of the target. Hence, the traffic imaging 
problem can be turned into a classical parameter estimation 
problem so that superresolution techniques such as MUSIC 
can be applied. From (8), a 2-D matrix is formed, which has a 
Vandermonde structure across each dimension for a uniform 
linear antenna array. A 2-D joint superresolution was applied 
in the radar imaging context in [27] and later with FMCW 

waveforms in [21], which is described in 
Figure 6 and Algorithm 1. The complexity 
of the 2-D joint superresolution algorithm 
lies in the cost of eigenvalue decomposition 
of covariance matrix CL N L Ns s s s# and 2-D 
exhaustive search over the entire range of 
( , )R i  domain. Thus, traditional 2-D joint 

superresolution algorithm has computational complexity of 
the order of .( )L NO s s

3

Larger size sampled covariance matrix makes 2-D joint 
superresolution algorithms difficult in practice. To deal with 
implementation issue of superresolution algorithms in real 
time, size of the observation space must be reduced.

Complexity reduction technique using
beamspace projection
FFT-based estimation techniques have a low complexity of 
implementation. However, its resolution is limited by the 
radar bandwidth and number of antenna elements. On the 
other hand, the superresolution estimation resolves closer tar-
gets yet has higher computational complexity. Thus, there 
exists a trade-off between resolution and complexity. To 
reduce the computational complexity of superresolution algo-
rithms and maintain their resolution capability, we propose 
two-stage estimator using a beamspace superresolution algo-
rithm, which breaks the large problem into smaller problems 
using initial FFT processing [28], [29].

The computational cost of a joint superresolution algorithm 
lies mainly in the eigenvalue decomposition of large sample 
covariance matrix. Thus, to reduce the cost, the size of the 
covariance matrix must be reduced. Hence, as the first stage 
of a two-stage FFT-based-beamspace algorithm, we obtain 
the FFT of 2-D matrix DL N# in (8). From the output of this 
low-resolution 2-D FFT, we can determine temporal and spa-
tial frequencies, which correspond to the approximate loca-
tion of a target or cluster of targets. Once the frequencies of 
interest are known, we can project the data from the higher-
dimensional subspace of DL Ns s# to the lower subspace of our 
interest DL Nbb# using DFT matrices, which form nonoverlap-
ping beams in range and angular domain. Thus, the super-
resolution algorithm operates on the smaller data set, and the 
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FIGURE 6. The spatial smoothing of 2-D data using a window size of 
L Ns s# [21].

Algorithm 1: The 2-D joint superresolution algorithm.

  Input: Data collected using FMCW radar with stationary 
targets [refer to (8)] is arranged in a 2-D matrix 
DL N# .

Output: a 2-D image with range and angle superresolu-
tion.

1)  Apply spatial smoothing to remove the correlation in 
the reflected signal data: Vectorize each sub matrix 

,DL Ns s#  which is selected using window into a col-
umn vector DL N 1s s#

t . For each sub matrix, find sam-
ple covariance matr ix ( / )C DD NL N L N

H
s s s s =#

t t .
Average the covariance matrix across possible over-
lapping windows (see Figure 6). This step is neces-
sary for the application of the MUSIC algorithm, 
which typically assumes uncorrelated sources.

2)  Perform the eigenvalue decomposition of the sample 
covariance matrix and find the noise subspace V~
using AIC or MDL criterion to determine the number 
of sources [22] [23].

3)  Obtain steering vectors in terms of the target 
position

( , ) .veca R e
sinj c

KR
f
n

c
f ld

c
f R2 2 2

s
c c

i = r
i

+ +; E$ .

4)  Apply the MUSIC algorithm to locate the target in the 
2-D space.

( , )
( , ) ( , )

.
a V V a

S R
R R

1
HHi

i i
=

~ ~

For proper transmitter 
spacing, the colocated 
MIMO radar can emulate 
a larger aperture phased 
array radar.
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complexity of a 2-D superresolution imaging can be reduced 
to .( )L NO b b

3  Moreover, 2-D exhaustive search for the target 
on a finer grid operates over an area of interest, thereby further 
reducing the complexity. The performance of the beamspace 
algorithm is demonstrated in Figure 7. More detailed discus-
sion on the complexity analysis and implementation of radar 
algorithms can be found in [30].

MIMO radar
MIMO radar systems employ multiple transmitters, multiple 
receivers, and multiple waveforms to exploit all available 
degrees of freedom [31]. MIMO radars can be classified as 
widely separated or colocated. In widely separated MIMO 
radar, transmit-receive antennas capture different aspects of 
the RCS of a target. In other words, the target appears to be 
spatially distributed, providing a different RCS at each anten-
na element. This RCS diversity can be utilized to improve the 
radar performance [32]. On the other hand, with colocated 
MIMO radar, the RCS observed by each antenna element is 
indistinguishable [10].

Automobiles typically use colocated MIMO radars, which 
are compact in size [33]. For proper transmitter spacing, the 
colocated MIMO radar can emulate a larger aperture phased 
array radar (see Figure 8). This larger array is called a virtual 
array. Recall of the range-azimuth estimation problem given in 
(8). For the MIMO radar processing, as depicted in Figure 8, 
a 1-D receiver array with two transmit antennas is considered. 
Let LT  and LR  denote a number of transmit and receive anten-
na elements, respectively. Suppose that dT  and dR  represent 
corresponding transmit and receive antenna spacings. Also, 
assume that transmit and receive antenna positions in Cartesian 
coordinates are given by lT  and .lR  Hence, the 2-D FMCW 
mixer output signal across fast time and aperture is given by

expa j2r +( , , )
{( ) }

( , , ) .

sin
d l l n

c
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(10)

From (10), it is evident that if d L dT R R#= , then MIMO 
radar imitates a regular 1-D array radar with single trans-
mit and L LT R#  receive antenna elements. This is known 
as virtual array representation. Hence, the spatial resolution 
of FFT-based target imaging can be improved by the fac-
tor of LT . With virtual array representation and substituting 
l l L lT R R#= + , the expressions similar to (8) can be obtained 
and the estimation algorithms discussed in the sections “Basic 
Automotive Radar Estimation Problems” and “Advanced Esti-
mation Techniques” can be applied.

The challenging aspect of MIMO radar is the selection of 
waveforms. The waveforms can be made orthogonal in the 
frequency, time, or code domain [34], [35]. Consequently, the 
matched filter design at the receiver varies, which is necessary 
to separate the reflected waveforms originating from differ-
ent transmitters. From the FMCW radar signal given in (4), 
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FIGURE 8. Colocated MIMO radar with a virtual array that increases the 
angular resolution.
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various orthogonal waveforms can be con-
structed in the following manner [36]:
■ Beat frequency division:  ( )s t =

e ( ) . . ( / )j f f t Kt f K2 0 5 0 5c b b
2 29 9r - + +6 @. Here, fb9  is 

the frequency offset introduced for wave-
forms orthogonalization. The last term in 
the exponential corresponds to residual 
video phase compensation, which is necessary for coherent 
receiver processing.

■ Modulation constant division: ( )s t = .e ( . [ ] )j f K K t t2 0 5c 9r + +

The modulation constant or chirp rate offset is given by 
K9 , which is obtained by varying the pulse period. The 

bandwidth at each transmitter remains the same to main-
tain the range resolution. The reset time between the pulses 
ensures the synchronization at the receiver.

■ Code division: ( )s t e [ ( . ) . ( )]j f Kt t t2 0 5 0 5c= r b+ + , where ( )tb  cor-
responds to the binary phase-shift keying (BPSK) signal 
with a low update rate that assumes values 1! . The band-
width of the BPSK signal is kept smaller to ensure the 
proper operation of the FMCW radar.
Following the waveform selection, the waveform design can 

be used for further optimization of the radar performance. For 
the wideband radar waveforms with high-range resolution, a 
planar target appears to be a cluster of point targets. The extend-
ed target exhibit random reflectivity (impulse response) as its 
reflection consists of several waveforms added together. From 
the known extended target statistics, the transmitted waveform 
can be adapted (see Figure 9). The mutual information between 
a random extended target and the reflected received signal is 
used to optimize the radar waveform [38]. Under the constraint 
on the transmit power, the waveforms can be designed to mini-
mize the mean square error in the target impulse response esti-
mation. The solution to this problem consists of water-filling 
power allocation, distributing more power to target exhibiting 
significant scattering [39]. As shown in [40], multiuser MIMO 
principles can be applied to waveform design in the context of 
multiple target estimation and tracking.

Robust estimation techniques
So far, we have assumed that the automotive radars only 
receive the reflection from the targets of interest such as a 
vehicle traveling in front. However, in addition to direct 
reflections from the target of interest, the radar also receives 
reflections from the road debris, guard rails, and walls. This 
unwanted return at the radar is called clutter. The amount of 
clutter in the system changes as the surrounding environment 
of the vehicle varies. Hence, adaptive algorithms such as con-
stant false alarm rate (CFAR) processing and space-time 
adaptive processing (STAP) can be used to mitigate the effect 
of clutter.

To identify valid targets in the presence of clutter, the 
threshold for the target detection should be properly chosen. 
If the amplitude of the spectrum at an estimated range is 
greater than some threshold, the target is said to be detect-
ed. Thus, the threshold should depend on the noise or in 
other words on the clutter in the given system. As clutter 

increases, a higher threshold may be cho-
sen. A simple CFAR method based on 
cell averaging can use a sliding window 
to derive the local clutter level by averag-
ing the multiple range bins. As multiple 
targets make this detection method intri-
cate, sophisticated techniques based on 

ordered statistics can be used [41], [42].
STAP is another technique that can robustify target posi-

tion estimation [43], [44]. The key idea is to use an adaptive 
filter that selects the target amid clutter from road and other 
objects. The weights of the filter change adaptively with clutter 
statistics. In FMCW radar (7), this filter operates on the mixer 
output across different chirps (i.e., P slow time samples) as well 
as across spatial domain (L samples from 1-D aperture). The 
clutter statistics are recorded with the interference covariance 
matrix C ,LP LP#  which is calculated by averaging over the range 
bins surrounding the target of interest. Let ( , )e fLP t d1 ti#  be the 
spatio-temporal steering vector pointing to the possible target. 
The weights of space-time adaptive filter are given by minimum 
variance distortionless (MVDR) beamformer [44] as
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(11)

The presence of target is then tested by passing the spatio-
temporal data through the filter with coefficients ( , )w ft dti . This 
process is conducted for all possible targets of interest.

Additionally, STAP can benefit from extra degrees of freedom 
in MIMO radar by using multiple transmitter antenna elements to 
reduce the clutter. The MIMO radar with increased virtual array 
size can process both direction of arrival and departure informa-
tion, which shows mismatch if the signal is reflected from the 
clutter [11], [45].

Target tracking problem
Target tracking is an essential part of the ADAS subsystems 
such as collision avoidance and lane assist. In the tracking, a 
state ( , , , , , ),x y z v v vx y z  which indicates the 3-D position of the 
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FIGURE 9. The functional block diagram of adaptive waveform design [37].

To identify valid targets 
in the presence of clutter, 
the threshold for the 
target detection should
be properly chosen.
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target in Cartesian coordinates and corre-
sponding directional velocities is determined 
based on the current observation ( , , )R i z
and previous state information.

A key step in tracking is to associate 
separately estimated parameters of Q  tar-
gets, particularly velocities ( , , , )v v vQ1 2 f

and ranges ( , , , )R R RQ1 2 f  with each other 
[( , ) ( , ), , ( , )] .R v R v R vQ Q1 1 2 2 f  After linking 
estimated parameters with targets, the tar-
gets are associated with tracks. For example, 
if each target follows a separate track, then 
there are Q  tracks in the system. The asso-
ciation problem becomes complex when two tracks cross each 
other. Different methods to perform data association include joint 
probabilistic data association (JPDA), nearest neighbor (NN), 
and fuzzy logic [46].

Following the data association, tracking can be performed 
using well-known algorithms such as Kalman filtering. For 
each track, a separate filter is implemented. These filters oper-
ate in parallel. Since the observation vector ( , , )R i z  has a 
nonlinear relationship with the state vector ( , , , , , ),x y z v v vx y z   
an extended Kalman filter (EKF) is used. The state equation that 
captures the effect state transition over time [47] is given by
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where T  is the observation interval. The observation vector is 
related with state vector via
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From the knowledge of the previous state, the present state is 
predicted based on the state equation (12). Using (13) and the pres-
ent observation, the predicted value is updated. The amount of cor-
rection depends on the SNR of the observations; see [47] for more 
details. Vehicle tracking problems are also addressed in [48]–[51].

Pedestrian detection
Pedestrian, bike, and wild life detection is essential for a driver 
assist and collision avoidance system. As a pedestrian walks, a 
small change in range produces very low Doppler shift. In other 
words, the micromotion of a target produces what is known as a 
micro-Doppler [52]. Likewise, the periodic motion of limbs cre-
ates a periodic pattern in velocity over time, which is also 
known as the micro-Doppler signature. This signature, along 
with other feature extraction and matching algorithms, can be 
used to uniquely identify pedestrian walking. More details 
about an analysis of human gait using range-Doppler plots are 
given in [53].

Moreover, the pedestrian detection task 
becomes more challenging due to a smaller 
RCS of the human body [54]. To make the 
pedestrian detection robust, the radar based on 
micro-Doppler estimation can be combined 
with inputs from a vision sensor [55]. Also, 
the tracking algorithms discussed previously 
can help predict pedestrian movement [56].

Let us discuss how the micro-Doppler 
signature is extracted using FMCW radar 
processing in (5). First, 2-D signal samples 
obtained across slow and fast time are con-
verted into single dimensional signals by 

range gating. Typically, FFT is performed across fast time n
and only the frequency corresponding to the range of interest 
R0 is retained (assume single target with micromotion at R0). 
Neglecting range-Doppler coupling and effect of finite length 
FFT, (5) can be rewritten as

( ) [ ( )] ( )expd p j
c
f

R pT p2
2 c

0 0 0. a r ~X+ +t tc m' 1 , (14)

where (.)X  is the function characterizing the micromotion of 
the target. As explained in [52], the short-time Fourier transform 
(STFT) of (14) gives the instantaneous variation of Doppler 
across time. Detail analysis regarding micro-Doppler vibration 
measurements using FMCW radar is done in [57]. In addition to 
pedestrian detection, micro-Doppler also can be used to identify 
the type of a vehicle (truck, sedan, etc.) by characterizing its 
vibration pattern on top of Doppler shift produced by its bulk 
motion [58], [59].

FMCW radar EM simulation setup
Radar algorithms are often verified by means of simulations, 
which reduces the cost of prototyping and testing. While mod-
eling the radar systems, the targets and channels under consid-
eration are assumed to be ideal. The targets are modeled as 
objects with perfect reflectivity, and the signals are assumed 
to propagate through unobstructed paths. To verify the via-
bility of various radar estimation algorithms in the real 
world, it is necessary to use computational EM software to 
simulate potential target RCSs and channels.

A realistic simulation setup should include radiation patterns 
of the transmit and receive antenna elements, which count for the 
direction dependent scaling of the transmitted and reflected signals 
according to the geometry of the system. In addition, EM waves 
undergo reflection, diffraction, and scattering, depending on the 
shape and size of the target with respect to its wavelength. To incor-
porate these phenomena, Maxwell’s equations with appropriate 
boundary conditions must be solved. Along with numerical com-
puting, software packages such as MATLAB or MATHEMAT-
ICA and EM simulators such as ADS [60], FEKO [61] or Xpatch 
[62] can be used for the accurate modeling of the automotive radar 
imaging. The effect of RF impairments such as phase noise, local 
oscillator leakage, and in-phase and quadrature imbalance can be 
modeled either in MATLAB or an EM simulator such as ADS.

A realistic simulation 
setup should include 
radiation patterns of the 
transmit and receive 
antenna elements, which 
count for the direction 
dependent scaling of the 
transmitted and reflected 
signals according to the 
geometry of the system.
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We demonstrate a realistic automotive radar simulation setup 
based on FEKO and MATLAB implementations, as illustrated 
in Figure 10.

Data fusion and challenges
The automotive radar output is often combined with outputs 
from other sensors such as lidar, camera vision, and ultrasound. 
Lidar and vision sensors can help enhance discrimination capa-
bilities and reduce computation costs by delivering faster 
response. Independent observations from other sensors must be 
combined with radar systems to increase the reliability. For 
example, the lidar provides improved target detection on curved 
roads. Radar offers superior speed measurements, as they rely 
on the Doppler effect as opposed to lux measurement in lidar 
[63]. Moreover, lidar is more sensitive to environmental factors 
such as snow, fog, dust, and rain [64].

When multiple sensors are in operation, all measurements 
should be synchronized to a common clock using time stamp-

ing. Observations from individual sensors are typically combined 
together to form global sensor data. The relative placement, ori-
entation, and mathematical models of each sensor should be con-
sidered. Details about fusion techniques such as object-list-level, 
track-to-track, low-level, and feature-level fusion are discussed in 
[65] and [66]. More information about real-time object detection 
using learning algorithms can be found in [67].

Another important aspect of automotive radars is the inter-
ference between two vehicles [68]. Analytical studies point out 
reduced radar sensitivity in such cases. Null steering, tracking, 
coded sequences, and interleaving are among several techniques 
used for interference mitigation. An additional feature of the 
intelligent transportation system can include vehicle-to-vehicle 
communication, which can also help to avoid collision [69], [70].

Conclusions
As we progress toward fully autonomous driving, many chal-
lenges and innovative solutions will emerge. The fundamental 
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component of these autonomous systems is the automotive 
radar, which has become feasible due to prospering mm-wave 
circuit technology. Concurrently, sophisticated signal pro-
cessing techniques have gained momentum to efficiently uti-
lize the automotive radar hardware. In this article, we have 
presented various signal processing aspects of automotive 
radars, starting from basics of range and velocity estimation 
to complex 3-D end-to-end EM simulation. The target loca-
tion estimation techniques are explained with sufficient 
mathematical details and illustrative examples so that the 
article may also serve as a tutorial. For briefly touched-on 
advanced topics in the field, we have pointed to relevant liter-
ature, which readers can pursue according to their interests. 
This review article should help researchers and engineers 
take a first step forward in developing novel automotive radar 
signal processing techniques.
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SIGNAL PROCESSING
FOR SMART VEHICLE TECHNOLOGIES: PART 2
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Florian Engels, Philipp Heidenreich, Abdelhak M. Zoubir, 
Friedrich K. Jondral, and Markus Wintermantel

Radar technology is used for many applications of advanced driver assistance systems 
(ADASs) and is considered as one of the key technologies for highly automated driv-
ing (HAD). An overview of conventional automotive radar processing is presented 

and critical use cases are pointed out in which conventional processing is bound to fail 
due to limited frequency resolution. Consequently, a flexible frame-

work for computationally  efficient high-resolution frequency 
estimation is presented. This framework is based on decou-

pled frequency estimation in the Fourier domain, where 
high-resolution processing can be applied to either 

the range, relative velocity, or angular dimension. 
Real data obtained from series-production auto-

motive radar sensor are presented to show the 
effectiveness of the presented approach.

Introduction
An increasing amount of advanced sig-
nal processing algorithms is used in 
various automotive applications [1], 
[2]. Currently, one of the most dynam-
ic topics in the automotive industry is 
the development of ADASs toward 
HAD. The performance and reliability 
of these systems strongly depends on the 

capabilities of the environmental sensing. 
Radar technology has some unique advan-

tages when compared to camera or lidar 
technologies and has become indispensable 

for the development of ADASs and HAD. Radar 
works reliably in bad weather and lighting condi-

tions; can provide accurate and direct measurements 
of range, relative velocity, and angle of multiple targets; 

and can provide a high range coverage of more than 200 m. 
Radar is typically used in current ADASs, such as adaptive cruise control 

(ACC) [3, Ch. 24], forward collision avoidance (FCA) [3, Ch. 25], lane-change 
assist [3, Ch. 28], or evasion assist [3, Ch. 29], to name a few. Moreover, radar is 
considered as one of the key technologies for HAD [4]–[6].

Classical radar preprocessing consists of pulse compression, Doppler process-
ing, and digital beamforming. The use of chirp sequence modulation with stretch 
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processing in state-of-the-art automotive radar sensors re -
quires a three-dimensional (3-D) Fourier transform as a pre-
processing step. The preprocessing is followed by power 
detection, target parameter estimation, target tracking and 
clustering, and, optionally, target classification, road estima-
tion, and occupancy grid map methods, to mention a few. The 
main focus of this article is target parameter estimation, par-
ticularly with high-resolution capability. The aforementioned 
remaining steps are considered extensively in the literature and 
will not be discussed further in this article. An overview of 
target detection techniques can be found in [7]. Target tracking 
and clustering for automotive radars is considered in [8]–[10],
target classification in [11] and [12], road estimation in [13],
and occupancy grid map methods in [14].

Current limitations with respect to the requirements of the 
automotive industry [4] in critical-use cases include limited 
range and angular resolution. The range resolution is typically 
limited by the bandwidth, whereas the angular resolution is 
limited by the array aperture and the number of receive chan-
nels. Increasing bandwidth, array aperture, and the number 
of receive channels strongly affect hardware cost. Because 
the higher range and angular resolution is not required all the 
time, but only in critical use cases, a cost-effective alternative 
is to use  high-resolution frequency estimation for selected 
processing cells.

High-resolution frequency estimation is a relatively mature 
field of research in signal processing theory and applications. 
This holds for multidimensional frequency estimation, as con-
sidered, e.g., in [15]–[17], as well as one-dimensional (1-D) 
frequency estimation, with the special case of high-resolution 
direction of arrival (DOA) estimation [18], [19]. Methods 
with high-resolution capability can be coarsely divided into 
subspace-based methods, maximum likelihood methods, and 
methods based on the theory of compressed sensing [20], [21].
Whereas subspace-based and maximum likelihood methods 
are parametric approaches, which require the number of sourc-
es to be known a priori, compressed sensing approaches solve 
a general nonparametric spectral estimation problem, which is 
independent of the number of sources. Subspace-based meth-
ods are computationally more attractive in general, whereas 
maximum likelihood and compressed sensing methods can 
be applied with a single snapshot. Note that many compressed 
sensing algorithms and efficient solvers have been developed 
recently: a study of compressed sensing DOA estimation with 
a single snapshot is considered in [21], recent theoretical results 
and an off-grid method are presented in [20]. Although we 
restrict ourselves to uniform sampling, we remark that when 
nonuniform sampling is an option and multiple snapshots are 
available, recent results on difference set sampling, e.g., [22],
can be applied.

High-resolution DOA estimation has been considered in 
automotive radar [23]–[25] to meet the demands in critical 
use cases. Often, only a single snapshot is available for esti-
mation so that maximum likelihood methods, or nonlinear 
least squares (NLS) methods, are generally favored over sub-
space-based methods. The main challenge in automotive 

radar applications of high-resolution frequency estimation 
is to design algorithms that can achieve, at the same time, 
a high performance, can run in real time, and are memory 
efficient. Toward this end, we present a flexible framework 
and practical aspects of frequency estimation for state-of-
the-art automotive radar sensors, which is computationally 
simple, memory efficient, and has high-resolution capability 
in all dimensions.

Conventional radar processing

Radar data model
State-of-the-art radar sensors use the chirp sequence modula-
tion principle and an array of receive antennas to indepen-
dently measure the range, the relative velocity, and the angle 
of multiple targets in the field of view [26]–[28]. After down-
mixing, filtering, and sampling, the signal model for the radar 
measurements of a coherent processing interval (CPI) is a 
superposition of K  3-D complex sinusoids [29], [30]

( , , ) ( , , )x l m n a e l m n( )
s s s k

k

K
j l m n

s s s
1

k s k s k s p= +m n o

=

+ +/ (1)

for , , , , ,l L m M0 1 0 1s s s sf f= - = - , and , ,n N0 1s sf= - ,
where K  is the number of targets; ak  is the complex response 
parameter; km , ,kn  and ko  are the normalized radian frequen-
cies corresponding to the range dimension, relative velocity 
dimension, and angular dimension, respectively; p  is white, 
circular complex Gaussian noise; and Ls , ,Ms  and Ns  are the 
number of range samples, pulses, and antennas, respectively. 
Frequency parameters m  and n  are directly proportional to 
the range and relative velocity, respectively, whereas for a 
uniform linear array (ULA), o  is related via ( )sindl z  to the 
azimuth angle ,z  where l  is the wavenumber, and d  is the 
antenna spacing.

The periodogram
An optimal approach for frequency parameter estimation 
represents the 3-D NLS approach, which is not practically 
feasible due to its high computational complexity. A practical 
alternative is the maximization of the 3-D periodogram [31],
which is given by the magnitude square of the 3-D finite 
discrete-time Fourier transform (DTFT)
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for [ , ), [ , ),0 2 0 2! !m r n r  and [ , ) .0 2!o r  Herein, ( ),w lsm

( ),w msn  and ( )w nso  are normalized window functions in range 
dimension, relative velocity dimension, and angular dimension, 
respectively. A frequency discretization, as calculated via the 
discrete Fourier transformation (DFT), is obtain  ed by setting 

/ , , , , / ,L l l L M m2 0 1 2fm r n r= = - =^ ^h h
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, , ,m M0 1f= -  and / , , , ,N n n N2 0 1fo r= = -^ h  where 
,L ,M  and N  are the number of frequency samples in range 

dimension, relative velocity dimension, and angular dimension, 
respectively. Frequency parameter estimation is simply done by 
peak searching in the periodogram.

The estimation of frequencies via the periodogram depends 
on the number of targets: for K 1= the periodogram maxi-
mizer and the NLS estimator are equal, whereas for ,K 1>
the K  largest peaks of the periodogram approximate the 
NLS estimator if the frequency separation of all possible tar-
get pairs is larger than the periodogram’s resolution limit in 
at least one dimension [31, Sec. 4.3]. The resolution limits in 
the range dimension, relative velocity dimension, and angular 
dimension are /L2 sr , / ,M2 sr  and / ,N2 sr  respectively. If the 
separation is below these resolution limits in all three dimen-
sions simultaneously, the periodogram fails to resolve the cor-
responding frequencies.

Strictly speaking, the NLS approximation of the periodo-
gram approach holds only for constant window functions. 
However, in practice, one wants to distinguish targets with sig-
nificantly different powers in their radar return so that window 
functions, as in [32], have to be used to reduce leakage. The 
downside of this approach is an increased estimation error, and 
a tradeoff has to be found in practice [31, Sec. 4.9].

Resolution and ambiguity
The periodogram’s frequency resolution limits are straightfor-
wardly translated to range, relative velocity, and angular reso-
lution limits, which are / ( ),c B2 /( ),M t1 2 s rl / ( ),arcsin N d1 sl

respectively, where B  denotes the bandwidth and tr the pulse 
repetition time.

A practical approach to increase the resolution in the rela-
tive velocity and angular dimension, without increasing the 
number of pulses and receive channels, is undersampling, i.e., 
using pulse repetition times [33, Sec. 4.3] or antenna spacings 
[18, Sec. 2.4], which violate the sampling theorem. In the spa-
tial domain, this means using an antenna spacing larger than 
half the wavelength, which has the additional benefit of being 
more robust against mutual coupling [34]. Due to aliasing, 
undersampling leads to ambiguities in the relative velocity and 
angular frequency parameters, respectively.

To determine the relative velocity unambiguously, the 
pulse repetition time can be varied on a CPI basis and detec-
tions can be associated in range and angle over two subse-
quent CPIs [33, Sec. 8.3]. Another approach is to consider 
multiple relative velocity hypotheses in target tracking [35].
For resolving angular ambiguities, a single additional antenna 
can be employed, which has a half wavelength distance to one 
of the ULA antennas. The unambiguous angle obtained from 
the phase difference of such an antenna pair is then used to 
determine the correct angular hypothesis of the ULA-based 
measurement. This is a common approach in multiple baseline 
interferometry [36].

Practical aspects
For the calculation the 3-D periodogram, efficient algorithms 
and hardware accelerated fast Fourier transform (FFT) proces-
sors are available, e.g., [37]. A calculation sequence, which is 
particularly advantageous with respect to storage space, is 
described in [38]. Here, it is not necessary to store the complete 
data cube (1) before preprocessing which amounts to 2 MB for 
the described radar system in Table 1. Instead, the FFT in 
range dimension is calculated for each pulse and antenna, 
during data acquisition, and the intermediate result is stored 
in a compressed format. Subsequently, the FFT in relative 
velocity dimension and angular dimension is calculated for 
each range gate. For further processing, the result is only 
stored for power-detected processing cells and adjacent pro-
cessing cells.

To cope with time-varying noise and interference statis-
tics, constant false alarm rate (CFAR) methods [7, Ch. 16] are 
used for power detection. In particular, ordered-statistic CFAR 
methods [39] can be efficiently implemented [40].

For each range gate, peak frequencies in two dimensions 
are obtained from detected processing cells. An association 
over multiple range gates yields peak frequencies in all three 
dimensions. The 3-D peak frequencies represent the periodo-
gram estimates discussed in the previous section, where the 
number of detected 3-D peak frequencies serves as the number 
of targets K .

Frequency estimates can be refined to subgrid accuracy by 
using frequency samples in the vicinity of the periodogram 
peak. For this, a wealth of methods exists, where an overview 
is given in [41]. However, the majority of methods restrict 
either the choice of window functions or the frequency grid 
size. For arbitrary window functions and grid sizes, a popular 
approach is the quadratic peak interpolation, which determines 
the maximizing frequency of an interpolated parabola, using 
the periodogram peak value and the two adjacent values. As 
an alternative, we use a simple, yet accurate look-up table 
approach, which determines the maximizing frequency from a 
look-up table, depending on the ratio of the periodogram peak 
value and the larger adjacent value. The look-up table can be 
calculated offline for the selected window function and the 
required subgrid accuracy. To this end, the true maximizing 
frequency is varied within one grid step, and the resulting peri-
odogram ratio is inverted and linearly interpolated.

Table 1. The system parameters of a series-production 
automotive radar sensor.

Parameter Value 

Center frequency 76.15 GHz

Pulse bandwidth 200 MHz 

Pulse repetition time 89 sn

ULA antenna distance 12.8 mm 

Number of samples per pulse 512 

Number of pulses 256 

Number of ULA antennas 4
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Automotive use case
In most automotive scenarios, the targets are well separated, 
i.e., their associated frequency differences exceed the 
periodogram’s resolution limit in at least one dimension. 
However, specular multipath propagation can give rise to tar-
get pairs with frequency separation below the resolution lim-
its in all three dimensions. In those cases, conventional 
processing fails, and high-resolution techniques become nec-
essary. We give an example of such a multipath scenario, 
which constitutes a typical ACC or FCA use case.

Figure 1(a) shows a subject vehicle overtaking a slower tar-
get vehicle on a two-lane highway in a country where driving 
on the right is the norm. In this setup, the radar receives not 
only a direct target return, but also an indirect target return 
via the guard rail. The corresponding propagation paths are 
shown as dashed lines in Figure 1(a). This phenomenon is 
known as specular multipath propagation and leads to a mirror 
target in the radar return.

For calculating the range, relative velocity, and angular 
separation between the original target and the mirror target, 
we consider a lane width of 3.75 m, a center guard rail, a sub-
ject vehicle speed of 100 km/h, and a target vehicle speed of 
80 km/h. We map the parameter separation to normalized 
frequency separation using the system parameters, gathered in 
Table 1, of a typical series-production automotive radar sensor. 
Figure 1(b) shows the frequency separations normalized to the 
respective resolution limit over the relative x-position of the 
target. The shape of the angular separation stems from unders-
ampling in the angular dimension, as multiple angular hypoth-
eses for the original and mirror target have to be considered.

Observe that above 130 m and between 25 m and 42 m, 
the frequency separation is below the respective resolution 
limit in all three dimensions, so that the periodogram will 
fail to resolve the original and mirror target. This can lead to 
misplaced target estimates in the driving path of the subject 
vehicle and may trigger erroneous ACC or FCA reactions such 
as deceleration or even emergency braking. This holds in par-
ticular for small x-positions in the region from 25 m to 42 m. 
To cope with such scenarios, we next present a framework for 
high-resolution frequency estimation.

High-resolution processing
High-resolution frequency estimation is theoretically able to 
resolve multiple targets if the frequencies are distinct in at least 
one dimension. Other works in automotive radar typically focus 
on high-resolution frequency estimation in the angular dimen-
sion. We point out that in critical use cases, as described in the 
section “Automotive Use Case,” it can be advantageous to also 
consider the range and relative velocity dimension for high-res-
olution processing. In the following, we develop a framework to 
exploit the frequency separation in all three dimensions.

An optimal approach for high-resolution frequency estima-
tion is to estimate all three frequency dimensions jointly, which 
is computationally demanding due to the large parameter 
space. In automotive radar, computational efficiency is crucial 
to ensure fast system reactions for ADASs and for future HAD 

applications. A common approach to reduce the computational 
complexity is to decouple the multidimensional frequency esti-
mation into a sequence of 1-D frequency estimation problems. 
Note that a key result of [43] and [44] is that the decoupled 
approach can achieve almost the same estimation performance 
but with a significant reduction in computational cost. When 
decoupling the 3-D frequency estimation, one has to decide 
on the processing sequence. In one dimension, referred to as 
resolution dimension, a 1-D high-resolution frequency estima-
tion of K  targets has to be performed first. In the remaining 
dimensions, the calculated frequency estimates can then be 
used for signal component extraction, so that the remaining 
estimation problem is further simplified into K  single-target 
frequency estimation problems. Note that the computational 
cost is dominated by the 1-D high-resolution frequency esti-
mation of K  targets in the resolution dimension. The subse-
quent single-target frequency estimators can be calculated by 
an computationally efficient periodogram-like approach.

The overall success of a decoupled approach depends 
critically on resolved estimates in the resolution dimension. 
It is well known that the resolution success of 1-D high-reso-
lution frequency estimation depends on the available signal-
to-noise ratio and particularly on the frequency separation. 
This holds for parametric approaches methods [18] as well 
as for compressed sensing approaches [20]. Therefore, the 
correct selection of the resolution dimension is crucial for 
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FIGURE 1. The two-target example: (a) the practically relevant scenario 
for ACC or FCA and (b) a corresponding normalized frequency separa-
tion. For the mapping of range, relative velocity, and angle to normalized 
frequencies, the radar system parameters in Table 1 are used.
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decoupled frequency estimation, where the best results are 
achieved when it is selected according to the largest frequen-
cy separation.

As mentioned in the section “Practical Aspects,” high-res-
olution processing in automotive radar is not only constrained 
by limited computational resources but also by memory. When 
applied in the original domain the complete data cube has to be 
stored, whereas Fourier-domain processing enables a memory-
efficient implementation by storing only a reduced number of 
processing cells around power detections. Decoupled frequen-
cy estimation has been applied in [43] and [44] in the origi-
nal domain. We extend this approach by applying decoupled 
frequency estimation in the Fourier domain. Note that this is 
particularly adapted to automotive radar use cases, in which 
the number of well-separated targets is typically very large, 
e.g., several hundreds. Fourier-domain processing allows a 
subdivision into smaller frequency estimation problems with 
significantly fewer targets. In most cases, only a single target is 
presented in a Fourier-domain processing cell.

In the sequel, we consider a framework for decoupled high-
resolution frequency estimation in the Fourier domain, which 
allows a flexible selection of the resolution dimension and dis-
tinguishes a single target from multiple target processing cells.  
A special case for high-resolution frequency estimation in the 
spatial domain is also presented, corresponding to the consid-
ered DOA estimation problem in [25]. This approach has to 
be applied when the array elements are not uniformly spaced 
and can be advantageous when the number of array elements is 
very small so that element-space algorithms are computation-
ally more efficient.

Decoupled models

Fourier domain
In automotive radar, a memory-efficient realization of decou-
pled high-resolution frequency estimation is based on a Fouri-
er-domain model. After the 3-D finite DTFT calculation in 
(2), the model in (1) becomes
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where ( ), ( )W Wm nm n , and ( )W oo  are the 1-D finite DTFT of 
window functions ( ), ( )w l w ms sm n , and ( )w nso , respectively, 
and ( , , )m n oN  is the 3-D finite DTFT of ( , , )l m ns s sp . Note 
that ( , , )m n oN  is colored, circular complex Gaussian noise. 
However, for the purpose of frequency estimation, it can be 
assumed to be approximately white [42].

For decoupled high-resolution processing, the resolution 
dimension can be either the range dimension, the velocity 
dimension, or the angular dimension of the model in (3). A 
vectorization in the resolution dimensions enables three local 
vector models
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gather the model terms in the respective remaining dimen-
sions, and
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are the model vectors in the respective resolution dimension, 
where , , , , ,l l m m na b a b a  and nb  are chosen such that indices 

, , , , , ,l l l m m ma b a bf f= =  and , , ,n n na bf=  respectively, 
contain the support for Kr  local targets of interest. Typically, 
in an unresolved situation, this corresponds to one or two 
samples around the detected local maximum. Note that for 
the local models, we consider a reduced number of frequen-
cies K Kr %  in the vicinity of detections. In particular, for 
most automotive radar scenarios, we use either K 1r =  or 
K 2r = [25].

Spatial domain
A calculation similar to (2), but without the angular finite 
DTFT is

( , ; ) ( ) ( ) ( , , )Y n w l w m x l m n e ( )
s

m

M

l

L

s s s s s
j l m

0

1

0

1

s

s

s

s
s sm n = m n

m n

=

-

=

-
- +//

(13)

with [ , ), [ , ),0 2 0 2! !m r n r  and , , .n N0 1s sf= -  This 
form is required when the high-resolution processing is 
applied to the spatial domain and has been used in [25].

The signal model in (1) after 2-D finite DTFT calculation in 
(13) can be obtained similarly to (3). The corresponding local 
vector model is

( , ) ( , ) ( ) ,y vf noisek
k

K

k
1

r

m n m n o= +
=

/ (14)

where ( , )fk m n  is given in (9), and ( )v ko = , , ,e e1 ( )j j N T1k s kfo o-6 @
is a ULA steering vector. Note that the model in (14) is in the 
original domain, in which the vector elements correspond to 
spatial array elements, whereas the model in (6) is in the Fou-
rier domain, in which the vector elements correspond to sam-
ples of the angular spectrum.
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Processing sequence

A maximum likelihood framework
For the Fourier domain models in (4)–(6), and the spatial 
domain model in (14), we want to decide between local sig-
nal models with K 1r =  and K 2r = , and estimate the 
respective unknown parameters. In a maximum likelihood 
framework, an optimal solution for this task is a general-
ized likelihood ratio test (GLRT) [45]. The GLRT statistic 
is given by the ratio of respective likelihood functions, 
which have been maximized with respect to the unknown 
parameters. A simplified version of the GLRT statistic can 
be obtained by the ratio of the mean squared errors of the 
respective models using the maximum likelihood parame-
ter estimates.

The maximum likelihood framework is presented for the 
model in (4) only. It can be obtained accordingly for the models 
in (5), (6), and (14). Using the simplified version of the GLRT, 
a decision for a two-target situation is made if

,
MSE
MSE

,

,

2

1 2 c
m

m

where

( )z w
l l

f
1

1MSE ,
b a

1 0 0
2

m=
- +

-m m
t t (15)

( ) ( )z ww
l l

f f
1

1MSE ,
b a

2 1 1 2 2
2

m m=
- +

- -m m
t tt t (16)

are the mean squared errors of (4) with K 1r =  and K 2r = ,
respectively, and c  is a suitable threshold. Herein, 0mt  and f0

t

are the maximum likelihood estimates in the single target 
case, and , ,f1 1 2m mt tt , and f2

t  are the maximum likelihood esti-
mates for the two-target case.

The mean square errors corresponding to the models in (5), (6), 
and (14), are denoted , , ,MSE MSE MSE, , ,1 2 1n n o , ,MSE MSE,2 1o

and ,MSE2  respectively, and can be obtained accordingly.
A suitable threshold c  can be obtained by fixing the false 

alarm rate to a certain level, where false alarm refers to the 
erroneous decision for the two-target case when only a single 
target is present. This can be done empirically via simulations 
and should be performed in a conservative way, such that the 
two-target case is only detected when reliable parameter esti-
mation is possible.

The maximum likelihood estimates in the single target case 
are approximated using a look-up table or a quadratic inter-
polation approach around the maximum in the periodogram, 
as suggested in the section “Practical Aspects.” The required 
calculation is simple and can typically be performed for every 
detected processing cell. The maximum likelihood estimates 
in the two-target case are described in the section “High-Res-
olution Algorithms.” Here, the required calculation is compu-
tationally intensive and can only be performed for a selected 
subset of detected processing cells. This selection should take 
into account the deviation from the single target model and is 
described next.

Multiple target indication
A realization of the described maximum likelihood framework 
can be obtained by calculating the two-target maximum likeli-
hood estimates only when the single target situation is unlikely 
and a multiple target situation is indicated. This indication 
is based on a goodness-of-fit test of the single target model 
[25], [46]. A test with low computational cost is given by

,TMSE ,1 2m

where T  is a suitable threshold that depends on the noise 
power. In simple words, a single target situation is considered 
if MSE ,1m  is of similar magnitude as the estimated noise 
power, which can be estimated from neighboring processing 
cells without targets. A multiple target indication is consid-
ered if MSE ,1m  is significantly larger than the estimated 
noise power. A suitable threshold T  can be obtained by fix-
ing the false alarm rate to a certain level. This can be done 
empirically via simulations, or using the approximate distri-
bution of the test statistic under the single target model. Fur-
ther practical considerations, taking into account model 
deviations due to a weak secondary target or an imperfectly 
calibrated array, are described in [25]. Note, that the thresh-
old T  depends not only on the noise power but also on the 
sample support and applied window function in the resolu-
tion dimension. However, we omit this dependency for nota-
tional simplicity.

Optimal selection of the resolution dimension
The performance of high-resolution frequency estimation 
mainly depends on the available signal-to-noise ratio and the 
frequency separation normalized to the available sample sup-
port. For decoupled multidimensional frequency estimation, 
the best result will thus be obtained when the dimension with 
the largest frequency separation is selected as the resolution 
dimension. We have found in simulations that this corre-
sponds to the largest mean squared error of the single target 
model, so that the resolution dimension is selected according 
to the largest value among , ,MSE MSE, ,1 1m n  and MSE ,1o .

Overview
Figure 2(a) shows the signal flowchart for a flexible frame-
work of high-resolution frequency estimation in the Fourier 
domain with optimal selection of resolution dimension. 
Figure 2(b) shows the flowchart for high-resolution frequency 
estimation in the spatial domain, corresponding to the pro-
posed approach in [25], in which the resolution dimension is 
fixed to the spatial dimension.

High-resolution algorithms

Resolution dimension
The decoupled parameter estimation method is presented for 
the model in (4) only. It can be obtained accordingly for the 
models in (5), (6), and (14). In this section, we consider the 
model in (4) with K 2r =
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( , ) ( , ) [ ( , ), ( , )] ,z W f f noiseT
1 2 1 2n o m m n o n o= +m (17)

where ( , ) [ ( ), ( )] .W w w1 2 1 2m m m m=

The NLS optimization problem for K 2r = consists of find-
ing frequencies 1m and ,2m which maximize citerion function

( , ) ,z P zH
1 2m mm m (18)

where ( , ) ( , ) ( , )P W W1 2 1 2 1 2m m m m m m= +  is the projection 
matrix onto the column span of ( , )W 1 2m m , and (·)+ denotes 
the Moore–Penrose pseudoinverse operator. Note that we 
dropped the dependencies of n  and o  in (18) for convenience.

The NLS optimization is performed in two steps. In the 
first step, initial estimates for 1m and 2m are determined from 
a search on a coarse grid. The calculation of the criterion func-
tion (18) on a fixed grid can be simplified by considering tech-
niques suggested in [25]. In particular, the rank-2 projection 
matrix ( , )P 1 2m m  can be eigendecomposed as ,p p p pH H

1 1 2 2+

and the projection operators p1  and p2  can be calculated 
offline for all required grid points. In this case, the calcula-
tion of the criterion function in (18) is effectively reduced to 

p z p zH H
1

2
2

2
+m m .

In the second step, the initial estimates for 1m and 2m

are refined using few iterations of a Newton-type gradient 
search [45]. In each iteration, estimates are refined based on 
the gradient and the Hessian matrix of the criterion function 

in (18) evaluated at the frequencies of the current iteration. 
The gradient can be determined directly using the deriva-
tive of the projection matrix, whereas the Hessian is approxi-
mated using the asymptotic expression given in [45]. As 
the Newton-type gradient search locally shows a quadratic 
convergence, often two iterations are sufficient to obtain the 
desired accuracy.

Regarding the computational complexity approximation of 
the described method, calculating the cost function on a coarse 
grid with Lg grid points requires [ ]O L l l 1g b a

2 2- +^ h opera-
tions and can be reduced to ( [ ])O L l l 1g b a

2 - +  operations if the 
techniques in [25] are used. The Newton-type gradient search 
requires [ ]O K l l 1r b a

2- +^ h operations per iteration  [45]. In 
the implementation in the section “Experimental Results,” we 
use ,L 8g = l l 1 5b a- + =  and limit the maximum number of 
iterations to four.

Alternative approaches for the iterative approximation of 
the maximum likelihood frequency estimator are the method 
of alternating projections [47] or the RELAX algorithm [48].
Note that both methods have also been applied in the context 
of automotive radar in [49] and [50], respectively.

Remaining dimensions
The frequencies in the remaining dimensions can be estimat-
ed by exploiting the structure of ( , )f1 n o  and ( , )f2 n o , given 

MSE1

MSE2
> γ

MSE1

MSE2
> γ

Fit Model for Kr = 1 Fit Model for Kr = 1

Fit Model for Kr = 2
in Resolution Dimension

Fit Model for Kr = 1
in Spatial Dimension

Fit Model for Kr = 2
in Spatial Dimension

No, Retain Kr = 1

No, Retain Kr = 1

No, Retain Kr = 1

No, Retain Kr = 1

Yes, Decide Kr = 2
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Resolution Dimension

Estimate Parameters in
Remaining Dimensions

Estimate Parameters in
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zλ zμ zν

MSEλ,1 MSEμ,1 MSEν,1

MSE1

MSE1

MSE2
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y
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FIGURE 2. The flowchart overview: (a) hgh-resolution frequency estimation in the Fourier domain with an optimal selection of resolution dimension and 
(b) high-resolution frequency estimation in the spatial domain.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


43IEEE SIGNAL PROCESSING MAGAZINE |   March 2017 |

in (7). Considering the model in (17) with known 1m and 2m ,
estimates for ( , )f1 n o  and ( , )f2 n o , can be obtained using a 
linear least squares approach. By substituting estimates 1mt

and 2mt , we obtain

[ ( , ), ( , )] ( , ) ( , ),W zf f T
1 2 1 2n o n o m m n o= m

+t tt t (19)

which is, in turn, used to estimate the frequencies in the 
remaining dimensions. In two NLS optimizations for ,K 1r =

we estimate 1n  and 1o  by maximizing ( , ) ,f1
2

n ot  and we 
estimate 2n  and 2o  by maximizing ( , ) .f2

2
n ot

For calculating the estimates, (19) is used to evaluate ( , )f1 n ot

and ( , )f2 n ot  at a few DFT grid points around the initial para-
meter estimates, e.g., , ,m m ma bf=  and , ,n n na bf= , the 
global maximum is determined, and a look-up table or a 
quadratic interpolation approach, as suggested in the sec-
tion “Practical Aspects,” is used to refine the estimates. 
Given 1mt  and 2mt  are sufficiently close to the respective true 
values, the calculated frequency estimates for the remain-
ing dimensions approximate the maximum likelihood esti-
mates [44]. Note that the computational cost of frequency 
estimation in the remaining dimensions is small when com-
pared to the high-resolution frequency estimation in the 
resolution dimension.

The processing sequence of decoupled frequency estima-
tion has been presented in detail for the case when the resolu-
tion dimension is m , corresponding to the model in (4). It can 
be obtained accordingly for the models in (5), (6), and (14). 
An overview of decoupled parameter estimation is given in 
Table  2, which gathers input values, output values, and the 
employed algorithms. Note that the first row corresponds 
to the case when the resolution dimension is m , whereas the 
resolution dimension is n  and o  in the second and third row, 
respectively. The last row corresponds to the special case of 
DOA estimation in the spatial domain, where the resolution 
dimension is fixed to the spatial dimension.

Experimental results
We use experimental data of a series-production automotive 
radar sensor to compare conventional radar processing, high-
resolution frequency estimation in the spatial domain, and the 
proposed high-resolution frequency estimation in the Fourier 
domain with optimal selection of resolution dimension. Note 
that the radar system parameters are given in Table 1 and are 

thus the same as the ones considered in the section “Automo-
tive Use Case.”

The experimental setup is designed such that resolution 
is the dominant influence on the target position estimates 
and detections can be straightforwardly associated to the tar-
gets of interest. To this end, corner reflectors are employed 
to obtain point-target radar responses. The radar sensor is 
kept stationary, and the targets are moved toward the radar 
sensor to easily separate the targets from the environment, 
having a different relative velocity. Overall, this results in a 
clean two-target scenario without additional effects. Figure 
3(a) shows the experimental setup. The two corner reflec-
tors are placed on a carrier, which allows for variable relative 
positioning. For the two experiments the corner reflectors are 
positioned such that either the angular or the range dimension 

Table 2. The decoupled parameter estimation overview.

Resolution Dimension Remaining Dimensions

Input Algorithm Output Input Algorithm Output 

zm, (4) NLS, K 2r = ,1 2m mt t ( , ), ( , )f f1 2n o n ot t NLS, K 1r = , , ,1 2 1 2n n o ot t t t

zn, (5) NLS, K 2r = ,1 2n nt t ( , ), ( , )f f1 2m o m ot t NLS, K 1r = , , ,1 2 1 2m m o ot t t t

zo, (6) NLS, K 2r = ,1 2o ot t ( , ), ( , )f f1 2m n m nt t NLS, K 1r = , , ,1 2 1 2m m n nt t t t

y , (14) NLS, K 2r = ,1 2o ot t ( , ), ( , )f f1 2m n m nt t NLS, K 1r = , , ,1 2 1 2m m n nt t t t
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FIGURE 3. The experimental setup with (a) two corner reflectors and (b) 
the corresponding normalized frequency separation. For the mapping of 
range and angle to normalized frequencies, the radar system parameters
in Table 1 are used.
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FIGURE 5. Real data results of a series-production automotive radar sensor for experiment 2 as described in Figure 3. Position estimates in Cartesian 
coordinates were obtained with (a) conventional radar processing, (b) high-resolution frequency estimation in the spatial domain, and (c) high-resolution 
frequency estimation in the Fourier domain with optimal selection of resolution dimension.
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has a significantly larger frequency separation than all others. 
The carrier is then moved straight toward the radar sensor at 
walking speed.

Figure 3(b) shows the corresponding frequency separations 
normalized to the respective resolution limits. The relative 
velocity separation is very low and thus omitted. Observe that,  

FIGURE 4. Real data results of a series-production automotive radar sensor for experiment 1 as described in Figure 3. Position estimates in Cartesian 
coordinates were obtained with (a) conventional radar processing, (b) high-resolution frequency estimation in the spatial domain, and (c) high-resolution 
frequency estimation in the Fourier domain with optimal selection of resolution dimension.
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for the first experiment, the frequency separation in the angu-
lar dimension is the largest, whereas for the second experiment 
the frequency separation in the range dimension is the larg-
est. For all dimensions, the separations are below the resolu-
tion limit except for x-positions below 18 m, where the angular 
separation exceeds the resolution limit for the first experiment. 
Therefore, we expect that conventional radar processing will 
fail for both experiments, except for x-positions below 18 m in 
the first experiment. For the first experiment, we further expect 
that high-resolution processing in the spatial domain will per-
form well due to the dominating angular separation and that 
high-resolution processing in the Fourier domain selects the 
angular dimension as resolution dimension, leading to a simi-
lar performance. For the second experiment, we expect that 
high-resolution processing in the Fourier domain correctly 
selects the range dimension as resolution dimension and will 
thus provide resolved and accurate frequency estimates. In con-
trast, we expect that high-resolution processing in the spatial 
domain performs significantly worse due to the predefined 
resolution dimension and the much smaller angular separation.

Figure 4 shows the resulting position estimates in Carte-
sian coordinates for the first experiment, which are obtained 
with (a) conventional radar processing, (b) high-resolution fre-
quency estimation in the spatial domain, and (c) high-resolution 
frequency estimation in the Fourier domain with optimal 
selection of resolution dimension. The true target positions are 
shown as dashed vertical lines. As expected, conventional pro-
cessing fails to resolve the two targets except for x-positions 
below 18  m. In contrast, both high-resolution approaches are 
able to resolve the targets and provide accurate position esti-
mates. Note that this means that the resolution dimension was 
correctly selected by the approach proposed in the section “Opti-
mal Selection of the Resolution Dimension.”

Figure 5 shows the corresponding results for the second exper-
iment. Here, conventional processing fails for all x-positions. The 
high-resolution approach in the spatial domain breaks down for 
x-positions above 30 m due to the small frequency separation 
in the angular dimension. Only the high-resolution, Fourier-
domain approach can resolve the two targets for all x-positions, 
as it exploits the much larger range separation. Note that this is 
enabled by the approach proposed in the section “Optimal Selec-
tion of the Resolution Dimension,” which correctly selects the 
range dimension as the resolution dimension.

Conclusions
We have considered automotive radar as a key technology for 
ADASs and HAD. Current limitations with respect to the 
requirements of the automotive industry can be met by using 
high-resolution frequency estimation. We have described con-
ventional automotive radar processing and pointed out use 
cases in which it is bound to fail. We have presented a flexible 
framework for computationally efficient high-resolution 
frequency estimation as an enhancement to conventional radar 
processing. Real data from a series-production automotive 
radar sensor have been presented to show the effectiveness of 
the presented approach.
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SIGNAL PROCESSING 
FOR SMART VEHICLE TECHNOLOGIES: PART 2

V ehicular communications is an important enabler for enhancing the safety on 
roads by supporting mutual awareness of vehicles as well as for improving the 
efficiency of transportation through smart traffic management by intelligent 

transport systems (ITSs). Governments around the world have set 
ambitious goals for road fatality reduction in the near future; 

e.g., the European Union targets a 50% reduction of road 
fatalities by 2020 as compared to the year 2010. 

 Furthermore, traffic telematic systems aim to min-
imize the environmental impact of transporta-

tion and maximize the utilization of available 
road infrastructure by adaptive traffic man-

agement. To realize these challenging tar-
gets, autonomous wireless information 
exchange among vehicles— vehicle 
to vehicle (V2V)—and with roadside 
infrastructure—vehicle to infrastruc-
ture (V2I)—are central ingredients. In 
addition to traffic efficiency and safety-
related issues, vehicular communica-
tions is increasingly recognized as an 
important revenue driver by car manu-

facturing companies since it enables wire-
lessly connected in-vehicle entertainment 

systems that support on-demand video 
streaming and online Internet access for pas-

sengers. Also, in the future, machine-type 
communication is expected to play a major role in 

vehicular environments, with more sensors that 
monitor the internal state of vehicles and autonomously 

exchange service and maintenance information with cloud 
servers of manufacturers. Depending on the considered use-case, 

distinct quality of service (QoS) requirements come into play [1]: infotain-
ment applications for in-car users require high bandwidth and network capacity, 
active road safety relies on delay- and outage-critical data transmission, whereas 
information exchange for road traffic efficiency management typically comes with-
out strict QoS requirements and exhibits graceful degradation of performance with 
increasing latency.
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Signal Processing Challenges 
in Cellular-Assisted Vehicular Communications

Efforts and developments within 3GPP LTE and beyond
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FIGURE 1. Vehicular communications scenarios considered within 3GPP: 
V2N provides connectivity to the cloud; V2I covers connections to RSUs; 
V2V deals with direct and assisted intervehicle transmission; V2P enables 
information exchange with other devices in the proximity of vehicles (e.g., 
pedestrians and cyclists).
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Introduction
In recent years, specific vehicular communication systems, 
such as the European Telecommunications Standards Insti-
tute (ETSI) ITS G5 based on IEEE 802.11p dedicated short-
range communication (DSRC), have been developed to 
enable timely and reliable exchange of information in so-
called vehicular ad hoc networks (VANETs). These systems 
are commonly based on dedicated infrastructure and employ 
licensed transmission bands to avoid interference with other 
existing systems. However, interest in mobile communica-
tions technology to support VANETs has been recently 
increasing, because this technology is available off-the-shelf 
and, therefore, enables cost-effective implementations. Due 
to the virtual ubiquity of cellular networks, vehicular com-
munications strategies of many companies are shaped by the 
development of mobile network technologies. In response, 
the progression of the universal mobile telecommunications 
system (UMTS) long-term evolution (LTE) toward vehicular 
communications is currently pushed within the Third Gener-
ation Partnership Project (3GPP) to meet the requirements of 
vehicular environments.

Efficient and reliable wireless communication with users 
at high mobility, however, comes with several unique chal-
lenges that the LTE standard cannot yet stand up to, as 
we demonstrate in this article by some selected examples. 
Yet, advanced signal processing at the transmitters and the 
receivers has the potential to alleviate the shortcomings of 
LTE. In this article, we provide an overview of efforts ongo-
ing within the development of LTE Release 14 to enhance 
the support of vehicular communications. We further give 
insights into promising signal processing methods for effi-
cient wireless connectivity at high mobility. While some of 
the described techniques can readily be employed without 
modification of the LTE standard, others require additional 
standardization efforts to harmonize the operation of com-
munication devices.

LTE contenders for vehicular communications
The 3GPP recently initiated study items within Release 14 of 
UMTS LTE on vehicular communications; see [31] and [32]. 
The goal of these study items is to develop a set of LTE speci-
fications for vehicular environments [LTE-based vehicle to X 
(V2X)] [2]. Currently, the focus of standardization is on 
exploring the support of active road safety applications, either 
in a dedicated transmission band or shared with conventional 
mobile subscribers. The different use cases considered within  
the 3GPP are illustrated in Figure 1. Connectivity in between 
vehicles, e.g., to enable the V2V exchange of location and tra-
jectory information for driver assistance systems, is supported 
directly via device-to-device (D2D) transmission, as well as 
indirectly, employing base stations and dedicated roadside 
units (RSUs) as transmission hubs to facilitate information 
sharing over larger distances. The local exchange of traffic 
management information between ITS infrastructure and 
vehicles is covered under the umbrella of V2I communication. 
Connectivity to the Internet and to cloud services falls in the 
category of vehicle-to-network (V2N) transmission; finally, 
the exchange of mutual awareness information between vehi-
cles and pedestrians (or cyclists) is supported by vehicle-to-
pedestrian (V2P) transmission. Commonly, all of these 
different types of vehicular communication scenarios are 
summarized under the term V2X communication. Even 
though they appear very similar from a basic physical layer 
(PHY) perspective, the different use cases require individual 
treatment within standardization to enable efficient incorpo-
ration into the existing specifications [3].

Currently three technologies are considered as central for 
LTE based vehicular communications:
■ Dual connectivity to support high user mobility in dense 

heterogeneous networks (HetNets): Mobile communica-
tion connections at high mobility suffer from frequent inter-
ruptions due to handovers in between cells; this is especially 
problematic in dense HetNets with coverage areas of base 
stations of mere tens to few hundreds of meters [4]. To allevi-
ate such issues, the 3GPP has incorporated dual connectivity 
in LTE Release 12. With dual connectivity, robustness with 
respect to mobility is enhanced by connecting subscribers to 
two cells—master and secondary—simultaneously. Thereby, 
critical control and signaling information, as provided by the 
control plane of the mobile network, is kept in the master cell 
of the macro base-station layer, providing reliable coverage 
over large geographic areas with a minimal amount of 
handovers. The capacity and rate of the actual data trans-
mission is enhanced by concurrently providing data over 
the user plane of the network from macro base stations and 
small cells [5]. For this data exchange, connection inter-
ruptions are less critical since they do not cause connectiv-
ity failures.

■ LTE-based broadcast services, as supported by the public 
warning system (PWS) and enhanced multimedia broadcast/
multicast service (eMBMS), for efficient distribution of mes-
sages among vehicles: In cooperative ITS (C-ITS), two basic 
types of messages are specified by ETSI for exchanging 
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information among vehicles: 1) The periodic cooperative 
awareness message (CAM) is employed to share vehicle sta-
tus information (location, direction, speed) with cars in the 
vicinity, and 2) the event-driven sporadic decentralized envi-
ronmental notification message is used to exchange critical 
warnings, e.g., in case of traffic accidents (in the U.S. Society 
of Automotive Engineers J2735 standard, both types are cov-
ered by the basic safety message). Since such messages are 
shared with all other vehicles within a certain geographic 
region, broadcasting/multicasting them over the cellular net-
work can be much more efficient than unicast transmission to 
each vehicle individually. The distribution of messages in cer-
tain geographic notification areas is supported by the PWS, 
which allows consideration of geographic packet routing 
information. With Multimedia Broadcast/Multicast Single 
Frequency Network (MBSFN), the LTE standard even sup-
ports multicasting in potentially very large geographic areas 
by synchronously transmitting the same information from 
multiple base stations.

■ Proximity services, including D2D communication to realize 
connectivity in between vehicles as well as between connect-
ed cars and handheld terminals: Especially in safety-critical 
situations, latency of data exchange can be a limiting factor. 
Lowest latency is achieved by minimizing the amount of traf-
fic nodes that need to be traversed between source and desti-
nation; hence, direct D2D communication is most promising 
for short-range information exchange with stringent latency 
requirements. Furthermore, D2D transmission can be 
designed to enable autonomous VANET operation in areas 
that are not covered by cellular infrastructure, thus enhancing 
the reliability and availability of vehicular communications. 
Besides these operational advantages, D2D offloading of traf-
fic from the cellular network also helps to reduce the over-
head caused by vehicular communications.
Our focus in this article is on infrastructure-based vehicu-

lar communications, i.e., on V2I and cellular-assisted V2V 
transmission. We present exemplary performance results of 
LTE-compliant V2X transmissions to demonstrate important 
potential shortcomings of the standard that may limit the 
applicability of LTE for vehicular communications. Based on 
these insights, we then present signal processing techniques to 
mitigate these weaknesses.

Dual connectivity-enhanced V2I transmission
Dual connectivity is intended to solve the handover problem of 
subscribers moving at high mobility through dense HetNets. To 
investigate the performance of this approach, we conducted 
LTE-compliant system-level simulations of such dense HetNets, 
employing the Vienna LTE system-level simulator [6]; Figure 2
shows the macroscopic signal-to-interference-plus-noise ratio 
(SINR) distribution of one snapshot of the evaluated HetNet. 
The network contains seven hexagonally arranged macro base 
stations (BS 1,…,BS 7) that each serve three sectors, with nomi-
nal coverage regions illustrated as white hexagons. Additionally, 
a large number of small cells is randomly distributed over the 
network area; these devices are equipped with omnidirec-

tional antennas. Subscribers are served via dual connectivity 
from the strongest macro base station and small cell simulta-
neously, with the control plane being kept at the macro layer 
to minimize necessary handovers.

In our numerical investigation, we assume that all base sta-
tions operate with 5-MHz system bandwidth at the same carri-
er frequency f 2c =  GHz, i.e., we consider a spatial frequency 
reuse-factor of one. Without dual connectivity, this leads to 
low SINR values at the cell edge as illustrated in Figure 2.
Most contemporary fourth-generation cellular networks nev-
ertheless utilize all available bandwidth at all base stations to 
enable harvesting the spatial reuse gain promised by network 
densification; this will hold even more for future fifth-gener-
ation (5G) networks. The considered situation corresponds to 
the so-called cochannel dual connectivity mode of LTE, where 
small cells and macro base stations employ the same carrier 
frequency for data transmission. Additionally, the LTE stan-
dard supports interfrequency dual connectivity, where differ-
ent frequencies are employed on macro base stations and small 
cells. Notice that the SINR distribution in Figure 2 shows the 
behavior without cochannel dual connectivity. If dual con-
nectivity is activated for a user, the cell edge between the cor-
responding macro base station and small cell vanishes, since 
data transmission to the user occurs from both base stations 
simultaneously. We evaluate the empirical cumulative distri-
bution function (ECDF) of the downlink throughput of sub-
scribers in Figure 3. We compare the performance of low- and 
high-mobility users moving at v 5=  km/h and v 150=  km/h, 
respectively. The system applies transmission rate adaptation 
according to the instantaneous SINR of subscribers, such as 
to match the spectral efficiency of the employed modulation 
and coding scheme (MCS) to the current channel quality. The 
required channel state information at the transmitter (CSIT) 
is provided as feedback information from the subscribers to 
the base stations using the LTE standard defined channel 
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quality indicator (CQI) and the feedback 
algorithms described in [7]. More specifi-
cally, the CQI is utilized by the receiver to 
signal via a dedicated feedback link to the 
transmitter which MCS should be employed 
for transmission to achieve reliable as well 
as efficient transmission; this information 
is derived from the SINR currently expe-
rienced by the receiver. We observe from 
Figure 3 that, under ideal circumstances of 
delayless noncausal feedback (delay 0 ms), 
high-mobility users achieve almost the same performance as 
those at low mobility. There is only a small performance deg-
radation, which is caused by the need to apply a slightly more 
conservative transmission rate adaptation, since the channel of 
high-mobility users varies even within one transmission time 
interval (TTI). This observation confirms the expected mobil-
ity enhancement achieved by dual connectivity. Yet, as soon as 
we consider certain delay in the CQI feedback link, we observe 
strong throughput degradation at high mobility, with more than 
25% of subscribers obtaining zero throughput even with only 
1 ms feedback delay. This performance degradation occurs 
because transmission rate adaptation with feedback delay is 
based on outdated channel state information (CSI) leading to 
signal outages due to mismatch between the utilized transmis-
sion rate and the rate supported by the channel. This loss in 
throughput goes hand in hand with an increase in latency, since 
each lost packet must be retransmitted. Notice, the TTI length 
of LTE is T 1s =  ms. Hence, a delay of the feedback processing 
below this value is infeasible; even the value of 5 ms consid-
ered in Figure 3 may be hard to achieve in practice.

To gauge the expected impact of feedback delay x  in mil-
liseconds, with respect to the system parameters carrier fre-
quency fc , TTI length ,Ts  and user velocity ,o  we define the 
normalized feedback delay as

,f T f T f
c
v

n d r s d r s cx x x x= = = (1)

with fd  denoting the maximum Doppler 
frequency shift in hertz, /Tr sx x=  being 
the relative feedback delay in multiples of 
TTIs, and c  representing the speed of light. 
The feedback delay has to be seen in rela-
tion to the temporal variability of the chan-
nel; if the channel is quasi static (as in 
many indoor scenarios), a feedback delay is 
irrelevant. It only matters if the channel 
changes significantly within the duration 
of the feedback delay, which is gauged by 

the normalized feedback delay. More specifically, the Dop-
pler shift fd  is inversely proportional to the coherence time of 
the channel; hence, the product fdx  is proportional to the 
number of coherence intervals elapsing during the feedback 
delay duration. The exact proportionality constant depends on 
the observed Doppler spectrum [8]. In our aforementioned 
example, we have for 1x =  ms with v 5=  km/h and 
v 150=  km/h, .0 009n .x , and .0 27n .x , respectively. We 
will encounter the normalized feedback delay again later in 
the section “Future Enhancements and Challenges.” 

CSI feedback delay is a significant issue for high-mobility 
users, and it can be a strongly limiting factor for the rate per-
formance and reliability of wireless transmission in vehicular 
scenarios. The problem is, of course, not specific to dual con-
nectivity, but occurs whenever rate adaptation is based on out-
dated CSI. In the section “CSI Feedback Enhancement,” we 
discuss possible signal processing approaches to mitigate this 
performance degradation.

MBSFN-based V2V communication
When active road safety support is implemented in C-ITS, 
common information must be delivered to many vehicles 
within certain geographic regions; e.g., status information, 
such as position, velocity and direction, of one vehicle is 
shared with all other vehicles in the vicinity via CAMs to 
enhance mutual awareness of road traffic participants. Prior 
studies have shown that both a direct exchange of periodically 
generated CAMs using DSRC as well as an indirect distribu-
tion over dedicated roadside infrastructure, requires a substan-
tial amount of bandwidth to guarantee timely packet delivery. In 
fact, with a growing number of vehicles within the geographic 
region of interest, the currently foreseen 5.9-GHz band for road 
safety critical communication can easily be overloaded by 
CAM distribution [9].

In such situations, mobile cellular networks can be helpful 
to offload some traffic from a dedicated ITS infrastructure. 
Employing eMBMS/PWS features of LTE, the broadcast nature 
of cellular systems can be utilized to efficiently deliver the 
same message to many users within certain geographic regions 
formed by MBSFN areas. To demonstrate the capabilities of 
such an approach, we conduct system-level simulations, compar-
ing message distribution via unicast and multicast transmission 
[10]. Both approaches have certain advantages/disadvantages:
■ Unicasting in LTE enables per-user scheduling on favorable 

time/frequency resources to utilize channel and multiuser 
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a significant issue for 
high-mobility users, 
and it can be a strongly 
limiting factor for the rate 
performance and reliability 
of wireless transmission 
in vehicular scenarios. 
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diversity. Furthermore, it supports dynamic link adaptation 
(multiantenna precoding and transmission rate), as well as 
selective PHY repetition of lost packets using hybrid auto-
matic repeat request (HARQ). These features facilitate effi-
cient and reliable data transmission to single users with 
low retransmission latency of lost packets.

■ Multicasting in LTE is restricted to employ certain 
reserved subframes (multicast subframes) and, hence, can-
not freely exploit channel diversity. In general, channel and 
multiuser diversity in multicasting are more difficult to har-
vest since many users are served in parallel, and, therefore, 
chances of finding time/frequency resources that are favor-
able for all users simultaneously are small. Nevertheless, 
scheduling/resource allocation gains are possible by avoid-
ing the worst time/frequency resources of all users, such 
that signal outages become less likely. Multicast transmis-
sion in LTE does not support PHY retransmission of lost 
packets and, thus, has to rely on slow (in terms of latency) 
higher-layer protocols. Furthermore, transmission rate 
adaptation must be performed according to the channel 
quality of the worst users to guarantee reliable delivery to 
all multicast users, reducing the spectral efficiency of the 
system; indeed, currently existing proposals do not uti-
lize rate adaptation at all but rather rely on fixed rate 
transmission to avoid CSI feedback from the users. 
Finally, multicasting in LTE also does not support mul-
tiantenna transmission, even though multicast-specific 
beamforming/precoding and space-time coding has the 
potential to substantially improve efficiency and reli-
ability of data transmission.
In the following, we investigate the performance of 

CAM distribution in cellular networks serving vehicles 
that move at v 150=  km/h. We consider fixed-rate trans-
mission (employing CQIs 3, 6, and 9), since rate adaptation 
in multicasting is not yet supported by the LTE standard. 
We conduct system-level simulations for an MBSFN area 
consisting of three macro base stations embedded within 
a larger cellular network. Within the MBSFN area, CAMs 
of size 300 bytes are exchanged among 21 vehicles (seven 
per base station) with a periodicity of 100  ms. Hence, for 
multicast transmission within the MBSFN area, the total 
traffic load is · · / .300 8 21 100 0 5bit/user users ms .  Mbit/s, 
since each packet is synchronously broadcast from all 
three base stations. In case of unicast transmission, on the 
other hand, each vehicle individually receives the CAMs 
generated by the other 20 vehicles. Since seven vehicles are 
attached to each base station of the MBSFN area, this implies 
a unicast traffic load of /300 8 20 7 100· bit/user· users· ms .  
3.4 Mbit/s. We determine the overhead for the cellular net-
work caused by CAM distribution, as well as the operation-
ally critical parameters latency and message loss probability 
for supporting active road safety in C-ITS. We assume trans-
mission with extended cyclic prefix for unicast and multi-
cast operation.

The results of the simulation are summarized in Table 1.
We observe that a unicast transmission with CQI 3 is unable 

to support the generated data traffic, i.e., the network over-
head caused by CAM distribution is equal to 270% of the 
capacity (assuming 5-MHz bandwidth); thus, the message 
loss probability is very high ( %632 ) since many CAMs 
have to be dropped. With multicasting, however, the over-
head is reduced to 60% and the message loss probability 
is below 1%. Yet, even with multicasting in our simulation 
scenario, it is not possible to sustain the generated CAM 
network load with CQI less than three, because the trans-
mission efficiency would be too low. Notice that, at most, six 
subframes per radio frame (consisting of ten subframes) can 
be reserved for MBSFN operation in LTE. A very important 
metric for active road safety is latency. Since eMBMS does 
not support retransmission of lost packets, latency accumu-
lates in multiples of the message generation period (100 ms) 
in case of packet loss. Thus, even short signal outages can 
severely increase latency; correspondingly, latency of mul-
ticasting deteriorates with increasing transmission rate. For 
active road safety, latency below 100 ms has to be achieved 
[11]. Notice that Table 1 only presents radio-link latency for 
downlink transmissions, neither accounting for uplink from 
vehicles to base stations nor for CAM distribution within 
the MBSFN area; hence, we present the percentage of users 
with downlink latency below 50 ms to incorporate a safety 
margin with respect to the prescribed 100 ms. We observe 
in Table 1 that LTE is not able to sustain this latency with 
sufficiently high probability in our simulation. Hence, per-
formance improvements of multicasting in LTE are required 
to enable dependable support of road safety applications.

In the section “Multicast Enhancements,” we discuss 
potential enhancements of LTE to improve multicast trans-
mission, employing dynamic link adaptation and coordina-
tion of multipoint transmission. In addition to enhancing 
the wireless transmission, we also see potential in optimiz-
ing the C-ITS protocol itself. As mentioned previously, 

Table 1. A comparison of unicast and multicast transmission 
for CAM distribution in cellular networks.

Rate Metric Unicast Multicast 

CQI3 Overhead 270% 60% 

(0.377 bit/sym) Message loss prob. > 63% < 1%

Latency < 50 ms n/a 93% 

Latency < 250 ms n/a 98% 

CQI6 Overhead 86% 20% 

(1.176 bit/sym) Message loss prob. 7% 3% 

Latency < 50 ms 9.5% 80% 

Latency < 250 ms 85% 93% 

CQI9 Overhead 42% 10% 

(2.406 bit/sym) Message loss prob. 11% 11% 

Latency < 50 ms 49% 54% 
Latency < 250 ms 74% 76% 
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cellular networks can easily be overloaded by CAM dis-
tribution, especially when robust MCSs with low spec-
tral efficiency are employed. In such overload situations, 
reliable distribution of C-ITS messages cannot be guaran-
teed and, thus, they must be avoided. One possible method 
could be to adapt CAM generation periodicity according 
to user mobility; i.e., at low mobility, less frequent vehicle 
status updates are required than at high mobility. Also, the 
spatial area in which CAMs are distributed, i.e., the num-
ber of base stations involved in CAM exchange, should be 
carefully chosen and potentially adapted according to traf-
fic load.

Future enhancements and challenges
In this section, we present promising improvements for 
wireless vehicular communications in cellular networks and 
highlight associated signal processing challenges. Our focus 
is on two topics: in the section “CSI Feedback Enhance-
ment,” we discuss CSI feedback enhancements to improve 
throughput performance of mobile users, employing channel 
predictive approaches to partly compensate for feedback 
delay and temporal channel variation. As we demonstrated 
in the section “Dual Connectivity-Enhanced V2I Transmis-
sion,” inaccurate and outdated CSIT can be the limiting fac-
tor for the achievable efficiency and reliability of wireless 
data transmission. Hence, enhancing CSI feedback for high-
mobility situations is an essential prerequisite of wireless 
vehicular communications. In the section “Multicast 
Enhancements,” we consider techniques for efficient multi-
cast transmission, putting scope not only on advanced multi-
ple-input, multiple-output (MIMO) and coordinated 
multipoint (CoMP) transmission schemes, but also highlight-
ing issues related to scheduling and resource assignment. 
Such techniques are important for vehicular scenarios to 
avoid the network overload problem discussed in the section 
“MBSFN-Based V2V Communication” by improving the 
capacity of multicast transmissions. The presented methods, 
again, require accurate CSIT for beamformer/precoder cal-
culation and, hence, rely on efficient CSI feedback tech-
niques. Finally, we present further important topics for 
progressing wireless vehicular communications in the sec-
tion “Further Research Topics to Enhance Wireless Vehicu-
lar Communications.”

CSI feedback enhancement
CSI is useful for achieving the highest performance in multi-
ple antenna wireless communications by enabling transmis-
sion rate adaptation, adaptive MIMO beamforming, and 
spatial multiplexing. While CSI at the receiver (CSIR) is com-
paratively easy to obtain through pilot-aided channel estima-
tion, CSIT in frequency-division duplex systems is only 
available if the receiver provides feedback information to the 
transmitter; Figure 4 illustrates the situation. (In time-division 
duplex systems, channel reciprocity can be exploited to esti-
mate the CSI on both sides of the link.) Since the feedback 
link between the transmitter and receiver is of limited capaci-
ty, quantization of CSI is necessary to enable signaling with a 
finite number of bits; this is known as limited feedback opera-
tion. In general, we distinguish between providing explicit 
and implicit CSI feedback. In the former case, the channel, as 
estimated by the receiver, is directly quantized and fed back, 
while in the latter case derived information, such as the opti-
mal MIMO precoder and the supported transmission rate, is 
provided as side information. In LTE, the second type of 
feedback information is currently supported with the stan-
dard-defined CQI, the precoding matrix indicator (PMI), and 
the rank indicator (RI). More advanced multiuser MIMO and 
CoMP schemes, however, mostly rely on explicit CSIT.

Implicit CSI feedback
In the section “Dual Connectivity-Enhanced V2I Transmis-
sion,” we observed that CQI feedback, as employed for trans-
mission rate adaptation in LTE, is sensitive to feedback delay 
in high-mobility scenarios, since outdated CQI feedback can 
cause signal outages, thereby reducing transmission efficien-
cy and increasing latency. A similar behavior exists for the 
MIMO-specific feedback information PMI and RI, yet with 
reduced sensitivity since their mismatch does not directly 
cause signal outages.

To reduce the impact of feedback delay, either the trans-
mitter or the receiver should attempt to compensate for 
it. At the receiver side, one natural approach is to apply 
channel prediction. The simplest method for OFDM-based 
LTE is a subcarrier-wise linear extrapolation of the chan-
nel transfer function between pairs of transmit and receive 
antennas. If channel statistics are known, the prediction per-
formance can be improved by linear minimum mean squared 

Transmitter ReceiverChannel

Q

Channel
Estimation

CSI QuantizationDelay

Transmit-
Signal

Adaptation

Feedback Link

FIGURE 4. An illustration of limited feedback operation in wireless communications assuming error-free but delayed feedback.
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error (MMSE) filtering. Without explicit 
knowledge of the channel statistics, itera-
tive algorithms, such as least mean squares 
(LMS) or recursive least squares (RLS), 
can be applied to estimate the MMSE fil-
ter coefficients during operation. The lin-
ear MMSE filter can further be extended 
to jointly estimate the channel between all 
transmit and receive antenna pairs to exploit potential cor-
relations [12]; similarly, the correlation between subcarriers 
can be utilized by joint estimation of the filters applied on 
multiple subcarriers.

Alternatively, instead of predicting the channel transfer 
function, one can predict the channel impulse response and 
transform the predicted impulse response to the frequency 
domain for feedback calculation. Efficient prediction of the 
channel impulse response is possible by applying the mini-
mum-energy band limited discrete prolate spheroidal Slepian 
sequences as basis functions [13], which are good representa-
tives for the finite support delay-Doppler spreading function of 
the wireless channel.

If channel prediction at the receiver is too costly, the trans-
mitter can alternatively process the CQI feedback from the 
user before rate adaptation. One possibility for CQI selection 
at the transmitter is to maximize the expected throughput at 
time instant k

[ ] [ ] ,argmaxk T T r kCQI CQI CQIP
, , ,i C

i i
1CQIi

#=
f!

^ ^h h"
"

,
,

(2)

with T CQIi^ h  denoting the transmission rate associated 
with CQIi  and C  being the number of available CQIs as 
specified by the standard. The term [ ]T r kCQIP i #^ h" , is 
the probability that the currently supported rate [ ]r k  of the 
channel sustains the selected rate. This probability is com-
monly not known a priori by the transmitter; yet, assuming 
that the channel statistics do not vary too quickly, it can 
easily be learned over time from the user CQI feedback, 
which signals the highest instantaneously supported MCS 
[7]. Such a rate adaptation approach can potentially cause 
unacceptably high block-error ratio and signal outage prob-
ability. This can be avoided by adding an additional con-
straint to problem (2) to account for the acceptable 
block-error ratio.

In Figure 5, we compare the performance of the described 
methods in dependence of the normalized feedback delay. We 
observe that the predictive schemes achieve close to optimal 
performance up to a certain critical delay, whose exact value 
depends on the sophistication of the prediction method. Com-
pensation at the transmitter, employing (2) with probabilities 
estimated from the user feedback, does not achieve optimal 
performance; yet, it exhibits more robust behavior at very 
high normalized feedback delay. A further improvement of 
predictive schemes can be expected by underlying realistic 
parametric radio channel models to reduce the number of 
free parameters to estimate/predict [14].

Explicit CSI feedback
Advanced multiuser MIMO and CoMP 
transmission schemes, such as block diag-
onalization (BD) or regular ized BD 
(RBD) precoding, interference-leakage-
based precoding [15], and interference 
alignment (IA), require explicit CSIT for 
the calculation of precoders. These pre-

coding techniques can enhance the network capacity and 
reliability by reducing interference among subscribers and 
base stations. For many such precoding techniques, the 
underlying CSI can efficiently be represented as a point on a 
topological manifold. Let H CN Nr t! #  denote the channel 
matrix containing the complex-valued channel gains between 
the Nt  transmit antennas and the Nr  receive antennas; we 
assume N Nt r$ , which is commonly fulfilled in cellular down-
link transmission. For channel-subspace-based precoding tech-
niques, such as BD precoding and IA, the Nr -dimensional 
subspace spanned by H CN Nr t! #  is required as CSIT for pre-
coder calculation; this information can be represented as a point 
on the complex Grassmann manifold ,N NG t r^ h of Nr -dimen-
sional subspaces in the Nt -dimensional Euclidean space [16].
For other precoding schemes, such as RBD and the interference-
leakage-based schemes presented in the section “Multicast 
Enhancements,” the directions and magnitudes of the channel 
eigenmodes are necessary CSIT; i.e., the eigenvectors and eigen-
values of the channel Gramian H*H, with H* denoting the con-
jugate-transpose of H. The Gramian is a point on the manifold 
of symmetric positive semidefinite matrices [17]. Further-
more, the matrix of eigenvectors corresponding to the Nr

nonzero eigenvalues of H*H can be interpreted as a point on 
the compact Stiefel manifold ,t N NS t r^ h over the complex 
numbers [18]. Such CSI representation on manifolds enables 
dimensionality reduction, which allows efficient quantiza-
tion with reduced feedback overhead as compared to quanti-
zation of the entire channel matrix.

To further reduce the feedback overhead, temporal chan-
nel correlation can be exploited through low-rate predictive 
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FIGURE 5. The sensitivity of different CQI feedback calculation methods 
with respect to feedback channel delay and user mobility.

If channel prediction at 
the receiver is too costly, 
the transmitter can 
alternatively process the 
CQI feedback from the user 
before rate adaptation.
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manifold quantization [17]–[19]. Currently, the best rate-
distortion performance is achieved by adaptive quantizers 
that adjust the applied quantization codebook to the tem-
poral evolution of the channel. We summarize this adaptive 
quantization principle, as introduced for the Grassmannian 
in [12], for general Riemannian manifolds M  and high-
light the most important differential geometric concepts 
required. For this purpose, we consider a general tempo-
rally correlated process of points { [ ]}m k M!  that is to 
be quantized; this process { [ ]}m k  evolves on the manifold 
M  as illustrated in Figure 6. The basic idea of predictive 
quantization is to utilize previously quantized observations 

[ ] [ ] , [ ] [ ] ,m m m mk k k k1 1 2 2 toQ Qq q f- = - - = -" ", ,
predict the current point [ ]m k , where ·Q" , denotes the 
employed quantization function. Given the prediction [ ],m kp

the method then generates a local quantization codebook to 
determine [ ] [ ]m mk kQq = " ,. Manifold prediction and code-
book adaptation are based on quantized CSI, since the decoder 
at the back end of the feedback link must be able to reproduce 
these steps. Realizing such a scheme on a manifold requires 
some additional intermediate actions as detailed next.

First, we notice that a linear prediction, as in the section 
“Implicit CSI Feedback,” is not meaningful on a general mani-
fold, since an addition of points on the manifold or scalar mul-
tiplication with values from an underlying field, as we have 
on a linear vector space, is in general not defined. Yet, to each 
point ,m M!  an entire linear vector space, the tangent space 
Tm , is associated, which locally represents the geometry of the 
manifold in the Euclidean space. Tangent vectors t Tm!  are 
induced by curves ( )t M!c , such that,

( ) , ( )t m
t

t 0
t 02

2
c c= =

=

(3)

with scalar t R!  parameterizing the curve; we assume with-
out loss of generality that the curve traverses m at t 0= . In 
general, multiple curves can induce the same tangent, since it 
only depends on the first-order derivative.

For our manifold predictor, we need a one-to-one rela-
tionship between pairs of points ,m m1 2  on the manifold and 
tangent vectors t Tm1! , such that,

, , , ,t m m m m tT Mm1 2 2 11! !m t= =^ ^h h (4)

, , , , .m m m m m m M2 1 1 2 1 26 !t m= ^ ^ hh (5)

This is known as a compatible lifting-retraction pair, with 
,$ $m^ h being the lifting map and ,$ $t^ h the retraction map [18].

Ideally, we favor the exponential and logarithmic maps associ-
ated with the geodesic curve between ,m m1 2  for this purpose; 
yet, these are difficult to evaluate for certain cases, such as 
the Stiefel manifold. The geodesic represents the shortest path 
between ,m m1 2  on the Riemannian manifold.

Given a lifting-retraction pair, we can perform prediction in 
the linear tangent space, where we can reuse well-known lin-
ear algorithms, such as linear prediction and MMSE filtering, 
and translate the tangent prediction onto the manifold using 
the retraction. That is, given a set of previous observations 
{ [ ], , [ ]}m mk k L1 1 Mq qf !- - - , we calculate

[ ], [ ] ,t m mk k i1 1 T [ ]mi q q k 1q!m= - - - -^ h

{ , , },i L16 f! (6)

[ ] , , ,t t tk 1 TP [ ]mp L k1 1qf !- = -^ h (7)

[ ] [ ], [ ] ,m m tk k k1 1 Mp q p !t= - -^ h (8)

with ·P^ h denoting the applied prediction function. Final-
ly, we need to construct a local quantization codebook 
around [ ]m kp  for the quantization of [ ]m k . This can again 
be achieved most easily by generating a codebook for the 
Euclidean tangent space and translating it onto the mani-
fold; in [16] and [18], we provide corresponding codebook 
constructions for the Grassmannian and the Stiefel mani-
fold, respectively.

In Figure 7(a), we demonstrate the performance of such 
predictive quantization on the Stiefel and Grassmann mani-
folds in dependence of the normalized sampling interval 

t fs s dx = , with ts  being the time in between two samples 
of the manifold process { [ ]}m k . Similar to the normalized 
feedback delay introduced previously, the normalized sam-
pling interval accounts for the temporal variation of consecu-
tive points of the manifold process { [ ]}m k  due to movement. 
We assume N N 6 2t r# #=  and employ a quantization 
codebook of size  256; i.e., the quantization resolution is 

Tmq [k –2]

Tmp [k ]

Tmq [k –1]

M

m[k–2]
m[k–1]

mq [k–1]
mp [k]

m[k]
t [k–2]

tp [k–1]

Trajectory
of {m[k]}

Local
Codebook mq [k –2]

FIGURE 6. An illustration of predictive manifold quantization of a temporally correlated process { [ ]}m k  on the manifold M .
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8  bits/sample. The performance of the 
quantization scheme is gauged in terms 
of the signal distortion introduced by 
the quantization process. We employ the 
chordal distance on the corresponding 
manifold as distortion metric; see [18]
for details. In Figure  7(a), we compare 
the quantization distortion of predictive 
quantization to memoryless and differen-
tial quantization. Memoryless quantiza-
tion refers to a quantization scheme that 
considers each sample [ ]m k  individually 
without accounting for the past of the process { [ ]}m k . Dif-
ferential quantization refers to the case [ ] [ ]m mk k 1p q= - .

Both differential and predictive quantization achieve an 
improvement over memoryless quantization for . ;0 1s #x

at large sx , the distortion of differential/predictive quantiza-
tion saturates at the performance of memoryless quantization. 
Hence, the considered differential/predictive quantization 
schemes achieve a significant gain only at low mobility; e.g., 
assuming t 1s =  ms, f 800c =  MHz, the point .0 01sx =  cor-
responds to .v 13 5=  km/h. Since CSI feedback in LTE is 
currently at most foreseen once every subframe (once every 
millisecond), this implies that currently available differential/
predictive manifold quantization schemes are only advan-
tageous at low mobility and not in vehicular scenarios. Per-
formance can be improved by extending the codebook size; 
however, complexity issues will ultimately put limits on the 
supported size.

In Figure 7(b), we show the throughput of BD and RBD 
precoding when applying predictive Grassmannian and Stiefel 
manifold quantization to obtain CSIT. We show the perfor-
mance relative to RBD with perfect CSIT. Imperfect CSIT 

due to quantization distortion causes resid-
ual multiuser interference, degrading the 
achievable throughput. We observe a signif-
icantly better performance of RBD at low 
signal-to-noise ratio (SNR), since this meth-
od implicitly reduces the number of served 
users with decreasing SNR via power allo-
cation; BD precoding, on the other hand, 
always serves three users in parallel each 
with two spatial streams. At high SNR, BD 
performs slightly better due to the lower 
quantization distortion of its Grassmannian 

quantizer, causing less residual multiuser interference as com-
pared to RBD with Stiefel manifold quantization. Notice that, in 
this simulation, we assume CSI feedback every millisecond 
and negligible feedback delay between the users and the base sta-
tion. In the considered low-mobility scenario with f 10d =  Hz, 
this is, however, not a significant restriction, because a rea-
sonable feedback delay can be compensated via channel 
prediction at the receiver; see [12] for a breakdown of the con-
tributions of quantization and delay compensation onto the 
overall distortion.

At high mobility, the presented CSI feedback method fails 
to achieve significant multiuser MIMO gains due to insuffi-
cient accuracy of CSIT. To support high-mobility scenarios, 
it would be necessary to reduce the sampling and feedback 
interval sx  at least by a factor of ten. Additional gains might 
also be possible by improving the prediction function in (7); in 
our simulations, we employed linear prediction in combination 
with LMS to optimize filter coefficients. Alternatively, pre-
coding schemes that are robust with respect to outdated CSIT, 
such as retrospective interference alignment, can be utilized. 
In general, though, such schemes require coding over many 
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FIGURE 7. The quantization error of (a) manifold quantizers and (b) throughput comparison of RBD and BD with limited feedback at normalized sampling 
interval .0 01sx =  and 8-b quantization codebook. We consider antenna arrays of size N N 6 2t r# #= .

Multicasting plays an 
important role in vehicular 
communications, since it 
enables efficient sharing 
of common information, 
such as traffic 
management advices and 
vehicle status updates, 
among vehicles.
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time frames for efficient operation, which may not be tolerable 
in terms of latency.

Multicast enhancements
Multicasting plays an important role in vehicular communica-
tions, since it enables efficient sharing of common informa-
tion, such as traffic management advices and vehicle status 
updates, among vehicles. As we have seen in the section 
“MBSFN-Based V2V Communication,” though, multicasting 
of CAMs can easily overload cellular networks, leading to 
unreliable operation of C-ITS. Next, we discuss improve-
ments of the LTE standard to enhance the efficiency of cellu-
lar multicasting. We first consider multicasting-specific 
MIMO beamforming techniques, which will especially be 
relevant in future 5G cellular networks employing large-scale 
full-dimension (FD) MIMO arrays. We then discuss schedul-
ing and resource allocation issues associated to multicast 
users in LTE networks.

MIMO and coordination
Currently, data transmission in LTE’s eMBMS does not sup-
port multiantenna techniques. Already, early investigations 
on MIMO multicast-beamforming in single-cell networks, 
however, demonstrate promising capacity gains through max-
min beamforming [20]. This approach attempts to maximize 
the minimum SNR of the multicast users without accounting 
for interference caused to other users. Even this seemingly 
simple problem, however, turns out to be nonconvex, and 
requires semidefinite relaxation (SDR) to determine, in gen-
eral, suboptimal solutions; only for a small number of trans-
mit antennas and users SDR provides a globally optimal 
beamforming solution.

Max-min beamforming becomes even more intricate when 
interference between multiple transmitters is considered, with 
each of them transmitting information to a different set of 
multicast users. This scenario is known as the multicast inter-
ference channel. In cellular networks, it represents a situation 
where several neighboring base stations serve disjoint sets of 
multicast users; in vehicular environments, it can come up 
along highways, where consecutive stretches of the road are 
served by multiple transmitters. In [21], an interference-leak-
age-based approach for coordinated beamformer optimiza-
tion in the multiple-input, single-output multicast interference 
channel is proposed, where only transmitters are equipped 
with multiple antennas and not receivers. The method applies 
max-min beamforming optimization at each base station indi-
vidually, while restricting the interference leakage caused to 
users of other base stations. Additionally, it employs an itera-
tive exchange of interference-leakage parameters among base 
stations in combination with dual gradient optimization over 
leakage parameters to determine a locally optimal operating 
point of the multicast interference network. Figure 8 demon-
strates the performance of this approach in a multicast inter-
ference network with two transmitters each serving six users 
over N 8t =  transmit antennas. We consider an SNR of 20 dB 
and assume that, without beamforming, all users receive both 
transmitters, on average, equally strong; i.e., the macroscopic 
channel gain with respect to both transmitters is equal. This 
corresponds to a cell-edge situation where we can expect the 
largest gains from transmitter coordination. Notice, though, 
that the method itself is not restricted to equal gain scenarios. 
Figure 8 shows that, compared to max-min beamforming 
without considering interference, the rate region can sub-
stantially be extended. Hence, the method can significantly 
improve the cell-edge performance, thereby reducing connec-
tivity failures due to extensive intercell interference. In gen-
eral, we cannot claim that the method achieves the maximal 
rate region, since it is only guaranteed to converge to a local 
optimum; for the shown result, however, we have confirmed 
global optimality through monotonic optimization utilizing 
the outer-polyblock algorithm. In the considered high-SNR 
situation, BD precoding also performs reasonably well. If 
users are uniformly distributed in the network, the gain over 
time sharing diminishes with a growing number of users, 
since the optimal beam pattern tends to be isotropic. Yet, in 
practical situations, such as vehicles on a road, users are often 
spatially clustered, which may help mitigating such perfor-
mance degradation. Early results to support multiple antennas 
at transmitters and receivers are reported in [22], leading to 
an iterative alternating optimization of transmit and receive 
filters. Extensions from beamforming to multiple data stream 
transmission are yet to be developed.

Beamformer designs for joint multicasting within MBSFN 
areas formed by multiple base stations, which account for 
interarea-interference in between neighboring MBSFN areas, 
are not available so far. Compared to the leakage-based mul-
ticasting scheme of [21], this implies additional per base sta-
tion power constraints for the joint MBSFN beamformer
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SINR
u U!f C!

max min u
MBSFN

N 1tot#
(9)

subject to:

,S f P b BMBSFNb b2
2 6# !

Leak , ,L u UMBSFNu u 6# !r rr r

with f  denoting the joint beamformer applied over all 
N Ntot ,t bb BMBSFN
=

!
/  transmit antennas N ,t b  of the set of 

BMBSFN base stations within the MBSFN area. The parameter 
SINRu  represents the SINR of user u from the set UMBSFN of 
users served via multicasting in the MBSFN area and Leakur

denotes the interference leakage caused to user ur  from the set 
UMBSFNr  of users outside the MBSFN area; it is upper bounded 
by the leakage constraint .Lur  Finally, Sb  represents a selector 
matrix, which chooses the entries of f  corresponding to the 
transmit antennas of base station ,b  and Pb  is the power con-
straint of base station b . This problem is nonconvex but, 
similar to [20], is amenable to SDR. The operating point of 
this multicast interference network with spatially distributed 
multicast transmitters can be optimized by coordinating the 
interference-leakage constraints of interfering base stations. 
Such coordination can be achieved by applying the dual 
gradient optimization proposed in [21].

Notice that the discussed beamforming approaches are all 
based on explicit CSIT, and, hence, the CSI quantization prob-
lematic discussed in the section “CSI Feedback Enhancement”
applies to these methods as well. Furthermore, since the meth-
ods are iterative in nature, they exhibit intrinsic delay to achieve 
convergence. In vehicular environments, it might be necessary 
to employ suboptimal heuristics that are derived from optimal 
schemes; such heuristics are also provided in [21]. Also, espe-
cially for road safety applications, outage probability and latency 
minimization might be of higher importance than rate maximiza-
tion. Optimization problems for such targets, however, are hard 
to formulate due to potential nonstationarity of wireless channels 
in vehicular environments [23]. Still, for limited time frames, 
assuming quasi-stationary conditions may be valid to formulate 
outage-constrained optimization problems.

Scheduling and resource allocation
A major weakness of eMBMS in the LTE standard is its 
inflexibility of multicast transmission; i.e., a fixed amount of 
subframes within each radio frame is reserved for multicast-
ing. One reason for this is that multicast transmissions within 
MBSFN areas suffer from a larger delay spread due to single-
frequency transmission of the same signal from multiple spa-
tially distributed base stations. To compensate for the 
increased delay spread, multicast subframes employ the 
extended cyclic prefix ( .16 7 sn ) of LTE, whereas unicast sub-
frames mostly use the shorter normal cyclic prefix ( .4 7 sn ) to 
minimize waste of bandwidth. According to our work on link 
adaptation, however, utilizing the extended cyclic prefix may 
not pay off, even if intersymbol interference (ISI) occurs; in 
many cases of realistic SNR, it is more efficient to simply 

accept the remaining ISI and use a more robust transmission 
rate to compensate for it [24]. Hence, the LTE standard should 
be extended to support multicasting in MBSFN areas with a 
short cyclic prefix. This then also allows the incorporation of  
multicast transmissions into normal subframes, facilitating a 
better dynamic resource assignment according to traffic 
requirements, as well as the exploitation of channel diversity 
in multicasting. Within the 3GPP, such extensions are consid-
ered in the study item on single-cell point-to-multipoint trans-
mission; within this study, single-cell multicasting over the 
downlink shared channel is evaluated, which until now has 
only handled unicast data transmissions.

A big challenge from a signal processing perspective is effi-
cient scheduling and coordination of multicast transmissions. 
In the context of vehicular communications, this involves 
dynamic formation of MBSFN areas, to limit the amount of 
CAMs that must be distributed while still providing mutual 
awareness over sufficiently large geographic areas. Further-
more, it implies determining groups of multicasting users that 
must share CAMs due to close spatial proximity. The multicast 
scheduler should also be able to decide to offload users with 
very poor channel quality to unicast transmissions, to support 
selective PHY retransmissions via HARQ, such as to reduce 
latency and to improve reliability. First results in this direc-
tion are provided in [25], where the authors consider optimiz-
ing proportional fairness of concurrent multicast and unicast 
transmissions. Heterogeneity of user channel conditions is con-
sidered in [25] by optimally partitioning multicast users into 
groups, so that users with good signal strength do not suffer 
by being grouped together with users of poor signal strength. 
A further challenge comes up when the system supports direct 
V2V transmission in addition to cellular-assisted transmission; 
then the scheduler must further group vehicles according to 
direct and assisted transmission.

Further research topics to enhance wireless  
vehicular communications

Channel estimation at high mobility
At very high mobility, accurate CSIR estimation using pilot 
signals can become challenging due to strong temporal 
variation of the wireless channel. Prior investigations have 
shown that LTE does not achieve MIMO spatial multiplexing 
gains at high mobility due to insufficient density of pilot sym-
bols in the time domain [26]. This low density of pilot sym-
bols can cause poor accuracy of channel estimation and, as a 
consequence, unreliable symbol detection. A remedy can be 
provided by adapting the pilot pattern to the Doppler- and 
delay-spread of the channel. These two properties character-
ize the coherence time and bandwidth of the channel, respec-
tively, i.e., the time/frequency intervals over which the 
channel stays approximately constant. Such an adaptive pilot 
scheme can efficiently be realized with minimal feedback 
information about coherence time and bandwidth from the 
users, requiring an update whenever channel statistics vary 
significantly [26].
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In vehicular environments, especially 
on highways, the wireless channel behaves 
markedly different as compared to other 
common situations in mobile communica-
tions. More specifically, the propagation 
is characterized by shadowing through 
other vehicles, high Doppler shifts with 
often sparse Doppler spectrum due to few 
dominant scatterers (e.g., road signs, highway overpasses), 
and possibly inherent nonstationarity of the channel statistics. 
Such effects can cause substantial performance degradation 
of common least squares and MMSE channel estimators if 
they are not properly considered in the algorithmic design. In 
[23], the impact of the shape of the Doppler spectrum on the 
performance of channel estimation at the receiver is discussed 
in more detail. Similarly, timing and carrier synchronization 
in vehicular scenarios with few dominant scatterers of simi-
lar strength that are strongly delay- and Doppler-shifted with 
respect to each other can be challenging.

ICI mitigation
OFDM multicarrier modulation, as employed in LTE, suf-
fers at high mobility from intercarrier interference (ICI) due 
to the Doppler spread of the transmit signal. This effect, 
however, can, to a large extent, be mitigated through itera-
tive ICI estimation and cancellation at the receivers. In [27],
the authors propose ICI mitigation algorithms that enable 
achieving the performance of interference-free transmission. 
Alternatively, optimal pulse shaping at the transmitter, as 
currently pushed by many research groups and companies 
for 5G mobile communications, can be applied to maximize 
achievable data rates by trading off residual ICI/ISI for spec-
tral efficiency [28]. Such an approach appears especially 
interesting when waveform parameters, such as subcarrier 
spacing, prototype pulse shape, and TTI length, can be 
adapted to the time/frequency-dispersion characteristics of the 
channel. A major challenge then is to optimize sets of compati-
ble parameters that enable efficiently serving users with 
strongly different channel properties in parallel, e.g., static and 
highly mobile users. Novel multicarrier transmit waveforms, 
employing filter banks [filter-bank multicarrier modulation 
(FBMC)] or subband filters (universal filtered multicarrier/
OFDM), support the necessary flexibility to adjust waveform 
parameters over subbands and, thus, provide the basis for 
channel-adaptive modulation.

Multiconnectivity
To enhance the robustness of the wireless transmission link, so 
as to support highly reliable communication, macro diversity 
can be exploited by extending the dual connectivity concept of 
LTE to a multitude of radio network access points. Maintaining 
multiple parallel connections to several macro base stations 
and/or small cells promises increased data throughput over 
multiple parallel data streams, improved reliability due to a 
reduced outage probability and enhanced robustness with 
respect to mobility, since hard handovers can be avoided. Yet, it 

implies that single users occupy resources at 
multiple transmission points, causing a 
reduction of the overall network capacity. 
To maintain the efficiency of the network, it 
is therefore necessary to dynamically 
decide whether the gain of utilizing multi-
connectivity for a user outweighs the over-
head caused on network capacity. Hence, 

multiconnectivity comes at the cost of requiring a sophisticated 
coordination of multiple transmission points, potentially 
implying a substantial backhaul signaling overhead. Such 
enhanced self-organizing network features can, e.g., be 
realized by cloud radio access network architectures. In [29],
the authors investigate the tradeoff between radio-link failures 
and user throughput in dependence of the size of the set of active 
multiconnectivity transmission points, showing that both the cell-
edge user throughput as well as the mobility performance can be 
improved simultaneously.

FD MIMO beamforming for high mobility
FD MIMO refers to wireless transmission systems that sup-
port active two-dimensional antenna arrays with a large num-
ber of antenna elements. This enables high-resolution adaptive 
beamforming in both the elevation and the azimuth domain, 
to achieve space-division multiple access gains through spa-
tial separation of users. Within LTE standardization, work is 
ongoing to implement FD MIMO within Release 14. Current-
ly, hybrid transceiver architectures are of interest, where part 
of the signal processing is performed in base band and part in 
the analog domain to limit the number of required radio-fre-
quency chains. Analog beamforming approaches are mostly 
based on signal azimuth and elevation arrival/departure 
angles. To implement such schemes at high mobility, it is nec-
essary to account for uncertainty in the signal arrival/depar-
ture angles due to user movement and estimation errors. In 
[30], the authors propose a corresponding robust beamformer 
optimization problem and demonstrate improved robustness 
at high mobility.

Conclusions
Vehicular communications is an integral part of innovative 
transport telematics systems for traffic management and active 
road safety. It plays a key role in making public and private 
transportation faster, more reliable, more efficient, and safer. 
Realizing the necessary information exchange among roadside 
infrastructure and vehicles efficiently and reliably can be chal-
lenging. In that respect, cellular networks can provide valuable 
support to dedicated vehicular communication systems, since 
today’s cellular base stations are almost ubiquitously accessible 
and supply high bandwidth wireless connectivity. In this article, 
we have surveyed ongoing efforts and developments within the 
3GPP to implement vehicular communications over LTE. We 
have discussed research challenges associated with wireless 
communications at high mobility, and we have provided an over-
view of promising signal processing techniques to tackle impor-
tant hurdles. Even though significant progress in enhancing 

A big challenge from 
a signal processing 
perspective is efficient 
scheduling and 
coordination of multicast 
transmissions.
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wireless vehicular communications has been made in the past, 
there is room left for improvement.
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SIGNAL PROCESSING 
FOR SMART VEHICLE TECHNOLOGIES: PART 2
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Rickard Karlsson and Fredrik Gustafsson

Most navigation systems today rely on global navigation satellite systems (GNSS), 
including in cars. With support from odometry and inertial sensors, this is a suffi-
ciently accurate and robust solution, but there are future demands. Autonomous cars 

require higher accuracy and integrity. Using the car as a sensor probe for road conditions in 
cloud-based services also sets other kind of requirements. The concept of 

the Internet of Things requires stand-alone solutions without 
access to vehicle data. Our vision is a future with both in-

vehicle localization algorithms and after-market prod-
ucts, where the position is computed with high 

accuracy in GNSS-denied environments. We pres-
ent a localization approach based on a prior that 

vehicles spend the most time on the road, with 
the odometer as the primary input. When 
wheel speeds are not available, we present 
an approach solely based on inertial sen-
sors, which also can be used as a speedom-
eter. The map information is included in a 
Bayesian setting using the particle filter  
(PF) rather than standard map matching. 
In extensive experiments, the performance 
without GNSS is shown to have basically 
the same quality as utilizing a GNSS sen-

sor. Several topics are treated: virtual mea-
surements, dead reckoning, inertial sensor 

information, indoor positioning, off-road driv-
ing, and multilevel  positioning.

Introduction
Today’s positioning systems are intended for humans 

rather than machines. The position is presented and used 
for instructions in navigation systems or for reporting vehicle 

data, also including emergency accident location. We refer to the 
area as localization algorithms for several reasons. First, the word algorithm

indicates software development. Today there is already sufficient information at hand, 
in terms of sensors and databases, to make a leap in performance compared to GNSS-
based solutions. Second, localization is not a system, rather it is a service required by 
many systems. Third, the term navigation is avoided since this is only one application 
of localization algorithms. Fourth, localization is sometimes a more appropriate term 
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Date of publication: 3 March 2017

The Future of Automotive Localization Algorithms
Available, reliable, and scalable localization: Anywhere and anytime
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than positioning, since a true longitude and latitude position is 
of no value unless the map and situational awareness have the 
same absolute accuracy.

Consider the schematic picture of a vehicle in Figure 1.
The trend is to make vehicles autonomous [1]–[4] and utilize 
advanced driver assistance systems (ADAS). Hence, there is a 
need to improve both localization and velocity estimation sys-
tems. Basically, it is going beyond traditional point estimation 
methods [5], [6] to get a better probabilistic understanding [7]–
[10] of the environment using more detailed models and fil-
ters. The actuators (brake, steering wheel, engine torque) have 
essentially been the same since the automobile was invented, 
and only a few new actuator concepts have been introduced 
(active suspension, movable headlights, etc.).

In stark contrast to the actuators, the number of sensors has 
increased substantially over the last decade [11]–[13], e.g.,
■ the inertial measurement unit (IMU) [14] in the engine 

control unit (ECU) and in suspension sensors for estimat-
ing the vehicle state

■ vision, stereo vision, night vision, radar, sonar for monitor-
ing the surroundings, and keeping the vehicle in the lane at 
a safe distance (i.e., relative position control)

■ the wheel speed sensors (WSS) introduced with the anti-
lock braking system (ABS) are one of the most versatile 
sensors in the car

■ databases such as vectorized road maps [15]–[18] utilized 
for positioning including road height, map matching [11], 
[19]–[22], and pothole indications [23], etc.
Cars are slowly following the development of smartphones. 

Today there are many radio receivers in vehicles: cellular net-
work, Bluetooth, and Wi-Fi. These can be used in various 
signal processing applications such as localization and speed 
estimation. It is less explored that these information sources 
all include indirect information about the position. The vehicle 
state sensors contain information of road signatures (curves, 
banking, slopes, and small variations in the surface height). 
The vision sensors can see landmarks of known position. How 
the WSS can be used for positioning is described next.

Sensor fusion is used in all of the aforementioned cases for 
refining the information, where there are several good exam-
ples of virtual (or soft) sensors that compute physical quan-
tities that cannot readily be measured by sensors. Examples 
include the detection of obstacles, pedestrians, and animals 
from vision sensors and tire pressure and road friction from 
WSS. Our approach is based on statistical signal processing 
techniques, based on a simple odometric model of the vehicle 
and a model of each sensor relating to the vehicle state. In par-
ticular, the road map information is nonlinear and cannot be 
approximated with a linear Gaussian model, so a PF frame-
work is preferred to Kalman filter (KF) algorithms. The sensor 
fusion concept is summarized in Figure 2.

Future localization algorithm applications
This section discusses the need for improved localization 
algorithms highlighting areas such as cloud-based computa-
tions, autonomous driving, handheld devices, and mapping.

Cloud-based services
To some extent, positioning today is used for cloud-based 
crowdsourcing, such as in apps for pothole detection and 
speed camera positions, among others. This is an area that 
probably will explode in the future when manufacturers inte-
grate these reports in their own servers and offer their own 
and other customers services based on this information.

Consider potholes as an example of a virtual sensor: they 
are annoying to passengers and may be a hazard to the vehi-
cle. These are easily detected by accelerometers, WSS, or sus-
pension sensors, and the presence of potholes can be included 
in the car’s navigation system. The problem is how to share 
the information between users. Figure 3 shows an illustra-
tion of pothole detection and clustering [23]. Many vehicles 
have, in this case, hit the same potholes and delivered the 
estimated position to a cloud database. A cloud-based clus-
tering algorithm is then used to merge the various pothole 
detections into one unique pothole, and possibly also project 
the position to the road. This information can now be shared 
with other drivers, but it could also be used by road authori-
ties for maintenance.

Autonomy
Future autonomy will put high demands on the localization 
algorithms. Despite the media success of self-driving cars, the 
technology is still in development. On one hand, there is the 
Defense Advanced Research Projects Agency (DARPA) gen-
eration of cars where localization is based on a laser scanner, 
however, the cost of these vehicles is still far from affordable; 
see the DARPA grand challenge and urban challenge [1], [2].
Further, the laser scanner’s raised placement on the rooftop is 
not well aligned with the design. Google’s self-driving car [3]
is equipped with laser, radar, and cameras on the rooftop. 
Apart from most vehicles, it is not designed to be, or even 
possible to, drive manually. On the other hand, we have seen 
self-driving cars (Audi RS7 Piloted Driving presented in 
Hockenheim, Germany) positioned using differential GPS,
including yaw estimation from multiple antennas and camera 
information. These cars have demonstrated spectacular per-
formance on restricted accurately mapped areas.

Autonomous functions in the car, and in the extreme self-
driving cars, will need another level of integrity. The localization 
algorithms must work in tunnels, parking garages, urban street 

Driver
and

Planner
Controller

Actuators
Vehicle
Sensors

Sensor
Fusion

FIGURE 1. An illustration of data flow in a vehicle. Future ADAS functional-
ity might include cloud information as well as control, sensor fusion, and 
planning.
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canyons, and other areas where GNSS is problematic. If the satel-
lite signal is only mitigated and pseudoranges are available mul-
tiple model filters and map constraints might be an option [24].
However, for the general case: indoor driving, long tunnels, and 
multiple levels, the focus is on map-aided positioning without 
satellite signals.

Localization must also be robust against jamming and 
spoofing. Fleet management and theft tracking systems should 
not rely on access to GNSS.

Devices
With tens of billions of connected devices around us, some of 
them will be used in vehicles. There is, of course, a demand to 
keep track of those devices. In some cases, the devices can be 
connected to the car to take advantage of the sensor information 

on the computer area network (CAN) bus. However, there is no 
standard for the protocol here, so making devices connect to 
many original equipment manufacturer vehicles is a challenge; 
i.e., there is also a need for completely stand-alone localization 
algorithms. It will also be more common to transition from in-
vehicle estimation to handheld devices. 

Mapping
For positioning/localization, there could either be a priori 
map information available, or it could be derived from sensor 
data. Usually, accurate vectorized maps of the road network 
are available for vehicle positioning. This is the focus on the 
applications described in this article. Also, many landmarks 
such as speed-limit signs, etc. could be considered known and 
available in complementary databases.

(a) (b)

FIGURE 3. There are different sensors in a modern vehicle that can detect potholes. (a) Reports from a fleet of vehicles from NIRA Dynamics are sent to a 
cloud database [23]. (b) Since the potholes notion of position differs for natural reasons (based on GNSS), clustering is needed in the cloud.

FIGURE 2. An overview of positioning, orientation, and velocity estimation utilizing all available in-vehicle sensors, external databases, and cloud interaction.
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For the sake of completeness, and since the algorithms and 
methods are closely related, we will briefly discuss simultaneous 
localization and mapping (slam). It is an extension of the local-
ization problem to the case where the environment is unmodeled 
and has to be mapped on-line. A survey on the slam problem is 
given in [25]–[27]. The Fastslam algorithm introduced in [28]
has proved to be an enabling technology for such applications. 
Fastslam can be seen as a special case of Rao–Blackwellized 
PF (rbpf) or marginalized PF (mpf) (see the section “Bayesian 
Filtering”), where the map state containing the positions for all 
landmarks used in the mapping can be interpreted as a linear 
Gaussian state. The main difference is that the map vector is 
a constant parameter with a dimension increasing over time, 
rather than a time-varying state with a dynamic evolution over 
time. In [29], slam is used to get high accuracy map informa-
tion (centimeter resolution) utilizing all available sensors such as 
gps, odometer, and laser. In [30], a different technique utilizing 
image data for high-accuracy navigation is utilized.

Road maps and map matching
The unique feature with automotive localization algorithms is 
that vehicles spend most of their time on roads, and this is 

also the common theme in this article. We will show how 
road maps can be integrated with sensor fusion techniques to 
provide an accurate position with high integrity.

The classical method to improve localization performance is 
map matching [31], [22]. Here, the position estimate computed 
from the sensors (for instance, GPS) is mapped to the closest 
point on the road. This is an appropriate method for presenta-
tion purposes, but it suffers from two problems. First, it does not 
take the topography of the map into account, which implies that 
the localization can jump from one road to another. Second, the 
motion dynamics of the vehicle is not combined with the map 
information in an optimal way. Having said that, there are differ-
ent types of map matching, basically using the estimated trajec-
tory in combination with the GPS measurement to retrieve the 
most likely position. They are sometimes referred to as point-
to-point, point-to-curve, and curve-to-curve matching [11], [19]–
[21]. For a detailed survey over map matching, we refer to [22].

The purpose of this section is to survey different methods, 
which we refer to as dynamic map matching. This includes com-
bining a motion model, sensor models, and the road model in a 
nonlinear filter, including uncertainties. The problem is fitting 
a distorted and noisy trajectory to the road network. Figure 4  
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FIGURE 4. The key idea in dynamic map matching is to fit an observed trajectory to the road network. (a) Undistorted trajectory. (b) Undistorted trajectory 
with random rotation. (c) Trajectory based on biased speed. (d) Trajectory based on biased yaw rate. (e) Trajectory with random noise.
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illustrates the principle. Hence, it is possible to utilize only 
odometry and map information to get an accurate localization 
[32], [33].

Dead-reckoning principles
Dead reckoning is essentially calculating the integral of veloci-
ty or acceleration signals, with or without a vehicle model. It 
can be based on IMU data or WSS signals, for instance. We 
will look at several aspects including:
■ odometry or dead reckoning based on WSS
■ inertial sensor data dead reckoning
■ utilization of map matching
■ dynamic filtering.

Dead reckoning: Odometry
A simple motion model is based on a state vector consisting 
of position X , Y , and course }, in which case the principle of 
dead reckoning can be applied. Inserting the observed speed 

( )tmj  and angular velocity ( )tm}o  as input signals gives the 
following dynamic model with process noise ( )tw :

( ) ( ) ( ) ( ( )) ( ( )) ( ),

( ) ( ) ( ) ( ( )) ( ( )) ( ),

( ) ( ) ( ) ( ) .

cos cos

sin sin

X t T X t t T t T t w t

Y t T Y t t T t T t w t

t T t T t Tw t

m

m

m

j } }

j } }

} } }

+ = + +

+ = + +

+ = + +

j

j

}o o

This model has the following structure ( )T 1= :

( , ) ( , ) , , .gx f x u x u w ut t t t t t t t
m

t
m T

1 j }= + =+ o^ h

Normally, additional sensors are needed to get observ-
ability of the absolute position. However, the vectorized road 
map [15]–[18] contains sufficient information in itself. Note 
that the speed and the angular velocity measurements are 
modeled as inputs rather than measurements. This is in accor-
dance with many navigation systems, where inertial measure-
ments are dead reckoned in similar ways. Alternative road 
graph models are discussed in [34], and second-order motion 
models in [35].

Dead reckoning: Inertial sensors
Using an IMU, it is possible to directly measure the accelera-
tion and angular rotation. From these measurements it is 
theoretically possible to integrate the underlying system to 
achieve position, velocity, and direction [14]. This is a common 

approach for military aircraft navigation and underwater navi-
gation. It is possible to use this dead reckoning together with 
map matching to mitigate sensor imperfections. This is proba-
bly best achieved using dynamic filtering and will be de-
scribed more in the sequel. For cheap commercial sensors, 
usually a GPS sensor is needed to handle the drift due to 
small sensor biases.

Dead reckoning: Map matching
As discussed previously, map matching can be done by fitting 
an estimate to the closest road or by looking at segments, etc. 
Here we will focus on the point-to-point matching, i.e., that 
the estimate is mapped to the closest orthogonal distance. In 
Figure 5, a position estimate ( pr ) is considered to belong to 
road segment i, i.e., between the two road edges pir  and .pi 1+r

This can easily be verified if the following scalar products 
are greater than zero: ·p 0i i 2Dr  and · ( )p 0i i1 2D-+r , where 

.( , )p p dX dYi i i
T

1D = - =+r r  If this is the case, the closest dis-
tance to the segment can be calculated as | | ( ) · | | ,d p p ni= -r r t

using the normal vector ( , ) .n dY dX T= -t Such a project is 
needed in many localization systems and, in particular, utilized 
in the method described in the section “Bayesian Filtering for 
Map-Aided Positioning.”

Dead reckoning: Dynamic filtering
A generic nonlinear filter for localization consists of the fol-
lowing main steps:
■ Time update: Use a motion model to predict where the 

vehicle will be when the next measurement arrives.
■ Measurement update: Use the current measurement and a 

sensor model to update the information about the current 
location.
In a Bayesian framework, the information is represented 

by the posterior distribution given all available measurements. 
The process of computing the Bayesian posterior distribution 
is called filtering. Details are given in the section “Bayesian 
Filtering for Map-Aided Positioning,” where the distance cal-
culated in the section “Dead Reckoning: Map Matching” is 
used in a probabilistic way.

Bayesian filtering for map-aided positioning

Bayesian filtering
Nonlinear filtering is the branch of statistical signal processing 
concerned with recursively estimating the state xt  based on the 
measurements up to time t , { , , }y yYt t1 f_  from sample 1 to .t
The most general problem it solves is to compute the Bayes-
ian conditional posterior density ( | )p x Yt t . There are several 
algorithms for computing the posterior density. The KF [5]
solves the filtering problem in case the model is linear and 
Gaussian. The solution involves propagating the mean x |t tt  and 
the covariance P |t t  for the posterior distribution. For nonlinear 
problems, the model can be linearized before the KF technique 
is applied, leading to the extended KF (EKF) [6]. Methods also 
exist where the Gaussian approximation is the key element, 
hence no linearization is needed; for instance, the unscented 

P

Pi
Pi+1

n

P

Pi
Pi+1

n

FIGURE 5. The road segment i  with normal vector nt  and a position estimate 
.pr  The scalar product between the vectors can be used to determine whether 

or not the estimate should be considered to belong to the segment.
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KF [36] approximates the posterior at each step with a Gauss-
ian density. Common for these methods is that it is not trivial to 
impose hard constraints from the road map. They also do not 
work particularly well unless the posterior density is very 
monomodal or Gaussian. For a KF-based estimation with map 
information, see [37].

The road constraints imply a kind of information that 
normally leads to a multimodal posterior density (the target 
can be on either this road, or another road on the given map, 
etc.). Hence, a Gaussian approximation of the probability den-
sity function (PDF) is not suitable. A completely different 
approach to nonlinear filtering is based on approximating the 
posterior ( | )p x Yt t  numerically. The point mass filter (PMF)
[38] represents the state space using a regular grid of size ,N
where the grid points and the related weights ( ,x w( ) ( )i

t
i  are 

used as a representation of the posterior. Different basis func-
tions have been suggested, the simplest one being an impulse 
at each grid, when the posterior approximation can be writ-
ten ( | ,) ( )p x w x xY ( ) ( )

t t t
i

t t
i

i
N

1
. d -

=
/  where ( )xd  denotes the 

Dirac-delta function. The PF [10] is the state-of-the-art numer-
ical solution today. It uses a stochastic grid { , }w x( ) ( )

t
i

t
i

i
N

1=  that 
automatically changes at each iteration.

Depending on the model, it is also possible to implement 
numerical efficient filters combining KF and PF. The idea is to 
divide the state space into two parts. If there is a conditionally lin-
ear Gaussian substructure with this partition, the KF can be uti-
lized for that part and the PF for the other part. This is referred to 
as the RBPF or the MPF [7]–[9], [39]–[41]. The RBPF improves 
the performance when a linear Gaussian substructure is present, 
e.g., in various map-based positioning applications and target 
tracking applications as shown in [41]. The map-aided position-
ing algorithm based on the PF is summarized in Algorithm 1.

PF-based map-aided positioning
In this section, the map-aided positioning method is first 
illustrated on experimental data. Then the crucial map-based 
observation is described in detail. Finally, the algorithm per-

formance is presented on ten experiments conducted in the 
same driving scenario.

Map-aided positioning illustrations
Figure 6 demonstrates the map-aided positioning using wheel 
speed information and road map information, where GPS
information is used as a ground truth reference only; for other 
map-aided positioning applications, see, e.g., [42]–[48]. First, 
the PF is initialized in the vicinity of the GPS position. The ini-
tial distribution is chosen uniformly on road segments in a 
region around the GPS fix. Particles are allowed slightly off-
road to handle off-road situations and small map errors. In Fig-
ure 6(a), the algorithm has been active for some time. As can be 

Algorithm 1. The PF for map-aided positioning.

Given the system

( )x f x wt t t1 = ++

( )y h x et t t= +

1:  Initialization: For , ,i N1 f= , ~ ( )x p x| x1 ( )i
0 0 0-  and set .t 0=

2: PF measurement update: For , ,i N1 f= , evaluate the importance 

weights ( | , )p y x Y
( )

|
( )

t
i

t t t
i

t 1~ = -u , and normalize 

/( ) ( ) ( )
t
i

t
i

t
j

j~ ~ ~= u u/  using map information.

3:  Resample N particles with replacement: 

( ) .Pr x x|
( )

|
( ) ( )

t t
i

t t
j

t
j

1 ~= =-

4: PF time update: For , ,i N1 f=  predict new particles 

~ ( | , )x p x X Y|
( )

|
( )

t t
i

t t t
i

t1 1+ + .

5:  Increase time and repeat from step 2.

FIGURE 6. Map-aided positioning using WSS information in combination 
with road map information. The small black dots are particles, the red and 
blue circles represent mean estimate and ground truth (GPS) position, re-
spectively. Represented are time instances after initialization when the filter 
is still in (a) a multimodal state and (b) at convergence. (a) The illustration 
of the particle cloud after some iterations. The multimodal PDF represent-
ing the position (several clusters of particles). The particles clustered 
but still the mean point estimate (red circle) does not correspond to the 
ground truth GPS (blue circle). (b) The PF has converged to a unimodal 
PDF (one cluster). The mean estimate is now close to the ground truth.

(a)

(b)
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seen, the PDF is highly multimodal (several clusters of parti-
cles). Note that the PF algorithm uses only wheel speeds from 
the CAN bus and that the GPS is only used to evaluate the 
ground truth. After some turns, the filter has converged and the 
mean estimate (red circle) is close to the true position (blue cir-
cle); see Figure 6(b).

Map-aided positioning algorithm
As discussed in the section “Dead Reckoning: Map Match-
ing,” map matching can be used to fit an estimate to the clos-
est road segment. In this section, we will focus on the PF
implementation, so for each particle it is crucial to find the 

closest road segment. The generic PF algorithm is used for 
map-aided positioning. The road map is used as a virtual sen-
sor, so there is not an actual measurement function. Instead, 
the closest distance to every road segment is evaluated for 
each particle. The main advantage here compared to normal 
map-matching algorithms is that the entire probability density 
is considered, not just one point estimate. In Figure 5, a parti-
cle ( pr ) is considered to belong to road segment i , if the two 
defined scalar products are positive (see the section “Dead 
Reckoning: Map Matching”). The calculated distance can 
then be assumed Gaussian distributed and used in the PF
measurement update.

To make the algorithm efficient, each particle will remem-
ber the road segment that was closest in the last update. Hence, 
if the distance is still close enough, not every road segment 
needs to be considered.

Map-aided positioning performance
To evaluate the average performance, ten similar experiments 
were conducted (see Figure 7). All trajectories are driven 
approximately in the same way, however, it is not possible to 
have them synchronized in time. Hence, root mean square 
error (RMSE) evaluation is done at some fixed waypoints. In 
Figure 8(a), the RMSE is calculated for each trajectory 
against known GPS-waypoints. In Figure 8(b), the average 
RMSE is presented; the performance is comparable to standard 
GPS position error.

Multilevel positioning and indoor navigation
Indoor navigation is challenging since no GPS signal is available. 
However, for parking garages, the map-aided positioning princi-
ple can still be utilized if maps are available. These maps can 
also include obstacles such as pillars, side walls, etc. defining 
boundary regions. Since the geometry and curvature are quite 
different than when driving on normal roads, it is also beneficial 
to extend the simple vehicle model and include a more precise 
spatial vehicle model. This can easily be done by evaluating side 
walls and pillars surrounding a rectangle placed around the par-
ticles that correspond to the vehicle’s geometry.

To handle multilevels, one successful implementation is to 
utilize entry and exit points between levels and simply handle 
each level as a continuation of the previous. Inertial sensors 
such as inclination in longitudinal accelerometer signal can 
also support the level-change decision. Similar geometries can 
be found in multilevel highways in large cities.

For the positioning to work well on highways, there must be 
some variation in the geometry. For instance, driving on very 
straight highways for a long time will, of course, lead to a more 
uncertain position estimate, since the wheel radius cannot be 
known or estimated exactly. However, for such scenarios it is 
very likely that GPS reception is very good and could be used 
to adjust the position estimate.

Measurement features
The PF method for positioning is very general, and it is easy to 
add other information sources to the measurement update. 

FIGURE 7. Ten routes were driven (red GPS line), and the position using 
map-aided position is depicted for one of them (blue line).
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FIGURE 8. The RMSE for each trajectory as a function of driven distance 
evaluated at (a) specified waypoints and (b) as a total RMSE average at 
the same instances. Note that GPS was not used in the estimations but 
only as a source for ground truth evaluation.
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There are several important and common information sources 
for automotive positioning that can be utilized. Modern cam-
era-based vehicles can be equipped with traffic sign recogni-
tion, etc. If a database of the sign location is available, it fits 
perfectly into the map-aided positioning framework by simply 
adding a measurement update. Other information sources, 
such as maximum allowed speed information for a road, can 
be used for making a better proposal in the PF. In the future, 
more localization sources will probably be available, e.g., 
information exchange from the infrastructure.

Inertial sensors and velocity estimation
In this section, the use of inertial sensors such as accelerome-
ters and gyros, both for dead reckoning, sensor fusion, and as 
stand-alone velocity estimation is discussed.

Inertial sensors
An IMU measures acceleration and angular rotation. From these 
measurements it is possible to integrate the underlying system to 
achieve an estimate of position, velocity, and direction [14].

Dead-reckoning IMU
The pure integration or dead-reckoning approach relies on 
very accurate and expensive sensors that are not possible to 
utilize in commercial passenger vehicles. The main problem 
for affordable commercial sensors is that they have both 
unknown sensor biases and drifts that are impossible to 
remove. For instance, in the longitudinal acceleration direc-
tion, both sensor errors and hills will act like an unknown 
time-varying bias. Integrating twice to achieve position will 
very rapidly yield large position errors. For reliable stand-
alone navigation, without relying on, for instance, GPS, this is 
very difficult.

Map-aided positioning using IMU
An IMU-based map-aided position (stand-alone or in combi-
nation with WSS) was tested in [46], where the outcome was 
that the WSS is a superior velocity sensor due to the afore-
mentioned problems.

GPS and IMU fusion
For modern ECUs, the in-vehicle sensor cluster consisting of 
rate gyros and accelerometers can be used together with a 
GPS sensor to achieve position, velocity, and orientation esti-
mates [14]. However, not all vehicles have these signals, or 
they are not readily available. Hence, for many vehicles, 
application external sensors might be helpful, particularly uti-
lizing signals available in smart phones.

Consider the following state vector

,x q p v ai b b T
= ^ h

where q  is the quaternion vector, pi is the inertial position 
vector, vb is the velocity in the body system, and ab is the 
accelerometer vector in the body system. Let Cib be the con-
version matrix from body to inertial systems. Hence, in dis-

crete time, we have the inertial position .p p TC vt
i

t
i

ib t
b

1 = ++

It can be shown that

( ) ,q S q
2
1.

bi bi
b

bi~=

where bi
b~  is the angular velocity of the body system relative 

to the inertial system described in body coordinates.
Figure 9 shows the ekf estimate based on IMU and GPS

signals from a Google Nexus mobile phone using the data log-
ging from [49], together with the GPS position using a dis-
cretized model For this application, it is essential that some 
velocity estimation algorithm or position sensor is utilized to 
mitigate the dead-reckoning problem with unknown biases in 
accelerometer and gyro signals. Here the GPS sensor was uti-
lized instead of map-matching techniques.

Virtual speedometer
For some applications, an accurate velocity estimate is essen-
tial. A complementary method to the previously described 
estimation is to utilize frequency analysis. It turns out that the 
velocity of the vehicle is proportional to vibrations in the 
accelerometer signal [50]. This can be utilized in the previ-
ously described positioning filter. It is not as accurate as WSS
information, but for a stand-alone application when WSS is 
not available, data from a standard smart phone can be uti-
lized. In Figure 10, the lateral accelerometer spectrogram is 
depicted together with the angular velocity from the WSS (as 
ground truth). The spectrum is formed at every instance 
(downsampled to every second) by filtering the periodogram 
of the lateral acceleration. There is usually a frequency relat-
ed to the velocity. Note that there are usually some overtones 
as well. Utilizing this in the frequency domain, it is possible 
to construct a simple peak detector to estimate the velocity. 
The point estimates utilizing only the maximal peak in the 
accelerometer spectrum (batch-wise every second) is depicted 

East (m)

N
or

th
 (

m
)

GPS Position
Est Position

FIGURE 9. The fused position EKF estimate and the GPS position depicted 
in a street map utilizing sensor data from a Google Nexus Android mobile 
phone.
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in Figure 11. Usually this correlates to the true velocity, but 
there are some outliers. It is possible to improve the detector 
by incorporating the knowledge of overtones, but this is not 
done in this article.

For map-aided positioning, WSS information is always avail-
able. But for stand-alone applications, the vibration-based veloc-
ity estimate could be used as a complementary measurements 
for map-aided positioning. Figure 12 illustrates how the speed 
estimation can be used as input signal (instead of the WSS data) 
to the map-aided positioning. For low velocities, this is not accu-
rate enough, but pure accelerometer integration can potentially 
be used for short periods of time to support the algorithm.

Discussion and conclusions
We have discussed the needs in future automotive localization 
algorithms and pointed out that both accuracy and integrity 

have to be improved compared to the navigation systems 
today that rely on GNSS. For this purpose, we outlined a path 
to future automotive localization algorithms based on a statis-
tical signal processing approach, where information from vari-
ous sensors and information sources are fused based on given 
sensor models and an odometric motion model. The possible 
sensors include in-vehicle sensors such as WSS, accelerome-
ters, gyros, and external ones such as GPS. However, localiza-
tion concerns the relative position of the own vehicle 
compared to the surrounding, so the position relative the road 
network is more important that the absolute longitude and lati-
tude. A road map is the key information source for this pur-
pose, and we have discussed the concepts of map matching 
(basically projection of a position to the road network) and 
map-aided positioning (where the road map is treated as a sen-
sor). Furthermore, landmarks such as road signs detected by a 
camera and the inclusion of car to infrastructure information, 
and wireless sources (Bluetooth, Wi-Fi, and mobile position-
ing) will be crucial in the future, and this information is also 
easily incorporated in our framework.

We have, in particular, highlighted the crucial concept of 
map-aided positioning. Utilizing measurements from a yaw rate 
and wheel speed signals, we have shown that it is possible in 
urban areas to position a vehicle with almost GPS accuracy with-
out using any external GNSS positioning sensor when utilizing 
the vehicle model and accurate road map information in a PF. 
The incorporation of inertial sensor measurements for velocity 
estimation utilizing accelerometer vibrations was demonstrated, 
as well as the basic principle when using it for positioning.

Acknowledgment
This work was partially supported by the Wallenberg Autono-
mous Systems Program.

Authors
Rickard Karlsson (rickard@isy.liu.se) received his M.Sc. 
degree in applied physics and electrical engineering in 1996  
and his Ph.D degree in automatic control in 2005, both from 
Linköping University, Sweden, where he is currently an asso-
ciate professor. He has worked with automotive signal pro-
cessing applications at NIRA Dynamics since 2007 and target 
tracking applications at Saab Dynamics in Linköping between 
1997 and 2002. His research interests include positioning and 
tracking applications mainly using particle filters.

Fredrik Gustafsson (fredrik@isy.liu.se) received his M.Sc. 
degree in electrical engineering in 1988 and his Ph.D. degree in 

250

200

150

100

A
ng

ul
ar

 F
re

qu
en

cy
 (

ra
d/

s)

50

0
200 400 600 800

Time (s)
1,000

WSS

Accelerometer Spectrogram

FIGURE 10. An accelerometer spectrogram (filtered periodogram of the lateral 
acceleration as a function of time) compared to the velocity from the WSS,
where the harmonics correspond to the wheel rotation frequency.

60

50

40

V
el

oc
ity

 (
m

/s
)

30

20

10

0
0 200 400 600 800 1,000

Time (s)
1,200

Est Speed
True Speed

FIGURE 11. Velocity from the WSS compared to estimates derived from 
peaks in the accelerometer spectrum. Sometimes there are outliers or the 
wrong harmonic is selected, however, this can later be corrected by the 
overall velocity filter.

Map-Aided
Positioning

Velocity
PositionAcceleration

ψ.
Vibration-

Based Speed
Estimation

FIGURE 12. The general idea for stand-alone map-aided positioning when the 
WSS is not available is to use the acceleration vibration speed estimation as 
input to the map-aided positioning algorithm. With proper outlier rejection to 
the velocity estimates, the algorithm can function without WSS data. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

____________

___________

mailto:rickard@isy.liu.se
mailto:fredrik@isy.liu.se
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


69IEEE SIGNAL PROCESSING MAGAZINE |   March 2017 |

automatic control in 1992, both from Linköping University, 
Sweden. He is a professor of sensor informatics in the 
Department of Electrical Engineering, Linköping University. His 
research is focused on sensor fusion and statistical methods in 
signal processing, with applications to aerospace, automotive, 
audio, and communication systems. He is the author of four 
books, more than 100 international papers, and 14 patents. He is 
also a cofounder of three spin-off companies in these areas. He is 
an associate editor of IEEE Transactions on Signal Processing.

References
[1] DARPA. (2016). The grand challenge and urban challenge. [Online]. Available: 
http://archive.darpa.mil/grandchallenge/ 

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, 
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. 
Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algo-
rithms,” in Proc. IEEE Intelligent Vehicles Symp. (IV), 2011, pp. 163–168.

[3] Google. (2016). Google: The self-driving car. Available: http://www.google
.com/selfdrivingcar 

[4] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of autonomous 
car part i: Distributed system architecture and development process,” IEEE Trans. 
Ind. Electron., vol. 61, no. 12, pp. 7131–7140, Dec. 2014.

[5] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Trans. Am. Soc. Mech. Eng. J. Basic Eng., vol. 82, pp. 35–45, Mar. 1960.

[6] S. F. Schmidt, “Application of state-space methods to navigation problems,” Adv. 
Control Syst., vol. 3, pp. 293–340, 1966.

[7] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling 
methods for Bayesian filtering,” Stat. Comput., vol. 10, pp. 197–208, 2000.

[8] A. Doucet, N. J. Gordon, and V. Krishnamurthy, “Particle filters for state esti-
mation of jump Markov linear systems,” IEEE Trans. Signal Process., vol. 49, no. 
3, pp. 613–624, Mar. 2001.

[9] R. Chen and J. S. Liu, “Mixture Kalman filters,” J. Royal Stat. Soc. Series B 
(Stat. Methodol.), vol. 62, no. 3, pp. 493–508, 2000.

[10] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlin-
ear/non-Gaussian Bayesian state estimation,” IEEE Proc. F Radar Signal Process.,
vol. 140, no. 2, pp. 107–113, Apr. 1993.

[11] I. Skog and P. Händel, “In-car positioning and navigation technologies: A
survey,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 1, pp. 1454–1469, Mar.  
2009.

[12] W. J. Fleming, “Overview of automotive sensors,” IEEE Sensors J., vol. 1, no. 
4, pp. 296–308, Dec. 2001.

[13] W. J. Fleming, “New automotive sensors: A review,” IEEE Sensors J., vol. 8,
no. 11, pp. 1900–1921, Nov. 2008.

[14] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, 2nd 
ed. Stevenage, U.K.: IET, 2004.

[15] “ESRI shapefile technical description: An ESRI white paper,” July 1998.
[Online]. Available: https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf 

[16] Open street map [Online]. Available: http://openstreetmap.org

[17] S. Ammoun, F. Nashashibi, and A. Brageton, “Design of a new GIS for ADAS
oriented applications,” in Proc. IEEE Intelligent Vehicles Symp. (IV), June 2010,
pp. 712–716.

[18] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
Pervasive Comput., vol. 7, no. 4, pp. 12–18, Oct. 2008.

[19] C. Whitea, D. Bernstein, and A. Kornhausera, “Some map matching algo-
rithms for personal navigation assistants,” Transport. Res. Part C: Emerg. Technol.,
vol. 8, no. 1–6, pp. 91–108, 2000.

[20] J. Du and M. Barth, “Bayesian probabilistic vehicle lane matching for link-lev-
el in-vehicle navigation,” in Proc. IEEE Intelligent Vehicles Symp., June 2006, pp. 
522–527.

[21] D. Obradovic, H. Lenz, and M. Schupfner, “Fusion of sensor data in Siemens 
car navigation system,” IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 43–50, 2007.

[22] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-matching 
algorithms for transport applications: State-of-the art and future research directions,”
Transport. Res. Part C: Emerg. Technol., vol. 15, no. 5, pp. 312–328, 2007.

[23] O. Noren, “Monitoring of road surface conditions,” M.S. thesis, Dept. 
Electrical Engineering, Linköping Univ., Sweden, 2014.

[24] Y. Cui and S. S. Ge, “Autonomous vehicle positioning with GPS in urban canyon 
environments,” IEEE Trans. Robot. Automat., vol. 19, no. 1, pp. 15–25, Feb. 2003.

[25] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping 
(SLAM): Part I,” IEEE Robot. Automat. Mag., vol. 13, no. 2, pp. 99–110, June
2006.

[26] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping 
(SLAM): Part II,” IEEE Robot. Automat. Mag., vol. 13, no. 3, pp. 108–117, Sept.
2006.

[27] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” in Ser. Intelligent 
Robotics and Autonomous Agents. Cambridge, MA: MIT Press, 2005.

[28] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM a factored 
solution to the simultaneous localization and mapping problem,” in Proc. AAAI 
National Conf. Artificial Intelligence, Edmonton, Canada, 2002.

[29] J. Levinson and S. Thrun, “Map-based precision vehicle localization in urban 
environments,” in Proc. Robotics: Science and Systems, 2007.

[30] N. Mattern, R. Schubert, and G. Wanielik, “High-accurate vehicle localization 
using digital maps and coherency images,” in Proc. IEEE Intelligent Vehicles Symp. 
(IV), 2010, pp. 462–469.

[31] Y. Zhao, Vehicle Location and Navigation Systems. London: Artech House,
1997.

[32] F. Gustafsson, F. Gunnarson, N. Bergman, U. Forssell, J. Jansson, R.
Karlsson, and P. J. Nordlund, “Particle filters for positioning, navigation, and track-
ing,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 425–437, Feb. 2002.

[33] F. Gustafsson, U. Orguner, T. B. Schön, P. Skoglar, and R. Karlsson,
“Navigation and tracking of road-bound vehicles,” in Handbook of Intelligent 
Vehicles. London: Springer-Verlag, 2012, pp. 397–434.

[34] M. Ulmke and W. Koch, “Road-map assisted ground moving target tracking,”
IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 4, pp. 1264–1274, Oct. 2006.

[35] D. Salmond, M. Clark, R. Vinter, and S. Godsill, “Ground target modelling, 
tracking and prediction with road networks,” in Proc. Int. Conf. Information 
Fusion, July 2007. 

[36] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for fil-
tering nonlinear systems,” in Proc. American Control Conf., Seattle, WA, June
1995, pp. 1628–1632.

[37] K. Jerath and S. Brennan, “GPS-free terrain-based vehicle tracking on road net-
works,” in Proc. American Control Conf., June 2012, pp. 307–311.

[38] S. C. Kramer and H. W. Sorenson, “Recursive Bayesian estimation using 
pice-wise constant approximations,” Automatica, vol. 24, no. 6, pp. 789–801, Nov.
1988.

[39] C. Andrieu and A. Doucet, “Particle filter for partially observed Gaussian state 
space models,” J. Royal Stat. Soc. Series B (Stat. Methodol.), vol. 64, no. 4, pp. 
827–836, 2002.

[40] T. Schön, F. Gustafsson, and P. J. Nordlund, “Marginalized particle filters for 
mixed linear/nonlinear state-space models,” IEEE Trans. Signal Process., vol. 53,
no. 7, pp. 2279–2289, July 2005.

[41] T. B. Schön, R. Karlsson, and F. Gustafsson, “The marginalized particle filter 
in practice,” in Proc. IEEE Aerospace Conf., Big Sky, MT, Mar. 2006. 

[42] P. Hall, “A Bayesian approach to map-aided vehicle positioning,” M.S. thesis, 
Dept. Electrical Eng.. Linköping Univ., Sweden, 2001.

[43] Y. Cheng and T. Singh, “Efficient particle filtering for road-constrained target 
tracking.” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 4, pp. 1454–1469, Oct.
2007.

[44] N. Svenzén, “Real time map-aided positioning using a Bayesian approach,” 
M.S. thesis, Dept. Electrical Eng.. Linköping Univ., Sweden, 2003.

[45] J. Kronander, “Robust vehicle positioning: Integration of GPS and motion sen-
sors”, M.S. thesis, Dept. Electrical Eng., Linköping Univ., Sweden, 2004.

[46] G. Hedlund, “Map aided positioning using an inertial measurement unit,” M.S. 
thesis, Dept. Electrical Engineering. Linköping Univ., Sweden, 2008.

[47] P. Davidson, J. Collin, J. Raquet, and J. Takala, “Application of particle filters 
for vehicle positioning using road maps,” in Proc. 23rd Int. Tech. Meeting Satellite 
Division Institute Navigation, Sept. 2010, pp. 1653–1661.

[48] P. Davidson, J. Collin, and J. Takala, “Application of particle filters to a map-
matching algorithm,” Gyrosc. Navigat., vol. 2, no. 4, pp. 285–292, 2011.

[49] G. Hendeby and F. Gustafsson. (2013). Sensor fusion app: Sensor fusion at 
Linköping Univ. [Online]. Available: https://play.google.com/store/apps/
details?id=com.hiq.sensor

[50] R. Karlsson and F. Gustafsson, “Velocity estimation (n2515-028-wop00),” 
Patent application filed, Aug. 2015.

SP

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

____________________________

http://archive.darpa.mil/grandchallenge/
http://www.google.com/selfdrivingcar
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://openstreetmap.org
https://play.google.com/store/apps/details?id=com.hiq.sensor
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


70 IEEE SIGNAL PROCESSING MAGAZINE |   March 2017 |

XXXXXXXXXXX

1053-5888/17©2017IEEE

SIGNAL PROCESSING 
FOR SMART VEHICLE TECHNOLOGIES: PART 2

D igital signal processing (DSP) has been playing an increasingly important role in 
engine control and onboard diagnostics (OBD), a critical area of vehicle powertrain 
controls, to meet increasingly strict fuel efficiency requirements and emission regula-

tions. This article gives an overview of DSP applications in this field from a practical per-
spective and identifies fruitful areas for DSP research and development 

in engine control and OBD. It also provides examples in the areas 
of engine misfire detection, individual cylinder fuel-air ratio 

imbalance detection, and engine knock detection.

Introduction
Microprocessor-based electronic systems have 

become prevalent in modern automobiles, as 
they make it possible to meet increasing 
demands in powertrain control, chassis con-
trol, OBD, driver assistance, and numerous 
other emerging applications. DSP repre-
sents a predominant form of computation 
being performed by these microproces-
sors and has an important role in many 
automobile applications.

DSP has become indispensable for 
many advanced engine control and diag-
nostic functions because signal processing 

makes it possible to implement the control 
and diagnostics needed to meet increasingly 

strict fuel efficiency requirements and emission 
regulations. Throughout this article, the discussion 

will focus on gasoline engine applications, but many 
of the methods outlined also apply to diesel and other 

engine systems.
The applications of signal processing to engine control 

essentially started with the advent of microprocessor-based engine 
control units (ECUs) in the 1980s. Over time, the complexity of the associated 

DSP algorithms has evolved from simple to sophisticated processing, much in line with 
the increase in ECU processing capabilities. The application of signal  processing 
started from the exponential moving average filter, which is used for signal condition-
ing and smoothing because of its simplicity. The microprocessors or microcontrollers 
used in modern ECUs have evolved, and have significantly more computational power, 
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with some high-end microprocessors having dedicated built-
in DSP functions, which significantly speed up signal pro-
cessing and increase the computational efficiency. The result 
is that not only are finite impulse response (FIR) and infinite 
impulse response (IIR) filters quite feasible on modern platforms, 
but considerably more complex algorithms, such as fast Fourier 
transform (FFT), discrete Fourier transform (DFT), neural net-
works, and even modern machine-learning algorithms, have 
become possible.

In the automotive industry, the development of engine con-
trol and diagnostics is outpacing the development of the engine 
“hardware” itself. Sophisticated algorithms based on modern 
control theory and modern signal processing are being inte-
grated into engine control and OBD because simple and intuitive 
algorithms no longer satisfy stringent fuel economy and emission 
requirements. The deployment of these advanced algorithms is 
facilitated by many new sensors being added to engine systems. 
The end result is that an abundance of raw signal data is available 
for processing, and DSP is essential for processing and cleans-
ing this data, performing signal detection and important param-
eter estimation needed for vehicular processes. In particular, 
the automobile is a rotational machine and, as such, produces 
signals with periodic characteristics, and DSP techniques, such 
as frequency domain filtering, are both effective and essential to 

processing the data so that engine control and diagnostics chal-
lenges can be addressed in a robust manner.

This article provides a survey of DSP applications in engine 
control and OBD with a focus on practical automotive applica-
tions. The application examples we explore will mainly include:
■ engine misfire detection and related resonance noise removal 

and rough road detection
■ individual cylinder fuel-air ratio imbalance detection for con-

trol and diagnostics
■ engine knock detection.

Our discussion will cover many DSP methods used in the 
automotive industry, ranging from traditional to advanced sig-
nal processing techniques. The overview will focus primarily 
on the most common methods currently being applied to solve 
real problems faced by automotive manufactures. The discus-
sion will conclude with a summary of DSP applications in the 
automotive industry and highlight practical implementation 
matters. Figure 1 provides an overall taxonomy of key applica-
tion categories and techniques reviewed in this article.

OBD
OBD has become increasingly essential in modern automo-
biles. Today, all light-duty vehicles are required to be 
equipped with OBD systems by the California Air Resources 
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FIGURE 1. The taxonomy of DSP applications in engine controls and diagnostics.
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Board (CARB). Various OBD systems monitor the perfor-
mance of virtually every component that can affect the emis-
sion performance of the vehicle. If a fault is detected by an 
OBD system, a warning indicator or lamp on the vehicle 
instrument panel will illuminate to alert the driver.

A general OBD system is illustrated in Figure 2. The OBD 
system starts by collecting the signals to be analyzed, a detec-
tion and decision-making system, a bookkeeping system, and 
a malfunction indicator light. The detection and decision-
making system is the core of the OBD system and carries out 
the detection of signals or features of interest and is respon-
sible for making a decision as to whether a monitored device 
or system has failed. The bookkeeping system is responsible 
for interpreting the output of the detection system and decid-
ing whether and how to illuminate the warning light based 
on regulation rules. Among these subsystems, the detection 
system is the most challenging for manufacturers to design 
because the detection accuracy must be very high to meet 
CARB’s requirements, while the false alarm rates must also 
be very low to minimize the warranty cost caused by any 
false alarms.

Engine misfire detection
The misfiring of an automobile engine can directly lead to 
increased emissions into the atmosphere and cause potential 
damage to the catalyst. The engine misfire monitor is one of 
the most challenging OBD systems to design. Numerous mis-
fire detection methods have been researched, published, and 
patented by automotive companies, suppliers, universities, 
and research institutes. Even today, achieving the full range 
and robust misfire detection performance needed, while keep-
ing implementation costs low, is a very challenging task faced 
by automotive manufacturers, especially as there are a variety 
of new, emerging engine configurations and control strategies 
being deployed to enhance fuel economy.

The main challenge in the development of an on-board real-
time misfire detector is finding a unified and robust algorithm 
that can detect misfires and faulty cylinders with high detec-
tion accuracy, while having little to no false alarms, under all 
of the required engine operating conditions, misfire patterns, 
and potential sources of noise interference. The engine oper-
ating conditions include various engine speeds and engine 
loads, engine cold start, gear positions, mechanical dynamics, 
dynamic skip firings, and many other conditions. The strict-
est requirement for engine operating conditions is maintain-
ing a full range of misfire detection capabilities that cover the 

complete range of engine speeds and load conditions, with the 
notable exception at high engine speed and low load corner 
that are defined by CARB. The underlying misfire patterns 
can be quite varied, ranging from regular to random to hav-
ing special sequence characteristics. Further, misfires may 
also occur in paired or multiple cylinders. As an example of 
the challenge faced by misfire detectors, a recently proposed 
dynamic skip firing control strategy selectively deactivates 
cylinders to match the torque demand to improve fuel economy 
[1], and this new algorithm poses new challenges to some mis-
fire detection methods because of the potential to inaccurately 
distinguish misfires from skip firing. Further challenging mis-
fire detection is noise interference that may arise from various 
sources, such as, powertrain resonance, rough road surfaces, 
and electric motor torque mixed with engine torque in electri-
cal hybrid vehicles.

Because of the difficulties in meeting regulation require-
ments, automotive engineers have intensely studied a wide 
variety of engine signals, with engine speed or crankshaft 
speed fluctuation becoming the mainstream since onboard 
misfire monitors were required on automobiles, as illus-
trated by two decades of literature, such as those in [1]–[12].
The main reasons that methods based on engine speed have 
become mainstream in the automotive industry are the easy 
availability of the underlying signal, overall low implementa-
tion costs, and adequate detection performance under most 
conditions. With a good design that uses signal processing 
techniques, it is possible to design a robust engine-speed-based 
misfire detection algorithm that can meet CARB’s current full 
range of detection requirement.

In recent years, ion signals have been increasingly studied 
for misfire detection [13], [14], but misfire detection algorithms 
based on the ion signal currently are still only rarely used in 
mass production because of the immaturity of the technology, 
the current costs, and other constraints. Bringing the cost down 
and ensuring reliable detection using ion signals is a promising 
direction for future signal processing research.

Beyond engine crankshaft speed and ion signals, other sig-
nals that have been explored in the past for supporting misfire 
detection include the signals from measurement of instanta-
neous net engine torque, combustion chamber pressure, exhaust 
gas pressure, and optical observation of gas flows, as well as 
structure-borne sound.

Misfire detection using crankshaft speed fluctuation has 
mainly involved signal processing algorithms and other intui-
tive algorithms that, for example, apply model-based methods 
or attempt engine roughness analysis. Model-based misfire 
detection methods stem from the physical relationship between 
the engine crankshaft speed and engine torque and cylinder 
pressures. When each cylinder in an internal combustion 
engine fires, a torque pulse is applied to the crankshaft throw. 
When a cylinder misfires, the torque applied to the crankshaft 
is altered, resulting in an altered engine and driveline angular 
velocity response [15]. The pressure profiles associated with 
misfire cylinders are quite different from those of normal fir-
ing cylinders, and thus misfire detection is easy if the engine 
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FIGURE 2. A block diagram of a general OBD system.
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torque or cylinder pressures are available. Unfortunately, cur-
rently the installation of a torque sensor or individual cylinder 
pressure sensors in production vehicles for measuring engine 
torque or cylinder pressures is not practical due to their high 
cost and other technical concerns. Thus, many researchers 
have tried to establish various physical models to reconstruct 
torque or pressure profiles from the measured crankshaft 
speeds and, from these, make misfire decisions. An overview 
of the methods can be found in [15].

The problem with model-based methods is that it is very 
difficult to establish a robust model to meet the required mis-
fire detection performance under all required engine operat-
ing conditions. Even with a very accurate model that has been 
well calibrated, the model-generated responses from the mea-
sured crankshaft speeds, which are commonly contaminated 
by various sources of noise and interference, may be severely 
distorted and not suitable for making accurate misfire deci-
sions. In addition, model calibration is not a simple task for 
deployment in production vehicles, and thus complicated phys-
ical models were seldom used by automotive manufacturers for 
misfire detection.

To overcome the aforementioned problems, some research-
ers studied simplified models or solutions based on physical 
concepts. For example, the misfire detection is based on the 
indicated mean effective pressure (IMEP) estimated from 
crankshaft angular speeds [16], [17]. IMEP represents an 
average pressure of a cylinder during a combustion cycle, and 
it will decrease when a misfire occurs. Thus, misfire detec-
tion could be performed through the comparison of estimated 
IMEP of a cylinder with a preset threshold. In [16], a simple 
IMEP estimation model is derived that is proportional to the 
difference of the square of crankshaft angular speeds at the 
sample locations. A simpler approximation from experiments 
uses an estimate of IMEP proportional to the difference of 
crankshaft angular speeds [17].

Methods based on engine roughness analysis methods use 
the concept that the angular acceleration is proportional to 
the derivative of the engine rotational energy. Engine mis-
firing results in a decrease in engine crank rotational energy. 
A metric for engine roughness was 
introduced and able to be calculated 
in real time [2]. A misfire decision 
is made by comparing the calculated 
engine roughness with given thresh-
olds in terms of engine speed and load. 
Because of its simplicity and relative 
low computational load, it was eas-
ily implemented in ECUs for com-
plying with early OBD requirements 
[2]. However, it is nearly impossible 
to reliably work beyond an engine 
speed of 3,000 rev/min, not to mention 
the full range of detection requirements 
that were later imposed. To improve the 
detection performance, some developers 
have used low-pass filters and median 

filters to reduce the noise existing in the angular acceleration 
calculated from engine speed or angular time intervals [3].

Firings of an engine are arranged periodically in every 
engine cycle for all engine cylinders. Many signatures embed-
ded in crankshaft angular speed signals present deterministic 
periodic characteristics when they are viewed from the crank-
shaft angular domain. For example, the engine firing frequen-
cy is constant when the crankshaft angular speeds are sampled 
in the crankshaft angular domain. Thus, frequency-domain 
signal processing techniques can play a very useful and impor-
tant role in the design of misfire detection algorithms.

A DSP approach to a misfire detection algorithm was pre-
sented in [4], in which the misfire detection system achieves 
a high degree of accuracy through the combination of multi-
stage signal conditioning, multirate signal processing, statisti-
cal decision technology, and a mixed window size sampling 
strategy. This approach is capable of being installed on a large 
variety of motor vehicles through the use of existing on-board 
automotive microcontroller technology.

As illustrated in the block diagram for the misfire detec-
tion system in Figure 3 [4], which heavily uses signal process-
ing, the engine crankshaft angular speed (labeled “RPM” in 
the figure) is its major input signal for misfire signatures in 
the system. Another input is the manifold absolute pressure 
(labeled “MAP” in the figure) indicating engine load. It uses 
a medium data rate (e.g., three data points per firing event 
for a four-cylinder engine) to avoid signal aliasing that could 
possibly occur in a low data rate (one data point per firing 
event) system and avoid the high computational requirements 
associated with a high data rate system. The signal prepro-
cessing extracts average and fluctuation signal components 
from the engine speed and manifold absolute pressure signals 
using digital filters. The preprocessed engine speed and mani-
fold absolute pressure signal components are used to compen-
sate the influence of engine operating conditions through the 
process of misfire magnitude equalization. The equalized sig-
nal is then filtered to further enhance the signal-to-noise ratio 
(SNR) through the equivalent bandpass filtering. To reduce 
the computational load, the filtered signal is decimated into a 
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FIGURE 3. A DSP-based misfire detection system. (Figure adapted from [4].)
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low data rate signal before removing resonance noise that is 
potentially caused by powertrain dynamics. The signal is then 
further processed through normal firing mean equalization, 
which results in a firing data point output signal with a zero 
mean. This signal is then subsequently processed with a cube 
law processing to further enhance the separation between 
misfire and normal firing signatures, and thus improve detec-
tion performance.

Unlike many conventional methods, this system does not use 
any look-up threshold table for misfire decisions. To achieve 
a robust misfire decision, instead, it makes misfire decisions 
through a dynamic threshold mechanism based on the signal’s 
statistics information from previous normal firing and mis-
fire signatures. The statistical information is obtained with 
the running mean and deviation estimators, which use low-
pass filtering.

As shown in this example, signal processing directly leads 
to high performance in misfire detection, and signal processing 
further reduces system calibration efforts for various vehicle 
families because many filter parameters can be predetermined 
based on engine information, such as the number of cylinders.

Over the decades, many other signal processing methods 
have been explored for misfire detection, including FFT, time-
frequency analysis, and wavelet methods [6]–[8]. The main 
challenges for FFT and spectrum methods are identifying the 
misfired cylinder, high data sampling rates, and high compu-
tational requirements. Wavelet methods significantly increase 
implementation complexity, with much higher computational 
requirements, and thus are not readily applicable for onboard 
misfire detection in today’s production engine controllers. In 
addition, adaptive signal processing methods and Kalman 
filtering methods, as well as neural network techniques have 
been studied for misfire detection [9]–[12]. But while numer-
ous methods have shown that they can detect misfires in some 
cases, only a few misfire detection algorithms haven proven 
to robustly work across the full range of engine operating 
conditions required by regulations. Further, for an automotive 
manufacturer, the implementation cost is another critical con-
sideration, should a method even meet the technical require-
ments. Ultimately, it is desirable to have a single algorithm 
that works across a broad spectrum of engines with different 
numbers of cylinders (e.g., ranging from two to ten cylinders) 
as this will reduce algorithm implementation cost and shorten 
the learning curve for calibration by engineers.

Resonance noise removal
In the misfire detection system discussed previously, there 
is a special processing to remove resonance noise. This kind 
of noise is difficult to effectively filter out or suppress using 
conventional filtering methods because it is a nonadditive 
noise with time-variant resonance frequencies and damping 
characteristics inherent in the crankshaft speed signals. It 
occurs usually at high (fourth or higher) transmission gear 
and low engine speed and is basically caused by the reso-
nance characteristics of the powertrain dynamics when an 
impulse-type source excites the system. A large loss in engine 

torque due to misfire excites the powertrain and generates 
damped oscillations in engine speed. If the resonance inter-
ference is strong enough, false misfire counts may become 
triggered, and the resulting increase in “false alarms” is a 
major concern underlying the cost-effectiveness of warranties 
for automobile manufacturers.

Based on this explanation for resonance noise, a signal pro-
cessing technique using deconvolution is presented in [18] to 
effectively detect and remove the noise due to resonance by 
utilizing resonant and inverse filter banks. The misfire sig-
nal involved with resonance is modeled as the result of an 
impulse signal convolved with a resonant system, which can be 
described as a second order system. If the resonant frequency 
and damping factor are determined, then the misfire signal can 
be recovered from the deconvolution of the misfire signal cor-
rupted by resonance with the resonant system, i.e., the convo-
lution of the misfire signal with the inverse dynamics of the 
resonant system.

The resonance frequencies vary with engine operating con-
ditions, and thus a resonant filter bank with different resonant 
frequencies is used to determine resonance frequencies. Each 
resonant filter in the bank has the same input and is followed 
by a square-law detector. The maximum output in amplitude 
from the square-law detectors is used to determine whether 
resonance noise exists and its associated frequency. At the 
same time, the same input signal for the resonant filters is input 
into each inverse filter. The output signal from the inverse filter 
corresponding to the resonant filter with the maximum output 
is the best resonance-removed signal and is taken as the output 
of the processing system. Figure 4 shows the resonance noise 
detection and removal system [18]. Another advanced approach 
for the resonant frequency determination and noise removal is 
to use an adaptive signal processing technique for achieving 
better performance, in which the resonance frequency is adap-
tively estimated and the coefficients of the inverse filter are 
updated with the estimated resonance frequency.

Rough road detection
In addition to challenges that low load and high engine speed, 
or engine speed data that are corrupted resonance interfer-
ence, pose to misfire detection, interference associated with 
rough road conditions is another challenge for misfire detec-
tion algorithms. Signal processing can significantly suppress 
interference from rough road conditions in misfire detection 
and improve the misfire detection capability when a vehicle is 
driving on a rough road. For a robust DSP-based misfire 
detection algorithm, it is possible to continuously work with-
out disabling misfire monitoring under rough road conditions. 
However, the current reality is that most misfire detection 
algorithms that use crankshaft speed fluctuation still suffer 
from rough road interference during misfire monitoring: 
either normal firings sometimes are falsely detected as 
“misfires” or real misfires sometimes fail to be detected. 
These algorithms have to disable misfire monitoring when the 
vehicle encounters rough road conditions, which is currently 
allowed by CARB regulations.
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To disable misfire monitoring under rough road conditions, 
a rough road indication has to be determined in real time. The 
definition of roughness for rough roads is somewhat subjec-
tive, and the detection of rough road itself is not trivial. Popular 
rough road detection methods are based on signals from wheel 
speed sensors or crankshaft speed signals. Both left and right 
wheel speed signals are usually used as inputs in wheel speed 
methods [19]. The high-frequency components of the wheel sig-
nal contains the roughness signature of a road surface. First, the 
wheel speed signals are filtered with high-pass filters. The out-
put of the high-pass filters are then squared and passed through 
low-pass filters for averaging. The square root of each averaged 
signal is then compared with a predetermined threshold to gen-
erate a roughness indicator flag for use in the misfire monitor.

An FFT-based rough road detector using engine crankshaft 
speed as input was explored in [20], and its system block dia-
gram is illustrated in Figure 5. It first uses a filter to remove 
undesired components outside of a rough road frequency range. 
Then, the filtered signal is resampled for data reduction and 
rearranged for FFT. A power spectrum signal is calculated 
from the FFT components. The energy of the power spectrum 
signal is obtained by integrating the power of all its individu-
al components over a narrow frequency band, which usually 
ranges from 1 to 5 Hz for rough road detection, depending on 
engine operating conditions, such as engine speed and load. A 
rough road is detected when the energy signal is greater than the 
energy threshold, which is a function of engine speed and load. 
A more advanced rough road detection method is presented in 
[21], which is based on adaptive signal processing and statisti-
cal analysis techniques and does not use wheel speed sensors, 
but instead uses engine crankshaft speed and transmission output 
speed as its inputs.

Individual cylinder fuel-air ratio imbalance detection 
for control and diagnostics
Engines produce drive torque to propel a vehicle through com-
bustion of a mixture of fuel and air in cylinder chambers. A 
fuel-air ratio imbalance across cylinders could result in poor 
fuel economy and higher exhaust emissions. Thus, individual 
cylinder fuel-air ratio balance detection and control is an 
important feature in modern engine controls. CARB has also 
required automotive manufacturers to install fuel-air ratio 
imbalance on-board diagnosis systems in vehicles starting with 
the 2011 model year. Thus, both individual cylinder fuel-air 
ratio control and individual cylinder fuel-air ratio imbalance 
detection and monitoring are important for the improvement of 
fuel economy, reduction of exhaust emissions, and satisfaction 
of CARB’s regulations.

The most critical element for proper control and diagnostics 
is the real-time retrieval of fuel-air ratio information associated 
with individual cylinders. Currently, regulations only require 
that each engine bank’s fuel-air ratio imbalance is reported, 
instead of having each individual cylinder report its fuel-air 
ratio imbalance. However, information that can identify which 
cylinder is experiencing fuel-air ratio imbalance is extremely 
important for individual cylinder fuel-air ratio control because 

misidentification of cylinders could cause the control to diverge 
and negatively impact fuel economy and emissions.

Over the past two decades, many methods have been 
explored for determining the fuel-air ratio for individual cyl-
inders. The majority use upstream oxygen sensors (O2 sensors) 
located before the catalytic converters as the signal sources 
[22]–[32]. This type of O2 sensors includes either switching or 
wide-range O2 sensors. A few studies have focused on other 
methods such as ion current sensing [33].

An easy solution may be the direct measurement of each 
cylinder’s fuel-air ratio by installing wide-range O2 sensors 
inside each runner that is connected to its exhaust manifold. 
However, such a system is not practical or affordable for mass 
production. Thus, many methods to solve the problem have 
been researched and studied by automotive manufacturers and 
suppliers as well as academic institutes in recent years. They 
may be generally divided into two basic methods: model-based 
estimation methods and signal processing-based detection or 
estimation methods.

In the model-based methods [22]–[26], a physical, math-
ematical, or physical and mathematical mixed model is devel-
oped to describe the dynamic gas flows of an engine exhaust 
system. The model is usually considered as a state-space sys-
tem with input of the O2 signals measured at the exhaust sys-
tem’s confluence point. Then, Kalman filtering is applied to the 
state-space system to estimate the individual cylinder fuel-air 
ratio information. The estimation performance highly depends 
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nant and inverse filter banks. (Figure adapted from [18].)
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on the developed model’s accuracy and robustness against real-
world noise and interference. In real applications with various 
engine operating conditions, the exhaust gas flows are very 
complex and usually nonlinear and time varying. Thus, not 
only the model development but also the determination of the 
model parameters is relatively complicated.

To reduce the complexity of the model and simplify the pro-
cessing associated with updating estimation, some researchers 
have proposed linear models for individual cylinder fuel-air 
ratio estimation and application of recursive least-squares 
(RLS) techniques for the model parameter identification. In 
the method shown in [28], an engine and its exhaust system are  
modeled as an FIR system whose time-varying coefficients are 
determined based on measured engine sensor signals.

Signal processing methods, however, do not rely on any 
model and take advantage of the unique frequency character-
istics of the O2 signals when fuel-air ratio imbalance is present, 
thereby facilitating the retrieval of fuel-air ratio imbalance infor-
mation [29]–[31]. The key mechanism used is that the upstream 
O2 signal, either from a wide-range or switching O2 sensor, will 
become rough when the imbalance occurs and the roughness is 
proportional to the severity of the fuel-air ratio imbalance. If the 
O2 signal is sampled in an engine crankshaft angular domain, 
then the frequency with respect to crankshaft angular is con-
stant and depends on the cylinder numbers in an engine exhaust 
bank. Thus, the imbalance signature can be easily retrieved 
using frequency filtering or FFT analysis techniques.

In [29], the O2 signal is filtered using a high-pass IIR filter to 
obtain the fuel-air ratio imbalance frequency components. The fil-

tered signal is then separated into multiple 
signal sequences with an assumption that 
there is no gas coupling between cylin-
ders. An open-loop fuel perturbation and 
signal sequence comparison procedure is 
used to select the signal sequence that is 
the most aligned to a cylinder. The cylin-
der alignment becomes necessary for the 
method because each cylinder-related sig-
nature in the filtered signal has variable 
delays due to gas flow characteristics in 
the exhaust system.

Figure 6 shows a filtering-based fuel-
air ratio imbalance detector, in which a 
high-order FIR bandpass filter is used 
to retrieve the fuel-air ratio imbalance 

frequency components [30]. The FIR filter order is 50 for a ten-
cylinder engine. The filter used for the O2 signal is designed 
in terms of an order-based spectral analysis and filtering tech-
nique. The bandpass-filtered signal is compared to a precali-
brated threshold that depends on the engine speed and load for 
the fuel-air ratio imbalance decision making.

To further determine the fuel-air ratio imbalanced cylinder, 
the data that are output from the bandpass filter are sequen-
tially and periodically saved into data buffers corresponding to 
the different engine cylinders. The buffer size is decided by the 
cylinder number in an engine exhaust bank. Then, each buffer’s 
signal is low-pass filtered. The averaged signal in each buffer 
is counted in a given air-fuel ratio imbalance test window. Air-
fuel ratio imbalance cylinder identification is determined only 
at the end of the test window. The cylinder ID associated with 
air-fuel ratio imbalance is identified as the one correspond-
ing to the index of the imbalance counter that has a maximum 
counter value if the counter value is greater than the imbalance 
emission threshold. The index of the imbalance counter is cal-
culated from the buffer index with an adjustment of exhaust 
gas transport delay cylinder event count offsets. Similar to the 
aforementioned method presented in [29], the accuracy of the 
exhaust gas transport delay estimation is also critical for the 
cylinder identification. In this method, the exhaust gas trans-
port delay cylinder event count is calibrated based on vehicle 
dynamometer data for each engine operating point, engine 
speed and load, and both rich and lean imbalance conditions.

Another method is based on FFT or DFT analysis of O2 sig-
nals for individual cylinder fuel-air ratio imbalance detection 
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FIGURE 6. A filtering-based fuel-air ratio imbalance detector. (Figure adapted from [30]. Reprinted with permission from SAE International.)
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and control [31]. In this method, the 
FFT or DFT of the O2 signal is calcu-
lated first, and the amplitude of the first 
harmonic is then used for fuel-air ratio 
imbalance decision making through a 
comparison with a given threshold. Once 
the imbalance is detected, it retrieves 
fuel-air imbalance relations among cy -
linders through the study of the fre-
quency characteristics of the cylinder 
imbalance patterns. With this method, no synchronization sig-
nal is needed, and thus it avoids the risks associated with pos-
sible synchronization errors.

The aforementioned methods are frequency-domain signal 
processing methods. A nonfrequency-domain-based signal 
processing method is presented in [32]. In the previously dis-
cussed methods, the obtained fuel-air ratio information is a 
relative quantity, not the estimate of the actual fuel-air ratio 
or its deviation from the stoichiometric point. The method 
shown in [32] uses a temporal array signal processing tech-
nique to estimate the actual fuel-air ratio or equivalently its 
deviation to the stoichiometric point, through an array of data 
samples from an oxygen sensor located in a confluence point 
of runners fed into each cylinder’s estimator, as shown in the 
block diagram of Figure 7 [32]. For a switching O2 sensor, in 
the method, the O2 signal sampled in the crankshaft angular 
domain is first linearized, and then input into the signal array 
formation block to generate a signal array for the input of the 
fuel richness estimator, which is used to estimate the absolute 
fuel-air ratio or its equivalent. Finally, the estimated fuel-air 
ratio of each cylinder is used for OBD or fuel-air ratio balance 
control. This method requires the installation of wide-range 
sensors in each exhaust runner for the calibration of the fuel 
richness estimators.

In summary, model-based methods typically originated from 
control theoretical concepts. They are relatively complicated in 
design and calibration for mass production. Signal processing 
methods (and the frequency filtering methods, in particular) are 
more attractive to automotive manufacturers because of their 
implementation simplicity and relatively lower computational 
load and calibration efforts. Most filter parameters can be deter-
mined in the system development stage, instead of being cali-
brated in the vehicle release stage. This is a strong advantage for 
application of signal processing techniques.

Knock detection
Minimizing engine exhaust emissions and improving fuel 
economy are two challenges in modern engine controls. One 
approach to improving fuel economy is to maximize engine 
efficiency by optimally controlling spark timing under given 
operating conditions [34]. Abnormal combustion, such as 
combustion that occurs too early, will result in a knocking 
phenomenon that not only limits engine power generation but 
also causes damage to engine pistons, rings, exhaust valves, 
and other engine components. Thus, knock detection is cru-
cial for optimal spark timing and engine protection.

When engine knocking occurs, pressure shock waves are 
generated and excite resonance inside the combustion cham-
ber. The knock resonance frequency depends on the cylinder 
bore diameter and combustion chamber gas temperature [40]
and typically ranges from 5 to 7 kHz. Two to four additional 
frequency peaks are also evident between the fundamen-
tal frequency and 20 kHz. Because of the characteristics of 
the knock signals, signal processing techniques are the most 
effective means to enhance the SNR and reliably perform 
knock detection.

Several types of sensors, such as the piezoelectric acceler-
ometer sensor, cylinder pressure sensor, and ion sensor have 
been investigated for knock detection. Due to reasons of cost 
and technology maturity, however, the sensor most com-
monly used in production is the piezoelectric accelerometer 
knock sensor, which is usually mounted on the engine block 
and generates vibration signals. Regardless of sensor type, 
the signals generated are inevitably contaminated by noise or 
interference; thus, it is necessary to further process the raw 
signals to enhance the SNR to achieve reliable knock detec-
tion. Additionally, the signals measured from knock-generated 
shock waves and vibrations are generally nonlinear and time 
varying. This makes knock detection more complicated and 
challenging. Not only have automotive engineers been mak-
ing significant efforts to develop practical and reliable knock 
detection systems, but many academic researchers have also 
been exploring advanced signal processing techniques for 
knock detection. The result has been that knock detection has 
become a very fruitful area for application of signal processing 
techniques in engine control and diagnostics.

Various knock detection methods that use signal processing 
have been intensively studied in recent decades. The methods 
mainly use frequency-domain filtering, DFT [38], [39], power 
spectrum analysis [40], time-frequency analysis [41]–[43], and 
wavelet transform [44]–[46]; refer to [35] for reviews of the 
early generation of knock detection algorithms used by the 
automotive industry.

Knock detection based on frequency-domain filtering has 
been widely used in automotive production because of its sim-
plicity and low cost. Even today, it is still the main approach 
used in mass production automotive applications. As shown 
in Figure 8, typically, filtering methods use bandpass filters 
to retrieve the knock-based resonance signatures after prepro-
cessing of the signal from a knock sensor, such as antialiasing 
filtering and signal amplifying, use an envelope detector (or 
rectifier) to obtain the knock intensity signal and then make a 
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FIGURE 7. The system block for individual cylinder fuel richness estimation. (Figure adapted from [32]. 
Reprinted with permission from SAE International.) 
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knock decision. The implementation of filtering and envelope 
detection approaches for knock intensity detection evolved in 
several stages from analog technologies, to mixed analog and 
digital technologies, to today’s fully digital technologies.

As mentioned previously, the knock signals’ resonance 
frequency and its harmonics range from 5 to 20 kHz, and the 
signal sampling rate can be as large as 100 kHz. Existing com-
mon ECUs have difficulty performing real-time processing of 
signals with such a high sampling rate. Thus, knock detection 
is often implemented in a dedicated integrated circuit, and 
then the knock intensity is transferred from a chip to an ECU 
through a communication interface at a much slower data rate 
compared to the knock sampling rate. Today’s knock detector 
devices have flexible configurations with programmable capa-
bilities for gain, bandpass filter frequencies, and integrators.

When an ECU receives knock intensity signals from a knock 
detector device, the knock decision is made by comparing the 
knock intensity or its integration result to a preset threshold or 
the one calculated or obtained using look-up tables based on 
engine operating conditions, such as engine speed and load. 
To improve the detection performance and reduce calibration 
effort, some recent papers have proposed further processing 
of knock intensity using statistical methods. These stochastic 
approaches assume the knock intensity has a lognormal dis-
tribution and estimate a new metric, called the knock factor,
that is related to the high and low percentiles for a lognormal 
distribution given the number of consecutive knock intensities 
[37]. The knock factor then is used for knock control.

In addition to frequency-domain-filtering methods, meth-
ods that perform spectrum analysis, such as power spectrum, 
FFT, and DFT, have advantages for knock detection [38]–[40].
Among them, however, DFTs are the most viable solution for 
real-time knock detection, at least until ECUs become com-
putationally more powerful. A detailed strategy using DFTs 
is discussed in [38] for implementing the detection of knock 
signatures. The method uses multiple single-point DFTs to 
monitor the fundamental frequency plus the vibrational modes 
of an engine. The DFT algorithm provides better frequency 
discrimination than analog or digital filters. It is also less com-
putationally intensive than an FFT when only a few frequency 
points are monitored, even though the FFT is more efficient 
in total time required when calculating across all allowable 
frequency ranges. In real-time processing, DFT has another 
advantage over FFT. That is, all samples for an FFT must be 
stored in memory before its calculations, but the DFT can be 
calculated one sample at a time because there is no linkage 
between samples as there is with the FFT [38]. Similar to time-
based filtering, the DFT method uses a time window to pro-
cess the data points in the knock-possible period. The paper 

[39] presented an approach for varying 
the knock detection window length 
while using the single-point DFT detec-
tion method.

The aforementioned frequency fil-
tering and transform spectrum meth-
ods are relatively simple. However, 

because they do not consider the time-varying nature of res-
onance frequencies as well as nonlinear behavior of knock 
waves due to the complicated changes of cylinder gas temper-
atures and other physical phenomena, the knock information 
cannot be precisely detected or estimated for robust knock 
control and optimal spark timing under some engine operat-
ing conditions. To more effectively retrieve time-frequency 
dependent information associated with engine knocking, 
more advanced signal processing techniques such as time-
frequency analyses and wavelet transforms have been studied 
recently [41]–[45].

The advantage of using time-frequency signal representa-
tions is in their ability to recognize time-frequency-dependent 
features, such as the frequency shifts that occur in the knock 
signal [41]. Both the Wigner–Ville distribution and the cross 
Wigner–Ville distribution were studied for a V6 engine’s 
knock signal analysis in [41], and the test results showed that 
the SNR improved significantly compared to the bandpass fil-
tering method. To overcome the drawback of the large number 
of operations required to perform such transforms, a pseudo-
Wigner distribution was proposed for the time-frequency 
analysis of the knock signals [42]. Figure 9 shows a typical 
high-pass filtered knock signal and its Wigner–Ville spectrum 
generated from several knock signals, where the knock reso-
nance frequencies are clearly displayed with changes corre-
sponding to the engine crank angle [48].

The wavelet transform is good for time-scale analysis of 
a signal. In recent years, many researchers, mainly from aca-
demic areas, studied the application of wavelet transforms 
for knock feature detection. Unlike the Fourier transform, 
the wavelet transform provides the time-evolution of the sig-
nal at different scales. The discrete wavelet transform (DWT) 
is a computationally efficient implementation of the wavelet 
transform and is more suitable for knock detection applica-
tions as reported by [44]. The paper [45] proposes a knock fea-
ture extraction method using wavelet packet transforms, and 
through the examples they studied, they showed that the wave-
let packet transform improves the time-frequency resolution 
and has advantages in extracting knock feature information, 
knock intensity and the time of knock occurrences, even under 
light knock conditions, compared to the DWT method.

Instead of using accelerometer sensor signals for knock 
analysis, some researchers have also studied wavelet trans-
forms using ion current signals [46].

In addition to the aforementioned mainstream knock detec-
tion techniques, other signal processing methods were also 
explored for knock detection recently, such as neural networks-
based knock feature extraction methods [47], model-based 
knock detection methods [48], as well as the Hilbert–Huang 

Signal
Preprocessing

Knock
Sensor
Signal

Knock
Decision
Output

Bandpass
Filter

Envelope
Detector

Knock
Decision

FIGURE 8. A block diagram of a typical frequency-domain-filtering-based knock detector.
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transform (HHT)-based knock detection method [49], which 
allows for the decomposition of a multicomponent nonstationary 
signal into individual components. A precise characterization of 
the knock phenomenon can be observed from separated knock 
resonance components using HHT.

Signal processing approaches for knock detection have 
become a very productive approach to supporting engine 
control and diagnostics. Due to today’s ECU processing capa-
bilities, the most popular methods used in mass production 
applications are still those based on filtering. DFT methods 
are becoming feasible for emerging ECUs with high-perfor-
mance processors or with additional dedicated DSP copro-
cessors or special hardware systems. It is still not practical 
for many advanced signal processing methods, such as time-
frequency analysis and wavelet transform techniques, to be 
performed on an ECU in real time; however, these techniques 
can possibly be used in off-board analyses during production 
development stages.

Summary and outlook
This article has provided an overview of how DSP is being 
applied in several important areas associated with engine con-
trol and OBD. At a high level, the DSP techniques used in 
these applications mainly involve frequency filtering, FFTs and 
DFTs, time-frequency signal analysis, and wavelet transforms. 
Additionally, a wide array of advanced signal processing tech-
niques, including Kalman filtering, neural networks, the HHT, 
and other techniques, have been studied and shown to be 
promising, and the industry is anticipating that these methods 
will become more valuable as their efficiency increases and 
their cost of implementation decreases in the future. DSP tech-
niques show great promise for solving many challenging prob-
lems in misfire detection, estimating individual cylinder 
fuel-air ratios, and performing knock detection. Some of the 
DSP algorithms that have been developed demonstrate unique 
advantages that are difficult to obtain using other non-DSP 
methods, particularly in terms of achieving high accuracy and 
robustness when performing event detection and estimation of 
underlying parameters.

As one surveys these different DSP applications for automo-
biles, what is evident is that over the past few decades there has 
been an evolution in how DSP techniques have been researched 
and applied to engine control and diagnostics. This evolution is 
basically a reflection of the challenges facing automobile pow-
ertrain applications before they can be successfully integrated 
into a production application: a newly developed method is 
required to address an important safety and regulatory require-
ment, while achieving robust performance, being able to carry 
out its processing in real time, having low implementation cost, 
and requiring minimal to low calibration effort.

These challenges are complex, especially as an engine 
needs to run in various ambient environments and under vari-
ous specified operating conditions. Unfortunately, many meth-
ods can work for a special case or in a limited range, but they 
are still not useful for real automotive applications because 
they are unable to fulfill all of the required tasks faced in a 

real production vehicle. Thus, a useful DSP method has to 
be robust enough to handle all these situations in production 
without any exception.

Because of real-time engine control and OBD, DSP meth-
ods also should not be too complicated so that they can be 
processed within a permitted time slot, while all of the other 
processing tasks are being performed. For example, the time 
interval between two engine firings is only 2.5 ms for an 
eight-cylinder engine at an engine speed of 6,000 rev/min. 
Frequency-domain-filtering techniques have a relatively low 
computational time compared to most advanced DSP tech-
niques. Since many engine signals have periodic charac-
teristics, automotive engineers have artfully designed DSP 
algorithms that take full advantage of these characteristics to 
make their system design and sampling strategies more robust 
and simpler, without having to rely blindly on heavy-hammer 
approaches to solving problems.

Although ECU processing power continues to increase, 
the engine control and diagnostic algorithms become more 
and more sophisticated and complex thus outpacing available 
computational resources. The application of many advanced 
algorithms is currently limited by ECU processing capabil-
ity. More powerful processing capability means more costs 
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for production. Cost is an important consideration for auto-
motive manufacturers. Low cost and high processing perfor-
mance of the ECUs are needed for mass production. Beyond 
the intensive research on various efficient and robust DSP 
algorithms, microprocessor manufacturers have focused their 
efforts on building computationally powerful automotive ori-
ented microcontrollers with the goal of reducing overall costs 
by utilizing various technologies. For example, the Motorola 
CPU16 has some very basic DSP instructions, and Freescale 
Semiconductor’s MPC 5554 Copperhead microcontroller and 
MPC5674F Power Architecture microcontroller have a power-
ful built-in signal processing engine (SPE), which is able to 
accelerate signal processing with its vector processing capa-
bility that allows two arithmetic operations to be completed 
in parallel. The SPE works with either fixed-point or float-
ing-point operations and runs especially efficiently for DSP 
algorithms because the specially designed DSP functionality 
can accelerate signal processing computations, such as those 
associated with FIR and IIR filters and DFTs.

According to a study of software solutions for knock detec-
tion by [50], more than 50% reduction of ECU computational 
time can be achieved using the Copperhead microcontroller’s 
SPE functions compared to the conventional C code implemen-
tation, and, therefore, the use of the SPE feature makes an ECU 
capable of running more applications or extending the life of 
one generation of ECU. The microcontroller MPC5674F fur-
ther provides a special feature to perform frequency-filtering-
based knock detection without additional external components. 
This avoids use of separate knock detection application-specific 
integrated circuits and other components and therefore reduces 
overall system cost. The aforementioned example represents a 
trend of comprehensive on-chip integration and virtual sensing 
capabilities provided in high-performance automotive micro-
controllers to help automotive developers accelerate next-gen-
eration engine control design and simultaneously achieve both 
performance and cost benefits.

From the viewpoint of automotive manufacturers, there 
are many vehicle models to be produced every year. For 
each feature or application, they wish to have a unified algo-
rithm that can be used in all models of vehicles through 
proper configuration and minimal calibration complex-
ity. The development of DSP applications needs to consider 
these requirements. Because of the periodic characteristics 
of engine signals, DSP has the potential to reduce calibra-
tion effort. Some interested frequencies are constant when 
the systems are designed to execute in the crankshaft angle 
domain and use signals that are sampled in the same domain. 
This significantly simplifies the designed DSP systems and 
reduces the calibration efforts. As in the previously given 
examples of misfire detection and individual cylinder fuel-air 
ratio imbalance detection, frequency-domain DSP methods 
have a distinct advantage.

Based on the aforementioned criteria and considerations, 
it is not difficult to understand why the most popular DSP 
methods for engine control and OBD are still frequency-
filtering techniques—particularly because of the techniques’ 

maturity and relatively low implementation cost. The FFT or 
DFT methods are becoming feasible when they are imple-
mented in the ECUs with high-performance processors or 
ones with additional dedicated DSP features or special DSP 
hardware systems. It is still not practical for many advanced 
signal processing methods, such as time-frequency analysis 
and wavelet transforms, to be deployed for onboard real-time 
processing in today’s ECU environment because of their 
high computational demands. However, these techniques 
can possibly be used in off-board analyses during produc-
tion development stages. We view these challenges as a great 
opportunity for signal processing to play a critical role in the 
automotive industry. As the title of a January 2014 “Special 
Reports” column in IEEE Signal Processing Magazine [51]
indicated, the automotive industry is a key contributor to the 
success of the DSP sector. There are many opportunities for 
DSP applications in automobiles, including infotainment, 
telematics, advanced driver assistance systems, and autono-
mous driving. DSP applications in powertrain controls seem 
not as visible to most automobile consumers as the aforemen-
tioned application areas for making smarter cars. However, 
one trend is evident: advanced DSP techniques will be essen-
tial in various engine control and OBD applications, as well 
as in other powertrain controls, especially as ECUs continue 
to evolve to have more processing power available for more 
mature and sophisticated DSP algorithms that will improve 
vehicle fuel economy and emission performance for making 
greener cars.
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SIGNAL PROCESSING
FOR SMART VEHICLE TECHNOLOGIES: PART 2
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Bashar I. Ahmad, James K. Murphy, Simon J. Godsill, 
Patrick M. Langdon, and Robert W. Hardy

Using an in-vehicle interactive display, such as a touch screen, typically entails under-
taking a freehand pointing gesture and dedicating a considerable amount of attention, 
that can be otherwise available for driving, with potential safety implications. Due to 

road and driving conditions, the user’s input can also be subject to high levels of perturba-
tions resulting in erroneous selections. In this article, we give an over-

view of the novel concept of an intelligent predictive display in 
vehicles. It can infer, notably early in the pointing task and 

with high confidence, the item the user intends to select 
on the display from the tracked freehand pointing ges-

ture and possibly other available sensory data. 
Accordingly, it simplifies and expedites the target 

acquisition (pointing and selection), thereby 
substantially reducing the time and effort 
required to interact with an in-vehicle dis-
play. As well as briefly addressing the vari-
ous signal processing and human factor 
challenges posed by predictive displays in 
the automotive environment, the funda-
mental problem of intent inference is dis-
cussed, and a Bayesian formulation is 
introduced. Empirical evidence from 
data collected in instrumented cars is 
shown to demonstrate the usefulness and 

effectiveness of this solution.

Introduction
The complexity of in-vehicle infotainment sys-

tems (IVIS) has been steadily increasing to 
accommodate the growing additional services associ-

ated with the proliferation of smart technologies in mod-
ern vehicles. They aim to improve the driving experience and 

safety, for example, advanced driver assistance, route guidance, 
driver inattention monitoring, and many others [1]. Consequently, minimiz-

ing the effort and distraction of interacting with or controlling the IVIS is a key chal-
lenge [2]. This article introduces and presents an  overview of the predictive in-vehicle 
display system, which utilizes suitable statistical signal processing algorithms to 
enhance and simplify human–machine interaction (HMI) in automotive applications, 
including IVIS-related interactions.

 Digital Object Identifier 10.1109/MSP.2016.2638699
Date of publication: 3 March 2017
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Lately, there has been a strong move toward replacing tra-
ditional static mechanical controls in vehicles, such as buttons, 
switches, and gauges, with interactive displays, mainly touch 
screens [2]. This is motivated by the evolution of the increas-
ingly ubiquitous touch-screen technology and the ability of 
these displays to 
1) effectively handle a multitude of functions by incorporat-

ing large quantities of information associated with IVIS
2) promote intuitive interactions via freehand pointing ges-

tures, especially for novice users
3) offer design flexibility through a combined display-input-

feedback module
4) minimize clutter in the vehicle interior given their adapt-

ability to the context of use, unlike mechanical controls. 
For example, the Tesla Model S car features a 17-in touch screen 
controlling most of the car functions [3]. Additionally, other types 
of displays, such as head-up displays (HUDs) and general three-
dimensional/dimensions (3-D) displays, have the potential of pro-
viding a more immersive driving experience and are becoming 
increasingly commonplace in vehicles [4], [5], for instance, the 
Jaguar Land Rover HUD windscreen incorporating laser hologra-
phy [6]. However, such displays are often passive, and users lack 
the means to easily interact with them in an automotive setting.

Interacting with an in-vehicle touch screen typically involves 
undertaking a freehand pointing gesture to select an item on 
the display. This requires dedicating a considerable amount of 
visual, cognitive, and manual attention that is otherwise avail-
able for driving. The user input can also be subject to pertur-
bations due to the road and driving conditions, resulting in 
incorrect on-screen selections [7], [8]. For example, the rate of 
successfully selecting an icon on the in-car display can be less 
than 50% when driving over a badly maintained road [8]. Rec-
tifying an erroneous selection or adapting to the present noise 
will tie up more of the user’s attention. This can render using 
interactive displays in vehicles effortful and distracting, with 
potential safety consequences [9]. Hence, there is a need for a 
solution that simplifies interaction with in-vehicle displays via 
intuitive freehand pointing gestures or that even enables it for 
emerging display technologies such as HUDs. 

An intelligent in-vehicle predictive display, whose top-level 
block diagram is depicted in Figure 1, employs a gesture tracker 
(and possibly other sensory data when available), in conjunction 
with a probabilistic prediction algorithm to determine the item 
the user intends to select on the display, remarkably early in the 
freehand pointing gesture [10]. It subsequently facilitates and 
expedites the target acquisition. Thus, the introduced intent-aware 
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system can significantly improve the interactive display usability 
in vehicles and reduce the effort (attention) they require. Assum-
ing that the prediction certainty meets a set criterion, the user need 
not touch the display surface to select the intended on-screen item, 
allowing midair selection. Therefore, this solution can also enable 
interaction with displays that do not have a physical surface, e.g., 
HUD and 3-D displays or projections.

This article highlights and gives a unified treatment of the vari-
ous signal processing (e.g., tracking-filtering, fusion, prediction, 
etc.) and human factors (e.g., feedback, prior experience, etc.) 
challenges posed by the in-vehicle intent-aware display concept, 
some of which were individually considered in previous publi-
cations (including those for nonautomotive applications), such 
as [10]–[19]. In particular, the fundamental problem of intent 
inference within a Bayesian framework is addressed here, and 
suitable probabilistic prediction models are presented; they lead 
to a low-complexity implementation of the inference routine. 
Within this formulation, the task of smoothing perturbed point-
ing trajectories due to road and driving conditions via statistical 
filtering is discussed. The sensory requirements of the predic-
tive system in the vehicle environment are also briefly outlined. 
Data collected in instrumented cars and results from a prototype 
predictive touch-screen system are shown to demonstrate the 
capabilities of this intelligent HMI solution.

Background
According to the renowned human movement model Fitts’ 
law [20], the index of difficulty (ID) and total time (T ) of 

acquiring an interface icon (i.e., pointing and selection) are 
given by

/ ,logID W12 ,= +^ h

/ ,logT a b W12 ,= + +^ h (1)

where W  and ,  are the the width of the target item and its 
distance from the starting position of the pointing object 
(mouse cursor or pointing finger), respectively [12]; a  and 
b  are empirically estimated. As intuitively expected, the 
selection task can be simplified and expedited by applying a 
pointing facilitation scheme, such as increasing the item 
size (larger W ) or moving it closer to the cursor (smaller ,). 
Since a typical graphical user interface (GUI) contains sev-
eral selectable items, any assistive pointing strategy should 
be preceded by a predictor to identify the intended on-
screen icon [12]. Hence, the end-point prediction problem 
has received notable attention in the human–computer 
interaction (HCI) area, e.g., [11]–[14] (see [10] and [14] for a 
brief overview).

The majority of existing HCI studies focus on pointing in 
two-dimensional/dimensions (2-D) via a mouse or mechani-
cal device on a computer screen to acquire GUI icons. They 
often use deterministic pointing kinematics models for end-
point prediction assuming 1) the pointing object (cursor) 
velocity has a consistent profile and is zero at arrival at des-
tination, and 2) the cursor heads at a nearly constant angle 
toward its end point. Both premises make intuitive sense for 
mouse pointing in 2-D, however, they do not necessarily hold 
for freehand pointing gestures in 3-D [10]. For example, Fig-
ure 2(a) shows that the pointing fingertip heading angle to an 
on-screen icon drastically changes throughout a sample of 
freehand pointing gestures recorded in an instrumented car; 
dI  is the location of the intended on-screen destination in 3-D 
and Yk  is the 3-D Cartesian coordinates of the pointing finger-
tip at the time instant tk .

Data-driven prediction techniques, such as in [13] and 
[19], can be applied to infer the intended destination of a 
pointing task. They often utilize a pointing motion model 
learnt from a priori recorded interactions, necessitating the 
availability of a complete data set of training examples of 
pointing trajectories. This requirement is particularly strin-
gent for freehand gestures approaching a display in 3-D to 
select icons on GUIs of various possible layouts, due to the 
very large number of possible paths. Additionally, in an 
automotive HMI context, a user might be expected to only 
undertake a few pointing gestures, for instance, to set up 
the IVIS preferences, during his or her first system use, i.e., 
a very limited set of training tracks is often available. On 
the other hand, the predictive display system discussed here 
employs known motion as well as sensor models, and thus 
can use a state-space-modeling approach, albeit with a few 
unknown parameters. It requires minimal training and is 
computationally efficient.

In the area of object tracking, e.g., in surveillance applica-
tions, knowing the destination of a tracked object not only leads 
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to more accurate tracking results, but also 
offers vital information on intent, reveal-
ing potential conflict or threat [16], [21], 
[22]. Destination prediction can be viewed 
as a means to assist planning and decision 
making at a system level higher than that of 
established conventional sensor-level track-
ing algorithms, whose objective is to infer 
the current value of the latent state Xt  (e.g., 
the tracked object position, velocity, etc.) 
[22]. For example, destination-aware track-
ers that include an additional mechanism 
to determine the object end point are proposed in [16]. These 
methods discretize the state space area into predefined regions, 
and the object can only pass through a finite number of these 
zones; such a discretization can be a burdensome task for free-
hand pointing gestures in 3-D. On the contrary, the predictive 
display solution presented in this article uses continuous state 
space motion models that do not impose any restrictions on 
the path the pointing finger has to follow to reach its intended 
on-display end point and can easily handle noisy as well as 
asynchronous observations. Nevertheless, other conforming 
destination-aware tracking methods can be applicable.

A related scenario in which there is a growing interest is 
the user input on a smartphone, perturbed due to situational 
impairment, for example, walking [17]. Typically in such 
cases, the GUI is dynamically adapted to compensate for the 
measured noise. For an in-vehicle display, the pointing time 
and distance are notably longer than that for a handheld device 
and the correlation between the pointing hand movements 
and the experienced in-car accelerations or vibrations can be 
ambiguous [10]. This is attributed to the complexity of the 
human motor system and its response to noise as well as the 
seat position, cushioning, reaching style or distance, etc. Thus, 
compensating for the measured in-vehicle noise can have lim-
ited effects on improving the display usability. Here, perturbed 
user input is tackled within the statistical inference framework 
of a predictive display.

An in-vehicle predictive display system
Next, we describe the various modules that compliment the 
present in-vehicle interactive display, e.g., a touch screen, to 
realize the intelligent predictive display system in Figure 1.

Gesture tracker
Motivated by extending HCI beyond traditional keyboard input 
and mouse pointing, new 3-D vision sensory devices have 
emerged that can track, at high rates, hand gestures, including 
pointing fingertip(s), e.g., Microsoft Kinect, Leap Motion 
(LM), and SoftKinetic DepthSense. However, operating in a 
mobile vehicle enviroment can be challenging to these trackers 
due to dynamically changing light conditions, in-car vibrations-
accelerations, occlusion with limited in-car mounting posi-
tions, large coverage area (e.g., steering wheel or armrest to 
display and the front passenger), and others. Fortunately, 
the current interest in gesture-based HCI in cars (e.g., current 

BMW 7 Series cars have gesture control 
for some features) is driving the develop-
ment of automotive-grade gesture track-
ers [15]. In Figure 1, a tracker provides, in 
real time, the pointing hand/finger(s) loca-
tions, , , ...,Y Y Y Y:k k1 1 2_ " ,, at the discrete 
time instants , , ....,t t tk1 2 . For instance, 
Y x y zn t t t

T
n n n= t t t6 @  is the 3-D Cartesian 

coordinates of the pointing fingertip at tn.
In general, the predictive display demands 
reliable pointing finger tracking at a rate 
exceeding 30 Hz, as the majority of in-vehi-

cle pointing tasks can have durations in the range of 
. T0 2 4s sG G [8]. Figure 3 depicts three complete 3-D 

pointing trajectories, Y :T1 , collected in a car using an LM 
controller under three conditions, which visibly affect the 
pointing gesture.

Bayesian intent inference
Let : , , ... ,i N1 2D Di= =" ,  be the set of N  selectable 
items on the interactive display. While no assumptions are 
made about the layout of the icons in D, each item is mod-
eled as a distribution representing the extended regions in 
space of various shapes and sizes occupied by the corre-
sponding GUI elements. For simplicity and computational effi-
ciency, Gaussian distributions can be considered, and the ith
item is modeled as ( , ) .CN i in  The mean in  and covariance 
matrix Ci  capture the 3-D location and the extent-orientation 
of ,Di  respectively. At the time instant tk , the inference mod-
ule in Figure 1 calculates the posterior probabilities for the 
N  destinations,

( ) ( ) : , , ..., ,t p Y i N1 2P D D :k I i k1= = =" , (2)
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Other types of displays, 
such as head-up displays 
and general three-
dimensional displays, have 
the potential of providing 
a more immersive driving 
experience and are 
becoming increasingly 
commonplace in vehicles.
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which represent the likelihood of each of the icons in D being 
the unknown intended on-display end point .DDI !  This uses 
the gesture tracker measurements Y :k1  (and possibly other 
sensory data), i.e., the available partial pointing finger track at 
tk  whose extraction might require simple data sorting and asso-
ciating routines. Each observation Yk  is assumed to be derived 
from an underlying pointing finger true (perturbation-free) 
latent state Xtk , that can include its position, velocity, etc.

Within a Bayesian framework, we have

( ) ( ) ( ),p Y p Y pD D D D D D: :I i k k I i I i1 1?= = = (3)

where the prior ( )p D DI i=  on the selectable items (inde-
pendent of Y :k1  or the current pointing task) can be attained 
from relevant semantic and contextual information, such as 
selection frequency, GUI design, user pro-
file, etc. This makes the adopted formula-
tion particularly appealing as additional 
information, when available, can be easily 
incorporated. For  example, the priors in 
(3) can be gradually and dynamically 
learned as the system is being used, start-
ing from uninformative ones. Therefore, it 
is an adaptable probabilistic (belief-
based) approach.

A prediction is performed at the arrival 
of each (or a few) new sensor observation(s). 
The inference module can use a number of 
low complexity, computationally efficient probabilistic end-point 
predictors that are amenable to real-time implementation, given 
the limited computing resources and training data available in 
vehicles. The linear models discussed in the next section lead to 
a Kalman-filter-type implementation, combining end-point pre-
diction and filtering out of noise induced by road/driving condi-
tions. For severe perturbations, a separate statistical filter can be 
employed to remove the highly nonlinear gesture motion arising 
from perturbations.

Facilitation scheme and decision
To assist the selection task, the displayed interface may be 
modified at tk , e.g., icons can be expanded/shrunk, colored/
faded, or other [11], [12], [14], as per their probabilities ( )tP k

in (2). Such facilitation strategies can require major modifica-
tions to legacy in-vehicle GUI designs and possibly the related 
software-hardware architectures. Their impact on the user 
experience in a split attention scenario (driving and interact-
ing) is nontrivial and can be advised by experimental studies. 
For instance, unlike mouse pointing on a computer screen, 
constantly changing the in-car interface can increase visual 
demand to monitor the ongoing changes. A promising point-
ing facilitation scheme is midair selection, where the system 
autoselects the predicted intended on-screen item on behalf of 
the user, who does not need to physically touch the display 
surface. While midair selection can reduce the freehand 
pointing gesture duration and thus effort (visual, cognitive, 
and manual), its implementation entails only sending/reading 

a select signal to/by the existing interface software module 
with minimal display overheads.

After inferring ( )p YD D :I i k1=  at time ,tk  the end point 
( )t DDI k !t  of a freehand pointing gesture can be estimated 

(if needed) by minimizing the expected value of a cost func-
tion over all of the possible destinations in .D  This can be 
expressed by

( ) ( , ) | ,arg mint p YD C D D D D*
:I k

i

N

I I i k
1

1
DD*

= =
! =

t ^ h/ (4)

where ( , )C D D*
I  is the cost of deciding D*  as the destina-

tion, given that DI  is the true intended on-display icon. If 
the binary decision criterion ( , ) 1C D D*

I =  if D D*
I!

and ( , ) 0C D D*
I =  otherwise is used, it can be easily seen 

that (4) leads to the maximum a posteriori
(MAP) estimate; it implies that the most 
probable end point is deemed to be the 
intended on-display selectable icon. With-
in the Bayesian framework, more elaborate 
cost functions can be applied [23]; groups 
D Dq 1t  rather than an individual icons 
may also be considered for expansion or 
fading purposes.

While the intuitive MAP estimate can 
be used to assess the suitability of the pre-
diction model, it can produce fast fluctu-
ating decisions during the pointing task. 

This can be detrimental to midair selection due to the resul-
tant false positives. In such cases, a simple decision rule can 
stipulate that the probability of an icon ,p YD D :I i k1=^ h

specifically the one delivered by the MAP classifier, should 
exceed a certain threshold for a given duration of time before 
triggering an autoselection action.

Adaptable GUI and selection confirmation
The displayed interface implements seamlessly, in real time, 
the applied pointing facilitation scheme. If an on-screen item 
is selected or autoselected, the user can substantially benefit 
(i.e., in terms of reducing the visual workload) from a feed-
back confirming the selection action, e.g., an audible or haptic 
signal. For a predictive display with midair selection, the 
emerging ultrasonic midair haptic technology [24] presents 
itself as a suitable equivalent to the conventional on-screen 
haptic feedback, which is used in standard smartphone devic-
es, with established benefits.

Additional sensory data
The availability of additional vehicle sensory data, such as 
suspensions travel data via the controller area network (CAN) 
bus or an on-board inertial measurement unit (IMU), can en-
able the intelligent predictive display system to establish the 
operating conditions, for instance, allowing it to determine 
whether the user input is perturbed or even estimate the level 
of noise present. It can then modify the applied statistical 
model by adapting its parameters or performing preprocessing 

In the area of object 
tracking, knowing the 
destination of a tracked 
object not only leads to 
more accurate tracking 
results, but also offers 
vital information on intent, 
revealing potential conflict 
or threat.
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prior to intent inference. Eye-gaze measurements can also of-
fer valuable information on areas of interest on the display and 
can be used as an input modality in HCI, e.g., in [25]. Eye-
gaze trackers are primarily utilized to examine the human 
performance behavior in a controlled setting, such as simula-
tors, and a corpus of literature exists [26]. Obtaining accurate 
data from such a tracker, which is not head mounted, in a mo-
bile vehicle can be challenging given the currently available 
commercial sensors. However, the fusion or simultaneous use 
of eye-gaze and pointing gesture data for an in-vehicle predic-
tive display is a promising research area. In summary, if any 
additional information becomes available, it can be easily in-
corporated into the Bayesian framework via the priors 

,p DD D DI i i !=^ h  or, alternatively, treated as a part of 
the measurements vector .Y :k1

Bayesian end-point prediction
Given the available measurements Y :k1  at tk , determining the 
probability of each of the end points in D being the intended 
destination requires calculating the observa-
tion likelihood ( | )p Y D D:k I i1 =  condi-
tioned on each end point, as stated in (3). 
The prior ( ),p D DI i=  which is indepen-
dent of the current pointing task, is presumed 
to be available; here, for simplicity, all icons 
are assumed to be equally probable with 

( ) / , , , ..., .Pr N i N1 1 2D DI i= = =  The 
key problem in the intent prediction proce-
dure is, therefore, that of evaluating the 
observation likelihood, i.e., the probabili-
ty of having made a series of observations, under the assump-
tion that the tracked object is ultimately heading to a given 
destination. This can be tackled by adopting an underlying 
motion model of the pointing finger, describing its trajectory 
on its journey toward the intended end point, and including 
an element of randomness in the followed track. This capital-
izes on the premise that the motion of the pointing finger in 
3-D is dictated by the intended icon on the display. Since the 
true destination DI  is unknown a priori, N  such models for 
each DDi !  are postulated, and the objective becomes cal-
culating the likelihood of the observed partial pointing trajec-
tory being drawn from a particular end-point-driven model. 
In other words, the destination that leads to a model that best 
explains Y :k1  is assigned the highest probability of being ,DI

and vice versa.
According to the chain rule of probability,

( ) ( , )

( ),

p Y p Y Y

p Y

D D D D

D D

: :

:

k I i k k I i

k I i

1 1 1

1 1#

= = =

=

-

- (5)

where ( )p Y D D:k I i1 1 =-  is the likelihood estimated at the 
previous time instant tk 1- . Thus, the observation likelihood 
in (5) can be calculated sequentially, i.e., with the arrival of 
each new sensor measurement of the pointing gesture, and 
determining the prediction error decomposition (PED), 

( , ),p Y Y D D:k k I i1 1 =-  at tk  suffices. Next, we outline sim-
ple destination-driven models, including the BD approach 
introduced in [27] and [28]. We also show how sequential cal-
culation of the PED can be performed, permitting the posteri-
or probability distribution over intended end points in (2) to 
be calculated at each stage.

Modeling pointing movement
The pointing gesture movement toward an on-screen item is 
not deterministic. The person making the pointing gesture is 
capable of autonomous action and is in control of a complex 
motor system with numerous physical constraints, and he or 
she is likely to also be subjected to external motion, jolting, 
rolling, acceleration, and braking in a moving vehicle. Hence, 
models of the pointing finger movements, albeit driven by 
intent, are uncertain, and this can be captured by adopting 
stochastic models. This implies that the predictions of the 
tracked object motion are not single deterministic paths but 
are rather probabilistic processes, with the pointing finger 

position at a future time expressed as a 
probability distribution in space. By ade-
quately incorporating this uncertainty, rela-
tively simple models of pointing finger 
motion can be used successfully to evalu-
ate the corresponding observation likeli-
hoods and the probabilities of ( )tP k  in (2). 
It is emphasized here that the in-vehicle 
predictive display system objective is to 
infer the intent of the hand movement—it 
is not to accurately model the complex 

human motor system. Thus, an approximate motion model 
that enables reliably determining the destination of a freehand 
pointing gesture is sufficient.

Calculating the transition density of a stochastic model, 
e.g., between two successive observation times tk 1-  and tk ,
is required to condition the tracked pointing finger state Xt

(e.g., position, velocity, etc.) on a nominal end point .Di  Con-
tinuous-time motion models are a natural choice, where the 
tracked object’s dynamics are represented by a continuous-
time stochastic differential equation (SDE). This SDE can be 
integrated to obtain a transition density over any time interval. 
Although numerous models for object tracking exist, the class 
of Gaussian linear time invariant (LTI) models for the evolu-
tion of Xt  is utilized by the in-vehicle predictive display, as 
they lead to a low-complexity inference procedure (unlike non-
linear and/or non-Gaussian models). This class includes many 
models used widely in tracking applications, for example, the 
(near) constant velocity (CV) and linear destination reverting 
(LDR) models highlighted next, in addition to other Gauss-
ian LTI models that can describe higher-order kinematics 
(acceleration, jerk, etc.) [22].

While the system governing the pointing finger dynamics 
is assumed not to change over time, it does depend here on 
the intended end point ,DDI !  which intrinsically drives the 
pointing motion. Conditioned on knowing this end point, e.g., 
the ith GUI icon ,Di  and integrating the Gaussian LTI model, 

Destination prediction 
can be viewed as a 
means to assist planning 
and decision making at 
a system level higher 
than that of established 
conventional sensor-level 
tracking algorithms.
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the relationship between the system state at times t  and t h+
can be written as

( , ) ( , ) ,X F h X M hD D, ,i t h i i t i tf= + ++ (6)

where ~ ( , ( , ))Q h0N Dt if  is the dynamic noise embodying the 
randomness in the motion model. The matrices F  and Q  as 
well as the vector M , which together define the state transition 
from one time to another, are functions of the time step h  and, 
notably, the destination .DDi !  Thereby, N  such models are 
constructed to establish the end point of the pointing gesture.

The kth observation, for example, the pointing finger posi-
tion as provided by the gesture tracking device, is also modeled 
as a linear function of the time tk  state perturbed by additive 
Gaussian noise,

,Y GX ,k i t kk o= + (7)

where G  is a matrix mapping from the hidden state to the 
observed measurement and ~ ( , ) .V0Nn no  For instance, if the 
gesture tracker provides the pointing finger positions directly 
and the system state includes only position, then G  is a 3 × 3 
identity matrix. The noise covariance can be utilized to set 
the level of noise in each of the , ,x y  and z  axes as per the 
gesture tracker specifications; e.g., a time-of-flight-based 
tracker such as the SoftKinetic DepthSense camera exhibits 
higher inaccuracies in observations along the depth axis. It is 
noted that no assumption is made about the observation arriv-
al times tk  and irregularly spaced, asynchronous measure-
ments can naturally be addressed within this formulation. The 
system structure, for each nominal end point ,Di  is depicted 
graphically in Figure 4, where the destination Di  influences 
the end-point-driven state at all times.

Among linear Gaussian models, linear destination revert-
ing models, such as the mean reverting diffusion (MRD) and 
equilibrium reverting velocity (ERV) models, make particular-
ly suitable candidates for the pointing finger motion in (6), as 
discussed in [10]. Their state evolution explicitly incorporates 
the destination information. For example, the governing SDE 
for the MRD model is given by .dX d X dt dw, ,i t i i t tvK= - +^ h

It indicates an attraction of the motion toward the location of 

destination di  (e.g., the mean of the Gaussian distribution repre-
senting ),Di  with K  (a design parameter) capturing the strength 
of this reversion for each axis in 3-D and wt  being a Wiener 
process. While the MRD is based on a multivariate Ornstein–
Uhlenbeck process [29] and the system state includes only the 
position information in 3-D, the state of the ERV model pro-
posed in [10] additionally includes the velocity of the pointing 
finger, in 3-D, driven by the end point. This facilitates modeling 
pointing velocity profiles like those shown in Figure 2(b). Inte-
grating the SDE of the MRD and ERV results in (6), each with 
specific , ,F M  and Q matrices.

During a pointing task, the path of the pointing finger, albeit 
random, must end at the intended destination at time T  (i.e., the 
pointing finger reaches its end point on the display). This can be 
modeled by an artificial prior probability distribution for XT  corre-
sponding to the geometry of the destination; alternatively, it can be 
treated as a pseudo-observation at .T  To maintain the linear Gauss-
ian structure of the system in (6) and (7), this distribution is assumed 
to be Gaussian, such that ( ) ( ; , );p X X aD D NT I i T i iR= =  see 
[28] for a discussion on this construct. The mean vector ai  speci-
fies the constrained system state at the destination, whereas iR  is a 
covariance matrix of the appropriate dimension. For instance, for 
the MRD model, in which only pointing finger position is consid-
ered, a di i in= =  representing the location-center of the destina-
tion in 3-D. In the case of the ERV model, defining the final state 
distribution also involves specifying a distribution of the pointing 
finger velocity at the end point. A large-scale prior covariance can 
be used to model the uncertainty in this; however, certain proper-
ties might be assumed, e.g., relatively high velocity in the direction 
toward the screen.

Exploiting the artificial prior on the distribution of XT  re  -
quires that the state of the motion models in (6) to be con-
ditioned not only on DDi !  but also on the arrival time .T   
Including this permits the posterior of the system state at 
time tk  to be expressed as ( , , ),p X Y T D D:t k I i1k =  and the 
sought observation likelihood in (5) is subsequently given 
by ( , )p Y T D D:k I i1 =  after k  measurements. The inclusion 
of the prior on XT  in the motion model changes the system 
dynamics (even for MRD and ERV models), where the pre-
dictive distribution of the pointing finger state changes from 
a fully random walk to a bridging distribution (BD), terminat-
ing at the end point. This encapsulates the long term depen-
dencies in the pointing finger trajectory due to premeditated 
actions guided by intent. Since the intended destination is not 
known, N  such bridges are constructed, one per nominal end 
point. Consequently, all Gaussian linear models, including the 
nondestination reverting ones, whose dynamic models are not 
dependent on Di  like Brownian motion (BM) and CV, can be 
utilized for destination prediction within the presented Bayes-
ian framework. This technique of conditioning on the end 
point is dubbed BD-based inference.

Intent inference: Sequential likelihood evaluation
We recall that the primary objective of the intent inference 
routine is to determine the observation likelihoods 

( | ), ,p Y DD D D:k I i i1 !=  at tk , rather than the posterior 

Xt1
Prior

Xt1
Xtk–1

Xtk

Yt1
Ytk–1

Ytk

XT

Di

F (tk–tk–1, Di)
M (tk–tk–1, Di)

F (T–tk, Di)
M (T–tk, Di)

FIGURE 4. The system graphical structure; end point D i  acts as a prior 
and affects the state transition.
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distribution of the system state ,Xtk  as in traditional tracking 
applications [22]. Nonetheless, the latent state estimation, 
which might be relevant in certain scenarios, is addressed be-
low. Based on (6) and (7), a classical Kalman filter can be 
employed to sequentially calculate the prediction error de-
composition in (5) as depicted in Figure 5 and, thereby the 
sought observation likelihood for the current set of mea-
surements Y :k1  conditioned on .Di  The computationally ef-
ficient Kalman filter is particularly desirable since running, 
concurrently, multiple Kalman filters for all DDi !  is 
plausible in real-time, even in settings where limited com-
puting power is available. This solution is also amenable 
to parallelization.

For the bridging approach, it is shown in [27] and [28] how 
the PED and observation likelihood in (5) from each construct-
ed bridge, i.e., conditioned on T  and ,Di  can be estimated 
using a modified Kalman filter. As the true arrival time T  is 
unknown a priori in practice, approximating

( ) ( , ) ( ) ,p Y p Y T p T dTD D D D D D: :K I i
T

k I i I i1 1
T

= = = =
!
#

(8)

is necessary, where ( )p T D  is the prior distribution of arrival 
times at destination Di  and T  is the time interval of possible 
arrival times .T  In the simplest case, arrivals might be 
assumed at some specific future time. This is a crude approxi-
mation; nevertheless, is often quite effective [28]. To improve 
inference accuracy (and possibly also to learn about expected 
arrival time), arrivals can be modeled as having a prior distri-
bution, such as being expected uniformly within some time 
period [ , ],t ta b  giving ( ) .( , )p T t tD U a b=  In this case, 
numerical quadrature, for example, via Simpson’s rule, can be 
applied. Although BD-based intent inference involves running 
multiple Kalman filters, and, hence, is more computationally 
demanding, it can significantly improve the end-point infer-
ence capability of a predictive display and leads to a more 
robust performance.

In summary, the introduced modeling approach for inferring 
as early as possible the item that the user intends to select on 
the display using the freehand pointing gesture is generic. Most 
importantly, it offers considerable flexibility in terms of catering 
to various sensing technology specifications (e.g., observation 
error) as well as adaptability in terms of adjusting the motion 
model parameters. The approach is simple and relatively compu-
tationally efficient, which makes it suitable for the requirements 
of an automotive environment. In the developed predictive dis-
play prototype (an optimized C# implementation of the system 
in Figure 1 on a typical automotive computing platform), pre-
diction with Kalman filtering was tested with up to N 64=

destinations and an observations data rate 30 HzH  without any 
noticeable delays in the system response in terms of the pointing 
facilitation routine.

Handling perturbed pointing trajectories
When the user input is perturbed in a moving vehicle due to the 
road and driving conditions, the predictive display system can 
handle noisy freehand pointing gestures by setting the noise 
covariance in the motion model in (6) relative to the measured 
(experienced) in-vehicle vibrations/accelerations. This conforms 
with the modeling assumptions, and a higher covariance corre-
sponds to having less certainty in the inferred end-point-driven 
latent state X ,i t , i.e., pointing finger position, velocity, etc. This 
technique is suitable for low to medium perturbation levels that 
can be represented by Gaussian noise, for instance, driving on 
smooth to moderately bumpy paved roads. The output of the fil-
ters, calculating the posterior of each nominal destination 

( | )p YD D :I i k1=  at tk , can be used to estimate the posterior 
probability of the system latent state Xtk , including the pertur-
bation-free pointing finger position. This is given by the Gauss-
ian mixture

( ) ( ) ( ),p X Y p X Y p YD D: , : :t k
i

N

i t k I i k1
1

1 1k k= =
=

/ (9)

where ( | )p X Y, :i t k1k  pertains to the ith destination and is also 
calculated by the Kalman filter.

State Prediction

Xi,tk |tk–1
 = F (h, Di)Xi,tk–1|tk–1

 + M (h, Di)

Ci,k |k –1 = F (h, Di)Ci,k –1|k –1FT (h, Di) + Q (h, Di)
XX XX

Prediction Error Decomposition Calculation

Yi,k |k –1 = GXi,tk |tk–1

Ci,k |k –1 = GCi,k |k –1GT + Vk ;YY XX Ci,k |k –1 = Ci,k |k –1GTXY XX

p (Yk |Y1:k –1, Di = DI) = N(Yk |Yi,k |k –1, Ci,k |k –1)YY

p (Yk |Y1:k –1, DI = Di)
Xi,t 1

, Ci,1 , h1
XX

InitializeYk

h
X

X
C

i,k
|k

X
i,t

k
|t k

State Estimation

Ki,k  = Ci,k |k –1(Ci,k |k –1)–1YYXY

Xi,tk |tk
 = Xi,tk |tk–1

+ Ki,k [Yk–Yi,k |k –1]
YY TXX XX

Ci,k |k  = Ci,k |k –1 – Ki,kCi,k |k –1Ki,k

FIGURE 5. The Kalman filter for sequentially evaluating the PED for end point D i  at the arrival of observation Yk ; state prediction at tk  relies on the state 
estimation results, including covariance C , |i k k

XX
1 1- - , from the previous time step and .h t tk k 1= - -
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The assumption of Gaussian noise in a 
motion model can be overly restrictive in 
highly perturbed environments, e.g., driv-
ing on a rough terrain or a badly main-
tained road, since the pointing hand/finger 
can move in a highly erratic manner. It can 
exhibit sudden unintentional noise-related 
movements or jolts, as can be seen in Figure 3
for off-road driving. In such scenarios, the 
perturbations present can be treated as an 
additional nonlinear random jump process, 
denoted by Pt  in the motion model, causing 
sudden large changes in the pointing finger 
position and velocity. For example, this can 
be modeled by the mean-reverting jump-diffusion velocity 
process whose SDE is given by

,dP dW dJ P dt,t p t J t t2 1v v m= + -o o (10)

such that dJt  is the instantaneous change in the jump process 
,Jt ii 1

t
t=

x

=
/  with ~ ( , )0 1Nit , tx  is the number of jumps in 

[ , ]t0  governed by a Poisson distribution, and the next jump 
time x  is set by an exponential distribution [18]. Likelihood 
estimation for such motion models relies on sequential Monte 
Carlo (SMC), particle, filtering [30], which is computationally 
costly and approximate compared to the original models in (6) 
using Kalman filtering, even in the efficient Rao–Black-
wellized form [22], [30]. A practical alternative to applying 
this expensive inference procedure N  times, one per destina-
tion, is to apply the SMC filtering once as a preprocessing 
stage prior to the destination prediction routine. The prepro-
cessing objective is to remove the most severe effects of large 
jolts from the gesture tracker observations Y :k1  at tk  and allow 
the utilization of the original linear motion models for intent 
inference [10], [28]. This approach represents a compromise 
between the better filtering results of the jump model in a 
high-perturbations environment, and the computational effi-
ciency of the original models.

Applying a preprocessing SMC filter or dynamically ad -
justing the motion model covariance can be guided by addi-
tional sensory data, such as changes in the suspension height 
(by probing the vehicle CAN bus), IMU accelerometer, front-
facing cameras, etc. These can reliably measure the level 
of accelerations and vibrations experienced in the vehicle. 
Additionally, the filtered freehand pointing gesture can be 
used not only for pointing, but also for general gesture-
based interactions.

Performance analysis: Empirical results
The performance of the intelligent predictive display con-
cept is assessed here using data collected in two cars (a Jag-
uar XK and a Range Rover) instrumented with the system 
in Figure 1 under various road and driving conditions, spe-
cifically when the vehicle is 1) stationary, 2) driven over a 
well-maintained road (i.e., motorway) at varying speeds 
(30–70 mi/h), and 3) driven on a badly maintained road 

with rutted and potholed surfaces with 
random patches and raised/sunken man-
hole covers, where mild to severe in-car 
perturbations are experienced. A Leap 
Motion sensor is used to track, in real 
time, the freehand pointing gestures 
(pointing fingertips), and an experimen-
tal GUI is displayed on an 11.5-in touch 
screen mounted to the car’s dashboard. 
Two videos available as supplementa-
ry material with this article in IEEE 
Xplore show an early prototype of a pre-
dictive touch-screen system; see http://
ieeexplore.ieee.org/xpl/RecentIssue.jsp?

punumber=79. The interface has N 21=  selectable circular 
icons, each of width W 2 cmG  that are approximately 2 cm 
apart in a circular formation, identical to that in Figure 3; the 
detailed setup is described in [8]. Similar to the Fitts’ law task 
in HCI, one randomly chosen GUI item is highlighted at a 
time, and the user is expected to select it via a freehand point-
ing gesture. To maintain an objective testing procedure, all 
possible end points in D are assumed to be equally proba-
ble, ( ) / , , , ..., .Pr N i N1 1 2D DI i= = =  Maximization of the 
likelihood function ( , )p Y D D:n

j
I ij

J
11

X=
=

%  for a sample 
of J  typical full pointing finger trajectories is used to set
the motion model parameters ,X  and thus constitutes 
training for the system. Next, the performance results of 
several Bayesian predictors and an in-car prototype system 
are examined. It is emphasized that predictors have no 
knowledge of the user intent in any of the experiments 
described next.

End-point prediction performance
To examine the prediction accuracy throughout the pointing 
task, from its start at t1  until touching the display surface at 
time ,T  50 a priori recorded in-car full pointing gestures are 
used; no pointing facilitation routine is applied. The infer-
ence performance is evaluated in terms of 1) the ability to 
determine the intended on-screen icon via a MAP estimate 

( ) ( | ),argmaxt p YD D D :k I i k1DDi= =!
t  i.e., how early the 

predictor assigns the highest probability to true end point 
D+  and 2) the aggregate inference success, i.e., the propor-
tion of the total pointing gesture (in time) for which the pre-
dictor correctly inferred .D+  The success is defined by 

( )S t 1n =  if ( )tD Dn = +t  and ( )t 0S n =  otherwise, for 
observations at times , , ..., .t t t Tn 1 2! " ,  While J 5=  point-
ing trajectories are used for training, the prior on the distri-
bution of the durations of typical in-car pointing tasks,

( | ),p T D DI i=  for the bridging-distribution predictors is 
obtained from the experimental study in [8]. It is noted 
that utilizing 10% of the available tracks to set the model 
parameters is aimed at demonstrating the low training require-
ment of the applied state-space-modeling-based inference 
approach. This feature is highly desired in an automotive con-
text as discussed in the “Background” section. However, as the 
driver/passenger uses the predictive display, the system can 

The assumption of 
Gaussian noise in a 
motion model can be 
overly restrictive in highly 
perturbed environments, 
e.g., driving on a rough 
terrain or a badly 
maintained road, since  
the pointing hand/finger 
can move in a highly 
erratic manner.
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refine the applied model parameters from 
the larger available data set(s). This can 
result in a more accurate modeling and pre-
diction procedure.

In Figure 6, the linear destination re -
verting, Brownian motion, and constant 
velocity models with the bridging prior, 
notated by MRD-BD, ERV-BD, BM-BD, 
and CV-BD, are assessed. A mean reverting diffusion 
model without bridging, MRD, is also ex  amined. Figure 6 
also depicts the outcome of the probabilistic nearest neigh-
bor (NN), which assigns the highest probability to a GUI 
item closest to the current position of the pointing fingertip as 
per ; , ,p Y Y d CND Dn I i n i NN==^ ^h h  and bearing angle (BA) 
where , ; ,p Y Y 0ND D ,n n I i i n1

2
BAi v==-^ ^h h [10]. The latter 

assumes a minimal cumulative angle to the destination located 
in 3-D at di; CNN is the covariance of the multivariate Gaussian 
distribution and ,Y Y d,i n n n i1+_i - -^ h is the angle to .DDi !

Figure 6 illustrates that the BD-based inference models, 
CV-BD and ERV-BD, achieve the earliest successful predic-
tions, since they capture the importance of the velocity compo-
nent. This is particularly visible in the first 70% of the pointing 
task in Figure 6(a), where a pointing facilitation scheme can 
be most effective. Destination prediction toward the end of the 
pointing gesture can have limited impact, since by that stage the 
user would have already dedicated the necessary attention/effort 
to execute the selection task. The performance of all depicted 
predictors generally improves as the pointing finger is closer to 
the display. This is particulary visible for the NN model, which 
is built on the premise that the pointing finger is closest to the 
intended end point. An exception is the BA model, since the 
reliability of ni  as a intent measure declines as t Tn " . Over-
all, this figure shows that probabilistic predictors can success-
fully infer the intended destination on the display remarkably 
early in the freehand pointing gesture. For example, in 60% of 
cases, the bridged ERV model, ERV-BD, can infer the true intent 
only 40% into the pointing gesture (with overall correct deci-
sion exceeding 65%) thus, it can reduce pointing time-effort 
by over 60%.

The gains of combining the MRD motion model with the 
bridging method are noticeable in Figure 6(a). This is due to to 
the ability of bridging technique (the prior on XT ) to reduce the 
sensitivity of LDR models to variability in the processed tracks; 
it tapers the system sensitivity to parameter estimates and the 
parameter training requirements.

Real-time results from a prototype system
Here, results from a pilot user study with 20 participants are 
presented. While none of the participants has used an intent-
aware display before, the study employs a prototype in-car intel-
ligent predictive touch-screen system that performs intent 
inference in real time and seamlessly implements the midair 
selection facilitation scheme as discussed in the section “Facili-
tation Scheme and Decision”; see the supplementary material in 
IEEE Xplore for a demonstration. An audible cue, i.e., a short 
ping sound signal, is produced by the predictive display to con-

firm to the user that an interface icon has 
been autoselected. The subjective workload 
of interacting with an in-vehicle touch screen 
with and without the predictive functionality 
is recorded using the NASA TLX test [31],
which is widely utilized in HMI-HCI stud-
ies. It requires the participant to complete a 
questionnaire to rate and weight the mental, 

physical, and temporal demand as well as performance, effort, 
and frustration experienced when carrying out the in-vehicle 
pointing tasks. The durations T  of accomplishing selection 
tasks in the trials are also assessed. This can be viewed as an 
objective measure of the effort involved.

When the predictor is off, the trial is a classical experiment 
of interacting with a conventional touch screen, where the user 
has to touch the display surface to select a GUI icon. With the 
prediction and midair selection functionality on, the intent-
aware predictive touch screen often executes the selection 
action for the user. An autoselection action is triggered at time 
t Tk G  once the calculated probability for a given GUI icon, as 
per the estimated ( ),p YD D :I i k1=  exceeds a set threshold 
for a predefined period of time (on average, threshold .0 55c =
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FIGURE 6. The end-point inference performance with a MAP estimate as a 
function of the percentage of pointing time [28]. (a) The mean successful desti-
nation inference. (b) The gesture portion (in time) with successful predictions.

The reviewed concept 
of intelligent predictive 
displays in this article 
presents itself as a 
promising smart HMI
technology. 
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and its duration T 65 msS =  are set empirically). When this 
prediction certainty requirement is not met or the pointing fin-
ger is not detected, the user can continue pointing until he/
she touches (and selects) the intended interface icon. Since the 
system is not aware of the user intent, any erroneous selection 
of the unintended GUI icon will lead to a longer pointing time 

and higher subjective workload, e.g., a 
higher frustration score.

Figure 7 shows that the interactions 
subjective overall workload declines by 
over 47% when employing the pre-
dictive display system in Figure 1
with midair selection, which is a sub-
stantial reduction. Figure 8 depicts the 
normalized histogram of pointing tasks 
duration T  for more than 8,000 selec-
tion tasks for all 20 participants. This 
figure illustrates that T  is reduced
when the prediction-autoselection fun -
ctionality is on. In particular, the 
histogram in Figure 8(b) is visibly 
shifted to the left with smaller dura-
tions being more frequent and high 
values (indicating lengthy effortful 

point  ing gestures) less recurring. On average, the introduced 
predictive solution reduces the duration of accomplishing 
an on-screen selection task via a freehand pointing ges-
ture by approximately 30.75%. Higher reductions in the 
pointing time can be achieved (see Figure 6) by relaxing 
the requested prediction certainty (threshold or its dura-
tion) at the expense of, possibly, increasing the number 
of false autoselections. This can have a negative impact 
on the user experience and system acceptance. It is a trad-
eoff that has  to be taken into account, and the decision 
criterion can be adaptively changed based on the user 
requirements and the controlled IVIS functionality or 
the displayed GUI.

Remarks on results
Since interactions with displays in modern vehicles are prev-
alent [2], small improvements in the pointing task efficiency, 
even reducing its duration by a few milliseconds, can have 
significant aggregate benefits on the user experience, notably 
for drivers. Therefore, the overviewed predictive solution can 
substantially reduce the effort and distraction of using in-
vehicle interactive displays. However, further experimental 
evaluation is required for other pointing facilitation schemes, 
in lieu of midair selection that involves taking an action on 
behalf of the user. Additionally, devising a principled 
approach to setting the decision criterion for autoselection 
according to the general cost minimization problem in (4) is 
an open research question.

Conclusions
Recent advances in sensing, data storage, and communica-
tions technologies have led to the introduction of new smart 
vehicle functionalities and services aimed at offering per-
sonalized, more pleasant, and safer driving experience. Nev-
ertheless, little attention is often paid to the human–machine 
interface aspect of these functionalities, for instance, inter-
acting, controlling, and customizing them. Such interactions 
can be highly effortful and distracting, especially for drivers, 
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with potential safety consequences. The 
reviewed concept of intelligent predictive 
displays in this article presents itself as a 
promising smart HMI technology. It can 
significantly reduce the effort and distrac-
tions associated with using an in-vehicle 
interactive display, which typically serves as 
a gateway to the available IVIS and servic-
es. This solution, whose cornerstone is suit-
able statistical signal processing algorithms, 
can also allow  interaction with displays that 
do not have a physical surface, such as HUDs for augmented 
reality and projections of 3-D interfaces; such displays are 
poised to proliferate rapidly in the automotive environment in 
the near future.

Within the introduced general Bayesian framework, addi-
tional sensory or semantic data, if available, can be easily 
incorporated to enhance the prediction capabilities of the 
intelligent display and its handling of perturbed freehand 
pointing gestures due to road and driving conditions. The 
perturbations filtering aspect of this solution can be ben-
eficial to general gesture-recognition-based interfaces in 
vehicles, not only pointing. Moreover, the predictive system 
can offer additional flexibilities in terms of the interface 
design and display placement in the vehicle interior, as users 
might only need to reach (not necessarily touch) the display, 
with the midair selection scheme. This can be viewed in 
the context of inclusive design and ergonomics, where the 
display response or operation mode can be tailored to the 
user profile and motor abilities. Predicting the intended end 
point of a freehand gesture can extend, beyond the touch 
screen to other items within the vehicle, such as the various 
mechanical controls.

Although a number of predictors that are based on 
Gaussian motion models were discussed here, several other 
probabilistic approaches can be employed within the pre-
sented Bayesian formulation, such as interacting multiple 
models [22], stochastic context-free grammars [16], and 
other destination-aware tracking algorithms. While the pre-
sented empirical results testify to the efficacy of the intel-
ligent predictive display system, this solution can benefit 
from future advancements in in-vehicle sensing technology, 
probabilistic intent inference algorithms, Bayesian decision 
strategies, fusion of multiple sensory data (not only gesture), 
and others. This article serves as an impetus for further 
research into using signal processing or machine learning 
techniques to alleviate the effort and attention required to 
interact with smart infotainment, connectivity, and safety 
services in vehicles.

Supplemental material
This article has supplementary downloadable material 
available at http://ieeexplore.ieee.org. The material includes 
two videos demonstrating the predictive display concept. 
Contact bia23@cam.ac.uk with any questions pertaining to 
this work.

Video titled “Predictive Pointing: 
Prediction Results in Real Time”
A video demonstrating the prediction 
results calculated, in real time, by an in-
vehicle intent-aware display for a few 
typical in-car freehand pointing gestures. 
The system has no prior knowledge of the 
intended on-screen item and no pointing 
facilitation scheme is applied (i.e., no 
midair selection).

Video titled “Predictive Touchscreen with Midair Selection”
A video that shows an early prototype of the predictive display 
system, with midair selection, operating in a laboratory set-up 
and in a moving vehicle.
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Perfecting Protection 
for Interactive Multimedia

M
any current and emerging applications require low-latency communication, 
including interactive voice and video communication, multiplayer gaming, 
multiperson augmented/virtual reality, and various Internet of Things (IoT) 
applications. Forward error correction (FEC) codes for low-delay interactive 

applications have several characteristics that distinguish them from traditional FEC. 
The encoding and decoding operations must process a stream of data packets in a 
sequential fashion. Strict latency constraints limit the use of long block lengths, inter-
leaving, or large buffers. Furthermore, these codes must achieve fast recovery from 
burst losses and yet be robust to other types of loss patterns. 

This tutorial article provides a survey of FEC for low-delay interactive applica-
tions. We provide several illustrative examples that explain why off-the-shelf codes 
such as Reed–Solomon (RS) codes, digital fountain codes, or random linear convo-
lutional (RLC) codes do not provide ideal error correction for such applications. We 
then introduce some recently proposed FEC codes for streaming, discuss their prop-
erties, and quantify their performance gains through both illustrative examples and 
simulations over statistical channel models and real packet traces.
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Overview
In the last decade, we have witnessed an 
explosive demand for multimedia stream-
ing applications. A recent study [1] predicts 
that Internet protocol (IP) video alone will 
constitute 79% of all consumer Internet 
traffic in 2018. Some commonly used 
applications include Voice over IP (VoIP), 
video on demand, videoconferencing, 
desktop zsharing, and interactive network 
gaming. Emerging applications that require 
low latency include augmented reality, virtual reality, and 
various IoT applications involving control loops for industrial 
processes. The underlying communication network for these 
applications must support high reliability, low latency, and 
preferably in-order delivery of source packets. Furthermore, it 
must include wireless links that are subjected to noise, fading, 
mobility, and interference. To combat such impairments, vari-
ous error-control mechanisms must be implemented.

In the physical layer of wireless systems, powerful error-
correcting codes, such as turbo codes, are used to combat 
short-term fast fading and white Gaussian noise. These codes 
cannot always recover from other sources of impairment, such 
as slow fading, buffer overflow, congestion, or interference, 
which cause packet losses at the application layer. It is well 
known that certain loss patterns, such as burst losses, can cause 
a significant deterioration in both audio and video streaming 
[2], [3]. It therefore becomes necessary to develop error-con-
trol techniques at the application layer to mitigate the effect of 
packet losses.

Error-control mechanisms at the application layer can be 
divided into two classes: error concealment and error cor-
rection. Error-concealment techniques, such as interpola-
tion, are used to mask the effect of missing source packets. 
These methods are outside the scope of this tutorial. Error-
correction techniques, such as retransmission and FEC, are 
used to achieve reliable transmission over communication 
links. In retransmission-based schemes—for example, auto-
matic repeat request (ARQ)—if the transmitter receives no 
acknowledgment for a given packet within a certain time, 
the packet is retransmitted to the receiver. While retransmis-
sion is a simple and effective means of error correction, it 
requires point-to-point communication, a feedback channel, 
and low round-trip delay. The round-trip delay depends on 
a number of factors, such as the distance between the source 
and destination, the number of nodes that must be traversed 
in between, the processing delay at each node, and the speed 
of the links [4]. It is valuable to remember that even if we 
operate at the speed of light without any other delays, we 
still have end-to-end delay issues. At the speed of light, the 
time required to travel along the earth’s circumference is 
133 ms. This would correspond to the theoretical minimum 
round-trip delay between two diametrically opposite points 
on the earth’s circumference. The original one-way delay of 
the packet transmission plus the round-trip delay from ARQ 
can produce a minimum latency of about 200 ms. In prac-

tice, this theoretical delay would be longer, 
due to the nonideal refractive index of the 
optical fiber and nondirect paths between 
the nodes. But the International Telecom-
munication Union recommendation states 
that the end-to-end latency in interactive 
voice and video applications must be fewer 
than 150 ms [5]–[7]. Clearly, even in the 
ideal case, the distances involved and the 
application constraints preclude the sole 
use of retransmission. Applications such as 

augmented reality and virtual reality have even tighter delay 
constraints. For example, in augmented reality, the time from 
a user’s motion until when it should be reflected in the user’s 
display (commonly referred to as motion-to-photon latency)
should be fewer than 15–20 ms to provide the experience 
of presence. Similarly, IoT applications that involve control 
feedback loops may require 1-ms or submillisecond latency, 
depending on the control loop requirements—orders of mag-
nitude tighter delay constraints than traditional applications. 
In addition, support for ultralow-latency wireless services 
(millisecond level) are defined as a requirement for fifth-gen-
eration cellular systems [8].

A common alternative to retransmission is FEC, where 
redundant data are derived from the original data using tech-
niques from coding theory. Error-correcting codes such as 
low-density parity-check and digital fountain codes [9], [10]
are recommended in the Internet Engineering Task Force’s 
real-time transport protocol profiles for noninteractive 
streaming applications. These codes operate over long block 
lengths, typically a few thousand symbols, and are thus suit-
able in applications in which the delay constraints are not 
stringent. In contrast, FEC codes used in interactive applica-
tions are often constrained to have short block lengths due 
to the delay constraints. Nevertheless, real-world interactive 
audio- and videoconferencing applications such as Skype [11]
are known to use FEC with significant advantages.

In this article, we take a principled approach toward 
understanding ideal FEC for low-delay interactive applica-
tions. In these applications, the FEC-encoding and FEC-
decoding operations must happen sequentially on the source 
and channel streams, respectively. Furthermore, certain 
erasure patterns, such as burst losses, can severely degrade 
the performance [2], [3], [11]. To illustrate the effect of burst 
losses, consider the two types of packet-loss sequences in 
Figure 1. Both of these sequences have the same fraction of 
lost packets. Sequence 1 in Figure 1 corresponds to packet 
losses that are well separated, while sequence 2 corresponds 
to packet losses in a burst. In the former case, a short-block 
code can be used for error correction. For example a (3, 2) 
RS code [12] will guarantee that all the source packets that 
have been erased on link 1 will be recovered. This is possible 
because there is, at most, one erasure in any three consecutive 
packets. For sequence 2 in Figure 1, a (3, 2) block code can-
not be used to recover the burst loss of five packets. We will 
have to use a longer (15, 10) RS code to recover all the erased 

In augmented reality, 
the time from a user’s 
motion until when it 
should be reflected in the 
user’s display should be 
fewer than 15–20 ms to 
provide the experience of 
presence. 
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source packets, while also maintaining the 
same overhead as in sequence 1. However, 
the delay incurred with this code is consid-
erably higher than the previous case. Thus, 
the dynamics of packet-loss patterns, and 
not just the average fraction of losses, must 
be considered in streaming applications.

We discuss coding techniques that can 
repair burst losses with a much shorter delay than RS codes. 
We also show that codes that are optimal for burst losses in 
terms of minimizing the delay are rather sensitive to other 
loss patterns. In practice, communication links introduce both 
types of erasure patterns illustrated in Figure 1. Thus, we dis-
cuss coding schemes that enable fast recovery from burst loss-
es and are also robust to isolated losses [13]–[15].

Case study: Why traditional FEC is not enough
In this section, we study the performance of various error-
correcting codes in a streaming setup via an example. To pro-
vide a common point of comparison, we focus on the stream  ing 
setup shown in Figure 2. In this model, a source packet [ ]ts
for , , ,t 0 1 2 f=  arrives at the FEC encoder every ts sec-
onds—i.e., [ ]ts  arrives at time ·t ts  seconds. For simplicity, we 
will assume that each source packet is of the same size and 
consists of k  symbols. The encoder generates a channel packet 

[ ]tx  of size n  symbols and transmits it in the interval 
[ , ( ) · ) .t t t t1· s s+  The encoding function is causal

[ ] [ ], , [ ] , ,t f t m t t 0x s st f $= -^ h (1)

where (·)ft  is the encoding function at time t  and m  denotes 
the memory of the encoder. Furthermore, the rate of the code 
is given by /R k n= , and its redundancy is ( ) / %n k k100 - .

The communication channel considered is a 
packet erasure channel. Each transmitted 
packet is either erased or perfectly received 
at the destination. This is motivated by the 
fact that erroneous packets are discarded at 
lower layers in the communication protocol 
stack. In particular, the channel output at 
(discrete) time t  is given by [ ]ty *=  if the 

channel introduces an erasure at time ,t  and by [ ] [ ]t ty x=  if it 
does not. Throughout this article, we will use the term channel
to denote the packet-loss sequence, as is the convention in the 
coding theory literature. To develop insights into the perfor-
mance of different coding schemes, we focus on a simple class 
of channels defined below.

Definition 1 (burst-erasure channel)
A burst-erasure channel with parameter B  is a channel that 
introduces a single contiguous sequence of erasures of maxi-
mum length B. That is, starting from some arbitrary time j 0$
and B B0 # #l , we have that [ ]ty *=  for [ , ]t j j B 1! + -l

and that [ ] [ ]t ty x=  otherwise.
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FIGURE 2. The source stream ts6 @ for t 0$  is encoded to a channel stream x t6 @, which is transmitted over an erasure channel. The decoder tolerates a 
maximum decoding delay of T packets. 

Sequence 1:

Sequence 2:

FIGURE 1. Two examples of erasure sequences that have the same 
number of erasures but different erasure patterns. The shaded boxes 
denote the erasures, while the white boxes denote packet reception. In 
sequence 1, the erasures are mostly isolated, while in sequence 2, they 
occur in a single burst. One can use a short (3, 2) RS code to recover for 
sequence 1, but a longer (15, 10) RS code is required over sequence 2, 
resulting in a higher delay.

The dynamics of
packet-loss patterns, 
and not just the average 
fraction of losses, must
be considered in 
streaming applications.
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Definition 2 (isolated-erasure channel)
An isolated-erasure channel with parameter N  is a channel 
that introduces up to N  erasures in the received stream. The 
location of the erasures can be arbitrary. Thus, for some 

N N0 1 #l  and ,j j j0 N1 2g1 1# l  we have that [ ]jy l *= ,
and [ ] [ ]t ty x=  if { , , , }t j j jN1 2 f" l .

The channel models treated above are rather simple—
the burst erasure model introduces a single burst of 
maximum length ,B  while the isolated-erasure channel 
introduces a maximum of N  erasures in arbitrary locations. 
Nevertheless, there are several advantages in studying 
these models:
1) The study of such simplified models provides first-order 

insights into the performance of various streaming 
codes. For example, we will see how convolutional 
codes are more resilient than block codes in the stream-
ing setup.

2) The analysis of these channels is a useful first step in treat-
ing more sophisticated models, such as the sliding window 
channel models, which must be naturally considered in 
streaming scenarios [13], [14].

3) We will see that the insights obtained through the study of 
such channels will be useful in interpreting the simulation 
results over the Gilbert–Elliot model and real packet traces 
treated in the “Simulation Results” section.
As shown in Figure 2, the decoder tolerates a maximum 

delay of T  packets. That is,

[ ] ( [ ], , [ ]),t t T0s y yt fc= +t (2)

where (·)tc  designates the decoding function at time .t The 
source packet [ ]ts  is declared lost if [ ] [ ] .t ts s!t  A delay of T

packets in our model is equivalent to an actual delay of 
t+T t· s p^ h seconds, where ts is the interpacket arrival time 

and pt is the propagation delay in Figure 2. In the rest of this 
article, we consider the delay in terms of packets, and the time 
index will refer to the discrete time.

Remark 1 
The constructions considered in Figure 2 are systematic 
codes, i.e., each channel packet can be expressed as 

[ ] ( [ ], [ ])t t tx s p= , where [ ]tp  is the parity-check packet con-
sisting of ( )n k-  symbols. All codes that we consider in this 
article are systematic codes. This will guarantee that whenev-
er a channel packet is received, the underlying source packet 
is immediately recovered, with zero delay. Furthermore, all 
codes we consider are linear codes, i.e., the parity-check sym-
bols can be expressed as a linear combination of the source 
packets [16].

Remark 2
In the setup in Figure 2, the parity-check packets [ ]tp  are 
not transmitted as separate packets but are appended to 
the source packets before transmission. This reduces the 
number of packets transmitted over the channel. Such an 
approach is desirable in practical wireless networks such 
as 802.11, where channel contention overhead is signi-
ficant. Nevertheless, most of the insights developed for 
our proposed model also apply, with minor variations, 
to the case in which the parity-check packets are transmit  -
ted separately. The advantages of using separate FEC 
streams include wider compatibility, where the media 
stream can be decoded even by clients that do not under-
stand FEC.

Summary of coding schemes
We briefly summarize the different 
code constructions discussed in this 
article. As illustrated in Figure 3, the 
coding schemes we consider can be 
broadly classified into two catego-
ries: 1) traditional FEC and 2) stream-
ing codes. In the former category, we 
discuss three off-the-shelf coding 
schemes: RS codes, rateless codes, and 
RLC codes in the next three sections, 
respectively. A common feature of 
these codes is that, following a loss 
pattern, the decoder must collect 
enough parity checks so that it can 
invert the resulting system of equa-
tions and simultaneously recover all 
the missing source packets. For exam-
ple, when the rate of the code is 

/ ,R 1 2= so that the size of each parity 
check equals that of the source packet, 
the decoder must collect as many pari-
ty-check packets as missing source 

Error-
Correction Codes

Traditional
FEC

RS
Codes

Rateless
Codes

RLC
Codes

Streaming
Codes

MS Codes
(Shifted

Repetition)

ERLC Codes
(Shifted RLC)

MIDAS Codes
(Concatenated)

FIGURE 3. A summary of different coding schemes in the streaming setup. The traditional FEC 
codes are discussed in the “Case Study” section. The rate-1/2 streaming codes—shifted-repe-
tition, shifted-RLC, and concatenated codes—are also discussed in the “Case Study” section. 
The shifted-repetition code provides optimal burst-error correction in the streaming setup, while 
the shifted-RLC and concatenated codes are a robust extension of these codes. Their respective 
generalizations—MS codes, ERLC codes, and MIDAS codes—are discussed in the “General Code 
Constructions” section.
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packets to recover them. In the special case of the burst-era-
sure channel with burst length of B  and / ,R 1 2=  this results 
in a delay of .T B2=

One can significantly improve upon the performance of 
traditional FEC over burst-erasure channels. Such construc-
tions are referred to as streaming codes in this article. Unlike 
traditional FEC, they do not force simultaneous recovery 
of all the source packets. Instead, the construction of par-
ity checks is such that the older source packets with earlier 
deadlines are recovered before the later source packets. The 
streaming codes discussed in this article are illustrated in 
Figure 3. The minimum delay achieved by this method is 

,T B= when / .R 1 2=

In Figure 4, we provide a comparison between traditional 
FEC and streaming codes. We sketch the maximum correct-
able burst length on the x  axis and the resulting delay for dif-
ferent codes on the y  axis. The rate of all codes is fixed to 

/ .R 1 2= As we discussed, when the burst length equals B ,
the minimum delay for traditional FEC is ,T B2=  which is 
shown by the blue line in the figure. The associated region 
T B2$  is shaded light blue. In contrast, the minimum delay 
achieved by streaming codes is T B= and is shown by the red 
line. Thus, the longer the burst length, the higher will be the 
gain provided by streaming codes. As we will see, the codes 
achieving minimum delay over burst loss channels are sensi-
tive to other erasure patterns. Thus, in practice one must devel-
op robust extensions that are also resilient to isolated erasure 
patterns. Such codes will require slightly larger delays than 
T B=  and will achieve a performance in the light-red region 
shown in Figure  4. We discuss three such constructions—
shifted RLC codes, concatenated codes, and dual-delay 
codes—in the respective eponymous sections below. The cor-
responding generalizations to arbitrary rates are discussed in 
the “General Code Constructions” section.

RS codes
An ( , )n k  block code operates on k  source packets and gener-
ates n k> packets. Hence, the rate of an ( , )n k  code is given by 

/k n. Systematic codes are a class of block codes where the first 
k  packets of the codeword are the source packets, whereas the 
last n k- are parity-check packets. RS codes [12], [16] are the 
most commonly used block codes. These codes belong to the 
class of maximum distance separable (MDS) codes, which 
guarantee the recovery of the maximum number of packet 
losses for a given redundancy. An ( , )n k  RS code can recover 
up to n k-  erased packets in any codeword of length .n

While an ( , )n k  block code does not directly fit into the 
streaming setup, it can be easily adapted, as discussed below. 
The stream of source packets is logically split into segments, 
each of size .k  An ( , )n k  block code is then applied to each 
segment to generate n k-  parity-check packets. These 
parity-check packets are then transmitted together with the 
source packets in the next block of k  packets. This construc-
tion is particularly simple for / ,R 1 2= which is the case 
treated in this section. For the case of general rates, we refer 
the reader to [17].

In Figure 5, a (4, 2) RS code is applied to each group of two 
consecutive source packets to generate two parity-check pack-
ets. For example, in the first block we generate

( [ ], [ ]) ( [ ], [ ], [ ], [ ]) .0 1 0 1 2 3s s s s p p( , ) RS Code4 2
(3)

The resulting parity-check packets ( [ ], [ ])2 3p p  are transmitted 
in the next block by appending them to [ ]2s  and [ ]3s , respec-
tively. The resulting channel packets are [ ] ( [ ], [ ])2 2 2x s p=

and [ ] ( [ ], [ ])3 3 3x s p= . More generally, for the group of 
source packets ( [ ], [ ])i i2 2 1s s + , a (4, 2) RS code is applied 
to generate parity checks [ ]i2 2p +  and [ ]i2 3p + , which are 
transmitted along with the source packets at times it 2 2= +

and ,i2 3t = +  respectively.
A longer (6, 3) RS code can be applied in an analogous 

fashion by considering groups of three source packets and gen-
erating three parity-check packets, which must be transmitted 
in the next block of three source packets. 

We now discuss the error-correction properties based on 
three following cases.
1) Single isolated loss: Consider a channel that introduces a 

single isolated erasure, i.e., .N 1=  The (4, 2) RS code can 
recover the missing source packet with a delay of no more 
than T 2= packets. For example, if [ ]0x  is lost, then the 
associated source packet is recovered as soon as [ ]p 2  is 
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FIGURE 4. The achievable delays for erasure recovery of different burst 
lengths using FEC at rate 1/2. The solid red line shows the minimum delay 
that can be achieved for a given burst length. The delay below this thresh-
old cannot be achieved by any code. The blue region shows the delay 
achieved by traditional FEC codes that perform simultaneous recovery of 
the source packets. Streaming codes that perform sequential recovery can 
achieve delay in the red region. By tracing the regions marked by the green 
line, we can see that at a recovery delay of 11T =  and . ,R 0 5=  it is pos-
sible to achieve an optimal burst length recovery of 11 packets versus the 
conventional approach, which can only recover six packets. Conversely, 
for recovering a burst length of 11, the traditional codes require a delay of 
21 packets while the optimal code only requires a delay of 11 packets.
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received by the decoder. In contrast, the 
(6, 3) RS code can recover the missing 
source packet with a worst-case delay of 
T 3= packets.

2) Two isolated losses: Next, consider the 
case in which the channel introduces up 
to two isolated losses. For the (4, 2) 
code, it can be seen that the worst-case 
delay happens when [ ]0x  and one of either [ ]1x  or [ ]2x  is 
erased. The source packet [ ]0s  can be recovered from 

[ ]3p , resulting in a delay of T 3=  packets. Similarly for 
the (6, 3) code, the worst-case delay with two isolated loss-
es is .T 4= This will happen, for example, if [ ]0x  and 

[ ]3x  are erased, in which case the decoder must wait for 
[ ]4p  to recover [ ]0s .

3) Burst-erasure channel: Finally, consider the case in 
which the channel introduces a burst of length B 3= .
In particular, suppose that [ ],0x [ ],1x  and [ ]2x  are 
erased. The (4, 2) RS code will not be able to recover 

[ ]0s  and [ ]1s , although [ ]2s  can still be recovered 
from [ ]4p . In contrast, the (6, 3) RS code successfully 
recovers all the erased source packets with a maximum 
delay of .T 5=
Generally speaking, longer block codes in the streaming 

setup will correct from longer bursts but at the expense of 
longer delay. However, the size of each block must be small 
because of the delay constraints. Such an approach signifi-
cantly limits the error-correction capability. As we will see, 
the use of convolutional codes is more desirable than block 
codes, as it enables the decoder to recover from shorter bursts 
with smaller delays, while longer bursts can be recovered with 
longer delays. However, before discussing these, we briefly 
discuss rateless codes.

Rateless codes
RS codes exist over fields of sizes at least as large as the block 
length. Typical block lengths for RS codes are restricted to 

.n 255#  Rateless codes (e.g., Luby transform codes [9] and 
raptor codes [10]) are a class of binary codes that can support 
considerably longer block lengths that achieve near-optimal 
error correction and are amenable to extremely efficient 
decoding algorithms. This makes them a natural choice in 

noninteractive streaming applications. 
However, since the focus of this article is 
on FEC for interactive applications, rate-
less codes will not be suitable.

RLC codes
Together with block codes and rateless 
codes, convolutional codes [16], [18] form a 

commonly implemented class of error-correcting codes. Such 
codes have an inherent sequential encoding structure. At each 
time instant ,t  an ( , , )n k m  convolutional code generates one 
channel packet [ ]tx  of size n  that is a causal combination of 
the previous m  source packets and the current packet—i.e., 

[ ] ( [ ], , [ ], [ ]) .t f t m t t1x s s st f= - -  The rate of such a code 
is given by / ,R k n=  and its redundancy is ( ) / %n k k100 - .
The code is said to be systematic if each channel packet [ ]tx
contains the source packet [ ]s t —i.e.,  [ ] ( [ ], [ ])t t tx s p= ,
where [ ]tp  is the size n k-  parity-check packet at time .t
An important class of convolutional codes is linear, time-
invariant convolutional codes, where the parity-check pack-
ets can be expressed as

[ ] [ ] ·t t ip s H
i

m

i
1

= -
=

/ , (4)

where m  denotes the memory of the code and the matrices 
Hi  are of dimension k n k# -  for each , .i m1 f=  The sum-
mation in (4) starts at i 1= and not ,i 0= i.e., [ ]tp  does not 
combine [ ]ts , because the packet erasure channel considered 
will erase [ ]tp  whenever [ ]ts  is erased. Furthermore, when 

[ ]tx  is not erased, the systematic code will recover [ ]ts
directly without the need of [ ]tp .

If the coefficients in the matrix Hi  are selected at ran-
dom, then the codes are said to be RLC codes (see, e.g., [19]
and [20]). Such codes guarantee that, with high probability, 
each parity-check symbol provides an independent equation 
involving the source symbols. One can also construct the 
matrices Hi  in a deterministic fashion to satisfy this prop-
erty. Such constructions also achieve the largest distance 
up to the code memory and are referred to as strongly MDS 
codes (see, e.g., [21] and [22]). For simplicity, we will refer 
to all these constructions as RLC codes.

The use of convolutional 
codes is more desirable 
than block codes, as it 
enables the decoder to 
recover from shorter 
bursts with smaller delays.

0ts 1ts 2ts 3ts 4ts 5ts 6ts 7ts 8ts 9ts

K
K

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

p[2] p[3] p[4] p[5] p[6] p[7] p[8] p[9]

FIGURE 5. A (4, 2) RS code applied to a streaming setup. The parity-check packets [ ]2p  and [ ]3p  are generated from [ ]0s  and [ ]1s  but are sent in the 
next block.
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Figure 6 illustrates a (2, 1, 5) RLC code of rate 1/2. In this 
special case, the parity-check packets are the same size as the 
source packets. We can express this as

[ ] [ ],t t i·p si
i 1

5

a= -
=

/ (5)

where ia  are scalars instead of the matrices in (4). We analyze 
the performance of these codes for the same set of erasure 
patterns as in the case of block codes. A convenient shorthand 
that we adopt for the rest of the article is to omit explicit 
representation of the coefficients ia  and simply express the 
parity as sum of source symbols, implicitly assuming that each 
symbol is  also multiplied by a non-zero .ia

1) Single isolated loss: Consider a channel that introduces a 
single isolated erasure, i.e., .N 1=  In particular, suppose 
that [ ]0x  is lost. It is clear that the erased source packet 

[ ]0s  is recovered as soon as the channel packet [ ]1x —and 
in particular [ ]1p —is obtained, i.e., with a delay of T 1=
packet. Thus, the RLC code achieves a smaller delay than 
the (4, 2) and (6, 3) RS codes.

2) Two isolated losses: Next, consider the case in which the 
channel introduces up to two isolated losses. It can be ver-
ified that the worst-case delay occurs when the two losses 
happen in succession—for example, if [ ]0x  and [ ]1x  are 
erased. In this case, both source packets [ ]0s  and [ ]1s  are 
recovered when [ ]2p  and [ ]3p  are received, i.e., with a 
delay of T 3= . This is the same delay as the shorter (4, 2) 
RS code.

3) Burst-erasure channel: Finally, consider the case in which 
the channel introduces a burst of length ,B 3= and in par-
ticular suppose that [ ],0x [ ]1x , and [ ]2x  are erased. The 
RLC code will collect the parity-check packets 

[ ], [ ], [ ]3 4 5p p p  and then recover all the erased source 
packets— [ ], [ ], [ ]0 1 2s s s —simultaneously, with a delay of 

.T 5=  This is illustrated in Figure 6(b). This is the same 
delay as the (6, 3) RS code. Furthermore, since the 
memory ,m 5= the decoder can also recover a burst of 
length B 4= with a delay of T 7= and a burst of length 
B 5= with a delay of .T 9= These patterns cannot be cor-
rected by the RS codes previously discussed.
Based on the above discussion, it is clear that convolutional 

codes exhibit several advantages over block codes. We sum-
marize these below.
1) Unlike block codes, convolutional codes do not require the 

source sequence to be fragmented into blocks over which 
the parity checks are generated. Instead, they are based 
on a sliding-window construction [compare (4)]. This 
approach enables the decoder to opportunistically recover 
shorter burst lengths more quickly than longer bursts, as 
we discussed in the previous example.

2) The memory of the code m  is a design parameter. Larger 
values of m  will enable longer burst lengths to be recovered 
at the same rate. However, longer memory increases com-
plexity and also makes the code vulnerable to certain other 
types of erasure patterns when partial recovery is the best 
option. To explain this, consider a rate /R 1 2=  RLC with 
infinite memory, and one with memory .m 5= Suppose the 

0ts 1ts 2ts 3ts 4ts 5ts 6ts 7ts 8ts 9ts

K
K

s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

p[2]

s[0]

p[0]

s[1]

p[1] p[3] p[4] p[5] p[6] p[7] p[8] p[9]

0ts 1ts 2ts 3ts 4ts 5ts 6ts 7ts 8ts 9ts

K
K

s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

p[2]

s[0]

p[0]

s[1]

p[1] p[3] p[4] p[5] p[6] p[7] p[8] p[9]

Simultaneously Recover s[0], s[1], and s[2]

(a)

(b)

FIGURE 6. A (2, 1, 5) RLC code: (a) encoder and (b) burst of length three. 
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channel introduces a burst of length 
B 20= in the interval [ , ]t i i 19! + . The 
infinite-memory code will force the 
decoder to use the next 20 parity checks 
in the interval [ , ]i i20 39+ +  to recover 
the erased source sequence. Any addition-
al losses in this period will cause longer 
delays. The code with memory m 5=
will behave very differently. It will skip parity checks in the 
interval [ , ]i i20 24+ + , which are the only received parities 
that depend on the burst interval. Thereafter, any parity 
checks can be used to recover from any future losses. Thus, 
due to delay constraints, the code with memory m 5= is 
more desirable in the event of such burst losses.
It should be noted that the construction in (4) applies to 

any arbitrary rate .R There is nothing special about / ,R 1 2=

except the simple construction (5). The following result shows 
the burst- and isolated-error correction properties of RLC 
codes [13] for an arbitrary rate .R

Theorem 1 (error-correction properties of RLC codes  
at a given maximum delay)
Consider an ( , , )n k m  RLC code with rate ( / )k nR =  and 
memory .m T$  Such a code can recover from a burst-erasure 
channel with a maximum burst length ,B  or from an isolated-
erasure channel with a maximum of N  erasures, with a 
maximum delay of ,T provided that

( ) ( ),B R T1 1# - + (6)

( )( ) .N R T1 1# - +  (7)

RLC codes have the same threshold for burst-error and iso-
lated-error correction. To explain this, recall that RLC 
codes perform simultaneous recovery of the source packets 
in the event of an erasure burst. They treat each parity check 
as providing an equation involving the source symbols and 
recover all the erased symbols simultaneously when suffi-
ciently many parity checks are received. This is illustrated 
in Figure 6(b). They are not able to recover in an 
opportunistic fashion earlier source packets whose dead-
lines occur earlier. In the following four sections, we dis-
cuss the class of streaming codes that can achieve such a 
sequential recovery and thus provide improved performance 
over burst-erasure channels.

Shifted-repetition code
A repetition code is a simple construction with rate / ,R 1 2=

where each source packet is repeated with a unit delay—i.e., 
[ ] ( [ ], [ ])i i i 1x s s= -  for all i 1$ . While simple in imple-

mentation, such a construction cannot recover from burst loss-
es of length .B 2$  Interestingly, a simple variation of this 
construction achieves optimal recovery over the burst-erasure 
channel. Some generalizations of repetition codes, where low-
bit-rate redundant audio packets are used as parities, are 
studied in [23].

A shifted-repetition code is a rate 
/R 1 2=  code, where each source packet is 

repeated once after a delay of T  packets—
i.e., we can express [ ] ( [ ], [ ]) .i i i Tx s s= -

In contrast to RLC codes, the parity-check 
packets in a shifted-repetition code do 
not involve a linear combination of the 
source packets. We replace (4) with simply 

[ ] [ ]i i 5p s= - . We note the following properties:
1) Single isolated loss: When there is a single isolated loss, 

the corresponding source packet can be recovered with a 
delay of T 5= packets. For example, if [ ]0x  is lost, then 
the source packet [ ]0s  is recovered when its repeated copy 
at time T 5=  is received.

2) Two isolated losses: In general, the shifted-repetition code 
cannot recover from two or more isolated losses. As an 
example, if the erasures happen at time t 0= and t 5= ,
then the source packet [ ]0s  cannot be recovered. Thus, the 
delay for this case is 3.

3) Burst-erasure channel: The shifted-repetition code can 
correct a burst of length B 5= with a delay of .T 5=
Suppose that the erasure burst spans the interval [ , ]0 4 .
Then [ ]0s  is recovered at time t 5=  from [ ] [ ]5 0p s= .
Likewise, each [ ]js  for , ,j 0 4f=  is recovered at time 
t j 5= +  in a sequential manner.
It is clear that a shifted-repetition code with delay T

will recover any burst of length B T# . This is clearly the 
maximum burst length that can be recovered by any code. 
However, the rate of the code is fixed at / .R 1 2=  Maxi-
mally short (MS) codes [24], [25] are a generalization 
of the shifted-repetition code that achieve optimal burst 
correction. For a given rate R  and delay ,T they achieve 

, ( ) / .minB R R T1 1= -^ h  We review a variation of the origi-
nal construction in the “General Code Constructions” sec-
tion. It should be noted that the value of B  is larger than that 
of RLC codes in Theorem 1. Unfortunately, like the shifted-
repetition codes, these codes are sensitive to the isolated-
erasure channel with N 2$ . We will see that this can lead 
to a significant degradation over statistical channels, such 
as the Gilbert–Elliott channel. Nevertheless, the MS codes 
constitute an important building block for the more robust 
codes discussed in the sequel.

Shifted-RLC codes
Shifted-RLC codes combine concepts of shifted-repetition 
code with RLC code. They achieve a longer burst-error cor-
rection threshold than RLC codes in Theorem 1, but smaller 
than the shifted-repetition codes. However, unlike the shift-
ed-repetition codes, they can correct from more than one 
isolated  loss. As an example, consider the rate-1/2 code 

[ ] ( [ ], [ ]),i i ix s p=  where we select

[ ] [ ] [ ] .i i i5 4p s s= - + -

This code is similar to the ( , , )n k m2 1 2= = =  RLC code, 
but the parity-check packets are further delayed by 3T =

In contrast to RLC codes, 
the parity-check packets 
in a shifted-repetition 
code do not involve a 
linear combination of the 
source packets.
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units. To reiterate, in general, there will be nonzero coeffi-
cients multiplying the source symbols [ ]i 5s -  and [ ] .i 4s -
These have been suppressed as discussed previously. We sum-
marize the error correction properties as follows:
■ Single isolated loss: When there is a single isolated loss, 

the corresponding source packet can be recovered with a 
delay of T 4= packets. For example, if [ ]0x  is erased, 

[ ]0s  is recovered when [ ] [ ] [ ]4 0 1p s s= + -  is available 
to the decoder.

■ Two isolated losses: This code recovers from any pattern 
consisting of N 2=  erasures within a worst-case delay of 

.T 5=  The worst-case pattern corresponds to [ ]0x  and 
[ ]4x  being erased. For this pattern, the first available parity 

check that involves [ ]0s  is at time .T 5=  Using 
[ ] [ ] [ ]5 1 0p s s= + , the source packet [ ]0s  is recovered 

at .T 5=
■ Burst-erasure channel: A burst of length B 4#  packets 

is recoverable with a delay of T 4= . For example, 
suppose that [ ], , [ ]0 3x xf  are erased. Then using 

[ ] [ ] [ ]4 0 1p s s= + -  and canceling [ ]1s - , which is not 
erased, the decoder can recover [ ]0s . Similarly, at time 
t 5= , the decoder can use [ ] [ ] [ ]5 0 1p s s= +  to recover 

[ ]1s . Continuing this process, each erased packet is 
recovered sequentially with delay T 4= .
The shifted-RLC code corrects a maximum burst length 

of B 4=  and up to N 2=  isolated losses within a worst-case 
delay of .T 5=  For the same delay of ,T 5=  the shifted-rep-
etition code recovers a burst length of B 5= , while the RLC 
code in Theorem 1 can recover from a burst length of B 3= ,
as well as N 3= isolated losses. The main design parameter 
in the shifted-RLC code is the shift D  applied to the parity-
check packets. Selecting ,0D =  we recover the original RLC 
construction, which results in the error-correction thresholds 
stated in Theorem 1. Selecting TD =  will result in the same 
performance as the shifted-repetition code. By selecting the 
value of D  in between these two extremes, we can trade off 
the burst-error and isolated-error correction capabilities of 
the code.

Embedded RLC (ERLC) is a generalization of the afore-
mentioned shifted-RLC code to arbitrary rates [15]. In this 

construction, too, a graceful tradeoff between the burst-
error correction and the isolated-error correction capabili-
ties can be obtained through the choice of the shift parameter 
D. These codes are reviewed in the “General Code Con-
structions” section.

Concatenated codes
An alternative technique for making shifted-repetition codes 
resilient to the isolated-erasure channel model is to append 
an extra layer of parity checks. In Figure 7, we illustrate a 
concatenated code of rate / ,R 4 9= which combines a shift-
ed-repetition code and an RLC code. The encoding steps are 
as follows:
1) We construct a rate-1/2 shifted-repetition code with a delay 

of T 5= . Each source packet [ ]is  is repeated with a delay 
of T 5=  as shown.

2) We apply an ( / , , )n k k m5 4 5= =  RLC code to the source 
packet [ ]is  to generate parity-check packets of size / .k 4
These parity-check packets are appended to the source 
packets to generate the channel packet: [ ] [ ],i ix s=^

[ ], [ ] .i i5s p- h
The rate of the above construction is 4/9, which is lower 

than other codes discussed in this section. The construction 
of the rate-1/2 code in this family is a little more complicat-
ed. The construction for general rates will be discussed in the 
subsequent section. Nevertheless, this code is effective against 
burst and isolated erasures as discussed next. 
1) Single isolated loss: When there is a single isolated loss, 

the corresponding source packet can be recovered with a 
delay of T 4=  packets. For example, if [ ]0x  is erased, 

[ ]0s  is recovered when [ ], , [ ]1 4p pf  become available 
using the RLC code. Alternatively, the repetition code can 
also be used to recover [ ],0s  albeit with a delay of T 5=
packets.

2) Two isolated losses: This code recovers from N 2= isolat-
ed erasures within a worst-case delay .T 5=  The worst-
case pattern corresponds to an erasure at t 0=  and an 
additional erasure in the interval [ , ]1 4 . This will force the 
decoder to use the repetition code to recover [ ]0s , resulting 
in a delay of .T 5=

0ts 1ts 2ts 3ts 4ts 5ts 6ts 7ts 8ts 9ts

K
K

K
/4

s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

s[–3]

s[0]

s[–5]

s[1]

s[–4] s[–2] s[–1] s[0] s[1] s[2] s[3] s[4]

p[2]p[0] p[1] p[3] p[4] p[5] p[6] p[7] p[8] p[9]

FIGURE 7. A rate-4/9 concatenated code.
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3) Burst-erasure channel: A burst of length B 5#  packets 
is recoverable with a delay of T 5=  by simply using the 
shifted-repetition constituent code and ignoring the 
RLC code.
For the burst-erasure channels, the concatenated code 

above recovers from the same burst lengths as the shifted-
repetition code. For the isolated-erasure channel, it  has 
the same performance as the shifted RLC. However, the 
rate of this code is / ,R 4 9= which is smaller than the 
other codes that achieve / .R 1 2=  A generalization of this 
approach to arbitrary rates, known as the maximum dis-
tance and span (MIDAS) code, is introduced in [13] and 
[14]. Similarly, this construction is obtained through an 
extension of MS  codes by appending an extra layer of 
RLC parity checks, as explained in the “General Code 
Constructions” section.

Dual-delay codes
Although the shifted-RLC and concatenated codes in the lat-
ter two sections can recover from both isolated and burst era-
sures, they incur long delays even in the case of a single 
erasure. In this section, we discuss another construction that 
quickly recovers from a single erasure while keeping good 
burst correction capabilities. The rate-1/2 version of such 
codes is a simple combination of two shifted-repetition codes 
with delays of 1 and 5. That is, the parity-check packet at time 
i is given by

[ ] [ ] [ ].i i i1 5p s s= - + -

The achievable recovery delays for different erasure patterns 
are as follows:
■ Single isolated loss: In case of a single erasure, the corre-

sponding packet can be recovered with a delay of T 1=

packet. For example, if [ ]0x  is erased, [ ]0s  is recovered at 
time t 1=  since [ ] [ ] [ ]1 0 4p s s= + - .

■ Two isolated losses: This code recovers from N 2=  isolat-
ed erasures within a worst-case delay .T 5=  The worst-
case pattern corresponds to two consecutive erasures at 
time t 0= and t 1= . The decoder has to wait until 

[ ] [ ] [ ]5 4 0p s s= +  becomes available.
■ Burst-erasure channel: A burst of length B 4=  packets 

is recoverable with a delay of T 5= . In this case, the par-
ities [ ], , [ ]5 8p pf  can be used to recover the erased 

[ ], , [ ]0 3s sf , respectively.
While we do not discuss these codes in further detail in this 

article, the interested reader is referred to [51].

Numerical comparisons
Table 1 summarizes the properties of various error-correc-
tion codes discussed in the previous section. We set the 
worst-case delay of each code to be at most T 5=  and find 
the maximum burst length that can be corrected by each. 
All codes except the concatenated code have a rate of 

/ .R 1 2=  The rate of the concatenated code is ./R 4 9=

Among all the codes, the shifted-repetition code achieves 
the maximum value of .B 5=  However, it cannot recover 
from the isolated-erasure channel with N 2$ . For such a 
channel, the RLC codes clearly outperform all other 
codes. However, they can only correct a burst of length 
B 3= . The shifted-RLC code and the concatenated code 
achieve B 4= and are feasible against isolated erasures, 
albeit with higher delays than RLC codes. In the “Simula-
tion Results” section, we further compare the performance 
of these codes at T 5=  over Gilbert–Elliott channels and 
real packet traces.

Impact on applications
As noted before, the maximum allowable one-way latency 
in interactive applications should not exceed 150 ms. In a 
VoIP application where each audio packet spans 10–20 ms 
of speech and assuming a 30 40- -ms propagation delay 
for coast-to-coast communication [4], this corresponds to 
a maximum allowed delay of T 5 12= -  packets. In a 
typical video application at 2 Mb/s and packet sizes of 
1,500 B, a delay of 150 30 120- =  ms will be T 20.

packets [15].
The codes in Table 1 can be naturally extended to 

recover from an arbitrary burst length B  and delay .T
Figure 8 provides an extension of Figure 4 to include the 
robust extensions. The uppermost black line corresponds 
to RLC codes, while the lowermost red line corresponds 
to shifted-repetition (MS) codes as before. Codes such as 
shifted-RLC (ERLC) and concatenated codes (MIDAS) 
require a slightly larger delay for burst-error correction 
but are also robust to isolated losses. The rate is set to be 

/R 1 2= for all codes in Figure 8. As an example, consider 
.B 11= We observe that the delay achieved by an RLC 

code equals ,T 21= while the shifted-repetition (MS) code 
achieves .T 11= The two robust extensions, which can 

Table 1. A summary of the error correction codes discussed 
in the “Case Study” section.

Error Correction 
Code

Rate 
(Redundancy) Burst 

Single 
Erasure 

Two 
Erasures 

Bmax Tworst Tworst Tworst

(6, 3) RS 1/2 (100%) 3 5 3 4

RLC code 1/2 (100%) 3 5 1 3

Shifted repetition 
(MS) 

1/2 (100%) 5 5 5 3

Shifted RLC 
(ERLC) 

1/2 (100%) 4 4 4 5

Concatenated 
code 
(MIDAS) 

4/9 (125%) 5 5 4 5

Dual-delay code 1/2 (100%) 4 5 1 5

We assume a maximum recovery delay of T = 5 for the burst-erasure channel and 
compute the maximum correctable burst length. We also indicate the achievable 
delays over the isolated-erasure channel, with N = 1  and N = 2  erasures. The 
codes indicated in parentheses are generalizations of the codes discussed in 
this section.
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both correct from N 2=  isolated erasures, require only a 
slightly larger delay. Similarly, if we look at a recovery 
delay of ,T 11= we see that the streaming codes—shifted-
repetition (MS), shifted-RLC (ERLC), and concatenated 
(MIDAS) codes—can recover from bursts of lengths 11, 
10, and 9, respectively, compared to a B 6= for the RLC 
code of the same redundancy.

We conclude by noting that while this section considers 
very simple channel models throughout the discussion, the 
insights gleaned from this study are valuable over more realis-
tic channel models. This will be validated in the “Simulation 
Results” section, where we show how the streaming codes can 
outperform conventional codes over Gilbert–Elliott channels 
as well as real packet traces.

General code constructions
Here, we extend the streaming code constructions discussed 
in the previous section to general parameters. We first exam-
ine MS codes. Recall that these codes are a generalization of 
shifted-repetition codes. MS codes achieve optimal error cor-
rection over the burst-erasure channel. However, they cannot 
recover from even N 2=  isolated erasures. We then outline 
two approaches—the ERLC code and the MIDAS code—that 
are also robust to isolated losses.

MS codes
MS codes were introduced in [24] and [25] and shown to 
achieve maximum burst-correction capability for a given 
rate and delay. The original constructions of MS codes in 
[24] and [25] were based upon interleaved block codes. A 
modification was suggested in [13] that did not use the block 
code construction. Instead, the MS code was constructed 
using an RLC code and a repetition code as its constituent 
codes. We follow this approach, as it is simpler to describe 
and generalizes naturally to the robust extensions.

Before explaining the detailed construction, we make 
the following remark about its constituent codes. The shift-
ed-repetition code is an intrapacket code, so called because 
it does not combine symbols belonging to different source 
packets. It sequentially recovers the source packets, but its 
rate is fixed at 1/2. By contrast, the RLC code is an inter-
packet code, as it combines symbols across different source 
packets [see (4)]. This construction allows for a flexible rate-
delay tradeoff but achieves only simultaneous recovery. In 
the MS code construction, we combine the contributions of 
both the RLC code and the repetition code, as illustrated 
in Figure 9.
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FIGURE 8. The achievable recovery delays for different burst lengths using 
FEC at rate 1/2. Sequential recovery codes (such as MS codes) incur 
a much lower delay when compared to simultaneous recovery codes 
(such as RS codes and RLC codes) for a given burst length. 
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FIGURE 9. A block diagram illustrating the encoding steps of an MS code. The source packet is first split into two subpackets, and a different code is 
applied to each subpacket. The resulting parity checks are then combined to form the overall parity-check packet. Finally, the parity-check packet is 
appended to the source packet to generate the channel packet. 
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Encoder
1) Source splitting: Split each source packet into two sub-

packets [ ]iu  and [ ]iv  of sizes Ku and ,Kv  respectively, 
where ,K K Ku v+ =  i.e., 

[ ] ( [ ], [ ]) .i i is u v=

2) RLC code: Apply a rate / ( )K K Kv v u+  RLC code to the 
[·]v  stream of subpackets to generate parity-check packets 
[·]pv  of size .Ku

3) Repetition code: Apply a shifted-repetition code to the [·]u
subpackets.

4) Parity combination: Combine the [·]pv  parity-check pack-
ets with the repeated [·]u  subpackets after shifting the latter 
by T  time slots to generate the overall parity-check packets, 

[ ] [ ] [ ].i i i Tp p uv= + -

5) Channel packet: Generate the channel packets by append-
ing the overall parity checks to the source packets, i.e., 

[ ] ( [ ], [ ])i i ix s p=  is the packet transmitted at time i  and is 
of size .N K Ku= +

Rate analysis
In the above construction, we may select any value of Ku and 
Kv  such that their ratio is / / ( )K K B T Bu v = - . The overall rate 
is given by / ./R K K K K T T B2u v u v= + + = +^ ^ ^h h h  We next 
explain how the code can recover from a burst of length B
with a delay of .T

Decoder
Consider a channel that introduces an erasure burst of length 
B  in the interval [ , ]B0 1- , as shown in Figure 10. The 
decoder proceeds in two steps.
1) Simultaneous recovery: The decoder subtracts the unerased 

[ ], , [ ]B T 1u uf- -  subpackets from the corresponding 
parities [ ], , [ ]B T 1p pf -  to recover the parity-check 
packets [ ], , [ ]B T 1p pv vf - . These T B- parities, each 
consisting of Ku symbols, suffice to recover the B  erased 

[·]v  symbols, since ( ) ·B K T B K· v u= -  holds.

2) Sequential recovery: Upon recovering [ ], , [ ]B0 1v vf -

at time ,T 1-  the decoder can compute [ ]Tpv , subtract it 
from [ ] [ ] [ ],T T 0p p uv= +  and in turn recover [ ]0u  at 
time .T  Similarly, the decoder can use [ ], ,T 1p f+

[ ]T B 1p + -  to sequentially recover [ ], , [ ]B1 1u uf -

with a delay of T  packets.
Hence, [ ] ( [ ], [ ])i i is u v=  for { , , }i B0 1f! -  are recovered 
at time .i T+

We summarize the error-correction property of the MS 
code in the following section [24], [25].

Theorem 2 (error-correction properties of MS codes at a 
given maximum delay)
Given a rate R  and delay ,T  the MS code can recover from a 
burst-erasure channel of maximum length B  or an isolated-
erasure channel with N  erasures provided that

, ,minB
R

R T1 1# -c m (8)

.N 1# (9)

Furthermore, the upper bound on B  in (8) is the maximum 
value that can be attained by any code of rate R  and delay .T

Robust extensions of MS codes
As shown in Figure 10, the MS code splits the source packet 
into two groups, i.e., [ ] ( [ ], [ ])i i is u v= . It applies a shifted-
repetition code to [ ]iu  and an RLC code to [ ]iv  to generate 
the parity-check packet [ ] [ ]i i Tp uv + - . The main weakness 
of this construction is the shifted-repetition code applied to 
the [·]u  packets. When there are two isolated losses, at time 
t 0= and ,t T= the MS code fails to recover the subpacket 

[ ]0u . We discuss two ways in which these codes can be made 
robust to correct from isolated losses.

MIDAS codes 
The main idea in the MIDAS construction is to apply 
an additional RLC code of rate / ( )K K Ku u r+  to the [ ]iu
subpackets. This generates a new set of parity-check 
packets [ ]ipu  consisting of Kr symbols. These are then 
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FIGURE 10. An illustration of the decoding steps in an MS code. Each column denotes a channel packet transmitted at the time index shown above it. 
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appended to the MS code. Thus, the trans-
mitted channel packet is of the form 

[ ] ( [ ], [ ], [ ] [ ], [ ]) .i i i i T i ix u v u p pv u= - +

By judiciously selecting Kr , one can 
achieve any N B#  (see [13]). This con-
struction is a generalization of the con-
catenated code discussed in the previous 
section. The following result from [13]
characterizes the performance of these codes.

Theorem 3 (error-correction properties of MIDAS codes  
at a given maximum delay)
Given a rate R  and delay ,T  there exists a MIDAS code that 
can recover from a burst-erasure channel of maximum length 
B  or an isolated-erasure channel with N  erasures, provided 
that B  and ,N with ,N B1 # #  satisfy the following:

.
R

R B N T
1

#
-

+c m (10)

Unlike the case of RLC codes in Theorem 1 where N B=
and the case of MS codes in Theorem 2 where ,N 1=  the 
family of MIDAS codes can achieve any value of [ , ]N B1!
in Theorem 3. Equation (10) governs the tradeoff between the 
burst-error and isolated-error correction capabilities of 
MIDAS codes for a given rate and delay. As the value of N
increases, the value of B  must decrease and vice versa. Final-
ly, it is also established [13] that the tradeoff in (10) is within 
one unit of the optimal delay.

ERLC codes
In this approach, we replace the repetition code in the MS 
code with an RLC code. As with the MS codes, we split the 
source packet [ ] ( [ ], [ ])i i is u v=  of size Ku and Kv  symbols, 
respectively. We apply an RLC code to the [ ]iv  packets as 
before to generate parity checks [ ]ipv  consisting of Ku  sym-
bols. However, we substitute the rate-1/2 repetition code 
applied to the [ ]iu  packets with a rate-1/2 RLC code to gen-
erate parity-check packets [ ]ipu  consisting of Ku  symbols. 
The channel packet transmitted at time i is expressed 
as  [ ] ( [ ], [ ], [ ] [ ])i i i i ix u v p pv u D= + - , where [ , ]T0!D
denotes the shift applied to the [·]pu  stream. By judiciously 
selecting the value of ,T  we can trade off the burst-error 
correction and the isolated-error correction capability of this 
code [15].

Theorem 4 (error-correction properties of ERLC  
at a given maximum delay)
Consider an ERLC code of rate ,R delay ,T  and shift T that 
satisfies ( )R T 1$D + . For /R 1 2$ , the ERLC code can 
recover from a burst-erasure channel with maximum burst 
length B  or from an isolated-erasure channel with a maxi-
mum of N  erasures, provided that

,B
R

R1# D- (11)

( ) .N
R

R T1 1# D- - + (12)

Remark 3
In the ERLC construction, the choice of 
the shift T is a design parameter. By vary-
ing the value of ,T  we can attain a tradeoff 
between the burst-error and isolated-error 
correction capabilities of the code [15].

From Theorems 3 and 4, at rate / ,R 1 2=

ERLC codes achieve larger values of B  and 
N  than MIDAS at a given .T  ERLC codes are also shown to 
outperform MIDAS codes on patterns consisting of a burst fol-
lowed by isolated losses (compare [14]). We will see that these 
advantages of ERLC codes also lead to improved performance 
in simulations over the statistical channel models. But before 
presenting the simulation results, we provide a survey of the 
existing literature on streaming codes.

Literature survey
Having discussed some of the basic streaming code construc-
tions in the previous sections, we provide a survey of the exist-
ing literature in this area. In the broader literature, there has 
been a long-standing interest in packet-level convolutional codes 
for burst-error correction (see [21], [26]–[30] and the references 
therein). However, these references do not impose the decoding 
delay constraint and focus only on error recovery. The stream-
ing setup in Figure 2 was introduced, to our knowledge, by 
Martinian and Sundberg [24]. The class of MS codes for the 
burst-erasure channel that we discussed in the “MS Codes” sec-
tion was also presented in [24]. These were further developed in 
[20] and [25], where explicit code constructions were provided 
for all feasible burst lengths and decoding delays. The construc-
tions in these works were based on a two-stage approach. A 
low-delay block code was first constructed and then interleaved 
to construct a convolutional code. Later, [13] provided an alter-
native approach that did not require the block code construction 
but directly constructed the convolutional code using an RLC 
code and a repetition code as constituent codes. This approach 
was outlined in the “MS Codes” section.

While MS codes achieve the optimal burst erasure correc-
tion capability, they are sensitive to other loss patterns. In [13]–
[15], a sliding window channel model with burst and isolated 
erasures is introduced, and the MIDAS and ERLC codes are 
introduced in these works. A fundamental tradeoff between 
the burst-erasure and isolated-erasure correction properties of 
any code is established. This framework is used to establish 
certain optimality properties of the proposed codes. Our dis-
cussion of MIDAS and ERLC codes in the “Robust Extensions 
of MS Codes” section is based on these references.

Throughout this tutorial article, we restrict our attention to 
the case in which one source packet arrives in each time slot and 
one channel packet must be transmitted in each slot. References 
[13] and [31]–[33] consider the case where the source arrival 
and channel transmission rates are mismatched. In particular, 
M 1> channel packets must be transmitted by the encoder 
between two successive source packets. References [13] and 
[31] consider the decoding delay in terms of the source pack-
ets and characterize the capacity for the case of burst-erasure 

In the broader literature, 
there has been a
long-standing interest in 
packet-level convolutional 
codes for burst-error 
correction.
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channels. The associated code constructions are also based on a 
layering scheme, as in the MS constructions. The optimality of 
these codes is established for the burst-erasure channel model. 
References [32] and [33] study a similar setup, in which the 
decoding delay is with respect to channel packets. For the burst 
erasure model, diagonally interleaved block codes are shown to 
be optimal when gaps between successive bursts are sufficient-
ly small. For the independent and identically distributed (i.i.d.) 
erasure model, a family of time-invariant intrasession codes is 
proposed, with a performance that is close to an upper bound.

References [34] and [35] consider a model where the trans-
mitter and receiver are connected through multiple paral-
lel links. Each link is assumed to be a burst-erasure channel 
that introduces a burst of maximum length .B  The capacity is 
characterized in some special cases, and joint coding across 
the subchannels is required to attain the capacity. Reference 
[36] considers the setup when the channel between the source 
and destination is modeled using a linear transfer matrix and 
is subjected to rank losses. Convolutional coding analogs of 
rank error correcting codes are proposed that maximize a new 
distance metric known as the maximum column sum rank. In 
reference [37], the problem of having multiple erasure bursts 
within each coding block is studied. It is shown that the recov-
ery delay depends not only on the number of bursts within a 
coding block but on whether the source symbols are encoded 
causally or noncausally.

In other related works, [38]–[41] study a multicast exten-
sion of [24] and [25] involving two users and a common source 
stream. The stronger receiver’s channel introduces shorter 
bursts, and in turn the decoding delay is required to be smaller. 
The weaker receiver’s channel introduces longer bursts, and 
the decoding delay can be longer. Such codes can also be used 
in applications where the decoding delay can vary based on 
channel conditions. The construction of these codes involves 
embedding the parity checks of two single-user MS codes in 
a careful manner to simultaneously satisfy the constraints of 
both receivers.

In the broader literature, unequal error protection for mul-
timedia streaming has been widely studied (see, e.g., [42]–[44]
and the references therein). In [45], the authors proposed a new 
scheme in streaming models with feedback, which combines 
the benefits of network coding and ARQ by acknowledging 
degrees of freedom instead of original packets. In [46]–[48],
real-time streaming over blockage channels with delayed 
feedback is studied. A multiburst transmission protocol is pro-
posed that achieves a nontrivial tradeoff between the delay and 
throughput within this framework.

Simulation results
In this section, we study the performance of different FEC 
codes over Gilbert–Elliott channels as well as real packet 
traces. In our simulations, we fix the rate of the code to be 

/R 1 2= . In practice, error correction may be invoked only on 
a subset of packets. For example, a large fraction of packets in 
an audio stream correspond to silence periods. These packets 
clearly do not need error control. Second, error control may 

be only adaptively invoked when the channel conditions 
require it [11]. Such approaches can substantially reduce the 
overhead from FEC packets. The maximum recovery delay 
used in this section is T 5=  and ,T 12= as suggested in the 
“Impact on Applications” section. Furthermore, the packet 
loss rates (PLRs) we consider are in the interval 10 3-  to .10 6-

The former loss rate will result in a playback disruption every 
few seconds; the latter loss rate will produce a playback dis-
ruption only once every half hour or so.

Gilbert–Elliott channel
A Gilbert–Elliott channel is a two-state Markov model. In the 
good state each channel packet is lost with probability ,e
whereas in the bad state each channel packet is lost with prob-
ability 1. The average loss rate of the Gilbert–Elliott channel 
is given by

( , , ) ,Pr a b
b a

b

a b
a

e e=
+

+
+

(13)

where a  and b  denote the transition probabilities from the 
good state to the bad state and vice versa. As long as the 
channel stays in the bad state, the channel behaves as a burst-
erasure channel. The length of each burst is a geometric ran-
dom variable of mean /1 b . When the channel is in the good 
state, it behaves as an i.i.d. erasure channel with an erasure 
probability of .e  The gap between two successive bursts is 
also a geometric random variable with a mean of /1 a . Finally, 

0e =  results in a Gilbert–Elliott channel [49], which results 
in burst losses only. 

In Figure 11, we fix 5 10 4#a = -  and vary both b  and e
of the Gilbert–Elliott channel to achieve different mean burst 
lengths (on the y axis) and i.i.d. loss rates (on the x  axis). Each 
point corresponds to a single realization of 108  packets. We 
use rate /R 1 2=  shifted-repetition, shifted-RLC, and RLC 
codes from the “Numerical Comparisons” section and set the 
maximum delay to T 5=  packets.

The code with the minimum residual loss rate at a given 
mean burst length /1 b  and i.i.d. loss percentage 100e  is marked 
in Figure 11. It turns out that there are three main regions and 
that each code dominates in one. As expected, MS codes out-
perform other codes when the mean burst lengths are high com-
pared to i.i.d. loss rates between bursts. In the other extreme, 
RLC codes are the best. Finally, ERLC codes, which can 
recover bursts slightly longer than RLC codes can and more 
i.i.d. losses than MS codes can dominate in a region between 
the two extremes. This shows that an application can gainfully 
switch between the three codes, depending on the expected 
channel characteristics.

Figure 12 illustrates the results of another experiment over 
Gilbert–Elliott channels with parameters given in the second 
column of Table 2. We ran simulations over 31 realizations 
of a Gilbert–Elliott channel, each of length 108  packets. We 
set 5 10 4#a = -  and .0 4b =  in all realizations and varied 

[ , ]0 3 10 2#!e -  across realizations. In Figure 12, the chan-
nel loss rate, ( , , )Pr a b e , is plotted on the x  axis, whereas the 
residual loss probability of different streaming codes is plotted 
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on the y axis. We assume that the rate of all codes is /R 1 2=

and the delay is .T 12= The achievable values of N  and B
over the isolated-erasure channel and the burst-erasure chan-
nels are shown in Table 2.

The curve indicated by the black line and marked with 
#  signs corresponds to the RLC codes. These codes achieve 
the largest value of N  among all the codes in Table 2.
This explains the relatively constant performance as e  is 
increased. The bottleneck for these codes is long erasure 
bursts. In particular, in Table 2 these codes achieve a much 
smaller value of B  and hence incur significant packet losses 
due to long bursts. The curve indicated by the light-blue line 
and marked with +  signs corresponds to RS block codes. 
These codes achieve the same value of N  and B  and hence 
exhibit a pattern similar to RLC codes. However, as dis-
cussed before, they are not adaptive and are weaker to noni-
deal erasure patterns.

The red plot marked with circles corresponds to MS codes. 
These codes are optimal for the burst-erasure channel and 
achieve the largest value of B among all the codes in Table 2.
However, they achieve only ,N 1=  and hence their perfor-
mance is very sensitive to isolated erasures in the good state. In 
particular, as e  increases, the performance deteriorates quickly.

The dark-blue plot marked with squares corresponds to the 
MIDAS codes. These codes can balance between the values 
of B  and N  and are able to correct both isolated erasures in 
the good state and longer burst losses in the bad state. MIDAS 
codes combine the advantages of MS and RLC codes.

The green plot marked with diamonds is for the ERLC 
codes. Similar to MIDAS codes, ERLC codes can balance 
between the values of B  and N. The improvement in loss rate 
achieved by ERLC codes is due to their capability to partially 
recover from some nonideal patterns consisting of burst and 
isolated erasures in the same decoding window (compare 
[14]). Overall, Figure 12 demonstrates the improvements that 

different streaming codes can realize over traditional RS and 
RLC codes.

Figure 13 studies the effect of increasing delay on different 
codes. We consider a simulation over the Gilbert–Elliott chan-
nel, with , .5 10 0 44#a b= =- , and 4 10 3#e = - . We plot the 
residual loss rate of different codes versus the allowed delay 
T in the range of five to 25 packets. At each delay T and rate 

/ ,R 1 2=  RLC and MS codes can achieve only a single pair of 
(B, N) values, whereas ERLC and MIDAS codes can achieve a 
set of pairs. The selected pairs, shown in Table 3, correspond to 
the minimum residual loss rate among all pairs. As the allowed 
delay increases, the isolated erasures and/or burst-erasure cor-
rection capabilities can be enhanced, as shown in Table 3.

Table 2. The channel and code parameters used in the simulations.

Figure 11 Figure 12

a 5 10 4# - 5 10 4# -

b [ / , )1 3 1 0.4

e [ , ]0 3 10 2# - [ , ]0 3 10 2# -

Channel length N/A 5 107#

Rate R 1/2 1/2

Delay T 5 12

N B N B

RS – – 6 6

RLC 3 3 6 6

MS 1 5 1 12

MIDAS – – 2 10

ERLC 2 4 2 11

The values of B and N indicate, respectively, the maximum burst length and the 
number of isolated losses that can be corrected by each code.
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FIGURE 11. A numerical comparison over a Gilbert–Elliott channel at 
5 10 4#a = - . We vary [ / , )1 3 1!b  to achieve mean burst lengths of 

/1 b  on the y axis and [ , ]0 3 10 2#!e -  to achieve i.i.d. loss percentages 
of %100e  on the x axis. At each point, we indicate the code that achieves 
the minimum residual PLR. 
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FIGURE 12. A simulation over a Gilbert–Elliott channel model, with 
( , , ) ( , . , [ , . ])5 10 0 4 0 0 034#a b e = - . The rate for all codes is /R 1 2=

and the delay is T = 12 packets. 
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However, only B  of the MS code can be increased and not N.
Starting at ,T 11= which corresponds to B 11= for the MS 
code, its residual loss rate is dominated by the isolated erasure 
patterns, and hence its residual loss rate saturates. On the other 
hand, as the allowed delay increases, selecting the right values 
of N  and B  (compare Table 3) for ERLC and MIDAS codes 
helps to improve their performance over RLC and MS codes, 
which can achieve only a single ( , )B N  pair for a given .T

Real packet traces
In this section, we validate our results over real packet traces. 
We simulate the RLC, shifted-repetition, and shifted-RLC 
codes over the data set in [50]. This data set consists of over 
150 million packets collected over a wireless sensor network 
while varying multiple parameters, for example, packet inter-
arrival time, payload size, and distance between nodes. We 
consider packets with an interarrival time equal to 20 ms, 
since this models most VoIP applications. There are a total of 
18.75 million packets, with a loss rate of . %8 3 . We use the 
same codes shown in Figure 12, whose parameters are indi-
cated in the first column of Table 2, and set the delay to T 5=
packets or 100 ms. We divide the traces into nonoverlapping 

windows of length 15,000 packets each, i.e., 5 min of audio. 
The window length of 15,000 packets is chosen to be the 
approximate coherence time of the channel. Out of the 1,250 
windows, 133 are loss free and 139 contain long bursts (> 50 
packets). We focus on the remaining 978 windows with 
moderate mean burst lengths, because we believe the long 
bursts are due to outages and/or link failures and no FEC can 
recover from such patterns.

Figure 14 indicates the code with the minimum residual 
PLR for each of the 978 considered windows. We plot the aver-
age nonbursty PLR in each window (the sum of isolated losses 
divided by the length of the window) on the x  axis versus the 
average burst length in each window (considering any two or 
more consecutive erasures as a burst) on the y  axis. Interest-
ingly, each of the three simulated codes dominates in a differ-
ent region.
1) Windows with a short mean burst length (less than 2.5), 

i.e., close to the x  axis in Figure 14. In these windows, the 
isolated losses are the dominant erasure patterns. RLC 
codes are designed for such channels and achieve the mini-
mum loss rate among all the simulated codes.

2) Windows with a small number of isolated packet losses but 
relatively long mean burst lengths, i.e., the top left corner 
in Figure 14. Most of the erasures in these windows are 
due to bursts. Hence, the shifted-repetition (MS) code, 
which has the longest burst-erasure correction capability 
B 5= , achieves the minimum loss rate in the majority of 
such windows.

3) Windows that introduce a relatively balanced mixture of 
isolated losses and long bursts. The shifted-RLC (ERLC) 
code, which can recover from a longer burst B 4= com-
pared to the RLC code and from more isolated losses 
N 2=  compared to the shifted-repetition (MS) code, 
achieves the minimum loss rate in most of these windows, 
as shown in Figure 14.
Table 4 includes further results of our experiments with 

these traces. Each row corresponds to a subset of windows 
where a group of codes achieves the minimum residual loss 
rate. For each subset, we indicate the following:
1) the number of windows in the subset
2) the average PLR in these windows
3) the average nonbursty PLR corresponding to isolated losses
4) the average burst length (considering only B 2$ )
5) the average of the maximum burst length across windows 

of the set
6) the average residual loss rates for all three codes—RLC, 

shifted repetition, and shifted RLC—in each subset.
The first three rows in Table 4 correspond to the points in 

Figure 14.
The values of the nonbursty PLR, mean burst length, and 

maximum burst length for different subsets in Table 4 con-
firm the results in Figure 14. ERLC code achieves the mini-
mum loss rate in more than %60  of the windows considered. 
It also achieves the minimum average residual loss rate 
among all 978 windows. However, no single code achieves the 
best performance for all windows, and selecting the right code 

Table 3. The achievable B and N for different 12R =  codes, as a 
function of T, in Figure 13.

T
Code

5 7 9 11 13 15 17 19 21

RLC B 3 4 5 6 7 8 9 10 11

N 3 4 5 6 7 8 9 10 11

MS B 5 7 9 11 13 15 17 21 23

N 1 1 1 1 1 1 1 1 1

MIDAS B 3 5 7 9 11 13 13 14 15

N 2 2 2 2 2 2 4 5 6

ERLC B 4 6 8 10 12 13 14 14 15

N 2 2 2 2 2 3 4 6 7
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FIGURE 13. The simulation experiments for a Gilbert–Elliott channel 
model, with ( , , ) ( , . , ) .5 10 0 4 4 104 3# #a b e = - -
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significantly reduces the residual loss rate in 
most of the cases. This suggests designing 
a system that adaptively selects the right 
code depending on the loss characteris-
tics. According to the considered trace, 
one can simplify the system by alternat-
ing between only two codes. The first is 
ERLC, which is the best in 603 out of 978 
windows ( %).602  It also achieves a loss 
rate that is close to that of the best code outside these win-
dows. The second is the MS code, which uniquely achieves 
the minimum residual loss rate in 253 windows. Most of them 
lie in the top left corner of Figure 14, where long bursts are the 
dominant loss pattern.

Another adaptive approach can use the fact that the ERLC 
code is a generalization of both MS and RLC codes (compare 
with the “Remark 3” section). Depending on the loss statis-
tics, mean burst length, and average loss rate, one can select 
the right value of the shift Δ for the chosen ERLC code. This 

includes , , ,0 4 5andT T T= = =  which 
are the RLC, ERLC, and MS codes, respec-
tively, shown in Figure 14 and Table 4. This 
will further simplify the system design, since 
a single code will be implemented.

The main conclusion from simulation 
results over both statistical channels and real 
packet traces is that no single code achieves 
the best performance in all cases. How-

ever, depending on the loss characteristics, we can estimate 
which code yields the best performance. Hence, we believe 
that by tracking the end-to-end delay conditions and the loss 
characteristics during a session, the system can dynamically 
select the right FEC code and its parameters, such as code 
rate, recovery delay, and burst- and isolated-correction capa-
bilities. The system can in some cases infer the type of bot-
tleneck (e.g., cable modems with drop tail queuing protocol 
frequently lead to burst losses), which can help make more 
informed choices about what type of losses to expect in the 
future and what type of FEC code would be best. Ideally, the 
FEC code and rate would be adapted dynamically through-
out a communication session, similar to how the transmitted 
bit rate is dynamically varied during a session in many video 
applications today.

Conclusions
Interactive streaming applications require communication 
systems that achieve low latency and high reliability in the 
delivery of source packets. FEC codes provide a natural solu-
tion to these applications. However, traditional FEC codes are 
not designed to satisfy the low-delay and real-time require-
ments of these applications. As a result, many off-the-shelf 
codes can result in suboptimal error correction [11].

An exciting opportunity exists to develop new classes of 
streaming codes for interactive streaming application. This 
tutorial provides a survey of the current state-of-the-art con-
structions of such codes, uses simple illustrative examples to 
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FIGURE 14. The simulation results over real packet traces. Each point in the 
figure corresponds to a window of length 15,000 packets, with the nonbursty 
PLR on the x axis and the mean burst length on the y axis. The code that 
achieves the minimum residual loss rate at each window is indicated with its 
corresponding mark. These correspond to the first three rows in Table 4. 

Table 4. An analysis of the simulations over real packet traces. 

Code with 
Minimum PLR Indicator

Number of 
Windows PLR (%)

Nonbursty 
PLR (%)

Mean Burst 
Length

Maximum 
Burst Length

Residual PLR (%)

RLC MS ERLC

RLC 0001 346 2.43 2.04 2.03 3.14 0.08 0.51 0.10

MS 0100 441 3.72 0.68 3.23 8.15 2.17 1.43 1.71

ERLC 0010 603 5.89 4.49 2.82 5.79 0.91 1.64 0.73

RLC and MS 0101 146 0.09 0.06 1.65 1.82 0.00 0.00 0.00

MS and ERLC 0110 184 0.12 0.05 2.09 2.27 0.02 0.00 0.00

RLC and ERLC 0011 224 0.98 0.88 1.79 2.16 0.02 0.20 0.02

All codes 0111 142 0.09 0.05 1.62 1.71 0.00 0.00 0.00

Total 1000 978 5.92 3.58 3.10 7.41 1.56 1.79 1.25

Each row corresponds to a subset of windows in which a code achieves the minimum residual loss rate. The average of the following values across such a subset of windows is 
also indicated: the PLR, isolated-only PLR, mean burst length, maximum burst length, and residual PLR of each code for such windows.

The main conclusion 
from simulation results 
over both statistical 
channels and real packet 
traces is that no single 
code achieves the best 
performance in all cases. 
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provide insights into these constructions, 
and summarizes the layered design under-
lying these codes.

We first explain why traditional FEC, 
such as RS codes, rateless codes, and RLC 
codes, are not ideal in streaming applica-
tions. These codes do not explicitly consid-
er the different deadlines of different source 
packets. The resulting code forces the decod-
er to recover the erased packets simultaneously, without taking 
into account the different decoding deadlines.

We then discuss the class of MS codes that achieve opti-
mal error correction over burst-erasure channels by recover-
ing the erased source packets in a sequential fashion. The 
decoder is thus capable of recovering older packets with ear-
lier deadlines before the newer packets. These codes correct 
burst lengths that can be twice as long as traditional codes 
or equivalently reduce the recovery delay by up to a factor 
of two for a given burst length. We then discuss two addi-
tional codes—the MIDAS codes and the ERLC codes—that 
sacrifice a small amount of burst-error correction capability 
to achieve significant improvements in robustness over the 
isolated-erasure channel model. We provide both specific 
examples and outline general constructions for these codes. 
We compare their performance over a variety of packet-loss 
sequences and also demonstrate that they achieve significant 
gains in simulations over statistical channel models and real 
packet traces.

Many promising future directions are possible. One direc-
tion is to design systems that can opportunistically select 
among different FEC codes, depending on the applica-
tion constraints and current channel statistics, such as end-
to-end delay and loss characteristics. Moreover, designing 
FEC codes whose recovery delay adapts to the state of the 
channel can be beneficial in applications using adaptive 
playback techniques. Also, content-aware FEC that adapts to 
the importance of the source stream can provide improved 
perceptual quality. Another valuable direction is designing 
low-delay FEC in the case of multiple streams with different 
delay constraints.

We believe this is a highly promising area for improvement 
in interactive voice and video communications, augmented and 
virtual reality applications, and various IoT use cases and hope 
that we have conveyed to the reader our excitement about these 
new opportunities.
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By tracking the end-to-end 
delay conditions and the 
loss characteristics during 
a session, the system 
can dynamically select 
the right FEC code and its 
parameters.
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Computational Neuromodulation: 
Future Challenges for Deep Brain Stimulation

Over the past two decades, deep brain 
stimulation (DBS) has been lead-
ing a renaissance of neurosurgical 

treatments for neurological and neuro-
psychiatric disorders. DBS has become 
an established adjunct therapy for move-
ment and mood disorders that, despite 
maximal medical treatment, remain suf-
ficiently debilitating to warrant the risks 
of brain surgery [1]. The procedure has 
been approved by the U.S. Food and 
Drug Administration (FDA) for essential 
tremor (ET), Parkinson’s disease (PD), 
dystonia, and obsessive compulsive dis-
order, and the growing spectrum of 
treatable conditions is expanding to pain 
and major depression, among others. 
Interestingly, the large phenomenological 
variance of the treatable symptoms that 
span the motor and affective domains is 
addressed by the same therapeutic princi-
ple: similarly to how a cardiac pacemaker 
works, a medical device called a neuro-
stimulator sends frequent (50–250 Hz) 
electrical pulses to electrodes implanted 
into a subcortical nucleus associated 
with the disorder. Despite its simplic-
ity, the procedure, when applied acc-
urately, may alleviate symptoms of 
complicated diseases.

After 20 years of clinical practice 
and a variety of hypotheses formu-
lated at the local or the network scale, 
the physiological mechanisms of DBS 
remain unclear. Although the surgi-
cal implantation procedure offers a 

unique opportunity to record in vivo 
neural signals as close to their generators 
as possible, the recording conditions sig-
nificantly vary depending on the intrin-
sic variability of the brain, the divergence 
in structural changes 
caused by the underly-
ing neuropathophysiol-
ogy, the compensation 
mechanisms that each 
brain has possibly 
developed, and the 
long-term adminis-
tration of medication 
in the patients on 
whom were operated. 
Consequently, DBS 
improvement has been hampered by stag-
nation in discovering personalized and 
dynamic methodologies that can leverage 
the intranuclear neural signals to address 
the highly diverse clinical phenotype and 
the fluctuating symptom severity. This is 
about to change as recently introduced 
DBS systems create new frontiers for 
the neural signal processing community. 
In this article, we discuss the basic prin-
ciples and challenges faced by the new 
technological advances in DBS and 
describe the race toward personalizing 
therapy to each patient’s clinical state.

Neural signals drive automatic 
detection of deep structures inside 
the human brain
The DBS implantation procedure is typ-
ically guided by microelectrode record-
ings (MERs) of the neural activity at 
different subcortical depths inside and 

outside the nucleus (Figure 1). The activ-
ity is mapped via one or more micro-
electrodes traveling along the putative 
implantation path, and the resultant pat-
tern of neural spikes is transduced to 

audio. When a neu-
rophysiologist acous-
tically verifies the 
pattern of multiunit 
spikes that corre-
sponds to the entry/exit
of the implantation tar-
get, the recording elec-
trode is removed and 
a stimulation elec-
trode is implanted 
along this trajectory. 

The process gives intraoperative access 
to two important neurophysiological 
signals from deep structures: 1) the local 
field potential (LFP), which is the low 
frequency content (up to 100 Hz) of the 
MERs representing the synchronized 
oscillatory activity mainly at the den-
drites of neurons up to 3 mm away from 
the electrode, and 2) the multiunit activ-
ity (MUA), which is the high frequency 
content of the MERs representing the 
neural spiking patterns from neurons 
with a distance 100–300 μm. Although 
our study on the LFP-MUA relationship 
has revealed interesting nonlinear cor-
relations between the two signals [2],
their functional interconnection remains 
unclear, and they are typically treated 
as signals carrying different types of 
information. Nevertheless, incorporat-
ing LFP- and MUA-derived features into 
neural area classifiers has supported the 
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laborious and subjective detection of 
DBS targets.

Building upon neurophysiological 
hypotheses on disease- and symptom-
specific network activities, a variety of 
neural signal features have recently been 
employed to inform the DBS implanta-
tion procedure and its clinical outcome. 
For example, the most prominent fea-
ture in STN-DBS, the neural activity in 
the beta band (~13–35 Hz) stems from 
strong evidence that an elevated beta 
power in motor regions of the cerebral 
cortex and basal ganglia is associ-
ated with reinforcement of the cur-
rent motor state [3], a process that 
is pathophysiologically disturbed in 
the presence of rigidity and bradyki-
nesia, two of the cardinal symptoms 
for PD. We, along with others, have 
speculated about the existence of 
beta-band islands, local functional 
neuronal organizations found in STN 
areas other than the dorsolateral area 
where one expects to find sensorimo-
tor activity [4]. This could support 
the idea that spatially distributed syn-
chronizations may be a key feature 
of the STN pathophysiology in PD 
and a possible future target for DBS. 
The DBS implantation procedure can 
also be informed by using the second 
major component of MERs, the intra-
nuclear MUA. For example, we have 
extracted quantitative temporal trends 
(feature activity versus time) from 
MERs to generate spatial profiles 
(feature activity versus MER depth) 
of the nearby brain structures. By 
employing kernel depth-time interpo-
lation (KDT) for the spatial profiles, 
we performed local-weighted averag-
ing of multiple features, both spike 
dependent and spike independent, and 
integrated them into a fuzzy classifier 
[Figure 2(a) and (b)] [5]. The resultant 
distances to each cluster’s centroid 
are visualized either offline or in an 
updated, pseudo-real-time approach 
[Figure 2(c) and (d)].

Subsequent identification of the 
STN via visualization of MER activity 
became a far easier and highly accurate 
task. Without stopping the procedure 
for careful recording and being suscep-
tible to frequent spike overlaps among 

neurons, our method paved the way 
for more powerful supervised learning 
tools and feature proliferation via, e.g., 
genetic methods, to further enhance 
the accuracy of STN detection.

Technical advances in DBS systems
There are a handful of DBS systems 
manufactured by Medtronic (Activa; 
Medtronic, Minneapolis, Minne-
sota), Boston Scien-
tific (Vercise; Boston 
Scientific, Valencia, 
California), St. Jude 
(Infinity; St. Jude 
Medical, St. Paul , 
Minnesota), and Al-
eva (directStim; Aleva Neurotherapeu-
tics, Lausane, Switzerland). The systems 
comprise stimulating brain leads that 
target a variety of neural substrates, de-
pending on the disorder. The implanted 
stimulating tip is of a quadripolar con-
figuration with the four annular stimu-
lating contacts clustered closely at the 
end. Medtronic provides the great-
est detail, with each contact being 1.5 
mm in height, 1.27 mm in diameter, 
and the spacing between contacts being 
either 0.5 mm or 1.5 mm, dependent 
upon the model. The contact materials 

consist of an 80/20 platinum/iridium 
alloy, with the connecting wires con-
structed from an identical mix, coiled 
around a removable tungsten stylet to 
assist with rigidity for placement and 
all embedded within polyurethane for 
insulation, biostability, and elasticity. 
The insulated, nontargeted end of the 
stimulating lead is connected to sub-
cutaneous extension cables running 

beneath the scalp 
and neck leading to a 
neurostimulator typi-
cally located subclavi-
cally on the torso. 
The entire system is 
enclosed within the 

body and communicated with via radio 
telemetry or Bluetooth (St. Jude and 
Boston Scientific). 

The materials and details of the DBS 
systems provided by Boston Scientific 
and Aleva Therapeutics are similar, 
with St. Jude being the exception utiliz-
ing stimulating contacts composed of 
the same platinum/iridium alloy, while 
connecting wires and extension contacts 
are composed of MP35N-LT, a nickel 
cobalt alloy, all embedded in ethylene 
tetrafluoroethylene and covered with 
Bionate hypo tubes (polycarbonate 

Re Thalamus

Substantia Nigra

Dorsal

Lateral

Anterior ~2 mm

~2 mm
SN

STNI

Zi

Th/Re

ZI

500 ms

(a) (b)

Subthalamic Nucleus

FIGURE 1. The functional targeting of the subthalamic nucleus with microelectrode recordings dur-
ing DBS implantation for PD. (a) A schematic sagittal view of the typical microelectrode trajectory 
showing midbrain structures approximately ~12 mm lateral to the midline, beginning ~2 cm above 
the presumptive target. The subcortical structures along the trajectory typically include the thalamus 
(Th), zona incerta (ZI), subthalamic nucleus (STN), and substantia nigra (SN). (b) Distinct neuro-
physiological spiking and spike background patterns, corresponding to the different structures, 
are encountered as the electrode advances. In the example shown, the fast firing rate within SN is 
consistent with a typical pars reticulata (SNr) neuron.

We and others have 
speculated about the 
existence of beta-band 
islands.
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polyurethane). Medtronic systems 
were FDA approved in 1997 (ET) and 
2002/2003 (PD), while St. Jude’s Infin-
ity system was FDA approved for 
both in September 2016. Boston 
Scientific won the approval of Con-
formité Européene in September 2015, 
and the Aleva stimulating lead system 
is still undergoing clinical trials.

When active, DBS 
systems deliver a 
continuous train of 
asymmetric biphasic 
square waves, either 
current or voltage based, 
whose setting of mul-
tiple contact configu-
rations and programmable parameters 
of amplitude, pulse width, and frequ-
ency can be adjusted to maximize 

an individual’s symptom control, 
while minimizing adverse simulation 
effects (thereby maximizing the ther-
apeutic window).

Steering the neurostimulation
Directional current steering is offered 
by the Boston Scientific (Vercise) 
and St. Jude’s (Infinity) DBS systems, 

with only the Infin-
ity currently being 
available in the Unit-
ed States. Horizon-
tal steering of the 
stimulation fields 
emitted by the two 
middle annular con-

tacts of the quadripolar electrode is 
achieved by segmenting the annular 
ring into three 120° partitions that 

can be individually activated or deac-
tivated. Thus, if the stimulating elec-
trode is placed more medially than 
it should, the more lateral facing seg-
ments of the split ring can be activated 
selectively, preventing medial spillage 
of the stimulation field outside the 
desirable target region to reduce side 
effects. Aleva Neurotherapeutics has 
also engineered a similar three-way 
split ring stimulating electrode, except 
utilizing the lower two annular contacts 
of the quadripolar stimulation lead. 
These electrodes were recently trialed 
intraoperatively, exhibiting greater 
benefit for directional over omnidi-
rectional stimulation in 13 movement 
disorder DBS candidates [6].

Much of the split ring annular elec-
trodes may salvage the benefit of DBS 
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FIGURE 2. MER activity via a fuzzy clustering of multiple features for STN detection. The STN is recognizable as a red portion flanked by blue or aqua portions that 
represent distinct physiology obtained from white matter tracts or other neuronal structures surrounding the STN. (a) and (b) Feature trends from a single feature 
calculation (curve length). Open circles represent feature activity normalized to the data window length. STN boundaries are marked by gray boxes. (c) and (d) 
Activity maps generated via fuzzy clustering of multiple features [8]. Different subcortical structures are marked by colored bars (see legend), with the target STN in 
red and ventral edge located at 0 mm above target. (a) and (c) Feature trends/activity maps presented on the time-axis. (b) and (d) KDT interpolation with a Gauss-
ian kernel (width = 0.05 mm). In (b) and (d), the thick black lines indicate the result of KDT and interpolation (with 1,000 points). For (c) and (d), the interpolation of 
normalized feature trends is used. 

Much of the split ring 
annular electrodes may 
salvage the benefit of DBS
for nonoptimally placed 
leads.
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for nonoptimally placed leads. Yet, the 
split ring does not provide the resolution 
and shaping capabilities of the 32 contact 
stimulating lead trialed intraoperatively 
by Contarino et al [7]. The 32 tessellat-
ing contact resolution allows the annular 
shape to slide up and down the stimulat-
ing lead in a near continuous fashion, in 
contrast to jumping between nonover-
lapping dorsal-ventral segments. As 
such, the sculpting possibilities are end-
less, fulfilling the real potential of stim-
ulation field shaping. Not surprisingly, 
the results from the intraoperative pilot 
indicated that directional stimulation 
could be increased much greater before 
evoking adverse events than could the 
annular mimicking stimulation.

Widening the neurostimulation 
parameter space
As attractive as physical shaping of 
the stimulation field may appear, real 
advances may alternately be available 
through a better understanding of pro-
grammable stimulation parameters of 
pulse frequency, width, and amplitude. 
The parameter values that are used today 
have been dictated by the technical 
limitations of the available neurostimu-
lation devices and tuned within these 
limits by clinical experience. Recent 
studies have proposed various ways for 
widening the parameter space with the 
goal of selectively stimulating thera-
peutic target neurons at the lowest 
energy possible.

Varying temporal patterns through 
interleaving is unique to Medtronic’s 
Activa family of neurostimulators and 
was first introduced in 2009. Here, 
alternating pulses are emitted from dif-
ferent contacts of the same stimulating 
lead, each with independently program-
mable amplitude and pulse width, but 
with the same interdigitated frequency. 
This was originally intended to allow 
dual regions of a target substrate along 
the dorsal/ventral axis of the stimulating 
lead to be activated, while leaving the 
region in between unperturbed. Thus, 
it was thought that multiple symptoms 
could be captured by multiple sites. 

However, if the stimulation fields 
are brought in close proximity to each 
other, either by using adjacent contacts 

or by increasing the amplitude and 
pulse width, then the two stimulation 
fields may overlap creating a region of 
stimulation that will receive twice the 
programmed frequency, in addition to 
nonoverlapped regions receiving the 
programmed frequency. As such, two-
tiered frequency stimulation fields can 
be sculpted, allowing multiple symp-
toms to be captured or alternately 
adverse effects released by engaging 
multiple temporal frequencies.

While the St. Jude (Infinity) system 
can drive the stimulation of different 
leads at independent frequencies, the 
Boston Scientific (Vercise) DBS system 
is capable of programming indepen-
dent frequencies on the same lead, 
for two active “areas,” defined as any 
aggregate of contacts and/or contact seg-
ments. Thus, the Vercise system can 
create temporal “patterned” stimula-
tion in the overlapped regions of the 
generated fields. The two areas would 
be driven at different 
frequencies, with the 
initial stagger inter-
val between them 
being determined by 
the lagging anodal 
phase of the initial 
area pulse, ultimately 
resulting in doublets 
or triplets instead of 
continuous stimula-
tion trains. Medtronic’s interleav-
ing and Boston Scientific’s staggered 
independent frequencies are two ways 
to implement multiple frequency fields 
or patterned stimulation. However, the 
clinical significance of these new tech-
nical capabilities remains to be seen. 
If the utility of these simple temporal 
stimulation patterns can be clinically 
demonstrated then more complicated 
bursting capabilities could be inten-
tionally engineered. Neurons in the 
brain lend themselves to bursting, why 
not DBS?

Future perspectives: Toward 
adaptive and precise 
neuromodulation
Many open questions on the neural 
underpinnings of neuromodulation are 
expected to be addressed by recent scien-

tific and technical achievements in DBS 
systems. Notwithstanding the dramatic 
improvement that DBS already brings 
to the quality of life for many patients, 
we are far from securing, if not defin-
ing, its maximum clinical outcome. For 
DBS implantation, two straightforward 
objectives are to provide 1) pre- and 
intra-operative support in localizing the 
DBS target area and 2) neuromarkers 
that depict the neurophysiological vari-
ability and, therefore, are predictive 
of the DBS outcome. Especially for 
psychiatric diseases that are typically 
believed to be due to brain network 
imbalances, DBS localization is expect-
ed to benefit from approaches that link 
DBS with other, noninvasive, stimula-
tion techniques applied on the same 
functional networks [8]. For DBS 
programming, one possible objective is 
to step away from the stereotyped stimu-
lation patterns that current open-loop 
DBS systems provide and move 

toward neuromodu-
lation that adapts 
at the millisecond 
scale, where neu-
rons communicate.

As a surgical treat-
ment for movement 
disorders, DBS has 
been historically de-
livered in an open-
loop fashion where a 

preprogrammed, chronic and continu-
ous stimulation pattern could not avert 
suboptimal clinical outcomes. Leverag-
ing the technical advances in new DBS 
devices, clinical studies show that a 
closed-loop DBS (CL-DBS) system is 
realizable. What still seems elusive is 
the driving signals for such systems, 
i.e., the neural signals and their features, 
that are informative enough to con-
trol the online real-time adaptation of 
the neuromodulator. One might argue 
that, for the current technology, the 
best control signal is the LFP, or some 
component of it. The reason is that LFP 
represents the neural information inte-
grated over a larger area compared to 
the multiunit activity and, therefore, 
presumably carries more information 
about the cardinal symptoms of the dis-
ease and can account for intersubject 

Many open questions on 
the neural underpinnings 
of neuromodulation are 
expected to be addressed 
by recent scientific and 
technical achievements 
in DBS systems. 
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variability, thus enabling sufficient per-
sonalization. It is not a coincidence that 
a specific feature of the LFP, the beta-
band activity of STN neurons, is cur-
rently under intense testing on whether 
it can become an effective programming 
biomarker for CL-DBS for PD [4], [9].
The increased beta band within the 
STN may also represent a greater 
coherence and phase locking of this 
oscillation across multiple basal gan-
glia structures as part of the under-
lying pathophysiology of the system 
[10]. Incorporating 
other LFP oscilla-
tions such as theta 
frequency afferent 
from the medial pre-
frontal cortex to the 
STN [11] or gamma 
frequencies, found 
to correlate with PD 
symptoms, seem to be a natural next 
step. Moving beyond the MERs, one 
should consider the use of other neural 
as well as behavioral signals transmit-
ted wirelessly to a wearable information 
processing platform. A potential help-
ful expansion of a DBS system could 
employ the fusion of neural and other 

signals acquired via multiple modali-
ties, including wearable and implant-
able sensors (Figure  3). Implanting 
wireless sensors on the motor cortex 
and coupling the neural information 
with behavioral signals acquired 
through wearable devices that classify 
movement patterns could provide new 
information pathways (e.g., movement-
triggered cortical oscillations such as 
beta-band rebound or mu-alpha suppres-
sion) toward controlling a CL-DBS 
system by integrating features from 

multiple modalities. 
We have shown ear-
lier that employing 
a small number of 
neurophysiologically 
interpretable features 
inside the STN can 
predict, separately 
for each patient, the 

behavioral outcome of STN-DBS. The 
neurophysiological basis of using 
implanted wireless sensors of brain 
activity in the motor cortex stems from 
the fact that stimulating STN neurons 
can cause antidromic activation of the 
hyperdirect pathway, which consists of 
axon collaterals of pyramidal neurons 

in the motor cortex. Stimulating these 
axons within the STN is associated 
with changes in motor cortical activ-
ity, possibly masking or desynchroniz-
ing pathologically enhanced beta-band 
oscillations within the basal ganglia– 
thalamocortical network. Therefore, the 
goal for a CL-DBS system should be to 
maximize the stimulation of these target 
neurons while minimizing unintended 
activation of nontarget neurons such 
as corticospinal or corticobulbar fibers 
within the internal capsule, which may 
cause speech, walking, or fine motor 
skill impairments. Overall, a CL-DBS 
system will not only secure the clini-
cal effectiveness but also minimize the 
potential for serious complications and 
side effects.

Nevertheless, even if these objec-
tives are met, the currently available 
DBS systems are presumed to modu-
late more cells than those affected by 
the disease, which could sometimes 
lead to side effects. Thanks to recent 
advances in neurosciences and signal 
processing, we are getting close to the 
development of electroceuticals, sys-
tems aiming to modulate the spike 
activity of individual and functional 
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FIGURE 3. Closed-loop DBS controlled by neural signals acquired from multiple modalities across the spatial and temporal scales of brain function. 
A DBS controller adapts in real-time the therapeutic parameters (current distribution, frequency, amplitude, width) based on an algorithm that is driven by 
combining features extracted from 1) wireless, batteryless sensors implanted on cortical areas (e.g., motor cortex), 2) single and multineuron recordings 
(through the DBS implanted electrodes), and 3) wearable sensors identifying patters of movement.

A potential helpful 
expansion of a DBS system 
could employ the fusion of 
neural and other signals 
acquired via multiple 
modalities.
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groups of neurons in adaptive ways 
that are fully compatible with the 
biological function [12]. To this end, 
we will need a better mapping of the 
neural circuits associated with the 
treated pathophysi-
ology; at the signal 
level, we will need 
better decoders of the 
neural language asso-
ciated with the patho-
physiological states and 
more precise thera-
peutic patterns of elec-
trical impulses targeting the rate, even the 
timing of spikes. Generating such adaptive 
and precise neuromodulators will require a 
multidisciplinary effort: the development 
of neuromorphic circuits for real-time 
spike processing will translate the biologi-
cal understanding of what is happening 
at the neural level in health and disease. 
That said, we shouldn’t underestimate 
the complexity of such an endeavor that 
could result in another big data mining 
problem, this time at the neural level. 
Such problems can only be approached 
synergistically; to achieve this, we need 
initiatives that bring together scientists 
and engineers, the most prominent of 
which is the yearly workshop on neuro-
modulation organized by the Institute of 
Engineering in Medicine at the Univer-
sity of Minnesota.

Conclusions
Recent advances in basic and clinical 
neuroscience have helped us understand 
which should be the target neurons for 
a particular DBS indication and which 
neural elements within the stimulation 
volume rather contribute to adverse 
effects of stimulation. Progress in medical 
technology has allowed the development 
of new DBS devices with unprecedent-
ed technical abilities that now offer a 
more refined, in time and space, neuro-
modulation. Ongoing computational 
analyses are proposing neurophysio-
logically optimized solutions for DBS 
while removing a significant burden 
for advanced clinical experience and 
repeated intra- and postoperative test-

ing of the patient response. A tight 
interweaving of the multidisciplinary 
advances will a l low  the va l idation 
of neurophysiological concepts of 
neurostimulation in  clinical practice 

and translate DBS, 
from a complex and 
poorly standardized 
therapy where treat-
ment failures are 
not uncommon, to 
a flexible interven-
tion, tailored to each 
patient’s symptoms 

and neuropathophysiology. This direc-
tion merits further research.
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We shouldn’t underestimate 
the complexity of such an 
endeavor that could result 
in another big data mining 
problem, this time at the 
neural level.
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can have an impact. Our algorithms 
and our technical areas are precisely 
the tools that are needed to advance 
vehicular systems. We have been con-
ducting research in a broad range of 
fields, such as radar, computer vision, 
and statistical signal processing that 
can allow us to revolutionize the field, 
to develop the necessary innovations 
that will make automotive systems reli-
able to the tenth decimal place. Here we 
take a look at this problem and present 
four promising ways signal processing 
and data analytics can have an impact 
on the challenges surrounding automat-
ed vehicles.

Properly assess and utilize data 
for safety decisions
Cars currently contain roughly 100 sen-
sors, and future automobiles will likely 
be deployed with significantly more, in-
cluding accelerometers (for impact de-
tection and motion measurements), 
pressure sensors (for air intake control, 
monitoring fuel consumption, tire 
conditions), temperature sensors (to 
monitor and control engine condi-
tions, fuel temperature, passenger 
compartment  temperature) ,  and 
phase sensors (camshaft/crankshaft 
phase sensors for motor control, and 
gear shaft speed for transmission 
control). Angular rate sensors monitor 
the roll, pitch, and yaw of a vehicle, 
which informs dynamic control sys-
tems, automatic distance control, and 
navigation systems. Angular and posi-
tion sensors monitor the position of 
gear levers, steering wheel angle, and 
mirror positioning. Radar, lidar, and 
camera sensors are used to facilitate 
new applications, such as blind spot 
monitoring, lane-departure warning, 
and automated driving.

These sensors provide the abun-
dance of data that can serve as corrobo-
rating evidence to fix malfunctions, 
back-solve and determine a mistake is 
about to be made from using a single 
sensor type alone, and correct false data 
injected by those trying to hack our 
vehicles. When properly utilized, this 

wealth of data is the avenue to safety 
and robustness.

Merge multiple types of imaging 
sensors for fast object recognition
It’s evident that the Tesla crash videos 
recorded by Autopilot weren’t under 
ideal lighting conditions. Background 
objects blended into vehicles that need-
ed to be recognized, making it difficult 
for any computer to process correctly. 
This was amplified by the short time 
allowed to “lock on” given the speed 
of the vehicle and the imminent crash. 
Multiple sensor types used in conjunc-
tion could have helped. Radar or lidar 
would not have been susceptible to 
the same difficulties the camera-based 
system likely encountered.

Tesla has since reevaluated its strate-
gy for Autopilot, including the possibil-
ity of using radar in place of the camera, 
and two things are clear: the choice of 
a radar system is meant to avoid the 
environmental hurdles that arise with 
visual-based systems, and Tesla has 
collected a large amount of radar data 
that serves as the basis of its new Auto-
pilot system.

Though likely an improvement, 
switching to a single type of sensor isn’t 
likely to solve all the problems that 
will arise in automating vehicles. In fact, 
while radar can cope with lighting-
based challenges, numerous studies sug-
gest lidar systems are superior in terms 
of tracking accuracy. While lidar sys-
tems suffer degradation in conditions 
with fog, cameras offer the ability to 
recognize finer details associated with 
objects (such as license plate informa-
tion). In fact, cameras support the ac-
curate assessment of the visibility 
distance (notably fog), which could 
be used to inform the driver that ve-
hicular assistance services aren’t 
available or are experiencing degrad-
ed quality of service because fog is 
affecting the visibility of road lanes 
and other vehicles. Data fusion and 
extracting hidden correlation between 
sensor types is at the heart of modern 
signal processing. Merging radar, 

lidar, and visual systems into fast and 
robust object recognition and tracking 
algorithms is an exciting opportunity 
where signal processors can contribute.

Share data between vehicles 
to correct miscalculations or 
other errors
When considering future vehicular 
applications, we should recognize 
other sensor types will be available 
and can provide valuable knowledge, 
like weather conditions, road friction 
coefficients, or road slopes. Road slope 
information is useful for coordinating 
braking among several vehicles since 
slope is related to the potential for a 
vehicle to accelerate or decelerate. 
Data sharing between vehicles and 
cloud-based computing services 
opens up many other possibilities to 
improve vehicle safety. Data shared 
between vehicles will allow signal 
processing algorithms running on 
each vehicle to gather the conditions 
that may be experienced by other 
nearby vehicles. 

Furthermore, data measured by the 
multitude of sensors, whether from 
within a single vehicle or across sev-
eral, can be used to correct malfunc-
tioning or poorly calibrated sensors. 
Currently, vehicular sensors are recali-
brated by bringing a vehicle to a certi-
fied garage to update or replace the 
sensor. By using the distributed nature 
of the vehicular setting—in which there 
are numerous vehicles frequently mak-
ing data measurements correlated 
across many dimensions—it becomes 
possible to report this data to cloud 
servers that would perform large-scale 
data analytics to accurately identify the 
corrections needed.

Understand human driving 
behavior through signal 
processing advancements
Going beyond the technical aspects, 
what is forgotten is that transportation 
also serves as a complex social fabric 
by which we interact with each other. 
This merging of “cyberphysical” with 
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social makes automating vehicles 
an  ultrahard problem to tackle. We 
observe cues from vehicles while we 
drive that suggest we should drive 
more cautiously (e.g., a pedestrian 
looking at his smartphone while walk-
ing toward an intersection) or even 
avoid certain driving scenarios (e.g., 
an overzealous driver swerving through 
lanes). While it’s unreasonable to 
expect that self-driving cars could make 
the same social observations that we 
make as humans, what we can expect is 
that technology will assist us in being 
as aware and informed as possible. 
Already there have been advancements 
made by the signal processing commu-
nity to estimate driver distraction using 
in-vehicle sensors and cue the driver to 
focus on the road. However, there are 
many other op  portunities for signal pro-
cessing engineers to analyze human 
behavior data associated with driving, 

which will be essential for improving 
driver and pedestrian safety.

The future of vehicular systems is 
data and sensor driven. Vehicles will 
become increasingly networked and out-
fitted with sensors and share their data 
with a variety of in-vehicle and cloud-
based computing services. The societal 
benefits associated with improved vehic-
ular systems range from energy efficien-
cy resulting from swarm driving to the 
potential for saving many lives should 
the technology mature. While this future 
is exciting, engineers, researchers, and 
technologists must quickly act to devel-
op the new signal and information pro-
cessing innovations required to make 
future vehicular systems safe.

Author note
Some parts of this article originally 
appeared on Robotic Tips website; http://
www.robotictips.com. 
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with the flat view of standard two-
way methods. 

March 2015

Euclidean Distance Matrices: Essential 
Theory, Algorithms, and Applications 
Dokmanic, I.; Parhizkar, R.; Ranieri, 
J.; Vetterli, M. 
This article reviews the fundamental 
properties of Euclidean distance matri-
ces (EDMs) and shows how the various 
EDM properties can be used to design 
algorithms for completing and denois-
ing distance data. Some directions are 
given for further research.

November 2015

Bayesian Machine Learning: 
EEG/MEG Signal Processing 
Measurements 
Wu, W.; Nagarajan, S.; Chen, Z. 
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Please send calendar submissions to: 
Dates Ahead, Att: Jessica Barragué, E-mail: j.barrague@ieee.org
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IEEE International Symposium 
on Biomedical Imaging (ISBI)
18–21 April, Melbourne, Australia.
General Chairs: Olivier Salvado and Gary Egan
URL: http://biomedicalimaging.org/2017/

16th ACM/IEEE International Conference on 
Information Processing in Sensor Networks 
(IPSN)
18–21 April 2017, Pittsburgh, Pennsylvania, USA.
General Chair: Pei Zhang
URL: http://ipsn.acm.org/2017/

MAY

IEEE Radar Conference (RADARCONF)
8–12 May, Seattle, Washington, USA.
General Chair: Daniel J. Sego
URL: http://www.radarconf17.org

JULY

18th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC)
3–6 July, Hokkaido, Japan.
General Chairs: Yasutaka Ogawa, Wei Yu, 
and Fumiyuki Adachi 
URL: http://www.spawc2017.org/

IEEE International Conference on 
Multimedia and Expo (ICME) 
10–14 July, Hong Kong, China.
General Chairs: Jörn Ostermann 
and Kenneth K.M. Lam
URL: http://www.icme2017.org/

AUGUST

25th European Signal Processing 
Conference (EUSIPCO)
28 August–2 September, Kos Island, Greece.
General Chairs: Petros Maragos and 
Sergios Theodoridis
URL: www.eusipco2017.org

14th IEEE International Conference 
on Advanced Video and Signal-Based 
Surveillance (AVSS)
29 August–1 September, Lecce, Italy.
General Chairs: Cosimo Distante and 
Larry S. Davis
URL: www.avss2017.org

SEPTEMBER

IEEE International Conference 
on Image Processing (ICIP)
17–20 September, Beijing, China.
General Chairs: Xinggang Lin, 
Anthony Vetro, and Min Wu
URL: http://2017.ieeeicip.org/

OCTOBER

IEEE Workshop on Applications 
of Signal Processing to Audio and 
Acoustics (WASPAA)
15–18 October, New Paltz, New York, USA.
General Chairs: Patrick A. Naylor 
and Meinard Müller
URL: http://www.waspaa.com/

19th IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
16–18 October, London-Luton, United Kingdom.
General Chairs: Vladan Velisavljevic, 
Vladimir Stankovic, and Zixiang Xiong
URL: http://mmsp2017.eee.strath.ac.uk/

NOVEMBER

Fifth IEEE Global Conference on Signal 
and Information Processing (GlobalSIP)
14–16 November 2017, Montreal, Canada.
General Cochairs: Warren Gross 
and Kostas Plataniotis 
URL: http://2017.ieeeglobalsip.org

DECEMBER

Seventh IEEE Conference of the Sensor 
Signal Processing for Defence (SSPD)
6–7 December, Edinburgh, Great Britain.
General Chairs: Mike Davies, Jonathon 
Chambers, and Paul Thomas
URL: www.sspd.eng.ed.ac.uk/

17th IEEE International Workshop on 
Computational Advances in Multisensor 
Adaptive Processing (CAMSAP)
10–13 December, Curacao, Dutch Antilles.
General Chairs: André L.F. de Almeida 
and Martin Haardt
URL: http://www.cs.huji.ac.il/conferences/
CAMSAP17/
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The IEEE International Symposium on 
Biomedical Imaging will be held 18–21 April 
in Melbourne, Australia. 
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No Need for Speed: More Signal Processing Innovation 
Is Required Before Adopting Automated Vehicles

We spend a considerable amount of 
time driving—to work, to home, 
for recreation, for travel. This love 

for the automobile is on the precipice of 
becoming a worldwide phenomenon. 
While new markets, like China, have 
opened up in the past decade, the need 
for the automotive industry to find new 
customers, combined with an array of 
emerging technologies that will make 
driving easier, will allow cars to reach 
markets that never before had access to 
driving. Likewise, the promise of new 
capabilities that automate and enhance 
the safety of the driving experience will 
guarantee that existing drivers return to 
purchase the latest model.

People will be able to go to a termi-
nal and rent a vehicle preprogrammed 
to take them to a specified destination. 
A driver will be able to disengage from 
actual driving to read the newspaper 
while the car carries out his or her daily 
commute to and from work—all the 
while, cars will seamlessly coordinate 
to ensure the safety of their passengers.

And why will this happen? Because 
people like the freedom and excitement 
that comes with “getting in the car and 
going places!”

This promise is very enticing, but 
society shouldn’t rush headlong into 
adopting automated vehicular systems. 
Transportation systems are very com-
plex systems with many interacting 

pieces—anyone who has driven through 
rush hour in any of the world’s urban 
centers will attest to this!

Recently, there have been several 
stories in the news that have empha-
sized the challenges facing the auto-
mation of vehicular systems. Two 
tragic crashes that occurred in Tesla 
vehicles (one in China [1] and one in 
the United States [2]) highlight the 
serious life-and-death consequences 
associated with malfunctions or mis-
calculations that can occur with 
vehicular systems. Meanwhile, other 
news stories [3] have given us insight 
into what can go wrong should these 
systems and their data come in the 
cross-hairs of cybercriminals.

What can be done about this? Per-
haps first and foremost is to slow our 
rush to “remove the human” from the 
equation. Officially, Tesla’s Autopilot 
was meant to assist the driver, not 
replace the driver. Humans are still 
essential to driving, and, quite frankly, 
it should be that way for some time 
until the technology matures. Let’s be 
clear, though: this does not mean that 
we should slow down innovation but 
rather that we should work harder to 
provide even more innovation that can 
make its way into vehicles!

It is toward this vision where we, 
as signal processors and data analysts, 
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IEEE Signal Processing Society 
Video and Image Processing (VIP) Cup:

Traffic Sign Detection under Challenging Conditions

The IEEE Signal Processing Society announces the first edition of the Signal Processing
Society Video and Image Processing (VIP) Cup: traffic sign detection under challenging 
conditions.

Robust and reliable traffic sign detection is necessary to bring autonomous vehicles onto our 
roads. State of the art traffic sign detection algorithms in the literature successfully perform the
task over existing databases that mostly lack realistic road conditions. This competition focuses 
on detecting such traffic signs under challenging conditions. 
To facilitate such task and competition, we introduce a novel video dataset that contains a 
variety of road conditions. In such video sequences, we vary the type and the level of the
challenging conditions including a range of lighting conditions, blur, haze, rain and snow
levels. The goal of this challenge is to implement traffic sign detection algorithms that can 
robustly perform under such challenging environmental conditions.
Any eligible team can participate in the competition, whose detailed guidelines and dataset are 
planned to be released on March 15, 2017 and participating teams should complete their 
submission by July 1, 2017. The three best teams are selected and announced by August 1, 
2017. Three finalist teams will be judged at ICIP 2017, which will be held September 17-20,
2017. In addition to algorithmic performances, demonstration and presentation performances 
will also affect the final ranking.
The champion team will receive a grand prize of $5,000. The first and the second runner-up
will receive a prize of $2,500 and $1,500, respectively, in addition to travel grants and 
complimentary conference registrations. Each finalist team invited to ICIP 2017 will receive 
travel grant supported by the SPS on a reimbursement basis. A team member is offered up to 
$1,200 for continental travel, or $1,700 for intercontinental travel. A maximum of three 
members per team will be eligible for travel support. 
For more details, please refer to the main web pages of the VIP Cup: 
http://signalprocessingsociety.org/get-involved/video-image-processing-cup
https://ghassanalregib.com/vip-cup/
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You can simulate, prototype, 
and verify wireless systems 
right in MATLAB. Learn how 
today’s MATLAB supports RF, 
LTE, WLAN and 5G development 
and SDR hardware.

mathworks.com/wireless
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General Chairs:
John R. Hershey,  MERL
 Tomohiro Nakatani,  NTT

Important Dates: 
Paper Submission:  

June 29, 2017

Paper Notification: 
August 31, 2017

Early Registration Period: 
August 31 - Oct 5, 2017 

Camera Ready Deadline:  
Sept 21, 2017

More Information: 

info@asru2017.org

IEEE Automatic Speech Recognition and Understanding Workshop  

The biennial IEEE ASRU workshop has a tradition of bringing 
together researchers from academia and industry in an
intimate and collegial setting to discuss problems of common 
interest in automatic speech recognition, understanding, and 
related fields of research. The workshop includes keynotes, 
invited talks, poster sessions and will also feature challenge 
tasks, panel discussions, and demo sessions. 

Automatic speech recognition 
ASR in adverse environments 
New applications of ASR
Speech-to-speech translation 
Spoken document retrieval 
Multilingual language processing 
Spoken language understanding 
Spoken dialog systems 
Text-to-speech systems 

Okinawa, Japan,  
December 16-20, 2017

ASRU 2017 IEEE 
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Camera-ready papers and 
advance author registration August 7, 2017

Important Dates and Deadlines

CALL FOR PAPERS
The 27th MLSP workshop in the series of workshops organized by 
the IEEE Signal Processing Society MLSP Technical Committee will 
present the most recent and exciting advances in machine learning 
for signal processing through keynote talks, tutorials, as well as 
special and regular single-track sessions. Prospective authors are 
invited to submit papers on relevant algorithms and applications 
including, but not limited to:

MLSP 2017 seeks proposals for Special Sessions that will address 
research in emerging or interdisciplinary areas of particular       
interest, not covered already by traditional MLSP sessions.

The MLSP Best Student Paper Award will be granted to the best 
paper for which a student is the principal author and presenter.

Prospective authors are invited to submit a double column 
paper of up to six pages using the electronic submission procedure 
at http://mlsp2017.conwiz.dk. Accepted papers will be published 
on a password-protected website that will be available during the 
workshop. The presented papers will be published in and indexed 
by IEEE Xplore.
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MACHINE LEARNING FOR SIGNAL PROCESSING
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Bayesian learning and signal 
processing 
Cognitive information processing 
Deep learning techniques 
Dictionary learning 
Graphical and kernel methods 
Independent component     
analysis 
Information-theoretic learning 
Learning theory and algorithms 
Pattern recognition and       
classification 
Bounds on performance 
Subspace and manifold learning 

Sequential learning and decision 
methods 
Source separation 
Tensor and structured matrix 
methods
Machine learning from big data
Scalable learning algorithms
Applications including: speech, 
audio & music, image & video, 
biomedical signals & images, 
communications, bioinformatics, 
biometrics, systems biology, 
computational intelligence,     
genomic signals & sequences, 
social networks, games, smart 
grid, security & privacy
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IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University
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2017 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA 2017)   October 15–18, 2017

www.waspaa.com 
Mohonk Mountain House

New Paltz, New York, USA

Workshop Committee 
General Chairs

Patrick A. Naylor
Imperial College London

Meinard Müller
International AudioLabs Erlangen

Technical Program Chairs
Gautham Mysore 

Adobe Research 
Mads Christensen

Aalborg University

Finance Chair
Michael S. Brandstein

M.I.T. Lincoln Laboratory

Publications Chair 
Toon van Waterschoot

KU Leuven 

Registration Chair 
Tiago H. Falk
INRS, Montréal 

Industrial Liaison Chair 
Tao Zhang

Starkey Hearing Technologies 

Far East Liaison
Shoko Araki

NTT

Local Arrangements Chair
Youngjune Gwon

M.I.T. Lincoln Laboratory

Demonstrations Chair
Christine Evers

Imperial College London

Awards Chair
Sebastian Ewert

Queen Mary University of London

The 2017 IEEE Workshop on Applications of Signal Processing to Audio and 
Acoustics (WASPAA 2017) will be held at the Mohonk Mountain House in New 
Paltz, New York, and is supported by the Audio and Acoustic Signal Processing 
technical committee of the IEEE Signal Processing Society. The objective of this 
workshop is to provide an informal environment for the discussion of problems 
in audio, acoustics and signal processing techniques leading to novel solutions. 
Technical sessions will be scheduled throughout the day. Afternoons will be left free 
for informal meetings among workshop participants. Papers describing original 
research and new concepts are solicited for technical sessions on, but not limited 
to, the following topics:

Acoustic Signal Processing
Source separation: single- and multi-microphone techniques
Acoustic source localization and tracking
Signal enhancement: dereverberation, noise reduction, echo reduction 
Microphone and loudspeaker array processing
Acoustic sensor networks: distributed algorithms, synchronization
Acoustic scene analysis: event detection and classification
Room acoustics: analysis, modeling and simulation

Audio and Music Signal Processing
Content-based music retrieval: fingerprinting, matching, cover song retrieval
Musical signal analysis: segmentation, classification, transcription
Music signal synthesis: waveforms, instrument models, singing
Music separation: direct-ambient decomposition, vocal and instruments
Audio effects: artificial reverberation, amplifier modeling 
Upmixing and downmixing

Audio and Speech Coding
Waveform and parametric coding
Spatial audio coding
Sparse representations
Low-delay audio and speech coding
Digital rights

Hearing and Perception
Hearing aids
Computational auditory scene analysis
Auditory perception and spatial hearing
Speech and audio quality assessment
Speech intelligibility measures and prediction

Important Dates
Submission of four-page paper 

April 20, 2017

Notification of acceptance
June 27, 2017

Early registration until 
August 15, 2017

Workshop 
October 15–18, 2017
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CALL FOR PAPERS

IEEE Journal of Selected Topics in Signal Processing

Special Issue on 

End-to-end (E2E) systems have achieved competitive results compared to conventional hybrid Hidden Markov-deep neural network 
model-based automatic speech recognition (ASR) systems. Such E2E systems are attractive because they do not require initial 
alignments between input acoustic features and output graphemes or words. Very deep convolutional networks and recurrent neural 
networks have also been very successful in ASR systems due to their added expressive power and better generalization. ASR is often 
not the end goal of real-world speech information processing systems. Instead, an important end goal is information retrieval, in 
particular keyword search (KWS), which involves retrieving speech documents containing a user-specified query from a large database. 
Conventional keyword search uses an ASR system as a front-end that converts the speech database into a finite-state transducer (FST) 
index containing a large number of likely word or sub-word sequences for each speech segment, along with associated confidence scores 
and time stamps. A user-specified text query is then composed with this FST index to find the putative locations of the keyword along 
with confidence scores. More recently, inspired by E2E approaches, ASR-free keyword search systems have been proposed with limited 
success. Machine learning methods have also been very successful in Question-Answering, parsing, language translation, analytics and 
deriving representations of morphological units, words or sentences. Challenges such as the Zero Resource Speech Challenge aim to 
construct systems that learn an end-to-end Spoken Dialog (SD) system, in an unknown language, from scratch, using only information 
available to a language learning infant (zero linguistic resources). The principal objective of the recently concluded IARPA Babel 
program was to develop a keyword search system that delivers high accuracy for any new language given very limited transcribed
speech, noisy acoustic and channel conditions, and limited system build time of one to four weeks. This special issue will showcase the 
power of novel machine learning methods not only for ASR, but for keyword search and for the general processing of speech and 
language.

Topics of interest in the special issue include (but are not limited to): 

Novel end-to-end speech and language processing
Deep learning based acoustic and word representations
Query-by-example search
Question answering systems
Multilingual dialogue systems
Multilingual representation learning 
Low and zero resource speech processing
Deep learning based ASR-free keyword search 
Deep learning based media retrieval
Kernel methods applied to speech and language processing
Acoustic unit discovery
Computational challenges for deep end-to-end systems

Adaptation strategies for end to end systems
Noise robustness for low resource speech recognition 
Spoken language processing: speech retrieval, speech to  
speech translation, extraction, and summarization
Machine learning methods applied to morphological, 
syntactic, and pragmatic analysis
Computational semantics: document analysis, topic 
segmentation, categorization, and modeling
Named entity recognition, tagging, chunking, and parsing
Sentiment analysis, opinion mining, and social media 
analytics 
Deep learning in human computer interaction

Dates: 
Manuscript submission:  April 1, 2017
First review completed:  June 1, 2017
Revised Manuscript Due: July 15, 2017
Second Review Completed:  August 15, 2017
Final Manuscript Due:  September 15, 2017
Publication:   December. 2017

Guest Editors: 
Nancy F. Chen,  Institute for Infocomm Research (I2R), A*STAR, Singapore
Mary Harper,  Army Research Laboratory, USA
Brian Kingsbury, IBM  Watson,  IBM T.J. Watson Research Center, USA
Kate Knill,  Cambridge University, UK
Bhuvana Ramabhadran, IBM  Watson,  IBM T.J. Watson Research Center, USA
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