ELC 4351: Digital Signal Processing

Liang Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu

September 22, 2016

The z-Transform and Its Application to the Analysis of LTI

 Systems(1) Rational z-Transform
(2) Inversion of the z-Transform
(3) Analysis of LTI Systems in the z-Domain

4 Causality and Stability

Rational z-Transforms

$X(z)$ is a rational function, that is, a ratio of two polynomials in z^{-1} (or $z)$.

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)} \\
& =\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots a_{N} z^{-N}} \\
& =\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
\end{aligned}
$$

Rational z-Transforms

$X(z)$ is a rational function, that is, a ratio of two polynomials $B(z)$ and $A(z)$. The polynomials can be expressed in factored forms.

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)} \\
& =\frac{b_{0}}{a_{0}} z^{-M+N} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)} \\
& =\frac{b_{0}}{a_{0}} z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
\end{aligned}
$$

Poles and Zeros

The zeros of a z-transform $X(z)$ are the vales of z for which $X(z)=0$. The poles of a z-transform $X(z)$ are the vales of z for which $X(z)=\infty$.

$$
X(z)=\frac{b_{0}}{a_{0}} z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
$$

$X(z)$ has M finite zeros at $z=z_{1}, z_{2}, \ldots, z_{M}, N$ finite poles at $z=p_{1}, p_{2}, \ldots, p_{N}$, and $|N-M|$ zeros (if $N>M$) or poles (if $N<M$) at the origin.

Poles and zeros may also occur at $z=\infty$.
$X(z)$ has exactly the same number of poles and zeros.

Poles and Zeros

If a polynomial has real coefficients, its roots are either real or occur in complex-conjugate pairs. That is because e.g. $\left(z-p_{1}\right)\left(z-p_{2}\right)$

Poles and Zeros

For example,

$$
X(z)=\frac{z^{-1}-z^{-2}}{1-1.2732 z^{-1}+0.81 z^{-2}}
$$

which has one zero at $z=1$ and two poles at $p_{1}=0.9 e^{j \pi / 4}$ and $p_{2}=0.9 e^{-j \pi / 4}$.

Some Common z-Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	$u(n)$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3	$a^{n} u(n)$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
4	$n a^{n} u(n)$	$\frac{a z^{-1}}{\left.1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
5	$-a^{n} u(-n-1)$	$\frac{1}{\left(1-a z^{-1}\right.}$	$\|z\|<\|a\|$
6	$-n a^{n} u(-n-1)$	$\frac{\left.1-z^{-1}\right)^{2}}{1-2 z^{-1} \cos \omega_{0}+z^{-2}}$	$\|z\|>1$
7	$\left(\cos \omega_{0} n\right) u(n)$	$\frac{z^{-1} \sin \omega_{0}}{1-2 z^{-1} \cos \omega_{0}+z^{-2}}$	$\|z\|>1$
8	$\left(\sin \omega_{0} n\right) u(n)$	$\frac{1-a z^{-1} \cos \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}}$	$\|z\|>\|a\|$
9	$\left(a^{n} \cos \omega_{0} n\right) u(n)$	$\frac{a z^{-1} \sin \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}}$	$\|z\|>\|a\|$

Poles Locations and Time-Domain Behavior for Causal

Signals

If a real signal has a z-transform with one pole, this pole has to be real. The only such signal is the real exponential

$$
x(n)=a^{n} u(n) \rightarrow^{z} X(z)=\frac{1}{1-a z^{-1}}, \quad \mathrm{ROC}:|z|>|a|
$$

Poles Locations and Time-Domain Behavior for Causal

Signals

A causal real signal with a double real pole has the form

$$
x(n)=n a^{n} u(n) \rightarrow^{z} X(z)=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad \text { ROC }:|z|>|a|
$$

Poles Locations and Time-Domain Behavior for Causal

Signals

The case of a causal signal with a pair of complex-conjugate poles.

Poles Locations and Time-Domain Behavior for Causal Signals

The case of a causal signal with a double pair of poles on the unit circle.

Poles Locations and Time-Domain Behavior for Causal

Signals

The impulse response $h(n)$ of a causal LTI system is a causal signal.
Therefore, if a pole of a system is outside the unit circle, the impulse response of the system becomes unbounded and, consequently, the system is unstable.

System Function of a LTI System

LTI systems:

$$
\begin{aligned}
y(n) & =h(n) \otimes x(n) \\
Y(z) & =H(z) X(z)
\end{aligned}
$$

If we know the input $x(n)$ and observe the output $y(n)$ of the system, we can determine the unit sample response (impulse response) by first solving for $H(z)$ from

$$
H(z)=\frac{Y(z)}{X(z)}
$$

and then evaluating the inverse z-transform of $H(z)$.
$H(z)$ is called the system function.

System Function of a LTI System

When the LTI system is described by a linear constant-coefficient difference equation

$$
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k)
$$

The system function can be calculate:

$$
\begin{aligned}
Y(z) & =-\sum_{k=1}^{N} a_{k} Y(z) z^{-k}+\sum_{k=0}^{M} b_{k} X(z) z^{-k} \\
Y(z)\left(1+\sum_{k=1}^{N} a_{k} z^{-k}\right) & =X(z)\left(\sum_{k=0}^{M} b_{k} z^{-k}\right) \\
H(z) & =\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}
\end{aligned}
$$

System Function of a LTI System

An LTI system described by a constant-coefficient difference equation has a rational system function $H(z)$.

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}
$$

System Function of a LTI System

(1) All-zero system: If $a_{k}=0$ for $1 \leq k \leq N$,

$$
H(z)=\sum_{k=0}^{M} b_{k} z^{-k}=\frac{1}{z^{M}} \sum_{k=0}^{M} b_{k} z^{M-k}
$$

The system has M nontrivial zeros and M trivial poles (at $z=0$).
An all-zero system is an FIR system and can be called a moving average (MA) system.

System Function of a LTI System

(2) All-pole system: If $b_{k}=0$ for $1 \leq k \leq M$,

$$
H(z)=\frac{b_{0}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}=\frac{b_{0} z^{N}}{\sum_{k=0}^{M} a_{k} z^{N-k}}
$$

where $a_{0}=1$. The system has N nontrivial poles and N trivial zeros (at $z=0$).

An all-pole system is an IIR system and can be called an auto-regressive (AR) system.

System Function of a LTI System

(3) Pole-zero system:

In general, the system function contains N poles and M zeros. (Poles and zeros at $z=0$ and $z=\infty$ are implied but are not counted explicitly.)

Due to the presence of poles, a pole-zero system is an IIR system.

Inversion of the z-Transform

$$
H(z)=\frac{Y(z)}{X(z)}, \quad H(z) \rightarrow^{i n v z} h(n)
$$

Inverse z-Transform:

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

where the integral is a (counter-clockwise) contour integral over a closed path C that encloses the origin and lies within the region of convergence of $X(z)$.

Methods of Inverse z-Transform

(1) Contour integration
(2) Power series expansion (using long division)
(3) Partial-fraction expansion

Inverse z-Transform by Partial-Fraction Expansion

$X(z)$ is rational function.

$$
X(z)=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

A rational function is proper if $a_{N} \neq 0$ and $M<N$.

Inverse z-Transform by Partial-Fraction Expansion

An improper rational function $(M \geq N)$ can always be written as the sum of a polynomial and a proper rational function.

$$
X(z)=\frac{B(z)}{A(z)}=c_{0}+c_{1} z^{-1}+\cdots+c_{M-N} z^{-(M-N)}+\frac{B_{1}(z)}{A(z)}
$$

The inverse z-transform of the polynomial can easily be found by inspection.

We focus our attention on the inversion of proper rational function.

Inverse z-Transform by Partial-Fraction Expansion

Let $X(z)$ be a proper rational function.

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \\
& =\frac{b_{0} z^{N}+b_{1} z^{N-1}+\cdots+b_{M} z^{N-M}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
\end{aligned}
$$

Since $N>M$,

$$
\frac{X(z)}{z}=\frac{b_{0} z^{N-1}+b_{1} z^{N-2}+\cdots+b_{M} z^{N-M-1}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
$$

is proper.

Inverse z-Transform by Partial-Fraction Expansion

(1) Distinct poles. Suppose that the poles $p_{1}, p_{2}, \ldots, p_{N}$ are all different.

$$
\frac{X(z)}{z}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}}
$$

We want to determine the coefficients $A_{1}, A_{2}, \ldots, A_{N}$.

$$
\frac{\left(z-p_{k}\right) X(z)}{z}=\frac{\left(z-p_{k}\right) A_{1}}{z-p_{1}}+\cdots+A_{k}+\cdots+\frac{\left(z-p_{k}\right) A_{N}}{z-p_{N}}
$$

Therefore,

$$
A_{k}=\left.\frac{\left(z-p_{k}\right) X(z)}{z}\right|_{z=p_{k}}, \quad k=1,2, \ldots, N
$$

(In addition, if $p_{2}=p_{1}^{*}, A_{2}=A_{1}^{*}$.)

Inverse z-Transform by Partial-Fraction Expansion

(2) Multiple-order poles. $X(z)$ has a pole of multiplicity m, that is, it contains in its denominator the factor $\left(z-p_{k}\right)^{m}$.

The partial-fraction expansion must contain the terms

$$
\frac{A_{1 k}}{\left(z-p_{k}\right)}+\frac{A_{2 k}}{\left(z-p_{k}\right)^{2}}+\cdots+\frac{A_{m k}}{\left(z-p_{k}\right)^{m}}
$$

Therefore,

$$
\begin{gathered}
A_{m k}=\left.\frac{\left(z-p_{k}\right)^{m} X(z)}{z}\right|_{z=p_{k}} \\
A_{(m-1) k}=\frac{d}{d z}\left[\frac{\left(z-p_{k}\right)^{m} X(z)}{z}\right]_{z=p_{k}}, \cdots \\
A_{1 k}=\frac{d^{(m-1)}}{d z^{(m-1)}}\left[\frac{\left(z-p_{k}\right)^{m} X(z)}{z}\right]_{z=p_{k}}
\end{gathered}
$$

Inverse z-Transform by Partial-Fraction Expansion

$$
\begin{aligned}
\frac{X(z)}{z} & =\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}} \\
X(z) & =\frac{A_{1}}{1-p_{1} z^{-1}}+\frac{A_{2}}{1-p_{2} z^{-1}}+\cdots+\frac{A_{N}}{1-p_{N} z^{-1}} \\
\mathcal{Z}^{-1}\left\{\frac{1}{1-p_{k} z^{-1}}\right\} & = \begin{cases}\left(p_{k}\right)^{n} u(n), & \text { ROC }:|z|>\left|p_{k}\right| \text { (causal) } \\
-\left(p_{k}\right)^{n} u(-n-1), & \text { ROC }:|z|<\left|p_{k}\right| \text { (anticausal) }\end{cases}
\end{aligned}
$$

Inverse z-Transform by Partial-Fraction Expansion

In the case of a double pole:

$$
\begin{aligned}
\frac{X(z)}{z} & =\frac{A}{(z-p)^{2}}+\cdots \\
X(z) & =\frac{A z^{-1}}{\left(1-p z^{-1}\right)^{2}}+\cdots
\end{aligned}
$$

$\mathcal{Z}^{-1}\left\{\frac{p z^{-1}}{\left(1-p z^{-1}\right)^{2}}\right\}= \begin{cases}n p^{n} u(n), & \text { ROC }:|z|>|p|(\text { causal }) \\ -n p^{n} u(-n-1), & \text { ROC }:|z|<|p| \text { (anticausal) }\end{cases}$

Decomposition of Rational z-Transform

$$
X(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}=b_{0} \frac{\prod_{k=1}^{M}\left(1-z_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)}
$$

With real signals,

$$
\begin{aligned}
X(z) & =\sum_{k=0}^{M-N} \gamma_{k} z^{-k}+\sum_{k=1}^{K_{1}} \frac{\beta_{k}}{1+\alpha_{k} z^{-1}}+\sum_{k=1}^{K_{2}} \frac{\beta_{0 k}+\beta_{1 k} z^{-1}}{1+\alpha_{1 k} z^{-1}+\alpha_{2 k} z^{-2}} \\
& =v_{0} \prod_{k=1}^{K_{1}} \frac{1+v_{k} z^{-1}}{1+u_{k} z^{-1}} \prod_{k=1}^{K_{2}} \frac{1+v_{1 k} z^{-1}+v_{2 k} z^{-2}}{1+u_{1 k} z^{-1}+u_{2 k} z^{-2}}
\end{aligned}
$$

where $K_{1}+2 K_{2}=N$.
Coefficients $\alpha_{k}, \beta_{k}, \gamma_{k}, u_{k}, v_{k}$ are real.

Analysis of LTI Systems in the z-Domain

Zero-pole systems represented by linear constant-coefficient difference equations with arbitrary initial conditions.

$$
H(z)=\frac{B(z)}{A(z)}
$$

Assume that the input signal $x(n)$ has a rational z-transform $X(z)$

$$
X(z)=\frac{N(z)}{Q(z)}
$$

The system is initially relaxed, i.e. $y(-1)=y(-2)=\cdots y(-N)=0$.

$$
Y(z)=H(z) X(z)=\frac{B(z) N(z)}{A(z) Q(z)}
$$

Analysis of LTI Systems in the z-Domain

Suppose that the system contains simple poles $p_{1}, p_{2}, \ldots, p_{N}$ and the z-transform of the input signal contains poles $q_{1}, q_{2}, \ldots, q_{L}$, where $p_{k} \neq q_{m}$ for all k and m.
In addition, suppose that there is no pole-zero cancellation.

A partial-fraction expansion of $Y(z)$ yields

$$
Y(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-p_{k} z^{-1}}+\sum_{k=1}^{L} \frac{Q_{k}}{1-q_{k} z^{-1}}
$$

Inverse transform of $Y(z)$:

$$
y(n)=\underbrace{\sum_{k=1}^{N} A_{k}\left(p_{k}\right)^{n} u(n)}_{\text {natural response }}+\underbrace{\sum_{k=1}^{L} Q_{k}\left(q_{k}\right)^{n} u(n)}_{\text {forced response }}
$$

Transient Response and Steady-State Response

$$
y_{n r}(n)=\sum_{k=1}^{N} A_{k}\left(p_{k}\right)^{n} u(n)
$$

If $\left|p_{k}\right|<1$ for all k, then $y_{n r}(n)$ decays to zero as n approaches infinity. The natural response is called the transient response.

$$
y_{f r}(n)=\sum_{k=1}^{L} Q_{k}\left(q_{k}\right)^{n} u(n)
$$

If the poles fall on the unit circle and consequently, the forced response persists for all $n>0$. The forced response is called the steady-state response of the system.

Causality

Causal LTI system: $h(n)=0, n<0$.
(The ROC of the z-transform of a causal sequence is the exterior of a circle.)

A LTI system is causal iff the ROC of the system function is the exterior of a circle of radius $r<\infty$, including the point $z=\infty$.

Stability

BIBO stable LTI system: $\sum_{n=-\infty}^{\infty}|h(n)|<\infty$.

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty} h(n) z^{-n} \\
|H(z)| & \leq \sum_{n=-\infty}^{\infty}\left|h(n) z^{-n}\right| \\
& =\sum_{n=-\infty}^{\infty}|h(n)|\left|z^{-n}\right|
\end{aligned}
$$

When evaluated on the unit circle, i.e. $|z|=1$,

$$
|H(z)| \leq \sum_{n=-\infty}^{\infty}|h(n)|<\infty \Rightarrow \text { The ROC includes the unit circle. }
$$

Causality and Stability

A causal and stable LTI system must have a system function converges for $|z|>r$, where $r<1$.

A causal LTI system is BIBO stable iff all the poles of $H(z)$ are inside the unit circle.
cf. A causal LTI system with a rational transfer function $H(s)$ is stable iff all poles of $H(s)$ are in the left half of the s-plane, i.e., the real parts of all poles are negative.

Causality and Stability Example

A LTI system is characterized by the system function

$$
\begin{aligned}
H(z) & =\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}} \\
& =\frac{1}{1-0.5 z^{-1}}+\frac{2}{1-3 z^{-1}}
\end{aligned}
$$

Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions:
(1) The system is stable.
(2) The system is causal.
(3) The system is anticausal.

Causality and Stability Example

Solution. The system has poles at $z=0.5$ and $z=3$.
(1) Since the system is stable, its ROC must include the unit circle and hence it is $0.5<|z|<3$.

$$
h(n)=(0.5)^{n} u(n)-2(3)^{n} u(-n-1) \Rightarrow \text { noncausal }
$$

(2) Since the system is causal, its ROC is $|z|>3$.

$$
h(n)=(0.5)^{n} u(n)+2(3)^{n} u(n) \Rightarrow \text { unstable }
$$

(3) Since the system is anticausal, its ROC is $|z|<0.5$.

$$
h(n)=-(0.5)^{n} u(-n-1)-2(3)^{n} u(-n-1) \Rightarrow \text { unstable }
$$

Pole-Zero Cancellation

Pole-zero cancellations can occur either in the system function itself or in the product of the system function $H(z)$ with the z-transform of the input signal $X(z)$.

