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Rational z-Transforms

X (z) is a rational function, that is, a ratio of two polynomials in z−1 (or
z).

X (z) =
B(z)

A(z)

=
b0 + b1z

−1 + · · ·+ bMz−M

a0 + a1z−1 + · · · aNz−N

=

∑M
k=0 bkz

−k∑N
k=0 akz

−k
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Rational z-Transforms

X (z) is a rational function, that is, a ratio of two polynomials B(z) and
A(z). The polynomials can be expressed in factored forms.

X (z) =
B(z)

A(z)

=
b0
a0

z−M+N (z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)

=
b0
a0

zN−M
∏M

k=1(z − zk)∏N
k=1(z − pk)
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Poles and Zeros

The zeros of a z-transform X (z) are the vales of z for which X (z) = 0.
The poles of a z-transform X (z) are the vales of z for which X (z) =∞.

X (z) =
b0
a0

zN−M
∏M

k=1(z − zk)∏N
k=1(z − pk)

X (z) has M finite zeros at z = z1, z2, . . . , zM , N finite poles at
z = p1, p2, . . . , pN , and |N −M| zeros (if N > M) or poles (if N < M) at
the origin.

Poles and zeros may also occur at z =∞.

X (z) has exactly the same number of poles and zeros.
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Poles and Zeros

If a polynomial has real coefficients, its roots are either real or occur in
complex-conjugate pairs. That is because e.g. (z − p1)(z − p2)

Liang Dong (Baylor University) z-Transform Part 2 September 22, 2016 6 / 38



Poles and Zeros

For example,

X (z) =
z−1 − z−2

1− 1.2732z−1 + 0.81z−2

which has one zero at z = 1 and two poles at p1 = 0.9e jπ/4 and
p2 = 0.9e−jπ/4.
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Some Common z-Transform Pairs
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Poles Locations and Time-Domain Behavior for Causal
Signals

If a real signal has a z-transform with one pole, this pole has to be real.
The only such signal is the real exponential

x(n) = anu(n)→z X (z) =
1

1− az−1
, ROC :|z | > |a|
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Poles Locations and Time-Domain Behavior for Causal
Signals

A causal real signal with a double real pole has the form

x(n) = nanu(n)→z X (z) =
az−1

(1− az−1)2
, ROC :|z | > |a|
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Poles Locations and Time-Domain Behavior for Causal
Signals

The case of a causal signal with a pair of complex-conjugate poles.

Liang Dong (Baylor University) z-Transform Part 2 September 22, 2016 11 / 38



Poles Locations and Time-Domain Behavior for Causal
Signals

The case of a causal signal with a double pair of poles on the unit circle.
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Poles Locations and Time-Domain Behavior for Causal
Signals

The impulse response h(n) of a causal LTI system is a causal signal.

Therefore, if a pole of a system is outside the unit circle, the impulse
response of the system becomes unbounded and, consequently, the system
is unstable.
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System Function of a LTI System

LTI systems:

y(n) = h(n)⊗ x(n)

Y (z) = H(z)X (z)

If we know the input x(n) and observe the output y(n) of the system, we
can determine the unit sample response (impulse response) by first solving
for H(z) from

H(z) =
Y (z)

X (z)

and then evaluating the inverse z-transform of H(z).

H(z) is called the system function.
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System Function of a LTI System

When the LTI system is described by a linear constant-coefficient
difference equation

y(n) = −
N∑

k=1

aky(n − k) +
M∑
k=0

bkx(n − k)

The system function can be calculate:

Y (z) = −
N∑

k=1

akY (z)z−k +
M∑
k=0

bkX (z)z−k

Y (z)

(
1 +

N∑
k=1

akz
−k

)
= X (z)

(
M∑
k=0

bkz
−k

)

H(z) =
Y (z)

X (z)
=

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k
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System Function of a LTI System

An LTI system described by a constant-coefficient difference equation has
a rational system function H(z).

H(z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k
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System Function of a LTI System

(1) All-zero system: If ak = 0 for 1 ≤ k ≤ N,

H(z) =
M∑
k=0

bkz
−k =

1

zM

M∑
k=0

bkz
M−k

The system has M nontrivial zeros and M trivial poles (at z = 0).

An all-zero system is an FIR system and can be called a moving average
(MA) system.
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System Function of a LTI System

(2) All-pole system: If bk = 0 for 1 ≤ k ≤ M,

H(z) =
b0

1 +
∑N

k=1 akz
−k

=
b0z

N∑M
k=0 akz

N−k

where a0 = 1. The system has N nontrivial poles and N trivial zeros (at
z = 0).

An all-pole system is an IIR system and can be called an auto-regressive
(AR) system.
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System Function of a LTI System

(3) Pole-zero system:

In general, the system function contains N poles and M zeros. (Poles and
zeros at z = 0 and z =∞ are implied but are not counted explicitly.)

Due to the presence of poles, a pole-zero system is an IIR system.
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Inversion of the z-Transform

H(z) =
Y (z)

X (z)
, H(z)→inv z h(n)

Inverse z-Transform:

x(n) =
1

2πj

∮
C
X (z)zn−1dz

where the integral is a (counter-clockwise) contour integral over a closed
path C that encloses the origin and lies within the region of convergence
of X (z).
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Methods of Inverse z-Transform

(1) Contour integration

(2) Power series expansion (using long division)

(3) Partial-fraction expansion
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Inverse z-Transform by Partial-Fraction Expansion

X (z) is rational function.

X (z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

A rational function is proper if aN 6= 0 and M < N.
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Inverse z-Transform by Partial-Fraction Expansion

An improper rational function (M ≥ N) can always be written as the sum
of a polynomial and a proper rational function.

X (z) =
B(z)

A(z)
= c0 + c1z

−1 + · · ·+ cM−Nz
−(M−N) +

B1(z)

A(z)

The inverse z-transform of the polynomial can easily be found by
inspection.

We focus our attention on the inversion of proper rational function.
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Inverse z-Transform by Partial-Fraction Expansion

Let X (z) be a proper rational function.

X (z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

=
b0z

N + b1z
N−1 + · · ·+ bMzN−M

zN + a1zN−1 + · · ·+ aN

Since N > M,

X (z)

z
=

b0z
N−1 + b1z

N−2 + · · ·+ bMzN−M−1

zN + a1zN−1 + · · ·+ aN

is proper.
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Inverse z-Transform by Partial-Fraction Expansion

(1) Distinct poles. Suppose that the poles p1, p2, . . . , pN are all different.

X (z)

z
=

A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN

We want to determine the coefficients A1,A2, . . . ,AN .

(z − pk)X (z)

z
=

(z − pk)A1

z − p1
+ · · ·+ Ak + · · ·+ (z − pk)AN

z − pN

Therefore,

Ak =
(z − pk)X (z)

z

∣∣∣∣
z=pk

, k = 1, 2, . . . ,N

(In addition, if p2 = p∗1 , A2 = A∗1.)
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Inverse z-Transform by Partial-Fraction Expansion

(2) Multiple-order poles. X (z) has a pole of multiplicity m, that is, it
contains in its denominator the factor (z − pk)m.

The partial-fraction expansion must contain the terms

A1k

(z − pk)
+

A2k

(z − pk)2
+ · · ·+ Amk

(z − pk)m

Therefore,

Amk =
(z − pk)mX (z)

z

∣∣∣∣
z=pk

A(m−1)k =
d

dz

[
(z − pk)mX (z)

z

]
z=pk

, · · ·

A1k =
d (m−1)

dz(m−1)

[
(z − pk)mX (z)

z

]
z=pk
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Inverse z-Transform by Partial-Fraction Expansion

X (z)

z
=

A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN

X (z) =
A1

1− p1z−1
+

A2

1− p2z−1
+ · · ·+ AN

1− pNz−1

Z−1
{

1

1− pkz−1

}
=

{
(pk)nu(n), ROC :|z | > |pk | (causal)
−(pk)nu(−n − 1), ROC :|z | < |pk | (anticausal)
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Inverse z-Transform by Partial-Fraction Expansion

In the case of a double pole:

X (z)

z
=

A

(z − p)2
+ · · ·

X (z) =
Az−1

(1− pz−1)2
+ · · ·

Z−1
{

pz−1

(1− pz−1)2

}
=

{
npnu(n), ROC :|z | > |p| (causal)
−npnu(−n − 1), ROC :|z | < |p| (anticausal)
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Decomposition of Rational z-Transform

X (z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

= b0

∏M
k=1(1− zkz

−1)∏N
k=1(1− pkz−1)

With real signals,

X (z) =
M−N∑
k=0

γkz
−k +

K1∑
k=1

βk
1 + αkz−1

+

K2∑
k=1

β0k + β1kz
−1

1 + α1kz−1 + α2kz−2

= v0

K1∏
k=1

1 + vkz
−1

1 + ukz−1

K2∏
k=1

1 + v1kz
−1 + v2kz

−2

1 + u1kz−1 + u2kz−2

where K1 + 2K2 = N.

Coefficients αk , βk , γk , uk , vk are real.
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Analysis of LTI Systems in the z-Domain

Zero-pole systems represented by linear constant-coefficient difference
equations with arbitrary initial conditions.

H(z) =
B(z)

A(z)

Assume that the input signal x(n) has a rational z-transform X (z)

X (z) =
N(z)

Q(z)

The system is initially relaxed, i.e. y(−1) = y(−2) = · · · y(−N) = 0.

Y (z) = H(z)X (z) =
B(z)N(z)

A(z)Q(z)
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Analysis of LTI Systems in the z-Domain

Suppose that the system contains simple poles p1, p2, . . . , pN and the
z-transform of the input signal contains poles q1, q2, . . . , qL, where
pk 6= qm for all k and m.
In addition, suppose that there is no pole-zero cancellation.

A partial-fraction expansion of Y (z) yields

Y (z) =
N∑

k=1

Ak

1− pkz−1
+

L∑
k=1

Qk

1− qkz−1

Inverse transform of Y (z):

y(n) =
N∑

k=1

Ak(pk)nu(n)︸ ︷︷ ︸
natural response

+
L∑

k=1

Qk(qk)nu(n)︸ ︷︷ ︸
forced response
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Transient Response and Steady-State Response

ynr (n) =
N∑

k=1

Ak(pk)nu(n)

If |pk | < 1 for all k , then ynr (n) decays to zero as n approaches infinity.
The natural response is called the transient response.

yfr (n) =
L∑

k=1

Qk(qk)nu(n)

If the poles fall on the unit circle and consequently, the forced response
persists for all n > 0. The forced response is called the steady-state
response of the system.
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Causality

Causal LTI system: h(n) = 0, n < 0.

(The ROC of the z-transform of a causal sequence is the exterior of a
circle. )

A LTI system is causal iff the ROC of the system function is the exterior of
a circle of radius r <∞, including the point z =∞.
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Stability

BIBO stable LTI system:
∑∞

n=−∞ |h(n)| <∞.

H(z) =
∞∑

n=−∞
h(n)z−n

|H(z)| ≤
∞∑

n=−∞
|h(n)z−n|

=
∞∑

n=−∞
|h(n)||z−n|

When evaluated on the unit circle, i.e. |z | = 1,

|H(z)| ≤
∞∑

n=−∞
|h(n)| <∞ ⇒ The ROC includes the unit circle.
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Causality and Stability

A causal and stable LTI system must have a system function converges for
|z | > r , where r < 1.

A causal LTI system is BIBO stable iff all the poles of H(z) are inside the
unit circle.

cf. A causal LTI system with a rational transfer function H(s) is stable iff
all poles of H(s) are in the left half of the s-plane, i.e., the real parts of all
poles are negative.
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Causality and Stability Example

A LTI system is characterized by the system function

H(z) =
3− 4z−1

1− 3.5z−1 + 1.5z−2

=
1

1− 0.5z−1
+

2

1− 3z−1

Specify the ROC of H(z) and determine h(n) for the following conditions:

(1) The system is stable.
(2) The system is causal.
(3) The system is anticausal.
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Causality and Stability Example

Solution. The system has poles at z = 0.5 and z = 3.

(1) Since the system is stable, its ROC must include the unit circle and
hence it is 0.5 < |z | < 3.

h(n) = (0.5)nu(n)− 2(3)nu(−n − 1) ⇒ noncausal

(2) Since the system is causal, its ROC is |z | > 3.

h(n) = (0.5)nu(n) + 2(3)nu(n) ⇒ unstable

(3) Since the system is anticausal, its ROC is |z | < 0.5.

h(n) = −(0.5)nu(−n − 1)− 2(3)nu(−n − 1) ⇒ unstable

Liang Dong (Baylor University) z-Transform Part 2 September 22, 2016 37 / 38



Pole-Zero Cancellation

Pole-zero cancellations can occur either in the system function itself or in
the product of the system function H(z) with the z-transform of the input
signal X (z).
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