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Frequency-domain Analysis of LTI Systems

1 Inverse Systems and Deconvolution
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Inverse Systems and Deconvolution

In many practical applications we are given an output signal from a
system whose characteristics are unknown and we are asked to
determine the input signal.

Channel distortion and a need for a corrective system: Equalizer,
Inverse system

An inverse system — The corrective system has a frequency response
which is basically the reciprocal of the frequency response of the
system that caused the distortion.

Deconvolution — The inverse system operation that takes y(n) and
produces x(n).

System Identification — In short, to find h(n) or H(ω).
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Invertibility of Linear Time-Invariant Systems

A system is said to be invertible if there is a one-to-one correspondence
between its input and output signals.

An invertible system: T
The inverse system: T −1

w(n) = T −1[y(n)] = T −1{T [x(n)]} = x(n)
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Invertibility of Linear Time-Invariant Systems

LTI system T has impulse response h(n); the inverse system T −1 has
impulse response hI (n).

w(n) = hI (n)⊗ h(n)⊗ x(n) = x(n)

h(n)⊗ hI (n) = δ(n)

H(z)HI (z) = 1

Therefore,

HI (z) =
1

H(z)
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Invertibility of Linear Time-Invariant Systems

LTI system T has impulse response h(n); the inverse system T −1 has
impulse response hI (n).

HI (z) =
1

H(z)

If H(z) has a rational system function

H(z) =
B(z)

A(z)

then

HI (z) =
A(z)

B(z)

The zeros of H(z) become the poles of the inverse system, and vice
versa.

If H(z) is an FIR system, then HI (z) is an all-pole system, and vice
versa.
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Invertibility of Linear Time-Invariant Systems

h(n)⊗ hI (n) = δ(n)

We assume that the system and its inverse are causal. Then this equation
simplifies to

n∑
k=0

h(k)hI (n − k) = δ(n)

For n = 0, hI (0) = 1/h(0).
For n ≥ 1, hI (n) can be obtained recursively

hI (n) =
n∑

k=1

h(n)hI (n − k)

h(0)
, n ≥ 1
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Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

e.g.,

H1(z) = 1 +
1

2
z−1

H2(z) =
1

2
+ z−1

|H1(ω)| = |H2(ω)| =

√
5

4
+ cosω

∠H1(ω) = −ω + tan−1
sinω

0.5 + cosω

∠H2(ω) = −ω + tan−1
sinω

2 + cosω
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Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

∠H1(ω) = −ω + tan−1
sinω

0.5 + cosω

∠H2(ω) = −ω + tan−1
sinω

2 + cosω

Minimum-phase: ∠H(π)− ∠H(0) = 0; Maximum-phase:
∠H(π)− ∠H(0) = π.

Liang Dong (Baylor University) Frequency-domain Analysis of LTI Systems October 24, 2016 9 / 15



Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

For an FIR system that has M zeros,

H(ω) = b0(1− z1e
−jω)(1− z2e

−jω) · · · (1− zMe−jω)

When all zeros are inside the unit circle, Minimum-phase:
∠H(π)− ∠H(0) = 0;

When all zeros are outside the unit circle, Maximum-phase:
∠H(π)− ∠H(0) = Mπ.

If the FIR system with M zeros has some of its zeros inside the unit circle
and the remaining zeros outside the unit circle, it is called a mixed-phase
system or a nonminimum-phase system.
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Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

Since the derivative of the phase characteristic of the system is a measure
of the time delay that signal frequency components undergo in passing
through the system,

a minimum-phase characteristic implies a minimum delay function;

a maximum-phase characteristic implies that the delay characteristic
is also maximum.

Because
|H(ω)|2 = H(z)H(z−1)|z=e jω ,

if we replace a zero zk of the system by its inverse l/zk , the magnitude
characteristic of the system does not change.

Place zeros inside unit circle for minimum phase.

Liang Dong (Baylor University) Frequency-domain Analysis of LTI Systems October 24, 2016 11 / 15



Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

Extend to IIR systems that have rational system functions

H(z) =
B(z)

A(z)

It is minimum-phase, if all its poles and zeros are inside the unit circle.

For a stable and causal system, the system is maximum phase if all the
zeros are outside the unit circle.

A stable pole-zero system that is minimum phase has a stable inverse
which is also minimum phase. Why?

Maximum-phase systems and mixed-phase systems result in unstable
inverse systems.
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Decomposition of Nonminimum-phase Pole-zero Systems.

Any nonminimum-phase pole-zero system can be expressed as

H(z) = Hmin(z)Hap(z)

H(z) is causal and stable.
B(z) = B1(z)B2(z), where B1(z) has all its roots inside the unit circle,
B2(z) has all its roots outside the unit circle.

Then,

Hmin(z) =
B1(z)B2(z−1)

A(z)

Hap(z) =
B2(z)

B2(z−1)

Hap(z) is a stable, all-pass, maximum-phase system.
Group delay: τg (ω) = τmin

g (ω) + τ apg (ω)
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System Identification and Deconvolution

y(n) = h(n)⊗ x(n)

H(z) =
Y (z)

X (z)

The system can be identified uniquely if it is known causal.
Alternatively, if the system is causal,

y(n) =
n∑

k=0

h(k)x(n − k), n ≥ 0

hence, recursively, we have

h(0) =
y(0)

x(0)

h(n) =
y(n)−

∑n−1
k=0 h(k)x(n − k)

x(0)
, n ≥ 1
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System Identification and Deconvolution

The crosscorrelation method is an effective and practical method for
system identification.

ryx(m) =
∞∑
k=0

h(k)rxx(m − k) = h(m)⊗ rxx(m)

Syx(ω) = H(ω)Sxx(ω) = H(ω)|X (ω)|2

Therefore,

H(ω) =
Syx(ω)

Sxx(ω)
=

Syx(ω)

|X (ω)|2
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