ELC 4351: Digital Signal Processing

Liang Dong

Electrical and Computer Engineering Baylor University

liang_dong@baylor.edu

September 1, 2016

Discrete-time Signals and Systems

- Discrete-time Signals
- 2 Discrete-time Systems
- 3 Analysis of Discrete-time Linear Time-Invariant Systems
- 4 Implementation of Discrete-time Systems
- 5 Correlation of Discrete-time Signals

Elementary Discrete-time Signals

Unit sample sequence

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Unit step signal

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Unit ramp signal

$$u_r(n) = \left\{ \begin{array}{ll} n, & n \ge 0 \\ 0, & n < 0 \end{array} \right.$$

Exponential signal

$$x(n) = a^n = (re^{j\theta})^n = r^n e^{j\theta n}$$

Classification of Discrete-time Signals

Energy signals vs. power signals

Energy:
$$E = \sum_{n=-\infty}^{\infty} |x(n)|^2$$
.

If *E* is finite, $0 < E < \infty$, x(n) is energy signal.

Power:
$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2 = \lim_{N \to \infty} \frac{1}{2N+1} E_N$$
.

E finite
$$\Rightarrow P = 0$$
.

If *P* is finite, $0 < P < \infty$, x(n) is power signal.

Classification of Discrete-time Signals

Periodic signals vs. aperiodic signals

x(n) is periodic with period N > 0 iff

$$x(n+N)=x(n), \forall n.$$

The smallest N is the fundamental period.

e.g.
$$x(n) = A\sin(2\pi f n)$$
, $f = \frac{k}{N}$.

Power:
$$P = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2$$
.

Therefore, periodic signals are power signals.

Classification of Discrete-time Signals

Symmetric (even) vs. antisymmetric (odd) signals

Even:
$$x(-n) = x(n)$$

Odd:
$$x(-n) = -x(n)$$

Any signal can be expressed as a sum of an even signal and an odd signal.

$$x(n) = x_e(n) + x_o(n)$$

Proof.

$$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$$
 and $x_o(n) = \frac{1}{2}[x(n) - x(-n)]$.

Simple Manipulations of Discrete-time Signals

Time-delay:
$$TD_k[x(n)] = x(n-k), k > 0.$$

Folding:
$$FD[x(n)] = x(-n)$$
.

Amplitude scaling:
$$y(n) = Ax(n), -\infty < n < \infty$$
.

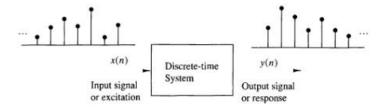
Sum:
$$y(n) = x_1(n) + x_2(n)$$
.

Product:
$$y(n) = x_1(n)x_2(n)$$
. (sample-to-sample basis)

Discrete-time Systems

Discrete-time System

$$y(n) = \mathcal{T}[x(n)]$$



Input-Output Description of Systems

$$x(n) \rightarrow^{\mathcal{T}} y(n)$$
 $y(n) = \mathcal{T}[x(n)]$

For example, an accumulator:

$$y(n) = \sum_{k=-\infty}^{n} x(k)$$

$$= x(n) + x(n-1) + x(n-2) + \cdots$$

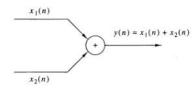
$$= \sum_{k=-\infty}^{n-1} x(k) + x(n)$$

$$= y(n-1) + x(n)$$

Initially relaxed at n_0 : $y(n_0 - 1) = 0$.

Block Diagram Representation of Discrete-time Systems

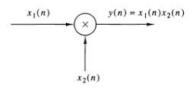
Adder



Constant Multiplier

$$x(n)$$
 a $y(n) = ax(n)$

Signal Multiplier



Block Diagram Representation of Discrete-time Systems

Unit Delay Element

$$z^{-1} y(n) = x(n-1)$$

Unit Advance Element

Static vs. dynamic systems

Static (memoryless):

$$y(n) = \alpha x(n)$$

$$y(n) = n^2 x(n) + \beta x^2(n)$$

Dynamic:

$$y(n) = x(n) + 3x(n-1)$$

$$y(n) = \sum_{k=0}^{\infty} x(n-k)$$

Time-invariant vs. time-variant systems

Time-invariant:

$$x(n) \to^{\mathcal{T}} y(n)$$
 implies $x(n-k) \to^{\mathcal{T}} y(n-k)$.

$$y(n,k) = \mathcal{T}[x(n-k)] = y(n-k)$$

Linear vs. nonlinear systems

Linear system iff

$$\mathcal{T}[\alpha_1 x_1(n) + \alpha_2 x_2(n)] = \alpha_1 \mathcal{T}[x_1(n)] + \alpha_2 \mathcal{T}[x_2(n)]$$

Superposition: Scaling (multiplicative) property + Additive property

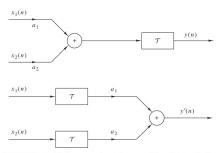


Figure 2.2.9 Graphical representation of the superposition principle. \mathcal{T} is linear if and only if y(n) = y'(n).

Causal vs. noncausal systems

Causal system iff

$$y(n) = \mathcal{T}[x(n), x(n-1), x(n-2), \cdots]$$

Stable vs. unstable systems

Bounded input - bounded output (BIBO) stable iff

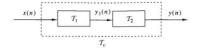
$$|x(n)| \le M_x < \infty \Rightarrow |y(n)| \le M_y < \infty, \, \forall n.$$

Interconnection of Discrete-time Systems

Cascade:

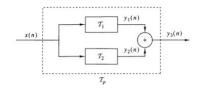
$$y(n) = \mathcal{T}_2[\mathcal{T}_1[x(n)]], \ \mathcal{T}_c = \mathcal{T}_2\mathcal{T}_1$$

In general, $\mathcal{T}_2\mathcal{T}_1 \neq \mathcal{T}_1\mathcal{T}_2$.



Parallel:

$$y(n) = \mathcal{T}_1[x(n)] + \mathcal{T}_2[x(n)], \ \mathcal{T}_p = \mathcal{T}_1 + \mathcal{T}_2$$



Techniques for Analysis of Linear Time-invariant Systems

For LTI systems, a general form of the input-output relationship.

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

A difference equation

Techniques for Analysis of Linear Time-invariant Systems

We use $x(n) = \sum_k c_k x_k(n)$, where $x_k(n)$ are the elementary signal components.

Suppose that $y_k(n) = \mathcal{T}[x_k(n)]$, we have

$$y(n) = \mathcal{T}[x(n)] = \mathcal{T}\left[\sum_{k} c_{k} x_{k}(n)\right]$$
$$= \sum_{k} c_{k} \mathcal{T}[x_{k}(n)] = \sum_{k} c_{k} y_{k}(n)$$

It is chosen that, e.g.

$$x_k = e^{j\omega_k n}, \qquad k = 0, 1, \dots, N - 1.$$

where, $\omega_k=\frac{2\pi k}{N}.$ $\{\omega_k\}$ are harmonically related. $\frac{2\pi}{N}$ is the fundamental frequency.

Resolution of a Discrete-time Signal into Impulses

We choose

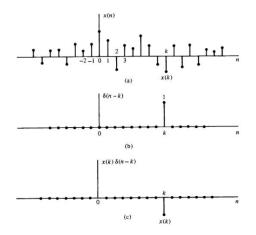
$$x_k(n) = \delta(n-k)$$

$$x(n)\delta(n-k) = x(k)\delta(n-k)$$

Therefore,

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$
$$= \sum_{k=-\infty}^{\infty} x(k)x_k(n)$$

Resolution of a Discrete-time Signal into Impulses



Response of LTI Systems to Arbitrary Inputs

$$h(n,k) \equiv \mathcal{T}[\delta(n-k)]$$

We use $x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$.

$$y(n) = \mathcal{T}[x(n)] = \sum_{k=-\infty}^{\infty} x(k)\mathcal{T}[\delta(n-k)]$$
$$= \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

Time-invariant: $h(n) = \mathcal{T}[\delta(n)] \Rightarrow h(n,k) = h(n-k) = \mathcal{T}[\delta(n-k)]$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

The convolution sum

The convolution sum

$$y(n) = x(n) \otimes h(n)$$

$$= \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$= \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$= h(n) \otimes x(n)$$

Identity and Shifting Properties

$$y(n) = x(n) \otimes \delta(n) = x(n)$$

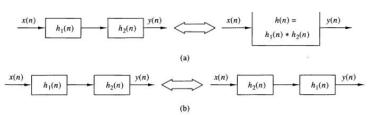
 $y(n-k) = x(n) \otimes \delta(n-k) = x(n-k)$

Commutative Law

$$x(n) \otimes h(n) = h(n) \otimes x(n)$$

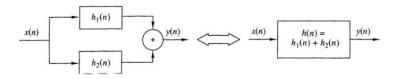
Associative Law

$$[x(n) \otimes h_1(n)] \otimes h_2(n) = x(n) \otimes [h_1(n) \otimes h_2(n)]$$



Distributive Law

$$x(n) \otimes [h_1(n) + h_2(n)] = x(n) \otimes h_1(n) + x(n) \otimes h_2(n)$$



Causal Linear Time-Invariant Systems

$$y(n_0) = \sum_{k=-\infty}^{\infty} h(k)x(n_0 - k)$$

$$= \sum_{k=0}^{\infty} h(k)x(n_0 - k) + \underbrace{\sum_{k=-\infty}^{-1} h(k)x(n_0 - k)}_{\tilde{y}(n)}$$

The second part $\tilde{y}(n)$ depends on the future (w.r.t. n_0) inputs $x(n_0+1), x(n_0+2), \dots$ It has to be zero for a causal LTI system.

Therefore, the impulse response of the system must satisfy the condition

$$h(n)=0, \ n<0$$

An LTI system is causal iff its impulse response is zero for negative values of n.

Causal Linear Time-Invariant Systems

$$h(n)=0, \ n<0$$

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$
$$= \sum_{k=-\infty}^{n} x(k)h(n-k)$$

Stability of Linear Time-Invariant Systems

If x(n) is bounded, $|x(n)| \le M_x < \infty, \forall n$. If y(n) is bounded, $|y(n)| \le M_y < \infty, \forall n$.

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$|y(n)| = \left|\sum_{k=-\infty}^{\infty} h(k)x(n-k)\right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h(k)||x(n-k)|$$

$$\leq M_x \sum_{k=-\infty}^{\infty} |h(k)|$$

Stability of Linear Time-Invariant Systems

We observe that, for $|y(n)| < \infty$, a sufficient condition is

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

It turns out this condition is not only sufficient but also necessary to ensure the stability of the system.

A LTI system is stable iff its impulse response is absolutely summable.

Systems with Finite-Duration and Infinite-Duration Impulse Response

A finite-duration impulse response (FIR) system has an impulse response that is zero outside of some finite time interval.

$$h(n) = 0, n < 0 \text{ and } n \ge M$$

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k)$$

An infinite-duration impulse response (IIR) system has an infinite-duration impulse response.

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

where causality is assumed.

For example, a first-order system described by the linear constant-coefficient difference equation.

$$y(n) = -a_1y(n-1) + b_0x(n) + b_1x(n-1)$$

(1) Use a nonrecursive system followed by a recursive system:

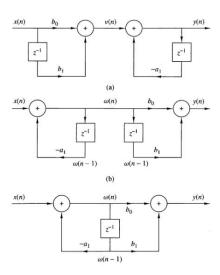
$$v(n) = b_0x(n) + b_1x(n-1)$$

 $y(n) = -a_1y(n-1) + v(n)$

(2) Use a recursive system followed by a nonrecursive system:

$$w(n) = -a_1 w(n-1) + x(n)$$

 $v(n) = b_0 w(n) + b_1 w(n-1)$



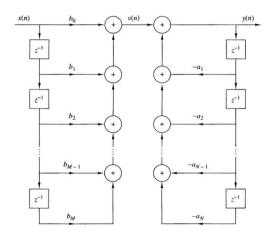
$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

(1) Direct form I structure:

$$v(n) = \sum_{k=0}^{M} b_k x(n-k)$$

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + v(n)$$

Direct Form I Structure

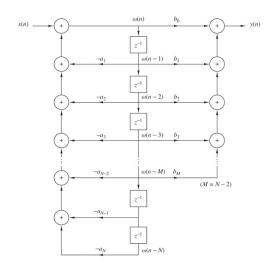


$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

(2) Direct form II structure:

$$w(n) = -\sum_{k=1}^{N} a_k w(n-k) + x(n)$$
$$y(n) = \sum_{k=0}^{M} b_k w(n-k)$$

Direct Form II Structure



Correlation of Discrete-time Signals

Crosscorrelation of sequences x(n) and y(n) is a sequence $r_{xy}(I)$ defined as

$$r_{xy}(I) = \sum_{n=-\infty}^{\infty} x(n)y(n-I), I = 0, \pm 1, \pm 2, ...$$

= $\sum_{n=-\infty}^{\infty} x(n+I)y(n), I = 0, \pm 1, \pm 2, ...$

where index I is the time shift or lag.

$$r_{xy}(I) = r_{yx}(-I)$$
$$r_{xy}(I) = x(I) \otimes y(-I)$$

Correlation of Discrete-time Signals

Autocorrelation of sequence x(n) is a sequence $r_{xx}(I)$ defined as

$$r_{xx}(I) = \sum_{n=-\infty}^{\infty} x(n)x(n-I), I = 0, \pm 1, \pm 2, ...$$

= $\sum_{n=-\infty}^{\infty} x(n+I)x(n), I = 0, \pm 1, \pm 2, ...$

where index *I* is the time shift or lag.

$$r_{xx}(I) = r_{xx}(-I)$$
$$r_{xx}(I) = x(I) \otimes x(-I)$$

Properties of Autocorrelation and Crosscorrelation Sequences

$$|r_{xx}(I)| \le r_{xx}(0) = E_x$$

 $|r_{xy}(I)| \le \sqrt{r_{xx}(0)r_{yy}(0)} = \sqrt{E_x E_y}$

Normalized autocorrelation sequence:

$$\rho_{\mathsf{xx}}(I) = \frac{r_{\mathsf{xx}}(I)}{r_{\mathsf{xx}}(0)}, \quad |\rho_{\mathsf{xx}}(I)| \le 1$$

Normalized crosscorrelation sequence:

$$\rho_{xy}(I) = \frac{r_{xy}(I)}{\sqrt{r_{xx}(0)r_{yy}(0)}}, \quad |\rho_{xy}(I)| \le 1$$

Correlation of Periodic Sequences

Crosscorrelation:

$$r_{xy}(I) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)y(n-I)$$

Autocorrelation:

$$r_{xx}(I) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)x(n-I)$$

Correlation of Periodic Sequences

Example: Correlation is used to identify periodicity in an observed physical signal that is corrupted by random noise/interference.

$$y(n) = x(n) + w(n)$$

We observe M samples of y(n), where $M \gg N$.

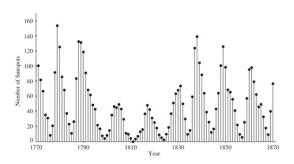
$$r_{yy}(I) = \frac{1}{M} \sum_{n=0}^{M-1} y(n)y(n-I)$$

$$= \frac{1}{M} \sum_{n=0}^{M-1} [x(n) + w(n)][x(n-I) + w(n-I)]$$

$$= r_{xx}(I) + r_{xw}(I) + r_{wx}(I) + r_{ww}(I)$$

Correlation of Periodic Sequences

Example: Identify a hidden periodicity in the Wölfer sunspot numbers in the 100-year period 1770-1869.



Input-Output Correlation Sequences

Crosscorrelation between the output and the input signal is

$$r_{yx}(I) = y(I) \otimes x(-I) = h(I) \otimes [x(I) \otimes x(-I)]$$

= $h(I) \otimes r_{xx}(I)$

Autocorrelation of the output signal is

$$r_{yy}(I) = y(I) \otimes y(-I)$$

$$= [h(I) \otimes x(I)] \otimes [h(-I) \otimes x(-I)]$$

$$= [h(I) \otimes h(-I)] \otimes [x(I) \otimes x(-I)]$$

$$= r_{hh}(I) \otimes r_{xx}(I)$$

The autocorrelation $r_{hh}(I)$ of the impulse response h(n) exists if the system is stable.