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IEEE Signal Processing Magazine is uniquely positioned 
to convey and embrace an evolving scope of signal pro-
cessing. This issue showcases an example of a cross-
disciplinary area—fascinating advances of computational 
photography and display. A variety of articles showcase 
the potential for the field to revolutionize imaging and dis-
plays and transform the way in which we capture, share, 
and interact with the visual world around us.
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See the “President’s Message” and “Society News” in this 
issue!
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Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

FROM THE EDITOR

Blurred Boundaries

hat is signal processing and what 
isn’t? From time to time, I would 
come across comments related 

to this question from independent re-
views regarding whether an article that 
was submitted to IEEE Signal Process-
ing Magazine fit the scope. I have 
seen reviewers recommending an ar-
ticle surveying signal processing tech-
niques for wireless communications to 
a communications-related publication 
instead, or an article related to imaging 
or image analysis to a computer vision-
related venue.

This would have been commonly ac-
cepted several decades ago when vari-
ous fields under the IEEE umbrella were 
well partitioned into different technical 
Societies. The IEEE Signal Processing 
Society (SPS) traces its roots to 1948 as 
the IEEE’s first Society, with the name 
and scope as the Professional Group 
on Audio of the then Institute of Radio 
Engineers (IRE), the predecessor of the 
IEEE. Looking at the historic roster of 
the SPS’s technical committees (TCs)
(as shown in “SPS Technical Commit-
tees Then and Now: Evolved and Broad-
ened Scope of Signal Processing”), we 
can see that just 40 years ago in 1976 
when the Society’s first flagship con-
ference, the International Conference 
on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), was launched, there 
were only five SPS TCs, and they were 
dealing with either signal processing 

theories and methods, or speech and 
acoustics. There was little mention of 
communications nor much presence of 
visual processing in the SPS TC struc-
ture, even though many fundamental 
signal processing theories and tech-
niques had been used rather extensively 
in those areas and further extended and 
adapted to solve the problems there. 
Moving forward about ten years, we see 
that visual aspects in a more general 
sense of multidimensional signal pro-
cessing were added to the TC list by the 
mid-1980s. And now, 40 years later, we 
see more than a dozen TCs in the SPS, 
with a diverse range of “new” areas ex-
plicitly embraced, including communi-

cations and networking, multimedia 
signal processing, biomedical-related 
signal processing, and information fo-
rensics and security.

Year after year, signal process-
ing, together with other fields, have 
evolved, and the boundaries between 
several traditionally separate fields 
have been blurred. Many colleagues 
have been actively involved in multiple 
technical societies, fostering interaction
and bringing beneficial aspects between 
fields. Innovations have often happened 
at the boundaries between traditionally 
separate fields.
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Year: 1976

Digital signal processing

Digital measurement of noise

Electroacoustic transducers

Speech processing

Underwater acoustics

Year: 2016

Audio and acoustic signal processing

Bioimaging and signal processing

Design and implementation of signal processing and systems

Image, video, and multidimensional signal processing

Information forensics and security

Machine learning for signal processing

Multimedia signal processing

Sensor array and multichannel

Signal processing for communication and networking

Signal processing theory and methods

Speech and language processing

Industry DSP technology standing committee

Special interest groups: Big Data, Computational Imaging, 
and Internet of Things

Year: 1987

Audio and electroacoustics

Digital signal processing

Multidimensional signal processing

Spectral estimation and modeling

Speech processing

Underwater acoustics

VLSI for signal processing

 SPS Technical Committees Then and Now: 
Evolved and Broadened Scope of Signal Processing

(continued on p. 7)
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PRESIDENT’S MESSAGE

The IEEE as “Bottom-Up” or “Top-Down” Management—
The Choice Is Yours

The constitutional change amendment 
currently proposed by the IEEE is a 
matter of deep concern for so many 

of us. It affects some key factors that are 
critical to the future of the IEEE as we 
know it, and for which we have respect, 
devoting endless hours volunteering to 
its betterment.

The IEEE, as a nonprofit association 
run by volunteers, has very successfully 
operated for many years as a “bottom-up” 
confederation of technical Societies and 
geographic units, collaborating together 
in the spirit of our scientific and engi-
neering culture. Where uniform direction 
is needed or highest-level resource al-
location is required, decisions have been 
escalated up to higher-level boards, such 
as the Technical Activities Board (TAB), 
with representation from every IEEE So-
ciety and Council, or the Member and 
Geographic Activities (MGA) Board, 
with representation from every IEEE 
geographic Region. If needed, further 
escalation then occurs to the level of the 
IEEE Board of Directors (BoD).

Contrast this with most for-profit 
commercial companies, which operate 
from the “top down.” That is, corporate 
executives, under guidance from their 
BoD, direct strategy and operations. 
Their employees, under various tiers of 
management, are responsible for execut-
ing these operations and policies. 

Increasingly, there have been signs 
that the IEEE BoD, for whatever reasons, 
wants to become more of a top-down or-
ganization, concentrating greater power 
at the top, and diminishing the role of its 
technical and geographic units. As evi-
dence, resources generated by Societies 
are increasingly redirected without Soci-
ety control for use elsewhere in the IEEE, 
including for overhead 
purposes. As a result, 
remaining Society re-
sources have either 
become stagnant or 
decreased, limiting 
what Societies can do 
for their members.

The latest move to 
more top-down con-
trol is occurring with 
this year’s ballot, 
where members are 
asked to vote on a constitutional amend-
ment that will abandon dedicated seats 
for technical Societies and geographic 
units on the BoD in favor of a smaller 
number of board members meeting “di-
versity” requirements that have not been 
defined and can be changed at any time 
according to whomever happens to be 
serving on the BoD then. 

Proponents of the change claim that a 
smaller board will be more nimble. Op-
ponents claim that the checks and bal-
ances of the widely represented board 
that we have today are more important 
and have served us well. Proponents 

argue that the current board takes too 
much time to run the IEEE. Opponents 
argue that more decisions should be del-
egated to existing boards, like TAB and 
MGA, and empower them to make reso-
lutions independently.

Many of us joined the IEEE due to 
the strength of its many diverse Societ-
ies. The combined effort of 45 technical 

Societies and Coun-
cils is responsible for 
75–80% of IEEE rev-
enues. To diminish 
the various Societies’ 
visibility and role in 
running the IEEE 
is unwise and short-
sighted. If volunteers 
find that their ability 
to control the des-
tiny of their Society 
is greatly reduced, 

many volunteers will no longer feel that 
they truly belong to a self-empowered 
Society, and it will adversely affect the 
morale, motivation, and enterprising 
spirit of the volunteers.

The recent intense effort to change 
the IEEE’s fundamental constitution is 
distracting us from solving our immedi-
ate, high-priority challenges. Further, it 
is hard to believe that we are asked to 
vote on this constitutional change before 
we know what the final new structure 
would be and without knowing the new 
bylaws that will govern the IEEE in the 
future. The new bylaws are to be written 

Rabab Ward  |  SPS President |  rababw@ece.ubc.ca 
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It is hard to believe that 
we are asked to vote on 
this constitutional change 
before we know what the 
final new IEEE structure 
would be, and without 
knowing the new bylaws 
that will govern the IEEE 
in the future.
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la t er  by t he  BoD, 
but none of the new 
bylaws will require 
member vote, or even 
prior notificat ion. 
The proposed amend-
ment gives power to 
the BoD to imple-
ment a ny changes 
they wish to make, without requiring 
approval from us, the IEEE Members.

More than half of the governing 
boards of the IEEE’s Societies and 
Councils have already spoken against 
the amendment, including the Comput-
er, Communications, Power & Energy, 
Circuits and Systems, Electron Devices, 
Robotics and Automation, Solid-State 
Circuits, and, of course, our own Signal 

Processing Society. 
But, their decisions 
do not matter—only 
yours does, as a vot-
ing member of the 
IEEE.

I urge you to be-
come more famil-
iar with the pros and 

cons of the amendment, and exercise 
your right to vote in this critically 
important juncture for the IEEE. You 
can learn more about the amendment at 
https://www.ieee.org/about/corporate/
election/2016_constitutional_amendment.
html. The rationale for opposition to the 
constitutional amendment and proposed
restructuring can be found at https://
ieee2016blog.wordpress.com.

For background, the IEEE governing 
documents, including the constitution 
and bylaws, are available at http://www.
ieee.org/about/corporate/governance/
index.html.

TAB has formed a TABin2030 Com-
mittee to consider the amendment’s 
implications. Additional materials to the 
pros and cons and the TABin2030 webi-
nars and analyses can be found by visiting 
http://ta.ieee.org/strategic-planning/
tab-in-2030. You may need to log in with 
your IEEE account to access the materials.

SP

I urge you to become more 
familiar with the pros and 
cons of the amendment, 
and exercise your right 
to vote in this critically 
important juncture for
the IEEE.
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SOCIETY NEWS

Election of Regional Directors-at-Large 
and Members-at-Large

our vote is important! The election 
is now open for regional directors-
at-large for Regions 1–6 and Region 

8 (the term is 1 January 2017 through 
31 December 2018) and members-
at-large (term 1 January 2017 through 
31 December 2019) of the IEEE Sig-
nal Processing Society (SPS) Board of 
Governors (BoG). Ballots, which have
been mailed to SPS members, include 
a diverse slate of candidates for both 
elections, which were vetted by the SPS 
Nominations and Appointments Com-
mittee, as well as a space for write-in 
candidates. This year’s election offers 
SPS members the opportunity to cast 
their votes via the web at https://eballot4.
votenet.com/IEEE for up to one regional 
director-at-large for your corresponding 
Region: Regions 1–6 (United States) 
and Region 8 (Europe, Middle East, 
and Africa) and three member-at-large 
candidates. Ballots must be received 

Digital Object Identifier 10.1109/MSP.2016.2585718
Date of publication: 2 September 2016

The candidates for regional director-at-large
Regions 1–6 Region 8

Radhakrishna
(Radha) Giduthuri

Zhengdao Wang Sven Loncaric John McAllister Ana Isabel Pérez-Neira

The candidates for member-at-large

Abeer A.H. Alwan Homer H. Chen Shoji Makino

Marc Moonen Antonio Ortega Beatrice Pesquet-Popescu

Gaurav Sharma A. Lee Swindlehurst Zhi (Gerry) Tian

Y
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at the IEEE no later than 3 October 
2016 to be counted. Members must 
meet the eligibility requirements at the 
time the ballot data is generated to be 
eligible to vote. To be eligible to vote 
in this year’s Society election, you had 
to have been an active SPS member or 
affiliate (excluding student member) 
prior to 1 August 2016. This is the date 
when the list of eligible Society voting 
members was compiled. The candidates 
for regional director-at-large are 
■ Regions 1–6: Radhakrishna (Radha) 

Giduthuri and Zhengdao Wang
■ Region 8: Sven Loncaric, John 

McAllister, and Ana Isabel Pérez-
Neira.

The candidates for member-at-large are
■ Abeer A.H. Alwan
■ Homer H. Chen
■ Shoji Makino
■ Marc Moonen

■ Antonio Ortega
■ Beatrice Pesquet-Popescu
■ Gaurav Sharma 
■ A. Lee Swindlehurst 
■ Zhi (Gerry) Tian.

The BoG is the governing body that 
oversees the activities of the SPS. The 
SPS BoG has the responsibility of es-
tablishing and implementing policy 
and receiving reports from its standing 
boards and committees and comprises 
21 Society members: six officers of the 
Society who are elected by the BoG, 
nine members-at-large elected by the 
voting members of the Society, four 
regional directors-at-large elected lo-
cally by Society voting members of 
the corresponding region, as well as 
the Awards Board chair. The six offi-
cers are the president, president-elect, 
the vice president-conferences, vice 
president-membership, vice president-

publications, and vice president-tech-
nical directions. The executive director 
of the Society shall serve ex-officio, 
without vote.

Regional directors-at-large are SPS 
members who are elected locally by 
Society voting members of the corre-
sponding Region via the annual election 
to serve on the Society’s BoG as nonvot-
ing members and voting members of the 
Society’s Membership Board.

Members-at-large represent the mem-
ber viewpoint in the Board decision 
making. They typically review, discuss, 
and act upon a wide range of items af-
fecting the actions, activities, and health 
of the Society.

More information on the SPS can be 
found at http://www.signalprocessing
society.org/.

SP

And yet, worldwide, a number of 
signal processing programs and fund-
ing agencies still 
consider the narrow 
scope of signal pro-
cessing as if it were 
the 1970s or 1980s. 
For example, in a 
country that I visit-
ed, the funding agen-
cies and graduate 
programs treated im-
age processing separately from signal 
processing. This unfortunately would 
constrain the breadth of students’ prep-
aration in their training and limit the 
potential source of innovations.

While we welcome and appreciate 
articles on core signal processing areas, 
our magazine is uniquely positioned to 

convey and embrace this evolving scope 
of signal processing. Through engaging 

authors and publish-
ing articles that re-
flect the crossbreed of 
multiple traditionally 
separated areas—both 
close and far—and 
bringing new advanc-
es from other areas 
that are of interest 
or benefit to signal 

pro  cessing professionals and vice versa, 
we hope the magazine will contribute to 
foster synergies and exchanges between 
areas and fields and help shape the future 
landscape of signal processing—the sci-
ence behind our digital life.

This issue of the magazine showcases 
an example of a cross-disciplinary area—

a special issue on fascinating advances of 
computational photography and display. 
The timing also coincides with the IEEE 
International Conference on Image Pro-
cessing (ICIP) to be held in Phoenix, Ari-
zona, which features a visual technology 
showcase and visual innovation award.

As a final note, I would like to take this 
opportunity to thank all of the reviewers 
who have been so generous in offering 
their precious time and efforts in provid-
ing critical and constructive comments 
to the articles being considered by the 
magazine. We appreciate their contribu-
tions that are essential to the success of 
the magazine!

While we welcome and 
appreciate articles on core 
signal processing areas, 
our magazine is uniquely 
positioned to convey and 
embrace this evolving scope 
of signal processing.

FROM THE EDITOR (continued from page 3)

SP
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SPECIAL REPORTS
John Edwards

1053-5888/16©2016IEEE

Signal Processing Brings Fresh Capabilities to Digital Imaging
Research is leading to more sophisticated and useful imaging techniques

By speeding up processing and post-
processing tasks, improving storage, 
and cutting costs, digital imaging has 

all but eliminated traditional film photog-
raphy over the past several years. Now, 
with the help of increasingly sophisticat-
ed signal processing techniques, digital 
imaging is poised to become even more 
flexible and useful, generating images 
that would be far more difficult, if not 
impossible, to create with conventional 
analog photography.

On-the-go processing
Back in the days when film was the 
most popular photographic imaging 
medium, signs promising “same day 
processing” or “60-minute processing” 
could be seen almost everywhere. Most 
of today’s smartphone and tablet pho-
tographers are far less patient, however. 
Not only do they demand to see their 
photos instantly, they want to have the 
ability to customize the images on the 
spot to make them look more attractive 
or to express a particular mood. Tech-
nology makes all of these wishes possi-
ble, but at a cost.

The seemingly inescapable draw-
back to mobile-device-based photo 
editing is that image correction and 
manipulation tasks are generally com-
putationally intensive, capable of quick-
ly draining a mobile device’s relatively 
small battery. Several mobile apps 

attempt to solve this problem by sending 
image files to a central server for off-site 
postprocessing. Yet this approach frus-
trates many users by creating significant 
delays as well as adding costs for 
increased data usage.

Late last year, researchers from the 
Massachusetts Institute of Technology 
(MIT), Stanford University, and San 
Jose, California-based Adobe Systems 
unveiled an experimental system that 
promises to slash the bandwidth con-
sumed by server-based image-process-
ing systems by as much as 98.5% and 
mobile device power consumption by 
up to 85%. The system works by send-
ing a highly compressed version of the 
image to a central server. The server, af-
ter creating simple instructions for mod-
ifying the original image, then sends an 
even smaller file back to the mobile de-
vice, which uses the new data to create 
the enhanced image.

Applying the modifications to the 
original image does demand some extra 
processing power from the phone but 
not as much energy as uploading and 
downloading high-resolution files. In 
researchers’ experiments, the energy 
savings were generally between 50 and 
85%, and the time savings ranged be-
tween 50 and 70% (Figure 1).

Cloud image processing is often pro-
posed as a solution to the limited com-
puting power and battery life of mobile 
devices. “It allows complex algorithms 
to run on powerful servers with virtually 
unlimited energy supply,” says Michaël 

Gharbi, a graduate student in electrical 
engineering and computer science at 
MIT. “Unfortunately, this overlooks the 
time and energy cost of uploading the 
input and downloading the output imag-
es. When transfer overhead is accounted 
for, processing images on a remote serv-
er becomes less attractive, and many ap-
plications do not benefit from cloud 
offloading,” noted Gharbi, who was the 
lead author on a recent paper describing 
the system. Gharbi’s coauthors were his 
thesis advisor, Frédo Durand, an MIT 
professor of computer science and engi-
neering; YiChang Shih, who received 
his Ph.D. degree in electrical engineer-
ing and computer science from MIT in 
March; Gaurav Chaurasia, a former 
postdoc in Durand’s group who’s now at 
Disney Research; Jonathan Ragan-Kel-
ley, who has been a postdoc at Stanford 
since graduating from MIT in 2014; and 
Sylvain Paris, who was a postdoc with 
Durand before joining Adobe.

Gharbi describes the overall process as 
a transform recipe. “The main criterion in 
the design of transform recipes is that 
they are compact—less data to transfer 
over the network—but they should be 
able to represent faithfully many image 
transformations,” he notes. “At equivalent 
quality, our recipes are much more com-
pact than JPEG images.”

Gharbi says that the process is rela-
tively straightforward. “First, we de-
compose the input image into luminance 
and chrominance,” he states. Luminance 
characterizes the brightness variations in 

Digital Object Identifier 10.1109/MSP.2016.2580718
Date of publication: 2 September 2016
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the image (i.e., highlights and shadows), 
while chrominance is the colors of ob-
jects in the scene. “We process luminance 
and chrominance differently because the 
human eye is much less sensitive to er-
rors in the chrominance than in the lumi-
nance,” Gharbi says. “Therefore, we can 
afford lower fidelity in modeling the 
chrominance while favoring a good re-
construction of the luminance.”

The luminance is then further decom-
posed into frequency bands using a La-
placian pyramid. Each band is processed 
differently. Low frequencies are slow 
variations in the image, such as the 
gradual shades in a sky at sunset. High 
frequencies are smaller details such as the 

patterns of a fabric or small gravels. “We 
want to represent how each frequency 
band transforms to allow more for more 
complex transformations,” Gharbi says. 
“We also add nonlinear mapping to mod-
el the luminance.”

Once decomposed, the input is divid-
ed into small image patches, generally 
64 x 64 pixels. “Within each patch, we 
use a regression model to predict the 
corresponding output patch,” Gharbi ex-
plains. The regression is regularized by 
LASSO. “Now we have obtained a set of 
coefficients for each patch, and together 
they form the recipe.”

The system uses conventional image 
compression techniques, i.e., quantiza-

tion and entropy coding, to further com-
press the recipe. Gharbi says that the 
overall process leads to results that are vir-
tually indistinguishable from direct ma-
nipulation of the high-resolution image. 
Furthermore, the final bandwidth con-
sumption is only 1–2% of what it would 
have been using the original phone image.

“Recipes are particularly useful as a 
replacement for expensive image filter-
ing on mobile devices,” notes Gharbi. 
“They are, essentially, a more efficient 
cloud off-loading procedure compared 
to the standard pipeline where cloud and 
server exchange full-resolution images.”

Gharbi believes that the system could 
become even more useful over time as 

Portrait Transfer PSNR = 38.5 dB %up = 0.4 %down = 1.1

Recoloring PSNR = 48.7dB %up = 0.2 %down = 1.5

Style Transfer PSNR = 34.6 dB %up = 0.3 %down = 1.1

Time of Day PSNR = 37.2 dB %up = 0.4 %down = 1.6

Photoshop PSNR = 46.1 dB %up = 0.7 %down = 1.5

(a) (b) (c) (d) (e) (f)

FIGURE 1. The results of various types of image processing created by an experimental system developed by MIT, Stanford University, and Adobe 
Systems researchers. The system promises to save bandwidth and lower mobile device power consumption. (a) Input. (b) Reference output. 
(c) Reconstruction. (d) Reference. (e) Highest error patch. (f) Rescaled difference.
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image-processing algorithms grow 
increasingly powerful. “We see more 
and more new algorithms that leverage 
large databases to make a decision on 
the pixel. These types of algorithms 
don’t do a very complex transform if 
you go to a local scale on the image, but 
they still require a lot of computation 
and access to the data, so that’s the kind 
of operation you would need to do in the 
cloud,” Gharbi says.

The researchers, who plan no future 
enhancements to the transform recipe, 
are now making it available to other 
imaging researchers via open source. 
“Our techniques showed that we can 
save energy and time on the mobile, 
and I believe others can build on this,” 
Gharbi says.

Seeking clarity
Valerio Pascucci, an analysis and visual-
ization professor at the University of 
Utah, doesn’t have much use for thumb-
nail images because, for the past decade 
or so, he has focused almost exclusively 
on extreme resolution imagery, i.e., 
huge photographs containing anywhere 
from billions to hundreds of billions of 
pixels. Massive, high-density images are 
capable of providing a great deal of 
detail and useful information. Yet, it can 
take several hours to process the mas-
sive gigapixel images that intelligence 
analysts, physicians, engineers, and 
experts in many other fields rely on for 
critical insights. By developing software 
that requires only seconds to produce 
useful preview images, Pascucci and his 
coresearchers are helping such time-
pressed individuals to obtain almost-

immediate access to critical visual 
information that, in many cases, can lit-
erally be life saving.

The technology, known as Visualiza-
tion Streams for Ultimate Scalability 
(ViSUS), turns massive quantities of digi-
tal data into visual information that the 
human mind can understand. ViSUS 
works by sampling only a fraction of the 
pixels in a massive image, such as a satel-
lite photo or a panorama made of hun-
dreds of individual photos. According to 
Pascucci, the technology can produce 
good approximations or previews of what 
the fully processed image would look like.

The image-processing method can 
produce previews at various resolutions 
by taking progressively more and more 
pixels from the data that make up the 
entire full-resolution image. “The choice 
of algorithms was dictated by the need 
to visualize and analyze large image 
collections in real time,” Pascucci says.

ViSUS also has the ability to blend 
hundreds to thousands of images into a 
single combined mosaic that can be used 
as a unique massive image (Figure 2). 
“To achieve this result, we managed to 
restructure a classical multiscale poisson 
solver into a pure coarse-to-fine approach 
that interactively blends a large number 
of images even if one can use only par-
tial, coarse information,” Pascucci ex-
plains. “While navigating through the 
data, more image information is acquired, 
and the result is incrementally improved. 
The approach is similar to Google Maps, 
where users can view more detail by 
zooming in on an image.

Pascucci says that updating signal 
processing algorithms for use in a pro-

gressive image-processing environment 
was essential for achieving scalability 
and interactivity. “The input data is typ-
ically not ready for use, and application 
of a traditional approach would intro-
duce unacceptable delays,” Pascucci 
notes. “It is, therefore, key to introduce 
real-time processing capabilities as part 
of the interactive data exploration.”

A key challenge the researchers faced 
was changing traditional batch process-
ing into an interactive progressive struc-
ture. “This means that dealing with 
larger images does not automatically 
mean increasing the delays in processing 
the data,” Pascucci says.

The work by Pascucci and his team is 
part of a larger movement across the sci-
entific community to come up with new 
ways to use and analyze information. 
Scientific instruments ranging from brain 
scanners to microscopes to telescopes are 
increasingly improving and generating 
larger amounts of high-quality data, cre-
ating the need for more efficient process-
ing approaches. “This is a very active 
research project,” states Pascucci. “As 
new data sources are developed, we find 
new challenges and reasons to expand 
our research base.  

Compressed hyperspectral imaging
Conventional photographs, even those 
with a high resolution, only allow view-
ers to see what something looks like. Hy-
perspectral imaging, on the other hand, 
helps viewers to determine what some-
thing is actually made out of.

Ordinary photographic techniques 
create images spanning just three wave-
lengths of light, ranging from blue to 
green to red. Hyperspectral imaging can 
capture images across dozens or even 
hundreds of wavelengths. Akin to long-
distance spectroscopy, such images can 
help viewers determine the types of ma-
terials found within an image.

Hyperspectral imaging has potential 
applications in areas such as security, de-
fense, agriculture, and environmental 
monitoring. However, before the tech-
nique can fully enter the commercial and 
government mainstream, a serious 
challenge must be overcome, i.e., file size. 
If a conventional image contains millions 
of pixels spread across three wavelengths, 

FIGURE 2. This panoramic mosaic of the Salt Lake Valley was taken by a camera mounted on a 
robotic panning device on top of a building at the University of Utah. It consists of more than 600 
separate photographs that contain a total of 3.27 gigapixels (3.27 billion pixels) of image data. The 
seams between individual photos are readily apparent, as are the differences in light exposure. To 
edit the photos into a single, seamless, evenly exposed panorama would take hours using normal 
methods. ViSUS technology can complete the task in a fraction of that time. 
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it may consume approximately one or two 
megabytes of memory or storage space. 
Yet, a hyperspectral image file might be 
several orders of magnitude larger, mak-
ing data storage and file transmission 
cumbersome, inconvenient, or, in some 
instances, completely impractical. Fur-
thermore, capturing hyperspectral images 
across dozens of wavelengths is current-
ly a time-consuming process, requiring 
conventional imaging technology to snap 
a series of images—each capturing a dif-
ferent suite of wavelengths or subsets of 
pixels with their corresponding wave-
lengths—and then combining the images 
into a single file. A final hyperspectral 
image is actually an image cube com-
prised of a collection of images (slices), 
where each two-dimensional image de-
picts one wavelength.

Earlier this year, researchers at North 
Carolina State University and the Univer-
sity of Delaware announced the creation 
of an algorithm that works with a popular 
compressive spectral imager to quickly 
acquire and accurately reconstruct hyper-
spectral images in less time and then 
store those images using less memory. 
According to researcher Dror Baron, an 
assistant professor of electrical and com-
puter engineering at North Carolina State 

University, the coded aperture snapshot 
spectral imager (CASSI) used in the re-
search can acquire image data from dif-
ferent wavelengths simultaneously, 
which significantly accelerates the imag-
ing process. Recognizing that CASSI 
provides significant improvements in 
both imaging quality and acquisition 
speed over conventional spectral imaging 
techniques, the researchers worked to 
further improve the system by accelerat-
ing the three-dimensional (3-D) image 
cube reconstruction process. They began 
by turning to an approximate message 
passing (AMP) framework.

“Our proposed AMP-3-D-Wiener used 
an adaptive Wiener filter as a 3-D image 
denoiser within the AMP framework,” 
Baron notes. “AMP-3-D-Wiener was fast-
er than existing image cube reconstruction 
algorithms and also achieved better recon-
struction quality” (Figure 3).

“A big challenge was that AMP typi-
cally converts a noisy linear inverse prob-
lem where an unknown signal is observed 
through multiplying it by a matrix and add-
ing noise into a much simpler problem 
where noise is added directly to the signal,” 
Baron explains. The noise getting added to 
the signal in the new problem is supposed 
to be Gaussian and independent of the 

signal. “However,” Baron notes, “AMP has 
these properties when the matrix is well 
behaved, and, in our hyperspectral system, 
the matrix was very poorly behaved.” This 
meant that the noise added to the signal in 
the new problem was not Gaussian and 
was also statistically dependent on the sig-
nal. “Therefore, we had to make some 
changes to the algorithm that gave a more 
desired performance.”

“We were able to reconstruct image 
quality in 100 seconds of computation 
that other algorithms couldn’t match in 
450 seconds,” Baron states. He’s confi-
dent that computational time can be even 
further reduced. 

The researchers’ next step, Baron says, 
is to run the algorithm in a real-world sys-
tem to gain insights into how the algorithm 
functions and identify potential room for 
improvement. “We’re also considering 
how we could modify both the algorithm 
and the hardware to better compliment 
each other,” Baron says.

Author
John Edwards (jedwards@john
edwardsmedia.com) is a technology writ-
er based in the Phoenix, Arizona, area.

SP

470 nm 497 nm 524 nm 551 nm 578 nm 605 nm 632 nm

470 nm 497 nm 524 nm 551 nm 578 nm 605 nm 632 nm

470 nm 497 nm 524 nm 551 nm 578 nm 605 nm 632 nm

(a)

(b)

(c)

FIGURE 3. Images at wavelengths 470–632 nm within image cubes were reconstructed by the new algorithms from North Carolina State University and 
the University of Delaware. (a) represents the ground truth, (b) shows the output of the new algorithm, and (c) shows the output of the other algorithm.
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FROM THE GUEST EDITORS
Amit Agrawal, Richard Baraniuk, Paolo Favaro, 

and Ashok Veeraraghavan

dvances in imaging and displays have 
been the source of numerous scientif-
ic breakthroughs, as evidenced by 

the more than ten Nobel Prizes awarded 
for various inventions and discoveries 
in the imaging sciences. Over the last 
decade, imaging and displays have com-
pletely conquered our imagination, with 
mind-numbing statistics like more than a 
billion cameras being sold every year, 
more than a trillion photos taken each 
year, more than 200,000 images upload-
ed to Facebook alone every minute, and 
so on. In addition, interest and excitement 
around three-dimensional (3-D) displays, 
augmented reality displays, and virtual 
reality displays have grown exponentially 
over the last decade. This revolution in 
consumer imaging and displays is unpar-
alleled and is a direct result of a decade 
of advancement in semiconductor fabri-
cation technologies that have made image 
sensors and displays less expensive but 
with higher resolution every passing year.

Parallel to this imaging revolution, 
we have also witnessed a computing 
revolution with ever-more sophisticated 
algorithms, more computing, and stor-
age horsepower available at the ready 
even on mobile devices. In addition, the 
ongoing cloud computing revolution is 
starting to provide consumers and other 
users with computing and data pro-
cessing capabilities that have been, until 
now, unimaginable.

Computational imaging and displays 
is a field at the confluence of these two 
fast-growing and ever-expanding dis-
ciplines. The field of computational 
imaging and displays seeks to create 
new imaging, photo-
graphic and display 
functionalities, and 
experiences that go 
beyond what is pos-
sible with traditional 
cameras and image 
processing tools. The 
key insight is that the 
codesign of sensor 
systems and signal 
processing algorithms 
to handle the sensor 
data provides several 
new degrees of design 
freedom, enabling im-

aging and display systems to break tradi-
tional barriers. One of the most celebrated 
breakthroughs from this growing field is 
the Nobel Prize in Chemistry 2014, which 
was awarded for superresolution fluo-

rescence microscopy, 
wherein imaging, flu-
orescent markers, and 
signal processing tools 
were used in concert 
to break the resolu-
tion limit imposed by 
diffraction. Another 
example is the emerg-
ing field of immersive 
3-D displays, and vir-
tual/augmented real-
ity platforms such as 
GearVR, Hololens, 
and Oculus. These are 
examples of an early 

Signal Processing for 
Computational Photography and Displays

Digital Object Identifier 10.1109/MSP.2016.2583358
Date of publication: 2 September 2016

Ultra-Small Form-Factor CamerasA

Cameras with ultra-small form factors, such as a (a) cubic-millimeter wireless sensing 
example surveyed in the article by Koppal on page 16) and (b) an enabling technology of 
lensless imaging in the article by Boominathan et al. on page 23).

(a) (b)

This issue of the magazine 
brings together a variety 
of articles covering 
an exciting range of 
application areas that 
showcase the potential for 
the field to revolutionize 
imaging and displays 
and transform the way in 
which we capture, share, 
and interact with the 
visual world around us.
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breakthrough that comes out of the code-
sign of imaging and computation, but there 
are several exciting and promising areas 
where similar approaches could break cur-
rent barriers and unleash an era of transfor-
mative capabilities in imaging and displays 
for many many applications.

This special issue of IEEE Signal 
Processing Magazine brings together a 
variety of articles covering an exciting 
range of application areas showcasing 
the potential for the field to revo-
lutionize imaging and displays and 
transform the way in which we cap-
ture, share, and interact with the visual 
world around us. The issue is organized 
into four topical areas: 
■ ultra-small form-factor cameras 
■ beyond two-dimensional images 
■ compressive imaging and displays
■ novel applications.

Ultra-small form-factor cameras
The special issue begins with two arti-
cles that present radically small and 
novel form-factors for cameras, made 
possible by codesigning computation 

with optics and sensors. The first article 
by Koppal presents a comprehensive 
overview of the current progress in this 
field and envisions the interaction 
between trillions of miniature cameras, 
which could provide novel sensing 
capabilities for agriculture, security, and 
health. The next arti-
cle by Boominathan 
et al. goes even fur-
ther and argues that, 
while lenses have 
remained the main-
stay of conventional 
imaging and photog-
raphy, lens-free com-
putational imaging 
systems have begun 
to  revolu t ion ize 
many applications 
where the lenses 
provide undesirable form-factors and 
costs. This article discusses the 
promise and limitations of lens-
based cameras and describes the body 
of work devoted to imaging without 
the use of lenses.

Beyond two-dimensional images 
The second set of four articles discusses 
how computational imaging enables 
modern imaging systems to go beyond 
capturing a two-dimensional photograph 
and capture multidimensional visual in-
formation, including high-dynamic-range 

(HDR), time-of-flight 
(ToF), multispectral, 
light field, and reflec-
tance field. The first 
article in this topical 
area is an overview of 
methods for HDR im-
aging that exploits the 
joint design of optics, 
hardware, and pro-
cessing, by Sen and 
Aguerrebere. Next, 
Bhandari and Raskar 
provide a thorough 

treatment of ToF imaging systems from a 
signal processing perspective, covering 
the history, mathematical foundation, and 
an overview of some recent results. Giv-
en the rapid developments and wide-
spread adoption of ToF imagers, this is a 

Beyond 2-D Images

Computational imaging 
and displays is a rapidly 
evolving field, and we 
hope that the breadth 
and depth of coverage of 
this special issue will be 
a catalyst for identifying 
and tackling the major 
challenges facing
the community.

Technologies enabling advanced imaging and processing in computational photography: (a) high dynamic range imaging (see the article by Sen and 
Aguerrebere, page 36), (b) capturing and rendering computational appearance (see the article by Dana, page 70), (c) time-of-flight imaging (see the 
article by Bhandari and Raskar, page 45), and (d) light-field cameras (see the article by Ihrke et al., page 59). 
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timely and thought-provoking article. On 
a completely independent axis, light-
field cameras have indelibly marked 
the field of computational photogra-
phy and captured our imagination by 

enabling the digital simulation of dif-
ferent camera settings (in the first 
place, digital refocusing), by animating 
pictures through viewpoint changes 
and simultaneously providing depth and 

large depth of field images. Ihrke et al. 
illustrate the basic principles of light-
field imaging by taking us through the 
key processing steps with more focus 
on compact plenoptic cameras. Final-
ly, we end coverage of this topical 
area with a article by Dana that goes 
beyond two-dimensional images and 
recovers complete surface reflec-
tance. In the article, she provides a 
comprehensive review of methods for 
capturing computational appearance, with 
a particular emphasis on computational 
imaging inspired techniques.

Compressive imaging and displays
Since the resolution, variety, and scale of 
visual data being collected has exploded, 
conventional sampling techniques based 
on Shannon–Nyquist are becoming 
impractical, resulting in the development 
of compressive imaging and display tech-
niques that seek to use signal models and 
reconstruction algorithms to reduce the 
sampling requirements. The first article in 
this topical area is by Sankaranarayanan 
et al. and focuses on the importance of 
careful design of measurement matrices 
and appropriate models to perform 
compressive video sensing. Next up, 
Cao et al. consider the task of multi-
spectral imaging  —imaging with a much 
greater number of spectral channels 
than traditional trichromatic sensors, 

Compressive Imaging and Displays

Compressive imaging and displays: (a) imaging exploiting compressive sensing (see the 
article by Sankaranarayanan et al., page 81), (b) multispectra cameras (see the article by Cao 
et al., page 95), (c) millimeter wave imaging (see the article by Patel et al., page 109), and 
(d) factored display (see the article by Wetzstein and Lanman, page 119). 
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Novel Applications

Emerging applications: (a) gaze-contingent display (see the article by Stengel and Magnor, page 139) and (b) computational photography for 
cultural heritage (see the article by Huang et al., page 130).
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thus providing spectral information at a 
higher level of detail. The massive scale 
of multispectral data—at high resolutions 
in the spectral, spatial, and temporal 
dimensions—has long presented a major 
challenge. This article presents an over-
view of computational multispectral 
imaging, from a signal processing per-
spective, covering a breadth of topics 
from system design, optimization to res-
olution, and noise analysis. While most 
of the focus in the special issue has been 
on imaging within the visible spectrum, 
Patel et al. expand upon how the recent 
developments in computational imag-
ing have the potential to significantly 
improve capabilities of mm-wave imag-
ing systems. They discuss the merits 
and drawbacks of available computa-
tional mm-wave imaging approaches 
and identify avenues of research in 
this rapidly evolving field. Finally, 
Wetzstein and Lanman show us the 
recent progress in compressive displays 
capable of producing a realistic 3-D 
visual experience of the world. At the 
core of these devices is the use of 
factorization techniques that provide 
an alternative to Lippmann’s integral 
imaging and its inherent resolution/
sampling limitations.

Novel applications 
The special issue also has two articles 
that explore two novel application ar-
eas: digital preservation of cultural 
heritage and gaze-contingent compu-
tational displays. Cultural heritage 
provides an important opportunity for 
computational imaging, as it enables 
the noninvasive analysis of art through 
different imaging techniques and new 
ways to interact with art. Huang et al. 
present techniques to preserve art dig-
itally, study and document it, and 
present it on modern media devices 
to provide new experiences. The fi-
nal article in the special issue, by 
Stengel and Magnor, provides an 
overview of recent developments in 
computational display algorithms that 
exploit gaze-estimation to enhance 
perceived visual quality of conven-
tional video footage when viewed on 
commodity monitors, projectors, or 
head-mounted displays.

Computational imaging and displays 
is a rapidly evolving field, and we hope 
that the breadth and depth of coverage 
of this special issue will not only serve 
as a reminder about the huge strides 
this community has made but also be a 
catalyst for identifying and tackling the 
major challenges facing the community.
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Sanjeev J. Koppal

 A Survey of Computational Photography in the Small
Creating intelligent cameras for the next wave of miniature devices

T
he sheer ubiquity of smartphones and other mobile vision 
systems has begun to transform the way that humans and 
machines interact with each other and the way that they 
interact with the world. Even so, a new wave of wide-

spread computing is on the horizon, with devices that are even 
smaller. These are micro and nano platforms, with feature sizes 
less than one millimeter. These types of platforms are quickly 

maturing out of research labs, with some examples shown 
in Figure 1. These devices can potentially induce futuris-

tic applications; for example, swarms of robotic flap-
ping insects [29] could have applications in 

agriculture and security, while medical devices such 
as those described in [5] and [8] would enable 
body area networks and minimally invasive pro-
cedures. Devices such as those described in [1]
are commercially available and could allow the 
creation of far-flung sensor networks.

Anticipating vision and imaging capabilities 
on these smaller platforms is a long-term prospect 
since, currently, none of the devices in Figure 1

even have cameras let alone full sensing systems. 
However, the possible impact is large since equip-

ping tiny devices with computational cameras could 
help realize a new wave of applications in security, 

search and rescue, environmental monitoring, explora-
tion, health, energy, and more. In this article, we outline 

a set of technologies that are currently converging to allow 
what we term computational photography in the small; i.e., 
across the millimeter, micro, and nano scales. This survey 
covers ongoing research that may break through existing bar-
riers by combining ideas across computational photography, 
compressive sensing, micro/nano optics, sensor fabrication, 
and embedded computer vision. We map out the next research 
challenges whose solutions can propel us toward making min-
iature sensing systems a reality.

The broad architecture of miniature computational cam-
eras is illustrated in Figure 1(b), where an array of (possibly 
heterogeneous) sensors are placed on a miniature low-power 

©ISTOCKPHOTO.COM/YAKOBCHUK

SIGNAL PROCESSING FOR 
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS
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platform. The design of each sensor can be optimized so that 
the computation is distributed across all aspects of the device, 
including passive optics to modulate the incoming light, active 
optics to project patterns onto the scene, optical filters for either 
polarization or wavelength as well as accompanying embed-
ded hardware and optimized software. This comprehensive 
strategy can address the problem of achieving computational 
photography on compact devices.

Converging miniature sensor technologies:
A brief history
In the last two decades, a few billion cameras became avail-
able to a large portion of humanity. This created a surge of 
interest and accompanying progress in a variety of imaging 
related technologies including, to name just a few, efficient 
hardware, small optical designs, miniature light-field sensors, 
and compact active illumination and displays.

We focus here on a brief history of three technologies in 
particular that have built the foundation for computational 
photography in the small. The first is the maturing of embed-
ded vision sensing technologies, which includes both mass-
produced low-power computing platforms from the mobile 

revolution as well as specialized systems that intentionally blur 
the lines between computing hardware and sensing. The sec-
ond is the impact of miniature optics for visual sensing, where 
display and imaging optics that were previously only created in 
research labs are now widely available. The third is the recent 
application of plenoptic designs to consumer cameras to allow 
for increased postprocessing control of photography.

Taken together, these fields have created the opportunity to 
make a new type of camera, as illustrated in Figure 2. This is 
a camera in which the visual task at hand can influence every 
aspect of the sensor, from the scene illumination and imaging 
optics to the sensing electronics and on-board processing. This 
allows for truly task-specific sensors that can extract every 
possible size, power, and mass efficiency from the system and 
can enable miniature computational cameras.

Embedded vision sensing and the mobile revolution
Processing images and video in real time on hand-held devices 
over the last two decades has resulted in a mature infrastructure 
for low-power vision and imaging. Dedicated imaging applica-
tion-specific integrated circuits (ASICs), consisting of digital sig-
nal processors (DSPs), field-programmable gate arrays (FPGAs) 

FIGURE 1. Miniature sensors: a new frontier for computational photography. In (a), a few motivating examples (images used courtesy of [1], [5], [8], and 
[29]) illustrate the coming, new wave of small machines that are transforming surveillance, medicine, sensor networks, agriculture, and other fields. 
Some, such as [1], are commercially available. However, due to restrictive power/mass budgets, none of these systems have cameras, let alone computa-
tional photography capability. If these devices could visually sense their environment, their impact would greatly increase. In this survey article, we cover 
relevant work in computational photography, compressive sensing, micro/nano optics, sensor fabrication, miniature displays, and embedded computer 
vision that together are defining the subdiscipline of computational photography in the small. In (b) we show the overall framework of such a miniature 
computational camera, where every sensor aspect, from optics to computing, is influenced by the visual task at hand.
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and other processors are now standard in 
mobile devices, and much work exists in 
the embedded systems research community 
on low-power hardware support for vision 
[4]. For example, convolutional neural net-
works (CNNs) that have gained widespread 
use with their ability to exploit large data 
sets, were recently implemented on FPGA 
hardware with a peak power consumption 
of only 15 W [9]. In addition, many entre-
preneurs are building mobile-scale light-
field sensors [26].

The impact of vision and imaging on the mobile revolution 
cannot be overstated. However, as the anxiety about Moore’s 
law suggests, such a strategy may not work for the type of 
extremely small devices shown in Figure 1. For such future 
applications, even a few watts is likely to be larger than what 
micro platforms are likely to support. For example, recent 
microscale body area networks have a per-node average power 
consumption of only 140 μW [14], and far-flung sensor net-
works have similar per-node requirements. For such scenarios, 

the paradigm of capture and postprocess-
ing of images simply cannot offer enough 
power and mass savings.

Luckily, in addition to traditional em-
bedded sensing research, there has been 
work done over the last few decades to 
build analogs to biological and neural archi-
tectures in vision systems. These devices 
perform computations at the sensor level, 
while photons are being converted into volt-
ages and digitized into pixels. For example, 
[7] created sensors that automatically ad-

justed exposure pixel-wise. In this sense, these devices blur the 
line between sensing and computation since the sampling of 
voltages itself is part of the imaging algorithm. Many of these 
sensors have reached a mature level of development and some, 
such as those from Inilabs, are available commercially.

Miniature optics for visual sensing
Miniaturized optics has a long-standing impact in traditional 
fields such as microscopy. Micro and nano optics benefits the 

Miniature
Computational
Photography

Embedded Vision Sensing
and Mobile Imaging

Embedded CNNs [9]
(2009)

Neuromorphic Sensors [7]
(2008)

Miniature Optics for
Visual Sensing

Bioinspired
Insect Optics [16]

(2006)

Custom
Microlenses [6]

(2015)

Flat lensless Optics
(CentEye Inc.)

(2009)

Plenoptic Designs in
Cameras and Sensors

Depth and Defocus [18]
(2007)

Programmable
Apertures [19]

(2006)Compressive Sensing
with MEMS Mirrors [27]

(2006)

Mobile Light-Field Cameras [26]
(2013)

FIGURE 2. A convergence of miniature sensor technologies. We discuss the brief history of three sensor technology areas; embedded vision, miniature 
optics and plenoptic designs. Efforts in each area has built a library of mature techniques that allow us to build a type of camera where the energy cost of 
performing a visual task can influence every component in the camera architecture. [All images used with permission: [7], [9], and [27] courtesy of the 
IEEE; [18] and [26] courtesy of ACM; [16] courtesy of AAAC (Science); [6] courtesy of AIP; and [19] courtesy of Springer.] 

In the last two decades, 
a few billion cameras 
became available 
to a large portion of 
humanity. This created 
a surge of interest and 
accompanying progress 
in a variety of imaging- 
related technologies.
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rise of miniature computational photography since there now 
exists useful fabrication strategies [3]. However, most of the 
previous efforts in this area have been to create optics for 
generating sharp, high-quality imagery. For example, a 
variety of techniques exist to create micro-
lenses by taking advantage of surface ten-
sion properties of PDMS and other 
materials that are heated and form lens 
shapes when in liquid form. Microlenses 
now form an integral part of many smart-
phone cameras, as they collect light within 
each pixel on the sensor. In research, a 
goal has been to create miniature optics 
that mimic insect eyes [16] or that offer 
shape control of microlenses [6].

While these previous efforts focus on 
the extremely useful goal of creating high-quality images, 
they cannot provide the full story. Computational photogra-
phy is about more than just capturing images but is also about 
exploiting the image formation process to extract even more 
information from the world. It includes sampling the light-
field, encoding the incoming light-rays and even analysis of 
the scene itself through filtering and optical convolutions. The 
fabrication technologies for creating micro-optics are useful 
for making computational cameras at small scales, but the 
design tools available require updating. For example, ray trac-
ing softwares that model aberrations and image blurring and 
that assume a plano-parallel scene model are still the norm. 
However, geometric distortions reduce for small optics, and, 
instead, diffraction becomes important, posing both a chal-
lenge and an opportunity, as we will see in the next section.

Wide-angle fields of view (FOV) become important since 
narrow FOV miniature platforms must move to capture the 
surrounding visual field, which has power costs. However, 
wide-angle optics, while well understood at large scales, are 
not easily manufactured at the miniature scale. For example, 
miniature fish-eye lenses consist of multiple optical ele-
ments at cm scales with only 120° FOV being demonstrat-
ed. Curved mirrors allow panoramic imaging for computer 
vision applications and have no dispersion related problems; 
unfortunately, to the best of our knowledge, the state of the 
art for miniature mirrors does not appear to have a greater 
FOV than 45° [11].

Plenoptic designs in computational photography
Fourier optics [12] involves building optical systems to imple-
ment computations like Fourier transforms by, among other 
things, designing point spread functions (PSFs). For decades, 
such optical processing research resulted in the use of both 
coherent light and partially coherent light to build computing 
platforms that were meant to compete with silicon-based 
computers. Ten years ago, controllable PSFs began to appear 
in computer vision and computer graphics communities, 
where attenuating templates, assorted pixels and plenoptic 
designs created by standard photolithographic techniques, fil-
tered scene radiance before measurement. For consumer 

cameras, this allows image deblurring, refocusing [20], and 
depth sensing [18].

The key lesson learned by these early computational pho-
tography researchers was that important scientific questions 

involved the coded aperture patterns and 
the related decoding algorithms for images 
captured under these apertures. Making the 
coded aperture itself enjoyed the support 
of relatively established approaches, espe-
cially if the coded aperture in question was 
binary. At the millimeter scale, laser print-
ing provided the required resolution. For 
smaller and more complex systems, pho-
tolithography techniques such as the 1 μm
Heidelberg photomask writer could easily 
do the job. Therefore, many computational 

photography researchers became the new customers of the 
existing national nanotechnology infrastructure built during 
the 1990s and 2000s.

The plenoptic designs created by the aforementioned pho-
tolithography techniques were static and could not be changed 
over time. To create programmable optics, researchers 
took advantage of the wide availability of display related 
technologies for manipulating light, such as liquid crystal 
displays or digital micromirror devices that allow either con-
trolled sampling of the light-field or processing of informa-
tion for computer vision and image processing. Initially, these 
efforts required systems engineering; for example, in [19], the 
researchers hacked a Texas Instruments DLP projector, using 
it as a camera instead of a projector and whose “projected” 
patterns became the camera’s coded aperture. Today, almost 
ten years later, the Texas Instruments developer kit is afford-
able enough that such hacking is no longer common. In fact, 
this availability has resulted in some of the most visible suc-
cesses of compressive sensing [27] and continues to impact 
vision and imaging. This is a past example of the evolution 
and commodification of key technologies that we believe will 
happen in the future for many of the related areas summa-
rized in Figure 2.

A first wave of computational
photography in the small
There has been a recent surge of miniature computational 
cameras, and some of these are illustrated in Figure 3. The 
previous efforts we discuss here may lack integration, but 
they represent a new line of thinking that seeks to merge the 
intertwined technologies of plenoptic designs, miniature 
optics, and computational sensing in hardware and algo-
rithms to create new types of cameras. Figure 3 depicts these 
on an axis of optical size and power consumption. Each of 
the authors cited reported their sensors’ optical size, but, cal-
culating the power footprint was more challenging since it is 
subject to interpretation and can change depending on the 
task at hand. For example, the raw images from a sensor 
could be used for optical flow directly, without much power 
consumption. However, the same sensor might require 

Computational
photography is about more 
than just capturing images 
but is also about exploiting 
the image-formation 
process to extract even 
more information from
the world.
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multiple hours of PC-grade processing of 
the measurements to allow full light-field 
analysis. We picked the full power foot-
print required to generate the key result in 
each research paper.

A significant portion of this first wave 
of miniature computational photography 
has been in the realm of lensless imaging, 
which has long been valued due its simplicity, 
throughput, and potential for miniaturization. 
Recent novel image sensor designs recover 
angular information for light-field analysis 
[15]. Reference [10] also used lensless dif-
fraction patterns to capture angular variations 
in the light field. Lensless imaging has played an important role 
in new types of compressive imagers [2]. Reference [17] demon-
strated an angular theory of wide-angle optical processing and 
showed results for fiducial detection on small, autonomous 
robots, without needing to capture the entire light field.

Certain common ideas are shared among these first few 
forays into computational photography in the small. First, 

diffraction is embraced, unlike much of con-
ventional computational photography, which 
relies on a ray geometric model of light, albe-
it partially augmented with color and polar-
ization. For example, [13] have shown the 
promise of adding micron-scale fabricated 
polarizing filters to CMOS/CCD cameras. 
Exploiting diffraction does not happen as 
in the optical processing community, where 
coherent or partially coherent models are 
used to obtain closed form solutions. Instead, 
to handle fully incoherent light from the real 
world, the relative effects of diffraction are 
used to infer scene properties. For example, 

in [15], angle sensitivity is obtained from the relative effects of a 
double decker layer of diffraction patterns. Another idea among 
these pioneering designs is the use of nonconventional optics 
and coded apertures fused together as one unit. For example, in 
[17], optical templates for detecting targets are embedded in a 
refractive slab, enabling the Snell’s window effect, and allowing 
an extremely wide FOV without using fish-eye lenses.

FIGURE 3. The first wave of miniature computational cameras. We organize the new wave of small computational cameras according to optical size and 
power consumption of the full system. Light-field cameras require powerful on-board computations, but the size of the optics and coded apertures has 
reached micron scales. On-board computation at millimeter scales has been proposed for vision sensors, but these do not capture the entire light-field. 
We illustrate the new broad steps such as applying sensor-based processing to reduce footprints, applying optical processing to share in the computa-
tional load and exploiting efficient active lighting to reduce on-board power consumption. [All images used with permission: [15], [17], [28], and [30] 
courtesy of the IEEE; [10] courtesy of Rambus/OSA; and [21] courtesy of ACM.]
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The key lesson learned by 
these early computational 
photography researchers 
was that important 
scientific questions 
involved the coded 
aperture patterns and 
the related decoding 
algorithms for images 
captured under
these apertures. 
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The devices discussed above lie in the micro to millimeter 
scales and are passive in the sense that the coded apertures 
do not change over time and there is no controlled illumi-
nation projected onto the scene. This is in contrast to vision 
and graphics methods that use designed lighting to decode 
scene information and create new displays. Researchers have 
recently began to ask how these methods could work on min-
iature platforms. For example, a challenge on small devices is 
the inherent reduction in baseline. Reference [28] has shown 
how a circular setup can address some of these challenges for 
photometric stereo. Another direction to 
address the baseline issue is to move from 
triangulation to time-of-flight using active 
illumination. On the macro-scale, time-of-
flight research has allowed the extraction of 
novel scene properties [25]. For miniature 
systems, trading off the modulated sourc-
es’s power consumption versus the depth 
sensing becomes important.

One way to balance these needs and 
enable illumination-based sensing on small 
devices would be to extract a signal out of 
low wattage illumination. A new generation 
of computational illumination methods take 
advantage of low-power microelectrome-
chanical systems (MEMS) mirrors that have been created for 
mobile hand-held projectors, such as those manufactured by 
Microvision, Syndiant, and Cremotech. For example, using a 
5-W hand-held projector from Microvision, the authors of [21]
have enabled computational illumination techniques in out-
door scenes, in the face of full sunlight. For miniature compu-
tational photography, the converse is clear; if there is no strong 
ambient illumination, then the same system can be made to 
work at orders of magnitude lower power budgets, since simi-
lar techniques of exposure synchronization and epipolar recti-
fication can be harnessed to decrease power consumption.

While these methods prove promising, an interesting 
direction put forth by [30] is to engineer a wide-angle MEMS 
mirror modulator for enabling futuristic applications such as 
micro light detection and ranging (LIDAR) by demonstrating 
an electrothermal MEMS working in liquid for the first time. 
By submerging the MEMS mirror into a mineral oil whose 
refractive index is 1.47, a wide-angle optical scan ( )1202 c  was 
achieved at small driving voltage (1 10 V), and the scan fre-
quency reached up to 30 Hz. The power consumption shown 
was .11 7 mW per degree in the mineral oil.

The next opportunities
Figure 3 depicts shaded gray regions that show the potential 
for further advances in efficiency and performance. For 
example, very few existing techniques take advantage of, say, 
computing in ASICs at the sensor level and many rely on 
conventional PC-based postimage capture processing. Task 
specific sampling may also reduce on-board processing; for 
example, a low-power face detector may have an optimal 
combination of thermal pixels, polarized pixels and skin 

filter pixels to do the job. This requires exploiting the latest 
efforts in nano-optics, such as from [22], to use spectrally 
selective filters at the desired scales. Another goal is to find 
ways to exploit low-power programmable optical templates 
that use technologies such as eInk, which powers many 
e-readers and which remains static until sufficient energy is 
available for a pattern change.

Another potential opportunity is the integration of com-
putational photography techniques with existing robotics and 
SLAM techniques for flying microrobots [24], floating sensors 

and surveillance drones. These tools could 
allow, for example, photometric stereo of 
large tourism sites or disaster zones by using 
varying illumination from multiple drones.

Temporal visual information at small 
scales can enable navigation, obstacle 
avoidance and optical flow; yet processing 
video on low-power platforms is prohibi-
tive. CentEye (http://www.centeye.com/) 
has shown embedded computing based 
optical flow at high rates and at low reso-
lution using embedded vision cameras. 
Integrating data from multiple sensors has 
enabled optical flow at real-time rates. For 
extremely fast sampling, it may be possi-

ble to exploit graded index lenses or optical fibers that can 
bend light in curves. Such optical elements can introduce 
time delay by guiding incoming scene radiance into opti-
cal loops, which can be tightly wound in a small volume, 
enabling, perhaps, fast capture of near simultaneous photo-
graphs without clocking at extremely high rates.

Finally, since true efficiency is only possible by having 
the sensing task at hand influence every part of the sensor, 
a fascinating question is how to distribute the work load 
over these different components. Should we sample and 
process with the optics, in such a way as to minimize the 
computational load? Or should we use a neuromorphic sen-
sor to process the measurements as they are made? This 
suggests that design tools in the form of a compiler, to 
allow automatic partitioning of the computing problem into 
components that can be performed best by optics, coded 
sampling, on-board processing, or general-purpose signal 
processing and vision algorithms.

Toward full systems:  
Societal, legal, and cultural impact
We anticipate a future with trillions of networked miniature 
cameras. These computational cameras will be small, cheap, 
numerous, and capable of recovering more information about 
the world around them than today’s conventional point-and-
shoot cameras. The hypothetical impact of such devices has 
been discussed in many contexts, such as within the camera 
sensor network research community, and not all impacts may 
be desirable. For example, if these tiny sensors are not biode-
gradable, then the potential environmental impact may dwarf 
current concerns on e-waste. Another issue is privacy, as 

Miniature computational 
photography has great 
potential for applications 
in a variety of fields 
where small, networked 
platforms are already 
making an appearance, 
such as agriculture, 
security, health, and the 
Internet of Things.
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miniature cameras may be discretely placed where their pres-
ence is unwanted. Blunt legal and societal restrictions to these 
types of small sensors may unintentionally harm the huge 
potential upside in terms of new applications and new plat-
forms. Computational photography can provide answers to 
some of these challenges. For example, [23] proposes a new 
layer of optical privacy for small sensors, where optics filter 
or block sensitive information directly from the incident light-
field before sensor measurements are made.

To conclude, we have shown that there is a confluence 
of technologies over the past few decades that has made the 
tools for enabling miniature computational photography pos-
sible. This has resulted in a recent surge of activity to build 
computational cameras, displays, and sensors that push the 
limits of size, power, weight, and mass. Miniature compu-
tational photography has great potential for applications in 
a variety of fields where small, networked platforms are 
already making an appearance, such as agriculture, security, 
health, and the Internet of Things. There are dangers regard-
ing social acceptance of a trillion networked eyes around us, 
which can and should also be solved by computational pho-
tography research.
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Lensless Imaging
A computational renaissance

T
he basic design of a camera has remained unchanged for 
centuries. To acquire an image, light from the scene under 
view is focused onto a photosensitive surface using a lens. 
Over the years, the photosensitive surface has evolved 

from a photographic film to an array of digital sensors. How-
ever, lenses remain an integral part of modern imaging systems 
in a broad range of applications. 

Unfortunately, lenses also introduce a number of limi-
tations. First, while image sensors are typically thin, 

cameras end up being thick due to the lens complexity 
and the large distance required between the lens and 

sensor to achieve focus. For example, the thinnest 
mobile cameras today are approximately 5-mm 
thick, with the thickness increasing at larger lens 
aperture sizes. Second, lenses for visible light 
can be manufactured with inexpensive materi-
als such as glass and plastic, but lenses for wave-
lengths farther into the infrared and ultraviolet 
spectra are either extremely expensive or infeasi-
ble. Third, lens-based cameras invariably require 

post-fabrication assembly, resulting in manufactur-
ing inefficiencies.

In this article, we review a variety of alternate 
imaging approaches that completely eschew lenses. 

The primary task of a lens in a camera is to shape the 
incoming light wavefront so that it creates a focused image 

on the sensor. In the absence of a lens, a sensor would sim-
ply record the average light intensity from the entire scene. 
Lensless imaging systems dispense with a lens by using other 
optical elements to manipulate the incoming light. The sen-
sor records the intensity of the manipulated light, which may 
not appear as a focused image. However, when the system is 
designed correctly, the image can be recovered from the sensor 
measurements with the help of a computational algorithm. Fig-
ure 1 shows the processes for capturing/reconstructing images 
in lensed and lensless systems. The simplest lensless imag-
ing system is the pinhole camera. It is inefficient, however, 
since the small pinhole restricts the amount of light reaching 

©ISTOCKPHOTO.COM/YAKOBCHUK
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the sensor. Coded aperture cameras improve the light efficiency 
using a mask with an array of pinholes. The sensor measure-
ments become a superposition of the images formed by each 
aperture, and the computational recovery algorithm’s task is to 
reorganize the measurements to recover the image.

There are many benefits to going lensless;
■ Scalable fabrication. Lensless cameras can be directly fab-

ricated using traditional semiconductor fabrication technolo-
gy. For example, a multiple-aperture mask can be fabricated 
either directly in one of the metal interconnect layers or on a 
separate wafer thermal compression that is bonded to the 
back side of the sensor, as is typical for back-side-illuminat-
ed image sensors [1]. Thus, lensless cameras can benefit 
from all of the scaling advantages of semiconductor fabrica-
tion, resulting in a low-cost, high-yield, high-performance 
device. In contrast, conventional cameras require inefficient 
post-fabrication assembly of the lens system.

■ Thin form factor. Since the standoff distance between a 
multiple-aperture mask and the image sensor array need only 

be a few tens to hundreds of microns, an entire lensless cam-
era can be only a few tens to hundreds of microns thick—
resulting in potentially the thinnest cameras ever produced.

■ Wavelength scaling. Lensless cameras have been used for 
X-ray, gamma-ray, and astronomical imaging for decades. 
Lensless imaging in the visible, short-wave infrared (SWIR), 
and thermal wavebands is relatively new. Moreover, the tech-
nology can also be expanded to the mm-wave, terahertz, and 
other bands with minimal modifications, providing 
unmatched spectral flexibility.

■ Low cost. While the cost of high-resolution cameras has 
fallen rapidly in the visible range, it remains high outside the 
visible range (e.g., infrared). One reason is that lenses for 
these wavelengths must be manufactured using expensive 
materials. By doing away with lenses and the need for post-
fabrication assembly, lensless cameras promise significant 
cost reductions for imaging outside the visible spectrum.

■ Nonplanar geometries. Lensless cameras can be adapted 
to arbitrary sensor geometries, including not just planar but 

Lensless Cameras

Lens-Based Cameras

Lens Sensor

Examples
MicroscopeDSLR Camera

Telescope

Lensless Compessive
Imaging [11] 

Wide-Field On-Chip
Microscopy [24]

FlatCam (Second Prototype)Diffraction Grating [16]

SensorMask
Captured Data

Reconstructed Image

Captured Image

40 μm
Fiber

Examples

(a)

(b)

FIGURE 1. Lensed versus lensless imaging. (a) An illustration of a lens-based camera, where a lens maps the scene onto a sensor to form a clear image. 
A few examples of lens-based systems are shown. (b) The process of capturing an image using a lensless camera. An additional step of computation is 
required to reconstruct a clear image from the muddled sensor data. A few examples of lensless cameras [11], [16], [24] and our prototype based on [31] 
are also shown. (Figure adapted with permission from Macmillan Publishers Ltd: Nature Methods [24], copyright 2012.)
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also cylindrical, spherical, and even flexible sensors. The 
compact form of spherical lensless cameras promise 
unmatched maneuverability in constrained environments 
such as endoscopy.

■ Light throughput. Lensless cameras can be designed to 
have very large input apertures, which translates into 
improved light efficiency and a much larger field-of-view 
than conventional lens-based systems.

■ Three-dimensional (3-D) imaging. Lensless imaging sys-
tems can extract 3-D and refocusing information in addition 
to two-dimensional (2-D) imaging. Although this ability is 
not yet competitive with existing lens-based techniques, 
such as light-field and time of flight, 
the extracted 3-D information may still 
be useful in some contexts, such as ges-
ture identification.
In this article, we review the past, pres-

ent, and future of lensless imaging as a shin-
ing example of the opportunities afforded 
by computational imaging, a design frame-
work that uses computational algorithms to 
replace or augment imaging hardware (in 
this case replacing the lens). After review-
ing classical and contemporary approaches 
to lensless imaging, we introduce and analyze a mathemati-
cal model that exposes the key issues underlying these 
architectures. The bulk of the article consists of a case study 
of the FlatCam, a particular mask-based lensless imager we 
have developed.

Early lensless imaging systems

Pinhole cameras
The very first cameras were lensless. Pinhole cameras, also 
known as the camera obscura, were discovered centuries 
before the invention of lenses and photography. Pinhole cam-
eras have been well known since Alhazen (965–1039 A.D.) 
and Mozi (c. 370 B.C.). However, the first photograph using a 
pinhole camera was captured in 1850. Pinhole cameras offer a 
simple and elegant architecture for lensless imaging that con-
sists of a single aperture in front of a sensor. Light from an 
object passes through the pinhole and forms its image on the 
sensor. However, a tiny pinhole is required to produce sharp 
images, which results in very low light throughput. As a con-
sequence, a pinhole camera requires very long exposure times 
to acquire images at high quality. Lenses were introduced into 
cameras for precisely the purpose of increasing the size of the 
aperture, and thus the light throughput, without degrading the 
sharpness of the acquired image.

Coded aperture cameras
Coded aperture cameras extend the idea of a pinhole camera by 
replacing the small, single aperture with a mask containing mul-
tiple apertures [2]–[4]. Coded aperture cameras were originally 
invented for imaging with X-rays and gamma rays, wavelengths 
of light that are not easily amenable to lens-based imaging (see 

“Coded Aperture in X-Ray and Gamma-Ray Imaging”). In a 
general coded aperture system, sensor measurements represent 
a superposition of the images formed behind each pinhole. The 
primary motivation for a coded mask is to increase the light 
throughput while retaining the ability to reconstruct high-res-
olution images. For instance, if the mask contains P pinholes, 
then the sensor image is the sum of P overlapping images of the 
scene. The signal-to-noise ratio in such an image is approxi-
mately P  times better than a single pinhole image [2], [3].

In contrast to a single-pinhole camera, the sensor measure-
ments of a coded aperture camera do not resemble an image of 
the scene. Rather, each light source in the scene casts a unique 

shadow of the mask onto the sensor, encod-
ing information about locations and intensi-
ties. Consider a single light source on a dark 
background; the image formed on the sensor 
will be a shadow of the mask. If we change 
the angle of the light source, then the mask 
shadow on the sensor will shift. If we change 
the depth of the light source, then the size of 
the shadow will change. We can represent 
the relationship between the scene and the 
sensor measurements as a linear system that 
depends on the pattern and placement of the 

mask. Inverting this system using an appropriate computational 
algorithm will recover an image of the scene.

The design of the mask plays an important role in coded-
aperture imaging. An ideal pattern would maximize the light 
throughput while providing a well-conditioned scene-to-
sensor transfer function to facilitate inversion. In this regard, 
several mask designs have been proposed in coded aperture lit-
erature, including Fresnel zone plate, random pinhole patterns, 
uniformly redundant arrays (URAs) [3], and their extensions. 
URAs are particularly useful because of two key properties: 
1) almost half of the mask is open, which boosts the signal-to-
noise ratio, and 2) the autocorrelation function of the mask is 
close to a delta function, which aids in calibration and image 
recovery. URA patterns are closely related to the Hadamard-
Walsh functions and the maximum length sequences that are 
maximally incoherent with their cyclic shifts [5].

Zone plates
A zone plate can also be used to focus light and form an image 
using diffraction [6], [7]. A zone plate consists of concentric 
transparent and opaque rings (or zones). Light hitting a zone 
plate diffracts around the opaque regions and interferes con-
structively at the focal point. Zone plates can be used in place 
of pinholes or lenses to form an image. One advantage of zone 
plates over pinholes is their large transparent area, which pro-
vides better light efficiency. In contrast with lenses, zone plates 
can be used for imaging wavelengths where lenses are either 
expensive or difficult to manufacture [8], [9].

Contemporary lensless imaging systems
Recent advances in sensor technology [in particular, the conver-
sion from analog film to digital charge-coupled device (CCD) 

Lenses were introduced 
into cameras for 
precisely the purpose of 
increasing the size of the 
aperture, and thus the 
light throughput, without 
degrading the sharpness 
of the acquired image.
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and complementary metal-oxide semiconductor (CMOS) sensor 
arrays], image reconstruction models and algorithms, and com-
puting resources have made lensless imaging a burgeoning field. 
Here, we briefly review some of the recent research in this area.

Lensless imaging using programmable apertures
Programmable mask-based lensless imaging designs have 
recently been proposed in [10]–[12]. The camera proposed in 

[10] consists of a sensor and layers of programmable spatial 
light modulators (SLMs) whose transmittances are controllable 
in space and time. By applying different patterns in each layer, 
the incoming light can be manipulated in a number of ways. 
For example, the camera can track a moving object by shift-
ing a pinhole in one of the layers, select and capture disjoint 
regions in the scene, or perform computations on the scene and 
record the results directly on the sensor.

Coded aperture cameras were 
originally invented for X-ray astron-
omy [2], [34], and they have been 
primarily used for X-ray and gam-
ma-ray imaging since then [3], [4], 
[32], [35]. For instance, the SWIFT 
space telescope (see Figure S1) is 
a multiwavelength space telescope 
currently in use for observing gam-
ma-ray bursts [36].

Image formation in a lens-based 
camera can be viewed as a one-to-
one mapping of points at a focal 
plane in the scene onto a sensor. A 
lens is a refractive element that 
manipulates light wavefronts such 
that all the light coming from a cer-
tain direction in the scene converg-
es to a particular location on the 
sensor. Visible light can be easily 
manipulated using transparent 
materials, such as glass and plas-
tic, that have a large refractive index. Therefore, lenses for visi-
ble light are easily available at low cost.

High energy radiation beyond the visible spectrum, such 
as X-rays and gamma rays, are routinely acquired in radiol-
ogy, screening, and astronomy applications. Imaging these 
radiations enables us to look inside a human body for medi-
cal diagnosis, screen luggage at the airports, and observe 
black holes and supernova in the cosmos. However, X-rays 
and gamma rays are not as easy to manipulate with refrac-
tive optics as visible light. Therefore, the methods for imag-
ing high-energy radiations primarily rely on reflection or 
diffraction optics.

The classical imaging architectures for X-rays and gamma 
rays use a collimator in front of a sensor. A collimator typically 
consists of a thick sheet of lead or other material opaque to 
the incoming rays with multiple holes. Every sensor pixel 
behind a hole has a narrow field of view, since only a small 
cone of light in a particular direction can travel through each 
hole. Thus, a collimator localizes the directions of the rays 

reaching the sensor. Light from multiple locations and angles 
can be recorded by moving the collimator and the detector 
accordingly. The two primary drawbacks of collimator-based 
imaging are 1) light throughput is extremely low, since the col-
limator allows only a fraction of incoming light to reach the 
sensor, and 2) the recorded image has a low angular resolu-
tion, because every sensor pixel records the average intensity 
of light over its entire field of view.

A coded aperture-based imaging system offers better light 
efficiency and angular resolution as compared to either a pin-
hole- or collimator-based system. A coded aperture camera 
consists of a mask with transparent and opaque features 
placed in front of a sensor. Light from any particular location 
in the scene casts its unique shadow of the mask on the sen-
sor plane. Therefore, each sensor pixel records a coded 
multiplexing of light from multiple scene locations. The 
relationship between the sensor measurements and the scene 
intensities can be described as a linear system, which can be 
solved using a computational algorithm.

Coded Aperture in X-Ray and Gamma-Ray Imaging

Coded
Aperture

Mask

Graded-Z
Shield

Optical
Bench

Module
Control

Box

Power
Supply BoxBAT Detector Array

Radiator

SWIFT/BAT Imager with Coded Aperture Mask

FIGURE S1. SWIFT is a multiwavelength space observatory dedicated to the study of gamma-ray bursts. 
Its burst alert telescope (BAT) uses a coded mask to detect gamma ray burst events and compute their 
coordinates in the sky. The D-shaped coded aperture mask is made of nearly 54,000 lead tiles [36]. 
(Images courtesy of NASA.)
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The lensless camera in [11] (the first example of lensless in 
Figure 1) uses compressive sensing principles to capture and 
recover images. It consists of a single programmable SLM and 
a single pixel detector. It captures multiple measurements of the 
scene by changing the mask pattern. The scene is then recon-
structed by solving a sparse recovery program. Using multiple 
pixel detectors, this design can reconstruct a higher resolution 
image for a planar or a sufficiently distant scene [13].

The camera in [12] consists of a sensor array and an SLM 
implementing a separable mask pattern. This camera can 
reconstruct the scene using a single sensor image, but the 
reconstruction quality improves using multiple sensor images 
with different mask patterns. In the development of this cam-
era, the authors showed that traditional techniques [3] of using 
URA and modified URA (MURA) aperture patterns fail due 
to significant diffraction effects in the visible spectrum.

Ultra-miniature lensless imaging with diffraction gratings
Ultra-miniature cameras (approximately 100 nm width and 
thickness) have been implemented in [14]–[17] using integrat-
ed diffraction gratings and CMOS image sensors. The pixels 
in [14] use diffraction gratings over a photodiode in order to 
be sensitive to the angle of incident light. The angle selectivity 
is achieved due to a phenomenon called the Talbot effect [18]
and enables the camera to perform lensless 3-D imaging in the 
near field. The gratings were fabricated as metal wiring layers 
over the photodiodes.

The phase gratings in [16] are designed such that they 
impose spiral-shaped diffraction patterns (the second example 
for lensless in Figure 1) on the sensor array. The diffraction 
pattern is etched on a refractive medium placed above the sen-
sor. The spiral pattern can also be viewed as the point spread 
function of these imaging systems. Similar to a coded aperture 
system, the image formed on the sensor is a superposition of 
shifted and scaled spiral patterns. However, in contrast to an 
amplitude mask, a phase grating-based mask has improved 
light efficiency, since it blocks much less light. While an image 
of the scene can be recovered using a computational algorithm, 
the primary purpose of these small-size and low-cost designs 
is distributed monitoring and inspection (for example, in the 
Internet of Things).

Lensless microscopy via shadow and diffraction imaging
Lensless cameras have also been successfully demonstrated 
for several microscopy and lab-on-chip applications. We can 
divide the lensless microscopes into two broad categories: con-
tact-mode shadow imaging-based microscopes [19]–[21] and 
diffraction-based lensless microscopes [22]–[27]. In a shadow 
imaging-based microscope, a microscopic sample is placed 
extremely close to a sensor array (ideally within )1 mn  so that 
diffraction is minimized. Light from an illumination source 
passes through the sample and casts a shadow on the sensor 
with unit magnification. The shadow image represents the 
image of the microscopic sample under observation. It is also 
possible to capture multiple images of a sample with subpixel 
shifts for the purpose of digital superresolution. The on-chip 

microscope in [20] demonstrated imaging of red blood cells at 
a resolution of 600 nm by combining multiple low-resolution 
shadow images of blood flowing in a microfluidic channel.

Diffraction-based lensless microscopes allow a signifi-
cant distance between the sample and the sensor plane. Light 
scattered by the sample interferes with itself and creates an 
interference pattern on the sensor (the third example of lens-
less in Figure 1). These interference patterns can be digitally 
processed to reconstruct an image of the sample [24], [25]. The 
on-chip microscope in [25] demonstrated imaging of red blood 
cells at a resolution less than 7 mn  with a field-of-view of 
20.5 mm2. Since the optical sensor records only the intensity 
of the interference patterns and loses the phase information, 
image reconstruction relies on computational methods for 
phase retrieval [28], [29].

A mathematical model for lensless imaging
A simple mathematical model can be used to explain, character-
ize, and analyze the operation of a variety of lensless imagers.

Lensless imaging architecture
Consider the imaging architecture in Figure 2, which consists 
of an amplitude mask placed in front of an image sensor. Both 
the sensor and the mask are assumed to be planar and parallel 
to each other. The mask is placed a distance d (typically mea-
sured in microns) in front of the sensor; hence, we can assume 
the sensor is placed on the plane z = 0 and the mask on the 
plane z = d. Assume, without loss of generality, that the mask 
is binary-valued and consists of opaque and transparent ele-
ments that either block or transmit light. An important vari-
able is the smallest feature size on the mask, Δ; intuitively, the 
binary mask is constructed using opaque or transparent build-
ing blocks of size #D D. Denote the pixel pitch, or the size 
of individual sensor pixels, by w. Given this basic setup, we 
can characterize the spot size produced by a mask element and 

Image
Sensor

Amplitude
Mask

d - Mask to Sensor Distance

ω - Pixel Pitch 

ω
ω

ω

Legend
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Δ

Δ - Mask Feature Size

FIGURE 2. A schematic of a lensless imager using a single amplitude mask.
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characterize when the spot can be well-approximated using 
geometric (ray) optics.

Image formation
We characterize image formation using the geometric optics 
model. While this approach largely ignores diffraction, the 
resulting model is useful for the design and analysis of well-
conditioned imaging architectures. Furthermore, the cali-
bration procedure that we detail in subsequent sections can 
account for unmodeled diffraction effects. For the simplicity 
of notation, we assume a simplified 2-D world imaged by a 
one-dimensional (1-D) mask and sensor. The extension to a 
3-D world imaged by a 2-D mask and sensor is straightfor-
ward except where stated otherwise.

For a suitably defined scene irradiance vector x RN! , the 
scene-to-sensor mapping can be described using the linear set 
of equations

,y x eU= + (1)

where RM N!U #  is the measurement matrix, y RM!  is the 
image formed on the sensor, and e  is measurement noise. This 
model can be interpreted in two different ways:
1) Each sensor measures a weighted, linear combination of 

light from multiple scene locations, and each row in U
encodes the weights for the respective sensor. For a scene 
at infinity, the weights for two different sensor pixels sim-
ply differ by a translation of the mask pattern. As a conse-
quence, the matrix U  has a Toeplitz structure.

2) Every light source in the scene casts a shadow of the mask 
on the sensor. Thus, the image formed on the sensor is a 
superposition of shifted and scaled versions of the mask. 
The shift and the scaling of the mask pattern encodes the 
angle and distance of the light source onto the sensor.

These properties are invaluable in the design of masks 
that provide near-optimal recovery under noise. Given the 
image formation model in 1), our tasks are to formulate 
an inversion algorithm that recovers the scene x  from the 
sensed image y  and design mask patterns that achieve opti-
mal recovery performance. We study both problems in the 
subsequent sections.

Image reconstruction
Given the sensor measurements y RM!  and the measurement 
matrix U, recovering x RN!  depends mainly on the rank of 
the matrix U and its condition number. When ( ) Nrank U =
and the matrix is well-conditioned, we can obtain an estimate 
of x  by solving the least-squares problem

,min x y 2
2

x
U - (2)

which has the closed-form solution x y x eLS U U= = ++ +t ,
where ( )T T1U U U U=+ -  is the pseudoinverse of U . When 
U is not well-conditioned, the least squares estimate xLSt  suf-
fers from noise amplification. When U  is rank-deficient, the 
matrix becomes singular and an estimate cannot be achieved.

In the ill-conditioned and rank-deficient cases, we can use 
an image prior to regularize the inverse problem. Specifically, 
instead of solving (2), we solve

( ),min y x xR2
2

x
mU- + (3)

where xy 2U-  quantifies the data fidelity, ( )xR  is a regular-
ization term that enforces an image prior, and 02m  controls 
the tradeoff between fidelity and regularization. A popular 
choice for the regularizer that is useful for noise-suppression 
is Tikhonov regularization (also known as ridge regression)
via .( )x xR 2

2=

Natural signals, such as images and videos, exhibit a host 
of geometric properties including sparse gradients and sparse 
coefficients in certain transform domains (e.g., Fourier or 
wavelets). By enforcing these geometric properties, we can 
suppress noise amplification as well as obtain unique solutions 
even when U is rank-deficient (i.e., M < N). A pertinent exam-
ple for image reconstruction is the total-variation (TV) model, 
where the regularizer ( )x xR TV=  corresponds to the TV 
of the image, which is computed from its gradients. Writing 
the scene x  as the 2-D image ( , )u vx  and defining Dg xu u=

and Dg xv v=  as the u- and v-components, respectively, of the 
spatial gradient of the image, the TV of the image is given by

( ) ( , ) ( , ) .u v u vx x g gR
,

u v
u v

2 2
TV= = +/

The minimization (3) with a TV prior is convex and pro-
duces images with sparse gradients. A host of efficient tech-
niques have been developed to obtain the solution. A range of 
even more realistic image models have been developed (e.g., 
[30]), but the resulting optimization might not be convex.

FlatCam: A lensless imaging case study
To illustrate the design tradeoffs involved in a practical lens-
less camera design, we review the FlatCam [31], which was 
inspired by the coded aperture imaging principles pioneered 
in astronomical X-ray and gamma-ray imaging [2]–[4], [32]
(see “Coded Aperture in X-ray and Gamma-Ray Imaging”).

Architectural overview
The FlatCam design achieves a large photosensitive area with 
a thin form factor by replacing the lens with a coded, binary 
mask. The thickness of the camera is minimized by placing 
the mask almost immediately on top of a bare conventional 
sensor array. The image formed on the sensor can be viewed 
as a superposition of many pinhole images. An illustration of 
the FlatCam design is presented in Figure 3. Light from all 
points in the scene passes through a coded mask and forms a 
multiplexed image on the sensor. A computational algorithm is 
used to recover the original light distribution of the scene from 
the sensor measurements.

The FlatCam design has many attractive properties besides 
its slim profile. First, since it reduces the thickness of the camera 
but not the area of the sensor, it can collect more light than a 
miniature, lens-based camera of the same thickness. The light 
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collection ability of FlatCam is proportional to the size of the 
sensor and the transparent regions (pinholes) in the mask. In con-
trast, the light collection ability of a lens-based camera is limited 
by the lens aperture size, which is restricted by the requirements 
on the device thickness. Second, the mask can be created from 
inexpensive materials that operate over a broad range of wave-
lengths. Third, the mask can be fabricated simultaneously with 
the sensor array, creating new manufacturing efficiencies.

Mask design and calibration

Separable masks
The FlatCam uses a separable mask pattern, i.e., the 2-D mask 
pattern is the outer product of two 1-D patterns. Such a pattern 
drastically reduces the storage and computational footprint of 
the measurement matrix U . When the mask pattern is sepa-
rable, the imaging equation (1) can be rewritten as

,Y X EL R
TU U= + (4)

where X is an N # N matrix containing the scene radiance; Y
in an M # M matrix containing the sensor measurements; LU
and RU  are matrices representing 1D convolution along the 
rows and columns of the scene, respectively; and E denotes 
the sensor noise and model mismatch. For a megapixel scene/
image and a megapixel sensor, LU  and RU  each have only 106

elements, as opposed to 1012 elements in U . A similar idea 
has been recently proposed in [12] with the design of doubly 
Toeplitz mask.

Mask design
The mask pattern should be chosen to make the matrices LU
and RU  as numerically stable as possible, which ensures a stable 
recovery of the image X from the sensor measurements Y. In the 
context of image reconstruction using signal priors (for example, 

the aforementioned TV prior), random matrices enjoy stable 
recovery guarantees. Hence, we construct the separable mask pat-
tern as the outer-product of two 1-D pseudo-random sequences.

Calibration
The low-dimensionality of LU  and RU  in (4) support a sim-
ple and efficient calibration scheme. Instead of modeling 
the convolution shifts and diffraction effects for a particular 
mask-sensor arrangement, we directly estimate the system 
matrices from training data. To align the mask and sensor, 
we adjust their relative orientation such that a separable scene 
in front of the camera yields a separable image on the sensor. 
For a perfectly aligned system, displaying a horizontal/verti-
cal line on a screen in front of the camera results in an image 
containing a set of sharp horizontal/vertical stripes. We first 
achieve sharpness by rotating the mask relative to the screen. 
Then, we align the sensor and mask so that the stripes on 
the sensor image are parallel to the image axis. To calibrate 
a system that can recover an image X with dimensions N # N,
we estimate the left and right matrices LU  and RU  using 
the sensor measurements of 2N known calibration patterns 
projected on a screen as depicted in Figure 4. Our calibration 
procedure relies on an important observation: If the scene 
X is separable, i.e., X abT= , where a,b RN! , then, for an 
ideal system,

( )( ) .Y ab a bL
T

R
T

L R
TU U U U= =

In essence, the image formed on the sensor is a rank-1 
matrix, and using a truncated singular value decomposition 
(SVD), we can obtain estimates of aLU  and bRU  up to a 
signed, scalar constant. We take N separable pattern measure-
ments for calibrating each of LU  and RU . In practice, we aver-
age several measurements of each calibration pattern to reduce 
the effects of sensor noise.
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FIGURE 3. The FlatCam architecture. Every light source within the camera field of view contributes to every pixel in the multiplexed image formed on the 
sensor. A computational algorithm reconstructs the image of the scene. (a) The inset shows the mask-sensor assembly of our prototype, in which a 
binary, coded mask is placed 1.2-mm away from an off-the-shelf digital image sensor. (b) An example of sensor measurements. (c) An image reconstructed 
by solving a computational inverse problem of the form (3). (Figure modified from [31] and used with permission.)
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Prototypes
We have built two different FlatCam prototypes. The first 
prototype consists of a Point Grey Flea3 with a Sapphire 
EV76C560 CMOS sensor, which has a 5.3-μm pixel size and 
measured Chief Ray Angle (CRA) of 25°. (The CRA of a sen-
sor determines the cone of light that can enter a pixel.) The 
diffractive mask is chrome on quartz glass placed adjacent 
to the infrared filter of the sensor (mask-to-sensor distance: 
1.2 mm). The pattern on the mask is an outer product of two 
length-1024 pseudorandom sequences of smallest feature 
size 25 μm. Sample reconstructions using this prototype are 
shown in Figure 5(a). Reconstructions of a dynamic scene 
are shown in Figure 5(b); here, we operated the camera with 
a 3 ms exposure and recovered videos of 60 frames per sec-
ond with each frame of the video recovered independently as 
a stand-alone image.

The second prototype was assembled with a diffractive mask 
and spacer attached directly to the surface of an Omnivision 
OV5647 CMOS sensor (fourth example of lensless in Figure 1). 
The Omnivision sensor has pixels of size 1.4 μm and measured 
CRA of 28°. The diffractive mask was fabricated by depositing 
a thin-film of chrome on fused silica that was then patterned 
with photoresist and etched to leave the desired pattern. The 
mask was then diced, aligned to the CMOS pixel array, and 

attached with optical epoxy (mask to sensor distance 500 μm). 
The pattern on the mask is the outer product of length-1296 
and 972 pseudorandom sequences of smallest feature size of 
2.8 μm. The smaller feature size and pixel pitch of this pro-
totype enable reconstructions at a higher resolution. However, 
a drawback of the smaller pixel pitch is a sensor with poorer 
SNR performance, which results in noisier measurements and 
reconstruction compared to our first prototype (see Figure 6).

The remainder of the examples below were obtained using 
the higher-quality Flea3 sensor prototype.

Programmable masks
In many applications, a camera has the opportunity to acquire 
several images of a scene, and both folk wisdom and theory 
tell us that averaging the acquisitions should suppress noise. 
In contrast to a lens-based camera, a lensless camera could be 
equipped with a programmable mask that changes for each 
acquisition to provide diversity in the acquisitions. Presumably, 
such a camera should not only suppress noise but also average 
out imperfections in the measurement operator U (recall that U
is never perfectly conditioned in a coded aperture system).

To demonstrate the potential of a programmable mask 
FlatCam, we simulated multi-image capture using the seq-
uences of separable measurement matrices { } ,..,L i L1iU =  and 

Left System
Matrix
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Yield

Vertical
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Yield

Right
System
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Separable Hadamard
Patterns
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Separable Mask
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Sensor Measurements: Y  = ΦL × ΦT
R

ΦT
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xk–3 xk–2 xk–1

xk+1

xk

(a)

(b)

FIGURE 4. Calibration for measuring the left and right matrices LU  and RU  corresponding to a separable mask. (a) Separable patterns displayed on a 
screen in front of the camera. The patterns are orthogonal, one-dimensional Hadamard codes that are repeated along either the horizontal or vertical 
direction. (b) Estimated left and right matrices. (Figure modified from [31] and used with permission.)
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{ } ,..,R j R1jU = . The measurements of the scene X using each pair 
of measurement matrices are given by

,Y X E( , ) ( , )i j L R
T

i ji jU U= + (5)

which can be stacked into the larger system
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to estimate X by solving the least-squares problem

| | | | ,argminX X YLS L R
T

F
2

X
U U= -t (7)

where || · | | F  denotes the Frobenius norm. A regularization 
term can also be added as in the single-image-capture case.

Figure 7(a) illustrates the results of a simulation of this 
approach. We generated a virtual high-resolution scene X,
acquired a number of noisy acquisitions according to the model 
(5), and recovered the image estimate according to (7) with 
an additional Tikhonov regularizer. The horizontal axis cor-
responds to the number of acquisitions, each of which used a 
new mask. The vertical axis corresponds to peak-signal-to-noise 
ratio (PSNR), which measures the mean-squared error between 
the image estimate and X. Each acquisition had the same, fixed 
exposure time, and so we expect the quality of the image esti-
mate to improve as we fuse more acquisitions. The blue curve 
demonstrates not only this improvement, but also an additional 
improvement due to changing the mask for each acquisition 
rather than reusing the same mask repeatedly. In particular, tak-
ing nine acquisitions using nine different masks attains a PNSR 
of 13.7 dB, while taking nine acquisitions with the same mask 
attains a PSNR of only 11.8 dB [the green dot in Figure 7(a)] This 
2-dB gain is testimony to the power of programmable masks.

The careful reader will note that in practice the scene 
might change during acquisition, which would invalidate the 

1

6 7 8 9 10

2 3 4 5

(a)

(b)

FIGURE 5. (a) The reconstruction of three static scenes using the Flea FlatCam prototype. (b) Sample frames from the video reconstruction of a toy per-
forming a backflip aided by human hands. The video was recorded at 60 frames per second.
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FIGURE 6. A FlatCam prototype comparison. (a) Our first prototype with the chrome mask placed directly in front of the Flea3 sensor; (d) is our second 
prototype with the Omnivision sensor directly epoxied to mask (insets show close-up of the sensors and masks). (b) and (e) are reconstructions and 
(c) and (f) are BM3D denoised reconstructions for first and second prototype, respectively. The smaller feature size and pixel pitch of the Omnivision 
prototype provide superior resolution at the cost of more noisier image reconstruction.
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FIGURE 7. A simulation experiment of a FlatCam with a programmable mask. (a) Reconstruction performance (in terms of peak-signal-to-noise ratio, PSNR) as 
we increase the number of image acquisitions (masks). A different mask pattern is used for each acqusition. The PSNR increases consistently for static and 
slow-moving scenes, but after peaking early, deteriorates for faster moving scenes due to model mismatch. The green dot indicates the performance when all 
nine image acquisitions of a static scene are done using the same (constant) mask. Though the performance is better than a single acquisition, it is still out-
shined by the programmable mask. (b) Reconstructed images using one, nine, and 36 acquisitions for the static scene and fast-moving scene.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


33IEEE SIGNAL PROCESSING MAGAZINE |   September 2016 |

model (5) and commensurately reduce performance. To inves-
tigate the effect of scene motion, we repeated the above experi-
ment with three different dynamic scenes that diagonally 
translate the virtual high-resolution scene X
by 0.05, 0.1, and 0.2 pixels per acquisition. 
For the slow-moving scene, the recon-
struction performance improves with the 
number of acquisitions, just as with a static 
scene. But for the faster-moving scenes, after 
peaking early on, the reconstruction per-
formance deteriorates with the number 
of acquisitions, due to the increased devia-
tion from the model. Figure 7(c) shows the 
reconstructed images using one, nine, and 
36 measurements for the static scene and the 
scene moving at 0.2 pixels per acquisition.

The trade-off between spatial and tem-
poral resolution could be improved by 
estimating the motion between frames and registering the 
measurements before reconstructing the image (a difficult, but 
solvable problem; see [33]). Adaptive measurement schemes 
also hold promise for balancing this tradeoff.

3-D imaging
FlatCam can computationally change its focus to new depths 
in a scene from a single acquisition. The key is that, for a given 
mask design, we can calibrate a set of separable measurement 
matrices { } ,..,L i L1iU =  and{ } ,..,R j R1jU = , each obtained using a 
screen at a different depth (recall Figure 4).

Figure 8(a) shows a heat map of reconstruction PSNR of 
a simulated 2-D scene as a function of the scene distance 
and the calibration distance of the measurement matrices. 

We see that the reconstruction qual-
ity improves as the calibration depth of 
the camera approaches the actual scene 
depth. Moreover, the sensitivity of the 
reconstruction due to the discrepancy in 
these depths decreases with increasing 
scene distance.

Figure 8(c), shows the reconstruction of 
a 3-D scene at two different depth planes. 
For a particular fixed mask, we calibrated 
the measurement matrices with a screen 
at the distances of 7 cm and 27 cm. We 
accounted for the field of view of the sen-
sor by adjusting the size of the calibration 
patterns in accordance with the CRA of the 

sensor. The resulting two sets of matrices were then used to 
create focused images at 7 cm and 27 cm from a single acqui-
sition with FlatCam. (The line artifacts in the experimental 
reconstruction are due to scene illumination leaking into the 
sensor from the sides that was not accounted for in the calibra-
tion procedure. We can reduce the unaccounted light in future 
prototypes by introducing baffles.)

Limitations and challenges facing lensless imaging
The very first cameras were lensless (pinhole cameras), but 
the advent of lenses and other advanced optics relegated such 
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FIGURE 8. The 3-D imaging with FlatCam. (a) A heat map of the reconstruction PSNR of a simulation of the scene as a function of the scene distance and 
the calibration distance of the measurement matrices. At closer scene distances, the reconstruction is sensitive to the choice of multiplexing matrix at the 
correct calibration depth; at further scene distances, the sensitivity decreases. (b) An experimental setup showing “FLAT” and “CAM” at different distances 
from the camera. (c) Reconstruction at 7 cm and 27 cm through simulation and our prototype FlatCam. The word “FLAT” placed at 7 cm is in focus when 
reconstructed using measurement matrices calibrated to depth of 7cm. The word “CAM” placed at 27 cm is in focus when reconstructed using measure-
ment matrices calibrated to depth of 27 cm.

The lensless imaging 
approach promises to 
challenge the traditional 
barriers of size, weight, 
cost, and performance 
in a broad range of 
applications spanning 
consumer, medical, 
scientific imaging, 
machine vision, and 
remote sensing.
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systems to niche applications like X-ray and gamma-ray imag-
ing. The resurgence of lensless imaging can be attributed to the 
convergence of four factors: the development of digital CMOS 
and CCD sensor arrays, efficient and realistic image models 
and recovery algorithms, powerful computing, and new mask 
designs (such as the separable mask in the FlatCam).

The further development of lensless imaging, however, will 
face challenges. As the mask is moved closer to the sensor in 
any pinhole or coded aperture camera, the angular resolution 
decreases, resulting in a trade-off between minimal thick-
ness and spatial resolution [29]. Additionally, computationally 
recovering a scene from less-than-perfectly conditioned sensor 
measurements results in noise amplification. Although noise 
amplification cannot be eliminated, careful design of mask 
patterns and regularization models can minimize this effect. 
The necessity for a computational algorithm also results in a 
time-lag between image acquisition and reconstruction (~100 ms 
for FlatCam). Such a delay may be acceptable in certain appli-
cations but unacceptable in others such as augmented or virtual 
reality. There are a number of avenues for continued research 
and development that could lead to significantly improved lens-
less imaging performance, including new architectures for 
improving spatial resolution, new image models to reduce the 
demultiplexing noise, and new computational algorithms to sup-
port high-speed sensing. Sometimes, size matters. The lensless 
imaging approach promises to challenge the traditional barriers 
of size, weight, cost, and performance in a broad range of applica-
tions spanning consumer, medical, scientific imaging, machine 
vision, and remote sensing. Indeed, the future of lensless imaging 
research and development looks very bright.
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SIGNAL PROCESSING FOR 
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Practical High Dynamic Range Imaging of Everyday Scenes
Photographing the world as we see it with our own eyes

H
igh dynamic range (HDR) imaging enables the capture 
of an extremely wide range of the illumination present in 
a scene and so produces images that more closely resem-
ble what we see with our own eyes. In this article, we 

explain the problem of limited dynamic range in the standard 
imaging pipeline and then present a survey of state-of-the-art 
research in HDR imaging, including the technology’s history, 

specialized cameras that capture HDR images directly, 
and algorithms for capturing HDR images using 

sequential stacks of differently exposed images. 
Because this last is among the most common meth-

ods for capturing HDR images using conventional 
digital cameras, we also discuss algorithms to 
address artifacts that occur when using with this 
method for dynamic scenes. Finally, we consider 
systems for the capture of HDR video and con-
clude by reviewing open problems and challeng-
es in HDR imaging.

Overview of HDR imaging
The world around us is visually rich and com-

plex. Some of this richness comes from the wide 
range of illumination present in daily scenes—the 

illumination intensity between the brightest and the 
darkest parts of a scene can vary by many orders mag-

nitude. Fortunately, the human visual system can 
observe very wide ranges of luminosity by means of bright-
ness adaptation, which allows us, for example, to easily see 
the bright scene outside a window as well as the darkened 
interior. A digital camera, on the other hand, has a sensor 
that responds linearly to illumination; coupled with the sen-
sor pixels’ limited capacity to store energy and the noise 
present in the acquisition process, this fundamentally limits 
the sensor’s measurable dynamic range. The low dynamic 
range (LDR) of modern digital cameras is a major factor 
preventing them from capturing images as humans see 
them (Figure 1). For this reason, an entire research com-
munity, both in academia and industry, is engaged in 
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developing HDR imaging algorithms and systems to allow 
better photographs to be captured.

In this article, we describe research within the computa-
tional photography community on HDR imaging that enables 
the capture of a wider range of illumination than is normally 
captured and produces images closer to what we see with our 
own eyes. In a way, HDR imaging represents the epitome of 
computational photography: many of the solutions involved 
require novel optics, new acquisition processes, and clever 
algorithms in the back end to produce better images. As such, 
this article will focus only on the acquisition of HDR images 
and will not discuss related topics that have been extensively 
studied such as HDR image representation (how to compress 
and store HDR images) or tone mapping (turning an HDR 
image into an LDR image suitable for standard display) [2]. 
Further, because of this tutorial’s strict space limitations, we 
cannot cover in depth the large body of existing work on HDR 
imaging and refer interested readers instead to textbooks and 
papers that survey the subject [1]–[6].

Historical background
As early as the mid-1800s—soon after the invention of pho-
tography itself—early photography pioneers were already 
struggling with the limited dynamic range of film and began 
to develop techniques that provided the basis of what we now 
know as HDR imaging. The French photographer Hippolyte 
Bayard was the first to propose that two negatives, each one 
properly exposed for different content, could be combined to 
create a well-balanced photograph. His compatriot Gustave 
Le Gray captured many beautiful seascape photographs with 
his ciel rapporté technique, where one negative was used for 
the dark sea and the other for the bright sky. Others, such as 
Oscar Rejlander, combined many well-exposed negatives to 
produce photographs that emulated contemporary paintings 
in which everything was properly “exposed” (Figure 2).

This idea of combining images acquired with different 
exposures to produce an HDR result was reintroduced for 

digital photography in the 1990s (almost 150 years later) by 
Madden [7] and Mann and Picard [8]. However, HDR imag-
ing received relatively little attention until the seminal paper 
by Debevec and Malik [9] placed it at the forefront of the bur-
geoning computational photography community. Since then, 
there has been almost 20 years of research on HDR imag-
ing. Before we delve into this research, however, we must 
first review the standard imaging pipeline and understand the 
reasons for its limited dynamic range. In addition, we need to 
formalize colloquial terms such as brightness by introducing 
the appropriate radiometric units that characterize light.

The standard imaging pipeline 
and its limited dynamic range
The standard imaging pipeline (Figure 3) starts with a set of 
rays leaving the scene in the direction of the camera, with 
each ray carrying some amount of radiant power called radi-
ance (L; units: / ) .W m sr2  The rays entering the lens aperture 
and striking the sensor at a point are integrated over the solid 
angle subtended by the aperture (thereby integrating away the 
steradian sr term), resulting in a radiant power density at the 

(a) Images Taken at Two Different Exposures (b) Full Stack of Images and HDR Result

FIGURE 1. (a) Images captured by standard digital cameras cannot reproduce the wide range of illumination we see in everyday scenes, even after adjust-
ing the exposure, as illustrated by these two images taken at different exposures. (b) HDR imaging allows for the capture of a wider range of illumination; 
here, a stack of images was captured at different exposures (left) and merged with the algorithm described in [1] to reduce motion artifacts and produce 
the result shown on the right. 

FIGURE 2. Two Ways of Life, Oscar Gustave Rejlander, 1857. This is one of 
the earliest examples of combination printing, in which differently exposed 
negatives are combined to extend the dynamic range of the final result. In 
this case, 32 negatives were combined to complete the final image. (Image 
in the public domain.)
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sensor called irradiance (E; units: / ) .W m2  This irradiance is 
then integrated over the time the shutter is open to produce an 
energy density, commonly referred to as exposure (X; units: 

/ ) .J m2  If the scene is static during this integration, the expo-
sure can be written simply as ( ) ( ) · ,X p E p t=  where p  is the 
point on the sensor and t  is the length of the exposure (inte-
gration time).

The exposure can then be integrated over the pixel’s foot-
print (integrating away the m2 term) to result in the total 
energy (units: )J  accumulated in each pixel’s photon well. 
The measured energy is then read out by an analog-to-digital 
converter (ADC), often with an analog gain factor applied 
to amplify the energy before it is converted. For non-raw 
images, the digital value is then mapped through a nonlinear 
camera response function (CRF) to emulate the logarithmic 
response of the human eye and make the final image look 
better. This produces the final pixel values that are output in 
the image file.

Two aspects of the pipeline limit the sensor’s dynamic 
range of measurable light. First, the pixels’ photon wells are 
of finite size and will saturate if too much energy is accumu-
lated, creating an upper limit for the amount of light energy 
that can be measured at each pixel. Second, the minimum 
amount of detectable light is limited by the sources of noise 
in the imaging pipeline. The first is dark current, which is 
caused by thermal generation and induces a signal even if no 
photons arrive at the sensor (i.e., it is dark). Next is photon shot 
noise, which is caused by the discrete nature of light and is the 
variance of the number of photons arriving at the sensor dur-
ing exposure time t. Like many arrival processes, this count 
is modeled by a Poisson random variable, the expected value 
(as well as the variance) of which is based on the true irradi-
ance E(p). The spatial nonuniformity of the sensor also causes 
different pixels to respond differently to the same amount of 
incident photons, which is modeled by the photo-response 
nonuniformity (PRNU) factor. Finally, there is readout noise
caused by thermal generation of electrons when the signal is 
being read from the sensor.

Given all of these noise sources (excepting dark current), 
the actual measured exposure value ( )X pt  for well-exposed 

regions can be modeled as a Gaussian random variable with 
mean and variance [4]

( ) ( ) ·

( ) ( ) · ,

ga p E p t

g a p E p t( )

R

X p R
2 2 2

n n

v v

= +

= +

( )X pt

t (1)

where g  is the camera gain, ( )a p  is the PRNU factor for the 
pixel, and Rn  and R

2v  are the readout mean and variance, 
respectively. The Poisson nature of the photon shot noise is 
responsible for the pixel variance’s dependence on the irradi-
ance. Without loss of generality, we can think of this mea-
sured exposure ( )X pt  at each point p  in the sensor as being 
mapped to a final digital pixel value ( )pZ  with a function f
that effectively combines the CRF with the quantization and 
saturation steps: ( ) ( ( )) .Z p f X p= t

The challenge of HDR imaging, therefore, is to recover 
the original HDR irradiance E(p) from noisy LDR images 
such as ( )pZ . To do this, two main approaches have been 
proposed: 1) specialized HDR camera systems that measure 
a larger dynamic range directly and 2) capturing a stack of 
differently exposed LDR images that are merged together to 
produce an HDR result, as described in the following two sec-
tions, respectively.

Specialized HDR camera systems
Previous work on specialized HDR camera systems can be 
divided into two main categories: 1) those that modify the 
measurement properties of a single sensor to capture a larger 
dynamic range and 2) those that use prisms, beamsplitters, or 
mirrors in the optical path to image a number of sensors at 
different exposures simultaneously. 

In the first category, researchers have proposed HDR sen-
sors that measure light in alternate ways, such as measuring 
the pixel saturation time [11], counting the number of times 
each pixel reaches a threshold charge level [12], or incorporat-
ing a logarithmic response like that of the human eye [13].
Others, such as Nayar and Mitsunaga [14], have proposed to 
fit different neutral-density filters over individual pixels in 
the sensor to vary the amount of light absorbed at each pixel. 

ADC

Integration
Over Time

Integration
Over Aperture

Integration
Over Pixel

Irradiance

Sensor
Saturation

Scene
Radiance

W W J J
m2 sr

LENS SHUTTER SENSOR

Dark
Current

Exposure Energy

Photon
Noise

Readout
Noise

PRNU
Factor

SCENE
CRF

F
in

al
 P

ix
el

va
lu

es

IMAGEAnalog
Gain

m2 m2
A
dω∫

t
dτ∫

Δp
dp∫

FIGURE 3. The standard imaging pipeline in modern digital cameras, inspired by diagrams in [9] and [10]. The radiance from scene rays captured by the 
camera are first integrated over the angle subtended by the lens aperture, over the time the shutter is open, and over the pixel’s footprint area. This energy 
can then be cut off by the saturation of the photon well at that pixel sensor, which limits the camera’s dynamic range. The result is then quantized by an 
ADC, and the CRF is applied to get the final digital pixel values. Different kinds of noise or error are injected at various stages in the pipeline, as described 
in the article text. (Lighthouse image designed by Freepik.com.)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


39IEEE SIGNAL PROCESSING MAGAZINE |   September 2016 |

The main advantage of this spatially varying pixel exposures
(SVE) approach is that it allows HDR imaging from a single 
exposure, thus avoiding the need for alignment and motion 
estimation. Later, Nayar et al. [15] proposed using a digital 
micromirror device in front of the sensor for modulating the 
amount of light that arrives at each pixel to acquire HDR 
images. Hirakawa and Simon [16] proposed another SVE sys-
tem that exploits the different sensitivities already present in 
a regular Bayer pattern, while Schöberl et al. [17] improved 
this idea further, introducing a nonregular filter pattern to 
avoid aliasing problems. In addition, a patch-based approach 
to single-image HDR with SVE acquisition [18] uses a piece-
wise linear estimation strategy to reconstruct an irradiance 
image by simultaneously estimating over- and underexposed 
pixels as well as denoising the well-exposed ones. Finally, 
there has been related work that uses a spatial light modulator 
displaying a random mask pattern to modulate the light before 
it arrives at the sensor and then uses compressed sensing or 
sparse reconstruction to recover the HDR image [19].

In the second category, approaches include those that do 
not use a single sensor but rather split the light onto a set of 
sensors with different absorptive filters to produce simultane-
ous images with varying exposures. These exposures can then 
be merged to form the final HDR result using the stack-based 
approaches described in the following section. Some systems 
use pyramid-shaped mirrors, refracting prisms, or beamsplit-
ters to do this [21], although each such approach suffers from 
parallax errors (because each “looks” through the camera 
lens from a slightly different angle) as well as wasted light 
(because of the absorptive filters in front of the sensors). Tocci 
et al. [20] addressed these problems with a novel beamsplitter 
design that efficiently reflects the light onto three different 
sensors to produce high-quality HDR images (Figure 4).

However, despite promising results, all of these special-
ized HDR systems require the manufacture of new cam-
era hardware, and so they are not widely available today. 
Nevertheless, this could change as HDR imaging becomes 
more mainstream.

HDR imaging using image stacks
With conventional cameras, the most practical approach for 
HDR imaging is to capture a sequence of LDR images at dif-
ferent exposures and combine them into a final HDR result 
[7]–[9]. Specifically, if we acquire a stack of N  different 
exposures , , ,Z ZN1 f  we can merge them and estimate the 
irradiance map Eu  using a simple weighting scheme that 
takes into account the measured irradiance ( ) /E X p ti i i=t t

from each image:

( )
( )

( ) · ( ) /
.

p
E p

w

w p X p t

ii

N

ii

N
i i

1

1=
=

=u
t

/
/

(2)

Here, the measured exposure Xit  can be recovered from well-
exposed pixel values using the inverse of the camera response 
function: ( ) ( ( )) .X p f Z pi i

1= -t  Of course, this requires the 
CRF to be known, but methods have been proposed to esti-
mate it from the image stack [9], even for highly dynamic 
scenes [22].

Because poorly exposed pixels do not have a good estimate 
for the irradiance map, the weight ( )w pi  should be adjusted 
at each pixel based on how well-exposed it is. For example, 
Debevec and Malik [9] proposed a simple triangle function for 
this weight that gives priority to pixels in the middle of the 
pixel range and reduces the influence of poorly exposed pixels: 

( ) ( ( ), ( )),minw p Z p Z p255i i i= -  where we assume the pixel 
values range from 0 to 255. Once the stack of images has been 
merged in this way, the resulting irradiance map Eu  is output 
as the final HDR result. This method is commonly implement-
ed on modern smartphones to extend their camera’s dynamic 
range (i.e., “HDR mode”).

Fundamental limits on irradiance estimation performance
It is interesting to understand the fundamental limits of irradi-
ance estimation performance for stack-based algorithms such 
as these. To study this, the problem of irradiance estimation 
from an image stack can be posed as a parameter estimation 
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(a) Optical System of Tocci et al. [20] (b)  Sample Result from Prototype

FIGURE 4. In the optical system of Tocci et al. [20], (a) two beamsplitters reflect the light so that the three sensors capture images with 92%, 7.52%, and 
0.44% of the total light gathered by the camera lens (increasing the dynamic range by a factor of over 200 ×), and only 0.04% of it is wasted. (b) shows 
the sample HDR result captured by the camera (the three captured LDR images are on left); note that the detail in both the white fur and dark regions is 
captured faithfully, even though it does not appear simultaneously in any of the input images. (Figure courtesy of [20].)
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problem from a set of noisy samples. In the case of static 
scenes, N  independent samples ( ), , ( )X p X pN1 ft t  following 
the random model in (1) are given per pixel, corresponding to 
exposure times , , .t tN1 f  Assuming the camera parameters are 
known from a calibration stage, the only unknown parameter in 
(1) is the irradiance E(p) reaching each pixel .p

In this statistical framework, the Cramér–Rao lower bound 
(CRLB) gives a lower bound on the variance of any unbiased 
estimator of ( )E p  computed from those samples. Aguerrebere 
et al. [4] introduced the CRLB for this problem and showed 
that, because the bound cannot be attained, no efficient estima-
tor exists for ( )E p  under the considered hypotheses. Neverthe-
less, it was shown experimentally that the approximation of the 
maximum-likelihood estimator (MLE) proposed by Granados 
et al. [23] not only outperforms the other evaluated estima-
tors but also has nearly optimal behavior. Theoretically, the 
MLE is efficient for a large number of samples (asymptotically 
efficient), which is not the case in HDR imaging, where very 
few samples are usually available (normally N 2=  to 4 expo-
sures). Therefore, it is remarkable that, under the considered 
hypotheses, the MLE is still experimentally the best possible 
estimator for the pixel-wise irradiance estimation for static 
scenes. Improvements, however, may be possible by combin-
ing information from different pixel positions with similar 
irradiance values, such as in recent patch-based denoising 
approaches [24], or even by considering information from 
saturated samples [4].

Handling dynamic scenes
The stack-based HDR capture algorithms described in the pre-
vious section work very well when the scene is static and the 
camera is tripod-mounted. However, when the scenes are 
dynamic or the camera moves while the different pictures are 
being captured, the images in the stack will not line up proper-
ly with one another. This misalignment results in ghost-like 
artifacts in the final HDR image, which are often more objec-
tionable than the limited dynamic range that is being compen-
sated for (see Figure 5). Because this is the most common 
scenario in imaging, there has been almost 20 years of 
research into HDR deghosting algorithms that seek to elimi-
nate these artifacts from motion. Specifically, three different 

kinds of methods have been proposed to deal with motion, 
each of which we discuss in the three sections that follow, 
using a taxonomy similar to those in two previous publica-
tions by the first author [1], [10]. Because of space limitations, 
we limit the discussion here to a couple of key algorithms in 
each category.

Algorithms that align the different exposures
The first kind are algorithms that attempt to deghost the HDR 
reconstruction by warping the individual images in the stack 
to match a reference image and so eliminate misalignment 
artifacts. Unlike the rejection methods discussed in the “Algo-
rithms That Reject Misaligned Information” and “Patched-
Based Optimization Algorithms” sections, these algorithms 
can actually move content around in each image and can, 
therefore, potentially handle dynamic HDR objects.

The simplest methods in this category assume the images 
can be aligned with rigid transformations. For example, a com-
mon method is to compute scale-invariant feature transform 
(commonly called SIFT) features in the image and use them 
to estimate a homography that warps the images to match 
[25]. Of course, these simple rigid-alignment algorithms can-
not handle artifacts caused by parallax due to camera transla-
tion or from significant motion in the scene, although they can 
serve as a preprocess for more complex algorithms, such as 
those described later in the article.

One of the first algorithms of this kind was proposed by 
Bogoni [26]. This method first uses an affine motion esti-
mation step to globally align the images and then estimates 
motion using optical flow to further align the images. To make 
the optical flow more robust, some have proposed acquisition 
schemes to make the different exposures more similar. The 
Fibonacci exposure bracketing work of Gupta et al. [27], for 
example, cleverly adjusts the exposure times in the sequence 
so that the longer exposure times are equal to the sum of the 
shorter exposure times. Because of this, optical flow can be 
computed between a longer exposure and the sum of the short-
er exposures, thereby ensuring that the two images will have 
similar exposure times and, therefore, comparable motion blur.

The state-of-the-art HDR alignment algorithm is perhaps 
the work of Zimmer et al. [28], which aligns the images using 

FIGURE 5. Ghosting artifacts can occur when stack-based HDR algorithms are applied to dynamic scenes. (a) Stack of input LDR images. Note, how 
some images capture the details in the dark sweater, while others capture the detail in the bright exterior. (b) HDR results from the standard HDR merging 
algorithm produces ghosting artifacts because of the motion. (c) HDR results from the patch-based optimization algorithm of Sen et al. [1] 
contains detail in all regions of the image without artifacts. 

(a) Input LDR Images (b) Result from Standard Merge  (c) Result from Sen et al. [1]
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an energy-based optical flow optimization robust to changes in 
exposure. Specifically, their energy function has a data term 
that encourages the image to align to the reference and a reg-
ularizer that enforces smooth flow wherever the reference is 
poorly exposed. However, these alignment algorithms all suf-
fer from the problem of finding good correspondences, which 
is extremely difficult, in particular for highly dynamic scenes 
with deformable motion (e.g., a person moving). Furthermore, 
scenes with occlusion and/or parallax do not even have valid 
correspondences between the images in these regions, mak-
ing it impossible to align the images in the stack correctly. 
Therefore, the HDR results from alignment algorithms often 
still contain objectionable ghosting artifacts for scenes with 
complex motion.

Algorithms that reject misaligned information
A second set of algorithms for HDR reconstruction assume 
that the camera is static (or that the images have been prereg-
istered using a rigid alignment process, such as those 
described in the “Algorithms That Align the Different Expo-
sures” section) and that the scene motion is localized, mean-
ing that the majority of pixels contain no motion artifacts. 
The basic goal of these methods is to iden-
tify those pixels that are affected by motion 
and those that are not. The pixels that do 
not contain motion artifacts can be merged 
using the standard HDR merging algo-
rithms described in the “HDR Imaging 
Using Image Stacks” section. For the pixels 
that are affected by motion, however, only 
a subset of the images deemed to be static 
at these pixels will be merged to suppress 
artifacts from moving objects.

To accomplish this, two different kinds 
of rejection methods are possible: 1) those 
in which a reference image is specified by 
the user and 2) those that do not use a reference image. For 
algorithms in the first category, the user first selects an image 
from the stack as the reference. These algorithms then simply 
revert back to this reference for any pixels where motion is 
detected so that the main difference between them is in how 
they detect motion. For example, the method of Grosch [29]
assumes two images in the stack and predicts values in the 
second image by multiplying the values in the reference by the 
ratio of the exposure times, taking into account the nonlinear 
camera response curves. With this approach, a pixel is deemed 
to be affected by motion if the actual color is beyond a given 
threshold from the predicted value. In such cases, the algo-
rithm simply reverts back to using the values in the reference 
image for these pixels.

Gallo et al. [30] improved on this work by using the log-
irradiance domain to do the threshold comparisons. Further, 
for robustness they compare patches instead of individual 
pixels, so that a patch from an image in the stack would be 
merged with the corresponding patch from the reference only 
if a certain number of pixels meet the threshold constraint. To 

reduce visible seams between different patches, the authors 
apply Poisson blending to the final results.

In the second category are rejection algorithms without a 
reference image, which must select a “static” subset of images 
at every pixel to merge to produce HDR values. These methods 
have a fundamental advantage over those that utilize a single 
reference image because motion may occur in areas where the 
reference might be poorly exposed. At these pixels, an HDR 
value cannot be properly computed solely from the reference 
image. However, rejection algorithms that do not use a refer-
ence must ensure that subsets are selected for neighboring  pix-
els in a way that does not introduce artifacts.

Reinhard et al. [3] proposed one of the earliest methods 
in this category. For every pixel that is deemed to be affected 
by motion, the authors try to use the longest exposure that 
is not saturated (effectively, a single-image subset). To deter-
mine which pixels are affected by motion, they first compute 
the variance of the irradiance values at each pixel ,p  weighted 
to exclude poorly exposed pixels. This estimated variance is 
then thresholded, and the result is smeared out with a 3 # 3 
kernel to reduce edge and noise effects. Adjacent regions 
are then joined together to form the “ghosted” regions for 

which a single image from the stack will 
be used. To select which image they will 
use for each region, the authors find the 
biggest irradiance value in the region that 
is not in the top 2% (deemed to be outliers). 
They then select the longest exposure that 
includes this value within its valid range 
to fill in this ghosted region, because the 
longest exposure will contain least noise. 
To further suppress artifacts, Reinhard et 
al. linearly interpolate this exposure with 
the original HDR result, using the per-pixel 
variance as a blending parameter.

An alternative approach is proposed by 
Khan et al. [31]; here, instead of detecting and handling dif-
ferently the pixels affected by motion, the authors propose to 
iteratively weight the contribution of each pixel depending on 
the probability of its being static (i.e., belonging to the back-
ground of the scene). To do this, they assume that most of the 
pixels are of the static background and so determine the prob-
ability of a pixel being static by measuring its similarity to the 
neighborhood around it.

Finally, some recent methods cleverly use rank minimi-
zation to deghost HDR images [32], [33]. These methods are 
based on the observation that if the scene is static, the different 
exposure images ( )X p  would simply be linear scalings of one 
another. Therefore, they use the different exposure images to 
construct a matrix and essentially minimize its rank to solve 
for the motion-free image. 

The biggest problem with these and other rejection algo-
rithms is that they cannot handle dynamic HDR content 
because they do not move information between pixels but rath-
er only merge information from corresponding pixels across 
the image stack. Therefore, if different parts of a moving HDR 

The biggest problem with 
rejection algorithms is 
that they cannot handle 
dynamic HDR content 
because they do not move 
information between 
pixels but rather only 
merge information from 
corresponding pixels 
across the image stack.
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object are well exposed in disjoint regions of the different 
images, these parts cannot be brought together to produce an 
acceptable result.

Patch-based optimization algorithms
Recently, Sen et al. [1] proposed a new alternative for HDR 
deghosting that uses patch-based optimization, which 
addresses the problems of both the rejection and alignment 
methods. Specifically, a formulated equation codifies the 
objective of most reference-based HDR reconstruction algo-
rithms: 1) to produce an HDR result that resembles the refer-
ence image in the parts where the reference is well exposed 
and 2) to leverage well-exposed information from other imag-
es in the stack wherever the reference is poorly exposed. This 
HDR synthesis equation can be written as

( ) [ ( ) · ( ( ( )) / ( ))

( ( )) · ( | , , )] .

E p f Z p t E p

p E E Z Z1

Energy
p

N

1 2

1

pixels
ref ref ref

ref BDS f

a

a

= -

+ -

!

-/
(3)

The first term states that the desired HDR image E should be 
close in an L2 sense to the LDR reference Zref  mapped to the 
linear irradiance domain by applying the inverse camera 
response function f 1-  and dividing by the exposure time .tref

This is only to be done for the pixels where the reference is 

properly exposed, as given by the refa  term, which is a trape-
zoidal function in the pixel value domain [similar to the 
weighting function in (2)] that favors intensities near the mid-
dle of the pixel value range.

In the regions where the reference image Zref  is poorly 
exposed (indicated by ),1 refa-  the algorithm draws informa-
tion from the other images in the stack using a bidirectional 
similarity metric, given by the EBDS  term. This energy term 
enforces that for every pixel patch in the image stack (given by 

, , ),Z ZN1 f  there must be a similar patch in the final result E,
and vice versa. The first similarity ensures that as much well-
exposed content from the image stack is included in the final 
HDR result, while the second ensures that the final result does 
not contain objectionable artifacts, as these artifacts would 
not be found anywhere in the stack. This energy equation is 
optimized with an iterative method that solves for the aligned 
LDR images and the HDR image simultaneously, producing 
high-quality results (Figure 6).

Patch-based optimization algorithms like this are funda-
mentally different from those discussed in the “Algorithms 
that Align the Different Exposures” section, which warp the 
images to match based on correspondences. As was pointed 
out earlier, alignment methods fail in cases of occlusion or par-
allax (which happen commonly in dynamic scenes) because 

(a)

(b)

FIGURE 6. (a) and (b) show sample HDR results (right) from the input LDR images (left) using the patch-based optimization of Sen et al. [1]. 
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they do not have valid correspondences in these regions and so 
the images cannot be aligned in these parts. Patch-based HDR 
reconstruction, on the other hand, is related to patch-based 
image synthesis methods (e.g., for single-image hole filling) 
because they both use a patch-based similiarity optimization 
to resynthesize content in the final reconstruction without 
an underlying correspondence. Because of this advantage, 
these methods have proved to be the most successful HDR 
deghosting algorithms proposed to date.

For example, a recent state-of-the-art 
report by Tursun et al. [6] testing many 
de  ghosting algorithms found that the algo-
rithm of Sen et al. [1] and the later, related 
method of Hu et al. [34] ranked first and 
second over other deghosting techniques by 
a fairly large margin. The success of patch-
based optimization for HDR reconstruction 
has led others to explore ways to further 
improve the quality of these approaches. For 
example, Aguerrebere et al. [24] focused on 
reducing the noise of the estimated irradi-
ance. First, this method synthesizes a “refer-
ence” containing well-exposed, de-ghosted 
information in all parts of the image using 
Poisson image editing (although the meth-
od in Sen et al. [1] could also be used). Noise is then reduced 
through a patch-based denoising method that finds all patches 
in the image stack within a threshold to each patch in the refer-
ence, where the L2 distance between patches is normalized by 
the variance from (1). The MLE of the patch-centers at each 
pixel is then computed to significantly reduce the noise in the 
final result.

HDR video
Up to now, we have focused exclusively on the HDR 
acquisition of still images. However, the problem of cap-
turing HDR video sequences is of considerable interest as 
well. For example, filmmaking companies incur a signifi-
cant cost to light sets, a cost that would be largely elimi-
nated by high-quality, HDR video systems. For this 
reason, professional movie camera system suppliers such 
as RED have been pushing the dynamic range of standard 
sensors. Moreover, specialized HDR camera systems such 
as that of Tocci et al. [20] have been proved capable of 
capturing high-quality HDR video, although they are not 
yet widely available.

For conventional digital cameras, the only way to cap-
ture HDR video is to alternate exposures through the entire 
sequence. This problem was first tackled by Kang et al. [35], 
who use gradient-based optical flow to compute a bidirectional 
flow from the current frame to neighboring frames and unidi-
rectional flows from neighboring frames to the current frame 
(four flows total). Once computed, the flows can be used to 
produce four warped images by deforming each of the two 
neighboring frames. The resulting images can be merged with 
the reference to produce an HDR image at every frame of the 

sequence, while rejecting the pixels that are still misaligned, 
to avoid artifacts.

The state of the art in HDR video reconstruction is the 
work of Kalantari et al. [5], which extended the patch-
based optimization work of Sen et al. [1] to produce coher-
ent HDR video streams. Specifically, they modify the HDR 
image synthesis equation (3) to enforce temporal coherence 
by performing a bidirectional similarity between adjacent 

frames. In addition, they use optical flow 
during the optimization to constrain the 
patch-based search, which produces a 
stream of high-quality HDR frames.

Open problems and challenges
Despite the tremendous progress of the 
computational photography community 
on HDR imaging over the last 20 years, 
many challenges remain. For example, 
the capture of high-quality HDR images 
of highly dynamic scenes with conven-
tional digital cameras is still a challeng-
ing problem. Although state-of-the-art 
deghosting algorithms like the patch-
based optimization of Sen et al. [1] can 
suppress many of the ghosting artifacts 

that would normally occur in these scenes, these methods 
cannot recover scene content that is poorly exposed in the 
reference image and is not visible in any of the other images 
in the stack. Moreover, the patch-based optimization in 
these algorithms is computationally  expensive and can take 
several minutes to compute an image. This limits the appli-
cability of these methods to long video sequences or for 
real-time, on-board computation in current smart phones, 
for example.

It is entirely possible that new sensor technologies, such 
as Fuji Film’s recent Super CCD EXR sensor, will bypass the 
problems inherent in stack-based methods by capturing a sin-
gle image with extended dynamic range. However, even these 
new technologies will likely raise interesting questions, such as 
how users will employ and interact with HDR images. Further-
more, as HDR imaging becomes more mainstream, we expect 
that new applications for HDR imaging (such as for medical 
imaging or manufacturing) will be proposed and explored.

Conclusions
In this article, we first summarized the main aspects of HDR 
imaging, starting with an overview of the problem of limited 
dynamic range in standard digital cameras and the physical con-
straints responsible for this limitation. We then surveyed state-
of-the-art approaches developed to tackle the HDR imaging 
problem, focusing on both specialized HDR camera systems 
and stack-based approaches captured with standard cameras. 
For the latter, we discussed algorithms to address ghosting arti-
facts that can occur when capturing dynamic scenes. Finally, we 
discussed algorithms for capturing HDR video and concluded 
with a review of open problems in HDR imaging. We hope that 

Patch-based HDR
reconstruction is related 
to patch-based image 
synthesis methods (e.g., 
for single-image hole 
filling) because they 
both use a patch-based 
similiarity optimization to 
resynthesize content in 
the final reconstruction 
without an underlying 
correspondence.
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this article encourages researchers from areas such as signal 
processing, solid-state devices, and image processing to contin-
ue to pursue this interesting set of problems.
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Signal Processing for Time-of-Flight Imaging Sensors
An introduction to inverse problems in computational 3-D imaging

T
ime-of-flight (ToF) sensors offer a cost-effective and real-
time solution to the problem of three-dimensional (3-D) 
imaging—a theme that has revolutionized our scene-
understanding capabilities and is a topic of contemporary 

interest across many areas of science and engineering. The goal 
of this tutorial-style article is to provide a thorough understand-
ing of ToF imaging systems from a signal processing perspec-

tive that is useful to all application areas. Starting with a 
brief history of the ToF principle, we describe the mathe-

matical basics of the ToF image-formation process, for 
both time- and frequency-domain, present an over-

view of important results within the topic, and dis-
cuss contemporary challenges where this emerging 
area can benefit from the signal processing com-
munity. In particular, we examine case studies 
where inverse problems in ToF imaging are cou-
pled with signal processing theory and methods, 
such as sampling theory, system identification, 
and spectral estimation, among others. Through 
this exposition, we hope to establish that ToF sen-

sors are more than just depth sensors; depth infor-
mation may be used to encode other forms of 

physical parameters, such as, the fluorescence lifetime 
of a biosample or the diffusion coefficient of turbid/scat-

tering medium. The MATLAB scripts and ToF sensor 
data used for reproducing figures in this article are available 

via the author’s webpage: http://www.mit.edu/~ayush/Code.

Introduction

A brief history of computational imaging 
“A picture is worth a thousand words.” Throughout the past sev-
eral centuries, this immemorial phrase has pushed the develop-
ment of photography from analog to digital, accelerated by 
breakthrough advancements in sensor technology. The digital 
revolution created a necessity for sophisticated signal processing 
algorithms tailored for image enhancement, storage, and com-
pression. Shannon’s sampling theory was the pathway for 

©ISTOCKPHOTO.COM/YAKOBCHUK
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analog-to-digital image conversion. The classical Weiner filter 
was used for image enhancement. Transform-domain coding uti-
lizing discrete cosine and wavelet transforms played a pivotal 
role in JPEG compression. Over the last few decades, with the 
advent of the wavelet transform and compressed sensing theo-
ry, the field of signal processing has undergone a philosophical 
reformation. A field that was once heavily reliant on smoothness 
assumptions now uses principles inspired by the notion of sparsi-
ty. Until the last decade or so, the fields of image sensor technolo-
gy and signal processing ran in parallel to one another with 
minimal interaction or exchange of know-how. However, there 
has recently been a growing trend toward the coherent codesign 
of sensors and algorithms: this is the theme of the emerging area 
of computational imaging or computational photography [1].

Practitioners of this computational imaging/photography 
ideology have devised many solutions that were previously not 
possible when individually adding functionality to the sensor 
architecture or using a more sophisticated processing algorithm. 
For example, consider the problem of motion deblurring that 
arises in conventional imaging. Whenever an object moves dur-
ing sensor exposure, it causes pixels to smear across the frame, 
resulting in a blurred image. In the context of signal processing, 
this is an ill-posed problem that has been well explored within 
the theme of deconvolution. The key problem is that the exposure 
time defines a temporal filter, which is essentially a box filter that 
annihilates any high-pass, spatial information. Consequently, 
algorithmic sophistication alone is not enough. Blurring may be 
avoided by a shorter exposure time, but this comes at the expense 
of low signal-to-noise ratio (SNR). It is clear that neither decon-
volution nor the sensor level adaptation in itself suffice for a solu-
tion to the deblurring problem. The distinct role of computational 
imaging emerges when one considers the so-called flutter-shut-
ter approach [2]. This approach involves a codesign of sensor and 
algorithms: in contrast to traditional imaging methods, which 
require the shutter to be fully open during the exposure time, the 
flutter-shutter method flutters the shutter on and off in a binary, 
pseudo-random sequence. This sequence converts the noninvert-
ible box-filter into an invertible one and, based on the choice of 
pseudo-random sequence, the corresponding deconvolution fil-
ter may be devised. Beyond deblurring in consumer imaging, the 
flutter-shutter approach is also useful in bioimaging [3], where 
the imaging sensor may not be fast enough to capture flowing 
structures, such as blood cells. Other notable examples of the 
computational imaging philosophy are high-dynamic-range 
imaging [4], light-field imaging [5], [6], single-pixel imaging [7],
and Fourier ptychographic microscopy [8].

For the most part, image sensor design, signal/image process-
ing, and computational imaging have largely been restricted to 
two-dimensional (2-D) scenes. However, a true and richer repre-
sentation of the environment around us lives in a 3-D space. Cap-
turing 3-D information of a scene offers unparalleled benefits in 
accuracy and capabilities and is surely the future in many areas. 
This necessitates development of imaging modalities capable of 
recording 3-D images.

A number of methods have been developed for the purpose of 
3-D imaging. An overview of the main techniques is presented in 

“An Overview of 3-D Imaging Techniques.” Of all the 3-D cap-
ture techniques, the ToF method has arguably attracted the most 
commercial and scientific interest in the last couple of years; 
there has been a surge of research toward improving both the 
sensor design as well as the algorithms used for processing 3-D 
images. ToF imaging is the theme of this article, and we take a 
deep dive into the topic in the following section.

The time-of-flight revolution
The ToF principle exploits the idea that distance and time are 
proportional quantities. As the name suggests, ToF is the round-
trip time between the source and the destination taken by a par-
ticle or a wave. Hence, knowing one entity is equivalent to 
knowing the other. Nature is replete with examples that rely on 
the ToF principle. Bats, dolphins, and visually impaired human 
beings use the ToF principle for navigational purposes.

Chronologically, the use of sound waves superseded the use 
of electromagnetic waves. Humans have used stones to esti-
mate the depth of wells for millennia. The earliest work on 
using light waves for measuring ToF dates back to an experi-
ment conducted by Galileo, who was interested in estimating 
the speed of light. Unfortunately, his choice of distance (the 
separation between two hills) did not lead to a conclusive 
result. The Danish astronomer Ole Rømer overcame this dif-
ficulty by using planetary distances. About 200 years later, the 
French physicist Hippolyte Fizeau was the first to precisely 
estimate the speed of light. Through the discovery of the law 
of the photoelectric effect by Albert Einstein in the 1900s and 
the development of the electronic imaging sensors [charge 
couple device (CCD)/complementary metal–oxide–semicon-
ductor (CMOS)], we are now at a point where the accumulated 
research efforts in the area of photonics and electronics have 
culminated in mass-producible optical ToF sensors.

Contrary to conventional imaging sensors such as digital 
cameras that produce 2-D images ,I x y^ h, ToF sensors capture 
3-D images, , ,I x y z^ h. The unique ToF sensor produces two 
images per exposure: an amplitude image and a depth image. 
The amplitude image is the standard 2-D photograph, ,I x y^ h.
Each pixel on the depth image represents the corresponding 
distance in the scene. The combination of the amplitude and 
the depth image produces the 3-D image. Using our custom-
designed ToF sensor, we show the amplitude, depth, and result-
ing 3-D images in Figure 1.

ToF-based 3-D imaging allows for applications that were 
previously unexplored. One of the first results demonstrated 
non-line-of-sight imaging capability [10]. This result—in par-
allel to “Doc” Edgerton’s iconic Bullet Through Apple  image 
(see Figure 2)—led to ultrafast imaging of light packets at 
an exorbitant frame rate of one trillion frames per second. A 
flurry of follow-up work lead to results that allowed imaging 
through scattered media [11], light-in-flight imaging [12], [13],
and 3-D imaging in extremely low light [14].

With the advent of 3-D sensing technology (most notably, 
the Microsoft XBox One’s Kinect) we can now replace a room-
sized apparatus [10], moving sensors, and raster scan systems 
[14] by miniaturized, cost-effective, real-time, and full-frame 
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FIGURE 1. Three-dimensional images captured via a ToF sensor. We show an amplitude image (or the conventional digital image), a depth image, and 3-D 
images seen from multiple viewpoints. 

As shown in Figure S1, optical 3-D scene capture can be 
broadly categorized into the following three approaches: 
1) The triangulation [9] method relies on the trigonometric 

principles. The distance to an unknown point is measured 
by computing the respective angles to the point from two 
edges of a triangle.

2) The ToF method, as the name suggests, relies on the 
time it takes for light to backscatter from an object at an 

unknown distance. Since time delays are linearly pro-
portional to the distance, measuring the ToF amounts to 
measuring the range of the object.

3) Interferometry is similar to ToF with the main distinction 
that it requires the light waves to be coherent.

Each of these approaches can be further classified based 
on the application as well as the specialized principle 
linked with the approach.

An Overview of 3-D Imaging Techniques

Triangulation

Time-of-Flight

Passive Triangulation
Shape from Shading

Focus

Structured Light

Light Volume

Continuous Wave

Impulse Based

Pseudonoise/M-Sequence

Holographic

Multiwavelength

Speckle Based

White Light

Interferometry

Laser Triangulation

Confocal
Autofocus
Defocus

3-D Imaging

FIGURE S1. Taxonomic classification of major 3-D imaging modalities.
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ToF systems. Computational ToF imaging has already found a 
plethora of applications in, for example, ultrafast imaging [15], 
[16], non-line-of-sight imaging [17], imaging through scatter-
ing media [18], and colored ToF imaging [19]. Outside of the 
computational imaging and human-computer interaction com-
munities, an important application area is health-care technol-
ogy [20] and bioimaging [21].

ToF sensors motivate a demand for forward models and 
algorithms that can handle this new wave of data. A handful of 
algorithms inspired by the signal processing community have 
been used to tackle inverse problems in optical ToF, but signifi-
cant and numerous challenges still remain. Current efforts are 
directed at establishing empirical results with a rare discussion 
on the design of efficient algorithms, fundamental limits, or 
performance bounds.

While optical ToF sensors are a recent phenomenon, other ToF 
systems such as ultrasound, seismic, and radar technology have 
been around for decades. The knowledge transfer between opti-
cal and other ToF systems is far from reality. Each ToF modality 
has its own idiosyncratic constraints that stem from the physics of 
the problem. However, there are commonalities that are shared by 
all of these systems. By discussing specific case studies, we take 
a first step toward the goal of bridging this gap.

A road map of this article
The main goal of our tutorial-style article is to introduce the audi-
ence to the rapidly emerging field of ToF imaging from a signal 
processing perspective. We start this journey with a primer on the 
ToF image formation model. To reconcile any confusion stem-
ming from taxonomic classification of ToF modalities—time 
domain (TD–ToF), frequency domain (FD–ToF) or amplitude-
modulated continuous wave (AMCW–ToF)—we discuss a uni-
fying image formation model that is applicable to all known 
optical ToF systems. Furthermore, this model is backward com-
patible with other nonoptical ToF modalities, such as terahertz, 

ultrasound, and microwave. Our first milestone covers a discus-
sion on acquiring a single-depth image: how consumer-grade 
ToF sensors capture 3-D images? From there, the discussion 
turns to computational ToF imaging. Within the scope of compu-
tational ToF imaging, we enumerate case studies that map ToF 
imaging problems to signal processing subfields such as 1) line 
spectrum estimation theory, 2) sampling theory of sparse signals, 
and 3) system identification. Finally, we discuss current challeng-
es and future directions in computational ToF imaging where sig-
nal processing theory and methods can contribute significantly.

3-D imaging with ToF sensors
ToF sensors are active illumination devices consisting of an 
illumination unit capable of probing a scene with an ampli-
tude-modulated light that is not necessarily coherent. We call 
this amplitude-modulated waveform the probing function or 

, ,p x y t^ h, where ,x y^ h are the spatial coordinates and t  is the 
continuous time variable. For simplicity of exposition, we will 
consider per-pixel processing and simply write p t^ h. The 
probing function interacts with the scene response function
(SRF). This interaction results in the reflected signal r t^ h.
The reflected signal is observed at the ToF sensor, which is 
characterized by its transfer function that we refer to as the 
instrument response function (IRF). The IRF models the sen-
sor’s electro-optical assembly. For example, the IRF for a digi-
tal camera is the point spread function of the lens. The 
interaction between the reflected signal and the ToF sensor 
results in the measured signal m t^ h, which is converted to a 
digital signal via sampling. The precise mathematical descrip-
tion of the ToF imaging pipeline is discussed in “ToF Image 
Formation Model.” Based on the ToF image formation model 
parameters, , ,p h {" , , one may now define the specific 
inverse problem at hand. This is also true of other wave-based 
ToF modalities—radar, sonar, ultrasound, terahertz, and so 
on. A distinct feature of the consumer ToF sensors is their use 
of the lock-in principle [22], which implements the cross-cor-
relation operation. From a mathematical standpoint, and in the 
absence of noise and distortion, this translates to the fact that,

, .t p t{ x x= +^ ^h h (1)

Next, we discuss how consumer ToF sensors capture 3-D 
images. Depending on the choice of probing function, the 
ToF imaging setup may be categorized into time-domain or 
frequency-domain modes. In either case, the SRF for the case 
of single-depth imaging is modeled as a shift-invariant kernel,

, ,h t t t t
c
d20 0 0

0x d xC= - - =^ ^h h , (2)

where d denotes Dirac distribution and the goal is to estimate the 
amplitude and delay (or depth), , t0 0C" ,, respectively, at each pixel.

Time-domain 3-D imaging (TD–ToF)
TD–ToF systems probe the scene with a time-localized, 
periodic signal of form ,p t p t 02D D= +^ ^h h . While 

FIGURE 2. Harold Edgerton’s iconic Bullet Through Apple image (1964) 
was one of his many early demonstrations of high-speed imaging. His 
technique involved the use of stroboscopic light to capture high-speed 
motion. (© 2010 MIT. Courtesy MIT Museum.)
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specialized scientific instruments, such as the streak tube, 
may be able to produce a pulse that mimics the Dirac’s Delta 
distribution d [10], this form of precision is impractical for 
consumer-grade instruments. In practice, a maximum-length 
sequence (MLS) [23] is an optimal choice of probing function 
in regard to time-localization. In this case, given (S1) and (2), 
the reflected signal reads r t p t t0 0C= -^ ^h h , with delay 

/t d c20 0= . Due to the lock-in sensor architecture [22],
which constraints the IRF in (1), the measurements simplify 
to *rm t r p t p t

_
7 /=^ ^ ^ ^ ^h h h h h , where ,  denotes the 

cross-correlation operation and t r tr
_
= -^ ^h h. A closer look at 

m  reveals an underlying autocorrelation operation involving 
p , that is, m t p p t t0 0)C= -- -

^ ^ ^h h h. Consequently, we may 
write ppz = -

* . The ToF is then estimated by solving for 
.arg max arg maxmt t t t

t t
0 0

0 0
z= = --u ^ ^h h

Whenever p t^ h is modeled to be some parametric wave-
form, such as a Gaussian function, B-spline, or a combination 
of parametric pulses, parameter estimation techniques may 
be used to estimate the ToF t0  and the reflection coefficient 

0C . However, this may not be the case in practice because of 
model mismatch or the physical aspects of light propagation. 
In such a setting, it is effective to use the property of band-
limited approximation: approximate p, and hence z, with the 
first few Fourier components,

( ) ( )p t p e p p t e dt1withm
m M

m t
m

m t

0
0

0 0

T
= =

. .T

; ;G

~ ~-u t t/ # , (3)

where /20~ r D=  is the fundamental frequency and D is the 
maximum operating range of the ToF sensor. This choice is 
aptly justified if one considers the fact that

As shown in Figure S2, we next elaborate on the elements 
of the ToF imaging pipeline. 
1) The probing function, denoted by p t^ h, represents the 

waveform emitted by the ToF sensor’s illumination unit. 
The probing function may be a time-localized pulse or 
a continuous wave. In either case, it is chosen to be a 
periodic function of form ,p t p t 02D D= +^ ^h h .

2) The scene response function (SRF), denoted by ,h t x^ h,
models the transfer function of the scene. For example, 
for an object with reflection coefficient C and at a depth 
d meters away from the sensor, the SRF takes form 
of, , /h t t d c2x d xC= - -^ ^h h. Here, c is the speed of 
light. The SRF may also be characterized as the Green’s 
function of a differential equation that models some 
physical phenomenon such as fluorescence emission, 
diffusion or scattering.

3) The reflected function, denoted by r t^ h, is the result of in-
teraction between the probing signal and the SRF. The re-
flected signal is modeled as a Volterra/Fredholm integral,

, .r t p h t d
1
x x x=

X
^ ^ ^h h h# (S1)

Whenever the SRF is a shift-invariant kernel, i.e., 
,h t h tSI x x= -^ ^h h, the reflected signal is simply a convolu-

tion/filtering operation between the probing function and 
the SRF, r t p h t)=^ ^ ^h h h.
4) The instrument response function (IRF), denoted by ,t{ x^ h,

models the transfer function of the electro-optical elements 
of the ToF sensor. For example, in conventional digital cam-
eras, the spatial IRF is the point spread function of the lens.

5) Measurements denoted by m t^ h are a result of sensing 
the reflected signal via the electro-optical elements of 
the ToF sensor. Continuous-time measurements are mod-
eled as

, .m t r t d
2
x { x x=

X
^ ^ ^h h h# (S2)

The ToF sensor stores discrete measurements by sampling 
continuous-time signal m t^ h and this results in the discrete 
sequence m k m kT ,t kT k Z= !=^ h6 @ , where T 0>  is the sam-
pling interval.

In many practical cases of interest, both the SRF and the 
IRF are shift-invariant. In that case, the measurements can 
be written as a convolution product, m t p h t) ) {=^ ^ ^h h h.
Whenever the IRF is a function of form ,t t{ x { x= +^ ^h h,
the measurements amount to m t r t7 {=^ ^ ^h h h where ,
denotes cross-correlation operation. “Lock-in” sensors oper-
ate on this principle.

ToF Image Formation Model

r mp

Probing
Function

Scene
Response
Function

Reflection
Function

Instrument
Response
Function

Continuous
Measurements

Sampler
Digital

Measurements

Samplesh ϕ

FIGURE S2. A block diagram for the ToF imaging pipeline.
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■ Most electronic/optical instrumentation is approximately 
bandlimited due to physical constraints [24].

■ The probing function may not admit a parametric represen-
tation. Even if the probing function assumes a parametric 
representation, bandlimited approximation via Fourier 
series coefficients circumvents the estimation of parame-
ters of the probing function.

The utility of bandlimited approximation property is dem-
onstrated via experiments shown in Figure 3(a). Starting 
with an MLS, we design a probing function. We plot 

* ppz = -  together with its bandlimited approximation 

tzu^ h obtained by retaining first M0 Fourier series coeffi-
cients pm m m M

2
0

z = #
t t" , . We are thus able to rewrite mea-

surements  as  ( ) ( )m t t t C em
m t

m M0 0
0

0
/z zC= - .

; ;G
~r t/ ,

where the complex-valued constant C e t
0

0 0C= .~-  is the 
unknown to be estimated.

Frequency-domain 3-D imaging (FD–ToF)
ToF sensors, such as the Microsoft XBox One’s Kinect, 
use a continuous wave-based probing function p t =^ h

,cosp t p1 10 0 1~+ ^ h , where ~ is the modulation frequency 
and p0  is the modulation amplitude. With the SRF defined 
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FIGURE 3. Time- and frequency-domain ToF signals. (a) Bandlimited approximation of autocorrelated probing signal ( * ppz =
- ) in a time-domain ToF 

setup. The low-pass property is evident from its Fourier spectrum. This is a result of an experiment with Δ = 310 ns and M 300 = . (b) Samples of mea-
sured signal in (4) that were used to create the depth map in Figure 1. We plot 208 samples for an experiment with /f 2 50~ r= =  MHz. With reference 
to Figure 1, the foreground and background pixels map to 2.2 and 2.5 m, respectively.
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in (2), the reflected signal reads r t pC=^ h , /t t t d c20 0 0- =^ h .
Again, the lock-in sensor acts as an electronic homodyne detec-
tor such that (1) holds, and measurements results in [25],

, ,cosm t
p

t1
2

0 2
( )S2

0
0
2

!~ i i rC= + + ~ ~^ c ^ hh hm 6 , (4)

where /t d c20 0i ~ ~= =~  is the frequency dependent phase. 
The ToF sensor records discrete measurements of form, 
m m kTk = ^ h with /T 2r ~=  and uses a phase estimation algo-
rithm commonly known as the “Four Bucket Method” [22], [21]
to estimate parameters d0  and 0C . For a given modulation fre-
quency, this method works with four discrete measurements 

mk k 0
3
=" ,  that are used to form a complex number z C!~ ,

         ( ) ( )m m m mz with0 2 3 1.= - + -~

( ) ( )
( ) ( )

cos sin
cos sin

m m
m m

p t p t
p t p t2

2 2
2 2

0 1

2 3

0 0
2

0 0
2

0

0
2

0 0
2

0

~ ~

~ ~

C=
+ -

- +
; =E G. (5)

The scene parameters are then estimated by /z p0 0
2C = ~

u  and 
/d c z 20 + ~= ~

u . We use this method to create the depth image 
in Figure 1. The raw data samples corresponding to the 
experiment are plotted in Figure 3(b). This completes our dis-
cussion on depth imaging with time- and frequency-domain 
ToF sensors.

Key takeaways of this section
■ The ToF imaging pipeline consists of a probing function, 

scene response function, and an instrument response function.
■ For the case of 3-D imaging, the scene response function is 

the shift-invariant, time-delay operator in (2).
■ In TD–ToF, the probing function is a time-localized pulse [cf. 

Figure 3(a)], and the object’s distance from the sensor is 
encoded as the round-trip time-delay / .t d c20 0=

■ In FD–ToF, the probing function is a sinusoidal waveform 
with known modulation frequency [cf. Figure 3(b)]. The 
object’s distance from the sensor is encoded as a frequency 
dependent phase.

Landscape of inverse problems in ToF imaging
Having covered the mathematical basics of time- and 
frequency-domain ToF imaging systems, we will now discuss 
case studies where signal processing theory may be used in 
combination with ToF sensors to solve inver  se problems.

Optical multipath interference and spectral estimation
Multipath interference (MPI) is a problem that naturally 
occurs in communications, acoustics, and array signal pro-
cessing. Consumer-grade FD–ToF sensors are designed to 
work under the premise that each point in the scene maps to a 
single pixel on the sensor. Whenever this hypothesis does not 
hold, the ToF sensor measurements are erroneous due to MPI. 
This results in corrupted 3-D images. For example, this can 
happen when imaging through a semitransparent object, such 
as a glass window.

A consequence of multiple optical paths combining at a given 
pixel is that the shift-invariant SRF for single depth (2) now takes 
the form of a K-sparse filter,

,,h t t t t
c
d2K k k

k

K

k
k

0

1

dC= - =
=

-

^ ^h h/ (6)

where K  is the number of optical paths, and ,dk k k
K

0
1C =
-" ,  are the 

scene parameters corresponding to each optical path. For sim-
plicity, we assume that p 10 =  in the definition of the probing 
function, cosp t p t1 0 ~= +^ ^h h. The reflected signal in this 
case reads

cos cosr t t t t ,K k k
k

K

k k
k

K

0

1

0

1

~ ~ ~ iC C= - = - ~

=

-

=

-

^ ^ ^h h h/ / (7)

which indicates an addition of sinusoids with varying phases. 
Let us resort to complex-valued representation and let z*  denote 
the complex-conjugate of z . The measurements take the form

( ) ( )m t e e e h
2
1

2
1

( )

K
t

k
t

k

K

h

t
K

0

1
k

K

~C= = ). . .~ ~

~

~+

=

-

)

t

t
1 2 3444 444
/

( )h ewith K k
t

k

K

0

1

Fourier Transform

k~ C= .~-

=

-
t

1 2 344444 44444
/ , (8)

where hK ~t ^ h is the Fourier transform of the shift-invariant 
SRF in (6)—a sum of K  complex exponentials or phasors. 
Since the probing function is a sinusoid—an eigenfunction of a 
linear system—the measurements amount to observing Fourier 
transform at modulation frequency ~.

Whenever K 1= —the case of single-depth 3-D imag-
ing with no MPI—the unknown constant hK ~t ^ h is directly 
estimated by implementing the four-bucket method that maps 

/m k z h2 *
K k 0

3
1"r ~ ~=~=
t^ ^h h" , . However, in the presence 

of MPI, the FD–ToF sensor estimates the scalar z h*
K ~=~ t ^ h

rather than ,dk k k
K

0
1C =
-" , —the pixel-wise scene parameters. For 

K 2= , we plot the SRF in time-domain, frequency-domain, 
and phasor-domain in Figure 4(a). The fact that z h*

K ~=~ t ^ h

is an argument of modulation frequency motivates the neces-
sity for frequency diversity [25]. Given N harmonic measure-
ments of form zn n

N
0
1

0~ =
-" , , the task of estimating 2K unknowns 

,dk k k
K

0
1C =
-" ,  is a classical problem in signal processing that is 

studied under the theme of spectral estimation theory [26]. Due 
to the pervasiveness and wide applicability of this problem, a 
self-contained review of Prony’s method that seeks to estimate 

,dk k k
K

0
1C =
-" ,  given zn n

N
0
1

0~ =
-" ,  is provided in “Spectral Estimation 

(Prony’s Method).” This approach may be used for the correction 
of MPI in ToF sensors. In Figure 4(b), we show multifrequency 
data acquired using a ToF sensor with K 3= . Our demonstra-
tion, which is based on the matrix pencil method [26], shows 
the constituent sinusoidal components. Other methods such as 
the orthogonal matching pursuit [25], EPIRIT/MUSIC [26], or 
atomic norm thresholding [34] may also be used.

While MPI suggests that interfering optical paths are a nui-
sance, it may be exploited for 3-D scanning and imaging of 
translucent objects. We demonstrate multiple depth imaging 
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capability of ToF sensors in Figure 5, where up to K 3=
optical paths interfere at the sensor. As seen in Figure 5, the 
resulting 3-D images for various modulation frequencies 
are erroneous. Although Prony’s method for spectrum 
estimation is highly unstable in the presence of noise and 
model mismatch, oversampling—that is, using much more than 
2K measurements—is a reasonable solution to counteract per-
turbations in data. Again, we use the matrix pencil method to 
estimate the multiple depth related scene parameters. With 46 
multiple frequency measurements [cf. Figure 4(b)], the estima-
tion procedure shows that it is possible to reconstruct objects at 
multiple depths even in presence of MPI. The recovered ampli-
tude and phase images, k k 0

2C =" ,  and tk k 0
2
=" , , respectively, are 

shown in Figure 5.

Transient imaging and sampling sparse signals
Understanding light propagation through physical medium has 
interesting theoretical and practical consequences. For exam-
ple, a recent demonstration by Velten and coworkers [10]
showed that the information contained in multiple echoes of 
light can be used for non-line-of-sight imaging. From a signal 
processing perspective, the properties of light/wave propaga-
tion can be best understood as a time-dependent transfer func-
tion of the scene. The three main ingredients of time-resolved 
light transport are direct reflections, inter-reflections and sub-
surface scattering:

t t t t t t e u tk kk

K
s s

t
0 0 1

Interreflections Subsurface ScatteringDirect Reflection

)d d dC C C- - - n

=
-^ ^ ^ ^h h h h

1 2 3444 44 1 2 34444 4444 1 2 344444 44444
/ ,

where , tk k k
K

0
1C =
-" ,  and { , }ts sC  are the usual multipath compo-

nents, μ is the absorption coefficient, and u t^ h is the Heaviside 
function. If it were possible to create a highly time-localized 
probing function of form ~p d, identification of scene related 
parameters, , , , ,t tk k k

K
s s0

1 nC C=
-"" , , would be a relatively easy 

task. However, the time-resolution of probing functions pro-
grammed on the state-of-the-art ToF sensors is, at best, about 
11 ns [cf. Figure 3(a)]. This is orders of magnitude longer than the 
sophisticated apparatus used by Velten et al. [10], which attains a 
pulse width of approximately 50 ps. That said, TD–ToF sensors 
may still be used for imaging transient phenomenon linked with 
direct and indirect inter-reflections. In fact, this problem is close-
ly tied with the problem of sampling of continuous-time sparse 
signals [27].

The SRF for the transient imaging problem with direct and 
indirect components of the light propagation is a continuous-time 
K  sparse signal,

.h t t t t t
( )

K k kk

K6
0 0 1

Indirect ReflectionsDirect Reflection

d dC C= - + -
=

^ ^ ^h h h
1 2 3444 44 1 2 34444 4444

/

With the IRF defined in (1), the ToF sensor measurements are 
* *m t r p t p p h tK7= = r r^ ^ ^ ^ ^h h h h h (cf. “ToF Image For-

mation Model.”). With the commutativity property of the 
convolutions, the sampled TD–ToF measurements may be 
written as *m hn Kz= r^ h , , ,t n N0 1t nT f= -=^ h , where 

*t p p tz = r^ ^ ^h h h. Since the probing function admits a band-
limited approximation [see (3) and Figure 3(a)], the time-reversed 
TD–ToF measurements may be reinterpreted as samples of a 
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FIGURE 4. Multipath interference in ToF sensors. (a) The scene response function for K 2=  in time-domain [cf. (6)], frequency-domain, and complex 
phasor-domain. At a given modulation frequency ~ , the ToF sensor measures the complex number z~ . However, the correct values to be estimated are 

,dk k k
K

0
1C =
-" , . This model mismatch results in erroneous depth reconstruction. (b) Experimentally measured multifrequency data and its decomposition 

into sinusoids via spectral estimation. 
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sparse signal that has been low-pass filtered with a calibrated 
sampling kernel tz ^ h. Furthermore, the bandlimited approxi-
mation property allows us to write,

( ) ( ) ( ) ,m h t h en K t nT KM

M nT
0

0

0 0) ,; .z z ~= ,,

, .,~-
= =-

=+ t t/
, ,n N0 1f= - ,

where p 2
z =, ,
t t , since the sampling kernel z is obtained by 

autocorrelating the probing function, and hK 0,~t ^ h is the sam-
pled Fourier transform of the SRF. Note that the discrete Fou-
rier transform of the sampled measurements mn n

N
0
1-
=
-" ,  results 

in the M2 10 +  point-wise samples of the weighted Fourier 
transform of the SRF, hK M0 0

,z ~, , #
t t ^ h" , . Hence, given 

sampled measurements we can deconvolve the SRF in Fourier 
domain, which is a sum of K  complex exponential functions. 
The only requirement being that z,t  should not vanish in the 
interval M M0 0,# #- . In a noiseless setting, upon decon-
volving the SRF hK M0 0

,~ , #
t ^ h" , , we can use spectral estima-

tion [cf. “Spectral Estimation (Prony’s Method)”] to estimate 
the parameters , tk k k

K
0
1C =
-" , , provided that M K0 $ . Several 

approaches have been proposed in literature to stabilize the 
spectral estimation method in presence of noise [26].
As before, we use the matrix pencil method for our experi-
mental demonstrations.

Figure 6 illustrates the reinterpretation of the transient imaging 
problem as a sparse sampling problem. Time-domain measure-
ments are acquired for the case K 2=  and K 3= , respectively, 
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FIGURE 5. Multidepth imaging with ToF sensors. The experimental setup describes a scene with up to K 3=  optical paths arising from three different 
depths. With / .f 2 0 80 0~ r= =  MHz, the ToF sensor captures raw 3-D images using the four-bucket method described in the section “Frequency-Domain 
3-D Imaging (FD–ToF).” The resulting 3-D maps are erroneous. We show 3-D images for modulation frequencies 15 0~ –65 0~  in steps of 10 0~ . We 
estimate , tk k k 0

2C =" ,  using the spectrum estimation method implemented via the matrix pencil algorithm. The results are consistent with the experimental 
setup. For example, the letters “MI” and “T” associated with 1C  and 2C  correspond to their respective depths.
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with sampling rate T 70= ps. In each case, we recover the K-sparse 
SRF, hK  in the following steps:
1) Obtain the discrete Fourier transform of sampled measure-

ments mnr , that is m*
,t .

2) Deconvolve m*
,t  with the sampling kernel z,t  to obtain 

/ , , ,h m M M M K*
K 0 0 0 0, , ! $~ z= -, ,
t t t^ h 6 @ .

3) Use Prony’s method [cf. “Spectral Estimation (Prony’s 
Method)”] to estimate the sparse SRF , tk k k

K
0
1C =
-" ,  given 

hK 0,~t ^ h.
We plot the sampled, time-reversed measurements mn

-

together with the real part of hK 0,~t ^ h in Figure 6. The resulting 

SRF parameters , tk k k
K

0
1C =
-" ,  are consistent with the experi-

mental setup.
Imaging transient phenomenon may be used for several 

applications. For example, consider the experimental setup in 
Figure 7. A diffusive, semitranslucent sheet covers a placard 
that reads “Time of Flight.” A conventional digital camera is 
not able to image through the diffuse/scattering object. How-
ever, in the context of a TD–ToF imaging setup, this scene has 
a sparse SRF with K 2= . In fact, the case of K 2=  described 
in Figure 6 uses measurements directly from the example in 
Figure 7 under consideration. By applying the sparse signal 
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Given K2  contiguous measurements ,ez jnw t
n kk

K
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0
0C=~ =

-/
[ , ),n m K m2e +  Prony’s method aims to estimate un   knowns 
,dk k k

K
0
1C =
-" ,  from a system of equations that is linear in reflec-

tion coefficients kC  but nonlinear in depths /t d c2k k= . The 
solution to this problem relies on an underlying annihilation
equation. Let us define a polynomial of degree K ,
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With filter qm m
m K

0=
=" ,  known, we construct Q z^ h, and its 

roots lead to the K  estimates, tk k
K

0
1
=
-" , . With the depths 

known, estimating k k
K

0
1C =
-" ,  is the usual linear least-squares 

problem since 'skC  are linearly constrained in the defini-
tion of zn 0~ .

Spectral Estimation (Prony’s Method)
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recovery method discussed in this section, it is possible to esti-
mate the SRF h2 . We discuss the results of this experiment in 
Figure 7. As can be seen, the amplitude image corresponding 
to 1C  matches the experimental setup, and we are thus able to 
image through a diffusive medium.

Fluorescence lifetime imaging and system identification
Fluorescence lifetime imaging (FLI) is a problem of interest 
across several disciplines of science and engineering, with the 
notable example of fluorescence lifetime microscopy. This 
imaging modality finds applications in a number of fundamen-
tal problems including DNA sequencing, tumor detection, fluo-
rescence tomography, and high-resolution microscopy. Like the 
ToF sensors, FLI can be categorized into time-domain and fre-
quency-domain modes. Time-domain FLI (TD-FLI) utilizes 
an impulse-like excitation pulse that is used to probe a fluores-
cent sample. The resulting time-resolved, reflected signal is 
then used to calculate lifetimes. Given a fluorescent sample 
with lifetime parameter 0m , this interaction is modeled as 
m t t e u t

t
0 0d t= m
-

*^ ^ ^h h h, where m   is the measured signal, 
d  is the Dirac distribution, and u is the usual Heaviside func-
tion. On the other hand, in the case of frequency-domain FLI 
(FD-FLI), the sample is excited with a sinusoidal probing func-
tion of form cos t~^ h. The phase of the reflected signal 
( cos tant 1

0? ~ ~m- -^ ^ hh) encodes the lifetime parameter 0m .
Let h t^ h be a linear, shift-invariant system. Recall that

| | ,cos cosr t t h t h t h+~ ~ ~ ~= = +* t t^ ^ ^ ^ ^ ^h h h h hh (9)

where ht  is the Fourier transform of h . More precisely, 
with h t e u t

t
0 0t= m
-^ ^h h, its Fourier transform is h

^
~ =^ h

( / ),10 0 0.t m ~m+  then tanh 1
0+ ~ ~m=- -t ^ ^h h. Consequent-

ly, the FD-FLI problem boils down to phase estimation. This 
is a nonlinear problem and several methods have been pro-
posed in literature. Noting that the measurements (9) are pro-
portional to the so-called modulation depth, that is, | |h ~t ^ h ,
the intensity of the reflected signal may also be used for life-
time estimation due to its dependence on 0m .

In either case, time- or frequency-domain FLI, the equipment 
is prohibitively expensive due to strict system constraints and 
precise electro-optical components. Furthermore, measurements 
must be calibrated to account for path delays attributed to sam-
ple’s placement relative to the imaging sensor. Alternatively, ToF 
sensors are a consumer-grade commodity and are available at an 
affordable price. In the context of ToF imaging, the SRF for FLI 
is a shift-invariant function that takes form of [21],

, ,h t t t e u t t t
c
d2

t t
0 0 0 0 0

0

Direct Reflection Fluorescent Sample

FLI 0

0

d tC= - + - =m
-
-

^ ^ ^h h h
1 2 3444 44 1 2 34444 4444

(10)

where d0  is the distance of the sample from the sensor—a 
quantity that is often calibrated in FLI setup, which we assume 
to be an unknown. In parallel to the frequency-domain FLI, the 
probing function in the case of FD–ToF is defined by 

cosp t p t1 0 ~= +^ ^h h. With the IRF defined in (1), the mea-
surements read

,cosm t h h
p

t h0
2

( )4 0
2

FLI FLIFLI +~ ~ ~= + -t t t^ ^ ^ ^ ^h h h hh (11)

where hFLI ~t ^ h  is the Fourier transform of the SRF. As 
described in the section “Frequency-Domain 3-D Imaging 
(FD–ToF),” the ToF sensor uses the four-bucket method 
(5) to record the sampled SRF spectrum at modulation 
frequency ~ ,

( ) ( ) .z h h e
1

where t
0
2

0
0

0 0
FLI FLI

0

.
t ~ ~

~m

mt
C= = +

+
) .

~
~-t t c m

(12)

We show the amplitude and phase images, z~  and z+ ~ ,
respectively in Figure 8(a) with /f 2 20~ r= =  MHz. As 
shown in [21], the reflection coefficients are dependent on the 
optical frequency of light and the direct component may be 
filtered 00C =^ h. Since the ToF sensor samples the Fourier 
spectrum of the SRF at each modulation frequency, the task of 
estimating { , }t0 0m  can only be accomplished if multiple fre-
quency observations , , ,z p h n n N0 1*

n 0
2

0FLI0 f~= = -~
t ^ h  are 
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FIGURE 7. The experimental setup for K = 2, TD–ToF measurements and transient image components 0C  and 1C .
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available. With t 00 = , estimation of 0m  is a classical problem 
in system identification [28]. The presence of nonzero t0  moti-
vates development of new algorithms. In contrast to [21], where 
the authors use nonlinear least squares fitting, here, we develop 
a closed form solution to the problem. In view of (12), let us set 

/y z pn n 0
2

0= ~  and nn 0~ ~= , and we have,

( ) ( ) ,

y
y

e

y y e

1
1

1 1

n

n

n

n t

n n n n
t

1

1 0

0

1 1 0 0

0 0

0 0

2

.
.

. .

~ m
~ m

~ m ~ m

=
+
+

+ = +

.

.

~

~

+

+

-

+ +
-

which is a linear system of equations in 0m  and e t0 0.~-  and can 
be solved with any four contiguous values such that 

,n 4 Z, , ,1# !+ . We solve this linear system of equations 
for yn n

n
2
20
=
=" ,  since the modulation frequencies in range 

f 2 200 = -  MHz are highly stable. While system stability and 
signal integrity is one part that affects the SNR, variation of 
sample spread on the slide may also lead to weak emission. For 
this purpose, we use a confidence threshold for pixel amplitudes.

We compare our system identification approach with pre-
viously used nonlinear least squares fitting [21], which uses 
N 40=  samples and favorable initialization conditions to obtain
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For comparable distance estimates, the identification meth-
od provides a more robust estimate of lifetimes. In comparison 

to NNLS fitting (based on MATLAB’S curve-fit toolbox), 
our relatively modest and noniterative method is orders of 
magnitude faster (~ 103 ). We close this subsection by high-
lighting that the phase/depth images in ToF sensors may be 
used for encoding interesting physical/material properties.

Key takeaways of this section
■ Multipath interference (MPI) in FD–ToF mode can be rein-

terpreted as a spectrum estimation problem. To recover MPI 
components, one must acquire multiple frequency measure-
ments. Our demonstrations were based on the matrix pencil 
method [26] but any other method is an option. For exam-
ple, in [25], the authors use orthogonal matching pursuit.

■ Transient imaging in TD–ToF mode can be recast as a sparse 
sampling problem [27], where the sampling kernel z is the 
autocorrelation of the probing function. Whenever the probing 
function admits a bandlimited approximation, one may use 
spectral estimation to recover the transient image components.

■ We demonstrated that fluorescence lifetime imaging can be 
performed with ToF sensors. We used system identification 
methods to estimate an unknown, parametric transfer func-
tion linked with lifetime imaging.

Conclusions and future directions
We hope that we have convinced you that ToF sensors are more 
than just depth sensors! In what follows, we present  our conclud-
ing remarks with hints on possible future research directions.

ToF imaging pipeline
We started with an image formation model that allows for 
studying different ToF modalities under one common 
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FIGURE 8. Frequency-domain ToF imaging. (a) Multifrequency measurements of a scene containing a fluorescent sample with a lifetime 32x =  ns. We show 
amplitude image | |z f20 0  (in dB) as well as the phase image z f20 0+  (in radians) with f 10 =  MHz. We also show a 3-D plot of the phase image. This shows the 
effect of multipath interference. The phase at the background pixel is 4.1625 rads, which relates to a depth of 2.4842 m, while the actual depth is 2.5 m. At 
this depth, the phase recorded as the sample location is 5.5822. The extra 3.3316 is attributed to the fluorescent lifetime decay phenomenon .tan 1

0~m- ^ h

(b) At the sample location, we plot phase , , ,z h kf k 1 40kf 00 f+ +=- =t^ h  (12) recorded by the ToF sensor. We also plot the phase estimated by our method.
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framework. Almost all ToF systems can be characterized by 
the model parameters , ,p h {" ,. Depending on the problem 
at hand, the role of , ,p h {" , and the associated algorithms 
needs to be adapted. For example, the SRF discussed in con-
text of MPI appears naturally in other problems, such as 
ultrasound tomography [29], single photo imaging [31] and 
light detection and ranging (LiDAR) [30]. However, the 
probing function and the IRF are very different for each case. 
In particular, consider the case of LiDAR. The probing func-
tion is modeled as p d=  and the IRF is a parametric function 
of form t e a T t bk k0{ a= - +^ ^h h , where ,a bk k k 1

4
=" ,  take four dif-

ferent values with continuous transitions, depending whether 
{ }t Ik k 1

4! = , where Ik  is an instrument or sensor dependent 
quantity. This gives rise to a new form of sampling kernel 
z {=  [32], as opposed to *p pz = r  (TD–ToF case). Hence, 
we believe that by systematically studying the role of 

, ,p h {" , across various ToF problems—optical and nonopti-
cal—better insights may developed.

Another interesting direction may be to consider the case 
when the SRF is modeled by a differential equation. For exam-
ple, in the case of fluorescence lifetime imaging, the associat-
ed differential equation is /1L t2 m= +m ^ h, and the resulting 
reflected signal is the solution to ,r t p t t 0L $C =m ^ ^h h6 @ .
The SRF in this case is the Green’s function. Similar ideas 
may be used to develop algorithms for imaging through scat-
tering/diffusive media where L  is some differential equation 
that models diffusion. The parameters of L  encode physical 
properties such as lifetime or scattering coefficient.

Probing function
Since the probing function is the only available degree-of-free-
dom in ToF imaging pipeline, it is important to understand what 
mathematical principles should be used for designing probing 
functions. Waveform design is a known art in radar and wireless 
communications. However, such options are rarely considered in 
optical ToF systems. Maximum length sequences for TD–ToF 
and sinusoids for the FD–ToF are the de facto examples. On the 
hand, it may not always be feasible to calibrate the probing func-
tion. In that case, it may be worthwhile to use blind deconvolu-
tion algorithms for image reconstruction.

Algorithms and fundamental limits
MPI is a significant problem in ToF imaging and a number of 
papers have attempted to address this issue—both in time- and in 
frequency domain. However, to date, most of the results remain 
empirical and rarely discuss any details on performance guaran-
tees. In a recent work [24], we used Cramér–Rao bounds in con-
text of TD–ToF-based multiple depth imaging. For instance, for 
the TD–ToF case, one may write the probing function as a Fouri-
er series with Fourier coefficients { }m m Zz ! . In this case, two 
optical paths, dD  apart, are resolvable provided that

,
T
d c

N
S

4
1

PSNR
$
r

D

where /T 2 0r ~=  is the fundamental time period, PSNR is 
the peak-signal-to–noise–ratio, | |S m mm

1 2 2
Z

z=
!

- /  and N

is the number of measurements. For parametric SRFs, we 
believe that more such efforts could lead to hints on interest-
ing applications of ToF sensors and motivate new problems in 
sampling theory. This could be the key to questions such as: 
when can two lifetimes in fluorescence lifetime imaging 
setup be super-resolved?

Modeling nonideal reflections
In our experience, the SRF of form t tk kdC -^ h [c. f. (6)] only 
approximately models a reflection. In a practical setting, 

t tk k k}C -^ h may serve as a good starting point for modeling 
reflections. Here, k}  is a filter that models the interaction of 
the probing function with the material property or accounts 
for distortion, system nonlinearities and dispersive media. In 
seismic engineering, terahertz spectroscopy, and ultrasound 
systems, this behavior is much more pronounced as material 
properties play an important role when the probing function 
undergoes a reflection.

FD-ToF
This is an interesting mode of operation since most consumer 
ToF systems are based on FD-ToF, which uses phase estima-
tion. As seen in (4), if 22i r~ , the depth estimates suffer 
with ambiguity or phase-wrapping problem. Previous solu-
tions use coprime frequencies [33], however, there is room for 
improvement. For example, in theory, phase is a linear func-
tion of frequency, /d c2i ~=~ . This is not the case in practice 
and leads to erroneous depth estimates with multiple fre-
quency measurements. Hence, a desirable phase estimation 
algorithm should jointly correct for any distortions and 
phase-wrapping.

Calling , ( / ) ,cospm t t1 2
4

0 0
2~ ~ i iC= + + ~ ~

( )
^ ^ ^h hh  is esti-

mated by sampling in time-domain, that is, ,m m kTk 0~= ^ h

given a fixed modulation frequency 0~ . Alternatively, one 
may use multifrequency sampling using ,m m t kk 0 0~= ^ h

for the estimation of i~ . This gives rise to a broader ques-
tion of when can time-frequency sampling be used, that, 

,m m t k,k 0 0, ~=, ^ h in context of solving inverse-problems 
linked with ToF imaging. Specifically, when t~ =  for depth 
imaging, the problem boils down to parameter estimation of 
chirp signals. Finally, in view of (8), phase retrieval algorithms 
may be designed when only intensity measurements are avail-
able, that is, ,m m t kk

2
0 0

2~= ^ h .

Sensor design for higher modulation frequencies
Most consumer-grade ToF sensors are based on continuous 
wave probing functions. Currently, such sensors work with high 
fidelity up to a modulation frequency of about 80 MHz. We 
believe that much of the interesting physical phenomenon may 
only be observed as higher frequencies. For example, higher 
modulation frequencies will certainly enhance depth resolu-
tion and MPI correction capabilities. In context of fluores-
cence lifetime imaging [21], shorter lifetimes may be 
resolved with higher modulation frequencies. Similarly, sub-
surface scattering properties can be studies with streak tubes 
[10]. This hints that higher modulation frequencies are the 
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pathway to scattered imaging. Such examples motivate the 
necessity of hardware or computational imaging solutions 
that can over come the current technological limits.
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 Principles of Light Field Imaging
Briefly revisiting 25 years of research

L
ight field imaging offers powerful new capabilities through 
sophisticated digital processing techniques that are tightly 
merged with unconventional optical designs. This combina-
tion of imaging technology and computation necessitates a 

fundamentally different view of the optical properties of imaging 
systems and poses new challenges for the traditional signal and 
image processing domains. In this article, we aim to provide a 

comprehensive review of the considerations involved and the 
difficulties encountered in working with light field data.

Digital light field imaging: An overview
 As we approach the 25th anniversary of digital light 
field imaging [1]–[3] and the technology begins to 
enter the industrial and consumer markets, it is 
a good time to reflect on the developments and 
trends in what has become a vibrant interdisci-
plinary field joining optical imaging, image pro-
cessing, computer vision, and computer graphics.

The key enabling insight of light field imag-
ing is a reinterpretation of the classic photographic 

imaging procedure that separates the process of 
imaging a scene (i.e., scene capture) from the actual 

realization of an image (i.e., image synthesis)—a 
reinterpretation that offers new flexibility in terms of 

postprocessing. The underlying idea is that a digital cap-
ture process enables intermediate processing far beyond 

simple image processing. In fact, our modern cameras are pow-
erful computers that enable the execution of sophisticated algo-
rithms to produce high-quality two-dimensional (2-D) images.

Light field imaging is, however, moving beyond that level 
by purposefully modifying classical optical designs to enable 
the capture of high-dimensional data sets that contain rich 
scene information. The 2-D images presented to the human 
observer are processed versions of the higher-dimensional data 
the sensor has acquired and only the computer sees in their 
raw form. This partial replacement of physics by computation 
enables the post-capture modification of images on a previ-
ously unimaginable scale. Most of us have seen the amazing 
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features that light field cameras offer: post-capture refocus, 
change of view point, three-dimensional (3-D) data extraction, 
change of focal length, focusing through occluders, increasing 
visibility in bad weather conditions, and improving the robust-
ness of robot navigation, to name just a few.

In optical design terms, light field imaging presents an (as of 
yet unfinished) revolution. Since Gauss’s day, optical designers 
have been thinking in terms of two conjugate planes, the task of 
the designer being to optimize a lens system to gather the light 
originating at a point on the object plane and converge it as well 
as possible to a point on the image plane. The larger the bundle of 
rays that can be converged accurately, the more light-efficient the 
capture process becomes and the higher the achievable optical 
resolution. The requirement of light-efficient capture introduces 
focus into the captured images, i.e., only objects within the focal 
plane appear sharp. Light field imaging does away with most of 
these concepts, purposefully imaging out-of-focus regions and 
inherently aiming at capturing the full 3-D content of a scene.

In terms of signal processing, we encounter a high-dimen-
sional sampling problem with nonuniform and nonlinear 
sample spacing and high-dimensional spatio-directionally 
varying observation/sampling kernels. The light field data, 
however, have particular structures that can be exploited for 
analysis and reconstruction. This results from the fact that 
scene geometry and reflectance link the information con-
tained in different samples. It also distinguishes the recon-
struction problem from a classical signal processing task.

On the software side, we witness the convergence of ideas 
from image processing, computer vision, and computer graphics. 
In particular, the classical preprocessing tasks of demosaicking, 
vignetting compensation, undistortion, and color enhancement 
are all affected by sampling in four dimensions rather than in two. 
Additionally, image analysis by means of computer vision tech-
niques becomes an integral part of the imaging process. Depth-
extraction and superresolution techniques enhance the data and 
mitigate the inherent resolution tradeoff introduced by sampling 
two additional dimensions. A careful system calibration is neces-
sary for good performance. Computer graphics ideas, finally, are 
needed to synthesize the images ultimately presented to the user.

This article aims to review of the principles of light field 
imaging and associated processing concepts, while simultane-
ously illuminating the remaining challenges. The presentation 
roughly follows the acquisition and processing chain from opti-
cal acquisition principles to the final rendered output image. 
The focus is on single-camera snapshot technologies that are 
currently seeing a significant commercial interest.

Background
This section, which provides background for the rest of the arti-
cle, closely follows the development in [2]. An extended discus-
sion at an introductory level can be found, e.g., in [4]. A wider 
perspective on computational cameras is given in [5] and [6].

Plenoptic function
The theoretical background for light field imaging is the ple-
noptic function [7], which is a ray-optical concept that assigns 

a radiance value to rays propagating within a physical space. 
It considers the usual 3-D space to be penetrated by light 
that propagates in all directions. In doing so, the light can be 
blocked, attenuated, or scattered.

However, instead of modeling this complexity as, e.g., com-
puter graphics is doing, the plenoptic function is an unphysical, 
modelless, purely phenomenological description of the light 
distribution in the space. To accommodate for all the possible 
variations of light without referring to an underlying model, it 
adopts a high-dimensional description: arbitrary radiance val-
ues can be assigned at every position of space, for every pos-
sible propagation direction, for every wavelength, and for every 
point in time. This is usually denoted as ( , , , , , , )l x y z ti z mm ,
where [ / / / / ]l W m sr nm s2

m  describes spectral radiance per unit 
time, (x, y, z) is a spatial position, ( , )i z  is an incident direction, 
m is the wavelength of light, and t is a temporal instance.

The plenoptic function is mostly of conceptual interest. 
From a physical perspective, the function cannot be an arbi-
trary seven-dimensional function because, e.g., radiant flux is 
delivered in quantized units, i.e., photons. Therefore, a time-
average must be assumed. Similarly, it is not possible to mea-
sure infinitely thin pencils of rays (i.e., perfect directions) or 
even very detailed spatial light distributions without encoun-
tering wave effects. We may, therefore, assume that the mea-
surable function is band-limited and that we are restricted to 
macroscopic settings where the structures of interest are sig-
nificantly larger than the wavelength of light.

Light fields
Light fields derive from the plenoptic function by introducing 
additional constraints:
■ They are considered to be static even though video light 

fields have been explored [8] and are becoming increasing-
ly feasible. An integration over the exposure period 
removes the temporal dimension of the plenoptic function.

■ They are typically considered as being monochromatic, 
even though the same reasoning is applied to the color 
channels independently. An integration over the spectral 
sensitivity of the camera pixels removes the spectral 
dimension of the plenoptic function.

■ Most importantly, the so called “free-space” assumption 
introduces a correlation between spatial positions. Rays are 
assumed to propagate through a vacuum without objects, 
except for those contained in an “inside” region of the 
space, often called a scene. Without a medium and without 
occluding objects, the radiance is constant along the rays in 
the “outside” region. This removes one additional dimen-
sion from the plenoptic function [2].
A light field is, therefore, a four-dimensional (4-D) function. 

We may assume the presence of a boundary surface S  separat-
ing the space into the inside part (i.e., the space region containing 
the scene of interest) and the outside part, where the acquisition 
apparatus is located. The outside is assumed to be empty space. 
Then, the light field is a scalar-valued function of ,SS 2# +

where S2
+  is the hemisphere of directions toward the outside. 

This definition of a light field is also applied to the term surface 
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light field [9] if the surface S  agrees with some object geometry. 
In this case, the directional component of the function describes 
the object reflectance convolved with the incident illumination.

Commonly, the additional assumption is made that the surface S
is convex, e.g., by taking the convex hull of the scene. In this case, the 
rays can be propagated to other surfaces in the outside region with-
out loss of information. Typically, a plane p is used as the domain 
of (parts of) the light field function. The most popular parameter-
ization of the spatial and directional dimensions of the light field is 
the two-plane parameterization, which is obtained by propagating 
a ray from surface S  to the light field plane p (see Figure 1). The 
parameterization then consists of the intersection position (u, v)
of the ray with the light field plane p and its intersection with an 
additional parallel plane at a unit distance ( , )u vt t . The second inter-
section is usually parameterized as a difference with respect to the 
(u, v) position and called ( , )s u u t v v= - = -t t . This second set 
of coordinates measures the direction of the ray.

Phase space
The coordinates obtained in this way can be considered as an 
abstract space, the so-called “ray phase space” or simply phase 
space. A point ( , , , )u v s t  in this space corresponds to a ray in 
the physical space. It is important to remember that the phase 
space is always linked to a particular light field plane .p  Chang-
ing the plane, in general, changes the phase space configura-
tion, which means that a fixed ray will be associated with a 
different phase space point.

The phase space is interesting for several reasons. First, it allows 
us to think more abstractly about the light field. Second, a reduc-
tion to two dimensions (u, s) is easily illustrated and generalizes 
well to the full 4-D setting. Third, finite regions of the ray space, 
in contrast to infinitesimal points, describe ray bundles. The phase 
space is, therefore, a useful tool for visualizing ray bundles. Finally, 
an extensive literature exists on phase space optics (see, e.g., [10])
with available extensions to wave optics. The phase space is also a 
useful tool for comparing different camera designs [11].

The light field can now be thought of as a radiance-valued 
function defined in the phase space, i.e. ( , , , )l u v s t , meaning 
that each ray, parameterized by ( , , , ),u v s t  is assigned a radi-
ance value l. The task of an acquisition system is to sample and 
reconstruct this function.

Light field sampling
The simplest way to sample the light field function is by plac-
ing a pinhole aperture into the light field plane .p  Were the 
pinhole infinitesimal, ray optics a decent model of reality, and 
light considerations negligible, we would observe one column 
of the light field function at a plane a unit distance from the 
light field plane .p  In the following, we will refer to that plane 
as the sensor plane .q  Associating a directional sample spac-
ing of sD  and shifting the pinhole by amounts of uD  enable a 
sampling of the function, as shown in Figure 2.

A slightly more realistic model is that the directional varia-
tion s is acquired by finite-sized pixels with a width equiva-
lent to the directional sample spacing sD . This introduces a 
directional sampling kernel that, in the phase space, can be 

interpreted as a vertical segment, as in Figure 2(a). Of course, 
the pinhole has a finite dimension uD , as well. The pinhole/
pixel combination, therefore, passes a bundle of rays, as indi-
cated in Figure 2(b). The phase space representation of the ray 
bundle passing this pinhole/pixel pair is a sheared rectangle, 
as shown on the right in Figure 2(b). It should be noted that 
the pinhole size and the pinhole sample spacing, as well as the 

Phase Space
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u

p

Inside

Outside

Physical Space

(b)(a)

FIGURE 1. A basic description of light field. (a) The “inside” region con-
tains the scene of interest, while the “outside” region is empty space and 
does not affect light propagation. The light field is a function assigning a 
radiance value to each of the rays exiting through the boundary surface
\mathscrS . (b) A phase space illustration of the colored rays. A point 
in phase space determines a set of ray parameters (u, s) and, therefore, 
corresponds to a ray. The phase space is associated with the plane .p
Because the four rays indicated in the subfigure in (a) converge to a 
point, the corresponding phase space points lie on a line.
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FIGURE 2. The finite sampling of a light field with real hardware. (a) Assum-
ing a sensor placed at the dashed plane and an infinitesimal pinhole results 
in a discretization and averaging of only the directional light component. In 
phase space, this constitutes a row of vertical segments. (b) A more realistic 
scenario uses a finite-sized pinhole, resulting in ray bundles integrated by 
the sensor’s pixels. In conjunction, pixels and pinholes define a two-aperture 
model. In the phase space, the ray bundle passed by two apertures is 
represented by a rhomb.
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pixel size and the pixel spacing, may not be correlated in real 
applications, with corresponding implications for aliasing or 
oversampling (see the “Computational Processing” section).

Going back to the physical meaning of these phase space 
regions’ respective ray bundles, we can conclude that each 
pinhole/pixel combination yields a single measurement (i.e., a 
single sample of the light field function) through integration 
by the pixel. The phase space region, therefore, represents the 
spatio-directional sampling kernel introduced by the finite size 
of the pixel and the pinhole, respectively, while the center ray/
phase space point indicates the associated sampling position.

A key optical concept, the optical invariant, posits that 
an ideal optical system does not change the volume of such a 
phase space region (also known as étendue). As an example, 
free-space transport, as a particularly simple propagation, 
maintains phase space volume; it is described by a shear in the 
horizontal direction of the phase space. Free-space transport to 
a different plane is a necessary ingredient for computing refo-
cused 2-D images from the light field.

Light field sampling with camera arrays/moving cameras
Obviously, pinhole images are of a low quality due to blurring 
by the finite pinhole area—or, depending on its size, diffrac-
tion effects—and to the low light throughput. Introducing a 
lens in the light field plane p improves the situation. This mea-
sure has the side effect of moving the apparent position of the 
sensor plane q  in front of the light field plane p  if the sensor 
is positioned at a farther distance than the focal length of the 
lens, as shown in Figure 3. The ray bundles being integrated by 

a single pixel can still be described by a two-aperture model 
as before; however, at this point the model must be considered 
virtual. This implies that it may intersect scene objects. It is 
understood that the virtual aperture does not affect the scene 
object in any way. The key point is that the refracted rays in the 
image space of the lens can be ignored as a way of simplifying 
the description. Only the ray bundles in the world space that 
are being integrated by the pixel are considered.

With this change, the sampling of the light field remains the 
same as before: instead of moving a pinhole, a moving standard 
2-D camera performs the sampling task. Only the parameter-
ization of the directional component s needs to be adapted to 
the camera’s intrinsic parameters. This is how pioneering work 
was performed [2], [3]. Of course, this acquisition scheme can 
be implemented in a hardware-parallel fashion by means of 
camera arrays [8], [12].

Given a sampled light field ( , , , )l u v s t  and assuming full 
information to be available, the slices ( , ) ( .,I s t l u const= =

., , )v s tconst=  as well as ( , ) ( , , ., .)I u v l u v s tconst const= = =

correspond to views into the scene. The function I(s, t) corre-
sponds to a perspective view, while I(u, v) corresponds to an 
orthogonal view of the inside space. These views are often 
referred to as light field subviews.

Optics for light field cameras
While camera arrays can be miniaturized as demonstrated by 
Pelican Imaging Corp. [12] and differently configured cam-
era modules may be merged as proposed by LightCo. Inc. [13],
there are currently no products for end users, and building and 
maintaining custom camera arrays is costly and cumbersome.

In contrast, the current generation of commercial light field 
cameras by Lytro Inc. [14] and Raytrix GmbH [15] has been 
built around in-camera light field imaging, i.e., light field imag-
ing through a main lens. In addition, attempts are being made to  
build light field lens converters [16] or use mask-based imaging 
systems [17] that can turn standard single-lens reflex cameras into 
light field devices. All devices for in-camera light field imaging 
aim at sampling a light field plane p inside the camera housing.

To understand the properties of the in-camera light field and 
their relation to the world space, we now extend the previous 
discussion of general light field imaging to the in-camera space.

In-camera light fields
In-camera light fields allow the light field to be transformed 
from the world space into the image space of a main lens, 
where it is acquired by means of miniature versions of the 
camera arrays, outlined earlier, that are most often imple-
mented using micro-optics mounted on a single sensor. The 
commercial implementations involve microlenses mounted 
in different configurations in front of a standard 2-D sensor. 
Each microlens with its underlying group of pixels forms an 
in-camera ( , , , )u v s t  sampling scheme, as described in the 
previous section. We may also think of these as tiny cameras, 
with very few pixels, observing the in-camera light field. The 
image of a single microlens on the sensor is often referred to 
as a micro-image.

Real Sensor
Plane

Virtual Sensor
Plane

Pixel

Outside

u

Inside

Physical SpaceImage of a
Pixel Δs

q

p

Δu

FIGURE 3. Light field imaging with a moving standard camera. Sensor 
pixels in the sensor plane q  are mapped outside the camera and inside 
the world space. The camera lens and the image of the pixel constitute a 
two-aperture pair, i.e., a unique phase space region. The color gradient in 
the ray bundle indicates that the rays are considered to be virtual in the 
camera’s image space. In reality, the rays refract and are converged onto 
the indicated pixel. In the world space, the ray bundle represents those 
rays integrated by the pixel. The sensor has more such pixels (not shown 
in the figure). These additional pixels effectively constitute a moving 
aperture in the plane of the virtual sensor position.
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Unfortunately, the in-camera light field is a distorted ver-
sion of the world coordinate light field due to refraction by the 
main lens. Here, we encounter a classic misconception: map-
ping the world space into the image space of the main lens, 
even by means of a simple thin-lens transformation, does not
result in a uniformly scaled version of the world space. Instead, 
the in-camera light field is a projectively distorted version of 
the world-space light field (see Figure 4), which results from 
the depth-dependent magnification of optical systems.

There are different ways to describe this distortion, e.g., in 
terms of phase space coordinates, as suggested by Dansereau et 
al. [18], corresponding to a ray-remapping scheme or by appro-
priate projection matrices. The projection matrices commonly 
used in computer vision to model camera intrinsics and extrin-
sics are not directly usable because they model a projection onto 
the image plane of a 2-D camera. It is, however, important that 
3-D information is preserved. The closest model is the OpenGL 
projection matrices used in computer graphics to transform a 
Euclidean world space into a space of so-called “normalized 
device coordinates.” This space is also a 3-D space, but a per-
spectively distorted one.

Interpreting in-camera light field imaging
in the world space
Thinking about how a miniature camera array is imaging the 
distorted in-camera light field is a bit difficult. It is, however, 
possible to apply the inverse perspective transformation to the 
light field plane and the virtual sensor plane—i.e., to the two 
aperture planes characterizing a light field sampling device—
to obtain a world-space description in 
terms of an equivalent camera array.

The detailed position of these two 
planes depends on the configuration of 
the light field camera. There are essen-
tially two choices:
■ an afocal configuration of the lens-

lets [19]
■ a focused configuration of the lens-

lets [20], [15].
In the first case, the sensor plane is 

positioned exactly at the focal distance 
of the microlens array. In the second, 
there are two possibilities for creating 
real or virtual imaging configurations 
of the microcameras: by positioning 
the sensor plane farther from or closer 
to the microlens focal length, respec-
tively. This choice has the effect of 
placing the in-camera virtual sensor 
plane at different positions: namely at 
infinity for an afocal configuration or 
in the front or in the back of the micro-
lens plane for a focused configuration.

In practice, the first can only be 
approximately achieved. First, it is dif-
ficult to mechanically set the sensor at 

the right distance from the microlens array. Second, because a 
microlens is often a one-lens system, its focal length is strongly 
dependent on the wavelength of the light. The configuration 
may be set for green light, but the red and blue wavelengths 
are then focused at different distances. The finite pitch of the 
pixels, however, makes the system tolerant to these issues.

In microlens-based light field imaging, the microlens plane 
takes the role of the in-camera light field plane .p  The virtual 
sensor plane (i.e., the sensor plane transformed by the micro-
lens array) takes the role of the second aperture, as in Figure 3.

The inverse action of the main lens, then, is to map these 
two planes into the world space. In conjunction, they define 
the properties of the light field subviews such as focal plane, 
depth of field, viewing direction and angle, field of view, 
and—through these parameters—the sampling pattern for 
the world-space light field. Optically refocusing the main 
lens (i.e., changing its position with respect to the microlens 
array) affects most of these properties. The precise knowl-
edge of the optical configuration is, therefore, necessary for 
advanced image processing tasks such as superresolution, and 
corresponding calibration schemes have been developed, as 
discussed in the “Calibration and Preprocessing” section.

Optical considerations for the main lens
The main optical considerations concern the (image-side) 
f-number of the main lens and the (object-side) f-number of the 
microlenses, respectively. The f-number of an imaging system is 
the ratio of its focal length and the diameter of its entrance pupil. 
It describes the solid angle of light rays that are passed by an 

In-Camera
Light Field 
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Light Field
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Field
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FIGURE 4. The main lens images its object space (right) into its image space (left), distorting it in the 
process. The world-space light field is, therefore, distorted into an in-camera light field. The distor-
tion is a perspective projection, with its center at the center of the main lens’s image-space principal 
plane. A micro-optics implementation of a camera array observes the distorted in-camera light field. An 
equivalent camera array in world coordinates can be found by mapping the light field plane p  and the 
virtual sensor plane q  to the world space.
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optical system. The f-number is an inverse measure: i.e., larger 
f-numbers correspond to smaller solid angles. For in-camera 
light field systems, the f-number of the main lens must always 
be larger than that of the microlenses to ensure that light is not 
leaking into a neighboring microcamera. At the same time, for 
a good directional sampling, the f-number should be as small as 
possible. Ideally, the main lens f-number would remain constant 
throughout all operational conditions. This requirement impos-
es additional constraints, especially on zoom systems [21].

The discussion so far has involved ideal first-order optics. In 
reality, however, optical systems exhibit aberrations, i.e., devi-
ations from perfect behavior. Initial investigations [22] have 
shown that the phase space sampling patterns are deformed 
by the main lens aberrations. In addition to the classic distinc-
tion between geometric and blurring aberrations, an interpre-
tation of the phase space distortions suggests that directional 
shifts (i.e., a directional variant of the geometric distortions) 
and directional blur (i.e., a mixture of subview information) are 
introduced by aberrated main lenses. The effects of microlens 
aberrations are relatively minor and only concern the exact 
shape of the sampling kernel.

An example of the distortions introduced by an aberrated 
main lens, as opposed to an ideal thin lens, is illustrated in 
Figure 5. The horizontal shifts in the sampling patterns cor-
respond to geometric distortion, typically treated by radial 
distortion models [18], [23]. The (slight) vertical shifts corre-
spond to a directional deformation of the light field subviews. 
A known shifting pattern can be used to digitally compensate 
for main lens aberrations [22] or even to exploit the effect for 
improving light field sampling schemes [24] (see the “Compu-
tational Processing” section).

While a satisfactory treatment of first-order light field 
imaging can be achieved by trigonometric reasoning or updat-
ed matrix optics techniques, a complete theory of light field 
aberrations is missing as of this writing.

Calibration and preprocessing
Calibration and preprocessing are tightly interlinked topics for 
light field imaging. As outlined in the previous section, many 
parameters of a light field camera change when the focus of 
the main lens is changed. This concerns not only the geometric 
characteristics of the views but also their radiometric proper-
ties. The preprocessing of light field images needs to be adapt-
ed to account for these changes. In addition, different hardware 
architectures require adapted preprocessing procedures. We 
will, therefore, cover these steps based on only one example 
(here, a Lytro camera, which is an afocal lenslet-based light 
field imaging system); the underlying issues, however, affect 
all types of in-camera light field systems.

Color demosaicking
Using a standard Bayer color filter array to enable colored light 
field imaging appears to be a straightforward choice. However, 
as shown in Figure 6(a), for the case of an afocal light field 
camera each micro-image encodes the (s, t) dimensions of the 
light field. Different color channels, therefore, correspond to 
different (s, t) sampling patterns. The final image quality can 
be improved by taking this fact into account [25].

Vignetting
The intensity fall-off toward the sides of the micro-images, 
also known as vignetting, changes with the optical settings of 
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FIGURE 5. The effect of lens aberrations for an f/4 afocal light field system: (a) the phase space distribution of the sampling pattern in the world space, 
assuming an ideal main lens (thin lens), and (b) the phase space distribution of the sampling pattern in the world space using an f/4 double Gaussian 
system as a main lens. The sampling pattern is significantly distorted. The highlighted phase space regions correspond to the space between the left and 
the right plots. The side subview (purple) is more severely affected compared to the center subview (blue).
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the main lens. Commercial cameras, therefore, store signifi-
cant amounts of calibration information in the internal camera 
memory. As an example, the combined vignetting of a main 
lens and microlenses changes across the field of view and with 
the focus and zoom settings of the main lens. Therefore, white 
images have to be taken for a sufficiently dense set of parame-
ter settings. The closest white image to the parameters of a user 
shot are then used for compensation. In a lab setting, it is advis-
able to take one’s own white images prior to data acquisition.

Calibration
To properly decode the four light field dimensions from the 
2-D sensor image, it is necessary to carefully calibrate the 
( , , , )u v s t  coordinates of every pixel that has been recorded by 
the sensor. With current lenslet-based architectures, to the first 
order this amounts to determining the center positions of the 
lenslets and the layout of the lenslet grid [Figure 6(c)]. More 
accurately, the position of the central view is given by the sen-
sor intersection of the chief rays passing through the main lens 
and each one of the lenslets. In addition, microlens aberrations 
and angularly variable pixel responses can shift this position 
[26]. In general, the responses are also wavelength dependent.

The lenslet grid is typically chosen to be hexagonal so as to 
increase the sensor coverage. The spherical shape of the micro-
images and their radius are determined by the vignetting of the 
main lens, which is the result of its aperture size and shape. The 
tight packing of the micro-images is achieved by f-number match-
ing, as discussed in the “Optics for Light Field Cameras” section. 
It should also be noted that manufacturing a homogeneous lenslet 
array is difficult and so some variation may be expected. Fur-
ther, the mounting of the lenslet array directly on the sensor may 
induce a variable distance between the sensor and the lenslets.

The calibration described here usually pertains to the in-cam-
era light field coordinates. When assuming thin-lens optics for 
the main lens, these correspond to a linear transformation of the 

light field coordinates in the object space. Calibration approach-
es to determine this mapping are described by Dansereau et al. 
[18] for afocal light field cameras; the techniques, as well as the 
preprocessing steps described earlier, are implemented in their 
Matlab Light Field Toolbox. Bok et al. [27] present an alternative 
for performing a similar calibration by directly detecting line 
features of a calibration target from the raw light field images. 
Johannsen et al. [23] describe the calibration scheme for focused 
light field cameras. The handling of the effects of optical aberra-
tions by the main lens is usually performed using classical radial 
distortion models from the computer vision literature. While 
these measures improve the accuracy, they are not completely 
satisfactory because the light field subviews suffer from nonra-
dial distortions [see Figure 5(b)]. Lytro provides access to cali-
bration information, including aberration modeling, through its 
software development kit. Alternatively, modelless per-ray cali-
brations [28] using structured light measurements have shown 
promising performance improvements. However, the need for a 
principled distortion model remains.

Once a per-pixel calibration is known, the suitably pre-
processed radiance values of the light field function can be 
assigned to a sample position in the phase space. In principle, 
reconstructing the full light field function amounts to a sig-
nal processing task: given a set of irregular samples in the 
phase space, reconstruct the light field function on that space. 
In practice, additional constraints apply and are used to, e.g., 
achieve superresolution or to extract depth. A prerequisite for 
superresolution is having a known shape for the phase space 
sampling kernels, also called ray-spread functions. Calibra-
tion schemes for these still have to be developed.

Computational processing
The reconstruction of the 4-D light field function from its 
samples can be achieved by standard interpolation schemes 
[2], [29]. However, the light field function possesses additional 
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FIGURE 6. Light field preprocessing and calibration for a Lytro camera. (a) Using a Bayer pattern within the micro-images causes a shift of light field view 
for the color channels because different colors sample different (s, t ) coordinates. (b) A white image (luminance) used for vignetting compensation, (c) 
A subpixel determination of the centers of the micro-images enables a calibrated (s, t )-coordinate system to be assigned to each micro-image. The (u, v)
coordinates are sampled in a hexagonal fashion by the microlenses. The orientation of this global coordinate system also determines the rotation angle of 
the (s, t ) system. The inset shows s and u calibration maps for the raw image. 
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structure. It is not an arbitrary 4-D function, but its structure 
is determined by the geometry and radiometry of the scene.

As an example, if the sampled part of the light field plane pw

is small with respect to the distance to an object point within the 
inside region, then the solid angle of the system aperture with 
respect to the surface point is small. If the surface is roughly Lam-
bertian, the reflectance does not vary significantly within this 
solid angle and can be assumed constant. This restriction often 
applies in practice, and the mixed positional–directional slices 
of the light field function, e.g., ( , ., , .),const constl u v s t= =

show a clear linear structure, as shown in Figure 7. These imag-
es are also known as epipolar plane images (EPIs) with refer-
ence to the epipolar lines of multiple-view computer vision. In 
the case of non-Lambertian surfaces, the linear structures carry 
reflectance information that is convolved with the illumination.

Assuming the constancy of the light field function along these 
linear structures to be a valid approximation and considering the 
4-D case instead of our 2-D illustrations (i.e., planar structures 
instead of linear ones corresponding to geometric scene points), 
we see that the intrinsic dimensionality of the light field is only 
2-D in the Lambertian case. In practice, it is necessary to have 
a knowledge of scene depth to exploit this fact. On the other 
side, the constraint serves as a basis for depth estimation. This 
observation is the basis for merging the steps of reconstructing 
the light field function (signal processing), depth reconstruc-
tion (computer vision), and superresolution (image processing). 
More general constraints are known. As an example, Levin et al. 
[30] proposed a 3-D constraint in the Fourier domain that works 
without depth estimation.

Intuitively, the linear structure implies that the surface point 
corresponding to a sloped line can be brought into focus, which 
in the phase space is a shear in the horizontal direction (see also 
Figure 1). Focus is achieved when the sloped line becomes verti-
cal. In this case, there is only angular information from the sur-
face point, which implies that its reflectance (convolved with the 
incident illumination) is being acquired. The amount of shear 
necessary to achieve this focusing is indicative of the depth of 
the scene point with respect to the light field plane .pw  The 
slope of the linear structures is, therefore, an indicator for depth.

Depth estimation
In light of the previous discussion, depth estimation is a first 
step toward superresolution. It amounts to associating a slope 
with every phase space sample [11]. There are several ways to 
estimate depth in light fields. The standard way is to extract 
light field subviews and to perform some form of multiview ste-
reo estimation. Popular techniques such as variational methods 
[31], [16] or graph-cut techniques [32] have been explored. The 
literature on the topic is too large to review here, and we recom-
mend consulting the “References” for further discussions.

The main differences between multiview stereo on images 
from regular multicamera arrays and for light field cameras 
are the sampling patterns in the phase space. Whereas the 
sample positions and sampling kernels of multicamera arrays 
are typically sparse in the phase space, for light field cameras 
the respective sampling patterns and kernels usually tile it. 
Therefore, there is a difference in the aliasing properties of 
these systems. Aliased acquisition implies the need to solve 
the matching or correspondence problem of computer vision, 
a notoriously hard problem. In addition, the phase space slope 
vectors are only estimated indirectly through (possibly incon-
sistent) disparity assignments in each of the subviews.

The dense sampling patterns of light field cameras allow for 
alternative treatments. As an example, recent work has explored 
the possibility of directly estimating the linear structures in the 
EPI images [33] based on structure tensor estimation. This tech-
nique involves directly assigning the slope vectors to each point in 
the phase space. However, it does not model occlusion boundar-
ies (i.e., T-junctions in the phase space) and, therefore, does not 
perform well at object boundaries. Recent work is addressing this 
issue through estimating aperture splits [34] or exploiting sym-
metries in the focal stack data corresponding to the light field [35].

Superresolution
The knowledge of the slope function can be used to compute 
superresolved light fields [36], [33] by filling the phase space 
with lines that have the slope and the radiance associated to a 
phase space sample (see Figure 8). If the samples are jittered 
along the slope of the line, a geometric type of superresolution 
results. This effect is used in computer graphics rendering to 
inexpensively predict samples of high-dimensional integra-
tion for rendering depth-of-field effects [36]. As the samples 
are perfectly Dirac and the exact depth is a byproduct of the 
rendering pipeline, this fact is relatively simple to exploit, as 
compared to the corresponding tasks in light field imaging.

t
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Light Field Subview (u, v) = Const.

Light Field epi (v, t) = Const.

FIGURE 7. The light field subview and EPI corresponding to the green line 
in the subview. The images represent different slices of the 4-D light field 
function ( , , , ) .l u v s t  Note the linear structures of constant color in the EPI. 
These structures correspond to surface points. Their slope is related to 
the depth of the scene point.
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In working with real data, the depth needs to be estimat-
ed as described earlier. Because the samples are affected by 
the sampling kernel (i.e., the phase space regions associated 
with a sample), true superresolution needs the additional 

step of deconvolving the resulting function [37]. For micro-
scopic light field applications, a wave optics perspective is 
necessary [38], [39], and the deconvolution consequently 
includes wave effects.

Slope Field Indicating Depth
s

u
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u

Superresolved Light Field

Subview

(a) (b)

FIGURE 8. Depth estimation and superresolution. (a) Assigning a depth value to phase space samples in all subviews assigns a slope field to the light 
field. This can, e.g., be achieved by matching samples between subviews as in stereo or multiview stereo matching. (b) Propagating the radiance 
values of the samples along the slope field generates a superresolved light field and, therefore, superresolved subviews. Because the samples 
represent a convolution with the sampling kernel, a deconvolution step following the line propagation improves the result. The line propagation needs 
to consider occlusion (T-junctions).

Sensor Image
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FIGURE 9. Light field image synthesis. (a) A raw image from the optical light field converter of Manakov et al. [16], (b) a depth map for the center view, 
computed with multiview stereo techniques, (c) and (d) a back and front focus using extrapolated light fields to synthesize an f/0.7 aperture (physical 
aperture f/1.4), and (e) a synthesized stereo view with user-selectable baseline. 
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A note on aliasing
It is commonly stated in the literature that an aliased acquisition is 
required for superresolution [37]. In light of the previous discus-
sion, we may make this statement more precise by stating that 1) a 
Lambertian scene model is implied for geometric superresolution, 
2) the samples should be jittered along the slope corresponding to a 
scene point’s depth, and 3) smaller phase space kernels associated 
with the samples will be beneficial as long as there is still overlap 
between them when propagated along the lines to construct the 
superresolved subview. In conclusion, light field cameras may be 
more suitable for implementing superresolution schemes than mul-
ticamera arrays due to their denser sampling of the phase space.

Image synthesis
Once the light field function is reconstructed, novel 2-D views 
can be synthesized from the data. The simplest visualization is to 
extract the light field subviews, i.e., images of constant (u, v) or (s,
t) coordinates, depending on the sampling pattern of the specific 
hardware implementation. It should be noted that both choices, in 
general, yield perspective views. This is because in-camera ortho-
graphic views [as synthesized by fixing the (s, t) coordinates] map 
to a world-space center of projection in the focal plane of the main 
lens. The subviews correspond to the geometry of the world-space 
light field plane pw  and the world-space virtual sensor plane qw

and, therefore, show a parallax between views. Interpolated sub-
view synthesis has been shown to benefit from depth information 
[40]: available depth information, even if coarse, enables aliasing-
free view synthesis with fewer subviews.

The goal of light field image synthesis, however, is the creation 
of images that appear as if they were taken by a lens system not 
physically in place (see Figure 9). The example most commonly 
shown is synthetic refocusing [29]. The technique, in its basic 
form, consists of performing a free-space transport of the world-
space light field plane to the desired focus plane. After performing 
this operation, an integral over the directional axis of the light field, 
i.e., along the vertical dimension in our phase space diagrams, 
yields a 2-D view focused at the selected plane. Choosing only 
a subrange of the angular domain lets the user select an arbitrary 
aperture setting, down to the physical depth-of-field present in the 
light field subviews, that is determined by the sizes of the two (vir-
tual) apertures involved in the image formation. If spatio-direction-
al superresolution techniques (as described in the “Computational 
Processing” section) are employed, this limit may be surpassed.

Computing the 4-D integral allows for general settings: even 
curved focal planes are possible by selecting the proper phase 
space subregions to be integrated. However, it can be compu-
tationally expensive. If the desired synthetic focal plane is par-
allel to the world-space light field plane pw  and the angular 
integration domain is not restricted, Fourier techniques can yield 
significant speedups [14]. If hardware-accelerated rendering is 
available, techniques based on texture-mapped depth maps can 
be efficient alternatives [16].

Conclusions
With almost a quarter century of practical feasibility, light field 
imaging is alive and well, gaining popularity and progressing 

into the market with several actors pushing for prime time. 
There are still sufficiently many scientific challenges to keep 
researchers occupied for some time to come. In particular, 
the bar of resolution loss must still be lowered in the hope 
of increased consumer acceptance. The megapixel race has 
slowed down, and pixel sizes are approaching their physical 
limits. This implies larger sensors and, thus, increased expense 
for additional resolution increases that would benefit light field 
technology. Improved algorithmic solutions are, therefore, of 
fundamental importance. 

The next big step will be light field video, pushing optical 
flow toward scene flow and associated projected applications, 
such as automatic focus pulling, foreground/background seg-
mentation, space-time filtering, etc. In terms of applications, we 
are seeing 4-D light field ideas penetrating in both the small 
and the large. In the small, we are seeing the emergence of light 
field microscopy [41], although we need improved aberration 
models and, eventually, expanded wave-optical treatments [39].
In the large, sensor networks will become increasingly impor-
tant. More complex scenes—such as translucent objects [42] or, 
more generally, non-Lambertian scenes [43]—are made possi-
ble. Crossover to other fields, such as physics, are also appearing 
[44]. These are surely exciting times as we head into the second 
quarter century of light field technology.
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SIGNAL PROCESSING FOR 
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Capturing Computational Appearance
More than meets the eye

S
urface reflectance and texture provides a unique signature 
for applications such as recognition and rendering. Intu-
ition tells us that a camera captures appearance. However, 
a traditional camera captures intensity dependent on the 

environment lighting, camera position, and the surface geome-
try. Imaging for computational appearance recovers reflectance 
that is intrinsic to an object or scene and useful for recognition 

and other applications. Reflectance can be captured in a 
lab-based setting with a gonioreflectometer or domes of 

lights and cameras. Recent methods in computational 
imaging provide appearance-capture that is compre-

hensive, efficient, compact, or optimal depending 
on the task at hand. In this article, we review meth-
ods for capturing and modeling computational 
appearance. The impact of these appearance rep-
resentations is significant with applications areas 
such as e-commerce, digital architecture, human-
computer interaction, intelligent vehicles, robot-
ics, and inspection.

Introduction
A camera captures appearance by providing a pho-

tographic image to emulate and store the visual 
experience. Appearance of objects, scenes, and people 

can be captured for human viewing and sharing. The 
traditional camera is analogous to the human eye, and the 

field of computer vision has developed methods for calibrated 
cameras that act as directional light sensors to record the dis-
tribution of light intensity reflected from the scene. Computa-
tional imaging takes computer vision a step further by 
redesigning the camera to capture scene information beyond 
what the human eye captures in a single view. The form and 
function of cameras are malleable, and creative research is 
taking the camera to new designs by measuring computation-
al appearance to provide a unique signature for automated 
recognition and other tasks.

Capturing appearance is essentially light sampling with 
numerous inherent parameters and sampling choices. These 
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parameters include viewing angle, illumination angle, spatial 
scale, spectral range, and polarization [39], [62]. The sampled 
light may be emitted from a point, patch, object, or global 
scene. The plethora of variations for appearance specifications 
leads to the basic question: What is the relevant definition of 
appearance? The parameters are sometimes determined by the 
capabilities of the imaging device, but the needs of the end-use 
application also drives appearance capture. Just as computa-
tional imaging refers to the computation inherent in the imag-
ing process, we introduce the term computational appearance
to indicate how the working definition of appearance depends 
on the computation in the subsequent algorithms and applica-
tions. Figure 1 illustrates computational appearance as depen-
dent on both the constraints of the imaging device and the 
needs of the application algorithm.

For example, appearance is often used for recognition in 
computer vision. Reflected intensity from an object or scene 
is dependent on environment lighting, camera view, and sur-
face geometry. The human visual system handles this variation 
and maps the set of possible appearances to a unique object 
representation for recognition. The representation of an object 
within the human visual system is invariant to environment 
lighting and camera pose. For instance, a friend is recogniz-
able at morning or at midday; recognition persists when the 
illumination direction has changed. Similarly, recognition is 
not interrupted when an observer moves and the viewpoint 
changes. This geometric and photometric invariance is a pri-
mary goal in computer vision and invariant representations 
of appearance provide a mechanism to recognize objects 
and scenes. A strategy to develop these representations is to 
observe the scene under variations in scene illumination and 
camera pose (camera position and orientations). These com-
prehensive measurements are the input to modeling algorithms 
which provide a computational appearance descriptor as illus-
trated in Figure 2. For automated recognition, the appearance 
descriptors form a training set can be used to build a machine-
learning classifier so that a class label is provided as the output. 
For computer graphics rendering, computational appearance is 
used to render the complex appearance including effects such 
as gloss, sheen, texture and translucency. An important ques-
tion is how best to measure appearance, 
i.e., how to sample the space of illumi-
nation and camera pose, to have a suf-
ficiently detailed descriptor.

Consider the surfaces depicted in 
Figures 3 and 4. Figure 3 shows two 
surface snapshots that fail to convey 
appearance in a meaningful manner; 
i.e., an observer cannot identify the sur-
face from either photo. Figure 4 depicts 
material folds that reveal how the sur-
face reflects light over variations in 
the incident illumination and viewing 
direction. In this manner, the materials 
satin and velvet are easily discerned by 
a human observer. Notice that neither 

the color nor the shape are of interest in this recognition. Instead, 
it is the specific way these surfaces reflect light that provide their 
identifying signature. Though the geometry of objects is not typi-
cally controllable, illumination and camera pose can be manipu-
lated in a strategic manner to capture comprehensive reflectance 
for object and surface modeling. Figure 5 shows representative 
cubes of different materials; neither the color nor geometry are 
key in describing the object properties; the unique reflectance 
properties of cube discriminate or render the materials.

Beyond basic object recognition, example applications for 
computational appearance are numerous and include e-com-
merce, art archiving, robotic navigation, architecture, and bio-
medical applications such as dermatology. For e-commerce, 
conveying material appearance is an important component of 
the online presentation of consumer goods such as shoes, cloth-
ing, furniture, linens, and home decor. Color and geometry are 
typically understood as important in digital models, but mate-
rials enhance the digital presentation and convey subtle visual 

Robotic or
Dome Imaging

Computational
Imaging

Computational
Appearance

Global
(Scene)

Local
(Surface)

Reflectance

Multi-
angle

Multi-
scale

Multi-
spectral

Polarized

Algorithm
and

Application

Recognition
Rendering

Steganography
Diagnosis

Change Detection
3-D Modeling

FIGURE 1. Capturing appearance with imaging. Appearance comprises 
reflectance captured from the global scene or from a local surface patch; 
it may be multiangle, multiscale, multispectral, and include polarization 
information. Domes of lights and cameras or robotic manipulators can 
be used for appearance capture. Alternatively, computational imaging 
provides appearance using specialized devices that are typically faster and 
more portable. Imaging provides appearance to the end-use algorithm or 
application. The bidirectional arrow indicates that the computation within 
the end-use algorithm may determine the specifications of computational 
appearance and therefore affect the imaging process.
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FIGURE 2. In an automated recognition pipeline, reflectance is measured and then represented by a 
lower-dimensional invariant appearance descriptor. A dictionary of such descriptors obtained from a 
training set is used to recognize the object using machine learning. The recognition result is a class 
label identifying the object, surface, or scene.
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features. For art and archeological archiving, appearance can 
be integrated in three-dimensional (3-D) models so that fine 
detail such as artist brushstrokes or the translucency of a mar-
ble statue can be captured for realism. In robotics, navigation 
and gripping parameters depend on surface material proper-
ties. For example, robotic control variables will be different in 
mud than on marble, so the ground terrain material label can 

guide mobile robot navigation. In architectural applications, 
creating models of existing infrastructure using photography 
has become an important modern tool. Adding composition 
details creates a compendious scene description with surface 
labeling of material composition of built structures such as 
brick, limestone, stucco, wood, stone, marble, slate, granite, 
and copper.

Reflectance: Functions and fields
According to a geometric representation of light rays, a surface 
point is illuminated by an incident ray oriented by polar angle 

ii  and azimuth angle iz  as shown in Figure 6. The reflected 
light is oriented along the direction , .v vi z  In a mirrored sur-
face model, the incident light ray reflects at the air-surface 
boundary in a direction that is rotated 180° about the surface 
normal. For nonmirrored surfaces, a typical modelling 
approach is to divide reflectance into specular (mirror-like) and 
diffuse components. In these reflectance models, the specular 
component of the light intensity is maximal when the viewer is 
at the mirror reflection direction, but then falls off according to 
a parametric model as the viewer direction moves away from 
the peak direction. For example, in the computer graphics 
Phong reflection model [7], the intensity falls off as ,cosna

where a  is the angle between the mirror reflection direction 
and the observer direction and n is a parameter. A diffuse com-
ponent of the reflection specified by the Lambertian model is 
independent of observer direction and is proportional to ,cos ii

where ii  is the angle the incident light ray makes with the sur-
face normal. The advantage of analytical models of reflectance 
is the low number of parameters that can be used to describe 
appearance. The disadvantage is the lack of descriptive power 
of such models. For real-world surfaces, a portion of the light is 
transmitted into the surface, scatters within the surface, is 

(a) (b)

FIGURE 4. The materials [(a) satin and (b) velvet] are easily recognizable in 
these images because the reflectance from multiple angles is observable in 
the folds.

FIGURE 5. Cubes of different material composition (cork, foam, aluminum, 
acrylic, maple wood, granite, bakelite resin, and silicone); Architect’s Cubes
Museum of Modern Art, New York. (Photo courtesy of Kristin J. Dana.)

z

y

x

θ i

θ r

φ r

φ i

FIGURE 6. The BRDF (bidirectional reflectance distribution function) 
( , , , )f i i v vi z i z  is the ratio of radiance from a surface point in the direction 

,v vi z  due to incident irradiance from direction , .i ii z

(a) (b)

FIGURE 3. What are these? (a) and (b) show a simple snapshot of a 
material, but this material is not recognizable from the photo.
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absorbed for specific wavelength, and then exits the surface at 
a range of angles with energy in wavelengths consistent with 
what we perceive as the object’s color. The process is complex 
and difficult to model precisely. The diffuse and specular com-
ponents of reflection are insufficient to model the rich visual 
experience of real-world scenes including frosty snow, weath-
ered copper, translucent marble, glossy paints, iridescent shells, 
crushed velvet, woven burlap, aged asphalt, and metallic-flake 
pigments. By measuring appearance directly, data-driven 
reflectance models can be used to build representations that are 
tuned to specific appearance classes.

The intensity of light reflected from a surface point when 
illuminated at angle ,i ii z  and viewed from angle ,v vi z  is 
described by the bidirectional reflectance distribution function 
(BRDF) expressed as ( , , , )f i i v vi z i z  as illustrated in Figure 6.
The BRDF is defined as the ratio of the radiance exiting a 
surface point to the irradiance incident on the surface point 
[44]. The units of the BRDF are inverse steradians (sr–1), where 
the steridian is the unit of solid angle. To parse these units, 
consider that input light (irradiance) is the power per unit area 
and has units of watts per meter squared (watts/m2). The total 
output light intensity from a unit area of the surface has units 
of watts/m2 but it radiates in a hemisphere of possible direc-
tions, so the output light in a particular direction has units of 
watts/m2 per steridian. Each direction is represented by a solid 
angle so that the integration over all directions represents the 
entire 3-D space. Therefore the ratio of output light radiance 
to input light irradiance as expressed by the BRDF has units 
sr–1. To denote dependence on both viewing and illumination 
angles, the BRDF is expressed as ( , , , ) .f i i v vi z i z  Real-world 
surfaces typically do not have a uniform BRDF due to both 
surface markings and surface texture.

The bidirectional texture function (BTF) extends the BRDF 
to characterize surface reflectance that varies spatially. The early 
concept of BTF was introduced with the Columbia–Utrecht 
Texture and Reflectance (CUReT) database [11], [12] and has 
been used for numerous texture modeling and recognition stud-
ies. The BTF expressed as ( , , , , , )f x y i i v vi z i z  has dependence 
on spatial parameters ,x y  and angular parameters. The BRDF 
assumes a point-wise light transport relationship, incident light 
at a point in a single direction results in exitant light at the same 
point from multiple directions. However, because of subsurface 
scattering, light incident on a point exits over a surface patch. 
The BTF can model these effects by capturing patch-wise 
reflection as shown in Figure 7. Light incident at a patch at a 
particular direction results in reflected light from the patch over 
a hemispherical range of directions. BTF modeling typically 
assumes that incident light is uniform over the patch. In addition 
to subsurface scattering, the BTF representation is useful for 
capturing reflection from fine-scale geometry of textured sur-
faces such as bumps, wrinkles, and roughness. The fine-scale 
shadowing, occlusions, shading, and foreshortening that affect 
the pixel intensities of the recorded images become part of the 
appearance model implicitly without knowledge of the surface 
fine-scale geometric variation. The reflectance at each point 
contains the nonlinearities of the shadowing and occlusions 

of fine-scale geometry. For example, surface point at ,x y  may 
be shadowed as the illumination direction changes from ii  to 

ii d+  for some small angle ,d  causing an abrupt change in the 
BTF to near zero reflectance. The BTF model can also be used to 
texture-map a 3-D object represented by a polygonal mesh. The 
3-D mesh is texture-mapped, not with a single image, but with 
a BTF. Traditional texture mapping maps each 3-D vertex into a 
two-dimensional (2-D) texture image parameterized by texture 
coordinates , .u v  The sampled BTF is a collection of images, so 
that a 3-D object vertex is mapped to ( , , , , , )f u v i i v vi z i z  where 
the illumination and viewing direction are defined with respect 
to the mesh facet. BRDF/BTF measurements are spatially local 
in their description, concentrating on describing the appearance 
of a surface point or patch. Such a description is ideal for sur-
faces that exhibit spatial invariance where the appearance of the 
patch is representative of the general appearance as in studies of 
textured surfaces.

While BRDF is a pointwise reflectance measurement and 
BTF is a patch-based reflectance measurement, the reflectance 
of an entire scene can also be captured globally. Light fields and 
reflectance fields describe the global reflectance of the entire 
scene or entire object. Light fields are defined as radiance as 
a function of position and direction [22], [32] and are four-
dimensional (4-D) since they describe a spatial position with 
two variables and ray orientation with two angles (polar angle 
and azimuth angle). An eight-dimensional (8-D) reflectance 
field [15] describes both the incident 4-D light field as well as 
the 4-D exitant light field. Reflectance fields are analogous to 
BRDF’s since both representations are bidirectional, describ-
ing the direction of incident light and exitant light. However, 
reflectance fields describe the input/output light over the glob-
al scene instead of a local point. Conceptually, light fields and 
reflectance fields construct a closed surface such as a sphere 
(or cube), surrounding the scene. The point on the closed sur-
face can be parameterized by two variables that depict the 
spatial position. With the assumption of a convex scene, a ray 
emanating from each scene point can be constructed that inter-
sects the closed surface. For each point on the closed surface, 

L V L V

p

BRDF BTF

FIGURE 7. The BRDF describes light reflected from a surface point in a 
hemisphere of possible directions, due to light incident to a surface 
point at a particular angle. However, light incident at a point may be 
interreflected and may be partially transmitted and scattered resulting in 
light exiting the surface at multiple points. The BTF describes light exiting 
a surface patch due to light incident on the patch at a specified angle ac-
counting for interreflections and subsurface scattering.
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two variables (polar angle and azimuth angle) denote the illu-
mination emanating from this point. Plenoptic functions are 
similarly defined as radiance as a function of position and exi-
tant angle. Plenoptic functions [1] are five-dimensional (5-D) 
since the point can vary in 3-D space, ( , , , , )f x y z i z  and no 
convexity of the scene is assumed. A common parameteriza-
tion of the light rays in a light field uses two planes. Each ray 
emanating from the scene can be described by its 2-D intersec-
tion on two planes. Early light field rigs used a set of cameras 
on a plane where each camera captures many pixels (positions 
of the scene). Commercially available light field cameras such 
as Lytro use arrays of microlenses to accomplish the same 
effect [32], [41]. These cameras enable refocusing by recording 
each surface point from slightly different viewing directions in 
a large image format (approximately 15 MB per image). The 
light field camera is not designed for capturing BRDF and the 
angular range of local viewing directions per scene point is 
relatively small.

The BTF captures a spatially varying BRDF as discussed in 
[8]. A related concept is svBRDF which also represents a spa-
tially varying BRDF. The BTF and svBRDF are both parame-
terized by a six-dimensional (6-D) function (two dimensions for 
spatial coordinates and four dimensions for illumination and 
viewing parameters). The svBRDF [31] is defined to represent 
an object where no texture is present, therefore the notion of a 
patch of interest is not relevant. The standard taxonomy usage 
is BTF for textured objects and svBRDF where the variations 
are not due to texture. The notion of local planarity is often 
not used in svBRDF so that curved objects without local 2-D 
planar embedding can be described. The BTF is used where the 
local variation in the patch represents the object’s appearance. 
For example, a BTF can be used to represent tree bark, animal 
fur, leather, foliage, and roughness; where the appearance of a 
patch has the same texture as the object. The svBRDF is more 
often used in situations where there is no characteristic varia-
tion over the object. That is, svBRDF typically describes the 
variation of reflectance over an object, and BTF characterizes 
the reflectance variation over a patch to capture the texture over 
the object. Additionally, BTF representations account for local 
cast shadows and occlusions within the patch-based measure-
ment allowing for nonconvex, nonsmooth fine-scale surface 
geometry, while svBRDF treats each point independently.

The BSSRDF [27] is another representation that is more gen-
eral than the BRDF. This representation is especially useful for 

surfaces that have translucency such as marble and human skin 
where the incident light at the surface is scattered within the vol-
ume. BSSRDF differs from the BRDF in that the latter implicitly 
assumes all incident light is reflected from the incident surface 
point. While BTF measurements account for subsurface scatter-
ing in translucent surfaces by illuminating and imaging a surface 
patch, BSSRDF measurements are typically done by illuminat-
ing a surface point and then measuring the light reflected from 
an area or patch.

Table 1 summarizes several of these reflectance represen-
tations. The 8-D reflectance field representation considers 
globally incident light and exitant light, the 4-D light field rep-
resentation considers exitant light, the 5-D plenoptic function 
considers exitant light from a 3-D surface point, the 6-D BTF 
represents incident light at a surface patch and exitant light at 
this patch, and the 4-D BRDF represents incident and exitant 
light at a point.

Notice that incident illumination is accounted for in dif-
ferent ways among BRDF/BTF, light fields, and reflectance 
fields. For BRDF and BTF the measured values are a ratio of 
radiance to irradiance. The incident and exitant illumination 
is specified by their respective angular directions. Light fields 
are a measure of radiance and do not explicitly account for 
incident illumination. Eight-dimensional reflectance fields 
[15] are bidirectional in the sense that they take into account 
incident illumination and exitant radiance. In BRDF/BTF 
measurements, there is typically an implied assumption that 
incident illumination has uniform intensity and the measured 
intensity can be normalized by the uniform incident intensity 
to obtain the desired ratio. When measuring reflectance rep-
resentations, incident light must either be known (as in con-
trolled active lighting) or measured (as in silvered spheres for 
capturing environment light).

The relationship between incident light to exitant light from 
the global scene can also be written as a light transport equation 
[26], [29]. When this relation is written as a matrix function, relat-
ing a plane parameterized incident light and reflected light, we 
obtain the following light transport equation:

L TLout in= (1)

where Lin  is the vectorized 4-D input light field (or 2-D for a 
fixed illumination direction), Lout  is the vectorized 4-D light 
field (or 2-D for a fixed camera position), and T  is the transport 
matrix capturing the aggregate scene properties that relates 
input light to output light.

Instead of volumetric light measurement (3-D position and 
3-D direction) for both incident and reflected illumination, the 
notion of reflection from a surface or scene allows a natural 
dimensionality reduction. For reflectance fields and light field, 
this reduction is done by considering light through a closed 
surface. For BTFs, the measurements consider light incident 
on and reflected from a local surface patch. Additionally, 
although light is an electromagnetic field that is vector-valued 
and depends on wavelength, further inherent dimensionality 
reduction is accomplished by considering intensity measur-
able by the camera’s sensitivity functions. In this manner, the 

Table 1. A comparison of the BRDF, BTF, plenoptic function, 
light field, and reflectance field.

Degrees of 
Freedom Bidirectional? Local/Global

BRDF 4 Y L

BTF 6 Y L

Plenoptic function 5 N G

Light field 4 N G

Reflectance field 8 Y G
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camera acts as a light probe to measure radiance after a photo-
metric calibration stage to relate measured image pixel values 
to scene intensity.

Capturing appearance

Capturing appearance densely—Robots and domes
Traditionally BRDF was measured with large devices called 
gonioreflectometers with a computer controlled light source and 
a photometer moved on a hemispherical gantry. Since radiometri-
cally calibrated cameras can also measure light, BRDF methods 
using images from cameras calibrated to relate pixel values to 
radiometrically calibrated intensity replaced the traditional 
gonioreflectometer [11], [34], [36]. Reflectance is measured using 
multiple images of a surface taken with a camera moved with a 

robotic arm or multiple cameras fixed at different positions (e.g., 
vertices of a geodesic dome). Illumination direction is controlled 
using a moving light source or a light dome [55]. BRDFs are 
also captured using objects of known geometry such as uni-
formly painted spheres imaged with a camera and a point 
source moving along a circular arc [36]. Human face and skin 
images taken from multiple viewing directions and under mul-
tiple illumination conditions have been used to obtain reflec-
tance fields for successful recognition and rendering [10], [15], 
[63]. A comprehensive survey of BRDF/BTF capture devices 
is provided in [23]. Examples of reflectance measurement 
devices for computational appearance are depicted in Figure 8.

Both robotics-based measurements and dome-based mea-
surements approach the measurement problem by densely sam-
pling the hemisphere with as many samples as possible with 
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FIGURE 8. A sampling of devices to capture computational appearance. (a) From left: [2], [19], and [25]. (b) From left: [38], [53], [14], and [35]. (c) From left:  [56], 
[3], [50], and [18]. All the devices shown measure the scene or surface as a function of viewing and illumination direction. ([2] © 2013 Association for Computing 
Machinery, Inc. Reprinted by permission. [25] ©2010 Association for Computing Machinery, Inc. Reprinted by permission. [38] ©2011 Association for Computing 
Machinery, Inc. Reprinted by permission. [53] ©2013 Association for Computing Machinery, Inc. Reprinted by permission. [3] ©2015 Association for Computing 
Machinery, Inc. Reprinted by permission. [50] ©2011 Association for Computing Machinery, Inc. Reprinted by permission.)
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the given device. Lab-based approaches to reflectance measure-
ment can be cumbersome, time-consuming, and nonportable. 
Dense angular sampling to capture the hemisphere of possible 
viewing directions ,v vi z  for each illumination direction ,i ii z

leads to extremely large BRDF measurement sets. However, 
with coarse sampling of the angular space important features of 
the reflectance function may be lost. Current trends in appear-
ance capture improve on the initial dome and robotic based 
measurements to provide appearance capture that is fast, por-
table, sparse, and low dimensional.

Capturing appearance quickly—Novel cameras
Mirror-based cameras take advantage of a mirror’s ability to 
redirect light rays in a manner that is dependent on the mirror 
geometry. In particular, parabolic mirrors have the property of 
focusing parallel light to a single point. The texture camera [14]
is a device that uses a concave off-axis parabolic mirror to 
replace the angular movements required in a gonioreflectome-
ter. Parallel light incident on the mirror surface is focused to a 
point; a planar aperture placed in the incident light field that 
selects a single light ray effectively chooses an angle of illumi-
nation. Motion of the planar aperture in a plane provides angu-
lar indexing of the incident light rays without the need for 
hemispherical motions. Since planar motion of an aperture is 
easier to accomplish than hemispherical motion, this design 
is very convenient. In a dual manner, reflected light from the 
surface is redirected by the parabolic mirror to a set of paral-
lel rays. Placing a camera with a telecentric lens in the path 
of this set of parallel light rays provides an unusual image. It 
is the image of a single surface point, but from multiple view-
ing directions. In this manner, the camera records a multiv-
iew image of a surface point where each pixel records a 
different angle. While the basic operational principles can be 
discussed with ray optics, diffraction effects and limits on 
measurable angular range have also been evaluated [14]. By 

scanning illumination directions and surface points, the device 
can measure a surface BTF and is used as a texture camera. 
This approach has recently been used as a reflectance sensor to 
collect reflectance disks as shown in Figure 9.

Point-and-shoot reflectance capture provides an opportu-
nity to use BRDF (or a sampling of BRDF) in mobile applica-
tions. Reflectance disks are instantaneous snapshots of point 
reflectance obtained with small concave parabolic mirrors. 
The reflectance disks of multiple surface points for an irides-
cent sample are shown in Figure 9. Notice the reflectance disks 
capture the large change in surface reflectance with view-
ing angle (observable by color and intensity changes in the 
reflectance disks). Recent work [65] shows these reflectance 
disks are convenient to estimate angular gradients that can be 
effective in recognizing material classes. One-shot reflectance 
capture with portable devices is an important goal for acquir-
ing data from scenes in a convenient way, to build data-driven 
models. Two shot reflectance capture (flash and no-flash) [3]
enables BTF capture with a simple lightweight mobile device.

Another mirror-based camera is a multiview radial imaging 
system that obtains a dense sampling of viewing directions using 
a conical curved mirror placed in the light path of the camera 
[30]. This device also samples multiple viewpoints with a single 
snapshot. The system can be used to measure BRDF and recov-
er both the geometry and the texture map of 3-D objects.

In addition to novel mirror-based cameras, lenses have been 
redesigned for the purpose of capturing reflectance or appear-
ance. For example, using a pair of condenser lenses [17] also 
leads to a fast and compact reflectance sensor capable of measur-
ing a BRDF with a solid angle near 90°. Another novel approach 
is BRDF measurement without any camera that is accomplished 
with a device consisting of a dome of light-emitting diode lights 
used as both the illuminants and photodiodes [6].

Light-field capture devices include lens array methods [32],  
[41], and methods that use masks instead of lenses for multiangle 
capture such as dappled photography [59]. This approach uses 
attenuation masks placed between the lens and sensor to capture 
weighted sums of the rays. Then the rays are reconstructructed 
via a decoding process. This concept of capturing weighted 
sums of rays from multiple angles is also referred to as multi-
plexing and has been used to capture light fields using illumina-
tion multiplexing [54] and polarization multiplexing [9].

Capturing appearance remotely
While mirror-based systems for reflectance have the advantage 
of using a single viewpoint to capture reflectance over multiple 
angles, the approach has the disadvantage of requiring an up-
close observation where the distance from camera to surface is 
small. An issue with measuring a BRDF from a distance is 
that the need for hemispherical variation of the light source or 
viewing direction prevents large ranges of angular reflectance 
measurements. Several methods exist for one-shot reflectance 
capture, but they are limited either in the range of angles or by 
requiring close-up reflectance capture. Time-of-flight imaging 
has been used to get dense reflectance measurements from a 
distance [38]. This method takes advantage of ultra-fast 

FIGURE 9. Samples of the BRDF (multiple viewing directions) that show 
the iridescence of a peacock feather that is not observable in a single view 
photo. Notice the abrupt changes in color and intensity as the viewing 
direction changes. We see this iridescence when we tilt our heads or the 
feather when viewing in person [65].
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imaging in time-of-flight cameras. Different angles of exiting 
illumination from a surface that correspond to different path 
lengths are imaged at different times by the camera. The mea-
surement of reflectance as a function of time can be mapped to 
different points on the surface. High-quality reconstructions of 
BRDFs have been demonstrated with this approach.

Capturing appearance optimally
Full appearance, even for a single surface point, is a very 
high-dimensional signal, especially when illumination and 
viewing directions are densely sampled. If 
every surface point is captured by densely 
sampling the hemisphere of possible illu-
mination directions and viewing directions, 
this angular sampling gives a terabyte or 
more of image data at the same spatial res-
olution as a one megabyte traditional 
image. Representing high-dimensional 
appearance compactly is a major challenge 
to enable efficient capture, matching, and 
discrimination. Unlike standard methods 
of signal compression after capture, the 
goal of capturing appearance optimally 
is to avoid sampling the full appearance 
signal to achieve fast and efficient appearance capture.

An important question that arises in measuring reflection 
is: Which illumination and viewing directions matter most? 
Are there optimal sampling strategies that can be used to sub-
sample the measurement space in a meaningful way? This 
question has been addressed by empirical studies on compre-
hensive data sets. Recent work [45] uses the MERL BRDF 
database [42] to determine which samples are most useful by 
computing the accuracy of the reconstructed the BRDFs using 
principal components analysis. After determining which sam-
ples are optimal, capturing only those measurements increases 
acquisition speed and decreases required storage requirements.

Efficient capture of the BRDF with few samples is accom-
plished by an isotropic approximation of the BRDF represent-
ed as a 2-D bivariate function [4]. For many approaches, the 
reparameterization of the BRDF as described in [52] provides 
a compact representation and reduces the number of basis 
coefficients. Lab-based BRDF-slice measurements with light-
domes are used to capture a sampling of the BRDF for mate-
rial classification [19], [56]. Basis illumination [21] is another 
approach to compress appearance at capture time. This method 
illuminates the scene with spherical basis functions of illumi-
nation. By expressing signals as linear combinations of basis 
measurements, BRDF acquisition with basis illumination 
requires significantly less time than dense angular sampling.

Another framework for efficient appearance capture uses 
the Helmoltz reciprocity principle ,which states that reflec-
tance will be the same when the input and output light intensity 
is reversed. Dual photography [57] uses Helmholtz reciprocity 
to capture with a camera, illuminate with a light source, but 
then computes the image that results from switching the posi-
tions of camera and light source. This property has significant 

practical importance because the scene reflectance from indi-
vidual illuminants cannot typically be captured with an illumi-
nation array. That is, the reflection from a single illumination 
source cannot be isolated. However, an array of cameras can 
be used without an intereference problem and therefore dual 
photography can achieve the effect of multi-illuminant capture 
with camera arrays.

Appearance capture can also be cast as a compressive sens-
ing problem, and sparse methods in signal processing have 
been used to efficiently measure 8-D reflectance fields. Sym-

metric photography [20] uses data sparsity 
of reflectance fields to make the process 
of measuring the entire 8-D function man-
ageable. The method can be used to obtain 
virtual views of the scene by assuming the 
light transport matrix is symmetric; there-
fore transport coefficient Tji need not be 
measured but can be estimated as the mea-
sured .Tij  Compressive dual photography 
[58] uses compressive sensing and the prop-
erties of L1-norm optimization to achieve 
a sparse result and exploits the compress-
ibility of the signal in a transform domain 
to speed acquisition. Sparse sampling com-

bined strategically with dense sampling is the approach of 
manifold bootstrapping [17]. This method samples spatially at 
a low angular density and samples sparse key points at a high 
angular density using a handheld device and 10–20 minute 
scanning sessions.

Reflectance hashing [65] is another method for managing 
high-dimensional appearance. In this method, surface reflec-
tance is obtained using an off-axis concave parabolic mir-
ror. These one-shot reflectance measurements are converted 
to binary codes in an optimization that preserves discrimi-
native characteristics for recognizing material classes. The 
approach is supervised so that training reflectance data with 
associated material class labels must be known. The binary 
codes are optimized to reduce the error cost function over 
the training set so that the Hamming distance is close to the 
Euclidian distance that would be used in a nearest neighbor 
classification. The result is a compact binary code to repre-
sent the high-dimensional reflectance function and fast rec-
ognition is supported because the Hamming distance is very 
efficient to compute.

Appearance applications beyond
recognition and rendering
While recognition and rendering are the traditional applica-
tions for computational appearance, there is a large set of 
novel applications for computational appearance in diverse 
application domains.

Computational appearance in dermatology
For biomedical applications, quantitative dermatology can 
use computational appearance captured using variations of 
illumination and camera pose to assess change. In standard 

Beyond basic object 
recognition, example 
applications for 
computational appearance 
are numerous and include 
e-commerce, art archiving, 
robotic navigation, 
architecture, and 
biomedical applications 
such as dermatology.
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dermatology, the visual impression of the clinical dermatolo-
gist is the main tool of initial diagnosis. A typical question in 
evaluating subtle change may be: Has a mole changed by 3% 
over the course of a year? A clinical practitioner may have dif-
ficulty in making such a precise quantitative assessment based 
on observation. Figure 10 illustrates an example of the depen-
dence of skin appearance on viewing and illumination 
direction [9]. This image set shows basal 
cell carcinoma where each image depicts 
the same skin region captured under dif-
ferent illumination directions. Notice that 
the appearance changes significantly 
across the image set, revealing unique sur-
face structures. For example, the raised 
translucent border is only visible in a sub-
set of the illumination directions. These 
images are multiangle reflectance mea-
surements that capture skin appearance 
and provides a digital representation to store, share, and 
compare appearance in a computationally meaningful way.

Separating reflectance components
Light in a scene originates not only from the primary source 
but also from light scattering due to translucency and from 
interreflections within the scene. Fast separation of direct and 
indirect reflectance [40] uses high-frequency binary illumina-
tion patterns projected on the scene to recover reflection of 
the light source separately from reflection due to scattering 
and interreflections. This method creates two components of 
appearance that can be used for scene analysis such as detect-
ing shadowed areas and areas obscured by translucent objects. 
Primal-dual coding [47] also projects illumination patterns 
onto the scene and modulates the light capturing elements so 
that there is control over which light paths (between projector 
and camera) contribute to the image and how much they are 
modulated. By controlling the relative modulations of the 
direct and indirect light components, this method creates a 
tuned image that can rebalance the different scene appearance 
components. Structured light transport [46] creates a live 
video stream of indirect reflection using a high-speed imag-
ing system comprising a digital micromirror device (DMD) 
projector and DMD mask. The method projects a pattern and 
places a modulating pixel mask at the camera. Where 

primal-dual coding [47] uses liquid crystal displays (LCDs) 
for modulation, structured light transport uses DMDs and, 
therefor, the projection masks and pixel masks are binary.

Estimating geometry, reflectance, and illumination
In general, an image depends on object geometry (shape), 
reflectance, and illumination. If two are known, the other 

can be measured directly. Alternatively, 
when more than one of the elements are 
unknown, auxilliary information can be 
used for estimation. Just as binocular stereo 
can be used to determine geometry of a 
scene, photometric stereo uses multiple 
light sources to determine local surface 
shape in terms of local surface normals. 
Implicit in traditional methods of photo-
metric stereo is a Lambertian reflectance 
model. Lambertian reflectance provides a 

simple expression for reflectance as a function of the incident 
illumination direction and the surface normal. Measured 
reflectance for known illumination directions can be used to 
create a set of equations to estimate the surface normal. More 
recent methods remove the restriction that the reflectance 
must be Lambertian and consider unknown reflectance. More 
generally, recent research considers what can be simultane-
ously estimated about reflectance, illumination, and shape.

When surface shape and lighting direction are known, the 
reflectance can be directly measured according to the refer-
ence coordinate frame defined by the local surface normal. In 
this case, an image of the surface provides the reflectance and 
the angles , , ,i i v vi z i z  are known with respect to the given 
surface normals (known shape) of the object. Recent work in 
reflectance and illumination recovery [33] addresses the prob-
lem of estimating object reflectance and scene illumination 
from a single image when the object geometry is known. Algo-
rithms in this area can also predict both the surface reflectance 
and the surface geometry simultaneously when the illumina-
tion is known [49]. Joint reflectance and shape can be estimat-
ed [48] when the illumination is known but uncontrolled as 
in measured natural illumination. Estimation of a homogenous 
BRDF from a single image of a known shape in unknown real-
world illumination can be accomplished by utilizing natural 
image statistics [51]. In the case of known shape and unknown 

FIGURE 10. Basal cell carcinoma as seen under a set of illumination angles. Each panel depicts the same patient at the same time. Only the illumination 
angle varies, yet the structural change in appearance is significant [10]. 

An interesting paradigm is 
machine learning affecting 
appearance capture, 
driving what aspects of 
appearance are most 
relevant for the task
at hand. 
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illumination, the motion a rotating object can also enable 
recovery of the object BRDF. [16]. For most of these estima-
tion methods, results are evaluated by comparing renderings 
to ground truth. That is, the fidelity of the representation when 
compared to ground truth is the performance metric.

Hiding information within appearance
When considering appearance as measured by reflectance, 
novel opportunities arise to hide information in the angular 
space of reflected light. In this context, the high dimensionali-
ty of the local appearance is an advantage. Using changes of 
refractive index, [13] presents a unique method to create 
transparent watermarks that are hidden to the human eye but 
can be detected by a multiview camera. By encoding a water-
mark with different refractive indices, the minimum reflected 
intensity as defined by the Brewster angle occurs at a differ-
ent angle for different spatial regions of the watermark. This 
subtle effect cannot be visualized unless multiple angles are 
viewed simultaneously as done with a curved mirror-based 
reflectance capture device. Another approach to hiding infor-
mation using reflectance angular space is Bokode [37], where 
a single image can capture a hidden message embedded as a 
spatial pattern and a lenslet. The key idea is that refocusing 
the image from the captured reflectance reveals the message. 
Photographic steganography [64] refers to hiding information 
in electronically displayed images that can be decoded with a 
camera receiver either using intensity [5], [61], [64], high-fre-
quency modulation [28], [43], or color [60].

Conclusions
Measuring apparatus for appearance has evolved past ordinary 
cameras to devices for more general light capture. Specialized 
cameras, devices, and algorithms can more fully capture pat-
terns of light from a scene. Dense sampling of reflectance with 
robotic devices and light/camera domes has evolved to compu-
tational imaging procedures for faster capture in a more com-
pact device and a more compact representation. A large 
majority of the appearance capture methods make improve-
ments that are generically useful (e.g., faster, more compact, 
more complete). An open research topic for future trends is tun-
ing computational appearance for a particular task, creating a 
feedback from application/algorithm to capture method. For 
example, the image signal processors within a camera that han-
dle demosaicing, denoising, and other image processing tasks 
have been optimized in an end-to-end manner [24] to optimize 
image quality. There are many more possibilities in the concept 
of combining optimization and appearance capture. Consider 
machine-learning methods such as deep learning and convolu-
tional neural networks that can use appearance measurements 
as input. An interesting paradigm is machine learning affecting
appearance capture, driving what aspects of appearance are 
most relevant for the task at hand. Since the computational 
camera is a tunable device, the question of how to tune it leads 
to new cost functions that balance algorithm requirements, 
hardware constraints, physical and optical constraints, and 
application goals. Future trends for appearance capture are not 

replicating what the eye would see, but rather tuning the sam-
pling of light to meet what an algorithm requires.
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COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

 Enhanced Compressive Imaging Using Model-Based Acquisition
Smarter sampling by incorporating domain knowledge  

C
ompressive imaging (CI) is a subset of computational 
photography where a scene is captured via a series of 
optical, transform-based modulations before being 
recorded at the detector. However, unlike previous trans-

form imagers, compressive sensors take advantage of the inher-
ent sparsity in the image and use specialized algorithms to 
reconstruct a high-resolution image with far lower than 100% 

of the total measurements. Initial CI systems exploited the 
properties of random matrices used in other areas of 

compressive sensing (CS); however, in the case of 
imaging, there are immense benefits to be derived by 

designing measurement matrices that optimize spe-
cific objectives and enable novel capabilities. In 
this article, we survey recent results on measure-
ment matrix designs that provide the ability of 
real-time previews, signature-selective imaging, 
and reconstruction-free inference.

Compressive imaging 
The last decade has seen rapid advancements in 

computational imaging, especially in the context 
of high-dimensional acquisition in resource-con-

strained regimes. At the forefront of these advances 
is the idea of CI [2], the optical embodiment of CS, 

which enables one to sense images, videos, and other 
visual signals compressively, i.e., sensing a signal from far 

fewer number of measurements than its dimensionality. Thus, 
one benefit of such a system is that the measurement process 
simultaneously compresses as it acquires the image. More 
importantly, such a design allows far cheaper imaging outside 
the visible spectrum, such as the infrared wavelengths. While 
silicon-based imagers cost less than US$100 for tens of mega-
pixels, infrared imaging systems that are not silicon based are 
thousands of dollars, even for far less than a megapixel reso-
lution, and tens of thousands of dollars for a megapixel or 
more. One can use the same imaging system and mathemat-
ics to also exploit sparsity in time and turn a visible video 
camera system into a high-speed one [28]. Finally,  CI systems 
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can perform image-sensing tasks with far less overhead in 
processing, transmission, and data storage than the current 
camera-based counterparts. While the examples in this article 
focus on images and videos, the use of such CI systems for 
depth and hyperspectral acquisition can further leverage such 
benefits and are also being explored by many researchers.

Specifically, CI (and, more generally, CS) aims to sense a 
signal x RN!  from an underdetermined linear system, i.e., 
measurements of the form

,y x eU= + (1)

where RM N!U #  with ,M N<  and e  is the measurement 
noise. For an arbitrary signal in RN , this is impossible since 
the map :R RN M7U  is many to one and noninvertible. CS 
handles this by restricting the signal x  to belong to a distin-
guished class, e.g., signals that are sparse. The main results of 
CS state that when the measurement matrix U  has a special 
structure and x  is K-sparse (or having K or fewer nonzero 
entries), then we can robustly recover x , provided that M is 
sufficiently large. These basic results have been extended 
beyond real-space sparse imaging to include signals that are 
sparse in a transform domain, have sparse gradients [26], low-
rank matrices [10], and low-dimensional manifolds [5].

A classic example of CI in practice is the single pixel camera 
(SPC), which consists of an optical modulator and a single pho-
todetector that obtains coded linear or compressive measure-
ments of the scene. A schematic and further description of the 
SPC is highlighted in “Signal Pixel Camera Basics.” The com-
pressive measurements y Rt !  taken by an SPC at the sam-
ple instants , ,t T1 f=  can be modeled as , ,xy et t t tz= +

where T  is the total number of acquired samples, Rt
N 1!z #

is the measurement vector, e Rt !  represents measurement 
noise, and x Rt

N 1! #  is the scene (or frame) at sample instant 
.t  We assume that the two-dimensional (2-D) scene consists of 

n n#  spatial pixels that, when vectorized, results in the vector 
xt  of dimension .N n2=  We also use the notation y :W1  to rep-
resent the vector consisting of a window of W T#  successive 
compressive measurements (samples), i.e.,

,

,
.y

x

x

y

y

e

e
:W

W W W W

1

1 1 1 1

h h

z

z

= =

+

+
> >H H (2)

If we further assume that the scene is static (as is the case 
when we are sensing an image), then x x x xW1 2 g= = = =

and we obtain the imaging model in (1).
The theoretical results of CI rely heavily on the properties 

of random matrices, i.e., matrices whose entries are sampled 
from certain distributions. A central result states that, when a 
matrix RM N!U #  satisfies the so-called restricted isometry 
property (RIP) on all K-sparse signals, then it is possible to 
stably recover all K-sparse signals from linear measurements 
as in (1). Specifically, the measurement operator U  is said to 
satisfy the RIP with constant 02d  if, for every K-sparse sig-
nals ,x x1 2 , the following relations hold:

( ) ( ) .x x x x x x1 11 2
2

1 2
2

1 2
2# #d dU U- - - + -

(3)

The quantity d encapsulates the deviation from perfect isometry 
and is called the isometry constant. Random matrices provide a 
simple and elegant method to construct measurement operators 
that satisfy the RIP. When the entries of U are sampled inde-
pendent and identically distributed (i.i.d.) from sub-Gaussian 
distributions, then U satisfies the RIP with overwhelming prob-
ability provided ( ( / ))logM O K N K=  [4]. Similarly, measure-
ment operators U obtained via randomly subsampling the rows 
of certain orthonormal matrices satisfy the RIP with over-
whelming probability [11]. Both designs for enabling measure-
ment matrices with the RIP are universal, i.e., they are 
independent of the application.

Many of the early CI systems used random constructions 
for measurement matrices. However, despite their conceptual 
simplicity, random projections suffer from certain shortcom-
ings that make them impractical. Their theoretical guaran-
tees are probabilistic, i.e., there is a nonzero chance that the 
obtained embedding does not satisfy a (near) isometry, and 
asymptotic, i.e., the guarantees hold only when the problem 
dimensions are sufficiently high. Further, by virtue of uni-
versality, random matrices are independent of both the data 
under consideration as well as the eventual inference task that 
we seek to perform. As a consequence, the use of random 
projections precludes us from leveraging special geometric 
structure that might be present in the data or the inference 
task. From a practical standpoint, large random matrices are 
also extremely cumbersome, requiring storage and process-
ing requirements that become prohibitive when sensing high-
dimensional signals.

In this article, we survey recent trends in the construction 
of deterministic matrices for CI and highlight key areas where 
the use of specifically designed measurement matrices provide 
significant improvements over random constructions. We dis-
cuss the following three applications. 
■ Structured CI using signature-preserving matrices:

Careful design of measurement operators can enable us to 
sense certain structures effectively. We present a new inter-
pretation/construction of Hadamard codes using signature-
blocks that arranges patterns into groups that share a 
certain local signature or sequency. The codes can aid in 
analyzing the scene without having to computationally 
reconstruct an image, e.g., assessing the signal-to-noise 
ratio (SNR) of different blocks, and determining which sig-
natures (i.e., features) are most prominent. This new 
approach to constructing acquisition patterns benefits in 
both faster recovery and enhanced image quality as well as 
in object recognition and tracking tasks. Further, the block 
structure also permits low-resolution previews of different 
signature-filtered versions of the observed scene.

■ Motion predictive video CS using dual-scale sensing 
(DSS) matrices: We show that measurement matrices 
can be endowed to sense the scene at multiple spatial 
scales, simultaneously. This enables real-time recovery of 
the video, albeit at a lower spatial resolution, and can 
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provide a digital viewfinder for compressive cameras. 
This low-resolution preview can be exploited to build sig-
nal-specific models. An example of this is to estimate 
scene motion by computing optical flow between frames 

of the preview. Motion flow provides extremely precise 
relationships between the frames of a video that can sub-
sequently be exploited to recover the video at high spatial 
and temporal resolutions.

While CI has also been employed with large focal plane 
imaging arrays, the most extreme realization of CI is the 
SPC. This combines an optical modulator displaying a time 
sequence of patterns where the image forms on an interme-
diate image plane. A series of patterns displayed on this 
modulator convolves with the image and directs a portion of 
this light towards a single optical sensor while discarding the 
rest. This provides a set of image measurements that are 
recorded for later reconstruction into the original image as 
shown in Figure S1(a). While many choices of optical modu-
lators exist, the digital micromirror array devices from Texas 
Instruments provide a large number of broad-spectrum mod-
ulators that toggle between patterns up to a rate of 30 kHz.

Such an optical system can encode the image in many 
possible ways, as illustrated in Figure S1(b). One of the 
most intuitive ways is when one simply scans a single ON 
mirror one at a time in a raster-encoding manner. The first 
drawback in this case is that each measurement collects 

very little light. Second, anything lower than 100% of the 
measurements results in only a partial image of the scene. 
Another approach is to use a transform-based acquisition 
and thus results in roughly half the total scene light being 
acquired with each measurement. Given the binary modula-
tion nature of the digital micromirror device (DMD), the 
Hadamard transform appears ideal. However, with less 
than 100% of the measurements, this case still reconstructs 
only part of the information contained in the image. Finally,  
if one employs random measurements as suggested by 
[11], then only a small fraction of the total measurements 
are needed to reconstruct nearly the full image. Many of the 
initial CI systems employed permuted-Hadamard measure-
ments as a means of generating pseudo-random acquisition 
sequences. However, as this article discusses, prior informa-
tion and/or assumptions regarding the scene to be imaged 
can result in large improvements in acquisition and process-
ing for various tasks.

Single Pixel Camera Basics 

Scene

Single
Photodetector

Random
Pattern on

DMD Array

x

φ

y

A/D
PD

Raster Scan, Mirror by Mirror 

Hadamard Transform

Compressive Imaging 

(b)

(c)

(d)

(a)

Single Pixel Camera Reconstructions from Different Measurement Schemes 

FIGURE S1. (a) A schematic representation of the SPC where the image is focused on an optical modulator and encoded by a series of patterns 
before being relayed and focused onto a single detector element. (b)–(d) Three examples of inner products of possible encoding patterns and their 
convolution with the scene being imaged: (b) a raster scan, (c) Hadamard basis, and (d) random basis. Each example also shows the reconstruc-
tion obtained from using only 25% of the total measurements.
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■ Reconstruction-free inference: The eventual goal in 
many applications is often not just reconstruction of an 
image but an inference problem pertaining to detection, 
tracking, recognition, and/or classification. While infer-
ence can be performed postreconstruction on the output of 
a reconstruction procedure, there are important benefits to 
be gained by performing them directly on the compressive 
domain. First, many inference tasks are inherently simpler 
than reconstruction; hence, there is hope that we can per-
form them with fewer measurements. Second, CS recon-
struction is intrinsically tied to the signal models used for 
the unknown signal and these signal models prioritize fea-
tures that deal with visual perception, 
which often is not the most relevant for 
the subsequent processing tasks. Third, 
reconstruction algorithms associated 
with CS have high computational com-
plexity; hence, avoiding a reconstruction 
step in the overall processing pipeline 
can be beneficial. To highlight these ben-
eficial aspects of compressive inference 
and the critical role that measurement 
operator design plays in it, we will 
review techniques that let us solve high-
level computer vision problems (e.g., object, face, and 
activity recognition) by foregoing reconstruction in favor 
of inference.
In many ways, the examples that we discuss fall under the 

broad category of model-based CS [3], where signal models 
beyond simple sparsity are used to obtain recovery guarantees 
with fewer measurements. A key distinction is that the results 
of model-based CS rely on random matrix constructions, while 
we seek alternative methods that are domain- and task-specific.

Structured compressive imaging
In this section, we present a method of generating measure-
ment matrices that are endowed with unique local signatures. 
These waveforms can be used to make measurements of a 
scene of interest with applications in imaging and detection/
classification. We introduce a generalized Kronecker product 
that generates a matrix with blocks of rows where, within 
each block, the rows all share the same local signature (i.e., a 
specific spatial pattern). The individual rows can be used as 
patterns, e.g., on a spatial light modulator (SLM) in an optical 
system that observes a scene.

The Kronecker product
The Kronecker product is used throughout mathematical sci-
ences in countless applications such as signal/image process-
ing, control theory, quantum computing, etc. Part of its 
utility comes from the ability to tensor together low-dimen-
sional ideas into larger systems [33]. The Kronecker product 
has long been used whenever operators are separable. A clas-
sical example is when an image is represented as a matrix 
and the transformed image can be separated into two func-
tions, one that operates on the rows and another that operates 

on the columns. Extending this to higher dimensions is 
straightforward. Recently, Kronecker product-based CS has 
been explored in the context of multidimensional signals [13]. 
Arguably though, the Kronecker product’s most crucial role is 
in enabling fast implementations of important mathematical 
functions, such as the discrete Fourier transform, the Haar 
wavelet, and the Hadamard transform. We are particularly 
interested in the Kronecker product-based constructions of 
Hadamard matrices, which have had a long history in imaging 
and optics [16].

A Hadamard matrix is an orthogonal matrix with entries 
restricted to just { }.1!  Power-of-two Hadamard matrices are 

often thought of as a square-wave version 
of the discrete cosine transform (DCT) and 
are attractive since they have an associated 
fast transform. However, Hadamard matri-
ces of sizes other than powers of two exist 
as well, and they can also have fast trans-
forms. The rows of Hadamard matrices are 
usually described in terms of their sequen-
cy, which is similar to the notion of the fre-
quency of a sinusoid. Sequency is simply 
the number of 1!  transitions contained in a 
Hadamard waveform.

The local signature-based measurement matrix design pre-
sented here is a simple generalization of the standard Kroneck-
er product. The typical Kronecker product of matrices A and 
B is defined [33] as : [ ]A B Baij7 = , where aij is the ( , )i j th ele-
ment of matrix A. From the definition, we see that commuting 
the factors A and B in general yields A B B A.7 7!  Note 
that the elements of the left-hand factor provide the weights for 
the copies of the right-hand factor. Qualitatively, we can think 
of the left-hand factor A as the modulator and the right-hand 
factor B as that which is modulated. In this sense, the rows of 
B provide the local patterns that ultimately generate the global 
patterns in the rows of BA .7  These shorter, local patterns can 
be thought of as signatures.

The signature row-block Kronecker product
Suppose matrices A and B, respectively, have K and L rows, 
i.e., [ ] , [ ] .A a B bi i

K
i i

L
0
1

0
1= ==

-
=
-  The signature row-block (SRB) 

Kronecker product is defined as

{ }: , : .A B A b
a b

a bB
B

B

SRB

L

j j

j

K j1

0

1

0

7 7

7

7

h h= = =

- -

> >H H (4)

Here, B j  is the jth SRB, which consists of the K rows of A
that modulate just signature .b j  The signature rows of matrix 
B analyze/synthesize the local patches of pixels in the image, 
and the rows of matrix A simply multiplex these into the larg-
er, global measurement patterns. Hence, it is matrix B that is 
directly tied to the model-based acquisition strategy. For 
example, in CS applications, matrix B could be a dictionary 
previously trained by a principal component analysis to have 
maximal incoherence with respect to the sparsity basis of an 

The Kronecker product 
is used throughout 
mathematical sciences 
in countless applications 
such as signal/image 
processing, control  
theory, quantum 
computing, etc.
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observed scene, or it could be a standard unitary matrix such 
as the DCT.

The SRB Kronecker product (4) can easily be obtained from 
either of the typical Kronecker products A B7  or B A.7

That is, there exist permutation matrices P  and Q  such that 
{ } ( ) ( ) .A B P A B B A QSRB7 7 7= =  This is significant 

because, if observations of a scene with the rows of an SRB 
Kronecker product matrix are collected, the typical Kronecker 
product and its inverse can be used (and their fast implementa-
tions, if they exist) for global processing of the whole image. 
Yet, at the same time, the SRB structure lets us group measure-
ments according to the local signatures, which has value since 
it is the local information that contains details such as edges, 
textures, or anomalies within a signal/scene of interest. This 
enables properties such as the ability to view the data either 
within the context of particular SRBs or within the context of 
the larger transform space, analyze or solve an imaging/infer-
ence problem as L separate smaller problems or as one large 
problem, assess the SNR of a particular SRB’s coefficients and/
or determine optimal bit allocation, quickly generate downs-
ampled previews of the scene filtered through each signature, 
and subsample within certain SRBs, e.g., in CI applications. 
The last two items are examined in the next section.

Using signature row-block Kronecker products for CI
It is easy to extend the SRB Kronecker product (4) to 2-D 
imaging applications. In this case, the SRB structure natural-
ly endows the measurement space with a convenient 2-D par-
titioning now based on local signature tiles, instead of the 
one-dimensional signature rows discussed previously. For 
computational imaging, the rows of a Hadamard matrix can 
be reshaped into the 2-D spatial modulating waveforms used, 
e.g., on the digital micromirror device (DMD) used in the 
SPC. In this application, each element of a given row is 
mapped to one mirror of the DMD, and the 1!  values deter-
mines whether it is in an ON or OFF state. Hadamard matri-
ces have been used extensively as sensing matrices in CI since 
they have been shown to be incoherent to sparse signals. Fur-
ther, the fast implementation of many Hadamard transforms 

means that the reconstruction algorithms can quickly con-
verge to a solution. Many CI applications also apply a scram-
bling operation to the Hadamard matrix, e.g., randomly 
permuting the columns. This breaks up the structure and 
results in pseudorandom binary patterns that can be beneficial 
in certain situations. However, this is different than the 
approach taken here.

At the same time, Hadamard patterns can be used in a more 
traditional transform coding/decoding manner. Power-of-two 
Hadamard transforms have good energy compaction proper-
ties, similar to the DCT. We can utilize this fact in conjunc-
tion with the partitioned block structure provided by the SRB 
Kronecker product. Now, with A as a Hadamard matrix, each 
individual SRB B j  in (4) is an orthogonal basis for a subspace 
encoded or filtered by the signature .b j  Further, with B also 
as a Hadamard matrix, the set of SRBs { }B j  are orthogonal to 
each other. With B specifically as a power-of-four Hadamard 
matrix H4n, for some n, the signatures will span all possible 
sequencies when observing 2 2n n#  patches of pixels, which 
is similar to the range of spatial frequencies in the 2-D DCT. 
For example, if matrix B is a Walsh-Hadamard matrix H64  in 
(4), the measurement space is divided into 64 SRBs associated 
with the 2-D signature 8 # 8 tiles shown in Figure 1. Each of 
these signature tiles correspond to one row of H64  that has been 
reshaped to 2-D.

The SRB structure of the deterministic sensing matrix 
{ }A BSRB7  lends itself to selective and model-based sam-

pling strategies. We are free to choose which SRBs we want 
to sample from, and we can choose to sample them partial-
ly or completely. This leads to a partial-complete sensing 
approach [20] that is essentially a block-structured version 
of variable density sampling. Note that SRBs that are com-
pletely sampled at 100% can be easily and quickly demodu-
lated by removing the multiplexing effect of matrix A (more 
details can be found in [19]). This provides a low-resolution 
preview of the scene filtered through the signature tile asso-
ciated with a particular SRB. To see this, consider the scene 
with N 768 1024 12 2· 16#= =  pixels shown Figure 1. If we 
want to construct an SRB Kronecker matrix with B H64=
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FIGURE 1. (a) 8 × 8 signature tiles (2-D sequency patterns) corresponding to the 64 SRBs that partition the Hadamard domain. (b) A 768 × 1024 ground 
truth scene. (c) Four low-resolution 96 × 128 signature previews from the four lowest-sequency blocks [marked in red in (a)], which all have 100% 
complete sampling. (Figure courtesy of www.dpreview.com.)
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in (4), then we must choose A H12 2· 10=  so that { }A BSRB7

is .N N#  Suppose that we completely sample the four lowest 
sequency blocks associated with the signature tiles outlined in 
the red-dashed line in Figure 1. The low-resolution previews of 
the scene filtered through these signature tiles can be seen in 
Figure 1. These signature previews reveal that the buildings in 
the observed city skyline have strong vertical and horizontal 
components. In general, any a priori information will dictate 
which SRBs to focus on.

Returning to the goal of CI, we selected modes from each 
of the 64 SRBs of the 2-D Hadamard domain such that the 
total number of measurements M  was 15% of ,N  as shown 
in Figure 2(a). Besides the four completely sampled SRBs, 
the other 60 SRBs were partially sampled at random with 
a canonical variable density described in [21]. Most natu-
ral scenes have their energy focused in the lower sequency 
modes, so we sampled more densely in these SRBs. Note 
that the measurements had additive white Gaussian noise 
with an SNR of 30 dB. We used these measurements in 
conjunction with a reconstruction algorithm that mini-
mized the total variation (TV) that resulted in the recov-
ered image seen in Figure 2(b). Compared to the ground 
truth in Figure 1, good detail can be seen even though only 
15% of the possible Hadamard modes were used to observe 

the scene. Furthermore, the algorithm converged in just 
13 iterations. This approach has some similarity to hybrid 
sampling methods that gather low-frequency measure-
ments, followed by higher-frequency detail measurements. 
A somewhat related strategy is to assemble a union of bases 
consisting of chirp or Reed–Muller sequences as the sens-
ing matrix [27].

Next, we examine how our structured SRB sensing matrix 
compares with a typical CI sensing matrix. We used the same 
2-D Hadamard domain, but the sensing modes were chosen 
uniformly at random, again such that / %M N 15=  as seen in 
Figure 2(d). Note that sensing in this manner usually results in 
extremely poor reconstructions. We ameliorated this by scram-
bling each of the Hadamard patterns before sensing so that they 
appeared as binary noise. (In this sense, the comparison with the 
SRB method is not exact but is the most fair.) As before, white 
Gaussian noise was added to the measurements such that the 
SNR was 30 dB. However, now the TV-minimization algorithm 
required 88 iterations to converge to the solution in Figure 2(e). 
Compared to Figure 2(b), we see that the SRB technique pro-
duces a slightly sharper image and does so in more than six-fold 
fewer iterations, which is a significant improvement. In addition, 
the SRB technique, by providing low-resolution signature pre-
views, demonstrates how intelligent sampling of the transform 

domain can offer simultaneous supple-
mentary information.

Although the Hadamard coefficients 
with the highest energy tend to be con-
centrated in the lowest-sequency blocks, 
this is not always the case. Further, a 
canonical variable density strategy is not 
always ideal. It is possible to use the SRB 
structure to find out which are the best 
blocks to sense as well as what the ideal 
subsampling density is for each block 
[21]. By simply subsampling just a few 
Hadamard modes (e.g., much less than 
1%) from each SRB, we can assemble 
a sufficient statistic that can guide us to 
the blocks with the most energy, which 
should have the best SNR. Hence, we 
can adapt to an observed scene by doing 
a fast initial query of the transform mea-
surement domain and thereby get the 
most bang for the buck.

Overall, we see that the SRB Kro-
necker product provides a structure that 
enables flexible sensing strategies. By 
properly designing the matrix and choos-
ing which SRBs to use, important local
information can be gleaned from the 
global measurements of an observed 
scene. The previous example shows how 
it can be used for imaging in a CS man-
ner as well as in providing low-resolution 
signature previews. However, the SRB 

CI Using Signature Row Block Sampling

CI Using Random Sampling

(a) (b) (c)

(d) (e) (f)

FIGURE 2. (a) The 2-D Hadamard domain partitioned by 64 SRBs (the 8 × 8 sequency patterns unique 
to each block are shown in Figure 1). The white dots indicate which Hadamard modes were used to 
observe the ground truth in Figure 1. The number of white dots equals M, the number of samples, 
such that / %M N 15= . (b) The resulting reconstructed image using TV minimization with insets shown 
in (c). Note how, in spite of the high compression, certain signatures like horizontal and vertical stripes 
are well preserved. (d) The 2-D Hadamard domain uniformly sampled at random as is done in typical 
CS. (e) The resulting reconstructed image using the same TV minimization with insets shown in (f). 
The quality is slightly degraded and took more than six times as long to converge. (Figure courtesy 
of www.dpreview.com.)
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structure can also be used for detection and classification applica-
tions. Hadamard matrices were chosen in our examples because 
they possess several attractive properties, i.e., they are well suited 
for the binary nature of the DMD, they have fast transforms, they 
have good energy compaction for most natural images, and they 
are incoherent with respect to popular sparsity bases used in CI. 
Hadamard matrices used in conjunction with the SRB Kronecker 
product structure can provide powerful model-based measure-
ment matrices.

Spatial-temporal resolution tradeoffs 
and motion predictive video compressive sensing
In this section, a case study for video CS is presented using the 
SPC with a specially designed measurement matrix that pro-
vides the ability to tradeoff spatial and temporal resolutions. 
Recall that the SPC uses a single photodetector to obtain com-
pressive measurements of a scene. However, this use of a sin-
gle photodetector is, in general, not sufficient for acquiring 
complex scenes at high resolution. Hence, it is common to 
assume that the scenes to be acquired are static and acquire 
multiple measurements over time. This approach, however, 
fails for time-variant scenes since each measurement acquires 
information of a (slightly) different scene. Figure 3 illustrates 
the effect of the violation of the static scene assumption. Put 
simply, grouping too few measurements for reconstruction 
results in poor spatial resolution, and grouping too many mea-
surements results in severe temporal aliasing artifacts.

Characterizing spatial-temporal tradeoffs
We first study the effect of downsampling on the measurement 
process and make two assumptions. First, the time-varying 
scene can be approximated as static, i.e., x b xt tD= +  where 
b  is the static component, and x x bt tD = -  is the error at 

sample instant t caused by the static-scene assumption. Sec-
ond, we decompose the static image b into a low-resolution 
component, ,UbL  where ,b Db RL

NL!=  and the high-fre-
quency residual ,b UbL-  where D  and U  are a pair of 
downsampling and upsamplign operators. Now the measure-
ment equations in (2) can be written as

( )

( ) .

y Ub b Ub z e

Ub I UD b z e
: : :

: :

W L L W W

L W W

1 1 1

1 1

U

U U

= + - + +

= + - + + (5)

The term z :W1  accounts for the motion blur terms in .xtD
Inspection of (5) reveals three sources of error in the CS mea-
surements of the low-resolution static scene UbLU : 1) the 
spatial-approximation error ( )I UD bU -  caused by down-
sampling, 2) the temporal-approximation error z :W1  caused 
by assuming the scene remains static for W samples, and 3) 
the measurement error .e :W1  Note that when ,W NL$  the 
matrix UU  has at least as many rows as columns, and, hence, 
we can get an estimate of ( ) .b yU :L W1U= @

( ( ) )b U y b U I UD b e z: : :L W L W W1 1 1U U U= = + - + +@ @^ ^h hV ,
(6)

where · @^ h  denotes the pseudoinverse. The window length W
controls a tradeoff between the spatial-approximation error 

( )I UD bU -  and the error z :W1  induced by assuming a static 
scene ,b  and the least squares estimator matrix UU @^ h

(potentially) amplifies all three error sources.

Dual-scale sensing matrices
The choice of the sensing matrix U and the upsampling oper-
ator U  are critical to arrive at a high-quality estimate of the 
low-resolution image .bL  Indeed, if the effective matrix UU
is ill-conditioned, then application of the pseudoinverse 

SPC
Measurements

512
Measurements

1,024
Measurements

2,048
Measurements

4,096
Measurements

8,096
Measurements

TimeTi

FIGURE 3. SPC and the static scene assumption. An SPC acquires a single measurement per time instant. If the scene were static, one can aggregate 
multiple measurements over time to recover the image of the scene via sparse signal recovery; for dynamic scenes, however, this approach fails. Shown 
above are reconstructs of a scene comprising of a pendulum with the letter R swinging from right to left. We show reconstructed images using different 
numbers of aggregated (or grouped) measurements. Aggregating only a small number of measurements results in poor image quality. Aggregating a large 
number of measurements violates the static scene assumption and results in dramatic temporal aliasing artifacts. (Figure adapted from [31].)
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( )UU @  amplifies all three sources of errors in (6), eventually 
resulting in a poor estimate. For virtually all sensing matrices 
U commonly used in CS, such as i.i.d. (sub)Gaussian matri-
ces, right multiplying them with an upsampling operator U
often results in an ill-conditioned matrix or even a rank-defi-
cient matrix. This is a consequence of the smallest singular 
value of square random matrices approaching zero when the 
size of the matrix is large [34].

A novel class of sensing matrices, referred to as DSS matri-
ces, achieve good CS recovery performance and have mini-
mum noise enhancement when computing 
a low-resolution preview bLV  according to 
(6). These matrices will satisfy the RIP to 
enable CS and remain well-conditioned 
when right multiplied by a given up-sam-
pling operator .U  One approach to the 
design of DSS matrices U  (see Figure 4)
relies on upsampling low-resolution Had-
amard matrices. A simple way is to start 
with a W W#  Hadamard matrix H  and 
to write the CS matrix as ,HD FU = +  where F RW N! #  is a 

1!  matrix such that ,0FU =  i.e., each block of F  should sum 
to zero. A powerful example of such a construction is the so-
called sum-to-one transform [15], where a Hadamard matrix 
is carefully designed to satisfy the dual scale property across 
any pairs of scales.

Preview mode
The use of Hadamard matrices for the low-resolution part in 
the proposed DSS matrices has an additional benefit. Had-
amard matrices have fast inverse transforms that can signifi-
cantly speed up the recovery of the low-resolution preview 
frames. Such a fast DSS matrix has the key capability of gen-
erating a high-quality preview of the scene (see Figure 4) with 
very low computational complexity. This is beneficial for 
video CS as it allows one to easily and quickly extract an 

estimate of the scene motion. The motion estimate can then 
be used to recover the video at its full resolution. In addition, 
the use of fast DSS matrices can be beneficial in various other 
ways, including as a digital viewfinder.

Motion flow-based video CS
State-of-the-art video compression methods rely on estimat-
ing the motion in the scene, compress a few reference frames, 
and use the motion vectors that relate the remaining parts of a 
scene to these reference frames. While this approach is possi-

ble in the context of video compression, i.e., 
where the algorithm has prior access to the 
entire video, it is significantly more difficult 
in the context of CS.

A general strategy to enable the use 
of motion flow-based video CS is to use a 
two-step approach [28]. In the first step, an 
initial estimate of the video is generated by 
recovering each frame individually using 
sparse wavelet or gradient priors. The initial 

estimate is used to derive motion flow between consecutive 
frames, which enables a powerful description in terms of relat-
ing similar intensities at pixels across frames. In the second 
step, the video is re-estimated with the aid of enforcing the 
extracted motion-flow constraints in addition to the measure-
ment constraints. The success of this two-step strategy criti-
cally depends on the ability to obtain reliable motion estimates, 
which, in turn, depends on obtaining robust initial estimates. 
Further, since we are upsampling the motion estimates, this 
approach only works for scenes where the moving objects 
occupy a few pixels in the low-resolution preview. We can 
obtain such robust initial estimates by using the DSS matrices. 
Figure 5 illustrates the outline of a video CS algorithm [31]
that uses the DSS matrices to enable robust previews, compute 
motion flow using the previews, and exploit the motion flow to 
sense videos at high compressions.

Row of the
Hadamard Matrix Upsampling (NN)

High-Frequency
Sparse Pattern

Row of the
DSS Matrix

Pendulum

Hand

Process of Generating Rows of DSS Matrices Previews of Three Scenes

Windmill

FIGURE 4. Generating DSS patterns and previews. DSS matrices are generated such that downsampling each row produces a row of a low-resolution 
Hadamard matrix. Also shown are previews generated for three different scenes with real data. (Figure adapted from [31].)

Hadamard matrices have 
fast inverse transforms 
that can significantly 
speed up the recovery  
of the low-resolution 
preview frames.
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Reconstruction-free inference
In this section, we discuss high-level inference problems that 
can be solved directly in the compressive domain without the 
need for reconstruction of the imagery. The primary example 
we consider is that of action recognition, which is one of the 
long standing research areas in computer vision with wide-
spread applications in video surveillance and human-computer 
interaction. In many applications of action recognition, one is 
faced with resource constraints such as limited power supply, 
limited storage, and limited computational capabilities, all of 
which make CI a great solution. To this end, we focus specifi-
cally on action recognition from videos and review the results 
that demonstrate that it is indeed possible to perform action 
recognition at extremely higher compression ratios without 
reconstructing the video in the first place.

The central idea that allows for detection/recognition prob-
lems to be solved directly in the compressed domain is the 
Johnson–Lindenstrauss (JL) lemma and its application to com-
pressive convolutional filtering (also referred to as smashed 
filtering). Specifically, the JL lemma states that the correlation 

between any two signals is nearly preserved even when the 
data is compressed to a much lower-dimensional space. This 
property allows one to evaluate the response of a signal to a 
given convolutional kernel directly in the compressed domain. 
This is extremely useful in practice since correlational features 
have traditionally been used extensively in computer-vision 
problems such as automatic target recognition, face recogni-
tion [35], palm-print identification [18], and even activity rec-
ognition [29]. Davenport et al. [25] introduced the concept of 
smashed filters that provides a way to extract such correlation-
al features in the compressed domain.

We first show that approximate correlational features can 
be extracted directly from CS measurements even in very 
challenging activity videos. Using this in conjunction with the 
widely used correlational filters approach to recognition tasks 
in computer vision, one can develop a spatiotemporal smashed 
filtering approach to action recognition that results in robust 
performance at extremely high compression ratios.

The overall algorithmic pipeline for directly extracting 
correlational features from compressed video is illustrated in 

Color Coding of
Motion Flow

Overlapping Groups
of W Measurements

Inverse
Hadamard
Transform

Inverse
Hadamard
Transform

Inverse
Hadamard
Transform

Estimate Motion Flow
Between Low-Resolution
Frames

Final Reconstructed Video
Using Motion Flow
Constraints (Full Resolution)

SPC Data

Low-Resolution Estimate
of the Frames
(√W × √W Pixels)

FIGURE 5. An outline of the CS multiscale video (CS-MUVI) recovery framework. Given a total number of T  measurements, we group them into over-
lapping windows of size W , resulting in a total of F  frames. For each frame, we first compute a low-resolution initial estimate using a window of W
neighboring measurements. We then compute the optical flow between upsampled preview frames (the optical flow is color coded as in [24]). Finally, we 
recover F  high-resolution video frames by enforcing a sparse gradient prior along with the measurement constraints as well as the brightness constancy 
constraints generated from the optical-flow estimates. (Figure adapted from [31].)
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Figure 6. We start with pretrained space-time filters for each spe-
cific action. We chose to train maximum average correlation height 
(MACH) filters for each action class [29]. The JL lemma then pro-
vides a way to evaluate the filter response for a given video direct-
ly in the compressed domain, thereby avoiding reconstructing the 
frames of the test video. To reduce computational complexity, the 
three-dimensional (3-D) response volume is calculated in the fre-
quency domain via 3-D fast Fourier transform. For a given test 
video, we obtain NA  correlation volumes. For each correlation 
volume, we adapt three level volumetric max pooling to obtain a 
73-dimensional feature vector [30]. In addition, we also compute 
peak-to-sidelobe ratio for each of these 73 max-pooled values. 
This framework can be used in any reconstruction-free applica-
tion from compressive cameras that can be implemented using 
3-D correlation filtering. The action localization in each frame is 
determined by a bounding box centred at location lmax^ h in that 
frame, where lmax is determined by the peak response (i.e., the 
response corresponding to the classified action) in that frame 
and the size of the filter corresponding to the classified action. To 
determine the size of the bounding box for a particular frame, the 
response values inside a large rectangle of the size of the filter and 
centered at lmax in that frame are normalized so that they sum up 
to unity. Treating this normalized rectangle as a 2-D probability 
density function, we determine the bounding box to be the largest 
rectangle centered at ,lmax  whose sum is less than a value .m  For 
our experiments, we use m  equal to 0.7.

Experimental results
We present sample results obtained on Weizmann [7] and the 
University of Central Florida (UCF) sports [29] data sets. More 
extensive results can be found in [22]. For all of our experi-
ments, we use a measurement matrix z , whose entries are 
drawn from i.i.d. standard Gaussian distribution, to compress 

the frames of the test videos. We note that it is possible to use 
more esoteric measurement matrices to improve either recon-
struction and/or recognition performance. For example, vari-
ants of wavelet bases are better suited for reconstruction and 
task-driven measurement operators are better suited for infer-
ence. In this section, we use the random Gaussian matrix to 
level the playing field for reconstruction and inference.

Results on Weizmann data set
The Weizmann data set contains ten different actions, each per-
formed by nine subjects, thus making a total of 90 videos. For 
evaluation, we used the leave-one-out approach, where the filters 
were trained using actions performed by eight actors and tested 
on the remaining one. The results shown in Figure 7 indicate that 
our method clearly outperforms the reconstruct-then-recognize 
using the improved dense trajectories (IDT) method, a state-of-
the-art recognition algorithm. At compression ratios of 100 and 
above, recognition rates are very stable for the compressive rec-
ognition framework, while reconstruct-then-recognize fails com-
pletely. The recognition rates are stable even at high compression 
ratios and are comparable to the recognition accuracy for the 
Oracle MACH (OM) method [1]. The average time taken by 
both methods to process a video of 144 180 50# #  size are 
shown in parentheses in Figure 7. Recon+IDT takes about 20–35 
minutes to process one video, with the frame-wise reconstruc-
tion of the video being the dominating component. In contrast, 
compressive inference takes only a few seconds. The sample 
spatial localization results are shown in Figure 7(a) in a few 
frames for various actions of the data set.

Results on UCF sports data set
The UCF sports action data set [29] contains a total of 150 
videos across nine different actions. It is a challenging data 

Compressively Sensed Actions/Scene

Random
Pattern

Lens

“Single
Pixel”

Compressive
Measurements

Z (t )

Smashed Correlation
in Space+Time

Feature Vector Formation Vai
Nonlinear Operations Max-Pooling,

Peak-Sidelobe Ratio, etc.)

Action Classification Via Statistical
Methods (e.g., SVMs)

Bank of Space-Time Action Filters for Different Viewpoints

Scene
and Action

3-D MACH Filter

FIGURE 6. Compressive inference via smashed filters. (a) Every frame of the scene is compressively sensed by optically correlating random patterns with 
the frame to obtain CS measurements. (b) An overview of our approach to action recognition from a compressively sensed test video. First, MACH [29] 
filters for different actions are synthesized offline from training examples and then compressed to obtain smashed filters. Next, the CS measurements of 
the test video are correlated with these smashed filters to obtain correlation volumes that are analyzed to determine the action in the test video. (Figure 
adapted from [22].)
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set with scale and viewpoint variations. For testing, we use 
leave-one-out cross validation. At the compression ratios of 
100 and 300, the recognition rates are 70.67% and 68%, 
respectively. The rates obtained are comparable to those 
obtained in the OM setup [29] (i.e., 69.2%). Considering the 
difficulty of the data set, these results are very encouraging. 
Sample results of the spatial localization and confusion 
matrix for recognition are shown in Figure 8.

Learning tuned measurement operators for task-specific inference
While the results presented previously indicate that effec-
tive recognition of actions is feasible from compressive 
imagers without the need for reconstruction, the results 
suggest that one can potentially achieve better results with 
a task-specific design of measurement matrices. As already 
indicated at the beginning of the experiments section, task-
specific design can be achieved in a number of ways using 

Action
Golf

Swing Kicking
Riding
Horse

Run
Side Skateboarding Swing Walk Driving Lifting

Golf swing 77.78 16.67 0 0 0 0 5.56 0 0

0 75 0 5 5 10 5 0 0

Riding
Horse

16.67 16.67 41.67 8.33 8.33 0 8.33 0 0

Run Side 0 0 0 61.54 7.69 15.38 7.69 7.69 0

Skateboarding 0 8.33 8.33 25 50 0 5 0 0

Swing 0 3.03 12.12 0.08 3.03 78.79 3.03 0 0

Walk 0 9.09 4.55 4.55 9.09 9.09 63.63 0 0

Driving 0 0 0 0 7.14 0 0 92.86 0

Lifting 0 0 0 0 0 0 0 16.67 83.33

Kicking

FIGURE 8. (a) The reconstruction-free spatial localization of the subject for OM (shown as a yellow box) and spatiotemporal smashed filter (STSF) (shown 
as a green box) at a compression ratio of 100 for some correctly classified instances of various actions in the UCF sports data set. (b) The confusion 
matrix for UCF sports database at a compression factor of 100. The recognition rate for this scenario is 70.67%, which is comparable to OM [29] (69.2%). 
(Figure adapted from [22].)

Compression
Factor

Compressive Recognition
Reconstruct-Then-
Recognize (IDT) 

Recognition
Rate Run Time 

Recognition
Rate Run Time 

81.11% 3.22 seconds 100% 3.1

81.11% 3.22 seconds 5.56% 1,520 seconds

81.11% 3.07 seconds 10% 1,700 seconds 

76.66% 3.1 seconds 10% 1,800 seconds

1

100

200

300

500 78.99% 3.08 seconds 7.77% 2,000 seconds 

FIGURE 7. (a) The spatial localization of actions without reconstruction at a compression ratio of 100 for different actions in the Weizmann data set. (b) 
The table compares recognition rates and runtimes for direct recognition in the compressive domain versus reconstruct-then-recognize. Direct recognition 
outperforms the reconstruct-then-recognize with IDT method and achieves a recognition rate that is comparable to the recognition rate of 81.11% in the 
case of OM [1], [29] and is much faster. (Figure adapted from [22].)
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several criterion, from preservation of the fidelity of 
extracted features or promotion of class separability. 
Exploring these ideas could form the basis for impactful 
future work in this area.

Open problems
The earliest results in CS were broad in their scope and uni-
versal in their applicability to all sparse signals. Yet, this 
implicit simplicity created a significant mismatch to real-
world signals that are often enriched with structures that are 
more complex than sparsity. Efficient sensing and inference 
with such signals requires a fundamental rethinking of all 
aspects of CS, including the prime role played by measurement 
matrices. While this article highlights this important aspect 
using three case studies, there are many important open prob-
lems that need to be addressed to truly harness the potential of 
nonrandom matrix constructions.

The need for deterministic matrix constructions 
that rival the performance of random matrices
There has been some limited work on matrix constructions that 
satisfy the RIP [12] (see “Can We Learn Good Measurement 
Matrices?”). However, these require ~M K2  measurements that 
are significantly worse than random constructions, and they fur-
ther involve polynomials functions that are not amenable to imag-
ing where there are physical constraints that allow only matrices 
where entries need to be nonnegative and satisfy energy-preserva-
tion constraints. Further, SLMs that are typically used in CI often 
constrain the measurement matrix to be binary valued. A theory of 
measurement design that is deterministic while respecting the 
physical laws of imaging would spur many novel applications.

Going beyond the RIP as the metric of choice
As noted in many earlier works including [12], the RIP is only a 
sufficient condition for signal recovery and it is well known as a 

The criterion of near isometry is geared toward enabling 
reconstruction that is not necessarily conducive to infer-
ence. As an example, consider classification of two classes 
using a nearest-neighbor (NN) classifier. The near-isometry 
property underlying RIP ensures that distances are approxi-
mately preserved, and, therefore, NNs are approximately 
preserved. Yet, the preservation of distance is not neces-
sary for NN classification. Indeed it is sufficient if the mea-
surement operator does not perturb the class membership 
of the NN of a point. Intuitively, this is a significantly sim-
pler constraint to satisfy, and we can hope to achieve it 
with far fewer measurements.

Domain-specific design of measurement operators
Can we learn measurement operators that can be tuned to 
the specifics of an application or data domain and, fur-

ther, incorporate task-specific constraints? Specifically, 
given a collection of data { , , , },x x x RQ

N
1 2 f !  we pose the 

problem of learning a measurement matrix RM N!U #  that 
satisfies the RIP on this data set, i.e., we seek a matrix 

RM N!U #  that satisfies

, , ( )
( ) ( )

( )
x x

x x x x
i j 1 1

i j

i j
T T

i j
26 # #d d

U U
-

-

- -
+ . (S1)

Unfortunately, solving for a matrix U with the fewest rows 
that satisfy (S1) is a nonconvex problem. In particular, 
while this is a hard optimization problem over ,U  by using 
a lifting operation, we can pose this as an optimization 
problem over the gram matrix .P TU U=  Note that the RIP 
constraints that are nonlinear in U  can be written as 

Can We Learn Good Measurement Matrices?
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FIGURE S2. Learning measurement operators using NuMax. We compare the performance of NuMax, principal component analysis (PCA) and 
random projection on a two-class problem. NuMax outperforms the other methods due to is reliance on both the domain (i.e., the data set) and 
its preservation of neighborhoods via the RIP. (Images used courtesy of [23].) 
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weak condition [6]. Hence, a criterion that better predicts the 
phase transition associated with compressive recovery problems 
would be an invaluable tool for evaluating the efficacy of deter-
ministic matrix constructions. It is worth mentioning that sever-
al frameworks have been proposed with the aim of providing a 
better characterization of performance using metrics other than 
the RIP, typically using ideas in coherence [8], [9] and spectral 
norm [32]. The tradeoff here is that the guarantees are probabi-
listic on the signal space as opposed to universal.

Local features versus global measurements
The inference problems in computer vision often use part-based 
modeling where local features are constructed to represent an 
image and its constituents. This approach is extremely robust to 
changes in background and occlusion, which is critical in 
machine vision. Inference from compressive measurements, on 
the other hand, rely on global linear measurements from which 

the extraction of local features is extremely hard, if not impossi-
ble. Hence, a framework for local feature extraction from com-
pressive measurements would enable us to apply the vast 
literature in machine vision to compressive inference.
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expressions that are linear in P. In [17], it is shown that a 
measurement matrix satisfying the RIP can be obtained by 
solving a semidefinite program given as

, ( ) ( ) .P 0 1 1$ # #d d- +

( ) ,
( ) ( )

x x
x x x x

min P
P

NuMax s.t*

i j

i j
T

i j
2

P RN N

-

- -
! #

There are two key properties underlying this optimization 
problem. First, the objective of the optimization in NuMax 
is ,P *  and the nuclear norm of the matrix P is the convex 
relaxation of the rank objective and is known to be low-
rank promoting [14]. Second, the constraints specify that 
the square root of P be near isometric on the data set. As 
a consequence, the optimization problem solves for a low-
rank symmetric matrix P TU U=  so that U satisfies the RIP 
on the data set. The key advantage here is that we are 
learning a measurement matrix that is tailored to the partic-
ular data set of interest. Hence, the solution provided by 
NuMax typically provides significant improvements over 
random projections in its ability to enable inference at far 
fewer measurements (see Figure S2), especially as the 
noise increases.

Task-specific design of measurement operators
Consider the example of NN classification (NNClass). 
Suppose that we have a data set of labeled points from 
multiple classes. We can define two sets of difference vec-
tors: 1) intraclass-difference vectors x xvij i j= -  when 
the points x i  and x j  belong to the same class and 2) 

interclass-difference vectors x xwmn m n= -  when the points 
xm  and xn  belong to difference classes. Intuitively, intra-
class differences should not expand under measurement 
operator, and interclass differences should not shrink. 
This intuitive idea can be formulated into the following 
optimization problem:

( ) ,

, , .

min P

P
P

C P C
v v

v v
w w

w w0 1 1

NuMax Class s.t*

ij
T

ij

ij
T
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1 2
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The main difference between NuMax and NuMax-NNClass 
is that the latter no longer seeks near-isometric embeddings.  
Instead, we seek a measurement matrix that shrinks the dis-
tances between points from the same class, which is 
enabled by the constraint / ,v v vP Cvij

T
ij ij

T
ij 1#  and increases 

the distances between points from different classes, which is 
enabled by the constraint / .w w wP Cwmn

T
mn mn

T
mn 2$  There are 

two key advantages to this modified optimization. First, note 
that the constraints in NuMax-NNClass are a subset of 
those in NuMax, which is easily seen if we set C 11 d= -

and .C 12 d= +  Hence, the feasibility set of NuMax-Class 
is larger, and we can hope for a lower nuclear-norm solu-
tion (and, hence, a lower-rank solution). Second, given that 
we are shrinking intraclass distances preferentially and 
expanding interclass distances, we can promote the 
NNClass rate directly because there is a greater likelihood 
that the NN belongs to the same class in the embedded 
space, resulting in improved classification compared to the 
pseudorandom measurements. 
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Cameras and Displays (2015) and Analysis and Modeling of 
Faces and Gestures (2010). 
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 Computational Snapshot Multispectral Cameras 
Toward dynamic capture of the spectral world

M
ultispectral cameras collect image data with a greater 
number of spectral channels than traditional trichro-
matic sensors, thus providing spectral information at a 
higher level of detail. Such data are useful in various 

fields, such as remote sensing, materials science, biophotonics, 
and environmental monitoring. The massive scale of multi-
spectral data—at high resolutions in the spectral, spatial, and 

temporal dimensions—has long presented a major chal-
lenge in spectrometer design. With recent developments 

in sampling theory, this problem has become more 
manageable through use of undersampling and con-

strained reconstruction techniques. This article 
presents an overview of these state-of-the-art 
multispectral acquisition systems, with a particu-
lar focus on snapshot multispectral capture, from 
a signal processing perspective. We propose that 
undersampling-based multispectral cameras can 
be understood and compared by examining the 
efficiency of their sampling schemes, which we 
formulate as the spectral sensing coherence infor-

mation between their sensing matrices and spec-
trum-specific bases learned from a large-scale 

multispectral image database. We analyze existing 
snapshot multispectral cameras in this manner, and 

additionally discuss their optical performance in terms of 
light throughput and system complexity.

Introduction
The spectrum of a point in a scene is represented by the dis-
tribution of its electromagnetic radiation over a range of 
wavelengths. In conventional digital imaging devices, spectra 
are measured using three-channel red, green, blue (RGB) sen-
sors, which are designed to coincide with the tristimulus color 
measurements in the human visual system. However, a triple 
representation fails to capture the intricate details of natural 
scene spectra, which arise from the diversity and complexity 
of illumination and reflectance spectra in the real world. 
Since various material and object properties can be inferred 
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from detailed spectra, acquisition systems for precise spectral 
measurements can be effective tools for scientific research 
and engineering applications. For instance, spectral data can 
greatly facilitate cancer detection and diagnosis, since certain 
types of cancer cells have spectral characteristics that differ 
from those of normal cells [1]. Spectral data can also yield a 
rich set of features for image analysis. To take advantage of 
this, spectral capture technology has become widely used in 
military security, environmental monitoring, biological sci-
ences, medical diagnostics, scientific observation, and many 
other fields [1]–[7].

Studies in spectrum acquisition have been conducted for 
decades. Early spectrometers acquire only a single beam of 
light at a time, which significantly lim-
its their utility for measuring full scenes. 
Later work focused on efficient, high reso-
lution capture of both the spectral and spa-
tial dimensions. Recently, breakthroughs 
in temporal resolution have been achieved, 
which enable simultaneous acquisition of 
dynamic scenes in the spatial, temporal 
and spectral dimensions [8]–[10].

Traditional sampling methods [11]–[17], 
which are based on the Nyquist–Shannon 
sampling theorem, measure the signal at a 
certain constant sampling rate on each of 
the three dimensions. Each sample contains the signal infor-
mation at a single sampling location, time and wavelength. 
Sampling multispectral images in all three spatiospectral 
dimensions requires measurement at a massive scale, and thus 
making full-sampling schemes, such as those based on scan-
ning or interferometry, impractical in this scenario. That is 
because scanning a scene on either the spatial dimension or 
the spectral dimension entails a major sacrifice in the temporal 
sampling rate. As a result, a full-sampling approach can only 
be applied in practice on static or slow-moving scenes.

Capitalizing on recent advances in compressive sens-
ing theory, several techniques have been developed based 
on undersampling and constrained reconstruction, such as 
computed tomography imaging spectrometry (CTIS) [18]
and coded aperture snapshot imaging (CASSI). Within 
the CASSI paradigm, there are single dispersive CASSI 
[19], dual dispersive CASSI [20], [21], its dual-coded three-
dimensional (3-D) version called the dual-coded snapshot 
imager (DCSI) [22], the colored 3-D version called the 
colored coded aperture spectral camera imager (CCASSI) 
[23]–[25], [47], prism-mask video imaging spectrometry 
(PMVIS) [26], [27], and single pixel camera spectrometry 
(SPCS) [28]. The aforementioned systems are all snapshot 
multispectral cameras, which means that the spectral data 
are measured in a single exposure (shot) on the camera sen-
sor. There are also other systems that capture multispectral 
data at video rates, but with more than one measurement 
per frame, by taking advantage of a rapidly varying optical 
element such as a spatial light modulator (SLM) or digital 
micromirror device (DMD), or by adding another camera 

into the optical path [30]–[32], [48]. These methods all cap-
ture fewer measurements than full-sampling schemes and 
reconstruct spectra from incomplete data with the aid of 
regularized reconstruction theory (e.g., utilizing knowledge 
of signal sparsity in some basis).

A diagram of several coded-aperture-based undersam-
pling snapshot schemes is shown in Figure 1. For better visu-
alization, the target 3-D spectral data cube ( , , )x y m  is shown 
using a two-dimensional (2-D) matrix representing both the 
spatial (x) domain and the spectral ( )m  domain. Such a high-
dimensional spectral data cube is not possible to capture in 
a single exposure using prevalent camera sensors. This has 
motivated the aforementioned undersampling systems that 

first capture a low-dimensional projection 
of the original high-dimensional spectral 
data. The projection process can be rep-
resented as a sensing matrix that projects 
the spectral and spatial information into a 
low-dimensional measurement, which is 
then computationally decoded. To multi-
plex the spectral and spatial information 
in a solvable manner, as shown in Figure 1,
the coded aperture-based undersampling 
schemes usually manipulate the original 
data matrix in two ways: shearing and 
spatial modulation. These two transforms 

effectively reorganize the entries of the data matrix and are 
operable in practice (shearing by a prism or diffraction grat-
ing, and spatial modulation by an occlusion mask, spatial light 
modulator, or digital micromirror device).

Depending on their optical configurations and exploiting 
statistical properties of the spectrum data, the aforementioned 
methods employ different sampling strategies, which result in 
different sensing performance. In fact, the sampling scheme 
of a multispectral acquisition system has a significant effect 
on the reconstruction quality of spectra. On the other hand, 
in spectrometer design, sampling is also determined by the 
spectrometer optics and practical issues (e.g., calibration). 
With the optical design flexibility that is possible through the 
combination of optical elements (e.g., gratings and prisms) and 
computational elements (e.g., spatial light modulators or digital 
micromirror devices), we posit that the effectiveness and effi-
ciency of the sampling scheme should become the principal 
factor in the design of spectrometers.

Our intent in this article is to present a comprehensive dis-
cussion and analysis of existing coded aperture-based multi-
spectral snapshot systems, and link them to different sampling 
schemes from the signal processing perspective. For each of 
these coded aperture-based undersampling schemes, efficien-
cy is examined based on the spectral sensing coherence infor-
mation between its sensing matrix and sparse spectral bases 
constructed from a multispectral image data set. In addition, 
the optical properties of the spectrometers, i.e., light through-
put, noise tolerance, feasibility, and complexity, are discussed 
as well. We hope that these analyses and discussions not only 
provide readers with fresh insight on multispectral imaging, 

Since various material 
and object properties can 
be inferred from detailed 
spectra, acquisition 
systems for precise 
spectral measurements 
can be effective tools for 
scientific research and 
engineering applications.
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but also serve as guidance for designing new multispectral 
cameras and conducting further study of existing methods.

Full-sampling systems
While mostly focusing on undersampling techniques for multi-
spectral capture, we also paint a fuller picture of multispectral 
imaging by first reviewing systems designed for full-sampling 
schemes. Conventional multispectral image acquisition sys-
tems are generally based on the Nyquist–Shannon sampling 
theorem, and thus they sample the signal at twice its maximal 
frequency. Therefore, due to the considerable amount of data, a 
sacrifice in either spatial or temporal resolution is needed for 
these cameras. Such a sacrifice may make full-sampling 
schemes less practical, thus motivating systems based on com-
pressive measurements.

In spite of the low latency of capture, full-sampling meth-
ods for multispectral image acquisition have become widely 
used in practice. We introduce the basic principles and analyze 
the performance of full-sampling multispectral acquisition 

systems in this section, including three conventional multi-
spectral cameras: filter-based spectrometers, scanning spec-
trometers, and interferometry-based methods.

Filter-based spectrometers record a sequence of images 
using a different color filter with each imaging exposure, 
which effectively samples a set of full spatial resolution images 
over the spectral range at the expense of temporal resolution. 
These spectrometers can be easily implemented using a rotat-
ing wheel of gel filters, or electronically tunable filters that are 
typically based on birefringent liquid crystal plates. The mea-
surement scheme of filter-based spectrometers can be viewed 
as spectral sampling over the temporal domain, with the spa-
tial resolution fully preserved. In such a system, it is important 
for the color filters to be fabricated with an antireflective coat-
ing, to minimize reductions in light throughput.

Instead of varying the filters temporally, scanning spectrom-
eters sweep a spectral sensing device over the scene, sacrificing 
temporal resolution to gain spatial resolution. Typically, scan-
ning is performed in a whiskbroom or a pushbroom manner. 
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The whiskbroom design captures the spec-
trum of a single spatial location at each time 
instant, and thus requires substantial time to 
obtain an entire 3-D data cube. Rather than 
a pinhole aperture, the pushbroom design 
employs a slit aperture aligned with one 
of the two spatial dimensions (either x or 
y), and the spectrometer is translated along 
the other direction, providing much lower 
latency than the whiskbroom design. With a scanning-based 
sensor, the exposure time can be lengthened to increase sig-
nal intensity. However, scanning spectrometers involve more 
mechanical and calibration complexity in practice.

Interferometry techniques (also known as Fourier trans-
form spectral imaging), which are based on the principle of 
interference, project several subimages onto the image sen-
sor, each corresponding to a different color channel. Though 
a Fourier transform is required to reconstruct multispectral 
images from raw measurements, interferometry spectrom-
eters are considered to be full-sampling systems because the 
number of measurements is equal to the number of pixels 
in the final reconstructed image. These methods sacrifice 
spatial resolution but avoid spatial discrepancies by directly 
measuring the spectra of scene points. For such systems, 
their complexity (with multiple imaging lenses) and precision 
requirements (on the order of nanometers) make them diffi-
cult to build and calibrate.

Undersampling systems
While many methods have been used to construct spectral 
imagers, this article specifically compares coded aperture-
based undersampling designs. The multispectral image infor-
mation of a dynamic scene spans three domains—spatial, 
spectral and temporal—presenting an immense amount of 
data. Just a single second of uncompressed multispectral video 

with a typical 60 spectral bands and only 
one mega-pixel of spatial resolution is close 
to two gigabytes. Measuring this amount of 
data even with short exposure times is infea-
sible with full-sampling schemes. In captur-
ing multispectral information at video rates, 
significant undersampling is thus required. 
Several coded-aperture-based systems have 
been proposed for multispectral snapshot 

imaging or video capture. In limiting ourselves to such systems, 
it is helpful to explain why they are of particular interest to 
compressive spectral imaging. All spectral imagers take mea-
surements of the form

( , ) ,( ) ,g f x h x dxdi i mm m= # (1)

where ( , )f x m  is the unknown spectral image and ( , )xhi m  is the 
instrument function for the ith measurement. Such measure-
ments may be point-wise, as in pushbroom systems for which 

( , )h x xi i id m m= - -  ( ( )$d  is the Dirac delta function), or multi-
plexed, as in coded aperture or tomographic systems. Point-wise 
measurements, however, lack forward model coherence proper-
ties consistent with compressive measurement. For compressive 
measurement one would like to measure weighted groups of 
unrelated pixels. Representing the spectral data cube as a 2-D 
space-wavelength structure, CTIS-style systems integrate along 
lines through the data cube as illustrated in Figure 2.

In the ideal case, one might instead integrate groups of pix-
els randomly selected from the data cube. Fully random strate-
gies have been implemented for 2-D imaging using single pixel 
cameras [50]. For tomographic imagers, such as spectral cam-
eras, however, no simple physical mechanism exists for inte-
grating random and independent voxel groups.

The most common form of spectral imager is, of course, the 
RGB camera, which uses color filter arrays to periodically iso-
late different color planes. The ideal spectral imager might be 
similar to an RGB camera but with more diverse and complex 
spectral filters. Several groups have indeed proposed or imple-
mented spectral imagers using filter arrays [51], [52]. Complex 
spectral filters are constructed from interference devices. Pix-
elated interference filters with complex spectral structure are, 
however, both expensive and difficult to fabricate. In using 
coded apertures, we find physical advantages in the use of spa-
tial modulation to measure spectral information analogous to 
the use of spatial delay lines to measure time. Femtosecond 
pulses are commonly measured using piezoelectric positioning 
systems with nanometer scale-resolution [53]. Native femto-
second time measurement devices do not exist. Similarly, it is 
much easier to use a coded aperture with micron scale features 
to encode a pixelated spectral filter with 10–100 features than 
to create a similarly complex interference filter. To understand 
the basic resolution of a coded aperture system, we return to 
the 2-D data cube discussed previously. As illustrated in Fig-
ure 3, we consider a coded aperture with code feature size 
3 . A spectral imaging system observes the unknown scene 
modulated by this code with the spectral planes dispersed by a 
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FIGURE 2. Spectral data measurement in the CTIS system.

In spite of the low latency 
of capture, full-sampling 
methods for multispectral 
image acquisition have 
become widely used
in practice.
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grating or prism at the rate ( / )dx dm . A sim-
ple single disperser coded aperture system 
integrates along the wavelength dimension 
on detection, basically taking tomographic 
projections along this dimension. Due to 
the coded aperture, however, features along 
this dimension are modulated to improve 
the coherence of the forward model rela-
tive to simple tomographic projections. The 
rate of modulation is easily determined by 
considering the number of independent 
code features observed at each detection 
point. A given code feature is shifted spa-
tially by ( / )dx dmC , where C  is the sepa-
ration between the shortest and longest 
wavelength observed. Therefore, integrating 
along a single wavelength channel, the number of independent 
wavelength coding elements observed is ( / ) .N dx dT mC=  The 
spectral resolution is / / .N d dxT mC =  For a grating of period 
L  imaged with a lens of focal length /, ( ) ( / ) .dxF d L Fm =  With 
L 3=  microns and  F 3=  cm, for example, a code feature 
of size 10 microns yields a spectral resolution of 10 nm, cor-
responding to 30–40 spectral features over the visible range. 
Better spectral resolution can be obtained with faster gratings 
or longer focal lengths, but a multiplexing level of 30–40 is 
already fairly aggressive for snapshot imaging. Multiform 
integration methods will likely be necessary for more heavily 
multiplexed systems.

We see, therefore, that coded apertures present a simple and 
straightforward mechanism for complex spectral filter imple-
mentation. In addition, depending on the implementation, they 
have reasonably local kernels that allow spatially separable 
data cube estimation.

Even within the family of coded aperture spectral imag-
ers, numerous design choices may be considered for code 
implementation, dispersive elements, and sensing. Since we 
cannot comprehensively consider all design choices, here 
we focus on comparing the coherence of the forward model 
for several model systems based upon compressive coded 
aperture designs proposed and demonstrated over the past 
decade. We specifically do not consider implications of static 
codes implemented on slides versus dynamic codes imple-
mented using spatial light modulators. While spatial light 
modulators suffer scatter and numerical aperture limitations 
not found with static codes, we hope that the reader will find 
our comparisons without detailed physical implementations 
sufficiently compelling to postpone full consideration of 
practical issues.

The coded aperture-based undersampling systems employ 
different sampling strategies according to their optical con-
figurations and exploit statistical properties of multispectral 
data, which leads to different sensing performance in terms of 
spectral reconstruction quality. Figure 4 displays diagrams of 
four undersampling multispectral cameras. It is worth noting 
that to facilitate comparison, the diagrams of the systems are 
drawn not according to the physical configurations proposed 

in the original papers [19]–[27], but rather 
so that their light paths are equivalent. For 
DD-CASSI, the original implementation in 
[20] has two dispersers to realize the dis-
persion and pixel-wise focusing (i.e., all the 
spectra of a single point passed through the 
mask focus on a single pixel), but its dia-
gram in Figure 4 has only one disperser 
(grating) to achieve the same focusing 
by just tuning the location of the spatial 
modulator (mask) and the image sensor. By 
representing systems with different kinds 
of modulation (i.e., point-wise coding and 
sheared coding) and imaging (pixel-wise 
focusing and dispersed imaging) using sim-
ilar optical paths in Figure 4, the intrinsic 

differences between the four systems are revealed. As shown 
in Figure 4, the PMVIS, SD-CASSI, and DD-CASSI systems 
only use a single mask to modulate the input light. The main 
difference between them is the placement of the mask. Both 
PMVIS and SD-CASSI place the mask on the imaging plane, 
leading to point-wise coding (i.e., all the spectra of a single 
point are either passed through or blocked by the mask), while 
the DD-CASSI places the mask in front of the image plane, 
which leads to a spectrally sheared coding (i.e., the 3-D code 
is generated by stacking the same 2-D code with different 
offsets). In contrast, the sensor of DD-CASSI is put on the 
image plane to achieve pixel-wise focusing, while PMVIS and 
SD-CASSI place the sensor behind the imaging plane, which 
leads to dispersed imaging (i.e., spectra of a single point dis-
persed to a set of pixels). As for 3-D-CASSI, two masks are 
utilized to achieve both the spatial and spectral modulation 
simultaneously, and the sensor is put on the focus plane to 
ensure pixel-wise focusing.

Prism-mask video imaging spectrometry
PMVIS [26], [27] straightforwardly acquires the spectra of 
scene points with the aid of a prism and utilizes a mask with 
uniformly distributed holes that prevent overlaps of the 
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FIGURE 3. A diagram of the relationship between the spectral resolution
and the code feature size. 

The coded aperture-
based undersampling 
systems employ different 
sampling strategies 
according to their optical 
configurations and exploit 
statistical properties
of multispectral data, 
which leads to different 
sensing performance 
in terms of spectral 
reconstruction quality.
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dispersed spectra on the sensor, as shown in Figure 4(a). The 
spectral values of the sample points are measured directly 
without any spectral modulation, and there exists a known 
correspondence between spectral bands and sensor plane 
locations. Each of the measurements represents a certain 
spectral intensity value of its corresponding scene point. As 
shown in Figure 5(a), this system sacrifices spatial resolution 
to achieve high spectral resolution. Cao et al. [27], [28]
extended this idea with a hybrid PMVIS scheme in which a 
high spatial resolution RGB image is simultaneously acquired 
with each multispectral snapshot. Through a spatial interpola-
tion within the spectral frame that is guided by the high reso-
lution RGB image, a final result is computed with high 
resolution in both the spatial and spectral dimensions.

Single dispersive coded aperture snapshot imager
According to compressive sensing theory [54], if a signal has 
a low-dimensional representation (e.g., it can be represented 
as a sparse combination of orthonormal bases, like wavelets), 
then it can be reconstructed from a small set of measure-
ments. With an appropriate sampling scheme, the samples 
needed to reconstruct a signal can be fewer than those speci-
fied by the Nyquist–Shannon limit. Based on this concept, 
various undersampling systems have been developed to 
reconstruct entire spectra from fewer measurements.

Wagadarikar et al. proposed the CASSI system using a single 
disperser [19], which we will refer to as SD-CASSI. The spec-
tral data cube is modulated by a coded mask and dispersion, as 
shown in Figure 4(b). Light rays of different wavelengths are 
modulated by an aperture code and then are offset differently by 
a dispersive element, which results in a coded and sheared 3-D 
cube as illustrated in Figure 4 before projection onto the CCD 
sensor. The imager captures a 2-D projection of the coded and 
sheared cube as shown in Figure 4. After the undersampling and 
spectrally multiplexed capture, the complete data cube is recon-
structed based on the prior that spatial-spectral information is 
sparse in the wavelet domain.

The CASSI system implements measurement matrices of a 
specific structure, i.e., a replicated and slanted 2-D code along 
the spectral dimension, illustrated as the SD-CASSI projection 
in Figure 5(b). The mathematical formulation of the 3-D code 
can be expressed as

( , , ) ( , ) ( )x y x s y reshape TCC C D2 $Tm m= - = , (2)

where ( , )x y  and m  are the spatial and spectral indices, C D2  is a 
randomly generated 2-D spatial coding pattern, sT  is the offset 
of each channel caused by dispersion, C  is the column vector 
form of the unsheared modulation code, T  is the shearing opera-
tion matrix, and reshape $^ h is the reshape function to transform 
the column vector to the original 3-D data cube.

The image is modulated before the dispersive element, and 
then the disperser shears the modulated image. Thus the mea-
surements can be modeled as

,T C Svector reshape diagM SU= =
m

/c ^ ^ mh h (3)
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FIGURE 5. An illustration of voxel sensing schemes of four types of undersampling multispectral cameras. The sampling schemes of the (a) PMVIS,
(b) SD-CASSI, (c) DD-CASSI, and (d) 3-D-CASSI systems.

where M  is the column vector form of the measured values, 
U is the sensing matrix, S is the column vector form of the 
spectral data cube, ()diag  is the diagonal operator to trans-
form a vector to a same order square matrix 
with the elements of the input on the diago-
nal, ()reshape  is the reshaping operator 
to transform the column vector to the 3-D 
data cube, and ()vector  is the vectorizing 
operator for transforming the 2-D matrix 
to a column vector. Mathematically, the 
operation vector reshapeRm  can be regard-
ed as a down-sampling operator, and each 
element of the output M  is the summation 
of a set of certain elements of the input 
vector diagT C S^ h . In other words, the combined operator 
vector reshapeRm  can be represented by a single short matrix. 
Then, the sensing matrix of SD-CASSI can be represented by

diagT CU R= ^ h, (4)

where R denotes the short matrix form of the combined sum-
mation operator vector reshapeRm . According to (4), the imag-
ing procedure represented by the summation matrix R just 
follows the shearing operation T , which implies dispersed 
imaging, i.e., the spectra of a single point is dispersed to a set 
of pixels. The coding matrix ( )diag C  manipulates the original 
spectral data cube directly, which corresponds to point-wise 
coding (i.e., all the spectra of a single point are either passed 
through or blocked by the mask).

Dual dispersive coded aperture snapshot imager
Since the basic CASSI system forms a sheared 3-D spectral 
data cube, the observed snapshot is blurred by dispersion. To 
overcome this effect, Gehm et al. [20] proposed a dual-dis-
perser architecture (DD-CASSI) in which two dispersers are 
symmetrically placed on the two sides of the coded aperture 
to produce an unsheared spectral cube with replicated slant-
ed code. Lin et al. [21] proposed a single disperser (grating) 
system called spatial-spectral encoded compressive spectral 
imager (SSCSI) to realize the same function as shown 

in Figure 4(b) but with less calibration difficulty than the 
dual-disperser CASSI. Although these two systems adopt a 
similar code, they employ different sampling and recon-

struction methods. A recursive offset code 
is applied by Gehm et al. [20] to achieve 
fast block-wise processing, while a ran-
dom and nonuniform code as well as a 
dictionary-based reconstruction algorithm 
are employed by Lin et al. [21] to obtain 
high-quality performance.

DD-CASSI has exactly the same cod-
ing space as the SD-CASSI system, but 
the modulated 3-D spectral data cube is 
not sheared (i.e., it is sheared back after 

modulation), as shown in Figure 5(c). Thus, the measurement 
matrix becomes

.diag diagT C T TCTU R R= =^ ^h h (5)

According to (5), the transpose TT is the inverse shearing 
matrix, which is used to unshear the sheared cube. As for the 
second term on the right of (5), the diagonal coding matrix 
diag TC^ h modulates the original spectral data cube, which 
implies spectrally sheared coding (i.e.,the 3-D code is generated 
by stacking the same 2-D code with different offsets). In this 
case, the shearing matrix T only shears the 3-D code, and the 
spectral data is not affected. Meanwhile, the summation matrix 
R integrates the coded data cube along the spectral dimension, 
which represents the pixel-wise focusing, i.e., all the passed 
spectra of a single point are focused on a single pixel.

Spatial-spectral coded compressive spectral imager
The feasible codes for both the basic CASSI and the nonspatial-
ly modulated imager are limited by their physical modulation 
capabilities. Theoretically, 3-D-CASSI, which encodes the spa-
tial-spectral data cube randomly, can achieve more feasible 
codes and higher performance, as shown in Figure 4(b). Howev-
er, the physical implementation of 3-D-CASSI is not trivial.

To approximate the 3-D modulation in spatial-spectral data 
cube, two coded aperture-based systems, i.e., the color-coded 

DD-CASSI has exactly the 
same coding space as the 
SD-CASSI system, but the 
modulated 3-D spectral 
data cube is not sheared 
(i.e., it is sheared back 
after modulation).
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aperture spectral camera imager (also known 
as CCASSI) and DCSI are proposed. Cor-
rea et al. [23], [47], Arguello et al. [24], and 
Rueda et al. [25] utilize the RGB colored 
sensor as a spatial-spectral modulator to 
achieve the specific dual coded (in spatial 
and spectral dimensions) compressive spec-
tral imager (CCASSI). By combing the sep-
arable codes of all the spectral channels, the 
CCASSI can achieve more complex modu-
lation than SD-CASSI and DD-CASSI. 
Similarly, Lin et al. [22] proposed a system 
that consists of two controllable modula-
tors (e.g., digital mirror devices) on both the 
spectral and spatial plane, and introduce the 
dynamic modulation, i.e., changing the codes of the spectral 
and spatial planes during the exposure time, to enable more 
flexible modulation. Mathematically, the composited 3-D spec-
tral code , ,x yCCCASSI m^ h of CCASSI and , ,x yCDCSI m^ h of 
DCSI can be represented by the sum of a set of separable codes:

, ,  , ,

, ,  , ,x y x y

x y x y

C C C

C C C

c

c c

t
t t

CCASSI

channel set

spatial spectral

DCSI
spatial spectral

m m

m m

=

=
!

/

/^

^ ^

^

^

^h

h h

h

h

h
" ,

(6)

where ,x y^ h and m  are the spatial and spectral indices, c  and t
index the spectral channels and time slices respectively, Ct

spatial

and Ct
spectral  are the spatial and spectral codes of the CASSI 

system for channel c , and Ct
spatial  and Ct

spectral  are the spatial 
and spectral codes of the DCSI system at time t. Since both the 
spectral data cube and the coding pattern are not sheared in 
this system, the measurement matrix is

diag CU R= ^ h. (7)

The ideal 3-D-CASSI can in principle produce any 3-D code, as 
shown in Figure 5(d). Both CCASSI and DCSI are the approxi-
mate implementations of the ideal 3-D-CASSI. According to
(7), there is no shearing matrix in the sensing matrix, which 
implies pixel-wise focus and nonrestricted coding [as in (6)]
on both the spatial and spectral dimensions. Thus, 3-D-CASSI 

provides a larger feasible code space than 
the SD-CASSI and DD-CASSI systems.

All of the coded aperture-based systems 
capture images with the CCD sensor placed 
on the image plane. The sensing step cor-
responds to integrating the 3-D spectral data 
cube along the spectral dimension, yield-
ing snapshots that are blurred from disper-
sion (SD-CASSI) or not (DD-CASSI and 
3-D-CASSI) with modulated patterns. For 
the PMVIS system, the mask is placed on the 
image plane to obtain uniform sampling, and 
the sensor is located beyond the image plane 
by a certain distance to ensure that the dis-
persive spectral bands of the sampling points 

fill the sensor without overlapping one another. Figure 6 exhib-
its snapshot measurements on the sensor for the four systems.

Sensing matrix and spectral sensing coherence
To compare the multispectral sensing ability of these unders-
ampling systems, we analyze their sampling efficiency. Con-
sider the following theorem [2], [34], [35].

For a given signal f Rn! , suppose that its coefficient 
sequence x in the orthonormal basis W  is S-parse, i.e., the 
coefficient sequence x has S nonzero elements. Then with m 
randomly selected measurements in the U  (sensing matrix) 
domain, the signal f can be exactly reconstructed through L1 
minimization with overwhelming probability if

, ,cm  S log n2$ n U W^ h (8)

where , ,maxn
,k j n

k j
1

n { }U W =
# #

^ h  is the coherence between

the sensing matrix U  and sparse domain bases W , and c  is a 
known positive constant.

According to this theorem, a smaller coherence ,n U W^ h

indicates that fewer measurements are needed for complete recon-
struction, and therefore the sensing system has higher sampling 
efficiency. In general, a randomly generated measurement matrix 
would be effective for most signals. However, for a specific task 
like multispectral imaging where signals exhibit commonalities 
that allow representation with a sparse basis or dictionary, the mea-
surement matrix U can be designed to achieve better performance.

(a) (b) (c) (d)

FIGURE 6. Measurement snapshots of the (a) PMVIS, (b) SD-CASSI, (c) DD-CASSI, and (d) 3-D-CASSI systems. 

For the four types of 
undersampling systems, 
we examine their sampling 
efficiency based on 
the spectral sensing 
coherence information of 
their sensing matrices, 
and then evaluate their 
reconstruction accuracy 
on a diverse multispectral 
database containing 
images of various scenes.
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In this article, we measure the quality of a sensing matrix 
as its spectral sensing coherence information with sparse 
domain bases: , Idef

m
T T

F. < <U W W U UW-^ h , where I  is the 
identity matrix. Minimization of ,m. U W^ h imposes the con-
dition that the Gram matrix T TW U UW  be as close as pos-
sible to the identity matrix, which provides a good sensing 
matrix as well.

Evaluation of undersampling systems
For the four types of undersampling systems, we examine 
their sampling efficiency based on the spectral sensing coher-
ence information of their sensing matrices, and then evaluate 
their reconstruction accuracy on a diverse multispectral data-
base containing images of various scenes—including indoor 
scenes, outdoor scenes, various materials and different illu-
minations—from four online data sets [40]–[43]. A few exam-
ple images are shown in Figure 7.

Computation of spectral sensing coherence information 
and image reconstruction
The spectral sensing coherence information is computed 
with respect to a domain basis in which the signals can be 

sparsely represented. From the multispectral image data-
base, we learn two kinds of bases W  in which multispectral 
images have a sparse representation. The first is from princi-
pal components analysis (PCA) [45], which is applied to 
derive an orthonormal bases. The second is from the K-SVD 
algorithm [39], which is used to obtain an overcomplete dic-
tionary. The bases represent the specific structural charac-
teristics of the multispectral images and video frames, and 
thus are suitable for computing spectral sensing coherence 
information ,m. U W^ h and analyzing the sampling efficien-
cy of the undersampling schemes for multispectral acquisi-
tion systems.

In computing the PCA bases and the overcomplete diction-
ary, we use 100,000 multispectral patches of size 10 10 29# #

pixels (horizontal # vertical # spectral) that are randomly 
sampled from the database. The size of each basis element is 
thus 10 10 29# #  as well. Since the PCA bases are orthonor-
mal and complete, it has a size of exactly 2,900. For K-SVD, 
6,200 atoms are learned as a sparse representation of the natu-
ral multispectral images.

We also synthetically test the reconstruction accuracy of 
the four undersampling multispectral imaging systems on the 

420 nm 450 nm 480 nm 510 nm 540 nm 570 nm 600 nm 630 nm 660 nm 690 nm

FIGURE 7. Six example images from the multispectral database, including indoor and outdoor scenes, various materials, and different illumination. Ten of 
the 29 spectral channels (from 420 nm to 700 nm, at 10 nm intervals) are shown. The corresponding RGB images are displayed in the top row. 
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database images. The inputs of the four systems are generated 
by sampling the multispectral images according to the corre-
sponding sensing matrices described in the section “Unders-
ampling Systems.” Image reconstruction is performed using a 
widely employed algorithm—the alternating direction method 
of multipliers (ADMM) [46]—except for PMVIS which simply 
employs linear interpolation (as it cannot be solved by ADMM 
directly because of its special sampling scheme). ADMM is 
widely used in image reconstruction and has shown superior 
performance. It is worth noting that the choice of the algorithm 
may affect the reconstruction accuracy, but the ranking of the 
results does not change.

In testing PMVIS, we use an image down-sampling rate 
of 0.3%, as is the case in the prototype camera [27]. Theoreti-
cally, in PMVIS systems, a minimal down-sampling rate of 
1/X (where X is the number of spectral channels) is needed 
to prevent overlaps between the spectra of different samples. 
The current prototypes are not well calibrated, so the down-
sampling rate may potentially be improved in the future.

Table 1 presents the spectral sensing coherence informa-
tion values computed between the sensing matrices of the 
four types of the undersampling systems and the three kinds 
of bases. Note that since hybrid PMVIS [30], [31] and hybrid 
CASSI [32] each obtain two snapshots, they are omitted in this 
analysis for an even comparison. Multiple snapshot systems 
are discussed in the section “Evaluation of Undersampling 
Systems.” For the coded aperture-based systems, binary codes 
randomly generated by the Bernoulli distribution, with the 
same probability ( ) . ,p x 1 0 5= =  are applied.

Specifically, the codes of SD-CASSI and DD-CASSI are 
derived by shifting and stacking the randomly generated 2-D 
patterns. As for 3-D-CASSI, the code is generated directly in 
3-D space. Both the K-SVD and PCA bases are learned from 
the database.

The 3-D-CASSI system has the most complex modulation 
and achieves the best spectral sensing coherence informa-
tion on the overcomplete dictionary learned by the K-SVD 
algorithm. However, for the PCA bases, DD-CASSI provides 
the best spectral sensing coherence information. For both of 
the bases, the coherences of DD-CASSI and 3-D-CASSI are 
very close, which indicates comparable quality of their sens-
ing matrices. It is shown in Figure 7 that DD-CASSI and 
3-D-CASSI also perform comparably on hyperspectral image 
reconstruction accuracy, which is consistent with the theorem 
discussed in the section “Understampling Systems.”

Aside from DD-CASSI and 3-D-CASSI, the coherence val-
ues of the other systems have a consistent ranking on both the 
PCA and K-SVD bases, which suggests that the relative qual-
ity of sensing matrices is not greatly affected by the bases, if 
they represent the sparse structure of the data well. This is also 
indicated by the reconstruction results in Figure 8.

The reconstruction performance of the four undersampling 
systems is displayed for the 610-nm channel of an example 
image in Figure 9. The result of PMVIS exhibits blocking 
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FIGURE 8. PSNR comparison for image reconstruction with the four types 
of undersampling systems on a set of 50 multispectral images. Crosses 
of different colors mark the average PSNR for the different methods. The 
PNSR value for each individual multispectral image is also plotted, as blue 
dots, to illustrate the statistical distribution of the reconstruction accuracy. 
Except for PMVIS in which linear interpolation is used for reconstruction, 
we use the ADMM [46] to compute the reconstruction results.

(a) (b) (c) (d)

FIGURE 9. A comparison of reconstructed results for the four undersampling systems. All of the results are shown at the 610-nm channel. (a) PMVIS 
PSNR = 16.6845 db, (b) SD-CASSI PSNR = 18.0859 db, (c) DD-CASSI PSNR = 29.8178 db, and (d) 3-D-CASSI PSNR = 32.5659 db. 

Table 1. The spectral sensing coherence information between the 
sensing matrices of different systems and the learned bases.

SD-CASSI DD-CASSI 3-D-CASSI PMVIS

K-SVD 0.7920 0.7787 0.7737 0.8148

PCA 0.7048 0.6432 0.6663 0.7251
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artifacts due to its low sampling rate in the 
spatial domain. The results for the other 
three coded aperture systems are of much 
higher quality. 3-D-CASSI produces par-
ticularly good results in this example.

It is worth noting that the random code 
may not be optimal for specific data such as 
multispectral images, which exhibit certain 
characteristics and strong redundancy. In 
regard to this, the feasible space of coding 
patterns for the coded aperture-based sys-
tems is constrained by the light paths of the 
systems. With a larger feasible domain, there is greater potential 
for a system to achieve higher performance. Since 3-D-CASSI, 
whose coding space completely encompasses those of the other 
three systems, does not exhibit much superiority over the other 
systems in our experiments, we believe that a random code is far 
from optimal in the multispectral imaging scenario.

Analysis of light throughput and system complexity
Besides the sensing matrix, the light throughput and calibra-
tion error also affect the reconstruction accuracy. For discus-
sion of these factors and practical system complexity, we list 
the light throughput and the number of optical elements in 
Table 2. For the PMVIS system, its light throughput is deter-
mined by its down-sampling rate, which is the reciprocal of 
the number of spectral channels X . For the typical multi-
spectral imaging scenario, with 30 or more spectral chan-
nels, the light throughput loss of PMVIS is relatively large. 
Both SD-CASSI and DD-CASSI have a light throughput of 
0.5, while that of 3-D-CASSI is 0.25 because of its two mod-
ulators. With regard to system complexity and calibration 
difficulty, PMVIS and SD-CASSI are relatively simple and 
easy to calibrate because of their smaller number of optical 
elements and simpler light paths. Particularly, PMVIS is 
much more robust to calibration errors (e.g., slight shifts or 
rotations of the coded aperture) because its reconstruction 
algorithm is based on simple interpolation, which makes the 
system highly practical. The number of optical elements also 
has a strong influence on calibration and light throughput, 
and thus it affects the signal-to-noise ratio of the captured 
multispectral images. Although PMVIS and SD-CASSI have 
lower reconstruction accuracy on synthetic data as shown in 
Figure 8, this gap is narrowed by taking their practical bene-
fits into consideration.

As shown in Figure 10, it is clear that when the sensing noise 
increases, the performance gap between DD-CASSI/3-D-CASSI 

and SD-CASSI/PMVIS decreases rapidly. 
The reconstruction results of all the systems 
are degraded with the increase of sensing 
noise. However, with greater system com-
plexity there is more degradation in perfor-
mance. Considering the high complexity of 
DD-CASSI and 3-D-CASSI, which leads to 
lower light throughput and larger calibra-
tion errors, the advantages of the complex 
coded aperture systems may be counter-
acted by the effect of sensing noise. Thus, 
further investigation is needed for reducing 

the light path complexity of coded aperture-based spectral 
imaging systems and improving the noisy tolerance of the 
reconstruction algorithms.

Discussions and future directions

Video-rate multispectral cameras
with multiple snapshots
We have focused on multispectral video imagers with single 
snapshot measurements thus far, but there exist other sys-
tems [2], [30]–[32], [48] that acquire two or more snapshot 
measurements to recover the spectral information with high-
er accuracy while still at video rates. These systems can be 
also used for multispectral capture of dynamic scenes.

Multiple snapshots have been acquired in two ways. One 
is by adding extra cameras into the optical path. Figure 11
shows one design for such an implementation, where the 
incoming light rays are first directed along two separate 
paths by a beam splitter, essentially making two copies of the 
light rays, each with a lower light intensity. One of the paths 
enters the optical configuration of an undersampling system 
(e.g., PMVIS or CASSI), while the other light path may lead 
to an RGB or grayscale camera to record a high spatial res-
olution image of the scene. This hybrid camera design has 
been implemented based on PMVIS [30], [31] and CASSI 

FIGURE 10. Noise tolerance curves of the four kinds of spectral imaging 
systems. (The image intensity is normalized to 0~1.)
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Table 2. Typical parameters for the four types of undersampling systems.

SD-CASSI DD-CASSI 3-D-CASSI PMVIS

Light throughput 0.5 0.5 0.25 1
X

Number of optical 
elements    6 9 8 6

With regard to system 
complexity and calibration 
difficulty, PMVIS and 
SD-CASSI are relatively 
simple and easy to 
calibrate because of their 
smaller number of optical 
elements and simpler
light paths.
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[32], [48]. We also conducted spectral reconstruction experi-
ments using this hybrid design by adding another full spatial 
resolution image as part of the input (RGB for PMVIS, and 
gray scale for CASSI). As for the PMVIS system, two kinds 
of reconstruction algorithms, i.e., a simple 
bilateral propagation-based method [30] and 
a more complex learning-based method [49],
are applied.

The results in Table 3, which are derived by 
averaging the results on the aforementioned 
spectral image database, show that the recon-
struction accuracy is increased by about 8 dB 
and 5 dB on average for PMVIS and CASSI, 
respectively. This tremendous gain in signal 
recovery demonstrates the effectiveness of a 
hybrid camera design that includes an addi-
tional basic sensor. In addition, the complex 
learning-based algorithm achieves about 8 dB 
improvement over the simple bilateral propa-
gation method for the PMVIS system, which 
shows the great potential of improving exist-
ing reconstruction algorithms.

The other method for acquiring extra snapshot measure-
ments is to use high-frequency optical elements and sensors 
that allow multiple snapshots to be captured for each mul-
tispectral video frame. Spatial light modulators or digital 
micro-mirror devices operating at 120 Hz or above can be 
used for this purpose in conjunction with high-speed camera 
sensors, all of which have become increasingly affordable in 
recent years. Systems based on this design have been success-
fully built for multiple snapshot multispectral video capture 
[2], [29]. Significant gains in reconstruction accuracy (about 
5 dB) have been reported in comparison to the single snapshot 

CASSI system in [2]. As a result, in practice, by adding an 
extra sensor or using an ultrafast coded aperture, greater accu-
racy in multispectral acquisition can be obtained with some 
increase in system cost.

Advanced theory in reconstruction from  
undersampled signals
The use of random projections in compressed measurements 
was originally motivated by the idea that many signals of 
interest may be represented sparsely in an orthonormal basis, 
such as the wavelet transform. However, sparsity represents 
only one class of signal model, and other models may lead to 
other forms of compressive measurement that may perform 
better than random projections. For example, it has been 
demonstrated that many signals of interest may be repre-
sented in terms of a union of low-dimensional linear sub-
spaces [35], [37], [44], [48]. From a statistical or signal 
processing perspective, such a model may be represented as 

a Gaussian mixture model (GMM), in 
which the covariance matrix of each 
mixture component is low rank [36]–
[38]. Recent theory has shown that good 
measurement matrices correspond to 
projections that are aligned with the 
signal space [36], [37]. There is already 
evidence to demonstrate that such a sig-
nal model, which may be learned based 
on the data [38], is well suited to the 
multispectral data of interest. This 
model will greatly facilitate the mea-
surement design of novel multispectral 
video cameras.

With the advances in signal process-
ing theory and algorithms and the in  -
creasing demand for high-resolution 
multispectral images/videos, unders-

ampling schemes for multispectral image acquisition have 
become a hot topic in computational photography and sig-
nal processing. A number of undersampling-based acquisi-
tion systems have been proposed, but there had been little 
analysis of their relative effectiveness. In this article, we 
have examined existing multispectral video systems based 
on their sampling efficiency and optical performance, from 
a signal processing perspective. We introduced the spectral 
sensing coherence information of the sensing matrix and 
bases learned from multispectral data as a metric for com-
paring the sampling efficiency of different systems. From 

Scene

Incoming
Light Ray

Beam
Splitter

Mirror

Extra Camera Undersampling
System

Hybrid Camera
System

FIGURE 11. A hybrid camera design for multiple snapshot measurements.

Table 3. PSNR comparison of three multisnapshot systems.

Hybrid PMVIS 
(+ Extra Camera)

SD-CASSI
(Measure Twice)

Hybrid CASSI
(+ Extra Camera)Systems

Simple 
Algorithm 

Complex 
Algorithm

PSNR (DB) 25.86 33.19 28.04 32.10

With the advances in 
signal processing theory 
and algorithms and 
the increasing demand 
for high-resolution 
multispectral images/
videos, undersampling 
schemes for multispectral 
image acquisition 
have become a hot 
topic in computational 
photography and
signal processing.
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these analyses, readers may be inspired to design or develop 
better sampling schemes for multispectral sensing.
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 Computational Millimeter Wave Imaging 
Problems, progress, and prospects

I
maging using millimeter waves (mmWs) has many advan-
tages and applications in the defense, security, and aviation 
markets. All terrestrial bodies emit mmW radiation, and 
these wavelengths are able to penetrate smoke, blowing 

dust or sand, fog/clouds/marine layers, and even clothing. 
However, there are many obstacles to imaging in this spec-

trum that have to be overcome before mmW imaging sys-
tems can be successfully realized for surveillance and 

defense applications. Recent developments in compu-
tational imaging have the potential to significantly 

improve capabilities of mmW imaging systems. 
Our article provides an overview of computation-
al imaging and its implication to mmW imaging 
in various operation modes. We discuss the mer-
its and drawbacks of available computational 
mmW imaging approaches and identify avenues 
of research in this rapidly evolving field.

Introduction
In the past several years, interest in imaging at milli-

meter wavelengths has been driven primarily by their 
ability to penetrate poor weather and other obstacles

such as clothes and polymers [1], [2]. Within the electro-
magnetic spectrum, mmWs are historically defined in the 

30–300 GHz range with corresponding wavelengths between 
10 and 1 mm, respectively. Radiation at these frequencies is non-
ionizing and is, therefore, considered safe for human exposure. 
Applications of this technology include the detection of con-
cealed weapons, explosives, and contraband (see Figure 1). Fur-
thermore, unlike visible and infrared systems, passive mmW 
imaging systems are not significantly hindered by atmospheric 
obscurants, such as cloud cover, fog, smoke, rain and dust storms 
and may reduce or even eliminate the impact of low-visibility 
atmospheric conditions [3]. Figure 2 shows atmospheric attenua-
tion of naturally emitted black-body radiation through 1 km of 
fog, illustrating how low-loss bands within the mmW region 
allow passive imaging in adverse weather conditions.
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Unfortunately, mmW imaging combines the worst of 
radio-frequency imaging and visible imaging. Consider that 
measuring phase at radio frequencies and measuring intensity 
at visible wavelengths are simple and inexpensive. However, 
measuring phase and measuring intensity are both expensive 
at mmWs. This is due primarily to the small signal-to-noise 
ratios that exist for passive mmW sources. Further, no large-
scale integrated detector arrays exist for mmWs. At 100 GHz, 
there are only 200 × 200 resolution elements across an 60 × 
60-cm2 aperture. Man-portable mega-pixel imagers at mmWs 
will be difficult to realize.

In light of the fact that the magnitude of mmW measure-
ments is considerably less than that of visible measurements 
and that each measurement is expensive, it would be good 
to increase the information content in the measurements that 
are made. This requires methods beyond conventional imag-
ing and leads us naturally to consider computational imag-
ing techniques. In computational imaging, the burden of 
image formation is shared across two domains, the optical 

(a) (b)

(c) (d)

FIGURE 1. Applications of mmW imaging. (a) Imaging through clothing. (b) Imaging through fog. (c) Imaging through tarps and building materials.
(d) Imaging IRAM through canvas. 
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FIGURE 2. Low-loss bands within the mmW region allow passive imaging 
in adverse weather conditions [4].
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measurement and the digital postprocessing domains. The 
opportunities for computational imaging depend upon the 
architecture of the system [4]–[13]. In this article, we review 
work that we have done for conventional imagers and for pupil, 
or Fourier plane, imagers.

Foundations of computational imaging
Figure 3 is a schematic representation of a generic imaging 
system. To the left of the entrance pupil is a natural scene 
consisting of self-luminous objects or objects illuminated pas-
sively, i.e., we do not have active control over the scene illu-
mination. The electromagnetic field incident upon the 
entrance pupil exists in three spatial dimensions (x, y, z) and 
one temporal dimension t and exhibits intrinsic physical prop-
erties of wavelength m and polarization p. The amplitude of 
the field is represented by ( , , , , , )a x y z t pm .

All elements to the right of the entrance pupil are under 
a designer’s control and together define the imaging system. 
The imager’s front end contains elements that manipulate the 
incident wave front. The front-end electromagnetic processing 
is represented by linear, continuous integral transforms based 
on physical models.

After manipulation by the front end, the transformed wave 
front impinges on a detector or transducer of some kind. 
Transduction is a nonlinear physical process in terms of field 
amplitude. It is the irradiance of the field that is transduced, 

| |f a 2= . Also, discrete sampling is implicit in transduction. 
The continuous values ( , , , , , )x y z t pm  over which f is defined 
are now discrete.

A matrix representation can be used to provide a mathemat-
ical description of the processes up to and including measure-
ment [14], [15]

,g Hf n= + (1)

where g is the measurement, f is a sampled representation of 
the scene irradiance in the object domain, H is the system 
transfer or measurement matrix, and n is noise introduced in 

the measurement process. The propagation of f from the 
object domain to the imager is included in H. Thus, H con-
sists of both natural and engineered components.

A parameter estimator T is applied in postdetection either 
to estimate f or some property or parameter of f denoted ,fX
i.e., either

,

,

f Tg

THf Tn

=

= +

T
(2)

or

,

.

f Tg

THf Tn

X =

= + (3)

In contrast to the measurement matrix H, which operates lin-
early on f, T can be linear or nonlinear.

The last block in Figure 3 represents additional processing 
beyond estimation, namely, labeling or classification. That is, 
based upon the properties estimated, elements within the scene 
are discriminated from one another and assigned to a partic-
ular, discrete class of objects. Depending on the application, 
classification may not be necessary. We combine classification 
processing with estimation into a single transformation T.

It is important to note the special case of T I= , where I is 
the identity matrix. This is called a direct measurement, where 
the measurements correspond directly to the parameters of 
interest. For example, conventional imaging is a case of direct 
measurement of scene irradiance values in object space. The 
goal in designing a conventional imaging system is to produce 
a response that is as close as possible to a d-function over all 
expected operating conditions.

Another classic example of direct measurement is optical 
matched filtering, e.g., [16]. A matched filter is designed to 
detect an object o in the object scene. Its ideal performance is 
such that, wherever o is present in the scene f, the measurement 
produces a large response at its location. Locations where o is 
not present produce a small response. Thus, T outputs the loca-
tion of o and, by virtue of its design, allows the classification of 
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FIGURE 3. A schematic representation of an imaging system.
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points in the scene f into two regions, those that likely contain 
o and those that don’t.

These examples represent extremes in which all process-
ing is performed in the physical domain. The vast expanse of 
work in optical design speaks to the difficulty in realizing the 
former, and the short-lived history of optical pattern recogni-
tion in the 1960s and 1970s underscores problems with the lat-
ter. Thus, the application space of current interest is the one in 
which the processing burden is shared.

We delineate computational imaging into three broad appli-
cations: enhancing cameras, enhancing images (also known as 
computational photography), and enhanc-
ing human cognition. Reference to cameras 
in the first application emphasizes the con-
ventional notion of a camera as a device that 
produces a recognizable representation of a 
scene. An enhanced camera uses computa-
tion to improve some aspect of the camera, 
for example, reduce its physical depth while 
maintaining optical performance [17], [18],
increase its spatial resolution [19], or expand 
its dynamic range [20]. Others have consid-
ered computation as a hybrid element to reduce or overcome 
aberrations [21], [22].

Computation has also been used to filter or accentuate 
information within a scene. For example, combining unique 
optics with postdetection processing allows one to extend an 
imager’s depth of field (DoF) [23]. Other examples include 
modulating a shutter during an exposure to reduce motion blur 
[24]. Computation in combination with new sensing modalities 
allows humans to “see” polarimetric information [25], spectral 
information [26], and three-dimensional information [27] in a 
manner similar to how they “see” through a human body using 
magnetic resonance.

With regard to enhancing cognition, some within the imag-
ing community [28], [29] seek to extract information from 
scenes directly using physical means and postdetection pro-
cessing but in a manner different from pure imaging process-
ing, i.e., image detection followed by image processing, and 
from pure optical matched filtering. Such task-specific imag-
ers require automatic feedback, dynamic elements, and adap-
tive processing to realize [29].

Computational mmW imaging approaches
Many mmW imaging systems have practical considerations 
that limit or preclude their use from surveillance and defense-
related applications. In this section, we highlight several 
examples of computational mmW imaging methods that have 
been used to enhance imaging capabilities and to address 
some of these considerations, like size-weight-and-power 
(SWaP), imaging speed, and limited DoF. These are important 
considerations for many potential applications, like stand-off 
imaging and surveillance of moving targets where high angu-
lar resolution, high image frame rates, and an extended DoF 
are keys to mission success. Computational imagers, like the 
distributed aperture imaging system discussed below, have 

also demonstrated promise in overcoming important SWaP-
related issues. This is particularly important at millimeter 
wavelengths where high image resolution is typically 
achieved with large apertures and lens-based systems that 
scale volumetrically and can present challenges from a porta-
bility perspective.

Extended depth-of-field imaging
Most mmW imaging systems have a narrow DoF, the dis-
tance over which an object is considered in focus. Consider 
the application of concealed weapon detection by imaging 

through clothing using mmW imagers. If 
individuals are moving toward an imager 
through a corridor, the weapons will be 
visible only for the brief moment when 
they were in the DoF. This is one reason 
individuals are scanned in portals. How-
ever, extensions to scanning over a vol-
ume could provide scanning without 
creating bottlenecks, for example, in a 
public marketplace where security is 
important but a visible display of security 

might be counterproductive. Computational imaging meth-
ods [23], [30], [31] can be used to extend the DoF of mmW 
imaging systems. One such method was developed in [5] to 
extend the DoF of a passive mmW imaging system to allow 
for operation over a volume. In what follows, we review this 
computational imaging method for extending the DoF of a 
passive mmW imager.

In [5], a 94-GHz Stokes-vector radiometer was used to 
form images by raster scanning the system’s single beam. 
One can model the 94-GHz imaging system as a linear, 
spatially incoherent, quasi-monochromatic system. The in -
tensity of the detected image can be represented as a con-
volution between the intensity of the image predicted by the 
geometrical optics with the system point spread function 
(PSF) [32]. Under these conditions, (1) is a valid representa-
tion with H the incoherent PSF. H accounts for wave propa-
gation through the aperture and is related to the magnitude 
square of the inverse Fourier transform of the system pupil 
function P(u, v).

Displacement of an object from the nominal object plane of 
the imaging system introduces a phase error in the pupil function 
that increases the width of a point response and produces an out-
of-focus image. For a 94-GHz imager with an aperture diameter 
D 24 in=  and object distance , . ,d 180 17 4in inDoFo .=

which ranges from .175 2 to .192 6 in (see Figure 4).
The DoF of this imager was extended using a cubic phase 

element in conjunction with postdetection processing. The 
cubic phase element P(u, v) is

( , ) [ ( , )] , ,expP u v j u v
W
u

W
vrect

u v
i= ` j (4)

where

( , ) ( )u v
W

u
W

v2 2
u v

3 3
i rc= +c cm m; E

The goal in designing a 
conventional imaging 
system is to produce a 
response that is as close 
as possible to a d-function 
over all expected 
operating conditions.
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and rect  is the rectangular function. The phase function is 
separable in the u and v spatial frequencies and has spatial 
extent Wu and Wv along the respective axis. The constant c
represents the strength of the cubic phase. Figure 5 shows the 
cubic phase element mounted on the antenna.

Figure 6 shows the measured PSFs for conventional imag-
ing and imaging with a cubic phase. The width of the in-focus 
PSF at 180 in is approximately 2 mm, which is consistent with 
a 1 mm pixel width. Note that the response of the cubic phase 
system is relatively unchanged, whereas the response of the 
conventional system changes considerably. A postdetection 
signal processing step is necessary to produce a well-defined 
sharp response [23], [30], [31].

If we assume (3) represents a linear postdetection process, 
we can implement T as a Wiener filter in Fourier space,

( , )
| ( , ) |

( , )
( , )

( , )
,T u v

H u v
u v

K u v
H u v*

L

N2
2

U

U
=

+
-

t

t (5)

where H(u, v) is the optical transfer function associated with 
the cubic phase element, the parameter K is a measure of the 
signal-to-noise ratio, and the functions LUt  and NUt  are the 
expected power spectra of the object and noise, respectively. 
The optical transfer function is usually estimated from the 
experimentally measured point responses. One can view the 
estimated ( , )i x yp  as a diffraction limited response.

The extended object used in the experiments is represented 
in Figure 7(a). Images of an extended object for conven-
tional imaging system at 113, 146, and 180 in are shown in 
Figure 8(a)–(c), respectively. Each image is represented by 
41 × 51 measurements or pixels. The object size within the 
image is a function of optical magnification. Note that the 
conventional imaging system produces images with signifi-
cant blurring. In contrast, even without signal processing, 
the images produced with cubic phase element retain more 
discernible characteristics of the object than the images 
from the conventional system, as shown in Figure 8(d)–(f). 
Figure 8(g)–(i) shows that postprocessing compensates for 
the effect of the cubic phase element and retains frequency 
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(a) (b)

Object

FIGURE 7. (a) A representation of the extended object used to compare 
conventional and cubic-phase imaging. (b) A schematic of object illumina-
tion [5].

(a) (b) (c)

FIGURE 5. The cubic phase element. (a) Side view and (b) front view of 
the cubic phase element mounted on the antenna. (c) The detail of the 
fabricated cubic phase element. 

(a) (b) (c)

(d) (e) (f)

FIGURE 6. The measured  PSFs for conventional imaging and imaging 
with a cubic phase. PSFs for conventional system at (a) 113 in, (b) 146.5 
in, and (c) 180 in. (d)–(f) PSFs for a system with cubic phase at the same 
distances for (a)–(c).
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FIGURE 4. The maximum relative pupil phase error as a function of object 
distance. The shaded region indicates a conventional depth of field.
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content that is otherwise lost in a conventional system. The 
wider bandwidth, in addition to the noise suppressing char-
acteristics of the Weiner filter, produces images that appear 
sharper than those produced by a conventional imaging sys-
tem. Therefore, one can extend the region over which the sys-
tem generates diffraction limited images. In fact, [5] showed 
that the DoF of a conventional 94-GHz imaging system can be 
extended from 17.4 in to more than 68 in.

Distributed-aperture mmW imaging
Recently, a pupil plane, distributed aperture mmW imager was 
developed by the University of Delaware and Phase Sensitive 
Innovations [4] shown in Figure 9. As opposed to a continuous 
aperture over which radiation is collected to form an image, dis-
tributed aperture systems sample the inci-
dent radiation within subapertures. This is 
typically done when a continuous aperture is 
prohibitive due to scale, e.g., for radio teles-
copy. This approach was particularly taken 
for mmWs due to the lack of detection tech-
nology, such as inexpensive silicon-based 
detector arrays used for detecting visible 
radiation. This approach offers important 
SWAP-related benefits compared with more 
traditional architectures like compound antenna systems and 
lens-based imagers, since the overall upconversion system size 
scales in two dimension (2-D) versus three-dimension (3-D).

Image formation in a distributed array requires record-
ing both magnitude and phase of the incident field at each 

subaperture and cross-correlating all the recorded, complex 
information. Typically, systems distribute a local oscilla-
tor to downconvert the captured field data to a lower inter-
mediate frequency, where it can be digitally recorded and 
processed. Although well-suited for imaging at microwave 
frequencies, the power, size, and space requirements for dis-
tributing the local oscillator, the intermediate frequency pro-
cessing, and construction of the correlation en   gines present 
significant design challenges at mmW frequencies, which 
increase cost.

Martin et al. [4] showed that these challenges can be over-
come by upconverting to optical frequencies and taking advan-
tage of existing optical technology for processing and imaging. 
Electro-optic modulators were used to modulate received mil-

limeter-wave radiation onto the sidebands on 
an optical carrier [33]. Optical upconversion 
allows the use of lightweight, flexible fiber 
optics to route optical energy before and 
after mmW encoding, which eliminates the 
need for cables to distribute a local oscillator.

Even more significant, optical upcon-
version allows the use of an optical lens to 
perform the necessary correlation required 
for image formation. Digital reconstruction 

requires discrete spatial Fourier transforms and correlations, the 
number of which increases quadratically with the number of 
subapertures. The phase transformation of a lens combined with 
propagation over a distance physically generates the correlations 
necessary for image formation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 8. Images from a conventional imaging system at (a) 113 in, (b) 
146 in, and (c) 180 in. (d)–(f) Images from a system with cubic phase at 
the same object distances as for (a)–(c). (g)–(f) Processed images from a 
system with cubic phase at the same object distances as for (a)–(c) [9].

(a) (b)

(c) (d)

FIGURE 9. A 35-GHz, 30-channel distributed aperture imaging system with 
(a) hexagonal and (b) nonredundant distributed apertures and distributed 
aperture geometries for (c) hexagonal and (d) nonredundant apertures.

Optical upconversion 
allows the use of an 
optical lens to perform 
the necessary correlation 
required for image 
formation.
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Therefore, the system proposed in [4] samples discretely the 
complex wave-amplitude of a mmW signal and converts the 
mmW signal to an optical one using electro-optical modula-
tors while preserving the spatial distribution of samples using 
an optical fiber array. The output of the fiber array is spatially 
Fourier transformed using a lens, and the resulting optical 
image is captured using an optical detector array or charge-
coupled device. One of the important features of this imager is 
that the imager volume does not scale with the aperture diam-
eter, as the scale of the image-forming elements is fixed.

Another significant feature of this imager is its ability to 
control the relative phase of each receiving element in the 
distributed aperture, which provides electronic control of the 
imager’s PSF. It allows multidomain sensing by simultaneous 
and independent manipulation of both the 
Fourier and image planes of the system. 
This is a unique capability that permits the 
change of the imager’s PSF on-the-fly and 
enables rapid sparse sampling of desired 
target by electronically steering the beam in 
a manner similar to a phased array antenna. 
Analysis of the imager as an incoherent 
imaging system highlights the link between 
element phase and PSF [7]. Mait et al. [7] 
showed that, by modifying the aperture 
phases of the hexagonal and nonredundant distributed aper-
ture systems, a low-resolution analog image processing can be 
performed. The simplest approach could be to take the differ-
ence between two images of the same object captured using 
two different pupil functions,

( , ) ( , ) ( , ),f x y f x y f x y= -+ - (6)

where o(x, y) is the input object and

( , ) ( , ) ** ( , )f x y o x y h x y=+ + , (7)

( , ) ( , ) ** ( , ) .f x y o x y h x y=- - (8)

For example, one can construct a one-dimensional band-
pass filter by manipulating the phase functions. To understand 
this heuristically, one can model the corresponding PSFs as 
d-functions

( , ) ( , ),h x y x yd=+ (9)

( , ) [ ( , ) ( , )],h x y x x y x x y
2
1

0 0d d= - + +- (10)

to approximate the composite transfer function H(u, v) as

( , ) ( , ) ( , ) ( ),cosH u v H u v H u v x u1 2 0r= - = -+ - (11)

which filters low spatial frequencies and passes frequencies 
centered at /u x1 0= . Such filtering can be useful for edge 
detection (see Figure 10). Furthermore, [34] showed that 
phase can also be used to do more complex signal processing 

such as reducing noise. Figure 11 illustrates the real-time 
nature of the imager where a person behind a plywood is 
imaged at a video rate.

Compressive mmW imagers
Compressive sensing (CS) is an important tool that has shown 
promise in overcoming some of the common limitations 
associated with mmW imaging. For example, a wide field of 
regard and high image frame rates are desired for many appli-
cations, like stand-off imaging of moving targets. Because 
large-format arrays present cost challenges due to technologi-
cal hurdles like availability of cost-effective and powerful 
source technology and sensitive, low-cost detectors, many 
current systems use a single element or a small array in com-

bination with a compound antenna system 
to scan a larger scene and build up an 
image (e.g., [35]–[38]). These architectures 
can present challenges to achieving the 
video frame rates required for some imag-
ing applications [38]. As highlighted in this 
section, mmW CS techniques have shown 
promise in overcoming issues like high 
frame-rate challenges by potentially reduc-
ing the overall number of scene measure-
ments needed to reconstruct an image.

CS can be viewed as a special case of computational imag-
ing in which partial or low-dimensional measurements are 
obtained by designing a specific sensing modality. In this case, 
the measurement matrix H in (1) has more columns than rows, 
and a nonlinear recovery algorithm is used to reconstruct the 

(a) (b)

(c) (d)

(e)

FIGURE 10.  Edge detection performed using a nonredundant distributed 
aperture. (a) Aperture phase and (b) corresponding image of an extended 
object assuming zero aperture phase. (c) and (d) Same as in (a) and (b) 
except with circular phase across the aperture. White represents 0-phase, 
and black represents 2r-phase. Intermediate grey colors represent 
phases between 0 and 2r. (e) The difference between (b) and (d) [7].

Compressive sensing is 
an important tool that 
has shown promise in 
overcoming some of
the common limitations 
associated with 
mmW imaging.
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scene [39], [40]. A number of CS methods have been devel-
oped to reduce the acquisition time of mmW imagers [8]–
[11], [41]. For instance, [10] proposed a compressive passive 
mmW imaging method in which randomly encoded masks are 
employed at the focal plane of the imager 
to acquire incoherent measurements of 
the imaged scene. A Bayesian reconstruc-
tion algorithm was developed to estimate 
the original image from these compressive 
measurements. This system shows can sig-
nificantly reduce the number of required 
measurements for passive mmW imaging. 
This method was later extended in [42]
by constructing a single unified and com-
pact mask such that no mechanical mask 
exchange is necessary for collecting com-
pressive measurements.

Another method based on CS for tera-
hertz (THz) imaging was proposed in [11].
This method uses a single pixel detector in 
combination with a series of random masks 
to enable high-speed image acquisition. This system showed 
to be capable of producing 32 × 32 images of complex objects 
with only 300 (approximately 30%) measurements. Rath-
er than using random masks, [43] proposes using Toeplitz 

matrix-based masks. This method has the advantage of a large 
number of masks, which can be represented by a single sens-
ing mask. The image acquisition time of this system showed 
to be only limited to the speed of the THz detector. 

A mmW imaging modality with extend-
ed DoF with reduced spatial sampling was 
developed in [8] and [9]. This method essen-
tially uses a cubic phase element at the pupil 
of the imager while collecting partial mea-
surements. The image is then recovered by 
using a nonlinear reconstruction algorithm. 
Using this system, a greater than four-fold 
increase in DoF can be achieved with a 
reduction in sampling requirements by a 
factor of at least two.

In a recent work [44], active matamate-
rials were introduced as real-time tunable, 
spectrally sensitive spatial masks for single 
pixel THz imaging. This method requires 
no moving parts and can yield improved 
signal-to-noise ratios over standard raster-

scanning techniques for THz imaging. Furthermore, it was 
demonstrated that the use of this technique in the CS frame-
work can allow one to acquire high-frame-rate and high-fidel-
ity images.

We expect that derivation 
of the performance bounds 
for various computational 
mmW imaging methods 
will produce stronger 
guidance to developing 
more advanced mmW 
imaging modalities, 
which will have a wider 
spectrum of applications 
in surveillance, defense, 
and aviation problems.

FIGURE 11. Real-time video snapshots seeing through 1/4-in plywood.
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Discussion and concluding remarks
This article presented a review of recent developments in 
mmW imaging based on computational imaging methods for 
security and surveillance applications. We believe that recent 
advances in computational imaging have brought substantial 
opportunities to mmW imaging. We hope that the survey 
helped guide the interested reader through the extensive liter-
ature. It does not cover all the literature on mmW and compu-
tational imaging, so we have chosen to focus on a subset of 
work that reflects some of the most recent progress.

A number of challenges and issues commonly confront 
mmW imaging technology. Computational imaging methods 
may prove useful in addressing some of these challenges. The 
following are several examples:
■ Affordability. The technology readiness level of mmW 

devices is immature compared to optical and infrared 
arrays. The lack of readily available and affordable sources 
and detection technology has resulted in comparatively 
small arrays (kilopixels or fewer) and a tradeoff between 
the number of achievable image pixels and the desire to 
rapidly image wide fields of regard with high angular reso-
lution. MmW compressed sensing has shown promising 
results in reducing the overall number of scene observations 
needed to reconstruct an image. Perhaps these techniques or 
other computational imaging methods could help curb the 
cost of mmW systems by requiring fewer detector elements 
to realize an imaging capability that is more comparable to 
what could be achieved with a larger-format array.

■ SWaP. Many mmW imaging systems are not viable for 
deployment across a broad variety of platforms that 
would benefit from their use. Compound antenna systems 
and lens-based imagers, for example, scale volumetrical-
ly. To achieve a high resolution and a wide field of view, 
larger apertures and mechanical scanners, which have 
important implications for SWaP, are usually used. These 
solutions do not tend to be man-portable, for example. 
Additionally, for broad applicability, one also wants plat-
form-agnostic solutions that do not require specific 
aspects of the platform to form images, like platform 
motion, for example. Computational imagers may offer 
some key advantages, like the distributed aperture mmW 
imaging technology discussed in the "Computational 
mmW imaging approaches," which scales in 2-D versus 
3-D, for example.

■ Surveillance of moving targets. Imaging of moving targets 
with high resolution and high frame rates can be challeng-
ing with existing systems. At lower frequency, SAR offers 
excellent atmospheric penetration properties but relatively 
slow frame rates. MmW imagers can be limited by the 
speed of mechanical scanners, and electronic beam-scan-
ning technology is immature and costly at millimeter 
wavelengths. Given challenges like these, perhaps compu-
tational imaging techniques could be applied to help com-
pensate for image blur with existing systems.
Computational mmW imaging promises to be an active area 

of research. However, little is known about the quantitative 

performance advantage of computational imaging methods for 
mmW imaging. We expect that derivation of the performance 
bounds for various computational mmW imaging methods 
will produce stronger guidance to developing more advanced 
mmW imaging modalities, which will have a wider spectrum 
of applications in surveillance, defense, and aviation problems.
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Factored Displays
Improving resolution, dynamic range, color reproduction, 

and light field characteristics with advanced signal processing

T
oday, direct-view displays constitute the primary means 
by which humans visually interact with computers. 
These  displays come in many forms: mobile phones, lap-
tops, workstations, digital projectors, and digital sig-

nage; while ubiquitous, our two-dimensional (2-D) displays 
still pale in comparison to the three-dimensional (3-D) physi-
cal world. Gabriel Lippmann, a Nobel Prize-winning physi-

cist and an early photographic innovator, lamented on the 
similar limitations of photography:

Can we request that Photography renders the 
full variety offered by the direct observation 

of objects? Is it possible to create a photo-
graphic print in such a manner that it rep-
resents the exterior world framed, in 
appearance, between the boundaries of 
the print, as if those boundaries were that 
of a window opened on reality? It 
appears that yes, we can request from 

Photography infinitely more than from the 
human hand.

—Gabriel Lippmann, 
Épreuves réversibles donnant la 

sensation du relief, 1908

Introduction
Lippmann’s goal of creating a faultless window into a record-
ed reality is the visual equivalent of Alan Turing’s epony-
mous imitation game. To this end, Lippmann himself 
introduced the notion of integral imaging: a photographic 
process by which parallax views are recorded and depicted 
using microlens arrays placed in close proximity to film. 
Today, Lippmann’s invention continues to be one of the pre-
dominant technologies underlying glasses-free 3-D displays. 
However, displays must advance on many other axes to 
achieve Lippmann’s window, particularly in terms of resolu-
tion, dynamic range, and color fidelity.

 Digital Object Identifier 10.1109/MSP.2016.2569621
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Is this a case where we simply must wait for the incremen-
tal progression of display technology to carry us to the conclu-
sion of the visual Turing test? Mobile phones certainly make a 
case that such Moore’s law progression will occur, with mobile 
display pixel pitches routinely satisfying 20/20 visual acuity at 
typical viewing distances. However, emerging display technolo-
gies, particularly glasses-free 3-D displays and head-mounted 
displays (HMDs), will require at least an order of magnitude finer 
pixel pitches to satisfy human visual acuity. Looking beyond this 
immediate issue of resolution, the dynamic range of current-
generation displays are far from the 1,000,000:1 contrast ratio 
resolved by the human eye.

Is there another path to constructing Lippmann’s window 
without simply waiting for enough brute force to be applied? We 
believe so. In this article we review recent progress in factored 
displays comprising multiple spatial light modulators (SLMs), 
such as liquid crystal displays (LCDs), digital micromirror devic-
es (DMDs), and liquid crystal on silicon (LCoS) panels. Unlike 
prior tiled display architectures, factored displays utilize mul-
tiple SLMs in a cascaded configuration, such that light from one 
modulator illuminates the next in the series. Existing multiview 
displays, including the parallax barrier light field display intro-
duced by Frederic Ives in 1903 [1], can be viewed as an early 
precursor to factored displays. However, rather than using heu-
ristic procedures to decompose target imagery into multilayer 
attenuation patterns, emerging factored displays apply principled 
optimization algorithms to well-defined visual objective functions. 
As will be emphasized throughout this article, such optimization 
typically reduces to solving a nonnegative matrix factorization 
(NMF) or nonnegative tensor factorization (NTF) problem. This 
unifying problem arises from the cascaded nature of the construc-
tion of factored displays: light transmitted through one pixel on 
one SLM layer is attenuated (i.e., multiplied) by the amplitude of 
a pixel on a subsequent layer. Additionally, temporal multiplexing 
can be applied when the pixel states can be altered at a more rapid 
refresh rate than the critical flicker fusion threshold of the human 
visual system. A unified image formation model for all factored 
displays is therefore given by the following equation:
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where M  is number of time-multiplexed images that the visual 
system perceptually averages, N  is the number of attenuating 
display layers, ( , , , )x y u vl  is the target light field—a generic 
representation that encodes any 2-D, 3-D, or four-dimensional 
(4-D) image content—and :R R( )n 4 2"z  is a mapping func-
tion from the 4-D light field ray space to the 2-D pixel coordi-
nate on SLM layer .n  The task of the factorization routine is 
then to factor ( , , , )x y u vl  into the best set of temporally varying, 
nonnegative pixel states f ( )

m
n  that can be addressed by the 

electro-optical display. Figure 1 illustrates this image forma-
tion model and shows a prototype display for a three-layer 
LCD display.

Superresolution displays
The development of high-resolution displays is of central impor-
tance to the display industry. Leading mobile displays recently 
transitioned from pixel densities of less than 50 pixels/cm 
(ppcm) and now approach 150 ppcm. Similarly, the consumer 
electronics industry now offers “4K ultra-high definition 
(UHD)” displays, having a horizontal resolution approaching 
4,000 pixels, as the successor to high-definition television 
(HDTV). Furthermore, 8K UHD standards already exist for 
enhanced digital cinema. Achieving such high-resolution dis-
plays currently hinges on advances that enable spatial light mod-
ulators with increased pixel counts.

Beyond these larger market trends, several emerging display 
technologies necessitate even greater resolutions than 4K/8K 
UHD standards will provide. For example, wide-field-of-view 
HMDs, such as the Oculus Rift, incorporate high-pixel-densi-
ty mobile displays. Such displays already approach or exceed 
20/20 visual acuity when viewed at the distance of a phone or 
tablet computer; however, they appear pixelated when viewed 
through magnifying HMD optics, which dramatically expand 
the field of view. Similarly, glasses-free 3-D displays, includ-
ing parallax barrier [1] and integral imaging [2] designs, 
require at least an order of magnitude higher resolution than 
today’s displays.

Factored displays may have a role in addressing the demand 
for such high resolution displays. Rather than directly fabricat-
ing finer pixel pitches, factored multilayer LCDs have been 
shown to reliably quadruple spatial resolution—effectively 
repurposing multilayer light field displays for the distinct task 
of superresolution display. In recent work, Heide et al. [3] intro-
duced cascaded displays: stacking two or more spatial light 
modulators (SLMs) on top of one another, without spacing, 
subject to a lateral offset of half a pixel or less along each axis. 
As shown in Figure 2, lateral offsets are necessary so that each 
pixel on one layer modulates multiple pixels on another; in this 
manner, the intensity of each subpixel fragment—defined by 
the geometric intersection of a pixel on one display layer with 
one on another layer—can be controlled, thereby increasing the 
effective display resolution. The target light field in this case is 
a view-independent 2-D image, i.e., ( , , , ) ( , ) .x y u v i x yl =  The 
key insight is that cascaded displays may operate as factored 
displays: utilizing fewer independently addressable pixels than 
apparent in the displayed image. This outcome is achieved by 
decomposing target imagery into multilayer, multiframe attenu-
ation patterns (see Figure 1). Similar methods may be adopted 
to increase the temporal resolution of stacks of two or more 
SLMs, refreshed in staggered intervals. As such, factored dis-
plays with offset pixel layers may be applied for spatiotemporal 
superresolution, in addition to their more common use as light 
field displays.

Cascaded displays achieve thin form factors without moving 
parts. Most significantly, such displays offer an operation mode 
that eliminates the need for temporal multiplexing of factorized 
imagery, which is typical of most factored light field displays; 
as a result, videos can be presented without the appearance of 
artifacts characteristic of prior methods or the requirement for 
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high-refresh-rate SLMs. As will be discussed in the section 
“Light Field Displays,” related methods for achieving super-
resolution displays have also been demonstrated in factored 
projectors by [4].

Factored spectral displays
Factored displays have the potential to rapidly accelerate reso-
lution enhancement using unconventional, stacked display set-
ups driven by factored image synthesis. It is widely anticipated, 
however, that a higher resolution alone will not significantly 
enhance user experiences unless the dynamic range (contrast) 

and color gamut of the displays are also improved. High-
dynamic-range (HDR) display can be achieved via dual modu-
lation [5] and improved with factored displays (see the section 
“High-Dynamic-Range Displays”). One of the most signifi-
cant remaining challenges in display design is that of improv-
ing the color gamut while maintaining high light throughput 
and a sufficient bit depth to encode high-quality images. 
Whereas conventional display design strategies determine the 
tradeoffs between color fidelity, brightness, resolution, bit 
depth, and other characteristics of a device before it is fabricat-
ed, factored spectral displays advocate for a fundamentally 

FIGURE 1. (a) Factored light field prototype and (b) image formation. The prototype uses three stacked layers of LCDs that are rear-illuminated by a single 
backlight. In this particular case, there are separations between the LCDs to allow for light field synthesis, but the same prototype with the inter-layer
spacing reduced allows for superresolution image generation. Each emitted light ray ( , , , )l x y u vu  (here illustrated in 1-D) at some time m  is defined as the 
product of all pixel states along its optical path.
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different strategy: adaptive color display. Through the codesign 
of display optics, electronics and factored image processing [6] 
have demonstrated how optimal tradeoffs can be made dynami-
cally in a content adaptive and user centric manner. For exam-
ple, the spectral power distributions observed in many natural 
images often do not contain all perceivable colors at once—
adapting the display gamut to a specific target image or video 
clip allows for an optimal tradeoff between brightness and color 
fidelity to be made. Further, some wide gamut footage may be 
impossible to be displayed accurately, as it may contain a wide 
range of colors distributed over the entire perceivable visible 
color spectrum. In such cases, the perceptually closest approxi-
mation of the target should be presented. Human color vision, 
however, is a complex and nonlinear process; finding a percep-
tually optimal solution for the color reproduction problem is 
therefore challenging. Figure 3 demonstrates the concept of 
adaptive color reproduction for a hyperspectral target image 

processed for a three- and a four-primary display with fixed and 
adaptive gamuts.

Factored spectral displays employ a perceptually driven 
factorization algorithm that decomposes a target wide-gamut 
image into the best set of adaptive primaries and corresponding 
pixel values. The classical problems of primary selection and 
gamut mapping are thus solved simultaneously and are robustly 
optimized in a perceptually uniform color space: CIELAB. One 
of the main benefits of factored spectral displays is its flex-
ibility. Several different display modes are supported by the 
same device—without mechanically moving parts—simply by 
switching the software driver. One could imagine a mode that 
supports very bright monochrome images, for example, text 
or technical slides, whereas another display mode would sup-
port extremely high color fidelity at a lower peak brightness 
using factorization algorithm; optimal tradeoffs between bright-
ness and color fidelity are dynamically made by the software. 

Conventional Display Cascaded Display Factorizations
Layer 1

Layer 2

a1

a2

a3 a5

S1,1

S2,1

S2,2 S4,2 S4,4

S3,1

S4,1 S4,3 S6,3

S6,4

S6,5

S6,6

S3,3 S5,3 S5,5
a6a4

b1 b3 b5

b2 b4 b6

Conventional Display

Cascaded Display Subpixel Fragments

(a)

(b)

FIGURE 2. (a) Creation of subpixel fragments by cascaded displays. A cascaded display is constructed by layering a shifted pair of conventional displays. 
The overlap of offset pixel layers creates an array of subpixel fragments (green). (b) Image reconstruction using a single-layer LCD and a cascaded dual-
layer LCD. Factorization results are shown on the far right of (b). (Motorsport image courtesy Aurelien Vialatte.)
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When presenting legacy sRGB content, 
the device is operated in a conventional 
three primary mode without any adjust-
ments. Therefore, the display hardware 
is flexible enough to support existing 
content without any tradeoffs while also 
supporting emerging color spaces.

Trends in the display industry are 
clear: higher resolutions and wider color 
gamuts will become commonplace in 
the near future. Increasing resolution 
will be provided by advanced nano-
fabrication technology and potentially 
driven by factored image generation 
algorithms. Factored spectral displays, 
on the other hand, provide a viable 
solution for adaptive, wide color gamut 
display that could be seamlessly integrat-
ed into cinematic projection systems, 
home theaters, and office projectors.

Light field displays
Here we discuss emerging light field 
display technology and a number of 
unconventional applications. The physi-
cal world contains light rays of diverse 
intensities and colors running in various 
directions. The light field is a function 
that describes the amount and color of 
light flowing in every direction through 
every point in space. A binocular view-
er moving through the light field per-
ceives various depth cues. Binocular 
cues are created because the two eyes 
receive different light rays. Motion par-
allax cues are created because the eyes 
receive different rays as the viewer’s 
head moves. Accommodation (focus) 
cues are created because different parts 
of the viewer’s pupil receive different light rays. Light field dis-
plays are intended to recreate those cues with sufficient accura-
cy to enable a high-fidelity 3-D viewing experience.

A light field display emits a 4-D distribution of light rays, 
which varies over the two spatial dimensions of a display sur-
face but also over the horizontal and vertical viewing angle of 
each pixel. The display primitives of conventional displays are 
2-D pixels (picture elements), those of volumetric or multiplane 
displays are 3-D voxels (volume elements), and those of 4-D 
light field displays are light rays, each carrying radiance at some 
location into a specific direction. Figure 4 illustrates the common 
two-plane parameterization of a light field: a plane x is located 
on the physical display screen and another plane u coincides with 
the pupils of the viewer. To pass our Turing test for displays, i.e., 
to create a sufficiently persuasive 3-D experience, a 4-D light 
field display would have to provide appropriate stereoscopic, 
motion parallax, and focus cues. No such display exists today, 

but different tradeoffs can be made to create reasonable approxi-
mations of natural light fields.

Over a century ago, Frederic Ives conceived of parallax bar-
riers [1]. A barrier mask consisting of an array of pinholes or 
slits would be mounted at a slight offset in front of a display 
such that a viewer would perceive only a subset of the display 
pixels from any given perspective. The display would render 
an image that contains the corresponding, interlaced perspec-
tives of the light field. Soon after, Gabriel Lippmann built the 
first light field camera and display using integral imaging [2]. 
Instead of pinhole arrays, he mounted microlens arrays on 
photographic plates, exposed and developed these plates with 
the lens arrays in place, such that they could be viewed as a 
light field or glasses-free 3-D image after the fact. The main 
drawback of parallax barriers and integral imaging is the spa-
tioangular resolution tradeoff: adding more light field viewing 
zones comes at the cost of reduced spatial display resolution. 

DMD Projector

External, Fiber-Coupled
Light Engine

Y

y xy x

(a)

(b)

Optimized 3-D Gamut

FIGURE 3. Adaptive color display with factored spectral projector. The device uses a custom light engine with 
(a) six LEDs. The total addressable gamut of the display spans most of the CIE xy space, but the refresh rate 
of the digital micromirror device (DMD) only allows for up to four primaries to be used for any projected im-
age. Factored image synthesis allows for the content-specific optimal color gamut spanned by four primaries 
to be computed while simultaneously solving (b) the gamut mapping problem. 
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Additionally, parallax barriers are usually dim because most 
of the emitted light is blocked. To overcome these limitations, 
many alternative technologies have emerged over the last cen-
tury to deliver high-resolution, glasses-free 3-D experiences. 
Yet, none of these can deliver experiences that yet pass our Tur-
ing test for displays.

With an ever-increasing demand on image resolution, 
one of the major bottlenecks in the light field display pipe-
line is computation. Consider the example of a high-qual-
ity, light field display with 100 # 100 views, each having 
high-definition (HD) resolution, streamed at 60 Hz. More 
than one trillion light rays have to be rendered per second 

requiring more than 100 Terabytes of floating point RGB 
ray data to be stored and processed. Further, with conven-
tional integral imaging or parallax barriers, one would need 
a display panel that has a resolution 10,000 times higher 
than available HD panels. To relax requirements on display 
hardware, compressive light field displays and related signal 
processing algorithms [7] have recently been introduced as 
a modern version of Ives’ vision. These displays exploit two 
simple properties: 1) light fields of natural imagery are high-
ly redundant, high-dimensional visual signals; and 2) the 
human visual system has limitations that can be exploited 
for visual signal compression.
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FIGURE 4. The light field of (a) a natural scene is a collection of rays that are parameterized by their coordinates of intersection with (b) two planes x  and 
.u  All rays on a horizontal scanline [left (a)] observed in the centers of the viewer’s two pupils are shown in (c) (stereo display) and all rays on the same 

scanline across the viewer’s pupils are shown on the upper right (natural light field). The two eyes observe the scene from different vantage points so the 
left- and right-eye rays differ. Conventional stereoscopic displays do not provide parallax across either pupil and therefore do not support focus cues. The 
natural light field does provide parallax across each pupil and thereby provides focus cues. 
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In particular, multiplexing methods (e.g., temporal, spa-
tial, polarization, etc.) can be adopted to optimize the tradeoff 
between spatial and angular resolution, brightness, etc. in a con-
tent-adaptive manner. For example, the refresh rate of modern 
displays often exceeds the critical flicker fusion  (CFF) threshold 
of human vision. A parallax barrier display implemented with 
fast LCD panels would allow for the optimal layout of time-mul-
tiplexed pinholes to be determined for each target light field. Fur-
ther relaxing the requirement that the barrier mask is constrained 
to showing only pinholes leads to the concept of content-adap-
tive parallax barriers that optimize the time-multiplexed patterns 
for both display and barrier mask [8]. Such a content-adaptive 
optimization not only allows adaptive tradeoffs between spatial 
and angular resolution to be made, but it also allows for display 
brightness to be optimized with respect to pinhole-based bar-
riers. The light field ( , )l x yu  generated by a time-multiplexed, 
content-adaptive parallax barrier with two LCDs is given by (1).
The corresponding inverse problem is usually formulated as a 
numerical optimization problem, which can be efficiently solved 
with NMF approaches.

Compressive light field displays generalize the idea of 
content-adaptive parallax barriers to a variety of display archi-
tectures, including multiple stacked layers of LCDs (Figures 1 
and 5), a thin “sandwich” of two LCDs enclosing a microlens 
array or, in general, any combination of stacked, programma-
ble light modulators and refractive optical elements [9]. Similar 
to parallax barriers, cascading LCDs usually have a multipli-
cative effect on the incident light that can selectively attenuate 

light in some directions [8]–[12]. The aforementioned outlined 
of light field factorization generalizes to all of these display 
architectures. Their nonlinear, multiplicative image formation 
is fundamentally different from the linear, additive image for-
mation provided by multifocal plane displays, volumetric dis-
plays, and many other time-multiplexed displays. In general, a 
nonlinear image formation has the potential to provide more 
degrees of freedom for the image generation algorithm than an 
additive, linear image formation [9], [11], [13].

With a factorization framework for generalized parallax 
barriers in hand, applications to a variety of displays other than 
television-type systems can be explored. For example, light 
field projection systems supporting parallax and stereo cues 
have emerged over the last decade [14], [15]. These types of 
display systems are most suitable for collaborative experienc-
es and provide impressive image quality over large depths of 
field. Unfortunately, dozens of projectors have to be employed, 
making multiprojector light field displays expensive, difficult 
to calibrate, power hungry, and bulky. The compressive light 
field methodology has been shown to also apply to projection 
systems [4]. In this case, the goal is to “compress” the number 
of required devices, thereby improving power efficiency, form 
factor, and cost of the system. Hirsch et al. demonstrated that 
this is possible by generating a light field inside a single pro-
jection device, via content-adaptive parallax barriers, and then 
optically amplifying the limited field of view of the emitted 
light field using a screen comprising an array of microscopic 
Keplerian telescopes: one in each screen pixel.

Right ViewLeft View

LCD Patters at Frame 1 LCD Patters at Frame N

(a) (b)

FIGURE 5. A compressive light-field prototype. The prototype uses three stacked layers of liquid crystal displays that are rear-illuminated by a single back-
light. A light-field factorization algorithm computes time-multiplexed patterns for all LCD layers that are displayed at a speed exceeding the critical flicker 
fusion threshold of the human visual system. Perceptually, these patterns fuse into a consistent, high-resolution light field that supports stereo cues and 
parallax without the need for glasses. 
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With the re-emergence of near-eye displays for virtual real-
ity (VR) and augmented reality (AR), focus cues have recently 
attracted a lot of attention in these applications. Most existing 
near-eye displays naturally provide stereoscopic cues because 
either two separate microdisplays provide an image for each eye 
or a single screen is optically split with two lenses. The design 
principles of near-eye displays available 
today are very similar to the stereoscopes 
widely used in Victorian times [16]. In this 
context, light field displays offer the possi-
bility of providing focus cues. The authors of 
[17] were the first to demonstrate an integral-
imaging-type near-eye display that allowed 
for a wide accommodation range of the 
observer with the common caveat of reduced 
display resolution. (The range was wide enough that correction 
of refractive errors was supported, allowing the user’s prescrip-
tion eyewear to be removed and digitally correctly by altering 
the imagery depicted by the near-eye light field display.) More 
recently, [13] investigated compressive light-field synthesis via 
two stacked LCDs. This is shown in Figure 6. The device design 
is inspired by common stereoscopes but it employs two LCD 
panels spaced at about 1 cm in the display housing. Using light 
field factorization algorithms similar to those employed by the 
content-adaptive parallax barriers described previously, a 4-D 
light-field is emitted independently to each eye, providing paral-
lax over the eye box.

Vision-correcting light field displays
Perhaps one of the most unconventional applications of light 
field displays is correction of visual aberrations for a human 
observer [12], [17], [18]. Instead of correcting vision with eye-
glasses or contact lenses, the same can potentially be done 
directly in the screen, allowing for myopia, hyperopia, astigma-
tism, and even higher-order aberrations to be corrected. For 
such an application, the light field display presents a distorted 
light field to the eyes of the viewer such that their natural aber-
rations optically undistort the light rays, resulting in the desired 
image (Figure 7). This idea is somewhat similar to wavefront 
correction with adaptive optics. Implemented with light field 
displays, the requirement on the angular resolution (density of 
emitted viewing zones) is similar to those for light field displays 
supporting focus cues: multiple different viewing zones have to 
be displayed into the same pupil. Assuming that the prescription 
of a viewer is known and that their pupil location and diameter 
can be tracked by a camera, light field displays attempting 
vision-correction constrain the light field synthesis to the pupil 
locations. For example, simple implementations using parallax 
barriers were shown by [12] and, using integral imaging, by 
[18] and [17]. As shown by Huang et al., the pupils are tracked 
and the light field is dynamically rendered and predistorted for 
the viewer such that only viewing zones that actually enter the 
pupil are considered. Using a 4-D light field display for vision 
correction, as opposed to a conventional 2-D display, has the 
advantage that the additional degrees of freedom afforded by the 
four dimensions allow for the inverse problem of synthesizing 

patterns that result in a sharp target image when observed with a 
defocused eye to be well-posed or invertible. One could attempt 
to preprocess an image for a 2-D display, such that when the eye 
is accommodated away from the physical screen it looks like 
the target image [19]. However, it turns out that this approach is 
ill-posed and therefore not invertible. But even when the image 

formation is invertible, vision-correcting dis-
plays require the prescription of the viewer 
to be known (no changes to the hardware are 
necessary, different prescriptions can be cor-
rected in software) and the pupil positions 
and diameters to be fixed or tracked. Addi-
tionally, this technology has not yet been 
shown to simultaneously correct for visual 
aberrations and provide stereoscopic cues in 

direct-view displays; however, near-eye light field displays, 
which employ a separate display per eye, have been demonstrat-
ed to simultaneously correct visual aberrations while presenting 
binocular images [17].

High-dynamic-range displays
The dynamic range of a display usually refers to its contrast, 
i.e., the ratio of brightest possible display state and the dark-
est. The dominant display technology for achieving an HDR 
is a combination of low-resolution light emitting diodes 
(LEDs) and a high-resolution LCD [5]. The rationale for this 
design is that the LEDs can be turned off completely, thereby 
producing a truly black image, or they can be boosted to pro-
duce extremely high peak brightness. The main challenge is 
that LED arrays cannot yet be easily produced at a high reso-
lution and small pixel size. Thus, the HDR display uses a low-
contrast, but high-resolution LCD to deliver high image 
resolution while the low-resolution, high-contrast LED array 
serves as a programmable backlight. Just over a decade after 
publication, HDR displays are now widely available in the 
consumer market, usually under the name “microdimming” 
or “local dimming.”

In addition to providing degrees of freedom for glasses-
free 3-D image synthesis, stacked LCDs also decrease the 
black level of the produced image compared to any individual 
LCD. Although the peak brightness of a multilayer display is 
usually reduced compared to each of the respective layers, the 
observed contrast is increased. This makes multilayer displays 
ideal display systems for HDR image generation. However, 
with nonnegligible separations between attenuators, multilay-
er HDR decomposition becomes a 3-D display problem simi-
lar to light field image synthesis, since all viewpoints must 
produce an accurate rendition of the 2-D image within the 
target field of view. The factorization framework described by 
[9], [10] inherently accounts for the limited contrast of each 
layer, thereby allowing simultaneous optimization of dynamic 
range and accurate multiview imagery. In a 2-D HDR dis-
play mode, the target light field encodes a single plane (e.g., 
coincident with the front layer), with a texture given by the 
desired HDR image. Figure 8 shows the result from a parallax-
free 2-D HDR display prototype. The optimized layers in (b) 

With an ever-increasing 
demand on image 
resolution, one of the 
major bottlenecks in the 
light field display pipeline 
is computation. 
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Driver Electronics

Liquid Crystal Display

Liquid Crystal Display
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Prototype Dual-Layer Light Field HMD Design

Light Field Factorization Photographs or Prototype

Rear Focus
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Front Focus

(a)

(b) (c)

FIGURE 6. Near-eye light field display with support for focus cues. The design is based on the stereoscope but uses two stacked LCDs inside the device to 
generate (a) a separate light field for each eye. (b) Light-field factorization is employed to computer-generate patterns shown on the front and rear panel. (c) The 
light field provides sufficient angular resolution for focus cues to be supported, such that a viewer can accommodate within the virtual scene.
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FIGURE 7. A Vision-correcting light field display. Illustration of conventional and vision-corrected display. The device is outside the accommodation range of 
the viewer and usually looks blurred. A light field display with a sufficient angular resolution to image multiple views into the same pupil provides degrees 
of freedom for correcting myopia, hyperopia, or higher-order aberrations.
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account for the nonzero black level of the printing process and 
are scaled appropriately before printing.

Although Figure 8 demonstrates improved contrast with 
static, layered transparencies, the same concept applies to 

stacks of programmable LCDs, as recently proposed by [20]. 
If high-speed LCDs are available, the time-multiplexing aspect 
described in the previous sections can be exploited as it offers 
increased degrees of freedom compared to static displays. 

Original Tone Mapped Image

Absolute Errors for all Setups

Attenuation Layer for Setup

Attenuation Layer for Setup Attenuation Layer for Setup

Prototype with One Transparency

Prototype with Two Transparencies Prototype with Three Transparencies

1

0

(a)

(b)

(c) (d)

FIGURE 8. A multilayer, parallax-free HDR image display. The target HDR image is shown with (a) tone mapping. Photographs of a multilayer HDR display 
prototype, incorporating (b) one, (c) two, and (d) three layers (each with a contrast of 3.3:1), are shown; note how image contrast is improved by applying 
tomographic image synthesis method together with multiple, physically disjoint attenuation layers. The absolute errors between the simulated reconstructions 
and the target image are shown in (d). 
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A variant of this idea was also proposed by [4], who designed 
and built an HDR light field projector using stacked micro-
displays in a projection system along with a custom screen.

Discussion
The dream of “Lippmann’s window” continues to appear 
beyond our reach. Factored displays alone cannot bridge the 
gap to enable faultless displays with today’s electro-optical 
components and optimization algorithms. However, as out-
lined in this article, they may provide a shortcut to passing 
the visual Turing test, allowing for significant enhancements 
in resolution, dynamic range, color reproduction, and light-
field characteristics. Factored displays achieve this by 
exploiting two key properties: the visual world is structured 
and the human visual system is flawed. As such, the design 
of displays should be reconsidered as a compression prob-
lem—not just as applied to image capture, storage, and trans-
mission, as is typically done, but also as applied to the 
modulation of photons upon display by one or more spatial 
light modulators. Yet, unlike related compressive imaging 
systems, compressive displays must contend with a major 
obstacle: the ultimate decoding algorithm is immutable, 
being that instantiated by the human visual system itself. As 
a result, all interventions must be made before a ray of light 
impinges on the retina of a viewer, but under models of its 
perception by the viewer thereafter. In this sense, factored 
displays offer a unique opportunity to merge advanced signal 
processing and optimization methods with our understanding 
of the limitations of the human vision system and how to 
exploit them computationally.

The primary limitations of factored displays today include 
reduced light transmission, optical diffraction effects that are 
observed as an additional blur that the presented, ray-based 
image formation model does not account for, and increased 
computation. With increasing computational resources and 
emerging electro-optical light modulators, we believe that 
factored displays will soon demonstrate their full potential in 
a range of computational displays. Further research on adapt-
ing these spatial light modulators and improved factorization 
methods may place displays that successfully pass our visual 
Turing test within reach.
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Computational Imaging for Cultural Heritage
Recent developments in spectral imaging, 3-D surface measurement, 
image relighting, and X-ray mapping 

B
ecause art is inherently visual, the use of imaging has 
long been an important way to understand its structure, 
form, and history. Recently, new ways of engaging with 
objects from our shared cultural heritage are possible with 

advances in computation and imaging that allow scientists to 
analyze art noninvasively, historians to pose new social ques-
tions about the art, and the public to explore and interact with 

art in ways never before possible. There is a rich history in 
applying image processing techniques to conventional 

photographic images of works of art, many of which 
have been highlighted in previous special issues of 

IEEE Signal Processing Magazine (e.g., the 2008 
and 2015 July issues). Building on these contribu-
tions, this article comprises a survey of techniques 
where computation is central to the image acqui-
sition process. Known as computational imag-
ing, the methods being pioneered in this field are 
increasingly relevant to cultural heritage applica-
tions because they leverage advances in image 
processing, acquisition, and display technologies 

that make scientific data readily comprehensible to 
a broad cohort of nontechnical researchers interested 

in understanding the visual content of art. Presently, 
only a small research community undertakes computa-

tional imaging of cultural heritage. Here we aim to intro-
duce this growing new field to a larger research community 

by discussing: 1) the historic background of imaging of art, 2) 
the burgeoning present day community of researchers interest-
ed in computational imaging in the arts, and finally, 3) our 
vision for the future of this new field.

Introduction
The use of electromagnetic radiation, beyond the limits of 
eyesight, to visualize artworks may be traced to 1895 when 
Roentgen made his first X-ray shadowgraphs, one of which 
happened to have been a painted surface. However, it was 
not until the 1930s, when X-radiography first entered into 
museums, that a new art history formed around the ability to 

SIGNAL PROCESSING FOR 
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS
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assess style and attribution of an artwork from aspects of the 
painted surface not visible to the naked eye [1]. This trend 
continued with other wavelengths of illumination. Specifi-
cally, ultraviolet (UV)-induced visible fluorescence helped 
reveal areas of loss/repair and provided a general sense of 
chemical composition [2]. By the late 1960s, infrared (IR) 
reflectography was in routine use in muse-
ums to reveal hidden underdrawings and 
preparatory marking in paintings [3]. More 
specialized techniques, such as autoradiog-
raphy achieved by neutron bombardment of 
a work of art, opened up the possibility of 
combining elemental composition together 
with imaging for the first time [4]—a tech-
nique that would inspire further develop-
ments in X-ray f luorescence imaging 
several decades later [5]. By the 1980s, new 
three-dimensional (3-D) acquisition tech-
niques were being explored for the 3-D doc-
umentation and display of cultural objects, 
both of which remain relevant subjects of 
investigation to this day [6].

The recent explosion in imaging of cul-
tural heritage has grown mainly out of the 
fields of remote sensing and color science. 
Of particular note is the use of hyperspectral and multispectral 
imaging instruments for pixel-by-pixel material characteriza-
tion [7]. A parallel development has been the use of synchro-
tron-based X-ray fluorescence and diffraction imaging that has 
grown in conjunction with the diversification of users of these 
large-scale facilities from all research disciplines. Around the 
same time, computational illumination techniques were devel-
oped to dynamically relight works of art in postcapture [8], 
[9]. With the advent of inexpensive digital scanners, several 
researchers have focused on digitization of existing X-radio-
graphs of canvas paintings, enabling recent advances in image 
processing algorithms to be applied to these historical works, 
such as in the canvas weave project initiated at Cornell Uni-
versity [10], [11]. The proliferation of inexpensive digital sen-
sors have been allowing museums to capture large amounts of 
high-resolution photographs in multiple modalities that were 
then computationally stitched together to provide seamless 
image mosaics with unprecedented detail [12]. Optical coher-
ence tomography [13] and THz imaging [14] provide in-situ 3-D 
reconstructions of microscopically thin layers of paint compris-
ing pictures and drawings. At the other extremes of scale, the 
popularity of both light detection and ranging (LiDAR) [15] and 
structure-from-motion (SfM) techniques [16] have allowed us to 
search for ancient cities and document the historic landscapes of 
modern ones.

In this article, recent developments are discussed in four core 
areas that have served to advance the field of cultural heritage 
into new territory: multispectral and hyperspectral imaging, 
3-D shape scanning and recovery, image relighting, and macro 
X-ray imaging. Key developments in each of these areas have 
dramatically changed the landscape of how one noninvasively 

documents, assesses, interprets, and conserves culturally signifi-
cant artifacts housed in museums around the world.

Multispectral and hyperspectral imaging
Human eyes only perceives visible light (380 nm+ 750 nm) with 
three types of color-sensitive cones: “red,” “green,” and “blue.” 

Multispectral and hyperspectral techniques 
extend the measurable spectrum from visi-
ble light to UV (10 nm+ 380 nm) and IR 
(750 nm+ 1 mm) lights with increased reso-
lution: typically multispectral imagery has 
three to ten bands, while hyperspectral 
imagery could have hundreds or even thou-
sands of narrower (e.g., 10 nm) bands. Multi-
spectral and hyperspectral imaging provide 
a wealth of information across space and 
wavelengths comprising large swaths of the 
electromagnetic spectrum. The techniques 
are also flexible since they can be scaled 
from the imaging of landscapes, when used 
on satellites and telescopes, down to the 
microscopic. Also, importantly, these imag-
ing spectroscopies are nondestructive under 
the normal conditions of their implementa-
tion. Liang’s recent review [17] should be 

consulted for developments in the field through 2012, but a brief 
introduction is provided here.

There are typically three principal ways of obtaining multi/
hyperspectral data sets: 
1) imaging the entire object at once through a series of differ-

ent filters (or through a single filter whose bandpass char-
acteristics may be controlled), e.g., in 2004, Lumiere 
Technology (http://www.lumiere-technology.com/Pages/
Services/services2.htm) used 13 filters from UV to IR and 
a 240-megapixel camera to image the famous “Mona Lisa” 
in the Louvre Museum 

2) scanning a linear slit view of the object through a grating 
that spreads the relevant spectral region onto a two-dimen-
sional (2-D) sensing array 

3) scanning the entire object point by point across its x-y sur-
face [18].

Aspects of cost, time, and instrumental design parameters 
will dictate the choice of image acquisition method.

The resulting x-y surface images are “stacked” as a function 
of wavelength thus creating an image cube that may be inter-
rogated in two ways. If the cube is “sliced” parallel to the x-y 
image face, one can analyze each of the images taken at each 
wavelength. Such an analysis at infrared wavelengths might 
readily provide an image of an underdrawing beneath the sur-
face of a painting. If the stack is rotated by 90° degrees to x-y 
image face of the cube, one can obtain the detected spectrum 
at every pixel. Because chemical components have distinguish-
able spectral responses, multivariate statistical methods such 
as principal component analysis (PCA) can provide informa-
tion on the spatial distribution of different materials. Examin-
ing the PCA images, spectral angle maps of end members, or 

New ways of engaging 
with objects from our 
shared cultural heritage 
are possible with 
advances in computation 
and imaging that allow 
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noninvasively, historians 
to pose new social 
questions about the
art, and the public to 
explore and interact
with art in ways never 
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mapping regions of interest provide a wealth of information 
on the composition, execution, and condition of the art object 
even when an artist never employed a pure pigment in their 
composition and the consequential endmember spectra do not 
correspond to pure pigments.

Traditionally, these methodologies deal with spectroscopic 
data in the near UV, visible, and near IR. Recently, however, 
macro X-ray fluorescence (XRF) scanning and macro X-ray 
diffraction (XRD) scanning have moved these applications 
into a revolutionary new area of analysis (see the section 
“Macro X-ray Methods” for more details). In addition, recent 
work involving mid-IR imaging [19] promises a wealth of new 
opportunities in cultural heritage analysis; 
i.e., using the fingerprint region of the IR 
spectrum (a region typically thought of as 
ranging from roughly 400 to 1,500 cm−1, a 
range not completely available yet in com-
mercial mid-IR scanners) enables mapping 
of a variety of pigments and binders, and 
comparison of the hyperspectral mid-IR 
data to point spectra obtained by a conven-
tional IR spectrometer in reflectance mode 
demonstrates the power of this new technique, which should 
expand as the accessible mid-IR range of the instrumenta-
tion increases.

Currently, powerful combinations of multispectral and 
hyperspectral imaging with other imaging and analytical 
modalities are revealing the rich information that can be 
gleaned from the synergy of combined methodologies (e.g., 
Raman spectroscopy, fiber optic reflectance spectroscopy) 
[7], [20]. While multi/hyperspectral data cubes contain 
rich material information, they are challenging to acquire 
and analyze due to the sheer size of these data sets. Tra-
ditionally, dimension reduction and feature exaction tech-
niques such as PCA and end-member analysis were used 
for hyperspectral data [18]. Recently, compressive sensing 
has been used in hyperspectral imaging for sensing, recon-
struction, and material classification [21]. The technique 
exploits the sparsity of signals by solving the following 
optimization problem:

, ,min f g Afst.
f p 2 # e- (1)

where e  controls the tolerate approximation due to noise, and 
p 0= or 1 describe the sparsity of the signal as L0 norm (total 
number of nonzeros) or L1 norm (sum of absolute value).

The optimization framework from (1) can be used to 
decompose measured reflectance spectra into pure spectral 
components, with can be used to identify and “unmix” het-
erogeneous pigment combinations on painting surfaces [22].
In this approach, g is defined as the spectral vector ( )g m at a 
given pixel, and each column of A is a spectral vector of known 
material from a predetermined dictionary of pigment spectra. 
Solving the optimization problem then reconstructs the sparse 
coefficient f , which tells us the material components of that 
pixel, along with their relative concentrations. Note that these 

spectral decomposition methods are entirely linear, and there-
fore cannot accurately model nonlinear effects such as wave-
length-dependent scattering, self-absorption, etc., which may 
be common in a real painting material.

We conclude this section by highlighting a recent com-
putational advance that leverages tremendous power from 
combined imaging modalities, i.e., advances in registration 
software that enable the “stacking” of images or especially the 
stacking of full data cubes from different regions of the elec-
tromagnetic spectrum [12].

The entire reason for manipulating data cubes from dif-
ferent regions of the electromagnetic spectrum—visualiza-

tion of different and often complementary 
data—brings with it a concomitant chal-
lenge: Is it possible to register images in 
which the features below the immediate 
surface have been moved, painted over, or 
scraped away? Artists often experimented 
with multiple underdrawings on the same 
painting and then overpainted those under-
drawings with further alterations in the 
paint layers. Revealing and spatially reg-

istering these pentimenti can provide significant insights to 
artistic process and intent.

One solution [12] has utilized image fusion methods in 
which the modulus of the wavelet transform is determined 
and allows for the identification of “candidate control points,” 
common features in the different images that can be used for 
alignment. The true functionality of the algorithm comes from 
how it assesses the statistical quality of these control points 
and seeks a wide enough spatial distribution of them so that 
a function may be calculated to register a variety of different 
sized images. Registration often requires a couple hours of 
computational time on a desktop PC. In the case of Figure 1,
a rotated IR image has been registered with an X-radiograph 
followed by an adjustment of their relative intensities to clarify 
the legibility of the underlying portrait. This legibility enhanc-
es the confidence in assigning the underlying portrait to an art-
ist other than Vermeer. (Readers are encouraged to view the 
movies of registered images in the supplementary materials of 
Conover, et al. [12] at http://link.springer.com/article/10.1007/
s00339-015-9140-1.) This software is not only exceptionally 
powerful, but it is also readily implemented; one of the authors 
of this article routinely trains 18-year-old first-year college stu-
dents how to obtain multiple multispectral image cubes and to 
register them.

Three-dimensional shape scanning and recovery
Since the 1990s, 3-D laser scanning has made the shape cap-
ture of 3-D cultural-heritage objects possible. In one of the first 
efforts to capture sculpture in the round, the Digital Michelan-
gelo project, researchers scanned several Michelangelo statues, 
including his masterpiece David [6]. While the project pro-
duced spectacular geometries of statues meters in size at milli-
meter resolutions from a combination of three expensive laser 
scanners, the results still fails with in specular/shiny areas of 

The recent explosion 
in imaging of cultural 
heritage has grown mainly 
out of the fields of remote 
sensing and color science, 
such as spectral imaging 
and macro X-ray scanning. 
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objects. Processing these data is also a nontrivial task since 
gaps in the scanned area must be filled and the different scans 
must be aligned and registered in X, Y, Z space. Also, further 
processing to map color information on the acquired 3-D 
meshes is needed to produce a fully ren-
dered result. The whole process was expen-
sive (US$2 million) and took 32 people 
years (1997–2004) to plan, scan, and model 
ten statues. Thus, laser scanning poses 
many challenges that limit its widespread 
use. Beside academy, Aicon3D (http://www.
aicon3d.com/) and Metis (http://metis-digi-
tal.com/) companies currently offer high-
resolution 3-D scanner for artworks, and 
Artmyn (http://www.artmyn.com) provides 
Web solution for 3-D imaging, using the 
one of the oldest New Testament papyri 
(Papyrus 66) as an example. Due to the lim-
itation of laser scanning, new methods are 
still needed for quick and cost-effective 
ways for digitally archiving art.

Another effective approach to the imag-
ing of extremely large structures has been airborne LiDAR 
remote sensing techniques, which make it possible to record 
shapes on the extreme landscape scale. For instance, the 200 
km2 area of the ancient Maya landscape at Caracol, Belize, 
was scanned with a resolution that could resolve structures of 
roughly 25-cm height [15]. The data obtained helped research-
ers understand that the ancient Maya could radically modify 
their landscape to create a sustainable urban environment. On 
the other hand, Google Earth (https://earth.google.com/) has 
made 3-D buildings of cities (e.g., Chicago, Illinois) and 3-D 
historical sites (e.g., Rome’s Colosseum) easily accessible to 
the public, though in low resolution.

To overcome some of the limitations of terrestrial and air-
borne laser scanning due to the high operational, researchers 

have more recently used a more convenient and purely image-
based method, SfM, a photogrammetry stereo technique, to 
recover the shape of historical sites. In 2006, the 3-D struc-
ture of the Colosseum in Rome was generated from a large 

collection of consumer photos taken at dif-
ferent viewpoints [16]. These photos were 
gathered from an Internet-sharing website. 
The photo explorer uses image-based ren-
dering techniques to create smooth transi-
tion between different viewpoints, so the 
user can comfortably and virtually tour 
historic locations. SfM may also be used 
to great effect on smaller moveable objects, 
however, the depth accuracy of the pho-
togrammetry stereo method is limited to 
only textured surfaces and fails on feature-
less surfaces, hence, the depth resolution is 
typically lower than the lateral resolution at 
each pixel.

Another image-based method, photo-
metric stereo, recovers the 3-D shape of an 
object by taking multiple images at fixed 

view but varies lighting positions. Photometric stereo models 
the image intensity as a function of surface normal, reflectance, 
and lighting/viewing angle. The surface normal is recovered 
by solving an optimization problem, and the 3-D surface of 
the object can be recovered by integrating the surface normal 
across the field of view. Unlike photogrammetry, photometric 
stereo works extremely well on textureless surfaces and can 
produce high-resolution normal maps. Classic photometric ste-
reo methods assume a point light source placed at infinitely far 
away from direction L, and assume the material is Lambertian 
with albedo reflectivity of k, so that the reflected light intensi-
ties at an object point with surface normal n becomes

( ) .I k n L:= (2)

(a) (b) (c) (d)

FIGURE 1. (a) A color image of Johannes Vermeer’s Girl with the Red Hat (1665/1666). Andrew W. Mellon Collection, 1937.1.53, National Gallery of Art, 
Washington, D.C., (b) infrared reflectance (2,100-2,400 nm), (c) X-radiograph, and (d) summation of the rotated X-radiograph and the intensity-inverted 
and rotated infrared reflectance image. (Images and figure caption used with permission from [12].) 
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By taking a series of measurements I , with different, but 
known lighting direction L , the surface normal n, and 
albedo k can be estimated from a system of linear equations 
using, for instance, a least squares method.

Classical photometric stereo assumes a distant-light model. 
This considerably simplifies the problem, as it produces con-
stant lighting angle and incident radiance across the object sur-
face. However, distant-light sources are impractical due to finite 
space and energy constraints. As a result, for a typical photo-
metric stereo capture setup, lighting angle and incident radiance 
vary across the object surface. Using the simplified far-light 
model from (2) with such a setup produces a 3-D shape with 
large global error [25]. Recently, research-
ers have explored the near-light photometric 
stereo method to recover millimeter to sub-
millimeter scale markings on the surfaces of 
Paul Gauguin’s paintings (Figure 2) [9]. The 
depth maps acquired achieve a depth preci-
sion of fewer than 100 mn  for a field of view 
as large as 300 mm. These depth maps have 
revealed new details of how Gauguin pro-
duced his paintings using his unique draw-
ing transfer techniques.

Classical photometric stereo also as-
sumes Lambertian surfaces with perfect diffuse reflection. 
However, this assumption is invalid for a large class of real 
materials such as metals, plastics, and glass, which exhibit 
different combinations of diffuse and specular reflections. 
The most accurate way to model how light is reflected from 
an opaque surface uses the bidirectional reflectance distribu-
tion function (BRDF), which is a four-dimensional function 

( , )fr i o~ ~ , which depends on the incoming light direction 
i~  and outgoing light direction o~ . The BRDF is the most 

general way to model surface reflection (not considering 
subsurface scattering), but it also severely complicates the 
photometric stereo problem. As a result, several researchers 
have investigated lower-dimensional reflectance models for 

use with photometric stereo algorithms. Ikehata et al. [23]
models the non-Lambertian, specularities and shadows as 
additive corruption E, so that the observed image intensity 
is ( ) EI k n L:= + . Assuming the corruption E is spatially 
sparse, the problem can be solved by compressive sensing 
algorithms by modeling the optimization similar to the La-
grange form of (1) as:

 ( ) ,min I k n L EE
, ,k n E 2 0: m- - + (3)

where m  is an nonnegative parameter controls the balance 
between data fit and sparsity.

While photometric stereo can produce 
submillimeter precision surface measure-
ments with a large field of view, other 
methods can be used to measure surface 
detail on the microscopic scale. Optical co -
herence tomography (OCT) has recently 
been employed for examining the layer 
structure of paintings [13]. High-resolu-
tion 3-D images at a micron scale can be 
reconstructed thus revealing the underlay-
ers of paintings and their corresponding 
depth positions. Originally proposed for 

biomedical imaging of structures such as the eye, OCT can 
produce high-resolution contrast depth maps. OCT presents 
challenges in that the instrumentation is expensive and can 
only scan centimeter-sized areas. The depth maps obtained 
are also not linked to material color information, so inter-
preting these data is not immediately intuitive.

Image relighting for cultural heritage
In addition to the 3-D geometry, characterizing surface 
appearance under different lighting conditions is also critical 
for cultural heritage. The appearance of an artwork is the 
sum result of how its material and microstructure interact 
with all possible incoming light rays and all the possible 

subsequent measured outgoing light 
rays that may have been reflected, 
absorbed, scattered, refracted, and 
transmitted from the artwork’s sur-
face. This compressive light-transport 
function combines each possible inci-
dent light location, wavelength, direc-
tion, polarization with how this 
incident electromagnetic radiation 
scatters underneath the object’s sur-
face, and global illumination effects 
such as self-shadowing and interreflec-
tion. It is an immense totality of mea-
surements that is only theoretically 
possible to collect completely. Conse-
quently, the light-transport function at 
a fixed viewpoint may be easier to 
gather by capturing images of artwork 
lit from various light directions. 

Reflective
Sphere

Calibration
Target
NativityColor

Checker

FIGURE 2. (a) The setup for capturing photometric stereo of Gauguin’s Nativity: a color checker for 
color calibration, a 3-D calibration target for 3-D surface calibration, a reflective sphere for calibrating 
light direction, and the work of art. (b) Several frames from an animation visualizing the 3-D surface 
shape at the location of the lines drawn in Nativity. The 3-D reconstruction shows clear evidence of 
protrusions on the page where ink has been deposited. This is solid evidence for the ink being trans-
ferred from a matrix such as that in a monotype transfer process. (Images and figure caption used 
with permission from [9].) 

While photometric stereo 
can produce submillimeter 
precision surface 
measurements with a 
large field of view, other 
methods can be used to 
measure surface detail on 
the microscopic scale.
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Reflectance transformation imaging (RTI), originated from 
polynomial texture mapping (PTM), is one such approximation 
method. Malzbender [8] first discussed RTI as a method for 
examining an artwork using interactively changeable light-
ing conditions with a set of digital images. By interpolat-
ing multiple images of a work, each with different 
illumination angles from a fixed camera position, an “active 
photo” may be produced with easy controls that encourage 
exploration to see vanishingly subtle features, including 
self-shadowing and inter reflection. The PTM typically 
stores six coefficients [ , , , , , ]c c c c c c c0 1 2 3 4 5=  for each pixel, 
and computes the pixel intensity I from a novel illumination 
direction [ , , ]l l l lx y z

T=  as a biquadratic function:

.I c l c l c l l c l c l cx y x y x y0
2

1
2

2 3 4 5= + + + + + (4)

The RTI either uses polynomial basis of order six or higher 
(e.g., ( ) [ , ,h l l lx y

2 2_ , , , ]l l l l 1x y x y
T  above) or uses hemispheri-

cal harmonics (HSH) basis ( )h l  to generate a novel image 
from a new illumination direction l  interactively specified 
by a user. For both cases, the pixel intensity is universally 
given by ( )I h l cT= . While the basis ( )h l  is the same for all 
the image pixels, the coefficients c  are pixel dependent. The 
coefficients can be computed from a set of precaptured K
images under different known lighting directions, by least 

squares of an overdetermined (assume c  has less order than 
K) linear system:
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Over the past several years, the art conservation commu-
nity has adopted RTI for close digital examination of artworks 
through relighting. RTI provides visually compelling ways to 
interactively explore surface relief and discover subtle surface 
features otherwise missing or indiscernible in ordinary photos 
or by direct visual inspection [24]. The free viewer software 
from Cultural Heritage Imaging (CHI) has been a boon to the 
field since it can exaggerate surfaces, pixel-by-pixel, to depict 
the topography more clearly and to compute estimates of sur-
face normal vectors via photometric stereo or from the PTM 
interpolation equation itself.

However, these methods assume that lighting is infinite-
ly far away from the object, a condition that cannot be eas-
ily achieved in practice due to power limitations of the light 
source and limited space around the object. The obvious solu-
tion is to capture images using near lighting, but these con-
ditions result in nonuniform illumination artifacts made 

(a)

Desktop Size Dome 81 Captured
Images

One of the Captured Images : Cropped

One of the Captured Images : Cropped

(b) (d)

(c)

FIGURE 3. Relighting comparisons for a woodblock by Paul Gauguin (accession number 1940–91) housed at the Art Institute of Chicago. (a) The 
woodblock was inserted under a dome to capture (b) 81 images, each under different lighting. The light position used to compute light attenuation due 
to the distance squared fall-off. (c) The inverse of this attenuation was used to produce relit images with even illumination. (d) The corrected images look 
uniformly lit and more visually pleasing. (Images and figure caption used with permission from [25].) 
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worse as the distance between the light source and scene 
narrows. Not only does uneven illumination produce poor 
visualizations for relighting, but when these data are used for 
photometric stereo, systematic errors introduce curl to the sur-
face normal estimations and make quantitative surface recon-
structions difficult. An algorithm to correct for captures that 
violate far-light assumptions has recently become available 
[25] that creates uniformly lit images (Figure 3) and, more-
over, accurate photometric stereo calculations for estimation 
of surface normals.

Macro X-ray methods
All macro X-ray methods in cultural heritage stem from 
Roentgen’s discovery of X-rays in the late 19th century. 
X-radiography has been a staple of the field for decades and 
is still valuable in its original form: a 
contrast image formed from the absorp-
tion of X-rays by high-Z contrast ele-
ments, such as the lead associated with 
the pigment lead white. X-radiographs 
are routinely used by conservators and 
curators to characterize the method and 
style of painting and can be indicative of the artist’s 
thought process when pentimenti are observed. Within the 
last decade, major advances have been made in interpreting 
X-radiographs by computational methods. Also, there has 
been an increasing use of macro tomographic methods, as 
well as the development of macro XRF scanning and macro 
XRD scanning that have transformed our views of cultural 
heritage objects.

Computational processing of X-radiographs
Computational processing of X-radiographs has revolution-
ized the area of thread count and thread direction analysis for 
paintings on fabric supports [11] and now the chain lines are 
impressed into the paper by the wire mesh of the molds dur-
ing fabrication [26]. The development of the method in [11]
hinged on realizing that a Fourier transform to the observed 
alternating light and dark X-ray contrast patterns of a canvas 
could provide both thread count and thread direction data. 
Prior to this insight, threads were painstakingly counted by 
hand under magnification, and those counts were limited to 
only a few centimeters of a painting.

These new computational methods permit global analysis 
of the entire work. The overall pattern of threads has been 
shown to be very diagnostic for matching paintings to a single 
bolt of fabric and is now being used to date paintings. Fur-
thermore, primary and secondary cusping in the canvas weave 
(scallop patterns caused by the stretching methods used to 
prepare canvases for old master paintings) becomes obvious 
after employing the computational algorithm, and not only can 
these patterns be used to match paintings to proximal regions 
of a bolt of cloth, their absence can be used to infer that a paint-
ing has been trimmed. More importantly, this method provides 
a way to match paintings at approximately the same period to 
a single bolt of cloth [11].

Macro XRF scanning
Some of the most exciting recent developments in cultural 
heritage analysis have involved XRF. The method involves 
using an X-ray source to ionize core electrons from atoms or 
ions. After the generation of inner-shell electron “holes,” 
higher energy electrons “fall” into those holes, leading to the 
fluorescence of an X-ray. Because electron energy levels are 
quantized, the fluoresced X-rays are characteristic of the ele-
ments involved. Because inner-shell electrons are involved in 
these processes, the technique gives only elemental rather 
than chemical information. Therefore, for better and for 
worse, the spectra are simplified by their lack of chemical 
information. X-rays of different energies are attenuated differ-
ent amounts when passing through a given material from 
emitter to detector. As a result, it is possible to make some 

statements regarding the depth of materials 
relative to one another in the layers of a 
painting, particularly when a model of that 
layered material can be computer simulat-
ed [27]. For example, the difference in 
intensity for an element’s spectral response 
compared to theory can indicate how close 

to the surface of the object that element is, given information 
from the spectrum about which elements might be on top of 
it. Highly portable, rugged XRF point analyzers have made it 
possible to do qualitative (and under favorable conditions, 
semiquantitative) elemental analysis nondestructively on cul-
tural heritage objects in a matter of minutes.

The true revolution in the field has resulted from taking 
XRF scanning methodologies and repurposing them with 
transportable macro XRF scanners [5], [28]. These scanners 
acquire a hyperspectral XRF data cube by scanning point by 
point in the x-y plane—each point in the x-y plane contains a 
full XRF spectrum. As with single point analysis, depth infor-
mation can often be inferred based on relative X-ray intensi-
ties. As one might imagine, the amount of data involved in 
these cubes has demanded computational methods that can 
handle and mine this wealth of information [29]. Sometimes 
scanning a painting on a canvas support from behind can 
provide a better data set, due to different X-ray absorption 
characteristics, than scanning a painting from the front. The 
resulting information about elemental composition can be 
used to infer pigment maps and inferred information about 
relative depth can be used in combination with those maps to 
reconstruct paintings underneath overpaint [28]. For an artist 
such as van Gogh, whose work sold so poorly during his life-
time that he frequently reused his canvases and was supported 
by his brother, this XRF scanning technique has opened vast 
new areas of research (Figure 4).

Macro XRD scanning
As with point XRF analysis, point powder XRD has histor-
ically been invaluable in the characterization of artists’ pig-
ments. When performed in situ, the method does not 
require a sample and is considered nondestructive. Because 
the diffraction of X-rays requires a regular repeating array 

Some of the most exciting 
recent developments in 
cultural heritage analysis 
have involved XRF. 
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of electron density, the method requires microcrystallinity 
in the analyte. Thus, the technique cannot be used on 
amorphous materials or materials that do not diffract 
X-rays well, and in this regard it is inferior to XRF. Howev-
er, because the diffraction pattern of a crystalline substance 
is essentially a fingerprint, it provides direct chemical 
information about the analyte, and in that regard it is supe-
rior to XRF. Because XRD typically requires greater pho-
ton f lux than XRF, the method was more resistant to 
migration from synchrotrons to transportable scanning 
methodology. Fortunately, those problems are being solved 
[5]. In addition to providing positive chemical identification 
of materials present, XRD also offers the advantage that, 
because it requires higher energy X-rays, it provides greater 
depth penetration. Combined with XRF macro scanning 
data cubes and hyperspectral imaging cubes from the UV, 
vis, and IR, these techniques, operating synergistically, 
allow unprecedented insights into the composition of cul-
tural heritage objects, with all of the attendant implications 
for art history and art conservation.

Conclusions
In this article, we surveyed how computational imaging has 
impacted five key areas of cultural heritage science. There are 
three key features that have resulted in these techniques mak-
ing a significant impact on the cultural heritage community. 
The first is the proliferation in recent years of image sensing 
technology, which has spawned technological advances in 
new imaging modalities such as XRF, XRD, hyperspectral, 
etc. The second feature is that recent advances in these new 
imaging modalities has given accessibility to entirely new 
types of information latent within the artworks held by muse-
ums. The third feature is the ability to visualize information 
about artifacts intuitively in the form of images, which has 
made this information much more accessible and comprehen-
sible to nonexperts.

Computational imaging of cultural heritage is opening up 
many new avenues for investigating the technical art history of 
objects and to assess the condition of works of art that will aid 
in their long-term preservation. There are several areas of com-
putational imaging that have not been thoroughly explored on 
cultural heritage objects. Also compressive sensing and sparse 
imaging could significantly improve sensitivities especially for 
conditions where low light is necessary for light-sensitive materi-
als and when increased imaging speeds are necessary for experi-
ments that cannot be conducted in the public spaces of museums 
over days (as in macro X-ray scanning). Improved material data-
bases with bidirectional reflectance distribution function data 
[30] could lead to advances in reconstruction algorithms that 
produce more accurate image archives and renderings. Scalabil-
ity is another principal obstacle. For example, a comprehensive 
measurement of the chemical composition and spatial structure 
of layers of paint in an entire work of art could provide new and 
valuable tools for art historians and conservators.

Another important direction that has not been covered in this 
article is the dissemination, visualization, and display of the 
great body of visual information now being captured by muse-
ums and galleries around the world. For instance, augmented 
reality is projected to strongly impact the museum visitor’s 
experience in coming decades. Finally, for the computational 
imaging field, it is important to note that artworks provide 
fantastic test scenes that can inspire researchers to push the 
envelope by providing new imaging and display techniques 
that can probe the complex light-material interactions inher-
ent in so many works of art. In this regard, it is the hope that 
cultural heritage can serve as a catalyst for novel research in 
computational imaging.
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FIGURE 4. Elemental maps, obtained on Vincent van Gogh’s Patch of Grass, showing the hidden portrait of a woman. (a) and (b) show the Sb distribu-
tion, while (c) and (d) show the Hg distribution. (a) and (c) were acquired with macro-XRF at a synchrotron source, while (b) and (d) are results of in situ 
measurements by means of Instrument B. (a) and (c) were acquired with a step size of 0.5 mm and 2 seconds dwell time in two days, while (b) and (d) 
were acquired with a step size of 1 mm and a dwell time of 5.1 seconds in six days. (Images and figure caption used with permission from [28].) 
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Gaze-Contingent Computational Displays
Boosting perceptual fidelity

C
ontemporary digital displays feature multimillion pixels 
at ever-increasing refresh rates. Reality, on the other 
hand, provides us with a view of the world that is contin-
uous in space and in time. The discrepancy between 

viewing the physical world and its sampled depiction on digi-
tal displays gives rise to perceptual quality degradation. By 

measuring or estimating where we look, a new breed of 
gaze-contingent algorithms aims to exploit the way we 

visually perceive digital images and videos to remedy 
visible artifacts. In this article, we provide an over-

view of recent developments in computational 
display algorithms that enhance perceived visual 
quality of conventional video footage when viewed 
on commodity monitors, projectors, or head-
mounted displays (HMDs).

Introduction
Display technology is advancing at a breathtak-
ing pace. Driven by consumer demand, screen size, 

resolution, contrast, and refresh rates are growing 
bigger, faster, and higher almost on a weekly basis. 

Nevertheless, the fundamental difference between 
the continuous physical world and its digitally sam-

pled and displayed image still gives rise to perceptually 
noticeable quality degradation. 
For example, while TV screen resolution has been increas-

ing from National Television System Committee/phase alter-
nating line to high-definition (HD) and on to full-HD today, 
physical screen size has grown in step, leaving the number 
of pixels per inch (PPI) almost unchanged on commodity 
hardware. Common full-HD screens result in a narrow verti-
cal field-of-view of 18c when matched to eye acuity, so that 
single pixels can no longer be perceived (see Table 1). High-
end screens with 2,880p (5k) or 4,320p (8k) vertical resolution 
are required to widen the field of view for a more immersive 
viewing experience. Exceptions are smartphone displays that 
do feature high pixel densities of 500–800 PPI to enable clear 
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readability of small-scale text and playback of high-resolution 
videos. This implies, however, that more and more pixels must 
be rendered on resource-strapped mobile devices. Incongrui-
ties also exist in the temporal domain between digital video 
recording and display capabilities. While TV display refresh 
rates today commonly match or exceed 60 Hz, standard video 
acquisition frame rates still hover between 24 and 30 frames/
second (fps). The discrepancies between the physical world 
and its digital representation, as well as the mismatch in acqui-
sition versus display capabilities and displays versus human 
visual perception, lead to noticeable artifacts.

If it is known, or can be reliably estimated, how human 
vision perceives digital images at any one time, gaze-con-
tingent display methods are able to make use of a number of 
perceptual strategies to improve perceived visual quality. In 
addition, gaze contingency allows allocating computational 
resources on the fly to image regions that are perceptually 
relevant for the current gaze direction. While gaze-contingent 
display approaches have been proposed before, only recently 
have eye-tracking hardware, saliency estimation methods, and 
graphics hardware become sufficiently fast, robust and afford-
able to allow for incorporating advanced gaze-aware methods 
in mass-market devices. This article highlights recent exam-
ples of gaze-contingent computational display approaches that 
enhance perceived visual fidelity of common, consumer-mar-
ket display technologies.

Modeling human vision
Gaze-contingent displays exploit abilities and limitations of 
the human visual system (HVS). Although correlations 
between the eye and the visual cortex are not yet fully under-
stood, models of the HVS enable us to conservatively express 
some important features of human vision.

Visual acuity provides an estimate of the smallest visual 
detail that the HVS is spatially able to perceive. The acuity 
follows approximately the distribution of cones and rods in 
the retina. It reaches its highest value, therefore, in the foveal 
region, which can be modeled by a central disc with a radius of 
two degrees visual angle. Acuity falls off rapidly with eccen-
tricity in the periphery. Therefore, visual acuity is estimated by 

a function over the eccentricity or, in other words, the distance 
to the fovea given in degrees visual angle.

The acuity value is commonly given either as the Snellen 
value or a minimum angle of resolution (MAR) value [1]. For 
healthy young adults, the common highest visual acuity is 
defined as 20/20 Snellen or, equivalently, 1 minute of arc in 
terms of MAR for the foveal region [1]. The acuity limit is pri-
marily reasoned by the spacing of photoreceptors in the retina. 
However, due to the large variability between human eyes, 
estimating the distribution of rods and cones across the retina 
is difficult. Additionally, studies have shown that, at eccentrici-
ties greater than two degrees, the acuity is worse than what 
can be predicted from cone spacing [1]. Consequently, visual 
acuity cannot be determined from the distribution of the pho-
toreceptors on the retina only.

The psychophysical model of Aubert and Foerster from 
1857 is a well-established model for low-level vision tasks [1].
It states that the minimum discernible angular size increases 
roughly linearly with eccentricity for the first -20 30c; it then 
rises more rapidly [1]. Due to its simplicity and conservative 
approximation of the real acuity, the model of Aubert and 
Foerster is still commonly used. However, the linear model of 
Aubert and Foerster does not do justice to the full complexity 
of the HVS, as peripheral vision is not a scaled-down version 
of the foveal area [1]. Eye adaptations in very bright and dark 
areas as well as motions of the eye also influence the amount of 
detail perceived. Therefore, sophisticated acuity models must 
include means to deal with additional vision features. Color 
vision is another aspect affected by the distribution of rods 
and cones. Although color can be still perceived in nonfoveal 
vision if the stimulus is large enough, retinal performance falls 
off linearly until 20–30c in periphery for color discrimination 
and many other visual tasks as well [1].

Vision models for gaze-contingent displays may not only 
consider visual acuity, brighness adaptation, and color vision 
but also the measureable movements of the human eyeball. The 
most important motion abilities of the eye are saccades, the 
motion when jumping from one object of interest to another, 
and fixations, which give humans the ability to directly gaze 
intentionally into a certain direction. Both eyes are commonly 

Table 1. An overview of common display device types. 

Display Type Refresh Rate Vertical Resolution Pixels per inch
Lossless Viewing 
Distance Lossless FOV 

Smartphone 60 Hz 1,920p/5.5 in–3,840p/5.5 in 400.5–801.0 > 8.5–4.3 in < 32–64°

Tablet 60 Hz 1,200p/7 in–1,824p/12.3 in 323.5–267.0 > 10.6–12.9 in < 20–30.4°

Monitor 60–120 Hz 1,080p/23 in–2,880p/27 in 123.1–217.6 > 35.9–15.8 in < 18–48°

TV set 60–600 Hz 1,080p/55 in–4,320p/85 in 40.0–103.6 > 85.8–33.2 in < 18–72°

Projector 24–1,000 Hz 1,080p/125 in–2,160p/125 in 17.6–35.2 > 195.1–97.5 in < 18–36°

HMD 60–90 Hz 800p/7 in–1,200p/7 in 215.6–352.9 > 15.9–9.79 in < 13.3–20°

Each column contains values for a middle-class device and a high-end device. Perceptually lossless minimum viewing distance and maximum lossless field of view (FOV) are given 
for a person with average vision (20/20 Snellen) so that the perceived resolution matches foveal acuity.
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directed at the same scene object, but, reasoned by the physical 
disparity of the eyes, the difference of the per-eye gaze vec-
tors can be quite large, e.g., when one is looking at an object 
close-by. This vergence motion allows humans to perceive 
depth in nature and in stereoscopic images. 
The unconsciously triggered tracking reflex 
when a moving object attracts gaze is called 
smooth-pursuit eye motion. On a screen, 
smooth-pursuit eye motion may affect the 
acuity function, assuming that the frame 
render duration is above the retinal integra-
tion time. This brightness-level dependent 
value describes the average duration of 
collecting photons before transmitting the 
visual information to the higher levels of 
the visual system [2].

Accomodation is another form of eye 
motion and describes the mechanical abil-
ity of the eye to compress or relax the lens 
of the eye so that objects in the foveal spot-
light are projected clearly. In other words, 
accomodation describes the natural coun-
terpart of adjusting a camera lens so that an object in the scene 
gets into focus. In-focus objects can be described by a depth-
of-field plane within the focus distance to the eye and are 
clearly projected onto the retina, whereby out-of-focus objects 
appear blurred.

Adaptation is the time-dependent process that adjusts our 
eye to the environmental lighting situation. Although adap-
tation enables us to see over seven orders of magnitude of 
brightness intensities, we are not able to see equally well at 
all intensity levels. The visual acuity for details and color 
perception is reduced with dimming of light. In other words 
acuity is lower at scotopic levels (cones) of illumination than 
at photopic levels (rods). It is, therefore, difficult to read a 
book in a dim room without additional light. During daytime, 
contrast sensitivity is lower, but sharp vision and color vision 
work very well.

Gaze detection and prediction
Gaze-contingent approaches require knowledge of where on 
the screen the user is looking at any time. Depending on the 
application, gaze direction must be known to about one degree 
accuracy and updated with at least 50 Hz, while total latency 
may not exceed 60 milliseconds [3]. In modern eye tracking 
systems, video cameras are frequently mounted either close to 
the eyes or at a distance to record the pupils and corneal reflec-
tions. If the user is allowed to move the head, it, too, needs to 
be tracked. The cameras must be calibrated and the video 
streams processed in real time to continuously determine gaze 
direction. A comprehensive guide to eye tracking methods has 
recently been compiled by Holmqvist et al. [4].

Active eye-tracking methods require additional hardware 
and calibration of the hardware for each user. The calibration 
process may hamper deployment of gaze-contingent appli-
cations. Just recently, researchers began to loosen calibration 

constraints to enable eye tracking in more general scenarios. 
Cazzato et al. derive pupil information and head pose at the 
same time to enable gaze tracking while both the eye-tracking 
camera and the tracked person can move independently [5].

Most image and video content, on the 
other hand, is being viewed in quite a pre-
dictable fashion. Our visual attention, i.e., 
our gaze, is subconsciously drawn to certain 
image or video regions while other parts of 
an image are merely being glanced over [6].

In the past two decades, numerous algo-
rithms have been devised to predict visual 
saliency of local image features. In 1998, 
Itti et al. proposed a visual attention estima-
tor inspired by the early vision processes of 
our visual cortex [7]. Based on a set of pre-
defined center-surround operations and lin-
ear filters, image features are computed on 
multiple image resolution scales and com-
bined into one saliency map, from which a 
neural net selects and ranks the most promi-
nent features. The predictor of Itti et al. is 

still competitive to other state-of-the-art methods today. 
Over the ensuing years numerous improvements, as well as 

alternative approaches, to visual saliency prediction have been 
proposed [8]. One of the most successful current methods is 
based on image decompositing and contrast measures akin to 
high-dimensional Gaussian filtering [9]. The resulting saliency 
map is claimed to successfully separate fore- and background 
information on a per-pixel basis. Alternatively, visual saliency 
may be learned directly from large amounts of eye-tracking 
data [10]. Benchmark tests of various computational models of 
visual saliency indicate, however, that there is no single meth-
od equally suitable for all types of scenes and situations [11].

In comparison to work on image saliency, there exists sig-
nificantly less research into video saliency, although motion and 
moving objects are known to be strong attractors of visual atten-
tion. Little research has also been invested so far into saliency 
prediction in the outer peripheral field of view, i.e., into the kind 
of visual stimulus that is able to elicit long-range saccades.

Because local image saliency determines to a large extent 
where people look, innumerable painters throughout the cen-
turies have experimented with visually salient cues to actively 
guide the eye of the beholder. On today’s gaze-contingent dis-
plays, gaze can be actively steered around using imperceptible 
local contrast modulations in the peripheral field of view [12].
By turning the modulation stimulus off immediately after the 
onset of the elicited saccade, saccadic masking prevents the 
user from being consciously aware of the stimulus. The modu-
lation stimulus is never perceived by the user’s foveal vision.

Gaze-contingent techniques
The notion of gaze-contingent display devices dates back at 
least two decades. Excellent earlier review articles on gaze-
contingent techniques and applications include those of Rein-
gold [13] and Duchowski [14].

While gaze-contingent 
display approaches have 
been proposed before, 
only recently have 
eye-tracking hardware, 
saliency estimation 
methods, and graphics 
hardware become 
sufficiently fast, robust 
and affordable to allow for 
incorporating advanced 
gaze-aware methods in 
mass-market devices.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


142 IEEE SIGNAL PROCESSING MAGAZINE |   September 2016 |

As early as 1990, Levoy and Whittaker proposed a gaze-
contingent approach to render volume data sets according to 
view direction [15]. Motivated by the limited computational 
resources of the time, a ray tracer was described, the local ray 
density of which varies depending on the angle between vol-
ume region and gaze direction while an eye tracker continu-
ously measures gaze direction in real time. 

In their 1996 article, Ohshima et al. employ level-of-detail 
rendering depending on gaze to interact with multiple objects 
in a virtual environment [16]. Besides angular distance from 
gaze direction, the authors take into account additional per-
ceptual clues from kinetic and binocular vision to adapt the 
rendered level of detail to what can and cannot be perceived. 
In contrast, Luebke et al. simplify three-dimensional (3-D) 
geometry meshes directly in accordance with gaze [17]. To 
remain visually imperceptible, the degree of mesh simpli-
fication is controlled by gaze direction as determined via 
eye tracking. Along similar lines, Murphy and Duchowski 
propose a nonisotropic, level-of-detail-rendering approach for 
geometry meshes based on a user-study-derived 3-D spatial 
degradation function [18]. Their eye-tracking system was prob-
ably also the first designed for an HMD to be used in virtual 
reality applications. 

A real-time simulator of glaucoma and other ophthalmic 
degradations of the field of view has been presented by Perry 
and Geisler [19]. Their system accepts conventional video foot-
age as input and filters it with a predefined low-pass kernel cen-
tered on current gaze direction at 60 fps. Parkhurst and Niebur 
investigate how gaze-contingent level-of-detail rendering affects 
our ability to detect and localize objects [20]. Their experiments 
demonstrate that object detail significantly influences the speed 
with which we are able to perform different tasks. Based on 
a user study, Levi et al. predict that, by using gaze-contingent 

approaches, rendering cost needs to increase only linearly 
(instead of quadratically) with increasing display field of view, as 
long as angular resolution remains constant [21]. By putting the 
main emphasis on rendering acceleration, significant speed ups 
are achieved using a gaze-contingent rendering approach [22].

Boosting temporal fidelity
In the physical world, our individual gaze determines if, how, 
and where we perceive blur. Our blur perception in the real 
world can differ distinctly from camera-recorded motion blur. 
While watching live-action shots on screen, we may notice 
annoying ghosting, judder, or edge-banding artifacts. When 
observing a dynamic scene in real life, our eyes automatically 
follow and track moving features to hold the object steady on 
the foveal region of our retina, allowing us to resolve details. 
As noted earlier, this automatic, involuntary, and effortless 
behavior of our human visual system is known as smooth-
pursuit eye movement.

By visually tracking the moving foreground with our gaze, 
our peripheral vision perceives the nontracked background as 
blurred by motion. A camera tracking the moving foreground 
also records the background in motion-blurred fashion. When 
displayed on screen, however, the background can appear dis-
tinctly different and annoyingly distracting from the foreground. 
If frame rate and exposure time are not correctly adapted to 
apparent scene motion in the image plane, aliasing is introduced 
in the background, referred to as judder (Figure 1). These judder 
artifacts become especially apparent when viewed on wide-
angle displays because spurious high-frequency details in the 
moving background lead to the perception of discontinuous, 
jumpy motion by our peripheral vision. User studies indicate 
that missing or insufficient motion blur affects gaze behavior 
in such a way that our visual attention is involuntarily drawn 

Short Exposure

Perceived Image

FIGURE 1. Judder due to camera motion. If exposure times are short and frame rates too low for image-plane motion, judder (ghosting) artifacts are 
perceived in the background on the screen.
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toward incorrectly sharp and detailed image regions. The 
discontinous motion of the background distracts our visual 
attention from the tracked foreground because our peripheral 
vision is especially sensitive to movements and expects con-
sistent, smooth motion (Figure 2).

To remedy the effects of temporal aliasing, Nvidia recently 
released its G-Sync technique, which adapts display-refresh 
rate to the processing time of each rendered frame (www.
geforce.com/hardware/technology/g-sync). The technique reduc-
es some stutter motion artifacts by avoiding repeated display 
of the same frame, allowing for smoother motion perception 
in games.

Similar to judder, hold-type blur is another form of aliasing 
that occurs when objects move faster in image space than they 
can be captured by the camera. Motivated by the Nyquist theo-
rem, object velocities above one pixel per frame in the image 
space introduce aliasing. As a result, at 24-Hz capture frame 
rate and HD resolution, the sampling criterion is violated 
already for slow-moving objects. Higher frame-rate videos 
with a typical frame rate of 48 or 60 Hz reduce recorded 
motion blur and hold-type blur, yielding sharper perceived 
images. High frame-rate movie cameras are currently being 
explored by movie directors (e.g., in Peter Jackson’s The Hob-
bit series), and specialized upsampling hardware is being 
integrated into standard TV sets. High frame-rate video, 
however, is not always practical or beneficial. The video 
must be recorded at shorter exposure times and because there 
is always some dead time to store each frame (or to open 
the shutter), only about 60% of the time interval between 
successive frames is being captured. Again, temporal alias-
ing may be the result. Some viewers even report perceiving 
a distracting speedup of the video (www.pcmag.com/article2/ 
0,2817,2379206,00.asp).

Even at 60-Hz capture frame rate, fast-moving objects can-
not be recorded free of aliasing. If eye movement is known 
or can be reliably predicted—e.g., via passive, saliency-based 
gaze prediction—the minimal sampling rate (or maximal 
motion) between two frames can be estimated. Specialized 
displays that support multiflash protocols are able to reduce 
artifact visibility by showing each video frame multiple times 
[23]. For conventional displays, however, only appropriate 
frame prefiltering is able to yield convincing results [2]. To 
this end, the original video sequence must first be temporally 
upsampled. For frame interpolation, robust optical-flow-based 
algorithms may be used [24]. Alternatively, perceptually 
smooth results may also be obtained by directly making use 
of predicted gaze [2], [25]. In both cases and for best results, 
exposure time of the input sequence should be low to minimize 
motion blur.

When we know the eyes’ gaze path p during smooth-pursuit 
eye movement, the correct retinal image R can be computed for 
any point in time and any desired integration time TR by inte-
grating the upsampled video sequence along the path
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where t is time, x is a screen coordinate, and ( ( ), )S x p t t+  is 
irradiance received by the retina. This corresponds to trans-
lating each frame in the opposite gaze path direction, com-
pensating eye motion, and setting the spatial components 
along the path to zero: by integrating along the temporal axis 
and translating the frames back to their original position, the 
frames are filtered according to the gaze path. This filter 
operation may be applied in real time for adjusting the inte-
gration time if the temporally upsampled video frames can be 
accessed quickly enough. The result is a consistently filtered, 
temporally downsampled video sequence that can be dis-
played on any conventional display or projector (Figure 3).

Besides correct prefiltering of low as well as high frame-rate 
video, the approach can also be applied to simulate virtually 
any shutter configuration. Rolling shutter, focal plane shutter, or 
artistic shutter effects, e.g., shutter times longer than one frame, 
can be created this way from the same footage during postpro-
cessing. Conversely, still images can be infused with localized 
motion blur to convey information about scene motion.

Boosting perceived resolution
Big-size screens featuring 60+ in diagonals and 4k pixels per 
line are entering the consumer market. HMDs that are the 
driving force behind virtual reality applications, on the other 
hand, must be small in size but at the same time cover a very 
wide field of view. Even with state-of-the-art 350 PPI screens, 
at a natural field of view current HMD displays are still an 
order of magnitude away from eye acuity (Table 1), exacerbat-
ed even more by significant pixel magnification in the central 
region of lens-based HMDs.

Recently, apparent-display-resolution enhancement tech-
niques have been proposed to provide super-resolution on high 
refresh-rate displays [26]. By exploiting how the HVS observes 

and processes moving content, these approaches are able to 
boost perceived resolution beyond the actual physical resolution 
of the display. With active-matrix organic light-emitting diode 
technology, refresh rates in excess of 1,000 Hz are achievable, 
allowing for a six-fold increase in apparent display resolution. In 
essence, apparent-display-resolution enhancement allows trad-
ing screen refresh rate for perceived resolution as long as the 
user’s gaze continuously and predictably tracks moving fore-
ground via smooth-pursuit eye movement.

Didyk et al. have shown that retinal integration of high-
frame-rate, low-resolution images results in an increase in 
perceived resolution if the frames are displayed above the criti-
cal flicker frequency [26]. To perceive an object at higher than 
screen resolution, the eyes must smoothly pursue the object 
while it is moving across the screen. Smooth-pursuit eye move-
ment can already be evoked by simply moving a static image at 
constant velocity. In videos, the effect is achieved by exploiting 
the movement of foreground objects [27]. Apparent-display-
resolution enhancement is governed by two constraints: high 
display-refresh rates are necessary to achieve high contrast 
and strong resolution enhancement, and the motion must be 
predominantly in a diagonal direction to achieve resolution 
enhancement both horizontally and vertically. The more fore-
ground object motion deviates from the diagonal direction on 
the pixel grid, the less pronounced the resolution-enhancement 
effect is in the direction orthogonal to the motion.

Apparent-display-resolution enhancement enables experi-
encing a standard low-frame-rate, high-resolution video at full 
resolution on a much lower resolution, yet high refresh-rate 
display [25]. Based on the assumption that our gaze follows 
the most salient regions of the sequence, the salient foreground 
regions are determined in a preprocess. The video frames are 
then continuously, unnoticeably shifted in such a way that, in 

(a) (b) (c)

FIGURE 3. Judder cancelation: the original 60-Hz input video is first upsampled to 3,000 Hz, then filtered and downsampled again to 60 Hz to simulate dif-
ferent exposure times. (a) A frame from the original sequence. (b) Conventional long-exposure simulation by blending multiple interpolated frames; note 
that the entire image is blurred due to camera motion. (c) Gaze-adaptive filtering keeps the foreground sharp while the background is correctly blurred, 
consistent with smooth-pursuit eye movement of the foreground. (Original footage copyright © 2013 RED Digital Cinema. All rights reserved.).
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combination with the postulated smooth-pursuit eye move-
ment, the tracked foreground moves in a diagonal direction, 
facilitating the exploitation of the resolution enhancement 
effect (Figure 4):

( ) ( ) ,W I T I 0L H- = (2)

where IH  is the vector of all high-resolution frames, IL  is the 
vector of low-resolution subframes, W is a matrix weighting 
each subframe, and T is the vector of applied transformations 
per subframe.

To find the optimal transformations, the optimization is 
based on energy minimization:

.E E E Evel smooth imp= + + (3)

The energy E incorporates saliency by the term Eimp  (to focus 
the optimization on regions of interest for a viewer), smoothness 

by the term Esmooth  (to support smooth-pursuit eye motion and 
to prevent flickering), and resemblance to the optimal direction 
and velocity by the term Evel  (to provide the best possible reso-
lution enhancement effect). Trajectory optimization is per-
formed in matter of seconds for a complete frame sequence. 

For low frame-rate videos to facilitate smooth-pursuit eye 
movement and to avoid simply duplicating frames, frame rate 
is upsampled by interpolation along the salient region’s 
motion path, boosting the apparent resolution enhancement 
effect most effectively (Figure 5). By continuously, unnotice-
ably shifting the video frames around, the salient region can 
be perceived at much higher resolution than the display physi-
cally provides. This approach allows for apparent resolution 
enhancement even for scenes that originally do not contain 
any movement or for which optical-flow computation is diffi-
cult or impossible. HMDs especially make high demands on 
spatial resolution and may, therefore, significantly benefit 
from this technique. The approach takes about 30 seconds per 

(b) (c) (d)(a)

FIGURE 5. Applying apparent-display-resolution enhancement to general footage [25]. (a) Given a standard frame-rate video as input, (b) optical-flow and 
saliency maps are computed to (c) temporally upsample and shift the video along a smooth, optimized trajectory. (d) When displayed on a high refresh-
rate display, the perceived resolution of the salient region is much higher than the physical resolution of the display.  

(a) (b)

FIGURE 4. Salient-region motion optimization. (a) In the original sequence, the salient region (the motorbike driver) shows only horizontal movement; 
in this case, apparent-display-resolution enhancement can be applied in a single direction only. (b) After motion optimization, the salient region moves 
diagonally across the screen, which is ideal for apparent-display-resolution enhancement. (Original footage copyright © 2013 RED Digital Cinema. 
All rights reserved.) 
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output frame (at 4k input) and is, therefore, not yet real-time 
capable. However, an improved implementation running on 
the graphics processing unit may enable real-time apparent-
display-resolution enhancement based on active gaze input.

Gaze-contingent head-mounted displays
Being able to detect and to adapt to gaze direction facilitates 
many new ways to enhance digital displays. Especially for 
HMDs, knowing in real time where the user is looking 
enables providing a much-improved viewing experience.

By integrating an eye tracker into an HMD (Figure 6), the 
displayed frames can be directly adapted to the user’s current 
gaze direction [28]. One intriguing application made possible 
by real-time eye tracking is to simulate the accommodation 
reflex [29]. Accommodation allows us to focus on objects at 

arbitrary distances. Objects in front of or behind the focal 
plane appear naturally blurred. Using a gaze-contingent HMD, 
this effect can be convincingly simulated because in HMD 
applications scene-depth information is typically available to 
facilitate stereoscopic vision [Figure 7(a) and (b)]. To find the 
correct plane of focus, a ray is cast along the gaze direction, 
and its intersection with the scene establishes focal distance. 
Depth-of-field rendering is then applied to create an authentic 
visual experience of the entire scene. Binocular eye tracking 
can additionally be exploited to measure eye vergence for very 
nearby objects.

Another application for eye tracking in HMDs is foveat-
ed rendering [22]. The rapid fall off in acuity from our fove-
al to our peripheral field of vision is exploited to allocate 
rendering and video processing resources more efficiently. 

FIGURE 6. An eye-tracking HMD: (a) a mirror-based eye tracker concept and (b) an HMD prototype [28]. 

4

3

2

1

0

(a) (b) (c) (d)

FIGURE 7. Gaze-contingent rendering. By knowing where the user is looking, the effect of our eyes accommodating to different scene depths can be 
reproduced: (a) and (b) near/far accommodation on an image; the red marker shows gaze position. In addition, (c) gaze-contingent sampling allows one 
to exploit the limitations of visual perception such as (d) the fall off in acuity from foveal to peripheral vision for faster rendering. The color-coding in  
(c) represents the number of shaded pixels in a 2 × 2 neighborhood [22]. [The models shown have been made freely available by Epic Games International 
(Room) and Crytek GmbH (Sponza Atrium).]
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The scene is rendered and displayed at full quality only 
within a small area around the gaze direction [Figure 7(c) 
and (d)]. Rendered image quality decreases continuously 
with increasing angular distance from the foveal field of 
vision. In a similar fashion, a number of ophthalmic dis-
eases or the effects of drugs affecting the visual field can 
be simulated [19].

The notion of fovated rendering is also useful for broad-
casting and for the rendering and display of immersive 360c
videos. Currently, video codecs are optimized for encoding 
blocks of pixels at the same resolution in every part of the 
video frame. In the light of the retina’s vastly varying per-
ception characteristics from foveal to peripheral vision, how-
ever, future gaze-contingent video codecs will be able to adapt 
coding rate to local-view eccentricity. With gaze-contingent 
coding, only perceptually relevant information needs to be 
transmitted and rendered, saving bandwidth and memory. In 
terms of bandwidth and computation complexity, gaze-contin-
gency may be especially valuable for light-field video play-
back and light-field displays rendering multiple viewpoints for 
each displayed frame.

Other applications for gaze-contingent HMDs can be 
found in the context of collaborative virtual reality. With 
HMD-integrated eye trackers, gaze direction can be truth-
fully transferred to avatars, enhancing immersion by enabling 
collaborating users to establish eye contact in virtual reality. 

Even eye blinks can be mapped to the avatar, and potentially 
some facial expressions may also be picked up by the eye 
tracker and transferred.

Finally, being able to track gaze inside HMDs is a neces-
sary prerequisite for evaluating perception in immersive envi-
ronments [30]. For example, 360c videos in HMDs are viewed 
fundamentally differently from conventional movies on a TV 
screen. Based on eye-tracking-integrated HMD goggles, new 
visualization and analysis tools can be developed to investigate 
viewing behavior when one is immersed all around in live-action 
footage (Figure 8).

Outlook
Knowing where we are looking allows gaze-contingent display 
algorithms to provide for a much-enhanced viewing experience. 
Whether by avoiding aliasing artifacts, by exploiting perceptu-
al characteristics, or by allocating computational resources 
more efficiently, gaze-contingent computational methods are 
able to boost perceptual fidelity for all kinds of conventional 
displays. With affordable eye-tracking solutions becoming 
consumer electronics items, their widespread deployment is 
only a question of time and social acceptance.

Current limitations include, of course, that gaze-contin-
gent methods concentrate largely on the single-viewer case. To 
accommodate several people looking at the same screen, the 
presented methods need to be suitably adapted and extended. 

4
3 2

1

FIGURE 8. A user interface to analyze the viewing behavior of immersive live-action videos [30]. At top, color-coded frames indicate the current field of 
view of multiple users. Below, the users’ scan paths allow analysis of gaze direction of all users over time. In immersive environments, the gaze direction 
of different users diverges much more than on a conventional TV screen.
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Other limitations arise from imperfect saliency prediction, 
e.g., for video content that features no or multiple salient 
regions. More research is also needed into how we perceive 
with our peripheral vision and how to suitably render and dis-
play image information in the periphery of our visual field. 
We have only just begun exploring the possibilities of gaze-
contingent computational displays, and many more exciting 
methods and applications are certain to be discovered in the 
coming years.
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Location Signatures That You Don’t See
Highlights from the IEEE Signal Processing Cup 2016 Student Competition

hen thinking about using technolo-
gies to find one’s location, many of 
us may consider satellite-based glob-

al navigation systems, such as the U.S.
global positioning system (GPS). Smart-
phones today use GPS type signals and 
cellular network signals to determine the 
phone user’s current location and offer a 
broad range of location-related services. 
But when there was no such real-time 
connection and signal to analyze, for 
example, having only a piece of video or 
voice recording as an evidence of a news 
story or from child exploitation investiga-
tions (which have become an important 
global issue being addressed by the United 
Nation’s UNICEF organization), are we 
out of luck?

Fortunately, some very weak traces 
about the location may be “imprinted” to 
become part of the sound or visual sig-
nals during the sensing process [1].
These traces cannot easily be seen or 
heard by a human, but it is possible to 
extract them using signal processing 
techniques. The contribution of these 
location signatures–perhaps less foresee-
able to a layman—come from the varia-
tions in electric power supplies [2].
Thanks to information forensics research 
in the last decade, the frequency varia-
tions, known as electric network frequen-
cy (ENF) signals, are being extracted and 
exploited to answer a range of forensic 
questions. Interested readers may refer to 

publications such as [3] and [4] and the 
references cited therein.

Exploring location information of these 
ENF signals was the topic area of this 
year’s IEEE Signal Processing Cup (SP 
Cup) competition. The 
SP Cup is an under-
graduate competition 
organized by the IEEE 
Signal Processing 
Society (SPS) in which 
undergraduate students work in teams to 
tackle a real-life signal processing problem. 
Launched in 2014, the SP Cup competition 
has been held annually, and 2016 is the 
third edition. To join the SP Cup competi-
tion, undergraduate students are required 
to form a team. Each team is composed of 
one faculty member to advise the team 
members, up to one graduate student to 
assist the supervisor in mentoring the 
team, and three to ten undergraduate stu-
dents. Three top teams are selected from 
the initial round of competition and pro-
vided travel grants to participate in the 
final competition at the 2016 IEEE Inter-
national Conference on Acoustics, 
Speech, and Signal Processing (ICASSP). 
The final results are shown in “Winners of 
the SP Cup 2016.”

This article provides an overview of the 
technical tasks and highlights representative 
approaches and participants’ reflections.

Location signatures
in power and media
As suggested by its name, ENF is the fre-
quency of a power distribution grid. The 

nominal value of ENF is 60 Hz in North 
America and 50 Hz in most other parts of 
the world. ENF typically does not stay 
constant at its nominal value but rather 
fluctuates around it due to load changes 

across the grid and the 
control mechanisms 
that adjust the amount 
of power generation 
to stabilize the fre-
quency changes. We 

refer to the changing values of the ENF 
over time as an ENF signal. An example 
of an ENF signal can be seen in Figure 1.

What makes the ENF particularly rele-
vant to multimedia forensics is that audio 
or video recordings captured in areas 
where there is electrical activity, such as 
our offices and living rooms, may capture 
the ENF variations. In audio, this can be 
from the ambient power hum, and in 
video, this is due to the near-invisible 
flickering of electrical lighting. As the 
exact variations of ENF appear to be ran-
dom and difficult to predict, the embed-
ded ENF traces can serve as an intrinsic 
fingerprint that can be used for a number 
of forensic applications. In recent years, it 
has been shown that the embedded ENF 
traces can be used as a timestamp of 
media recordings as well as an indicator 
as to whether or not the media recording 
was tampered with [3], [5].

For the 2016 SP Cup, the competition 
topic was shaped around using ENF to 
identify the power grid in which a media 
recording was made. Upon examining 
ENF signals collected from different 

Digital Object Identifier 10.1109/MSP.2016.2581738
Date of publication: 2 September 2016

“Everyone has gained 
knowledge or skills in 
different aspects. The
SP Cup is a catalyst.”

W
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grids, one can see they differ in the nature 
and manner of their variations. An exam-
ple is shown in Figure 2, where we can 
compare data from Lebanon versus India 
versus the United States. A machine-
learning system can be constructed to 
learn the characteristics of the ENF sig-
nals from different grids to discriminate 
the grid of origin of a certain recording by 
examining the ENF traces embedded in it.

Tasks in SP Cup 2016

The open competition stage 
The SP Cup started with an open competi-
tion stage from September 2015 to Janu-
ary 2016, consisting of two parts. For the 
first part, participants were first given 
recordings made in nine grids labeled A–I. 
Some of the recordings were audio 
recordings from different locations and 
environments, and others were power 

recordings. Power recordings were made 
using a custom-made circuit that records 
the power signal directly from an electric 
outlet fed into a digital recorder. The main 
part of a typical circuit for this purpose 
includes a step-down transformer and a 
voltage divider. The power recordings 
generally exhibit very strong ENF traces 
as sinusoid signals around the base fre-
quency and have much stronger and 
cleaner traces than the ones seen in regular 
audio recordings.

The participants were asked to extract 
the ENF traces from the recordings and 
build a machine-learning system that 
could learn the unique characteristics of 
the ENF signals from different grids. To 
help the participants test their algorithms 
and systems and refine their work, they 
were also provided with 50 practice sam-
ples of power and audio recording, each 
of which was ten minutes long. A simple 

oracle website was set up for participants 
to input their predictions on this practice 
data set and then receive feedback on the 
accuracy of their predictions. During the 
final month of the open competition, par-
ticipants were provided with the final 
testing data set, composed of 100 power 
and audio recordings of ten minutes long 
each. Both the practice samples and final 
test samples included some of the record-
ings from grids outside the nine grids of 
A–I given for training. Participants were 
asked to report their predictions on this 
testing data set as part of their submis-
sions of the open competition. The accu-
racy of their results was one of the 
judging criteria in the choosing of the top 
three teams.

For the first time since the inception of 
the SP Cup, the competition included 
hardware and sensing components, which 
are important aspects of signal processing. 
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Participants were asked to design and 
implement their own circuit to measure a 
power signal and extract and analyze the 
ENF traces. After designing the circuit, 
they were instructed to use it to collect 
recordings from the power grid in which 
they live and then analyze these extracted 
ENF signals and compare them to what 
they extracted from the recordings of grids 
A–I provided in the competition. Each 
team was instructed to provide approxi-
mately ten hours of collected recordings 
together with their analysis as part of their 
submission for the open competition.

Final competition
After the judging committee evaluated the 
submissions from the open competition, 
three finalist teams were chosen to 
advance to the final competition. Prior to 
attending the final event at ICASSP, the 
finalist teams were provided with addi-
tional training data from three new grids, 
which were selected from the recordings 
submitted in the open competition by 
other teams. The participants were asked 
to incorporate this newly acquired data 

into their learning systems and were 
allowed to further refine their systems.

The final SP Cup event was held at the 
ICASSP in Shanghai, China, on 20 March 
2016. At the beginning of the event, the 
participants of the finalist teams were pro-
vided with an additional 50 ten-minute 
testing samples to combine with the test 
samples from the open competition round, 
for a total of 150 testing samples. After 
submitting the results within an hour, 
each team presented its work on the ENF 
extraction, the learning system, the sens-
ing circuits, and the corresponding signal 
analysis. The final judging committee 
convened and selected the first-second-
and third-prize winners as well as special 
recognitions.

Approaches to identify 
grid of origin
As outlined previously, one of the main 
goals of the SP Cup competition was to 
identify the grid of origin of power and 
audio signals containing ENF traces.

Many of the teams extracted the domi-
nant instantaneous frequency around 

nominal ENF frequencies over short time 
windows and used the features proposed in 
[6] and their variations or extensions to 
develop a feature set for pattern analysis 
and classification. The basic types of fea-
tures employed, shown in Figure 3, include 
1) statistical features related to ENF values 
(mean, variance, and range), 2) features 
extracted from wavelet analysis of ENF 
signals, and 3) features based on autore-
gressive modeling of ENF signals. Two 
examples of other features proposed by 
participating teams are histogram-based 
features around ENF base and harmonic 
frequencies proposed by Team Hammer 
Down of Purdue University, United States, 
and features based on the extrema in the 
ENF signal and the rising edges that can be 
present developed by Team UpatrasECE 
of the University of Upatras, Greece.

A common strategy for pattern analy-
sis and classification that was em  ployed 
by the participating teams, particularly 
the three finalist teams, was to differen-
tiate between four different types of 
signals: 1) power signals with 50-Hz 
nominal ENF, 2) power signals with 60-Hz 

Grand Prize: Team Resonance_101

Bangladesh

Second Prize: Team Hammer Down

Third Prize: Team Vidyut

Special Prize for Sensing Circuit System

Special Recognition of Originality

Special Recognition of Young Team 

Honorable Mention for Overall Excellence

Honorable Mention for High Classification Accuracy

Winners of the SP Cup 2016 
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nominal ENF, 3) audio signals with 
50-Hz nominal ENF, and 4) audio sig-
nals with 60-Hz nominal ENF. While 
each team had their own design for the 
learning and classification system, 
their solutions all consisted of four 
subsystems, one dedicated to each data 
type. Some of these subsystems had 
certain variations in the way the ENF 
signals were extracted or utilized dif-
ferent discriminating features, depend-
ing on which of the four types to which 
the signal belonged.

The first-place winning team, Team 
Resonance_1011 from Bangladesh, 
employed two-stage support vector 
machine (SVM) classifiers for each data 
type. The first one is a one-class SVM 
classifier that decides if the signal belongs 
to a grid seen in training, and the second 
SVM classifier narrows down the list of 
possible grids on the basis of different dis-
criminating features extracted from the 
embedded ENF signals. The last stage of 

the classification is where the testing sig-
nal is passed to a “pole-matching” classi-
fier to reach a final decision on the grid 
of origin based on the minimum distance 
between the estimated poles of the train-
ing and testing grids.

Team Hammer Down from the United 
States, which took second place, carefully 
studied the characteristics of the signals 
for this problem and proposed a different 
method from what is available in the 
recent ENF literature. The team’s novel 
method utilized a multiharmonic histo-
gram to analyze ENF signals for identify-
ing power grids. Team members 
computed ENF signals at multiple har-
monic locations and extracted histograms 
of 1) ENF magnitudes, 2) the signal 
power around the ENF, 3) the noise 
power around the ENF, and 4) the signal-
to-noise ratio of the ENF. At the classifi-
cation stage, they proposed a histogram 
matching method with a multilayer deci-
sion rule for identification.

Team Vidyut from India, which took 
third place, used a multistage SVM sys-
tem where, for each input test recording, 
five predictions from five respective clas-
sifiers were received. To compute the 
confidence of a prediction, team members 
proposed an entropy-based measure of 
confidence where lower entropy means 
higher confidence. For audio signals, they 
used an additional subband classifier that 
captures the relative strength among the 
different ENF harmonic components cap-
tured by a recording. The team used 
custom-designed detectors to resolve 
conflicts in decision between their SVM 
and subband classifiers.

Sensing circuits
For the hardware and signal acquisition 
tasks in the SP Cup that aimed at bringing 
out the synergy of sensing, processing, 
and learning, nearly all participating teams 
built their own circuit for collecting refer-
ence power recordings from the team’s 
respective locations. Useful references 
include an article in IEEE Signal Process-
ing Magazine on observing the grid [7] as 
well as ENF-related literature [3], [5], [8].
Among the submissions received, some 
teams adopted the reference design, while 
other teams made improvements, incorpo-
rated innovative features, or employed dif-
ferent implementations.

Given that this is the first time the SP 
Cup competitions included sensing hard-
ware design and implementation in addi-
tion to algorithmic tasks, the judging 
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FIGURE 3. An example of features derived from ENF signals for differentiating the originating power grids.
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FIGURE 4. A circuit diagram from Team UpatrasECE from the University of Upatras, Greece.
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committee reviewed this element in all 
entries and awarded special recognition to 
two teams for excellence in this task: 
Team UpatrasECE from Greece and 
Team The ENForcers from Serbia.

As shown in Figure 4, Team “Upa-
trasECE” thoughtfully included a glass 
fuse for the safety of the circuit opera-
tion. After the transformer and voltage 
divider that creates a reference voltage of 
3 V, they included a high-pass filter to 
block the dc component of the measured 
signal and thus focused on the variation 
patterns and an antialiasing filter to limit 
the bandwidth to 500 Hz and pass on to a 
recording device through a 3.5-mm jack. 
Team “UpatrasECE” was also given an 
honorable mention for the overall excel-
lence of their project.

The circuit of Team The ENForcers 
shown in Figure 5, included a transformer, 
a low-pass filter, a voltage divider, an 
amplifier for voltage adjustment, and an 
analog-to-digital (A/D) converter provided 
by an Arduino Uno board. An INA122P 
instrumentation amplifier was used in con-
junction with other components for volt-
age adjustments so as to make the voltage 
compatible with the Arduino A/D convert-
er. The sampled digital signal can be sent 
to a PC using Arduino’s built-in serial con-
nection for storage and analysis.

SP Cup 2016 statistics
SP Cup 2016 engaged participants from 
nearly 30 countries, covering every 
habitable continent. Three hundred thir-
ty-four students from 23 countries and 
forming 52 teams registered for the 
competition, as shown in Figure 6.
Among them, more than 200 students 
on 33 teams turned in the required sub-
missions by the open competition dead-
line in January 2016. Based on team 
photos and other information submitted, 
about one quarter of the participating 
students were female, with many teams 
populated by women at a 50% or higher 
rate. Similar to SP Cup 2015, we once 
again saw strong participation from stu-
dents in Asia-Pacific regions. At least 
two teams from Asia were in the final 

competition in each of the three SP Cup 
competitions.

To facilitate interaction and questions-
and-answer sessions with participants, the 
organizing team used Piazza, a popular 
course interaction platform, as an online 
bulletin board to post resources and data 
sets as well as to address questions and 
engage participants. About 200 participants 
“enrolled” in SP Cup 2016 on Piazza and 
made approximately 250 contributions; in 
total, they have accumulated about 2,300 
days of access and over 4,000 views of 
posts. Interested readers may access the 
archived Piazza site at https://piazza.com/
ieee_sps/other/sp1601/home.

Since its inception, the SP Cup has 
received generous support from Math-
Works, Inc., the maker of the popular 
MATLAB and Simulink platforms. 
MathWorks also provided funding sup-
port to the SP Cup and contributed their 
expertise. Each student team that regis-
tered for the SP Cup was provided 
complimentary software access to 
MATLAB and related toolboxes. The 
IEEE SPS welcomes continued engage-
ment and support from industry in 
future SP Cup competitions. Interested 
supporters may contact Dr. Patrizio 
Campisi, director for student services, at 
patrizio.campisi@uniroma3.it.
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FIGURE 6. A map illustrating the number of registered teams from each participating country around the world.

FIGURE 5. The sensing circuits by Team The 
ENForcers.
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Participants’ thoughts
Whether moderating the discussions 
online or attending the final competition 
at ICASSP, we could feel the enthusiasm 
and dedications from the participants. 
Amid the understandably intense compe-
tition, one could also sense a bond, and a 
community formed between students of 
different teams through the SP Cup 
endeavor. Here we highlight a few words 
from the finalist teams as each team 
reflected on their journey.

Team Resonance_1011
Bangladesh University of Engineering 
and Technology (BUET) has had a team 
as a finalist in every SP Cup so far—and 

this year, Team Resonance_1011 (see 
Figure 7) received the grand prize! 
What an impressive performance and 
persistent engagement! Three students 
from this year’s BUET team had also 
participated in the previous SP Cup 
competition and spoke enthusiastically 
of the rewarding experiences gained 
from this unique journey of learning and 
professional growth.
■ “The SP Cup was a great learning 

curve indeed both times I participated. 
It taught us to work as a team and fol-
low a stringent time schedule”—
Sayeed Shafayet Chowdhury

■ “Since this time the task was on a 
broader scale and we had a team com-

prising of ten students from different 
classes, we split up our work and tried 
to have online contacts regularly, 
besides having meetings with our 
supervisor, thus boosting our team-
work capabilities”—Billal Hossain

■ “This year we had hardware tasks 
too... We realized it was possible to 
take a much simpler approach [than 
using complex components and 
boards]. … We were able to devise an 
extremely low cost (lower than US$5) 
sensing circuit that provides a perfect-
ly adequate output.”—Ratul Khan and 
Munif Ishad Mujib

■ “The SP Cup has profound impacts 
on our students. Through the compe-
tition, they get to know how funda-
mental signal processing algorithms 
are used to solve a real and compli-
cated signal processing problem. 
They also need to explore many ad-
vanced signal processing areas out-
side their text books. They become 
familiar with signal processing jour-
nals and conference proceedings. We 
have also been able to attract some 
good and talented students to signal 
processing research through their 
participation in the SP Cup.…Each 
SP Cup gave me the opportunity to 
work on a new signal processing ap-
plication. It increases my depth and 
breadth of knowledge that is really 
helpful for teaching signal process-
ing courses.”—Mohammad Ariful 
Haque, faculty mentor.

FIGURE 7. Team Resonance_1011 received the grand prize.

FIGURE 8. Team Hammer Down won second prize and a special recognition for original algorithm.
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Team Hammer Down
Team Hammer Down from Purdue Uni-
versity, United States (see Figure 8), was 
composed of student members who were 
junior students (in the third year of their 
college career). They noted that their 
team was likely one of the most diversi-
fied teams in the competition, as they 
have students from different ethnic and 
cultural backgrounds with different areas 
of interest. 
■ “As a team with all members being 

junior students,…everyone has gained 
knowledge or skills in different 
aspects. Some of us have never done 
serious research.…Some of us are 
interested in signal processing but lack 
a strong motivation to go deeper…
The SP Cup is a catalyst”—Team 
Hammer Down 

■ “The competition itself provided a 
new and challenging way to apply 
what I had learned in my classes. In 
addition to challenging myself I also 
learned a lot while at ICASSP. Talking 
to professionals in my field helped to 
broaden my view of electrical engi-
neering as a whole. All in all, the SP 
Cup was a great experience and I rec-
ommend it to any undergraduates 
interested in signal processing”—Sam 
C. Sowell

■ “I have learned a lot during the SP Cup 
as a junior student. It was a great 
chance for me to apply and practice 
what I have learned in the classes in a 
different way; instead of practicing 
on idealized problem sets that serve 
to help students understand the con-
cepts, I was able to face some realis-
tic signal processing problems and 
challenges”—Xiangyu Qu

■ “Mentoring undergraduate students 
for the SP Cup is a challenging but 
rewarding experience. The difficult 
part is how to plan and divide the 
tasks, for most of the undergraduates 
do not have adequate background and 
experience. However, I am impressed 
by their creativity and the effort they 
spent on the project. They are a won-
derful team. The competition pro-
vides a good opportunity for students 
to explore different aspects of signal 
processing. I personally most appre-
ciate the integration of signal pro-

cessing and circuit, for it bridges the 
gap between the two seemingly less 
correlated ends of our curriculum 
nowadays.”—Prof. Stanley Chan, 
faculty mentor.

Team Vidyut
Team Vidyut (Figure 9) was formed by 
the collaborated efforts of undergradu-
ate students from the National Institute 
of Technology–Karnatak, Surathkal 
(NIT-K) and Indian Institute of Technol-
ogy—Madras (IIT-M), along with grad-
uate and faculty mentors from the 
Indian Institute of Science–Bangalore 
(IISc) where the undergraduate students 
first met and interned. Returning to their 
universities in the last month of the 
competition did not hamper the under-
graduate students’ teamwork, as they 
continued to make progress by frequent 
e-mails and regular phone calls. The 
team has a perfect gender balance with 
two female and two male undergraduate 
students and leveraged the complemen-
tary strengths of the members.
■ “‘Vidyut’ means electricity in many 

Indian languages…Although coordi-
nating amongst ourselves had become 
a challenge by itself, the sense of team 
spirit grew in us, as we worked for the 
competition.”—Team Vidyut

■ “As an undergraduate, it was very 
exciting to work on a real-world prob-
lem. … Coding was made easier, 
thanks to MATLAB”—Priyadarshini 
Savan Roshan, NIT-K

■ “In addition to the technical skills 
gained, this challenge helped me coor-

dinate and communicate better among 
a team”—Supriya Nagesh, NIT-K

■ “Attending the finals in Shanghai was 
an amazing experience where we had 
a chance to observe the different views 
taken by the other teams to approach 
the same problem. On the whole, par-
ticipating in the SP Cup proved to be a 
great learning experience with memo-
rable moments to cherish”—G. Nisha 
Meenakshi, IISc, graduate mentor.
More reflections from SP Cup final-

ists and participants along with project 
reports of selected teams can be found on 
the IEEE SigPort repository at http://
www.sigport.org/events/sp-cup-project-
reports. Figure 10 shows a few selected 
photos provided by the participating 
teams that showcased their teamwork 
during the competition.

In closing, we would like to convey our 
heartfelt congratulations to the winners and 
teams that received honorable mentions on 
their excellent performances! Thanks all 
participants for making IEEE SP Cup 
2016 successful! As you read through this 
issue of IEEE Signal Processing Maga-
zine, you will see that the 2017 IEEE SP 
Cup competition has been announced (see 
page 5). Please encourage students you 
know to take part in the competition, men-
tor a student team if you can, come to sup-
port in ways feasible, and stay tuned for 
another edition of the IEEE SP Cup Global 
Student Competition!
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Tutorial proposals:              September 15th, 2016
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Submission of Papers:
Prospective authors are invited to submit full-length papers, with up to four pages for technical content including figures and 
possible references, and with one additional optional 5th page containing only references. A selection of best papers will be made 
by the ICASSP 2017 committee upon recommendations from Technical Committees.

Special Sessions:
Special session proposals should be submitted by July 11th, 2016. Proposals for special sessions must include a topical title, 
rationale, session outline, contact information for the session chair, a list of authors, and a tentative title and abstract. Additional 
information can be found at the ICASSP 2017 website (www.ieee-icassp2017.org).

Tutorials:
Brief proposals for tutorials should be submitted by September 15th, 2016. Proposal for tutorials must include a title, an outline 
of the tutorial and its motivation, a two-page CV of the presenter(s), and a short description of the material to be covered. 
Tutorials will be held on March 5th, 2017.

Signal Processing Letters:
Authors of SPL will be given the opportunity to present their work,
subject to space availability and approval by the Program Chairs. 
SPL papers published between January 1st, 2016 and December
31st, 2016 are eligible. Because they are already peer-reviewed and 
published, SPL papers presented will neither be reviewed nor 
included in the ICASSP proceedings. Approved papers must have 
one author/presenter register for the conference.

Demos:
ICASSP 2017 offers a perfect stage to showcase innovative ideas 
in all technical areas of interest at ICASSP. All demo sessions will 
be highly interactive and visible. Please refer to the ICASSP 2017 
website for additional information regarding demo submission.

M.Sc./Ph.D. Forum:
The forum will provide an opportunity for M.Sc./Ph.D. students in the fields of electronics, circuits, and embedded systems to 
present their thesis/dissertation research (completed in the last year), including work in progress within the topics of interest 
for ICASSP 2017.  To encourage interaction among the M.Sc./Ph.D. students and researchers from academia, industry, and 
government, the forum will be organized as a poster session. A two-page paper on the thesis work will appear in the conference 
proceedings.

New Orleans, USA

As music and rhythm are the heartbeats of life, signal and information processing is the heartbeat of technology development 
for our daily life. Having both of them capture the hearts and souls of all the attendees is the goal of the 42th International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2017) which will be held in Hilton Conference Centre, at the 
Jazz music capital (New Orleans, USA) on March 5-9, 2017. ICASSP is the world’s largest and most comprehensive technical
conference focused on signal processing and its applications. The conference not only introduces new developments in the field 
but also provides an engaging forum to exchange ideas, and does so both for researchers and developers. The theme of the 
ICASSP 2017 is “The Internet of Signals” which is the real technology and world behind the Internet of Things. The conference 
will feature world-class international speakers, tutorials, exhibits, lectures and poster sessions from around the world. Topics 
include but are not limited to:

Audio and acoustic signal processing Sensor array & multichannel signal processing 
Bio-imaging and biomedical signal processing Signal processing education  

Design & implementation of signal processing systems Signal processing for communication & networking 
Image, video & multidimensional signal processing Signal processing theory & methods 
Industry technology tracks Signal processing for Big Data 
Information forensics and security Internet of Things and RFID 

Machine learning for signal processing Speech processing  
Multimedia signal processing Spoken language processing 
Remote Sensing and signal processing Signal Processing for Brain Machine Interface 
Signal Processing for Smart Systems Signal Processing for Cyber Security

Computational Imaging
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Recent Advances in Phase Retrieval

I n many applications in science and 
engineering, one is given the modulus 
squared of the Fourier transform of an 

unknown signal and then tasked with 
solving the corresponding inverse prob-
lem, known as phase retrieval. Solu-
tions to this problem have led to some 
noteworthy accomplishments, such as 
identifying the double helix structure of 
DNA from diffraction patterns, as well 
as characterizing aberrations in the Hub-
ble Space Telescope from point spread 
functions. Recently, phase retrieval has 
found interesting connections with alge-
braic geometry, low-rank matrix recov-
ery, and compressed sensing. These 
connections, together with various new 
imaging techniques developed in optics, 
have spurred a surge of research into the 
theory, algorithms, and applications of 
phase retrieval. In this lecture note, we 
outline these recent connections and 
highlight some of the main results in 
contemporary phase retrieval.

Relevance
Phase retrieval finds applications in areas 
such as optics, X-ray crystallography, 
astronomical imaging, speech process-
ing, and computational biology. Every 
application of this inverse problem 
encounters several fundamental ques-
tions: How do we reconstruct the desired 
signal from the measurements? To what 
extent is the reconstruction unique and/

or stable? Can we develop new measure-
ment devices that allow for robust signal 
recovery? These questions form the 
basis for the notes presented below.

Prerequisites
We assume the reader has a basic 
understanding of linear algebra, optimi-
zation, and probability. Some familiari-
ty with compressed sensing is helpful 
but not necessary.

Problem statement
In standard applications of phase retrieval, 
we receive measurements of the modulus 
squared of the Fourier transform of an 
unknown signal ,x0 ,y Fx0

2=  where 
the magnitude is taken component-wise. 
(For simplicity, we 
model x0  as a vector 
in Cn  so that the Fou-
rier operator F  may 
be represented by a 
matrix.) Observe that, 
without additional 
information, this in -
verse problem is ter-
ribly ill posed. For 
example, if y  is the vector of all ones, 
then x0 can be any standard basis element 
multiplied by an arbitrary phase factor. In 
general, the set of solutions can have as 
many as n  real degrees of freedom. 
Examples of these degrees of freedom 
include the so-called trivial ambiguities: 
Fz Fx2 2=  if z e xi= z  for some 

[ , ),0 2!z r  if z is a translation of ,x  or 
if z  is the conjugate reversal of .x

Example 1 
Suppose that ( , , , ) .x i2 0 0=  Then 

( , , , ) .Fx 5 9 5 12 =  Let z  be any of
( , , , ), ( , , , ),i i2 1 0 0 0 2 0- or (0, 0, , ) .i 2-

These are trivial ambiguities for which 
( , , , ) .Fz 5 9 5 12 =  However, trivial 

ambiguities are not the only solu-
tions. For example, ( / , ,z i5 1 2= +

/ , )i5 1 2- -  is not a trivial ambigui-
ty, but still ( , , , ) .Fz 5 9 5 12 =

To obtain a well-posed problem, we 
must acquire additional information. 
Historically, this has been accomplished 
by imposing structure on the signal. For 
example, one might assume that x0  is 
real and has compact support. In fact, 
this uniquely determines almost every 
x0  up to trivial ambiguities when taking 

a two-dimensional 
(2-D) Fourier trans-
form [or three-di -
mensional (3-D) or 
higher] [5]. However, 
unfortunately, in 1-D 
there is no unique-
ness even if the signal 
support is bounded. 
Furthermore, even in 

settings in which uniqueness is guaran-
teed, there is no known general algo-
rithm to find the unknown signal from 
its Fourier magnitude. A more recent 
class of signal structures used in phase 
retrieval relies on sparsity [4]. A vector 
is defined to be k-sparse if it has at 
most k  nonzero entries. Sparsity priors 
have been used extensively in many 
fields of engineering and statistics and 
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Phase retrieval finds 
applications in areas 
such as optics, X-ray 
crystallography, 
astronomical imaging, 
speech processing, and 
computational biology.
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are known to closely approximate vari-
ous classes of images and signals.

Another way to obtain a well-posed 
problem is to collect additional intensity 
measurements. For example, in diffractive 
imaging, one may implement multiple 
structured illuminations of the form 

,FD xj 0
2  where each D j  is a known 

diagonal matrix. In other applications, we 
can take redundant measurements via the 
short-time Fourier transform. This 
approach has been used in speech and 
audio processing, in measurements of ultra-
short laser pulses via frequency resolved 
optical gating, and in ptychographical dif-
fractive imaging, among others.

To account for the apparent multitude 
of plausible intensity measurements 
(such as structured illuminations or the 
short-time Fourier transform), we con-
sider a general phase retrieval setting in 
which we receive y Ax0

2=  for some 
known matrix .A Cm n! #  We then seek 
to solve the following program:

, ,x Ax y x Sfind subject to 2 != (1)

where S Cn3  corresponds to the im -
posed structure. In this lecture note, 
we focus on cases where S  is either all 
of Cn  or the set of k-sparse vectors. 
For both settings, we discuss transfor-
mations A  that allow for (1) to uni -
quely determine x0  and consider 
algorithms that were recently designed 
to solve (1) for various choices of .A
The results we present throughout are 
surveyed in [6], [8], and [10], unless 
indicated otherwise.

Uniqueness
For a fixed ,A  we are interested in 
whether (1) has a “unique” solution for 
every x S0 !  (or for most ) .x S0 !  We 
focus on the cases where S is either all 
of Cn  or the set of k-sparse vectors. 
Note that in both cases, x S!  if and 
only if e x Si !z  for every [ , ),0 2!z r

which means (1) never has a unique 
solution in the literal sense. To account 
for this technicality, we say (1) has a 
unique solution (up to a global phase 
factor) if every solution lies in the set
[ ]: : [ , ) .x e x 0 2i

0 0 !z r= z" ,

Notice that the set [ ]x0  is determined 
by the outer product x x*

0 0  (and vice 

versa). Let a*
i  denote the ith row of A

(here, a Ci
n!  is a column vector, and a*

i

denotes its conjugate transpose). Then

.y a x a x a x a x x a·* * * * *
i i i i i i0

2
0 0 0 0= = =

(2)

Consider the case where .S Cn=  In 
this setting, (2) implies that (1) has a 
unique solution for every x Cn

0 !

prec i se ly  when  the  mapp ing 
{ }x x a x x a* * *

i i i
m

0 0 0 0 17 =  is one to one. 
Recent research has investigated the 
number of measurements m  that are 
necessary or sufficient for this map 
to be one to one. For example, it has 
been shown that the inequality 

( )logm n O n4$ -  is a necessary con-
dition. Conversely, for almost every 
A Cm n! #  with ,m n4 4$ -  (1) has a 
unique solution for every .x Cn

0 !

Whether such A exist when m n4 41 -

remains an open problem for general .n
We know this is impossible when n has 
the form n 2 1k= +  and yet possible 
when n 4=  [11]. Alternatively, for 
almost every A Cm n! #  with ,m n2$

(1) has a unique solution for almost 
every ,x Cn

0 !  and no such A exists 
when .m n2 11 -

In many real-world applications, A
exhibits some sort of Fourier structure. 
For example, in the classical setting in 
which x0  is compactly supported, A
may be viewed as an oversampled Fou-
rier matrix. As mentioned before, 1-D 
uniqueness from Fourier measurements 
cannot be guaranteed in general. To 
achieve uniqueness beyond trivial ambi-
guities, consider the model in which A
is a kn n#  matrix composed of k  dif-
ferent n n#  blocks of the form ,FD j

where F  is the n n#  discrete Fourier 
transform matrix and each D j  is some 
diagonal matrix. This model is called 
the structured illumination model, and 
each D j  is referred to as a mask. While 
four such masks are required to deter-
mine every possible x0  (by the afore-
mentioned discussion), we currently 
only know how to do so with ( )logO n
masks. On the other hand, we do know 
how to determine almost every possible 
x0  with only two masks, which matches 
the above theory; in particular, the two 
masks may be taken to be the identity 

matrix and ( , , , ),0 1 1diag f  as illustrat-
ed in the following example.

Example 2 
Suppose that x0 is a vector of length n 4=
and we measure it using the two masks 
D I0 =  and ( , , , ) .D D 0 1 1 1diag1 = =

The resulting structured illumination matrix 
has the form

,A
FI
FD

1
1
1
1
0
0
0
0

1

1

1

1

1

1

1

2

3

1

2

3

2

4

6

2

4

6

3

6

9

3

6

9

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

= =

R

T

S
S
S
S
S
S
S
S
S
SS

;

V

X

W
W
W
W
W
W
W
W
W
WW

E

where .e ii
n

2
~ = =-

r-  The two-mask 
structured illumination model measures 
the discrete Fourier transform of the 
signal and of the signal minus the first 
component (or any other desired ele-
ment). A larger dimensional example of 
this idea is given in Figure 1.

Another structured example of A is 
the short-time Fourier transform, which 
can be thought of as a special case of 
the structured illumination model: The 
diagonal entries of each D j  come from 
a different translation of a common 
window function of width ,w  and we 
only consider every lth translation of 
this window. This particular measure-
ment model finds applications in cross-
correlation frequency-resolved optical 
gating (XFROG), in which one mea-
sures ultrafast laser pulses by optically 
producing a spectrogram; another appli-
cation is ptychography, a diffractive 
imaging method where different over-
lapping patches of the unknown object 
are measured. For the short-time Fourier 
transform model, we know that x0  is 
not uniquely determined if it has w
consecutive zeros, but (1) does uniquely 
determine most nonvanishing signals 
when .l w n% %

Example 3
Consider the short-time Fourier trans-
form of a signal of length .n 6=  We 
choose the measurement window as a 
rectangular function of length w 3=
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and select a step size .l 2=  The mea-
surements are then the discrete Fourier 
transforms of vectors that are equal to 
the signal of interest in the given win-
dows, and 0 elsewhere. With this choice 
of parameters, the short-time Fourier 
transform is equivalent to structured 
illumination using every other transla-
tion of ( , , , , , ) .1 1 1 0 0 0diag  The result-
ing measurement matrix has the form

( , , , , , )
( , , , , , )
( , , , , , )

.A
FD
FD
FD

F
F
F

1 1 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1

diag
diag
diag

1

2

3

= => >H H
In the case where S  is the set of 

k-sparse signals, a simple argument 
gives that for almost every ,A Cm n! #

Ax0  uniquely determines every 
k-sparse x0  provided m k2$  [4]. 
When the phases are discarded, the 
number of measurements increases 
by a factor of four: It can be shown 
that for almost every A Cm n! #  with
m k8 4$ - , (1) uniquely determines 
every k-sparse .x0  When k  is much 
smaller than ,n  one may wonder 
whether the classical phase retrieval 
problem [ ]Fx x0

2
07  is plausible (we 

will certainly have m n k8 4$= -

intensity measurements, as is typi-
cally sufficient).  Unfortunately, 
trivial ambiguities are still present 
in this case, but we can nonetheless 
uniquely determine most k-sparse 
signals with ( )k O n /1 2= e-  up to trivi-
al ambiguities.

Algorithms
In this section, we describe several 
methods for solving the phase retrieval 
problem (1) in the special cases where 

S  is either all of Cn  or the set of 
k-sparse signals.

The most popular class of phase-
retrieval algorithms is based on alternat-
ing projections, pioneered by the work 
of Gerchberg and Saxton and extended 
by Fienup. These methods consist of 
iteratively imposing the constraints in 
time/space and in the Fourier domain, 
namely, consistency with the measure-
ments. Adapting to our generalized 
phase-retrieval setup, the basic steps 
consist of choosing an initial guess, and 
then alternating between projecting 
onto the sets { : }x Ax y2 =  and :S

: , : ( ),z y
Ax
Ax x P A z/

n
n

n
n S n

1 2
1%= = @
+

where y /1 2  denotes the entrywise 
square root of ,y c denotes entry-
wise product, PS  denotes the near-
est-point projection onto ,S  and A@

denotes the pseudoinverse of .A
Unfortunately, convergence to the 
true solution is not guaranteed since 
the sets are not convex. In what fol-
lows, we review a few successful 
alternatives to this approach.

PhaseLift
As before, we let a*

i  denote the ith row 
of ,A  and take A  to be the function 
that maps Hermitian matrices X  to 
vectors y Rm!  such that [ ] .y i a Xa*

i i=

It is easy to verify that A  is linear, 
and considering (2), we also have 

( )xx AxA 2=)  for every .x Cn!  As 
such, the following program is equiva-
lent to (1) when :S Cn=

( ) ,

, ( ) .

X X y

X X0 1

find subject to

rank

A

*

=

= (3)

Discarding the rank constraint pro-
duces a convex relaxation of the phase 
retrieval problem:

( ) , .X X y X 0find subject toA *= (4)

If this relaxation is tight (i.e., every 
solution satisfies ( ) ),X 1rank =  then the 
relaxation solves the phase retrieval 
problem. If the relaxation is not tight, 
then we might instead minimize the 
trace of X  subject to ( )X yA =  and 
X 0*  so as to encourage X  to have low 
rank. Both options are members of a 
family of convex relaxations of (3) called 
PhaseLift. An alternative relaxation, 
referred to as PhaseCut, is obtained by 
separating the measurements into an 
amplitude and phase component, and 
optimizing only the phase [12].

Amazingly, PhaseLift (4) is typically 
tight and robust to noise whenever A is 
“sufficiently random” and the number of 
measurements m is appropriately large. To 
see this, we first note that the set of com-
plex Hermitian matrices is an n2-dimen-
sional vector space over the real numbers, 
by using a basis consisting of ( ) /n n 1 2+

real Hermitian matrices E Ejk kj+  and 
( ) /n n 1 2-  imaginary Hermitian matri-

ces ( )i E Ejk kj- . Thus, every Hermitian 
X  is uniquely determined by ( ),XA  if 
{ }a a*

i i i
m

1=  is a spanning set; this typically 
occurs when m n2$  and the ais are drawn 
at random. To get away with fewer mea-
surements, we leverage the fact that the so-
lution we seek satisfies .X 0*  Then, it 
can be shown that (4) is typically tight 
when ( ),m n npolylogX=  provided 
A Cm n! #  is drawn from an appropriate 
random distribution. For example, the en-
tries of A may be drawn independently 

(a) Vector x (b) Fx (c) |Fx|2 (f) |FDx|2(d) Dx (e) FDx

FIGURE 1. An illustration of two deterministic masks. (a) A vector x  is chosen with indices from –4 to 4. We take the Fourier transform of x  to get 
(b) and then square it to get (c). Applying the mask with a zero in the zero-indexed component, we obtain (d) a new vector .Dx  Note that the Fourier 
transform (e) and squared Fourier transform (f) of Dx  are quite different than those of .x  With the data Fx 2  and FDx 2  it is possible to recover almost 
every vector .x  Clearly, if x  already has a  zero in the zero-indexed component; then D  will apply no change to ,x  and it will not be possible to recover .x
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from a complex Gaussian distribution, 
or A may be composed of n n#  blocks 
of the form ,FD j  where F  is the n n#
discrete Fourier transform matrix and 
D j  is a diagonal matrix with random di-
agonal entries from an acceptable distri-
bution (the latter case models the 
structured illumination application of 
phase retrieval).

Wirtinger flow
While PhaseLift allows solving the 
phase retrieval problem in polynomial 
time (say, with an interior-point meth-
od), such methods scale poorly with 
the problem size due to the lifting oper-
ation, leading one to seek alternative 
solvers. To this end, we consider a differ-
ent program:

.a x yminimize *
i i

i

m
2 2

1

-
=

^ h/ (5)

Observe that (5) is equivalent to the 
phase retrieval problem (1) when 

.S Cn=  Unfortunately, since (5) is not 
convex, we expect to encounter local 
minima when attempting to solve it. In 
addition, this particular objective func-
tion has a continuum of global opti-
mizers: The true solution x0  induces a 
circle of global optimizers [ ]x0 =

{ : [ , )} .e x 0 2i
0 !z rz  Perhaps surpris-

ingly, (5) admits a fast initialization of 
gradient descent that allows for conver-
gence to this circle provided A is suffi-
ciently random. This gradient descent 
iteration is called Wirtinger flow
because the gradient is conveniently 
expressed in terms of Wirtinger deriv-
atives [3].

The convergence of Wirtinger flow is 
established by first showing that initial-
izations sufficiently close to [ ]x0  yield 
convergence by verifying a local convex-
ity-type property. Next, a good initializa-
tion is found. Suppose the rows { }a*

i i
m

1=

of A are complex Gaussian. Then a sim-
ple moment calculation reveals that

,
m

y a a I x x1 2E * *
i

i

m

i i
1

0 0= +
=

; E/

meaning the true solution x0  is a leading 
eigenvector of the expected matrix. Fur-
thermore, /m y a a1 *

i i ii
m

1=
/  is typically 

spectrally close to its expectation, and so 
its leading eigenvector (suitably scaled) is 
close to [ ] .x0  With this initialization, gra-
dient descent converges linearly to [ ]x0

when ( )logm n nX=  and A has com-
plex Gaussian entries; a variant of the 
gradient descent iteration exhibits similar 
performance when ( )logm n n4X=
and A is composed of n n#  blocks of 
the form FD j  (again, following the struc-
tured illumination model). Figure 2
shows a comparison between the compu-
tation time required for PhaseLift and for 
Wirtinger flow.

Sparse phase retrieval
Now suppose that the unknown vector 
x0  is known to be k-sparse. If we were 
given Ax0  instead of ,Ax0

2  then we 
could leverage the now-rich theory of 
compressed sensing to reconstruct x0

provided A is an nm #  random matrix 
with ( );m k npolylogX=  see [1] for a 
short introduction to this theory. We 
aspire to reconstruct [ ]x0  from Ax0

2

with similar requirements on A. We 
discuss two algorithms along these 
lines but note that their perfor -
mance is strictly worse than the desired

( ) .m k npolylogX=  Indeed, achieving 
this performance with complex Gaussian 
or sufficiently random matrices A
remains an open problem.

In compressed sensing, one of the 
most popular reconstruction algorithms 
given Ax y0 =  minimizes x 1  subject 
to Ax y=  [4]. In phase retrieval, we 
receive linear measurements of ,x x*

0 0

and since x x*
0 0  is sparse, it makes sense 

to minimize X 1  subject to ( ) .X yA =

We also want to encourage X  to be 
rank-1, leading to the following variation 
of PhaseLift:

[ ]

( ) , .

X X

X y X 0

minimize Tr

subject toA
1

*

m+

= (6)

If the entries of A  are complex 
Gaussian, then for an appropriate 
choice of ,m  (6) typically recovers 
X x x*

0 0=  provided ( ) .logm k n2X=
Drawing from compressed sensing-
based intuition, the k2 here comes from 
the fact that x x*

0 0  is k2-sparse, and so 
the barrier to improving this sample 
complexity is perhaps an artifact of the 
lifting approach.

Following the motivation of Wirtinger 
flow, we seek a faster alternative to this 
semidefinite program. Let us reformu-
late (1) in the case where S  is the set of 
k-sparse vectors:

( )

.

a x y

x k

minimize

subject to

*

i

m

i i
1

2 2

0 #

-
=

/
(7)

Here, x 0  denotes the number of 
nonzero entries in ;x  note the similarity 
to (5). When { }ai i

m
1=  are complex Gauss-

ian, the solution to (7) typically 
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R
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tim
e 

(in
 S

ec
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ds
)

102

101

100

10–1

10–2

10–3

10–4

10–5
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FIGURE 2. The runtime comparison between 
PhaseLift (blue), Wirtinger flow (orange), and 
least squares (purple) assuming the known 
phase. For each dimension { , , },n 2 21 9f!  we 
perform 20 iterations of the following experiment: 
Draw a . n n4 5 #  matrix A  with independ-
ent entries with complex Gaussian distribution 

( , / ) ( , / )i0 1 2 0 1 2N N+  and a signal ,x Cn!
also with independent and identically distributed 
complex Gaussian entries. Compute z Ax=
and .y z 2=  Then reconstruct x  from z
by MATLAB’s built-in implementation of least 
squares, and reconstruct x  from y  up to global 
phase using Wirtinger flow and PhaseLift. (For 
PhaseLift, we solve the semidefinite program 
using TFOCS v1.3 release 2 [2]; the runtime was 
prohibitively long for .)n 252  After conducting 
all 20 iterations, we plot the average runtime along 
with error bars that illustrate one standard devia-
tion. As expected, the least-squares solver (which 
enjoys a phase “oracle”) is faster than the phase 
retrieval solvers. For larger dimensions, Wirtinger 
flow appears to be about 100 times slower than 
least-squares, whereas PhaseLift is even slower.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


162 IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

reconstructs the true solution x0 provided 
( ( / ) ),log logm k n k kX=  and further-

more, the reconstruction is robust to noise. 
To solve this program, 
we may apply an algo-
rithm called Greedy 
Sparse Phase Retrieval 
(GESPAR), which 
iteratively improves a 
guess { , , }K n1 f3

of the support of .x0

For each guess, the 
objective function 
reduces to an instance 
of (5). Therefore, 
GESPAR optimizes 
locally to produce an 
estimate x  such that 

( ) ,x Ksupp 3  and then updates K  by 
swapping the member of K  that contrib-
utes least to x with the index outside of 
K  that contributes most to the (negative) 
gradient of the objective function. This 
iteration terminates when the swap fails 
to produce an improvement. See [9] for 
an implementation of GESPAR. In prac-
tice, GESPAR is prone to  local minima, 
and so one must attempt multiple trials 
with different initializations before suc-
ceeding.  Still, GESPAR is much fast-
er than the semidefinite programming 
alternative, and it empirically performs 
well when ( );m k3X=  for compari-
son, the Fienup-type alternative is about 
twice as fast, but only performs well 
when m  is much larger. Recently, 
GESPAR has been used to solve phase 
retrieval problems in coherent diffrac-
tion imaging and in ankylography.

Conclusions
There have been several interesting 
developments in phase retrieval over the 
past decade from both the optics and 
signal processing communities. We dis-
cussed various settings in which signals 
are uniquely determined by intensity 
measurements, as well as new algo-
rithms for reconstructing signals from 
such measurements. Understanding 
conditions under which recovery from 
Fourier phase retrieval measurements is 
possible, as well as developing practical 
measurement systems from which the 
signal can be recovered efficiently are 

some of the important directions for 
future research. We believe that this 
field will continue to grow and have a 

significant impact on 
optical imaging.
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Understanding conditions 
under which recovery from 
Fourier phase retrieval 
measurements is possible, 
as well as developing 
practical measurement 
systems from which the 
signal can be recovered 
efficiently are some of the 
important directions for 
future research.
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STANDARDS IN A NUTSHELL
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The MPEG Internet Video-Coding Standard

To address the diversified needs of the 
Internet, the ISO/IEC JTC1/SC29/
WG11 Moving Picture Experts 

Group (MPEG) started the project of 
Internet video coding (IVC) in July 2011. 
It is anticipated that any patent declara-
tion associated with the baseline profile 
of this standard will indicate that the pat-
ent owner is prepared to grant a free-of-
charge license to an unrestricted number 
of applicants worldwide. IVC has been 
developed in MPEG from scratch by 
combining well-known existing technol-
ogy elements and new contributions with 
free-of-charge licenses. Recently, IVC’s 
compression performance has been 
determined to be approximately equal to 
that of the advanced video coding high 
profile (AVC HP) for typical operational 
settings, both for streaming and low-
delay applications. In June 2015, the 
IVC project was approved as ISO/IEC 
14496-33 (MPEG-4 IVC). It is believed 
that this standard can be highly ben-
eficial for video services in the Internet 
domain. This article describes the main 
coding tools adopted in IVC; evaluates 
its performance compared with web 
video coding (WVC), video coding for 
browsers (VCB), and AVC HP; and pro-
vides the subjective comparison results 
between IVC and AVC HP.

Background
Video-coding standards lie at the heart 
of every aspect of video in our lives, 

including broadcast television, stream-
ing video on the Internet, digital cinema, 
movies on optical disks, home mov-
ies, and video conferencing. The most 
famous image-coding standards, JPEG 
and JPEG 2000, are royalty free (Type-1). 
To address the diversified needs of the 
Internet, ISO/IEC JTC1/SC29/WG11 
MPEG issued the call for proposals 
(CfP) for the type-1 standard of IVC [1]
in July 2011.

Three codecs respond to the CfP, 
including WVC [2], VCB [3] and IVC 
[4]. WVC is proposed jointly by Apple, 
Cisco, Fraunhofer  Heinrich Hertz Insti-
tute, Magnum Semiconductor, Polycom, 
and Research in Motion Ltd. The cod-
ing tools in constrained AVC baseline 
plus hierarchical P frames are adopted 
in WVC. VCB is proposed by Google, 
and the coding tools are the same as 
those in VP8. IVC is proposed by sev-
eral universities (including Peking Uni-
versity, Tsinghua University, Zhejiang 
University, Hanyang University, Korea 
Aerospace University, and the Univer-
sity of Electronic Science and Technol-
ogy of China), and its coding tools are 
developed from scratch. These three 
codecs try to meet the intellectual prop-
erty rights policy requirement of IVC 
with different strategies [5]. WVC and 
VCB expect the patent holders would 
like to grant a free-of-charge license for 
the internet application scenarios. IVC 
aims to create a new platform by utiliz-
ing coding tools for which patents have 
expired and new contributions with free-
of-charge licenses.

In June 2015, the compression per-
formance of IVC was determined to 
be approximately equal to that of AVC 
HP for typical operational settings, both 
for streaming and low-delay applica-
tions [6], and the IVC project was for-
mally approved as ISO/IEC 14496-33 
(MPEG-4 IVC).

Coding tools in IVC
Similar to previous standards, IVC  is 
based on the traditional hybrid trans-
form and motion compensation fra-
me  work, as shown in Figure 1. Only 
progressive scan sequences are support-
ed by IVC, and the input format of an 
IVC encoder is YUV420. The basic cod-
ing unit is macroblock. A macroblock 
consists of a 16 # 16 luminance block 
and two corresponding 8 # 8 chroma 
blocks. The input macroblock can either 
be coded with intramode or intermode, 
which is decided by the mode decision. 
If intramode is selected, the blocks in 
a macroblock are first predicted with 
intraprediction, and then the residues 
are processed with the modules of trans-
form, quantization, and entropy coding, 
sequentially. At last, the blocks are re -
constructed and processed with de-
blocking to obtain the decoded blocks. 
The decoded blocks are put into a for-
ward frame buffer or backward frame 
buffer for being referred to by motion 
compensation. Otherwise, if intermode 
is selected for the current macroblock, 
motion compensation is invoked to get 
the interpredictor, and the motion vec-
tors used in the motion compensation 

Digital Object Identifier 10.1109/MSP.2016.2571440
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are derived with motion estimation.  
The main coding tools of the IVC are 
described in the following paragraphs.

Intraprediction
Spatial domain intraprediction is used in 
intramacroblock coding. The decoded 
boundary samples of adjacent blocks 
are used as reference data for the spatial 
prediction. For the luma component in 
a macroblock, it can be coded by either 
one 16 # 16 macroblock partition or 
four 8 # 8 macroblock partitions. Each 
8 # 8 macroblock partition can be fur-
ther coded with four 4 # 4 macroblock 
partitions. The four prediction modes 
(i.e., Intra_Vertical, Intra_Horizontal, 
Intra_DC, Intra_Down_left, and Intra_
Down_right) shown in Figure 2 can be 
used for a 16 # 16 macroblock partition, 
an 8 #  8 macroblock partition or a 
4  #  4 macroblock partition. For the 
chroma components in a macroblock, 
they are only coded by an 8 # 8 mac-
roblock partition, and four prediction 
modes (i.e., Intra_Chroma_DC, Intra_
Chroma_Horizontal, Intra_Chroma_
Vertical, and Intra_Chroma_Plane) can 
be used for each 8 # 8 macroblock parti-
tion. The intraprediction mode for each 
macroblock partition is directly coded 
into the bitstream without prediction 

from the intraprediction modes of 
neighboring macroblock partitions.

Interprediction
An intermacroblock can be coded by 
one 16 # 16 macroblock partition, two 
16 # 8 macroblock partitions, two 8 #
16 macroblock partitions, or four 8 #
8 macroblock partitions. Five interpre-
diction modes (i.e., skip, forward pre-
diction, backward prediction, multiple 
hypothesis, and symmetrical prediction) 
are defined for intermacroblock parti-
tions. For each intermacroblock parti-
tion, one to four modes are available to 
be selected depending on the current 
picture coding type and partition size, 
as shown in Table 1.
1) Skip: Skip mode is one of the pre-

diction modes that skips the encod-
ing of all syntax elements except its 
mode-type information. If skip 
mode is selected for the current 
macroblock, both the motion vector 
difference and prediction residuals 
are forced to zeros.

2) Forward prediction: Forward predic-
tion mode uses only one block in 
one of its forward reference pictures 
to predict the current macroblock 
partition. The motion vector differ-
ence and the prediction residuals of 

the current macroblock partition are 
transmitted in the bitstream.

3) Backward prediction: Backward 
prediction mode uses only one block 
in its backward reference picture to 
predict the current macroblock parti-
tion. The motion vector difference 
and the interprediction residuals of 
the current macroblock partition are 
transmitted in the bitstream.

4) Multiple hypothesis: In this mode, 
as shown in Figure 3, the interpre-
dictor of the macroblock partition 
(c) is derived by averaging two for-
ward predictors (H1 and H2) [10]. 
The motion vector (MV1) of the first 

YUV
Frame
Buffers –

–

Transform Quantization
Coefficients Entropy

Coding
Bitstream

Inverse
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Inverse
Transform

DC-Blocking

Mode
Decision
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Forward
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Motion VectorsMotion
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FIGURE 1. A block diagram of an IVC encoder.

3
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FIGURE 2. The intraprediction modes for the 
luma component.
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forward predictor is the predicted 
motion vector derived by the pro-
cess of motion vector prediction, 
and the motion vector (MV2) of the 
second forward predictor is derived 

by the motion estimation con-
strained with the first predictor. 
Only the motion vector difference 
of the second predictor and the 
interprediction residuals are trans-
mitted in the bitstream.

5) Symmetrical prediction: Symmetrical 
mode averages one forward predic-
tor and a backward predictor to get 
the final interpredictor for the 
macroblock partition, as shown in 
Figure 4. The motion vector (MV1) 
of the forward predictor is derived 
by forward motion estimation. The 
backward motion vector (MV2) is 
derived by scaling the forward mo-
tion vector. The scaling factor is 
decided by the distance (Dist1) be-
tween the forward reference frame 
and the current frame and the dis-
tance (Dist2) between the backward 
reference frame and the current 
frame. Only the motion vector dif-
ference of the forward predictor and 
the interprediction residuals are 
transmitted in the bitstream.

Motion vector prediction
A motion vector is predicted, and only 
the motion vector difference (between 
the motion vector and its prediction) 
is coded into bitstream. To predict the 
motion vector of the current macroblock 
partition (given by E), its four neigh-
boring macroblock partitions of left, 
above, left-above, and right-above (their 
motion vectors are given by A, B, D, and 
C, respectively) are used, as shown in 
Figure 5. If there is no motion vector 

for one macroblock partition (intram-
acroblock partition) or the macroblock 
partition has not been reconstructed, the 
motion vector of this macroblock par-
tition is set as a zero vector. When the 
partitions A, B, C, and D are all unavail-
able, the predictor of E is set as a zero 
vector. When only one of A, B, C, or D is 
available, the predictor of E is set as that 
available motion vector. Otherwise, if C
is unavailable, then it is replaced with D,
and A, B, and C are used to predict E by 
the following process. 

First, the signs of each horizontal 
component of A, B, and C are checked. 
If the sign of one motion vector 
(denoted by X) is different from the 
other two, then this motion vector X 
is excluded from the motion vector 
prediction process, and the predictor 
of the horizontal component is the 
averaging of the horizontal compo-
nent of the other two motion vectors. 
Otherwise, the Euler distance of the 
horizontal component of each pair of 
neighboring motion vectors is calcu-
lated, the motion vector pair with the 
smallest Euler distance is selected, and 
the predictor of the horizontal com-
ponent is the average of the horizon-
tal component of the selected motion 
vector pair. The vertical component of 
E is predicted in the same way as the 
horizontal component.

Subpel interpolation
Quarter-pel motion compensation is 
adopted for the luma component. A 
two-dimensional separable Lanczos fil-
ter is used to generate the subpel posi-
tion values [11], as shown in Figure 6.
Three one-dimensional filters, F1, F2, 
and F3, are used to generate the subpel 
values as follows: 
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MV1

MV2

Reference Frame Current Frame

H1
c

H2

FIGURE 3. An illustration of multiple hypothesis.

MV1 MV2

Dist1
Forward

Reference
Current
Frame
Current
Frame

Backward
Reference

Dist2

FIGURE 4. An illustration of symmetrical prediction.

Table 1. The interprediction modes for each type of macroblock partition.

     Mode
MBPart Skip

Forward 
Prediction

Backward 
Prediction

Multiple 
Hypothesis

Symmetrical 
Prediction

P_16x16 √ √ √

P_16x8 √ √

P_8x16 √ √

P_8x8 √ √

B_Skip √

B_16x16 √ √ √ √

B_16x8 √ √ √

B_8x16 √ √ √

B_8x8 √ √ √ √

D B C

EA

FIGURE 5. The neighboring macroblock parti-
tions for MVP.
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where A is the integer pixel, a–r  are 
the subpels, x  and y  are the horizontal 
and vertical coordinates of subpels, F1–
F3 are the one-dimensional interpola-
tion filters given in Table 2, and z is the 
index of filter coefficients. Either 4-tap, 
6-tap or 10-tap filters can be used as 
the interpolation filter depending on the 
spatial resolution of the given sequence. 
The 4-tap filters are used on a sequence 
that is larger than 1080p, the 6-tap filters 
are used on a sequence that is between 
1080p and 720p, and the 10-tap filters 
are used on a sequence that is smaller 
than 720p.

Eighth-pel motion compensation is 
adopted for chroma components. A two-
dimensional separable filter similar to 
that of the luma component is used to 
generate the subpel position values. The 
4-tap filters specified in Table 3 are used 
for calculating the subpels of chroma.

Reference frames
Figure 7 illustrates the relationship bet-
ween the current frame with its refer-
ence frames in forward direction and/or 
backward direction. The interprediction 
process can refer to multiple reference 

frames in the forward direction that are 
used in the forward prediction and the 
multiple-hypothesis modes. In the cur-
rent IVC Test Model (ITM), the num-
ber of forward reference frames can be 
customized up to eight. Let the temporal 
position of the current frame be t, and 
the current frame refers to the reference 
pictures at the following locations, as 
shown in Figure 7: t – 1, t – 2, and t – 4* n
(for n = 1, 2, 3, …). On the other hand, 
the macroblock coded with the back-
ward prediction mode, the skip mode, or 
the symmetrical mode, can refer to only 
one backward reference frame (i.e., the 
t + 1 frame in Figure 7).

In low-delay coding cases, non-
reference P-frame [13] coding uses 
three different levels of  quantization 
parameter (QP) values for each group 
of pictures. A coding structure with 
nonreference P-frame coding is shown 
in Figure 8. As a typical example of 
QP setting, the lowest value of QP is 
assigned to the P frame of P0 and P4, 
and then a larger QP value is assigned 
to the P frame of P2, and the largest 
QP is assigned to the nonreference 
frames of P1 and P3. As a result, a 
three-level hierarchical coding struc-
ture in terms of QP values is used in 
nonreference P-frame coding. It can be 

A–1,–1 A0,–1 a0,–1

A–1,0

d–1,0

h–1,0

n–1,0

A0,0 a0,0

e0,0

i0,0

p0,0

a0,1 b0,1 c0,1

b0,0

f0,0 g0,0

K0,0

r0,0 n0,0

h1,0

d1,0

j0,0

q0,0

c0,0 A1,0

b0,–1 c0,–1 A1,–1 A2,–1

A2,0

d2,0

h2,0

n2,0

A2,1

d0,0

h0,0

n0,0

A–1,1

A–1,2 A0,2 a0,2 b0,2 c0,2 A1,2 A2,2

A0,0 A1,1

FIGURE 6. Integer samples (shaded blocks) and fractional sample positions (unshaded blocks) for 
luma interpolation.

Table 2. Interpolation filter coefficients for luma. 

Position (filter) 4-Tap 6-Tap 10-Tap

1/4(F1) {−6, 56, 15, −1}/64 {2, −9, 57, 17, −4, 1}/64 {1, −2, 4, −10, 57, 19, −7, 3, −1, 0}/64

2/4(F2) {−4, 36, 36, −4}/64 {2, −9, 39, 39, −9, 2}/64 {1, −2, 5, −12, 40, 40, −12, 5, −2, 1}/64

3/4(F3) {−1, 15, 56, −6}/64 {1, −4, 17, 57, −9, 2}/64 {0, −1, 3, −7, 19, 57, −10, 4, −2, 1}/64
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adaptively determined whether non-
reference P-frame coding is used (e.g., 
P0, P1, P2, and P3) or not (e.g., P4, 
P5, P6, and P7) for every four frames 
based on the temporal correlation that 
is measured by the amount of motion 
and bitrate in an adaptive manner.

Adaptive block size transform
Adaptive block size transforms are 
applied on the prediction residuals to 
reduce the spatial redundancy. The 
transform block size can be either 16 #
16, 8 # 8, or 4 # 4. Integer transforms 
of 16 # 16, 8 # 8, and 4 # 4 are derived 
by scaling and rounding the DCT cores 
of 16 # 16, 8 # 8, and 4 # 4 respectively 
[8], [9]. For the intermacroblock parti-
tion, if the partition size is 16 # 16, a 
16 # 16 transform is applied; otherwise, 
an 8 # 8 transform is applied on each 8 #
8 block within this macroblock parti-
tion. For the intramacroblock partition, 
the transform size is coupled with the 

partition size. If the partition size is 16 #
16, then a 16 # 16 transform is applied; 
else if the partition size is 8 # 8, an 8 # 8 
transform is applied; otherwise, a 4 # 4 
transform is applied. The inverse trans-
form processes are specified as

(

( )) ,

R T C T

1 _ _left shift right shift<< >>

N N
T

N N N N N N) )=

+

# # # #

(6)

where RN N#  is the N N#  residual 
matrix, TN N#  is the N N#  transform 
matrix, and CN N#  is the transformed 
N N#  matrix. For the 16 # 16, 8 # 8 and 
4 # 4 inverse transforms, the parameters 
of {N, left_shift, right_shift} are set as 
{16, 14, 15}, {8, 4, 5}, and {4, 16, 17} 
respectively.

Logarithmic domain
arithmetic coding
Coding a data symbol involves the fol-
lowing steps: 1) binarization, 2) context 
model selection, and 3) arithmetic encod-
ing. For a given nonbinary valued syntax 
element, it is uniquely mapped to a bina-
ry sequence, a so-called bin string. Each 
of the given binary decisions, which are 
referred to as a bin in the sequence, en-
ters the context modeling stage where a 
context model is selected. Then, the bin 
value, along with its associated context 
model, is passed to the regular coding 
engine or bypass coding where the final 
stage of arithmetic encoding together 
with a subsequent context updating takes 

place. Binary arithmetic coding is based 
on the principle of recursive interval 
subdivision that involves the following 
elementary multiplication operation. 
Suppose that an estimate of the probabi-
lity ( . , )P 0 5 1MPS  of the most probable 
symbol (MPS) is given, and the given in-
terval is represented by its lower bound, 
L, and its width (range), R. Based on 
these settings, the given interval is subdi-
vided into two subintervals: one interval 
of width, RMPS and .RLPS

R R PMPS MPS)= (7)

R R RLPS MPS= - . (8)

An arithmetic coding method in a 
the logarithmic domain is adopted as the 
entropy coding engine [14]. In the bina-
ry arithmetic coder, the multiplication in 
the RMPS  calculation is substituted with 
addition in the logarithm domain. When 
an MPS happens, the renewal of range 
is given as

.R R PLog Log LogMPS MPS= + (9)

Assume the value of logR is repre-
sented by its integer part s1 and fraction-
al part t1, and the value of Log(RMPS) is 
represented by its integer part s2 and 
fractional part t2, respectively. When 
an LPS happens, the range is updated 
as follows:

( )

( ),

( ) .

sin

R R R

t

t

x x

2 2 2 1 1

2 1 2

2 1 0 1

ce

s t s t s

s

x

1 1 2 2 1

2

LPS MPS

)

)

1 1

.

.

= -

= - +

- +

+

- + - + -

-

(10)

So, RMPS  and RLPS  are all calculated 
by just addtions and shifts operations. 

P P P P P P P P P P P

t-12 t-8 t-4 t-2 t-1 t t+1

FIGURE 7. The relationship between the current frame with its reference frames.

Table 3. Interpolation filter coefficients 
for chroma components.

Position Filter Coefficients

1/8 {−4, 62, 6, 0}/64

2/8 {-6, 56, 15, −1}/64

3/8 {−5, 47, 25, −3}/64

4/8 {−4, 36, 36, −4}/64

5/8 {−3, 25, 47, −5}/64

6/8 {−1, 15, 56, −6}/64

7/8 {0, 6, 62, −4}/64

P0

p2
p3

p1

P4 P5 P6 P7

First
Level

First
Level

Third
Level

Third
Level

Second
Level

FIGURE 8. An adaptive nonreference P coding 
structure.
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After the value of RLPS  is obtained, the 
renewed lower bound is updated. Then 
the renormalization process is carried 
out to guarantee that the most signifi-
cant bit of the updated range value is 
always one. After one bin is encoded 
by the arithmetic coder, the estimat-
ed probability of the chosen context 
should also be updated. Actually, the 
probability of each context model is ini-
tialized to be 0.5 for both MPS and LPS 
at the start of coding. With the coding 
of some bins, the adaptive probability 
estimation of MPS on the logarithm 
domain is performed. The probability 
estimation is fulfilled using only addi-
tions/subtractions and shifts, as in the 
following formulas:

,

( )

( ),

( )

P f

P P cw

Log Log Log

if LPS happens

Log

if MPS happens

>>

MPS MPS

MPS MPS

= +

=+

Z

[

\

]
]]

]
]

, (11)

where f is equal to 1 2 cw- -^ h. Here, cw
is the size of the sliding widow to con-
trol the speed of probability adaptation, 
and it is constant.

In summary, the arithmetic coder in 
IVC replaces the traditional multiplica-
tions for range updating and probability 
estimation updating with additions by 
combining the original domain and the 
logarithmic domain. Refer to [14] for 
detailed explanations.

Loop filtering
An expired patent deblocking filter 
[15] is utilized to process all 8 #  8 
block edges of a picture to reduce the 
blocking artifact, except the edges at 
the boundary of the picture, as shown 
in Figure 9. This filtering process 
is performed on a macroblock basis 
after the completion of the picture-
reconstruction process prior to the 
deblocking filter process for the entire 
decoded picture, with all macroblocks 

in a picture processed in order of in -
creasing macroblock addresses. The 
deblocking filter process is invoked for 
the luma and chroma components sep-
arately. For each macroblock, the ver-
tical edges are filtered first, from left 
to right, and then the horizontal edges 
are filtered from top to bottom. Sample 
values above and to the left of the cur-
rent macroblock that may have already 
been modified by the deblocking filter 
process operation on previous mac-
roblocks shall be used as input to the 
deblocking filter process on the current 
macroblock and may be further modi-
fied during the filtering of the current 
macroblock. Sample values modified 
during the filtering of the vertical edges 
are used as input for the filtering of the 
horizontal edges for the same macrob-
lock. If the level differences between 
the two border pixels in the same block 
and between the two border pixels in 
different adjacent blocks meet certain 
conditions, the edge is filtered. Here, 
the edge is defined as edges between 
all 8 # 8 blocks inside the macroblock 
and the upper and left edges of the cur-
rent macroblock. There are three kinds 
of filtering methods: strong loop filter-
ing, normal loop filtering, and weak 
loop filtering.

The conditions of loop filtering are:
■ &&p p0 1abs <b-^ h q q0 1abs -^ h

<b

■ &&q p p p0 0 0 1abs abs>- -^ ^h h

q p q q0 0 0 1abs abs>- -^ ^h h

■ q p0 0abs <a-^ h

■ && ( )p p q q2 0 2 0abs abs< b- -^ h

<b

■ &&p p q q3 0 3 0abs abs< b- -^ ^h h

<b

■ ( , ) &&minp p0 1 3abs abs< b-^ h

( , ) .minq q0 1 3< b-^ h

As long as the first three conditions, 
1–3, are all satisfied, the loop filtering 
is active. For the luma component, if 
condition 4) is also satisfied, the nor-
mal loop filter is applied. Strong loop 
filtering is used when all of the six 
conditions are satisfied for macroblock 
luminance edges. For the chroma com-
ponents, only when conditions 4) and 6) 
are also satisfied, the normal loop filter-
ing is used. The filtering processes are 
defined as follows: 

■ Weak loop filtering

/  ;
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■ Strong loop filtering
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where P0 and Q0 are sample values 
obtained after the filtering process 
of p0 and q0, P1 and Q1 denote the 
sample values obtained after the filter-
ing process of p1 and q1, and P2 and 
Q2 denote the sample values obtained 
after the filtering process of p2 and q2.

Performance evaluation
To evaluate the performance of IVC, 
we conduct a performance test on the 
newest ITM14 and compare it against 

p3 p2 p1 p0 q0 q1 q2 q3

FIGURE 9. The horizontal or vertical edge sample 
of an 8 #  8 block.
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WVC, VCB, and AVC HP. The follow-
ing approach had been agreed within 
the MPEG video group to enable com-
parison at approximately the same bit 
rate points [16]:
■ Produce bitstreams for each of the 

codec designs, which are within 
!3% of the target bit rates for the 
sequences given in Table 4.

■ Allow QP (or quantizer step size) 
variation within a sequence within 
a  periodic pattern of frame types 
(where frame types are differentiated 
by syntax or by a reference pic-
ture  handling mechanism) within 
a sequence.

■ No per-sequence adaptation of the 
pattern of frame types could be used.

■ No sequence-specific tuning of cod-
ing parameters (such as enabling/
disabling of special tools, certain 

modes, limitation of motion search 
range, etc.) was allowed to be used.

■ No rate control was allowed to be used.
■ No preprocessing was allowed to 

be used.
■ No postprocessing of the decoder 

output was allowed to be used.
Encoded bitstreams were provided 

for the following two constraint cases:
■ Constraint set 1 [CS1, also known as 

random access (RA)]: the structural 
delay of the processing units not 
larger than an 8-picture group of 
pictures and random access intervals 
of 1.1 seconds or fewer.

■ Constraint set 2 [CS2, also known 
as low delay, (LD)]: no structural 
delay of the processing units, with 
essentially no picture reordering 
between the decoder processing and 
the output.

The tests included AVC HP anchors 
produced by a JM 18.6 reference software 
encoder. Encoding of those anchors was 
performed under same configuration 
constraints as for the other encoders. 
Detailed encoding settings of WVC, 
VCB, IVC, and AVC HP can be found 
in [16].

Table 5 shows the performance of 
the three tested encoders according to 
the established Bjøntegaard delta bit rate 
(BD-BR) criterion [17], using AVC HP as 
the anchor. Positive percentages indicate 
a bit rate increase relative to the reference 
of the comparison. In the RA constraint 
cases (CS1), IVC clearly outperforms 
WVC and VCB in terms of BD-BR rate 
in overall average by 25.2% and 23.7%, 
respectively, and underperforms AVC 
HP by 10.4%. In the LD constraint cases 
(CS2), IVC clearly outperforms WVC 

Table 4. Test sequences and rate points.

Class A [1920x1080p] Rate 1 Rate 2 Rate 3 Rate 4

S03 Kimono, S04 Park Scene 1.6 Mbit/s 2.5 Mbit/s 4.0 Mbit/s 6.0 Mbit/s

S05 Cactus, S06 BasketballDrive 3.0 Mbit/s 4.5 Mbit/s 7.0 Mbit/s 10.0 Mbit/s

Class B [836x480p (WVGA)] Rate 1 Rate 2 Rate 3 Rate 4

S08 BasketballDrill, S09 BQMall, S10 PartyScene, S11 RaceHorses 512 kbit/s 768 kbit/s 1.2 Mbit/s 2.0 Mbit/s

Class D [1280x720p] Rate 1 Rate 2 Rate 3 Rate 4

S16 Johnny, S17 KristenAndSara, S18 FourPeople 384 kbit/s 512 kbit/s 850 kbit/s 1.5 Mbit/s

Table 5. Performances of IVC, VCB, and WVC relative to AVC HP.

Class Sequences

RA LD

WVC VCB IVC WVC VCB IVC

Class A Kimono 47.9% 24.5% 9.3% 37.0% 2.8% –0.4%

ParkScene 25.4% 38.0% 18.6% 17.0% 8.1% 4.5%

Cactus 45.9% 32.2% 10.5% 25.4% 9.5% 3.2%

BasketballDrive 41.5% 32.1% 15.3% 28.1% 8.6% 5.6%

Class B BasketballDrill 28.5% 15.5% 6.6% 17.9% 17.6% 3.8%

BQMall 30.2% 36.9% 5.5% 18.2% 7.3% 3.8%

PartyScene 25.0% 32.5% -5.7% 13.5% 5.1% -7.3%

RaceHorses 22.2% 20.4% 20.1% 16.1% 4.2% 7.7%

Class D FourPeople 46.2% 67.8% 17.6% 27.5% 40.9% 12.0%

Johnny 40.8% 41.2% 8.5% 22.9% 23.1% 11.1%

KristenAndSara 37.6% 34.3% 7.9% 21.8% 15.8% 5.4%

Average 35.6% 34.1% 10.4% 22.3% 13.0% 4.5%
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and VCB by 17.8% and 8.5%, respec-
tively. IVC underperforms AVC HP by 
4.5%. Although, in some sequences, e.g., 
Racehorses, IVC underperforms VCB. 
However, LD cases are mainly used in 
video-conference scenarios, and, for 
these video sequences of Class D, IVC is 
still clearly better than VCB.

In addition to objective evaluation, 
the MPEG video group has organized a 
viewing test to compare the subjective 
performance between IVC and AVC HP, 
and detailed test mythology and results 
can be found in [6]. From the results, it 
is concluded that IVC and AVC HP pro-
vide very similar results for the tested 
cases (in most cases with confidence 

intervals that are overlapping, in some 
cases IVC is visually better than AVC 
HP, and in some cases AVC HP is bet-
ter than IVC). In general, IVC seems to 
have slightly better performance than 
the AVC HP anchors used in the LD 
cases. Figure 10 gives some examples of 
the test results on 1080p sequences.

As a general conclusion about the 
IVC performance evaluation, the results 
show that IVC is better than WVC and 
VCB and is comparable with AVC HP 
under both RA and LD constraints.

Conclusions
This article gives an overview of the 
coding tools adopted in the MPEG 

IVC standard, which is a Type-1 stan-
dard aiming at being used in various 
internet applications. The coding tools 
in IVC are developed from scratch and 
consist of well-known expired-patent 
techniques and new tools with free-of-
charge licenses. During each coding 
tool adoption process, comprehensive 
prior art searches are conducted by the 
proponents. All prior art of IVC coding 
tools are recorded in an output docu-
ment called the collection of information 
related to adopted IVC technologies,
and it is updated after each new norma-
tive tool was adopted. Both the objective 
and subjective performance tests have 
been conducted within the MPEG video 
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group, and it has been determined that 
the performance of IVC is comparable 
with the AVC high profile. The next 
steps are to push this standard into the 
market and investigate new royalty-free 
technologies for the next version of IVC. 
It is anticipated that as existing patents 
for video coding tools expire, these tools 
may be added to IVC, further improving 
its performance.

Resources

MPEG resources
The MPEG homepage (http://wg11.sc29.
org/) provides information on its past and 
present meeting documents. All of the 
input contributions and output documents 
of IVC can be found on the website.

Open documents
The website, http://mpeg.chiariglione.
org/standards/mpeg-4/internet-video-
coding, has links to all IVC opened pub-
lications. The IVC working documents 
are available, including the CD text, test 
models, performance reports, and prior 
art techniques related to IVC.
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T-ASPL August 2016 Vol.25 #8
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7518731 

T-IP August 2016 Vol. 25 #8
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7513469 

T-IFS August 2016 Vol. 11 #8
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7514369

T-JSTP August 2016 Vol.10 #5
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7520657

T-MM August 2016 Vol. 18 #8
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7514346 

T-JSTP August 2016 Vol.10 #5
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7520657

T-SPL July 2016 Vol. 23 #7
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7509722

T-CI September 2016 Vol. 2 #3
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7535020

T-SIPN September 2016 Vol. 2 #3
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7534989
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Venue:

ISBI 2017 will be held at the Melbourne Convention and 
Exhibition Centre, a world class venue in the heart of the vibrant 
city of Melbourne, Australia within walking distance of hotels and 
dining options. The conference starts on the Tuesday immediately 
after the Easter holiday period to provide attendees with the 
opportunity to vacation before the conference enjoying the many 
attractions of Australia.

Important Dates:

Connect with us:

IEEE International Symposium on Biomedical Imaging
April 18-21, 2017, Melbourne, Australia

CALL FOR PAPERS

The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to 
mathematical, algorithmic, and computational aspects of biomedical imaging, across all scales of observation. It fosters 
knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical 
imaging.

ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology 
Society (EMBS). The 2017 meeting will include tutorials, and a scientific program composed of plenary talks, invited 
special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers.

High-quality papers are requested containing original contributions to the topics of interest including image formation and 
reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image 
quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published 
in the symposium proceedings published by IEEE and included in IEEE Xplore. 

To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, 
ISBI 2017 will continue to propose a second track featuring posters selected from 1-page abstract submissions without 
subsequent archival publication. 

4-page paper submission
August 1st - October 24th, 2016

Author Notification for 4-page papers
December 19th, 2016

Final version of 4-page papers
& registration

January 9th, 2017

Conference Chairs
Gary Egan

Monash University, Australia
Olivier Salvado

CSIRO, Brisbane, Australia

Program Chairs
Simon Warfield

Harvard Medical School, Boston, USA
Arrate  Munoz-Barrutia

Universidad Carlos III de Madrid, Spain 

Organizing Committee
Roger Ordidge, Parvin Mousavi, 

Andrew Zalesky, Fabrice Meriaudeau, 
Tammy Riklin Raviv, Stephen Aylward, 

Bram Van Ginneken, Adrienne Mendrik, 
Wiro Niessen, Stuart Crozier, 

Steve Lee, Mehrnaz Shoushtarian,  
Eduardo Romero, Amir Armini

Contact
Janice Sandler j.sandler@ieee.org

http://biomedicalimaging.org/2017

https://www.facebook.com/ISBI-2017-1586861521610962/
https://twitter.com/IEEEISBI2017
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SEPTEMBER 1, 2016 VOLUME 64 NUMBER 17 ITPRED (ISSN 1053-587X)

REGULAR PAPERS

Generalized Multicarrier Radar: Models and Performance http://dx.doi.org/10.1109/TSP.2016.2566610 . . . . . . . . . . . . M. Bică and V. Koivunen 4389
Secrecy Performance of Finite-Sized Cooperative Single Carrier Systems With Unreliable Backhaul Connections

http://dx.doi.org/10.1109/TSP.2016.2552508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. J. Kim, P. L. Yeoh, P. V. Orlik, and H. V. Poor 4403
Deterministic Cramér-Rao Bound for Strictly Non-Circular Sources and Analytical Analysis of the Achievable Gains

http://dx.doi.org/10.1109/TSP.2016.2566603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Steinwandt, F. Roemer, M. Haardt, and G. D. Galdo 4417
Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint

Phase/Frequency Synchronization and Demodulation http://dx.doi.org/10.1109/TSP.2016.2568169 . . . . . . . . . . A. Wadhwa and U. Madhow 4432
Explicit State-Estimation Error Calculations for Flag Hidden Markov Models http://dx.doi.org/10.1109/TSP.2016.2568167 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Doty, S. Roy, and T. R. Fischer 4444
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Semidefinite Programming for Computable Performance Bounds on Block-Sparsity Recovery
http://dx.doi.org/10.1109/TSP.2016.2568166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Tang and A. Nehorai 4455

MIMO Precoding for Networked Control Systems with Energy Harvesting Sensors http://dx.doi.org/10.1109/TSP.2016.2568158 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Cai and V. K. N. Lau 4469

Sampled-Data Consensus Over Random Networks http://dx.doi.org/10.1109/TSP.2016.2568168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wu, Z. Meng, T. Yang, G. Shi, and K. H. Johansson 4479

An Angular Parameter Estimation Method for Incoherently Distributed Sources Via Generalized Shift Invariance
http://dx.doi.org/10.1109/TSP.2016.2557312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Cao, F. Gao, and X. Zhang 4493

Distributed Compressive Sensing: A Deep Learning Approach http://dx.doi.org/10.1109/TSP.2016.2557301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Palangi, R. Ward, and L. Deng 4504

On Sparse Vector Recovery Performance in Structurally Orthogonal Matrices via LASSO http://dx.doi.org/10.1109/TSP.2016.2569423 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-K. Wen, J. Zhang, K.-K. Wong, J.-C. Chen, and C. Yuen 4519

Optimal Jammer Placement in Wireless Localization Systems http://dx.doi.org/10.1109/TSP.2016.2552503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . S. Gezici, S. Gezici, S. Bayram, S. Bayram, M. N. Kurt, M. N. Kurt, M. R. Gholami, and M. R. Gholami 4534

Fast STAP Method Based on PAST with Sparse Constraint for Airborne Phased Array Radar http://dx.doi.org/10.1109/TSP.2016.2569471 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yang, Y. Sun, T. Zeng, T. Long, and T. K. Sarkar 4550

Optimum Co-Design for Spectrum Sharing between Matrix Completion Based MIMO Radars and a MIMO
Communication System http://dx.doi.org/10.1109/TSP.2016.2569479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Li, A. P. Petropulu, and W. Trappe 4562

A Class of Prediction-Correction Methods for Time-Varying Convex Optimization http://dx.doi.org/10.1109/TSP.2016.2568161 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro 4576

Power Spectra Separation via Structured Matrix Factorization http://dx.doi.org/10.1109/TSP.2016.2560142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Fu, N. D. Sidiropoulos, and W.-K. Ma 4592

Reliable Linear, Sesquilinear, and Bijective Operations on Integer Data Streams Via Numerical Entanglement
http://dx.doi.org/10.1109/TSP.2016.2560134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. A. Anam and Y. Andreopoulos 4606

Robust Transceiver Design for MISO Interference Channel With Energy Harvesting http://dx.doi.org/10.1109/TSP.2016.2560138 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-M. Zhao, Y. Cai, Q. Shi, B. Champagne, and M.-J. Zhao 4618

New Sparse-Promoting Prior for the Estimation of a Radar Scene with Weak and Strong Targets
http://dx.doi.org/10.1109/TSP.2016.2563409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Lasserre, S. Bidon, and F. Le Chevalier 4634

CORRECTION

Corrections to “Parallelized Structures for MIMO FBMC Under Strong Channel Frequency Selectivity”
http://dx.doi.org/10.1109/TSP.2016.2590738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Mestre and D. Gregoratti 4644
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SEPTEMBER 15, 2016 VOLUME 64 NUMBER 18 ITPRED (ISSN 1053-587X)

REGULAR PAPERS

Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach
http://dx.doi.org/10.1109/TSP.2016.2572041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Fang, F. Wang, Y. Shen, H. Li, and R. S. Blum 4649

Multi-Parameter Estimation in Compound Gaussian Clutter by Variational Bayesian http://dx.doi.org/10.1109/TSP.2016.2573760 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Turlapaty and Y. Jin 4663

Inhomogeneous Poisson Sampling of Finite-Energy Signals With Uncertainties in http://dx.doi.org/10.1109/TSP.2016.2552499 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Zabini and A. Conti 4679

Limited Rate Feedback in a MIMO Wiretap Channel With a Cooperative Jammer http://dx.doi.org/10.1109/TSP.2016.2572042 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Yang and A. L. Swindlehurst 4695
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Joint Design of Transmit Waveforms and Receive Filters for MIMO Radar Space-Time Adaptive Processing
http://dx.doi.org/10.1109/TSP.2016.2569431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Tang and J. Tang 4707

Nonparametric Bayesian Attributed Scattering Center Extraction for Synthetic Aperture Radar Targets
http://dx.doi.org/10.1109/TSP.2016.2569463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Cong, B. Chen, H. Liu, and B. Jiu 4723

Robust Hypothesis Testing with -Divergence http://dx.doi.org/10.1109/TSP.2016.2569405 . . . . . . . . . . . . . . . . . . . . . . . . G. Göl and A. M. Zoubir 4737
Closed-Form and Near Closed-Form Solutions for TOA-Based Joint Source and Sensor Localization

http://dx.doi.org/10.1109/TSP.2016.2569465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T.-K. Le and N. Ono 4751
Efficient Algorithms on Robust Low-Rank Matrix Completion Against Outliers http://dx.doi.org/10.1109/TSP.2016.2572049 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhao, P. Babu, and D. P. Palomar 4767
Steady-State Statistical Performance Analysis of Subspace Tracking Methods http://dx.doi.org/10.1109/TSP.2016.2572039 . . . . . F. Haddadi 4781
A Batch Algorithm for Estimating Trajectories of Point Targets Using Expectation Maximization

http://dx.doi.org/10.1109/TSP.2016.2572048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. S. Rahmathullah, R. Selvan, and L. Svensson 4792
A Stable Normalized Least Mean Fourth Algorithm With Improved Transient and Tracking Behaviors

http://dx.doi.org/10.1109/TSP.2016.2573747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Eweda 4805
An Iterative Reweighted Method for Tucker Decomposition of Incomplete Tensors http://dx.doi.org/10.1109/TSP.2016.2572047 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Yang, J. Fang, H. Li, and B. Zeng 4817
Exploring Multimodal Data Fusion Through Joint Decompositions with Flexible Couplings http://dx.doi.org/10.1109/TSP.2016.2576425 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Cabral Farias, J. E. Cohen, and P. Comon 4830
Signals on Graphs: Uncertainty Principle and Sampling http://dx.doi.org/10.1109/TSP.2016.2573748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo 4845
Generalized Sampling Expansions with Multiple Sampling Rates for Lowpass and Bandpass Signals in the Fractional

Fourier Transform Domain http://dx.doi.org/10.1109/TSP.2016.2560148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Wei and Y.-M. Li 4861
An Introduction to Twisted Particle Filters and Parameter Estimation in Non-Linear State-Space Models
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Over the past few decades, online social networks such as  and  have significantly changed the way 
people communicate and share information with each other. The opinion and behavior of each individual are heavily 
influenced through interacting with others. These local interactions lead to many interesting collective phenomena 
such as herding, consensus, and rumor spreading. At the same time, there is always the danger of mob mentality of 
following crowds, celebrities, or gurus who might provide misleading or even malicious information. Many efforts 
have been devoted to investigating the collective behavior in the context of various network topologies and the 
robustness of social networks in the presence of malicious threats. On the other hand, activities in social networks 
(clicks, searches, transactions, posts, and tweets) generate a massive amount of decentralized data, which is not only 
big in size but also complex in terms of its structure. Processing these data requires significant advances in accurate 
mathematical modeling and computationally efficient algorithm design. 
Many modern technological systems such as wireless sensor and robot networks are virtually the same as social 
networks in the sense that the nodes in both networks carry disparate information and communicate with constraints. 
Thus, investigating social networks will bring insightful principles on the system and algorithmic designs of many 
engineering networks. An example of such is the implementation of consensus algorithms for coordination and 
control in robot networks. Additionally, more and more research projects nowadays are data-driven. Social networks 
are natural sources of massive and diverse big data, which present unique opportunities and challenges to further 
develop theoretical data processing toolsets and investigate novel applications. This special issue aims to focus on 
addressing distributed information (signal, data, etc.) processing problems in social networks and also invites 
submissions from all other related disciplines to present comprehensive and diverse perspectives. 
Topics of interest include, but are not limited to: 

Dynamic social networks: time varying network topology, edge weights, etc. 
Social learning, distributed decision-making, estimation, and filtering 
Consensus and coordination in multi-agent networks 
Modeling and inference for information diffusion and rumor spreading 
Multi-layered social networks where social interactions take place at different scales or modalities 
Resource allocation, optimization, and control in multi-agent networks 
Modeling and strategic considerations for malicious behavior in networks 
Social media computing and networking 
Data mining, machine learning, and statistical inference frameworks and algorithms for handling big data 
from social networks 
Data-driven applications: attribution models for marketing and advertising, trend prediction, 
recommendation systems, crowdsourcing, etc. 
Other topics associated with social networks: graphical modeling, trust, privacy, engineering applications, 
etc. 

Manuscript submission due: September 15, 2016
First review completed: November 1, 2016 
Revised manuscript due: December 15, 2016 
Second review completed:  February 1, 2017 
Final manuscript due: March 15, 2017 
Publication: June 1, 2017 

Zhenliang Zhang, Qualcomm Corporate R&D (zhenlian@qti.qualcomm.com)
Wee Peng Tay, Nanyang Technological University (wptay@ntu.edu.sg)
Moez Draief, Imperial College London (m.draief@imperial.ac.uk)
Xiaodong Wang, Columbia University (xw2008@columbia.edu)
Edwin K. P. Chong, Colorado State University (edwin.chong@colostate.edu)
Alfred O. Hero III, University of Michigan (hero@eecs.umich.edu)
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A Systematic ANSI S1.11 Filter Bank Specification Relaxation and Its Efficient Multirate Architecture for Hearing-Aid
Systems http://dx.doi.org/10.1109/TASLP.2016.2556422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-Y. Yang, C.-W. Liu, and S.-J. Jou 1380

Semi-Supervised Sound Source Localization Based on Manifold Regularization http://dx.doi.org/10.1109/TASLP.2016.2555085 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Laufer-Goldshtein, R. Talmon, and S. Gannot 1393

A Variational EM Algorithm for the Separation of Time-Varying Convolutive Audio Mixtures
http://dx.doi.org/10.1109/TASLP.2016.2554286 . . . . . . . . . . . . D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, and R. Horaud 1408

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_________________________

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/TASLP.2016.2554288
http://dx.doi.org/10.1109/TASLP.2016.2556282
http://dx.doi.org/10.1109/TASLP.2016.2556860
http://dx.doi.org/10.1109/TASLP.2016.2556422
http://dx.doi.org/10.1109/TASLP.2016.2555085
http://dx.doi.org/10.1109/TASLP.2016.2554286
https://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [8]  SEPTEMBER 2016

A Regression Approach to Single-Channel Speech Separation Via High-Resolution Deep Neural Networks
http://dx.doi.org/10.1109/TASLP.2016.2558822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Du, Y. Tu, L.-R. Dai, and C.-H. Lee 1424

Two Efficient Lattice Rescoring Methods Using Recurrent Neural Network Language Models
http://dx.doi.org/10.1109/TASLP.2016.2558826 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . X. Liu, X. Chen, Y. Wang, M. J. F. Gales, and P. C. Woodland 1438

Learning Hidden Unit Contributions for Unsupervised Acoustic Model Adaptation http://dx.doi.org/10.1109/TASLP.2016.2560534 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Swietojanski, J. Li, and S. Renals 1450

Listwise Ranking Functions for Statistical Machine Translation http://dx.doi.org/10.1109/TASLP.2016.2560527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zhang, Y. Liu, H. Luan, and M. Sun 1464

EDICS–Editor’s Information Classification Scheme http://dx.doi.org/10.1109/TASLP.2016.2589778 . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 1473
Information for Authors http://dx.doi.org/10.1109/TASLP.2016.2589780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/TASLP.2016.2558822
http://dx.doi.org/10.1109/TASLP.2016.2558826
http://dx.doi.org/10.1109/TASLP.2016.2560534
http://dx.doi.org/10.1109/TASLP.2016.2560527
http://dx.doi.org/10.1109/TASLP.2016.2589778
http://dx.doi.org/10.1109/TASLP.2016.2589780
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                              www.signalprocessingsociety.org     [9]  SEPTEMBER 2016

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_____________________________
_______________________________________________

________________
_____________

_____________
_____________

________________

http://www.signalprocessingsociety.org
mailto:arashmoh@encs.concordia.ca
mailto:pcheng@iipc.zju.edu.cn
mailto:vincenzo.piuri@unimi.it
mailto:kostas@ece.utoronto.ca
mailto:patrizio.campisi@uniroma3.it
http://www.signalprocessingsociety.org/periodicals/tsipn/
http://mc.manuscriptcentral.com/tsipn-ieee
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [10]  SEPTEMBER 2016

AUGUST 2016 VOLUME 25 NUMBER 8 IIPRE4 (ISSN 1057-7149)

PAPERS

PiCode: A New Picture-Embedding 2D Barcode http://dx.doi.org/10.1109/TIP.2016.2573592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Chen, W. Huang, B. Zhou, C. Liu, and W. H. Mow 3444

Super-Resolution of Dynamic Scenes Using Sampling Rate Diversity http://dx.doi.org/10.1109/TIP.2016.2573590 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Salem and A. E. Yagle 3459

A Unified Framework for Salient Structure Detection by Contour-Guided Visual Search http://dx.doi.org/10.1109/TIP.2016.2572600 . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K.-F. Yang, H. Li, C.-Y. Li, and Y.-J. Li 3475

Merge Frame Design for Video Stream Switching Using Piecewise Constant Functions http://dx.doi.org/10.1109/TIP.2016.2571564 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Dai, G. Cheung, N.-M. Cheung, A. Ortega, and O. C. Au 3489

Image Zoom Completion http://dx.doi.org/10.1109/TIP.2016.2571061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Hidane, M. El Gheche, J.-F. Aujol, Y. Berthoumieu, and C.-A. Deledalle 3505

Learning Discriminatively Reconstructed Source Data for Object Recognition With Few Examples
http://dx.doi.org/10.1109/TIP.2016.2572602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P.-H. Hsiao, F.-J. Chang, and Y.-Y. Lin 3518

Iterative Refinement of Possibility Distributions by Learning for Pixel-Based Classification http://dx.doi.org/10.1109/TIP.2016.2574992 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Alsahwa, B. Solaiman, S. Almouahed, É. Bossé, and D. Guériot 3533

Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network
http://dx.doi.org/10.1109/TIP.2016.2570571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-T. Tu, Y.-H. Chan, and Y.-C. Chen 3546

A Non-Local Low-Rank Approach to Enforce Integrability http://dx.doi.org/10.1109/TIP.2016.2570548 . . . . . . . . . . . . . . H. Badri and H. Yahia 3562
Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph http://dx.doi.org/10.1109/TIP.2016.2570556 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Du, H. Qi, W. Li, L. Wen, Q. Huang, and S. Lyu 3572
Inter-Layer Prediction of Color in High Dynamic Range Image Scalable Compression http://dx.doi.org/10.1109/TIP.2016.2571559 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Le Pendu, C. Guillemot, and D. Thoreau 3585
Contour Completion Without Region Segmentation http://dx.doi.org/10.1109/TIP.2016.2564646 . . . . . . . . . . . . . . . . . . . Y. Ming, H. Li, and X. He 3597
Fast Multispectral Imaging by Spatial Pixel-Binning and Spectral Unmixing http://dx.doi.org/10.1109/TIP.2016.2576401 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z.-W. Pan, H.-L. Shen, C. Li, S.-J. Chen, and J. H. Xin 3612
Dual Diversified Dynamical Gaussian Process Latent Variable Model for Video Repairing http://dx.doi.org/10.1109/TIP.2016.2573581 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Xiong, T. Liu, D. Tao, and H. T. Shen 3626

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_________________________

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/TIP.2016.2573592
http://dx.doi.org/10.1109/TIP.2016.2573590
http://dx.doi.org/10.1109/TIP.2016.2572600
http://dx.doi.org/10.1109/TIP.2016.2571564
http://dx.doi.org/10.1109/TIP.2016.2571061
http://dx.doi.org/10.1109/TIP.2016.2572602
http://dx.doi.org/10.1109/TIP.2016.2574992
http://dx.doi.org/10.1109/TIP.2016.2570571
http://dx.doi.org/10.1109/TIP.2016.2570548
http://dx.doi.org/10.1109/TIP.2016.2570556
http://dx.doi.org/10.1109/TIP.2016.2571559
http://dx.doi.org/10.1109/TIP.2016.2564646
http://dx.doi.org/10.1109/TIP.2016.2576401
http://dx.doi.org/10.1109/TIP.2016.2573581
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                              www.signalprocessingsociety.org     [11]  SEPTEMBER 2016

Multi-View Object Extraction With Fractional Boundaries http://dx.doi.org/10.1109/TIP.2016.2555698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-H. Kim, Y.-W. Tai, J. Park, and I. S. Kweon 3639

Effective Decompression of JPEG Document Images http://dx.doi.org/10.1109/TIP.2016.2576024 . . . . . .. . . . . . T.-A. Pham and M. Delalandre 3655
Improving Intra Prediction in High-Efficiency Video Coding http://dx.doi.org/10.1109/TIP.2016.2573585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Chen, T. Zhang, M.-T. Sun, A. Saxena, M. Budagavi 3671
Fast Single Image Super-Resolution Using a New Analytical Solution for ll Problems http://dx.doi.org/10.1109/TIP.2016.2567075 . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, and J.-Y. Tourneret 3683
Connected Component Model for Multi-Object Tracking http://dx.doi.org/10.1109/TIP.2016.2570553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. He, X. Li, X. You, D. Tao, and Y. Y. Tang 3698
Noise Power Spectrum Measurements in Digital Imaging With Gain Nonuniformity Correction

http://dx.doi.org/10.1109/TIP.2016.2574985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. S. Kim 3712
FRESH-FRI-Based Single-Image Super-Resolution Algorithm http://dx.doi.org/10.1109/TIP.2016.2563178 . . . .. . . . X. Wei and P. L. Dragotti 3723
Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized

Gaussian Priors http://dx.doi.org/10.1109/TIP.2016.2567074 . . . . . . . . . . . . . . . . . . . . . . . . . N. Zhao, A. Basarab, D. Kouamé, and J.-Y. Tourneret 3736
Modeling the Quality of Videos Displayed With Local Dimming Backlight at Different Peak White and Ambient Light

Levels http://dx.doi.org/10.1109/TIP.2016.2576399 . .. . C. Mantel, J. Søgaard, S. Bech, J. Korhonen, J. M. Pedersen, and S. Forchhammer 3751
Understanding Deep Representations Learned in Modeling Users Likes http://dx.doi.org/10.1109/TIP.2016.2576278 . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. C. Guntuku, J. T. Zhou, S. Roy, W. Lin, and I. W. Tsang 3762
Sparse Representation-Based Image Quality Index With Adaptive Sub-Dictionaries http://dx.doi.org/10.1109/TIP.2016.2577891 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Li, H. Cai, Y. Zhang, W. Lin, A. C. Kot, and X. Sun 3775
A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using

Low-Complexity Integer DCTs http://dx.doi.org/10.1109/TIP.2016.2579559 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . B. Lee and M. Kim 3787
Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification

http://dx.doi.org/10.1109/TIP.2016.2577382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Li, B. Xie, J. You, W. Bian, and D. Tao 3801
Occlusion-Aware Fragment-Based Tracking With Spatial-Temporal Consistency http://dx.doi.org/10.1109/TIP.2016.2580463 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Sun, D. Wang, and H. Lu 3814
Generalized Coupled Dictionary Learning Approach With Applications to Cross-Modal Matching

http://dx.doi.org/10.1109/TIP.2016.2577885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Mandal and S. Biswas 3826
Just Noticeable Difference Estimation for Screen Content Images http://dx.doi.org/10.1109/TIP.2016.2573597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wang, L. Ma, Y. Fang, W. Lin, S. Ma, and W. Gao 3838
A Locally Weighted Fixation Density-Based Metric for Assessing the Quality of Visual Saliency Predictions

http://dx.doi.org/10.1109/TIP.2016.2577498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. S. Gide and L. J. Karam 3852
Demosaicing Based on Directional Difference Regression and Efficient Regression Priors http://dx.doi.org/10.1109/TIP.2016.2574984 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wu, R. Timofte, and L. Van Gool 3862
Toward a No-Reference Image Quality Assessment Using Statistics of Perceptual Color Descriptors

http://dx.doi.org/10.1109/TIP.2016.2579308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Lee and K. N. Plataniotis 3875
Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability

http://dx.doi.org/10.1109/TIP.2016.2579259 . . . . . . . . . . . . L. Drumetz, M.-A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and C. Jutten 3890
Dimension Reduction With Extreme Learning Machine http://dx.doi.org/10.1109/TIP.2016.2570569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. L. C. Kasun, Y. Yang, G.-B. Huang, and Z. Zhang 3906
DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection http://dx.doi.org/10.1109/TIP.2016.2579306 . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang 3919
Joint Patch and Multi-label Learning for Facial Action Unit and Holistic Expression Recognition

http://dx.doi.org/10.1109/TIP.2016.2570550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Zhao, W.-S. Chu, F. De la Torre, J. F. Cohn, and H. Zhang 3931
Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform http://dx.doi.org/10.1109/TIP.2016.2575005 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. L. de Queiroz and P. Chou 3947

COMMENTS AND CORRECTIONS

Correction to “Filtering Chromatic Aberration for Wide Acceptance Angle Electrostatic Lenses II-Experimental
Evaluation and Software-Based Imaging Energy Analyzer” http://dx.doi.org/10.1109/TIP.2016.2571758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Á. Fazekas, H. Daimon, H. Matsuda, and L. Tóth 3638

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/TIP.2016.2555698
http://dx.doi.org/10.1109/TIP.2016.2576024
http://dx.doi.org/10.1109/TIP.2016.2573585
http://dx.doi.org/10.1109/TIP.2016.2567075
http://dx.doi.org/10.1109/TIP.2016.2570553
http://dx.doi.org/10.1109/TIP.2016.2574985
http://dx.doi.org/10.1109/TIP.2016.2563178
http://dx.doi.org/10.1109/TIP.2016.2567074
http://dx.doi.org/10.1109/TIP.2016.2576399
http://dx.doi.org/10.1109/TIP.2016.2576278
http://dx.doi.org/10.1109/TIP.2016.2577891
http://dx.doi.org/10.1109/TIP.2016.2579559
http://dx.doi.org/10.1109/TIP.2016.2577382
http://dx.doi.org/10.1109/TIP.2016.2580463
http://dx.doi.org/10.1109/TIP.2016.2577885
http://dx.doi.org/10.1109/TIP.2016.2573597
http://dx.doi.org/10.1109/TIP.2016.2577498
http://dx.doi.org/10.1109/TIP.2016.2574984
http://dx.doi.org/10.1109/TIP.2016.2579308
http://dx.doi.org/10.1109/TIP.2016.2579259
http://dx.doi.org/10.1109/TIP.2016.2570569
http://dx.doi.org/10.1109/TIP.2016.2579306
http://dx.doi.org/10.1109/TIP.2016.2570550
http://dx.doi.org/10.1109/TIP.2016.2575005
http://dx.doi.org/10.1109/TIP.2016.2571758
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [12]  SEPTEMBER 2016

IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University
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