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IEEE Signal Processing Magazine is uniquely positioned
to convey and embrace an evolving scope of signal pro-
cessing. This issue showcases an example of a cross-
disciplinary area—fascinating advances of computational
photography and display. A variety of articles showcase
the potential for the field to revolutionize imaging and dis-
plays and transform the way in which we capture, share,
and interact with the visual world around us.
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Min Wu | Editor-in-Chief | minwu@umd.edu

hat is signal processing and what

isn’t? From time to time, I would

come across comments related
to this question from independent re-
views regarding whether an article that
was submitted to IEEE Signal Process-
ing Magazine fit the scope. I have
seen reviewers recommending an ar-
ticle surveying signal processing tech-
niques for wireless communications to
a communications-related publication
instead, or an article related to imaging
or image analysis to a computer vision-
related venue.

This would have been commonly ac-
cepted several decades ago when vari-
ous fields under the IEEE umbrella were
well partitioned into different technical
Societies. The IEEE Signal Processing
Society (SPS) traces its roots to 1948 as
the IEEE’s first Society, with the name
and scope as the Professional Group
on Audio of the then Institute of Radio
Engineers (IRE), the predecessor of the
IEEE. Looking at the historic roster of
the SPS’s technical committees (TCs)
(as shown in “SPS Technical Commit-
tees Then and Now: Evolved and Broad-
ened Scope of Signal Processing”), we
can see that just 40 years ago in 1976
when the Society’s first flagship con-
ference, the International Conference
on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), was launched, there
were only five SPS TCs, and they were
dealing with either signal processing

Digital Object Identifier 10.1109/MSP.2016.2590603
Date of publication: 2 September 2016
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Blurred Boundaries

SPS Technical GCommittees Then and Now:

Evolved and Broadened Scope of Signal Processing

Year: 1976

Digital signal processing
Digital measurement of noise
Electroacoustic transducers
Speech processing

Underwater acoustics

Year: 2016

Audio and acoustic signal processing

Bioimaging and signal processing

Design and implementation of signal processing and systems
Image, video, and multidimensional signal processing

Information forensics and security

Machine learning for signal processing

Year: 1987

Audio and electroacoustics

Digital signal processing
Multidimensional signal processing
Spectral estimation and modeling
Speech processing

Underwater acoustics

VLS for signal processing

theories and methods, or speech and
acoustics. There was little mention of
communications nor much presence of
visual processing in the SPS TC struc-
ture, even though many fundamental
signal processing theories and tech-
niques had been used rather extensively
in those areas and further extended and
adapted to solve the problems there.
Moving forward about ten years, we see
that visual aspects in a more general
sense of multidimensional signal pro-
cessing were added to the TC list by the
mid-1980s. And now, 40 years later, we
see more than a dozen TCs in the SPS,
with a diverse range of “new” areas ex-
plicitly embraced, including communi-

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

Multimedia signal processing

Sensor array and multichannel

Signal processing for communication and networking
Signal processing theory and methods

Speech and language processing

Industry DSP technology standing committee

Special interest groups: Big Data, Computational Imaging,
and Internet of Things

cations and networking, multimedia
signal processing, biomedical-related
signal processing, and information fo-
rensics and security.

Year after year, signal process-
ing, together with other fields, have
evolved, and the boundaries between
several traditionally separate fields
have been blurred. Many colleagues
have been actively involved in multiple
technical societies, fostering interaction
and bringing beneficial aspects between
fields. Innovations have often happened
at the boundaries between traditionally
separate fields.

(continued on p. 7)
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Rabab Ward | SPS President | rababw®@ece.ubc.ca

The IEEE as “Bottom-Up” or “Top-Down” Management —

The Choice Is Yours

currently proposed by the IEEE is a

matter of deep concern for so many
of us. It affects some key factors that are
critical to the future of the IEEE as we
know it, and for which we have respect,
devoting endless hours volunteering to
its betterment.

The IEEE, as a nonprofit association
run by volunteers, has very successfully
operated for many years as a “bottom-up”’
confederation of technical Societies and
geographic units, collaborating together
in the spirit of our scientific and engi-
neering culture. Where uniform direction
is needed or highest-level resource al-
location is required, decisions have been
escalated up to higher-level boards, such
as the Technical Activities Board (TAB),
with representation from every IEEE So-
ciety and Council, or the Member and
Geographic Activities (MGA) Board,
with representation from every IEEE
geographic Region. If needed, further
escalation then occurs to the level of the
IEEE Board of Directors (BoD).

Contrast this with most for-profit
commercial companies, which operate
from the “top down.” That is, corporate
executives, under guidance from their
BoD, direct strategy and operations.
Their employees, under various tiers of
management, are responsible for execut-
ing these operations and policies.

The constitutional change amendment

Digital Object Identifier 10.1109/MSP.2016.2588998
Date of publication: 2 September 2016

Increasingly, there have been signs
that the IEEE BoD, for whatever reasons,
wants to become more of a top-down or-
ganization, concentrating greater power
at the top, and diminishing the role of its
technical and geographic units. As evi-
dence, resources generated by Societies
are increasingly redirected without Soci-
ety control for use elsewhere in the IEEE,
including for overhead
purposes. As a result,
remaining Society re-
sources have either
become stagnant or
decreased, limiting
what Societies can do
for their members.

The latest move to
more top-down con-
trol is occurring with
this year’s ballot,
where members are
asked to vote on a constitutional amend-
ment that will abandon dedicated seats
for technical Societies and geographic
units on the BoD in favor of a smaller
number of board members meeting “di-
versity” requirements that have not been
defined and can be changed at any time
according to whomever happens to be
serving on the BoD then.

Proponents of the change claim that a
smaller board will be more nimble. Op-
ponents claim that the checks and bal-
ances of the widely represented board
that we have today are more important
and have served us well. Proponents

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

It is hard to helieve that
we are asked to vote on
this constitutional change
hefore we know what the
final new IEEE structure
would he, and without
knowing the new hylaws
that will govern the IEEE

in the future.

argue that the current board takes too
much time to run the IEEE. Opponents
argue that more decisions should be del-
egated to existing boards, like TAB and
MGA, and empower them to make reso-
lutions independently.

Many of us joined the IEEE due to
the strength of its many diverse Societ-
ies. The combined effort of 45 technical
Societies and Coun-
cils is responsible for
75-80% of IEEE rev-
enues. To diminish
the various Societies’
visibility and role in
running the IEEE
is unwise and short-
sighted. If volunteers
find that their ability
to control the des-
tiny of their Society
is greatly reduced,
many volunteers will no longer feel that
they truly belong to a self-empowered
Society, and it will adversely affect the
morale, motivation, and enterprising
spirit of the volunteers.

The recent intense effort to change
the IEEE’s fundamental constitution is
distracting us from solving our immedi-
ate, high-priority challenges. Further, it
is hard to believe that we are asked to
vote on this constitutional change before
we know what the final new structure
would be and without knowing the new
bylaws that will govern the IEEE in the
future. The new bylaws are to be written
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later by the BoD,
but none of the new
bylaws will require
member vote, or even

| urge you to hecome more
familiar with the pros and
cons of the amendment,
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Processing Society.
But, their decisions
do not matter—only
yours does, as a vot-

For background, the IEEE governing
documents, including the constitution
and bylaws, are available at http:/www.
ieee.org/about/corporate/governance/

prior notification. and e)(ﬂ_rGISf_} Vﬂll_r_"gm ing member of the index.html.

The proposed amend- [ 10 VOI€ in this critically IEEE. TAB has formed a TABin2030 Com-
ment gives power to important juncture for I urge you to be- mittee to consider the amendment’s
the BoD to imple- the IEEE. come more famil- implications. Additional materials to the

ment any changes
they wish to make, without requiring
approval from us, the IEEE Members.
More than half of the governing
boards of the IEEE’s Societies and
Councils have already spoken against
the amendment, including the Comput-
er, Communications, Power & Energy,
Circuits and Systems, Electron Devices,
Robotics and Automation, Solid-State

iar with the pros and
cons of the amendment, and exercise
your right to vote in this critically
important juncture for the IEEE. You
can learn more about the amendment at
https://www.ieee.org/about/corporate/
election/2016_constitutional _amendment.

html. The rationale for opposition to the
constitutional amendment and proposed
restructuring can be found at https://

pros and cons and the TABin2030 webi-
nars and analyses can be found by visiting
http://ta.ieee.org/strategic-planning/

tab-in-2030. You may need to log in with

your IEEE account to access the materials.
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Circuits, and, of course, our own Signal ieee2016blogwordpress.com. SP)
IEEE SIGNAL PROCESSING CupP 2017
GLOBAL UNDERGRADUATE COMPETITION IN SIGNAL PROCESSING
MusIcC SIGNAL PROCESSING: The 2017 SP Cup competition
is a real-time beat tracking challenge. The beat is a salient
periodicity of a music signal. Beat tracking underlies music
information retrieval research and provides for beat
synchronous analysis of music. The goal of this challenge
is to implement a real-time beat tracker on an embedded
platform and to demonstrate the performance with a
creative output such as, but not limited to, drumming,
dancing, or flickering lights. It is challenging to perform beat tracking in real time because the complete
signal is not available and a system is expected to perform well on a wide variety of musical input.
WHO CAN PARTICIPATE? Teams formed of 3 to 10 undergraduate students, at most one graduate
student, and one faculty member.
PRIZES: GRAND PRIZE VALUED UP TO $10K TOTAL
Monetary prizes (up to $5000), plus travel grants for the top three teams to showcase their work at
ICASSP 2017 — New Orleans, Louisiana, USA.
IMPORTANT DATES:
November 7,2016: Open competition — Stage 1 deadline.
_'I" December 21, 2016: Open competition — Stage 2 deadline.
January 10, 2017: Announcement of top three teams.
. March 5-9, 2017: Final competition held at ICASSP.
— To learn more, visit: http://signalprocessingsociety.org/community/sp-cup/
Digital Object Identifier 10.1109/MSP.2016.2594318
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SOCIETY NEWS

Election of Regional Directors-at-Large
and Members-at-Large

is now open for regional directors- The candidates for memllel‘-al-lal‘!l&

at-large for Regions 1-6 and Region
8 (the term is 1 January 2017 through
31 December 2018) and members-
at-large (term 1 January 2017 through
31 December 2019) of the IEEE Sig-
nal Processing Society (SPS) Board of
Governors (BoG). Ballots, which have
been mailed to SPS members, include
a diverse slate of candidates for both
elections, which were vetted by the SPS
Nominations and Appointments Com-
mittee, as well as a space for write-in
candidates. This year’s election offers
SPS members the opportunity to cast
their votes via the web at https://eballot4.
votenet.com/IEEE for up to one regional
director-at-large for your corresponding
Region: Regions 1-6 (United States)
and Region 8 (Europe, Middle East,
and Africa) and three member-at-large
candidates. Ballots must be received

Your vote is important! The election

o

N
Shoji Makino

75 )

Marc Moonen Antonio Ortega

]

Digital Object Identifier 10.1109/MSP2016.2585718 Gaurav Sharma A. Lee Swindlehurst Zhi (Gerry) Tian
Date of publication: 2 September 2016

The candidates for regional director-at-large
Regions 1-6 Region 8

fes
L
G 4 ‘
Radhakrishna Zhengdao Wang ven Loncaric John McAllister Ana Isabel Pérez-Neira
(Radha) Giduthuri
6 |EEE SIGNAL PROCESSING MAGAZINE | September 2016 |
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at the IEEE no later than 3 October

2016 to be counted. Members must

meet the eligibility requirements at the

time the ballot data is generated to be

eligible to vote. To be eligible to vote

in this year’s Society election, you had

to have been an active SPS member or

affiliate (excluding student member)

prior to 1 August 2016. This is the date

when the list of eligible Society voting

members was compiled. The candidates

for regional director-at-large are

m Regions 1-6: Radhakrishna (Radha)
Giduthuri and Zhengdao Wang

m Region 8: Sven Loncaric, John
McAllister, and Ana Isabel Pérez-
Neira.

The candidates for member-at-large are

= Abeer A.H. Alwan

= Homer H. Chen

= Shoji Makino

m Marc Moonen

Antonio Ortega

Beatrice Pesquet-Popescu

Gaurav Sharma

A. Lee Swindlehurst

Zhi (Gerry) Tian.

The BoG is the governing body that
oversees the activities of the SPS. The
SPS BoG has the responsibility of es-
tablishing and implementing policy
and receiving reports from its standing

boards and committees and comprises
21 Society members: six officers of the
Society who are elected by the BoG,
nine members-at-large elected by the
voting members of the Society, four
regional directors-at-large elected lo-
cally by Society voting members of
the corresponding region, as well as
the Awards Board chair. The six offi-
cers are the president, president-elect,
the vice president-conferences, vice
president-membership, vice president-

publications, and vice president-tech-
nical directions. The executive director
of the Society shall serve ex-officio,
without vote.

Regional directors-at-large are SPS
members who are elected locally by
Society voting members of the corre-
sponding Region via the annual election
to serve on the Society’s BoG as nonvot-
ing members and voting members of the
Society’s Membership Board.

Members-at-large represent the mem-
ber viewpoint in the Board decision
making. They typically review, discuss,
and act upon a wide range of items af-
fecting the actions, activities, and health
of the Society.

More information on the SPS can be
found at http://www.signalprocessing

society.org/.

SP|

FHOM T"E E“"ﬂ“ (continued from page 3)

And yet, worldwide, a number of

signal processing programs and fund-
ing agencies still

convey and embrace this evolving scope
of signal processing. Through engaging
authors and publish-

consider the narrow While we welcome and ing articles that re-
scope of signal pro- appreciate articles on core flect the crossbreed of
cessing as if it were signal processing areas multiple traditionally

the 1970s or 1980s.
For example, in a
country that I visit-
ed, the funding agen-
cies and graduate
programs treated im-
age processing separately from signal
processing. This unfortunately would
constrain the breadth of students’ prep-
aration in their training and limit the
potential source of innovations.

While we welcome and appreciate
articles on core signal processing areas,
our magazine is uniquely positioned to

our magazine is uniquely
positioned to convey and
embrace this evolving scope
of signal processing.

separated areas—both
close and far—and
bringing new advanc-
es from other areas
that are of interest
or benefit to signal
processing professionals and vice versa,
we hope the magazine will contribute to
foster synergies and exchanges between
areas and fields and help shape the future
landscape of signal processing—the sci-
ence behind our digital life.

This issue of the magazine showcases
an example of a cross-disciplinary area—

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

a special issue on fascinating advances of
computational photography and display.
The timing also coincides with the IEEE
International Conference on Image Pro-
cessing (ICIP) to be held in Phoenix, Ari-
zona, which features a visual technology
showcase and visual innovation award.
As a final note, I would like to take this
opportunity to thank all of the reviewers
who have been so generous in offering
their precious time and efforts in provid-
ing critical and constructive comments
to the articles being considered by the
magazine. We appreciate their contribu-
tions that are essential to the success of

the magazine!
SP|
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SPECIAL REPORTS

John Edwards

Signal Processing Brings Fresh Capabilities to Digital Imaging

Research is leading to more sophisticated and useful imaging techniques

y speeding up processing and post-

processing tasks, improving storage,

and cutting costs, digital imaging has
all but eliminated traditional film photog-
raphy over the past several years. Now,
with the help of increasingly sophisticat-
ed signal processing techniques, digital
imaging is poised to become even more
flexible and useful, generating images
that would be far more difficult, if not
impossible, to create with conventional
analog photography.

On-the-go processing

Back in the days when film was the
most popular photographic imaging
medium, signs promising “same day
processing” or “60-minute processing”
could be seen almost everywhere. Most
of today’s smartphone and tablet pho-
tographers are far less patient, however.
Not only do they demand to see their
photos instantly, they want to have the
ability to customize the images on the
spot to make them look more attractive
or to express a particular mood. Tech-
nology makes all of these wishes possi-
ble, but at a cost.

The seemingly inescapable draw-
back to mobile-device-based photo
editing is that image correction and
manipulation tasks are generally com-
putationally intensive, capable of quick-
ly draining a mobile device’s relatively
small battery. Several mobile apps

Digital Object Identifier 10.1109/MSP.2016.2580718
Date of publication: 2 September 2016

attempt to solve this problem by sending
image files to a central server for off-site
postprocessing. Yet this approach frus-
trates many users by creating significant
delays as well as adding costs for
increased data usage.

Late last year, researchers from the
Massachusetts Institute of Technology
(MIT), Stanford University, and San
Jose, California-based Adobe Systems
unveiled an experimental system that
promises to slash the bandwidth con-
sumed by server-based image-process-
ing systems by as much as 98.5% and
mobile device power consumption by
up to 85%. The system works by send-
ing a highly compressed version of the
image to a central server. The server, af-
ter creating simple instructions for mod-
ifying the original image, then sends an
even smaller file back to the mobile de-
vice, which uses the new data to create
the enhanced image.

Applying the modifications to the
original image does demand some extra
processing power from the phone but
not as much energy as uploading and
downloading high-resolution files. In
researchers’ experiments, the energy
savings were generally between 50 and
85%, and the time savings ranged be-
tween 50 and 70% (Figure 1).

Cloud image processing is often pro-
posed as a solution to the limited com-
puting power and battery life of mobile
devices. “It allows complex algorithms
to run on powerful servers with virtually
unlimited energy supply,” says Micha¢l

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

Gharbi, a graduate student in electrical
engineering and computer science at
MIT. “Unfortunately, this overlooks the
time and energy cost of uploading the
input and downloading the output imag-
es. When transfer overhead is accounted
for, processing images on a remote serv-
er becomes less attractive, and many ap-
plications do not benefit from cloud
offloading,” noted Gharbi, who was the
lead author on a recent paper describing
the system. Gharbi’s coauthors were his
thesis advisor, Frédo Durand, an MIT
professor of computer science and engi-
neering; YiChang Shih, who received
his Ph.D. degree in electrical engineer-
ing and computer science from MIT in
March; Gaurav Chaurasia, a former
postdoc in Durand’s group who’s now at
Disney Research; Jonathan Ragan-Kel-
ley, who has been a postdoc at Stanford
since graduating from MIT in 2014; and
Sylvain Paris, who was a postdoc with
Durand before joining Adobe.

Gharbi describes the overall process as
a transform recipe. “The main criterion in
the design of transform recipes is that
they are compact—Iess data to transfer
over the network—but they should be
able to represent faithfully many image
transformations,” he notes. “At equivalent
quality, our recipes are much more com-
pact than JPEG images.”

Gharbi says that the process is rela-
tively straightforward. “First, we de-
compose the input image into luminance
and chrominance,” he states. Luminance
characterizes the brightness variations in

1053-5888/16©2016IEEE
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Portrait Transfer

Style Transfer

Time of Day
1]

im—

Photoshop

PSNR = 38.5 dB

PSNR = 37.2 dB

PSNR = 46.1 dB

%yp = 0.7

o/odown =11

Yodown = 1.5

Yodown = 1.6

Yodown = 1.5

The results of various types of image processing created by an experimental system developed by MIT, Stanford University, and Adobe
Systems researchers. The system promises to save bandwidth and lower mobile device power consumption. (a) Input. (b) Reference output.
(c) Reconstruction. (d) Reference. (e) Highest error patch. (f) Rescaled difference.

the image (i.e., highlights and shadows),
while chrominance is the colors of ob-
jects in the scene. “We process luminance
and chrominance differently because the
human eye is much less sensitive to er-
rors in the chrominance than in the lumi-
nance,” Gharbi says. “Therefore, we can
afford lower fidelity in modeling the
chrominance while favoring a good re-
construction of the luminance.”

The luminance is then further decom-
posed into frequency bands using a La-
placian pyramid. Each band is processed
differently. Low frequencies are slow
variations in the image, such as the
gradual shades in a sky at sunset. High
frequencies are smaller details such as the

patterns of a fabric or small gravels. “We
want to represent how each frequency
band transforms to allow more for more
complex transformations,” Gharbi says.
“We also add nonlinear mapping to mod-
el the luminance.”

Once decomposed, the input is divid-
ed into small image patches, generally
64 x 64 pixels. “Within each patch, we
use a regression model to predict the
corresponding output patch,” Gharbi ex-
plains. The regression is regularized by
LASSO. “Now we have obtained a set of
coefficients for each patch, and together
they form the recipe.”

The system uses conventional image
compression techniques, i.e., quantiza-

|EEE SIGNAL PROCESSING MAGAZINE | September 2016 |

tion and entropy coding, to further com-
press the recipe. Gharbi says that the
overall process leads to results that are vir-
tually indistinguishable from direct ma-
nipulation of the high-resolution image.
Furthermore, the final bandwidth con-
sumption is only 1-2% of what it would
have been using the original phone image.

“Recipes are particularly useful as a
replacement for expensive image filter-
ing on mobile devices,” notes Gharbi.
“They are, essentially, a more efficient
cloud off-loading procedure compared
to the standard pipeline where cloud and
server exchange full-resolution images.”

Gharbi believes that the system could
become even more useful over time as

MIT
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image-processing algorithms grow
increasingly powerful. “We see more
and more new algorithms that leverage
large databases to make a decision on
the pixel. These types of algorithms
don’t do a very complex transform if
you go to a local scale on the image, but
they still require a lot of computation
and access to the data, so that’s the kind
of operation you would need to do in the
cloud,” Gharbi says.

The researchers, who plan no future
enhancements to the transform recipe,
are now making it available to other
imaging researchers via open source.
“Our techniques showed that we can
save energy and time on the mobile,
and I believe others can build on this,”
Gharbi says.

Seeking clarity

Valerio Pascucci, an analysis and visual-
ization professor at the University of
Utah, doesn’t have much use for thumb-
nail images because, for the past decade
or so, he has focused almost exclusively
on extreme resolution imagery, i.e.,
huge photographs containing anywhere
from billions to hundreds of billions of
pixels. Massive, high-density images are
capable of providing a great deal of
detail and useful information. Yet, it can
take several hours to process the mas-
sive gigapixel images that intelligence
analysts, physicians, engineers, and
experts in many other fields rely on for
critical insights. By developing software
that requires only seconds to produce
useful preview images, Pascucci and his
coresearchers are helping such time-
pressed individuals to obtain almost-

immediate access to critical visual
information that, in many cases, can lit-
erally be life saving.

The technology, known as Visualiza-
tion Streams for Ultimate Scalability
(ViSUS), turns massive quantities of digi-
tal data into visual information that the
human mind can understand. ViSUS
works by sampling only a fraction of the
pixels in a massive image, such as a satel-
lite photo or a panorama made of hun-
dreds of individual photos. According to
Pascucci, the technology can produce
good approximations or previews of what
the fully processed image would look like.

The image-processing method can
produce previews at various resolutions
by taking progressively more and more
pixels from the data that make up the
entire full-resolution image. ‘“The choice
of algorithms was dictated by the need
to visualize and analyze large image
collections in real time,” Pascucci says.

ViSUS also has the ability to blend
hundreds to thousands of images into a
single combined mosaic that can be used
as a unique massive image (Figure 2).
“To achieve this result, we managed to
restructure a classical multiscale poisson
solver into a pure coarse-to-fine approach
that interactively blends a large number
of images even if one can use only par-
tial, coarse information,” Pascucci ex-
plains. “While navigating through the
data, more image information is acquired,
and the result is incrementally improved.
The approach is similar to Google Maps,
where users can view more detail by
zooming in on an image.

Pascucci says that updating signal
processing algorithms for use in a pro-

FIGURE 2. This panoramic mosaic of the Salt Lake Valley was taken by a camera mounted on a
robotic panning device on top of a building at the University of Utah. It consists of more than 600
separate photographs that contain a total of 3.27 gigapixels (3.27 billion pixels) of image data. The
seams between individual photos are readily apparent, as are the differences in light exposure. To
edit the photos into a single, seamless, evenly exposed panorama would take hours using normal
methods. ViSUS technology can complete the task in a fraction of that time.
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gressive image-processing environment
was essential for achieving scalability
and interactivity. “The input data is typ-
ically not ready for use, and application
of a traditional approach would intro-
duce unacceptable delays,” Pascucci
notes. “It is, therefore, key to introduce
real-time processing capabilities as part
of the interactive data exploration.”

A key challenge the researchers faced
was changing traditional batch process-
ing into an interactive progressive struc-
ture. “This means that dealing with
larger images does not automatically
mean increasing the delays in processing
the data,” Pascucci says.

The work by Pascucci and his team is
part of a larger movement across the sci-
entific community to come up with new
ways to use and analyze information.
Scientific instruments ranging from brain
scanners to microscopes to telescopes are
increasingly improving and generating
larger amounts of high-quality data, cre-
ating the need for more efficient process-
ing approaches. “This is a very active
research project,” states Pascucci. “As
new data sources are developed, we find
new challenges and reasons to expand
our research base.

Compressed hyperspectral imaging
Conventional photographs, even those
with a high resolution, only allow view-
ers to see what something looks like. Hy-
perspectral imaging, on the other hand,
helps viewers to determine what some-
thing is actually made out of.

Ordinary photographic techniques
create images spanning just three wave-
lengths of light, ranging from blue to
green to red. Hyperspectral imaging can
capture images across dozens or even
hundreds of wavelengths. Akin to long-
distance spectroscopy, such images can
help viewers determine the types of ma-
terials found within an image.

Hyperspectral imaging has potential
applications in areas such as security, de-
fense, agriculture, and environmental
monitoring. However, before the tech-
nique can fully enter the commercial and
government mainstream, a serious
challenge must be overcome, i.e., file size.
If a conventional image contains millions
of pixels spread across three wavelengths,
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it may consume approximately one or two
megabytes of memory or storage space.
Yet, a hyperspectral image file might be
several orders of magnitude larger, mak-
ing data storage and file transmission
cumbersome, inconvenient, or, in some
instances, completely impractical. Fur-
thermore, capturing hyperspectral images
across dozens of wavelengths is current-
ly a time-consuming process, requiring
conventional imaging technology to snap
a series of images—each capturing a dif-
ferent suite of wavelengths or subsets of
pixels with their corresponding wave-
lengths—and then combining the images
into a single file. A final hyperspectral
image is actually an image cube com-
prised of a collection of images (slices),
where each two-dimensional image de-
picts one wavelength.

Earlier this year, researchers at North
Carolina State University and the Univer-
sity of Delaware announced the creation
of an algorithm that works with a popular
compressive spectral imager to quickly
acquire and accurately reconstruct hyper-
spectral images in less time and then
store those images using less memory.
According to researcher Dror Baron, an
assistant professor of electrical and com-
puter engineering at North Carolina State

(©

University, the coded aperture snapshot
spectral imager (CASSI) used in the re-
search can acquire image data from dif-
ferent wavelengths simultaneously,
which significantly accelerates the imag-
ing process. Recognizing that CASSI
provides significant improvements in
both imaging quality and acquisition
speed over conventional spectral imaging
techniques, the researchers worked to
further improve the system by accelerat-
ing the three-dimensional (3-D) image
cube reconstruction process. They began
by turning to an approximate message
passing (AMP) framework.

“Our proposed AMP-3-D-Wiener used
an adaptive Wiener filter as a 3-D image
denoiser within the AMP framework,”
Baron notes. “AMP-3-D-Wiener was fast-
er than existing image cube reconstruction
algorithms and also achieved better recon-
struction quality” (Figure 3).

“A big challenge was that AMP typi-
cally converts a noisy linear inverse prob-
lem where an unknown signal is observed
through multiplying it by a matrix and add-
ing noise into a much simpler problem
where noise is added directly to the signal,”
Baron explains. The noise getting added to
the signal in the new problem is supposed
to be Gaussian and independent of the

|EEE SIGNAL PROCESSING MAGAZINE | September 2016 |

L

Images at wavelengths 470-632 nm within image cubes were reconstructed by the new algorithms from North Carolina State University and
the University of Delaware. (a) represents the ground truth, (b) shows the output of the new algorithm, and (c) shows the output of the other algorithm.

signal. “However,” Baron notes, “AMP has
these properties when the matrix is well
behaved, and, in our hyperspectral system,
the matrix was very poorly behaved.” This
meant that the noise added to the signal in
the new problem was not Gaussian and
was also statistically dependent on the sig-
nal. “Therefore, we had to make some
changes to the algorithm that gave a more
desired performance.”

“We were able to reconstruct image
quality in 100 seconds of computation
that other algorithms couldn’t match in
450 seconds,” Baron states. He’s confi-
dent that computational time can be even
further reduced.

The researchers’ next step, Baron says,
is to run the algorithm in a real-world sys-
tem to gain insights into how the algorithm
functions and identify potential room for
improvement. “We’re also considering
how we could modify both the algorithm
and the hardware to better compliment
each other,” Baron says.

Author
John Edwards (jedwards@john

DROR BARON

edwardsmedia.com) is a technology writ-
er based in the Phoenix, Arizona, area.
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FROM THE GUEST EDITORS

Amit Agrawal, Richard Baraniuk, Paolo Favaro,
and Ashok Veeraraghavan

Computational Photography and Displays

dvances in imaging and displays have
Abeen the source of numerous scientif-
ic breakthroughs, as evidenced by
the more than ten Nobel Prizes awarded
for various inventions and discoveries
in the imaging sciences. Over the last
decade, imaging and displays have com-
pletely conquered our imagination, with
mind-numbing statistics like more than a
billion cameras being sold every year,
more than a trillion photos taken each
year, more than 200,000 images upload-
ed to Facebook alone every minute, and
so on. In addition, interest and excitement
around three-dimensional (3-D) displays,
augmented reality displays, and virtual
reality displays have grown exponentially
over the last decade. This revolution in
consumer imaging and displays is unpar-
alleled and is a direct result of a decade
of advancement in semiconductor fabri-
cation technologies that have made image
sensors and displays less expensive but
with higher resolution every passing year.
Parallel to this imaging revolution,
we have also witnessed a computing
revolution with ever-more sophisticated
algorithms, more computing, and stor-
age horsepower available at the ready
even on mobile devices. In addition, the
ongoing cloud computing revolution is
starting to provide consumers and other
users with computing and data pro-
cessing capabilities that have been, until
now, unimaginable.

Digital Object Identifier 10.1109/MSP.2016.2583358
Date of publication: 2 September 2016

(b)

Cameras with ultra-small form factors, such as a (a) cubic-millimeter wireless sensing
example surveyed in the article by Koppal on page 16) and (b) an enabling technology of
lensless imaging in the article by Boominathan et al. on page 23).

Computational imaging and displays
is a field at the confluence of these two
fast-growing and ever-expanding dis-
ciplines. The field of computational
imaging and displays seeks to create
new imaging, photo-
graphic and display
functionalities, and
experiences that go
beyond what is pos-
sible with traditional
cameras and image
processing tools. The
key insight is that the
codesign of sensor
systems and signal
processing algorithms
to handle the sensor
data provides several
new degrees of design
freedom, enabling im-

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

This issue of the magazine
brings together a variety
of articles covering

an exciting range of
application areas that
showcase the potential for
the field to revolutionize
imaging and displays

and transform the way in
which we capture, share,
and interact with the
visual world around us.

aging and display systems to break tradi-
tional barriers. One of the most celebrated
breakthroughs from this growing field is
the Nobel Prize in Chemistry 2014, which
was awarded for superresolution fluo-
rescence microscopy,
wherein imaging, flu-
orescent markers, and
signal processing tools
were used in concert
to break the resolu-
tion limit imposed by
diffraction. Another
example is the emerg-
ing field of immersive
3-D displays, and vir-
tual/augmented real-
ity platforms such as
GearVR, Hololens,
and Oculus. These are
examples of an early
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Beyond 2-D Images

breakthrough that comes out of the code-
sign of imaging and computation, but there
are several exciting and promising areas
where similar approaches could break cur-
rent barriers and unleash an era of transfor-
mative capabilities in imaging and displays
for many many applications.

This special issue of IEEE Signal
Processing Magazine brings together a
variety of articles covering an exciting
range of application areas showcasing
the potential for the field to revo-
lutionize imaging and displays and
transform the way in which we cap-
ture, share, and interact with the visual
world around us. The issue is organized
into four topical areas:

m ultra-small form-factor cameras

= beyond two-dimensional images
m compressive imaging and displays
= novel applications.

Ultra-small form-factor cameras

The special issue begins with two arti-
cles that present radically small and
novel form-factors for cameras, made
possible by codesigning computation

i"

(d)

with optics and sensors. The first article
by Koppal presents a comprehensive
overview of the current progress in this
field and envisions the interaction
between trillions of miniature cameras,
which could provide novel sensing
capabilities for agriculture, security, and
health. The next arti-
cle by Boominathan
et al. goes even fur-
ther and argues that,
while lenses have

GComputational imaging
and displays is a rapidly
evolving field, and we

- Ve N
Stereo _ :

Technologies enabling advanced imaging and processing in computational photography: (a) high dynamic range imaging (see the article by Sen and
Aguerrebere, page 36), (b) capturing and rendering computational appearance (see the article by Dana, page 70), (c) time-of-flight imaging (see the
article by Bhandari and Raskar, page 45), and (d) light-field cameras (see the article by Ihrke et al., page 59).

Beyond two-dimensional images

The second set of four articles discusses
how computational imaging enables
modern imaging systems to go beyond
capturing a two-dimensional photograph
and capture multidimensional visual in-
formation, including high-dynamic-range
(HDR), time-of-flight
(ToF), multispectral,
light field, and reflec-
tance field. The first
article in this topical

remained the main- hope that the bhreadth area is an overview of
stay of conventional and depth of coverage of methods for HDR im-
imaging and photog- this special issue will he aging that exploits the

raphy, lens-free com-
putational imaging

a catalyst for identifying

joint design of optics,
hardware, and pro-

and tackling the major .
systems have begun hall faci cessing, by Sen and
to revolutionize chalienges i_lclllg Aguerrebere. Next,
many applications the community. Bhandari and Raskar

where the lenses

provide undesirable form-factors and
costs. This article discusses the
promise and limitations of lens-
based cameras and describes the body
of work devoted to imaging without
the use of lenses.

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

provide a thorough
treatment of ToF imaging systems from a
signal processing perspective, covering
the history, mathematical foundation, and
an overview of some recent results. Giv-
en the rapid developments and wide-
spread adoption of ToF imagers, this is a
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Single
Photodetector

(d)

Compressive imaging and displays: (a) imaging exploiting compressive sensing (see the
article by Sankaranarayanan et al., page 81), (b) multispectra cameras (see the article by Cao
et al., page 95), (c) millimeter wave imaging (see the article by Patel et al., page 109), and
(d) factored display (see the article by Wetzstein and Lanman, page 119).

timely and thought-provoking article. On
a completely independent axis, light-
field cameras have indelibly marked
the field of computational photogra-
phy and captured our imagination by

(a)

enabling the digital simulation of dif-
ferent camera settings (in the first
place, digital refocusing), by animating
pictures through viewpoint changes
and simultaneously providing depth and

large depth of field images. Ihrke et al.
illustrate the basic principles of light-
field imaging by taking us through the
key processing steps with more focus
on compact plenoptic cameras. Final-
ly, we end coverage of this topical
area with a article by Dana that goes
beyond two-dimensional images and
recovers complete surface reflec-
tance. In the article, she provides a
comprehensive review of methods for
capturing computational appearance, with
a particular emphasis on computational
imaging inspired techniques.

Compressive imaging and displays
Since the resolution, variety, and scale of
visual data being collected has exploded,
conventional sampling techniques based
on Shannon-Nyquist are becoming
impractical, resulting in the development
of compressive imaging and display tech-
niques that seek to use signal models and
reconstruction algorithms to reduce the
sampling requirements. The first article in
this topical area is by Sankaranarayanan
et al. and focuses on the importance of
careful design of measurement matrices
and appropriate models to perform
compressive video sensing. Next up,
Cao et al. consider the task of multi-
spectral imaging—imaging with a much
greater number of spectral channels
than traditional trichromatic sensors,

Emerging applications: (a) gaze-contingent display (see the article by Stengel and Magnor, page 139) and (b) computational photography for
cultural heritage (see the article by Huang et al., page 130).
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thus providing spectral information at a
higher level of detail. The massive scale
of multispectral data—at high resolutions
in the spectral, spatial, and temporal
dimensions—has long presented a major
challenge. This article presents an over-
view of computational multispectral
imaging, from a signal processing per-
spective, covering a breadth of topics
from system design, optimization to res-
olution, and noise analysis. While most
of the focus in the special issue has been
on imaging within the visible spectrum,
Patel et al. expand upon how the recent
developments in computational imag-
ing have the potential to significantly
improve capabilities of mm-wave imag-
ing systems. They discuss the merits
and drawbacks of available computa-
tional mm-wave imaging approaches
and identify avenues of research in
this rapidly evolving field. Finally,
Wetzstein and Lanman show us the
recent progress in compressive displays
capable of producing a realistic 3-D
visual experience of the world. At the
core of these devices is the use of
factorization techniques that provide
an alternative to Lippmann’s integral
imaging and its inherent resolution/
sampling limitations.

Novel applications

The special issue also has two articles
that explore two novel application ar-
eas: digital preservation of cultural
heritage and gaze-contingent compu-
tational displays. Cultural heritage
provides an important opportunity for
computational imaging, as it enables
the noninvasive analysis of art through
different imaging techniques and new
ways to interact with art. Huang et al.
present techniques to preserve art dig-
itally, study and document it, and
present it on modern media devices
to provide new experiences. The fi-
nal article in the special issue, by
Stengel and Magnor, provides an
overview of recent developments in
computational display algorithms that
exploit gaze-estimation to enhance
perceived visual quality of conven-
tional video footage when viewed on
commodity monitors, projectors, or
head-mounted displays.

Computational imaging and displays
is a rapidly evolving field, and we hope
that the breadth and depth of coverage
of this special issue will not only serve
as a reminder about the huge strides
this community has made but also be a
catalyst for identifying and tackling the
major challenges facing the community.
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SIGNAL PROCESSING FOR
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Sanjeev J. Koppal

A Survey of Computational Photography in the Small

Creating intelligent cameras for the next wave of miniature devices

he sheer ubiquity of smartphones and other mobile vision
systems has begun to transform the way that humans and
machines interact with each other and the way that they
interact with the world. Even so, a new wave of wide-
spread computing is on the horizon, with devices that are even
smaller. These are micro and nano platforms, with feature sizes
less than one millimeter. These types of platforms are quickly
maturing out of research labs, with some examples shown
in Figure 1. These devices can potentially induce futuris-
tic applications; for example, swarms of robotic flap-
ping insects [29] could have applications in
agriculture and security, while medical devices such
as those described in [5] and [8] would enable
body area networks and minimally invasive pro-
cedures. Devices such as those described in [1]
are commercially available and could allow the
creation of far-flung sensor networks.
Anticipating vision and imaging capabilities
on these smaller platforms is a long-term prospect
since, currently, none of the devices in Figure 1
even have cameras let alone full sensing systems.
However, the possible impact is large since equip-
ping tiny devices with computational cameras could
help realize a new wave of applications in security,
search and rescue, environmental monitoring, explora-
tion, health, energy, and more. In this article, we outline
a set of technologies that are currently converging to allow
what we term computational photography in the small; i.e.,
across the millimeter, micro, and nano scales. This survey
covers ongoing research that may break through existing bar-
riers by combining ideas across computational photography,
compressive sensing, micro/nano optics, sensor fabrication,
and embedded computer vision. We map out the next research
challenges whose solutions can propel us toward making min-
iature sensing systems a reality.
The broad architecture of miniature computational cam-
Dl Object tontiior 10.1100MSF2016.2551415 eras is illustrated in Figure 1(b), where an array of (possibly
Date of publication: 2 September 2016 heterogeneous) sensors are placed on a miniature low-power
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FIGURE 1. Miniature sensors: a new frontier for computational photography. In (a), a few motivating examples (images used courtesy of [1], [5], [8], and
[29]) illustrate the coming, new wave of small machines that are transforming surveillance, medicine, sensor networks, agriculture, and other fields.
Some, such as [1], are commercially available. However, due to restrictive power/mass budgets, none of these systems have cameras, let alone computa-
tional photography capability. If these devices could visually sense their environment, their impact would greatly increase. In this survey article, we cover
relevant work in computational photography, compressive sensing, micro/nano optics, sensor fabrication, miniature displays, and embedded computer
vision that together are defining the subdiscipline of computational photography in the small. In (b) we show the overall framework of such a miniature
computational camera, where every sensor aspect, from optics to computing, is influenced by the visual task at hand.

platform. The design of each sensor can be optimized so that
the computation is distributed across all aspects of the device,
including passive optics to modulate the incoming light, active
optics to project patterns onto the scene, optical filters for either
polarization or wavelength as well as accompanying embed-
ded hardware and optimized software. This comprehensive
strategy can address the problem of achieving computational
photography on compact devices.

Converging miniature sensor technologies:

A brief history

In the last two decades, a few billion cameras became avail-
able to a large portion of humanity. This created a surge of
interest and accompanying progress in a variety of imaging
related technologies including, to name just a few, efficient
hardware, small optical designs, miniature light-field sensors,
and compact active illumination and displays.

We focus here on a brief history of three technologies in
particular that have built the foundation for computational
photography in the small. The first is the maturing of embed-
ded vision sensing technologies, which includes both mass-
produced low-power computing platforms from the mobile

revolution as well as specialized systems that intentionally blur
the lines between computing hardware and sensing. The sec-
ond is the impact of miniature optics for visual sensing, where
display and imaging optics that were previously only created in
research labs are now widely available. The third is the recent
application of plenoptic designs to consumer cameras to allow
for increased postprocessing control of photography.

Taken together, these fields have created the opportunity to
make a new type of camera, as illustrated in Figure 2. This is
a camera in which the visual task at hand can influence every
aspect of the sensor, from the scene illumination and imaging
optics to the sensing electronics and on-board processing. This
allows for truly task-specific sensors that can extract every
possible size, power, and mass efficiency from the system and
can enable miniature computational cameras.

Embedded vision sensing and the mobile revolution

Processing images and video in real time on hand-held devices
over the last two decades has resulted in a mature infrastructure
for low-power vision and imaging. Dedicated imaging applica-
tion-specific integrated circuits (ASICs), consisting of digital sig-
nal processors (DSPs), field-programmable gate arrays (FPGAs)
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FIGURE 2. A convergence of miniature sensor technologies. We discuss the brief history of three sensor technology areas; embedded vision, miniature
optics and plenoptic designs. Efforts in each area has built a library of mature techniques that allow us to build a type of camera where the energy cost of
performing a visual task can influence every component in the camera architecture. [All images used with permission: [7], [9], and [27] courtesy of the
IEEE; [18] and [26] courtesy of ACM; [16] courtesy of AAAC (Science); [6] courtesy of AIP; and [19] courtesy of Springer.]

and other processors are now standard in in the last two decades, the paradigm of capture and postprocess-
mobile devices, and much work exists in a few hillion cameras ing of images simply cannot offer enough
the embedded systems research community - power and mass savings.

on low-power hardware support for vision becamo a“a“a_b o Luckily, in addition to traditional em-
[4]. For example, convolutional neural net- loa Iar_ge Ilﬂ!’llﬂll of bedded sensing research, there has been
works (CNNs) that have gained widespread humanity. This created work done over the last few decades to
use with their ability to exploit large data a surge of interest and build analogs to biological and neural archi-
sets, were recently implemented on FPGA accompanying progress tectures in vision systems. These devices
hardware with a peak power consumption in a variety of imaging- perform computations at the sensor level,
of only 15 W [9]. In addition, many entre- related technologies. while photons are being converted into volt-

preneurs are building mobile-scale light-
field sensors [26].

The impact of vision and imaging on the mobile revolution
cannot be overstated. However, as the anxiety about Moore’s
law suggests, such a strategy may not work for the type of
extremely small devices shown in Figure 1. For such future
applications, even a few watts is likely to be larger than what
micro platforms are likely to support. For example, recent
microscale body area networks have a per-node average power
consumption of only 140 uW [14], and far-flung sensor net-
works have similar per-node requirements. For such scenarios,

ages and digitized into pixels. For example,

[7] created sensors that automatically ad-
justed exposure pixel-wise. In this sense, these devices blur the
line between sensing and computation since the sampling of
voltages itself is part of the imaging algorithm. Many of these
sensors have reached a mature level of development and some,
such as those from Inilabs, are available commercially.

Miniature optics for visual sensing
Miniaturized optics has a long-standing impact in traditional
fields such as microscopy. Micro and nano optics benefits the
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rise of miniature computational photography since there now
exists useful fabrication strategies [3]. However, most of the
previous efforts in this area have been to create optics for
generating sharp, high-quality imagery. For example, a
variety of techniques exist to create micro-
lenses by taking advantage of surface ten-
sion properties of PDMS and other
materials that are heated and form lens
shapes when in liquid form. Microlenses
now form an integral part of many smart-

Gomputational

photography is about more
than just capturing images
hut is also ahout exploiting

cameras, this allows image deblurring, refocusing [20], and
depth sensing [18].

The key lesson learned by these early computational pho-
tography researchers was that important scientific questions
involved the coded aperture patterns and
the related decoding algorithms for images
captured under these apertures. Making the
coded aperture itself enjoyed the support
of relatively established approaches, espe-
cially if the coded aperture in question was

phone cameras, as they collect light within the image-formation binary. At the millimeter scale, laser print-
each pixel on the sensor. In research, a process to extract even ing provided the required resolution. For
goal has been to create miniature optics - - smaller and more complex systems, pho-
that mimic insect eyes [16] or that offer :I;I‘:nl::::rmallﬂn from tolithography techniques such as the 1 pm

shape control of microlenses [6].

While these previous efforts focus on
the extremely useful goal of creating high-quality images,
they cannot provide the full story. Computational photogra-
phy is about more than just capturing images but is also about
exploiting the image formation process to extract even more
information from the world. It includes sampling the light-
field, encoding the incoming light-rays and even analysis of
the scene itself through filtering and optical convolutions. The
fabrication technologies for creating micro-optics are useful
for making computational cameras at small scales, but the
design tools available require updating. For example, ray trac-
ing softwares that model aberrations and image blurring and
that assume a plano-parallel scene model are still the norm.
However, geometric distortions reduce for small optics, and,
instead, diffraction becomes important, posing both a chal-
lenge and an opportunity, as we will see in the next section.

Wide-angle fields of view (FOV) become important since
narrow FOV miniature platforms must move to capture the
surrounding visual field, which has power costs. However,
wide-angle optics, while well understood at large scales, are
not easily manufactured at the miniature scale. For example,
miniature fish-eye lenses consist of multiple optical ele-
ments at cm scales with only 120° FOV being demonstrat-
ed. Curved mirrors allow panoramic imaging for computer
vision applications and have no dispersion related problems;
unfortunately, to the best of our knowledge, the state of the
art for miniature mirrors does not appear to have a greater
FOV than 45° [11].

Plenoptic designs in computational photography

Fourier optics [12] involves building optical systems to imple-
ment computations like Fourier transforms by, among other
things, designing point spread functions (PSFs). For decades,
such optical processing research resulted in the use of both
coherent light and partially coherent light to build computing
platforms that were meant to compete with silicon-based
computers. Ten years ago, controllable PSFs began to appear
in computer vision and computer graphics communities,
where attenuating templates, assorted pixels and plenoptic
designs created by standard photolithographic techniques, fil-
tered scene radiance before measurement. For consumer

Heidelberg photomask writer could easily

do the job. Therefore, many computational
photography researchers became the new customers of the
existing national nanotechnology infrastructure built during
the 1990s and 2000s.

The plenoptic designs created by the aforementioned pho-
tolithography techniques were static and could not be changed
over time. To create programmable optics, researchers
took advantage of the wide availability of display related
technologies for manipulating light, such as liquid crystal
displays or digital micromirror devices that allow either con-
trolled sampling of the light-field or processing of informa-
tion for computer vision and image processing. Initially, these
efforts required systems engineering; for example, in [19], the
researchers hacked a Texas Instruments DLP projector, using
it as a camera instead of a projector and whose “projected”
patterns became the camera’s coded aperture. Today, almost
ten years later, the Texas Instruments developer kit is afford-
able enough that such hacking is no longer common. In fact,
this availability has resulted in some of the most visible suc-
cesses of compressive sensing [27] and continues to impact
vision and imaging. This is a past example of the evolution
and commodification of key technologies that we believe will
happen in the future for many of the related areas summa-
rized in Figure 2.

A first wave of computational

photography in the small

There has been a recent surge of miniature computational
cameras, and some of these are illustrated in Figure 3. The
previous efforts we discuss here may lack integration, but
they represent a new line of thinking that seeks to merge the
intertwined technologies of plenoptic designs, miniature
optics, and computational sensing in hardware and algo-
rithms to create new types of cameras. Figure 3 depicts these
on an axis of optical size and power consumption. Each of
the authors cited reported their sensors’ optical size, but, cal-
culating the power footprint was more challenging since it is
subject to interpretation and can change depending on the
task at hand. For example, the raw images from a sensor
could be used for optical flow directly, without much power
consumption. However, the same sensor might require
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FIGURE 3. The first wave of miniature computational cameras. We organize the new wave of small computational cameras according to optical size and
power consumption of the full system. Light-field cameras require powerful on-board computations, but the size of the optics and coded apertures has
reached micron scales. On-board computation at millimeter scales has been proposed for vision sensors, but these do not capture the entire light-field.
We illustrate the new broad steps such as applying sensor-based processing to reduce footprints, applying optical processing to share in the computa-
tional load and exploiting efficient active lighting to reduce on-board power consumption. [All images used with permission: [15], [17], [28], and [30]
courtesy of the IEEE; [10] courtesy of Rambus/OSA; and [21] courtesy of ACM.]

multiple hours of PC-grade processing of
the measurements to allow full light-field
analysis. We picked the full power foot-
print required to generate the key result in

The key lesson learned hy
these early computational
photography researchers

diffraction is embraced, unlike much of con-
ventional computational photography, which
relies on a ray geometric model of light, albe-
it partially augmented with color and polar-

each research paper. Wa_s m_a_l |mnorl_am ization. For example, [13] have shown the

A significant portion of this first wave scientific questions promise of adding micron-scale fabricated
of miniature computational photography involved the coded polarizing filters to CMOS/CCD cameras.
has been in the realm of lensless imaging, aperture patterns and Exploiting diffraction does not happen as
which has long been valued due its simplicity, the related decoding in the optical processing community, where
throughput, an.d potential for mlglaturlzatlon. algorithms for images coherent or' partially Coherent‘ models are
Recent novel image sensor designs recover used to obtain closed form solutions. Instead,
angular information for light-field analysis captured under to handle fully incoherent light from the real
[15]. Reference [10] also used lensless dit- ™ 1M1€SE apertures. world, the relative effects of diffraction are

fraction patterns to capture angular variations
in the light field. Lensless imaging has played an important role
in new types of compressive imagers [2]. Reference [17] demon-
strated an angular theory of wide-angle optical processing and
showed results for fiducial detection on small, autonomous
robots, without needing to capture the entire light field.

Certain common ideas are shared among these first few
forays into computational photography in the small. First,

20

used to infer scene properties. For example,
in [15], angle sensitivity is obtained from the relative effects of a
double decker layer of diffraction patterns. Another idea among
these pioneering designs is the use of nonconventional optics
and coded apertures fused together as one unit. For example, in
[17], optical templates for detecting targets are embedded in a
refractive slab, enabling the Snell’s window effect, and allowing
an extremely wide FOV without using fish-eye lenses.
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The devices discussed above lie in the micro to millimeter
scales and are passive in the sense that the coded apertures
do not change over time and there is no controlled illumi-
nation projected onto the scene. This is in contrast to vision
and graphics methods that use designed lighting to decode
scene information and create new displays. Researchers have
recently began to ask how these methods could work on min-
iature platforms. For example, a challenge on small devices is
the inherent reduction in baseline. Reference [28] has shown
how a circular setup can address some of these challenges for
photometric stereo. Another direction to
address the baseline issue is to move from
triangulation to time-of-flight using active

filter pixels to do the job. This requires exploiting the latest
efforts in nano-optics, such as from [22], to use spectrally
selective filters at the desired scales. Another goal is to find
ways to exploit low-power programmable optical templates
that use technologies such as elnk, which powers many
e-readers and which remains static until sufficient energy is
available for a pattern change.

Another potential opportunity is the integration of com-
putational photography techniques with existing robotics and
SLAM techniques for flying microrobots [24], floating sensors
and surveillance drones. These tools could
allow, for example, photometric stereo of
large tourism sites or disaster zones by using

illumination. On the macro-scale, time-of- photography has great varying illumination from multiple drones.
flight research has allowed the extraction of potential for applications Temporal visual information at small
novel scene properties [25]. For miniature in a variety of fields scales can enable navigation, obstacle
sy’stems, trading off t.he modulated sourc- where small, networked aY01dance and optical flow; yet process'ln.g
es’s power consumption versus the depth video on low-power platforms is prohibi-
sensing becomes important. Illﬂ“_ﬂrms are already tive. CentEye (http://www.centeye.com/)
One way to balance these needs and making an appearance, has shown embedded computing based
enable illumination-based sensing on small such as agriculture, optical flow at high rates and at low reso-
devices would be to extract a signal out of security, health, and the lution using embedded vision cameras.
low wattage illumination. A new generation Internet of Things. Integrating data from multiple sensors has

of computational illumination methods take
advantage of low-power microelectrome-
chanical systems (MEMS) mirrors that have been created for
mobile hand-held projectors, such as those manufactured by
Microvision, Syndiant, and Cremotech. For example, using a
5-W hand-held projector from Microvision, the authors of [21]
have enabled computational illumination techniques in out-
door scenes, in the face of full sunlight. For miniature compu-
tational photography, the converse is clear; if there is no strong
ambient illumination, then the same system can be made to
work at orders of magnitude lower power budgets, since simi-
lar techniques of exposure synchronization and epipolar recti-
fication can be harnessed to decrease power consumption.
While these methods prove promising, an interesting
direction put forth by [30] is to engineer a wide-angle MEMS
mirror modulator for enabling futuristic applications such as
micro light detection and ranging (LIDAR) by demonstrating
an electrothermal MEMS working in liquid for the first time.
By submerging the MEMS mirror into a mineral oil whose
refractive index is 1.47, a wide-angle optical scan (> 120") was
achieved at small driving voltage (< 10 V), and the scan fre-
quency reached up to 30 Hz. The power consumption shown
was 11.7 mW per degree in the mineral oil.

The next opportunities

Figure 3 depicts shaded gray regions that show the potential
for further advances in efficiency and performance. For
example, very few existing techniques take advantage of, say,
computing in ASICs at the sensor level and many rely on
conventional PC-based postimage capture processing. Task
specific sampling may also reduce on-board processing; for
example, a low-power face detector may have an optimal
combination of thermal pixels, polarized pixels and skin

enabled optical flow at real-time rates. For

extremely fast sampling, it may be possi-
ble to exploit graded index lenses or optical fibers that can
bend light in curves. Such optical elements can introduce
time delay by guiding incoming scene radiance into opti-
cal loops, which can be tightly wound in a small volume,
enabling, perhaps, fast capture of near simultaneous photo-
graphs without clocking at extremely high rates.

Finally, since true efficiency is only possible by having
the sensing task at hand influence every part of the sensor,
a fascinating question is how to distribute the work load
over these different components. Should we sample and
process with the optics, in such a way as to minimize the
computational load? Or should we use a neuromorphic sen-
sor to process the measurements as they are made? This
suggests that design tools in the form of a compiler, to
allow automatic partitioning of the computing problem into
components that can be performed best by optics, coded
sampling, on-board processing, or general-purpose signal
processing and vision algorithms.

Toward full systems:

Societal, legal, and cultural impact

We anticipate a future with trillions of networked miniature
cameras. These computational cameras will be small, cheap,
numerous, and capable of recovering more information about
the world around them than today’s conventional point-and-
shoot cameras. The hypothetical impact of such devices has
been discussed in many contexts, such as within the camera
sensor network research community, and not all impacts may
be desirable. For example, if these tiny sensors are not biode-
gradable, then the potential environmental impact may dwarf
current concerns on e-waste. Another issue is privacy, as
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miniature cameras may be discretely placed where their pres-
ence is unwanted. Blunt legal and societal restrictions to these
types of small sensors may unintentionally harm the huge
potential upside in terms of new applications and new plat-
forms. Computational photography can provide answers to
some of these challenges. For example, [23] proposes a new
layer of optical privacy for small sensors, where optics filter
or block sensitive information directly from the incident light-
field before sensor measurements are made.

To conclude, we have shown that there is a confluence
of technologies over the past few decades that has made the
tools for enabling miniature computational photography pos-
sible. This has resulted in a recent surge of activity to build
computational cameras, displays, and sensors that push the
limits of size, power, weight, and mass. Miniature compu-
tational photography has great potential for applications in
a variety of fields where small, networked platforms are
already making an appearance, such as agriculture, security,
health, and the Internet of Things. There are dangers regard-
ing social acceptance of a trillion networked eyes around us,
which can and should also be solved by computational pho-
tography research.
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Lensless Imaging

A computational renaissance

he basic design of a camera has remained unchanged for

centuries. To acquire an image, light from the scene under

view is focused onto a photosensitive surface using a lens.

Over the years, the photosensitive surface has evolved

from a photographic film to an array of digital sensors. How-

ever, lenses remain an integral part of modern imaging systems
in a broad range of applications.

Unfortunately, lenses also introduce a number of limi-
tations. First, while image sensors are typically thin,
cameras end up being thick due to the lens complexity
and the large distance required between the lens and

sensor to achieve focus. For example, the thinnest
mobile cameras today are approximately 5-mm
thick, with the thickness increasing at larger lens
aperture sizes. Second, lenses for visible light
can be manufactured with inexpensive materi-
als such as glass and plastic, but lenses for wave-
lengths farther into the infrared and ultraviolet
spectra are either extremely expensive or infeasi-
ble. Third, lens-based cameras invariably require
post-fabrication assembly, resulting in manufactur-
ing inefficiencies.
In this article, we review a variety of alternate
imaging approaches that completely eschew lenses.
The primary task of a lens in a camera is to shape the
incoming light wavefront so that it creates a focused image
on the sensor. In the absence of a lens, a sensor would sim-
ply record the average light intensity from the entire scene.
Lensless imaging systems dispense with a lens by using other
optical elements to manipulate the incoming light. The sen-
sor records the intensity of the manipulated light, which may
not appear as a focused image. However, when the system is
designed correctly, the image can be recovered from the sensor
measurements with the help of a computational algorithm. Fig-
ure 1 shows the processes for capturing/reconstructing images
in lensed and lensless systems. The simplest lensless imag-
Dl Object demtier 10.1109MSF2015.2551921 ing system is the pinhole camera. It is inefficient, however,
Date of publication: 2 September 2016 since the small pinhole restricts the amount of light reaching
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FIGURE 1. Lensed versus lensless imaging. (a) An illustration of a lens-based camera, where a lens maps the scene onto a sensor to form a clear image.
A few examples of lens-based systems are shown. (b) The process of capturing an image using a lensless camera. An additional step of computation is
required to reconstruct a clear image from the muddled sensor data. A few examples of lensless cameras [11], [16], [24] and our prototype based on [31]
are also shown. (Figure adapted with permission from Macmillan Publishers Ltd: Nature Methods [24], copyright 2012.)

the sensor. Coded aperture cameras improve the light efficiency

using a mask with an array of pinholes. The sensor measure-

ments become a superposition of the images formed by each

aperture, and the computational recovery algorithm’s task is to

reorganize the measurements to recover the image.

There are many benefits to going lensless;

Scalable fabrication. Lensless cameras can be directly fab-
ricated using traditional semiconductor fabrication technolo-
gy. For example, a multiple-aperture mask can be fabricated
either directly in one of the metal interconnect layers or on a
separate wafer thermal compression that is bonded to the
back side of the sensor, as is typical for back-side-illuminat-
ed image sensors [1]. Thus, lensless cameras can benefit
from all of the scaling advantages of semiconductor fabrica-
tion, resulting in a low-cost, high-yield, high-performance
device. In contrast, conventional cameras require inefficient
post-fabrication assembly of the lens system.

Thin form factor. Since the standoff distance between a
multiple-aperture mask and the image sensor array need only

be a few tens to hundreds of microns, an entire lensless cam-
era can be only a few tens to hundreds of microns thick—
resulting in potentially the thinnest cameras ever produced.
Wavelength scaling. Lensless cameras have been used for
X-ray, gamma-ray, and astronomical imaging for decades.
Lensless imaging in the visible, short-wave infrared (SWIR),
and thermal wavebands is relatively new. Moreover, the tech-
nology can also be expanded to the mm-wave, terahertz, and
other bands with minimal modifications, providing
unmatched spectral flexibility.

Low cost. While the cost of high-resolution cameras has
fallen rapidly in the visible range, it remains high outside the
visible range (e.g., infrared). One reason is that lenses for
these wavelengths must be manufactured using expensive
materials. By doing away with lenses and the need for post-
fabrication assembly, lensless cameras promise significant
cost reductions for imaging outside the visible spectrum.
Nonplanar geometries. Lensless cameras can be adapted
to arbitrary sensor geometries, including not just planar but
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also cylindrical, spherical, and even flexible sensors. The

compact form of spherical lensless cameras promise

unmatched maneuverability in constrained environments
such as endoscopy.

m Light throughput. Lensless cameras can be designed to
have very large input apertures, which translates into
improved light efficiency and a much larger field-of-view
than conventional lens-based systems.

m Three-dimensional (3-D) imaging. Lensless imaging sys-
tems can extract 3-D and refocusing information in addition
to two-dimensional (2-D) imaging. Although this ability is
not yet competitive with existing lens-based techniques,
such as light-field and time of flight,
the extracted 3-D information may still
be useful in some contexts, such as ges-
ture identification.

In this article, we review the past, pres-
ent, and future of lensless imaging as a shin-
ing example of the opportunities afforded
by computational imaging, a design frame-
work that uses computational algorithms to
replace or augment imaging hardware (in
this case replacing the lens). After review-
ing classical and contemporary approaches
to lensless imaging, we introduce and analyze a mathemati-
cal model that exposes the key issues underlying these
architectures. The bulk of the article consists of a case study
of the FlatCam, a particular mask-based lensless imager we
have developed.

Early lensless imaging systems

Pinhole cameras

The very first cameras were lensless. Pinhole cameras, also
known as the camera obscura, were discovered centuries
before the invention of lenses and photography. Pinhole cam-
eras have been well known since Alhazen (965-1039 A.D.)
and Mozi (c. 370 B.C.). However, the first photograph using a
pinhole camera was captured in 1850. Pinhole cameras offer a
simple and elegant architecture for lensless imaging that con-
sists of a single aperture in front of a sensor. Light from an
object passes through the pinhole and forms its image on the
sensor. However, a tiny pinhole is required to produce sharp
images, which results in very low light throughput. As a con-
sequence, a pinhole camera requires very long exposure times
to acquire images at high quality. Lenses were introduced into
cameras for precisely the purpose of increasing the size of the
aperture, and thus the light throughput, without degrading the
sharpness of the acquired image.

Coded aperture cameras

Coded aperture cameras extend the idea of a pinhole camera by
replacing the small, single aperture with a mask containing mul-
tiple apertures [2]-[4]. Coded aperture cameras were originally
invented for imaging with X-rays and gamma rays, wavelengths
of light that are not easily amenable to lens-based imaging (see

Lenses were introduced
into cameras for
precisely the purpose of
increasing the size of the
aperture, and thus the
light throughput, without
degrading the sharpness
of the acquired image.

“Coded Aperture in X-Ray and Gamma-Ray Imaging”). In a
general coded aperture system, sensor measurements represent
a superposition of the images formed behind each pinhole. The
primary motivation for a coded mask is to increase the light
throughput while retaining the ability to reconstruct high-res-
olution images. For instance, if the mask contains P pinholes,
then the sensor image is the sum of P overlapping images of the
scene. The signal-to-noise ratio in such an image is approxi-
mately «/F times better than a single pinhole image [2], [3].

In contrast to a single-pinhole camera, the sensor measure-
ments of a coded aperture camera do not resemble an image of
the scene. Rather, each light source in the scene casts a unique
shadow of the mask onto the sensor, encod-
ing information about locations and intensi-
ties. Consider a single light source on a dark
background; the image formed on the sensor
will be a shadow of the mask. If we change
the angle of the light source, then the mask
shadow on the sensor will shift. If we change
the depth of the light source, then the size of
the shadow will change. We can represent
the relationship between the scene and the
sensor measurements as a linear system that
depends on the pattern and placement of the
mask. Inverting this system using an appropriate computational
algorithm will recover an image of the scene.

The design of the mask plays an important role in coded-
aperture imaging. An ideal pattern would maximize the light
throughput while providing a well-conditioned scene-to-
sensor transfer function to facilitate inversion. In this regard,
several mask designs have been proposed in coded aperture lit-
erature, including Fresnel zone plate, random pinhole patterns,
uniformly redundant arrays (URAs) [3], and their extensions.
URASs are particularly useful because of two key properties:
1) almost half of the mask is open, which boosts the signal-to-
noise ratio, and 2) the autocorrelation function of the mask is
close to a delta function, which aids in calibration and image
recovery. URA patterns are closely related to the Hadamard-
Walsh functions and the maximum length sequences that are
maximally incoherent with their cyclic shifts [5].

Zone plates

A zone plate can also be used to focus light and form an image
using diffraction [6], [7]. A zone plate consists of concentric
transparent and opaque rings (or zones). Light hitting a zone
plate diffracts around the opaque regions and interferes con-
structively at the focal point. Zone plates can be used in place
of pinholes or lenses to form an image. One advantage of zone
plates over pinholes is their large transparent area, which pro-
vides better light efficiency. In contrast with lenses, zone plates
can be used for imaging wavelengths where lenses are either
expensive or difficult to manufacture [8], [9].

Contemporary lensless imaging systems
Recent advances in sensor technology [in particular, the conver-
sion from analog film to digital charge-coupled device (CCD)
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Coded Aperture in X-Ray and Gamma-Ray Imaging

Coded aperture cameras were
originally invented for X-ray astron-

SWIFT/BAT Imager with Coded Aperture Mask

omy [2], [34], and they have been Coded
. . Aperture
primarily used for X-ray and gam-

ma-ray imaging since then [3], [4],
[32], [35]. For instance, the SWIFT
space telescope (see Figure S1) is
a multiwavelength space telescope
currently in use for observing gam-
ma-ray bursts [36].

Image formation in a lensbased
camera can be viewed as a oneto-
one mapping of points at a focal
plane in the scene onfo a sensor. A
lens is a refractive element that
manipulates light wavefronts such
that all the light coming from a cer-
tain direction in the scene converg-
es fo a particular location on the
sensor. Visible light can be easily
manipulated using transparent
materials, such as glass and plas-
tic, that have a large refractive index. Therefore, lenses for visi-
ble light are easily available at low cost.

High energy radiation beyond the visible spectrum, such
as Xrays and gamma rays, are routinely acquired in radiol-
ogy, screening, and astronomy applications. Imaging these
radiations enables us to look inside a human body for medi-
cal diagnosis, screen luggage at the airports, and observe
black holes and supernova in the cosmos. However, Xrays
and gamma rays are not as easy to manipulate with refrac-
tive optics as visible light. Therefore, the methods for imag-
ing high-energy radiations primarily rely on reflection or
diffraction optics.

The classical imaging architectures for X-rays and gamma
rays use a collimator in front of a sensor. A collimator typically
consists of a thick sheet of lead or other material opaque to
the incoming rays with multiple holes. Every sensor pixel
behind a hole has a narrow field of view, since only a small
cone of light in a particular direction can travel through each
hole. Thus, a collimator localizes the directions of the rays

and complementary metal-oxide semiconductor (CMOS) sensor
arrays], image reconstruction models and algorithms, and com-
puting resources have made lensless imaging a burgeoning field.
Here, we briefly review some of the recent research in this area.

Lensless imaging using programmable apertures
Programmable mask-based lensless imaging designs have
recently been proposed in [10]-[12]. The camera proposed in

Mask

Graded-Z
Shield

Optical
Bench

Radiator Power

BAT Detector Array Supply Box

FIGURE $1. SWIFT is a multiwavelength space observatory dedicated to the study of gamma-ray bursts.
Its burst alert telescope (BAT) uses a coded mask to detect gamma ray burst events and compute their
coordinates in the sky. The D-shaped coded aperture mask is made of nearly 54,000 lead tiles [36].
(Images courtesy of NASA.)

reaching the sensor. Light from multiple locations and angles
can be recorded by moving the collimator and the detector
accordingly. The two primary drawbacks of collimator-based
imaging are 1) light throughput is extremely low, since the col-
limator allows only a fraction of incoming light to reach the
sensor, and 2) the recorded image has a low angular resolu-
tion, because every sensor pixel records the average intensity
of light over its entire field of view.

A coded aperture-based imaging system offers better light
efficiency and angular resolution as compared to either a pin-
hole- or collimator-based system. A coded aperture camera
consists of a mask with transparent and opaque features
placed in front of a sensor. Light from any particular location
in the scene casts ifs unique shadow of the mask on the sen-
sor plane. Therefore, each sensor pixel records a coded
multiplexing of light from multiple scene locations. The
relationship between the sensor measurements and the scene
intensities can be described as a linear system, which can be
solved using a computational algorithm.

[10] consists of a sensor and layers of programmable spatial
light modulators (SLMs) whose transmittances are controllable
in space and time. By applying different patterns in each layer,
the incoming light can be manipulated in a number of ways.
For example, the camera can track a moving object by shift-
ing a pinhole in one of the layers, select and capture disjoint
regions in the scene, or perform computations on the scene and
record the results directly on the sensor.
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The lensless camera in [11] (the first example of lensless in
Figure 1) uses compressive sensing principles to capture and
recover images. It consists of a single programmable SLM and
a single pixel detector. It captures multiple measurements of the
scene by changing the mask pattern. The scene is then recon-
structed by solving a sparse recovery program. Using multiple
pixel detectors, this design can reconstruct a higher resolution
image for a planar or a sufficiently distant scene [13].

The camera in [12] consists of a sensor array and an SLM
implementing a separable mask pattern. This camera can
reconstruct the scene using a single sensor image, but the
reconstruction quality improves using multiple sensor images
with different mask patterns. In the development of this cam-
era, the authors showed that traditional techniques [3] of using
URA and modified URA (MURA) aperture patterns fail due
to significant diffraction effects in the visible spectrum.

Ultra-miniature lensless imaging with diffraction gratings
Ultra-miniature cameras (approximately 100 #m width and
thickness) have been implemented in [14]-[17] using integrat-
ed diffraction gratings and CMOS image sensors. The pixels
in [14] use diffraction gratings over a photodiode in order to
be sensitive to the angle of incident light. The angle selectivity
is achieved due to a phenomenon called the Talbot effect [18]
and enables the camera to perform lensless 3-D imaging in the
near field. The gratings were fabricated as metal wiring layers
over the photodiodes.

The phase gratings in [16] are designed such that they
impose spiral-shaped diffraction patterns (the second example
for lensless in Figure 1) on the sensor array. The diffraction
pattern is etched on a refractive medium placed above the sen-
sor. The spiral pattern can also be viewed as the point spread
function of these imaging systems. Similar to a coded aperture
system, the image formed on the sensor is a superposition of
shifted and scaled spiral patterns. However, in contrast to an
amplitude mask, a phase grating-based mask has improved
light efficiency, since it blocks much less light. While an image
of the scene can be recovered using a computational algorithm,
the primary purpose of these small-size and low-cost designs
is distributed monitoring and inspection (for example, in the
Internet of Things).

Lensless microscopy via shadow and diffraction imaging

Lensless cameras have also been successfully demonstrated
for several microscopy and lab-on-chip applications. We can
divide the lensless microscopes into two broad categories: con-
tact-mode shadow imaging-based microscopes [19]-[21] and
diffraction-based lensless microscopes [22]—[27]. In a shadow
imaging-based microscope, a microscopic sample is placed
extremely close to a sensor array (ideally within 1 x#m) so that
diffraction is minimized. Light from an illumination source
passes through the sample and casts a shadow on the sensor
with unit magnification. The shadow image represents the
image of the microscopic sample under observation. It is also
possible to capture multiple images of a sample with subpixel
shifts for the purpose of digital superresolution. The on-chip

Amplitude -
Mask ? A
@ ;i L v.
e N A
_ 0]
Image : [0} D S > A
Sensor d S
Legend
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5 A - Mask Feature Size
% - Pixel Pitch
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FIGURE 2. A schematic of a lensless imager using a single amplitude mask.

microscope in [20] demonstrated imaging of red blood cells at
a resolution of 600 nm by combining multiple low-resolution
shadow images of blood flowing in a microfluidic channel.

Diffraction-based lensless microscopes allow a signifi-
cant distance between the sample and the sensor plane. Light
scattered by the sample interferes with itself and creates an
interference pattern on the sensor (the third example of lens-
less in Figure 1). These interference patterns can be digitally
processed to reconstruct an image of the sample [24], [25]. The
on-chip microscope in [25] demonstrated imaging of red blood
cells at a resolution less than 7um with a field-of-view of
20.5 mm?. Since the optical sensor records only the intensity
of the interference patterns and loses the phase information,
image reconstruction relies on computational methods for
phase retrieval [28], [29].

A mathematical model for lensless imaging
A simple mathematical model can be used to explain, character-
ize, and analyze the operation of a variety of lensless imagers.

Lensless imaging architecture

Consider the imaging architecture in Figure 2, which consists
of an amplitude mask placed in front of an image sensor. Both
the sensor and the mask are assumed to be planar and parallel
to each other. The mask is placed a distance d (typically mea-
sured in microns) in front of the sensor; hence, we can assume
the sensor is placed on the plane z = 0 and the mask on the
plane z = d. Assume, without loss of generality, that the mask
is binary-valued and consists of opaque and transparent ele-
ments that either block or transmit light. An important vari-
able is the smallest feature size on the mask, A; intuitively, the
binary mask is constructed using opaque or transparent build-
ing blocks of size A X A. Denote the pixel pitch, or the size
of individual sensor pixels, by w. Given this basic setup, we
can characterize the spot size produced by a mask element and
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characterize when the spot can be well-approximated using
geometric (ray) optics.

Image formation

We characterize image formation using the geometric optics
model. While this approach largely ignores diffraction, the
resulting model is useful for the design and analysis of well-
conditioned imaging architectures. Furthermore, the cali-
bration procedure that we detail in subsequent sections can
account for unmodeled diffraction effects. For the simplicity
of notation, we assume a simplified 2-D world imaged by a
one-dimensional (1-D) mask and sensor. The extension to a
3-D world imaged by a 2-D mask and sensor is straightfor-
ward except where stated otherwise.

For a suitably defined scene irradiance vector x € RY, the
scene-to-sensor mapping can be described using the linear set
of equations

y=®0x+e, (1)
where ® € R¥*" is the measurement matrix, y € R" is the
image formed on the sensor, and e is measurement noise. This
model can be interpreted in two different ways:

1) Each sensor measures a weighted, linear combination of
light from multiple scene locations, and each row in @
encodes the weights for the respective sensor. For a scene
at infinity, the weights for two different sensor pixels sim-
ply differ by a translation of the mask pattern. As a conse-
quence, the matrix @ has a Toeplitz structure.

Every light source in the scene casts a shadow of the mask
on the sensor. Thus, the image formed on the sensor is a
superposition of shifted and scaled versions of the mask.
The shift and the scaling of the mask pattern encodes the
angle and distance of the light source onto the sensor.
These properties are invaluable in the design of masks
that provide near-optimal recovery under noise. Given the
image formation model in 1), our tasks are to formulate
an inversion algorithm that recovers the scene x from the
sensed image y and design mask patterns that achieve opti-
mal recovery performance. We study both problems in the
subsequent sections.

2)

Image reconstruction
Given the sensor measurements y € R and the measurement
matrix @, recovering x € R depends mainly on the rank of
the matrix ® and its condition number. When rank (®) = N
and the matrix is well-conditioned, we can obtain an estimate
of x by solving the least-squares problem
min| &x —y 5, @)
which has the closed-form solution x1s = ®'y =x+ ®7e,
where @ = (®7®)'®7 is the pseudoinverse of ®. When
® is not well-conditioned, the least squares estimate Xrs suf-
fers from noise amplification. When @ is rank-deficient, the
matrix becomes singular and an estimate cannot be achieved.
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In the ill-conditioned and rank-deficient cases, we can use
an image prior to regularize the inverse problem. Specifically,
instead of solving (2), we solve

min||y — ®x [ + AR(x), 3)

where |y — ®x |* quantifies the data fidelity, R(x) is a regular-
ization term that enforces an image prior, and A > 0 controls
the tradeoff between fidelity and regularization. A popular
choice for the regularizer that is useful for noise-suppression
is Tikhonov regularization (also known as ridge regression)
via R(x) = x 3.

Natural signals, such as images and videos, exhibit a host
of geometric properties including sparse gradients and sparse
coefficients in certain transform domains (e.g., Fourier or
wavelets). By enforcing these geometric properties, we can
suppress noise amplification as well as obtain unique solutions
even when @ is rank-deficient (i.e., M < N). A pertinent exam-
ple for image reconstruction is the total-variation (TV) model,
where the regularizer R(x) =||x||;, corresponds to the TV
of the image, which is computed from its gradients. Writing
the scene x as the 2-D image x(u,v) and defining g, = DuX
and g, = D,x as the u- and v-components, respectively, of the
spatial gradient of the image, the TV of the image is given by

RE) = X[y = D v/8u ()2 + g0 (u,v) 2.

The minimization (3) with a TV prior is convex and pro-
duces images with sparse gradients. A host of efficient tech-
niques have been developed to obtain the solution. A range of
even more realistic image models have been developed (e.g.,
[30]), but the resulting optimization might not be convex.

FlatCam: A lensless imaging case study

To illustrate the design tradeoffs involved in a practical lens-
less camera design, we review the FlatCam [31], which was
inspired by the coded aperture imaging principles pioneered
in astronomical X-ray and gamma-ray imaging [2]-[4], [32]
(see “Coded Aperture in X-ray and Gamma-Ray Imaging”).

Architectural overview

The FlatCam design achieves a large photosensitive area with
a thin form factor by replacing the lens with a coded, binary
mask. The thickness of the camera is minimized by placing
the mask almost immediately on top of a bare conventional
sensor array. The image formed on the sensor can be viewed
as a superposition of many pinhole images. An illustration of
the FlatCam design is presented in Figure 3. Light from all
points in the scene passes through a coded mask and forms a
multiplexed image on the sensor. A computational algorithm is
used to recover the original light distribution of the scene from
the sensor measurements.

The FlatCam design has many attractive properties besides
its slim profile. First, since it reduces the thickness of the camera
but not the area of the sensor, it can collect more light than a
miniature, lens-based camera of the same thickness. The light
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Sensor

+—— Mask-Sensor
Assembly

EAERTET B L)

(@)

Sensor Measurements

Reconstructed Image

TIEIN]

FI1R1ELE
- IAIMTETREA

Computational
Reconstruction

(b) (c)

FIGURE 3. The FlatCam architecture. Every light source within the camera field of view contributes to every pixel in the multiplexed image formed on the
sensor. A computational algorithm reconstructs the image of the scene. (a) The inset shows the mask-sensor assembly of our prototype, in which a
binary, coded mask is placed 1.2-mm away from an off-the-shelf digital image sensor. (b) An example of sensor measurements. (c) An image reconstructed
by solving a computational inverse problem of the form (3). (Figure modified from [31] and used with permission.)

collection ability of FlatCam is proportional to the size of the
sensor and the transparent regions (pinholes) in the mask. In con-
trast, the light collection ability of a lens-based camera is limited
by the lens aperture size, which is restricted by the requirements
on the device thickness. Second, the mask can be created from
inexpensive materials that operate over a broad range of wave-
lengths. Third, the mask can be fabricated simultaneously with
the sensor array, creating new manufacturing efficiencies.

Mask design and calibration

Separable masks
The FlatCam uses a separable mask pattern, i.e., the 2-D mask
pattern is the outer product of two 1-D patterns. Such a pattern
drastically reduces the storage and computational footprint of
the measurement matrix ®. When the mask pattern is sepa-
rable, the imaging equation (1) can be rewritten as
Y=®, X0k +E, )
where X is an N X N matrix containing the scene radiance; Y
in an M X M matrix containing the sensor measurements; ®
and ®r are matrices representing 1D convolution along the
rows and columns of the scene, respectively; and E denotes
the sensor noise and model mismatch. For a megapixel scene/
image and a megapixel sensor, @, and ®r each have only 10°
elements, as opposed to 10" elements in ®. A similar idea
has been recently proposed in [12] with the design of doubly
Toeplitz mask.

Mask design

The mask pattern should be chosen to make the matrices @,
and ®r as numerically stable as possible, which ensures a stable
recovery of the image X from the sensor measurements Y. In the
context of image reconstruction using signal priors (for example,

the aforementioned TV prior), random matrices enjoy stable
recovery guarantees. Hence, we construct the separable mask pat-
tern as the outer-product of two 1-D pseudo-random sequences.

Calibration

The low-dimensionality of ®; and ®r in (4) support a sim-
ple and efficient calibration scheme. Instead of modeling
the convolution shifts and diffraction effects for a particular
mask-sensor arrangement, we directly estimate the system
matrices from training data. To align the mask and sensor,
we adjust their relative orientation such that a separable scene
in front of the camera yields a separable image on the sensor.
For a perfectly aligned system, displaying a horizontal/verti-
cal line on a screen in front of the camera results in an image
containing a set of sharp horizontal/vertical stripes. We first
achieve sharpness by rotating the mask relative to the screen.
Then, we align the sensor and mask so that the stripes on
the sensor image are parallel to the image axis. To calibrate
a system that can recover an image X with dimensions N X N,
we estimate the left and right matrices ®; and ®r using
the sensor measurements of 2N known calibration patterns
projected on a screen as depicted in Figure 4. Our calibration
procedure relies on an important observation: If the scene
X is separable, i.e., X = ab”, where a,b e RY, then, for an
ideal system,

Y= ®ab’ @} = (®ra)(Drb)”.

In essence, the image formed on the sensor is a rank-1
matrix, and using a truncated singular value decomposition
(SVD), we can obtain estimates of ®ra and ®rb up to a
signed, scalar constant. We take N separable pattern measure-
ments for calibrating each of ®; and ®x. In practice, we aver-
age several measurements of each calibration pattern to reduce
the effects of sensor noise.

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

THI

29

Previous Page |“Contents™|"Zoomin“|"Zoom out™|"Front"Cover-|"Search Issue“|"Next'Page “‘&rﬁags

E WORLD'S NEWSSTAND®


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

30

*
Previous Page™|“Contents™|“Zoomin~|“Zoom out | Front" Cover-|“Search Isstue“|"Next'Page \"(‘i‘

Separable Mask
on Sensor

Horizontal
Patterns
Yield

Left System
Matrix

Separable Hadamard
Patterns

(@)

Vertical
Patterns
Yield |

(b)

FIGURE 4. Calibration for measuring the left and right matrices @, and @ corresponding to a separable mask. (a) Separable patterns displayed on a
screen in front of the camera. The patterns are orthogonal, one-dimensional Hadamard codes that are repeated along either the horizontal or vertical
direction. (b) Estimated left and right matrices. (Figure modified from [31] and used with permission.)

Prototypes

We have built two different FlatCam prototypes. The first
prototype consists of a Point Grey Flea3 with a Sapphire
EV76C560 CMOS sensor, which has a 5.3-um pixel size and
measured Chief Ray Angle (CRA) of 25°. (The CRA of a sen-
sor determines the cone of light that can enter a pixel.) The
diffractive mask is chrome on quartz glass placed adjacent
to the infrared filter of the sensor (mask-to-sensor distance:
1.2 mm). The pattern on the mask is an outer product of two
length-1024 pseudorandom sequences of smallest feature
size 25 um. Sample reconstructions using this prototype are
shown in Figure 5(a). Reconstructions of a dynamic scene
are shown in Figure 5(b); here, we operated the camera with
a 3 ms exposure and recovered videos of 60 frames per sec-
ond with each frame of the video recovered independently as
a stand-alone image.

The second prototype was assembled with a diffractive mask
and spacer attached directly to the surface of an Omnivision
0OV5647 CMOS sensor (fourth example of lensless in Figure 1).
The Omnivision sensor has pixels of size 1.4 pm and measured
CRA of 28°. The diffractive mask was fabricated by depositing
a thin-film of chrome on fused silica that was then patterned
with photoresist and etched to leave the desired pattern. The
mask was then diced, aligned to the CMOS pixel array, and

attached with optical epoxy (mask to sensor distance 500 um).
The pattern on the mask is the outer product of length-1296
and 972 pseudorandom sequences of smallest feature size of
2.8 um. The smaller feature size and pixel pitch of this pro-
totype enable reconstructions at a higher resolution. However,
a drawback of the smaller pixel pitch is a sensor with poorer
SNR performance, which results in noisier measurements and
reconstruction compared to our first prototype (see Figure 6).

The remainder of the examples below were obtained using
the higher-quality Flea3 sensor prototype.

Programmable masks
In many applications, a camera has the opportunity to acquire
several images of a scene, and both folk wisdom and theory
tell us that averaging the acquisitions should suppress noise.
In contrast to a lens-based camera, a lensless camera could be
equipped with a programmable mask that changes for each
acquisition to provide diversity in the acquisitions. Presumably,
such a camera should not only suppress noise but also average
out imperfections in the measurement operator @ (recall that ®
is never perfectly conditioned in a coded aperture system).

To demonstrate the potential of a programmable mask
FlatCam, we simulated multi-image capture using the seq-
uences of separable measurement matrices {®};=1,.. and
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FIGURE 5. (a) The reconstruction of three static scenes using the Flea FlatCam prototype. (b) Sample frames from the video reconstruction of a toy per-
forming a backflip aided by human hands. The video was recorded at 60 frames per second.

{Dr,} j=1...r. The measurements of the scene X using each pair
of measurement matrices are given by

Yijy = q)L,Xq)}ei, + Eij, ®)

which can be stacked into the larger system

Yan . . . . D, D,
Y= . . {Yup} QL= { DL} || Pr=|{Dr)}
. Yow Dy, D,
(0)
to estimate X by solving the least-squares problem
Xis = argmin || @ XPr— Y I 7, 7
where |l -l denotes the Frobenius norm. A regularization

term can also be added as in the single-image-capture case.

Figure 7(a) illustrates the results of a simulation of this
approach. We generated a virtual high-resolution scene X,
acquired a number of noisy acquisitions according to the model
(), and recovered the image estimate according to (7) with
an additional Tikhonov regularizer. The horizontal axis cor-
responds to the number of acquisitions, each of which used a
new mask. The vertical axis corresponds to peak-signal-to-noise
ratio (PSNR), which measures the mean-squared error between
the image estimate and X. Each acquisition had the same, fixed
exposure time, and so we expect the quality of the image esti-
mate to improve as we fuse more acquisitions. The blue curve
demonstrates not only this improvement, but also an additional
improvement due to changing the mask for each acquisition
rather than reusing the same mask repeatedly. In particular, tak-
ing nine acquisitions using nine different masks attains a PNSR
of 13.7 dB, while taking nine acquisitions with the same mask
attains a PSNR of only 11.8 dB [the green dot in Figure 7(a)] This
2-dB gain is testimony to the power of programmable masks.

The careful reader will note that in practice the scene
might change during acquisition, which would invalidate the
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FIGURE 6. A FlatCam prototype comparison. (a) Our first prototype with the chrome mask placed directly in front of the Flea3 sensor; (d) is our second
prototype with the Omnivision sensor directly epoxied to mask (insets show close-up of the sensors and masks). (b) and (e) are reconstructions and
(c) and (f) are BM3D denoised reconstructions for first and second prototype, respectively. The smaller feature size and pixel pitch of the Omnivision
prototype provide superior resolution at the cost of more noisier image reconstruction.
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FIGURE 7. A simulation experiment of a FlatCam with a programmable mask. (a) Reconstruction performance (in terms of peak-signal-to-noise ratio, PSNR) as
we increase the number of image acquisitions (masks). A different mask pattern is used for each acqusition. The PSNR increases consistently for static and
slow-moving scenes, but after peaking early, deteriorates for faster moving scenes due to model mismatch. The green dot indicates the performance when all
nine image acquisitions of a static scene are done using the same (constant) mask. Though the performance is better than a single acquisition, it is still out-
shined by the programmable mask. (b) Reconstructed images using one, nine, and 36 acquisitions for the static scene and fast-moving scene.
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FIGURE 8. The 3-D imaging with FlatCam. (a) A heat map of the reconstruction PSNR of a simulation of the scene as a function of the scene distance and
the calibration distance of the measurement matrices. At closer scene distances, the reconstruction is sensitive to the choice of multiplexing matrix at the
correct calibration depth; at further scene distances, the sensitivity decreases. (b) An experimental setup showing “FLAT” and “CAM” at different distances
from the camera. (c) Reconstruction at 7 cm and 27 cm through simulation and our prototype FlatCam. The word “FLAT” placed at 7 cm is in focus when
reconstructed using measurement matrices calibrated to depth of 7cm. The word “CAM” placed at 27 cm is in focus when reconstructed using measure-
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ment matrices calibrated to depth of 27 cm.

model (5) and commensurately reduce performance. To inves-
tigate the effect of scene motion, we repeated the above experi-
ment with three different dynamic scenes that diagonally
translate the virtual high-resolution scene X
by 0.05, 0.1, and 0.2 pixels per acquisition.
For the slow-moving scene, the recon-
struction performance improves with the
number of acquisitions, just as with a static
scene. But for the faster-moving scenes, after
peaking early on, the reconstruction per-

The lensless imaging
approach promises to
challenge the traditional
harriers of size, weight,
cost, and performance

Figure 8(a) shows a heat map of reconstruction PSNR of
a simulated 2-D scene as a function of the scene distance
and the calibration distance of the measurement matrices.
We see that the reconstruction qual-
ity improves as the calibration depth of
the camera approaches the actual scene
depth. Moreover, the sensitivity of the
reconstruction due to the discrepancy in
these depths decreases with increasing
scene distance.

formance deteriorates with the number in a hroad range of Figure 8(c), shows the reconstruction of
of acquisitions, due to the increased devia- applications spanning a 3-D scene at two different depth planes.
tion from the model. Figure 7(c) shows the i For a particular fixed mask, we calibrated
reconstructed images usinglone, nine, and ::il:}snl::;l::r,inl:l:!:::lﬂga’ , the mea.surement matrices with a screen
36 measurements for the static scene and the . o at the distances of 7 cm and 27 cm. We
scene moving at 0.2 pixels per acquisition. machine "ISI_OII, and accounted for the field of view of the sen-

The trade-off between spatial and tem- remote sensing. sor by adjusting the size of the calibration

poral resolution could be improved by

estimating the motion between frames and registering the
measurements before reconstructing the image (a difficult, but
solvable problem; see [33]). Adaptive measurement schemes
also hold promise for balancing this tradeoff.

3-D imaging

FlatCam can computationally change its focus to new depths
in a scene from a single acquisition. The key is that, for a given
mask design, we can calibrate a set of separable measurement
matrices {®@r,}i=1,.. and{®Pg;}j=1..r, each obtained using a
screen at a different depth (recall Figure 4).

IEEE SIGNAL PROCESSING MAGAZINE | September 2016

patterns in accordance with the CRA of the
sensor. The resulting two sets of matrices were then used to
create focused images at 7 cm and 27 cm from a single acqui-
sition with FlatCam. (The line artifacts in the experimental
reconstruction are due to scene illumination leaking into the
sensor from the sides that was not accounted for in the calibra-
tion procedure. We can reduce the unaccounted light in future
prototypes by introducing baffles.)

Limitations and challenges facing lensless imaging

The very first cameras were lensless (pinhole cameras), but
the advent of lenses and other advanced optics relegated such
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systems to niche applications like X-ray and gamma-ray imag-
ing. The resurgence of lensless imaging can be attributed to the
convergence of four factors: the development of digital CMOS
and CCD sensor arrays, efficient and realistic image models
and recovery algorithms, powerful computing, and new mask
designs (such as the separable mask in the FlatCam).

The further development of lensless imaging, however, will
face challenges. As the mask is moved closer to the sensor in
any pinhole or coded aperture camera, the angular resolution
decreases, resulting in a trade-off between minimal thick-
ness and spatial resolution [29]. Additionally, computationally
recovering a scene from less-than-perfectly conditioned sensor
measurements results in noise amplification. Although noise
amplification cannot be eliminated, careful design of mask
patterns and regularization models can minimize this effect.
The necessity for a computational algorithm also results in a
time-lag between image acquisition and reconstruction (~100 ms
for FlatCam). Such a delay may be acceptable in certain appli-
cations but unacceptable in others such as augmented or virtual
reality. There are a number of avenues for continued research
and development that could lead to significantly improved lens-
less imaging performance, including new architectures for
improving spatial resolution, new image models to reduce the
demultiplexing noise, and new computational algorithms to sup-
port high-speed sensing. Sometimes, size matters. The lensless
imaging approach promises to challenge the traditional barriers
of size, weight, cost, and performance in a broad range of applica-
tions spanning consumer, medical, scientific imaging, machine
vision, and remote sensing. Indeed, the future of lensless imaging
research and development looks very bright.
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SIGNAL PROCESSING FOR
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Pradeep Sen and Cecilia Aguerrebere

Practical High Dynamic Range Imaging of Everyday Scenes

Photographing the world as we see it with our own eyes

igh dynamic range (HDR) imaging enables the capture
of an extremely wide range of the illumination present in
a scene and so produces images that more closely resem-
ble what we see with our own eyes. In this article, we
explain the problem of limited dynamic range in the standard

imaging pipeline and then present a survey of state-of-the-art
research in HDR imaging, including the technology’s history,
specialized cameras that capture HDR images directly,
and algorithms for capturing HDR images using
sequential stacks of differently exposed images.
Because this last is among the most common meth-
ods for capturing HDR images using conventional
digital cameras, we also discuss algorithms to
address artifacts that occur when using with this
method for dynamic scenes. Finally, we consider
systems for the capture of HDR video and con-
clude by reviewing open problems and challeng-

es in HDR imaging.

Overview of HDR imaging
The world around us is visually rich and com-
plex. Some of this richness comes from the wide
range of illumination present in daily scenes—the
illumination intensity between the brightest and the
darkest parts of a scene can vary by many orders mag-
nitude. Fortunately, the human visual system can
observe very wide ranges of luminosity by means of bright-
ness adaptation, which allows us, for example, to easily see
the bright scene outside a window as well as the darkened
interior. A digital camera, on the other hand, has a sensor

©ISTOCKPHOTO.COM/YAKOBCHUK

that responds linearly to illumination; coupled with the sen-
sor pixels’ limited capacity to store energy and the noise
present in the acquisition process, this fundamentally limits
the sensor’s measurable dynamic range. The low dynamic
range (LDR) of modern digital cameras is a major factor
preventing them from capturing images as humans see

them (Figure 1). For this reason, an entire research com-
Digital Object Identifier 10.1109/MSP.2016.2581848

Date of publication: 2 September 2016 munity, both in academia and industry, is engaged in
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(a) Images Taken at Two Different Exposures

(b) Full Stack of Images and HDR Result

iy _, 1

FIGURE 1. (a) Images captured by standard digital cameras cannot reproduce the wide range of illumination we see in everyday scenes, even after adjust-
ing the exposure, as illustrated by these two images taken at different exposures. (b) HDR imaging allows for the capture of a wider range of illumination;
here, a stack of images was captured at different exposures (left) and merged with the algorithm described in [1] to reduce motion artifacts and produce

the result shown on the right.

developing HDR imaging algorithms and systems to allow
better photographs to be captured.

In this article, we describe research within the computa-
tional photography community on HDR imaging that enables
the capture of a wider range of illumination than is normally
captured and produces images closer to what we see with our
own eyes. In a way, HDR imaging represents the epitome of
computational photography: many of the solutions involved
require novel optics, new acquisition processes, and clever
algorithms in the back end to produce better images. As such,
this article will focus only on the acquisition of HDR images
and will not discuss related topics that have been extensively
studied such as HDR image representation (how to compress
and store HDR images) or tone mapping (turning an HDR
image into an LDR image suitable for standard display) [2].
Further, because of this tutorial’s strict space limitations, we
cannot cover in depth the large body of existing work on HDR
imaging and refer interested readers instead to textbooks and
papers that survey the subject [1]-[6].

Historical background
As early as the mid-1800s—soon after the invention of pho-
tography itself—early photography pioneers were already
struggling with the limited dynamic range of film and began
to develop techniques that provided the basis of what we now
know as HDR imaging. The French photographer Hippolyte
Bayard was the first to propose that two negatives, each one
properly exposed for different content, could be combined to
create a well-balanced photograph. His compatriot Gustave
Le Gray captured many beautiful seascape photographs with
his ciel rapporté technique, where one negative was used for
the dark sea and the other for the bright sky. Others, such as
Oscar Rejlander, combined many well-exposed negatives to
produce photographs that emulated contemporary paintings
in which everything was properly “exposed” (Figure 2).

This idea of combining images acquired with different
exposures to produce an HDR result was reintroduced for

digital photography in the 1990s (almost 150 years later) by
Madden [7] and Mann and Picard [8]. However, HDR imag-
ing received relatively little attention until the seminal paper
by Debevec and Malik [9] placed it at the forefront of the bur-
geoning computational photography community. Since then,
there has been almost 20 years of research on HDR imag-
ing. Before we delve into this research, however, we must
first review the standard imaging pipeline and understand the
reasons for its limited dynamic range. In addition, we need to
formalize colloquial terms such as brightness by introducing
the appropriate radiometric units that characterize light.

The standard imaging pipeline

and its limited dynamic range

The standard imaging pipeline (Figure 3) starts with a set of
rays leaving the scene in the direction of the camera, with
each ray carrying some amount of radiant power called radi-
ance (L; units: W/m?sr). The rays entering the lens aperture
and striking the sensor at a point are integrated over the solid
angle subtended by the aperture (thereby integrating away the
steradian sr term), resulting in a radiant power density at the

FIGURE 2. Two Ways of Life, Oscar Gustave Rejlander, 1857. This is one of
the earliest examples of combination printing, in which differently exposed
negatives are combined to extend the dynamic range of the final result. In
this case, 32 negatives were combined to complete the final image. (Image
in the public domain.)
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FIGURE 3. The standard imaging pipeline in modern digital cameras, inspired by diagrams in [9] and [10]. The radiance from scene rays captured by the
camera are first integrated over the angle subtended by the lens aperture, over the time the shutter is open, and over the pixel’s footprint area. This energy
can then be cut off by the saturation of the photon well at that pixel sensor, which limits the camera’s dynamic range. The result is then quantized by an
ADC, and the CRF is applied to get the final digital pixel values. Different kinds of noise or error are injected at various stages in the pipeline, as described

in the article text. (Lighthouse image designed by Freepik.com.)

sensor called irradiance (E; units: W/m?). This irradiance is
then integrated over the time the shutter is open to produce an
energy density, commonly referred to as exposure (X; units:
JIm?). Tf the scene is static during this integration, the expo-
sure can be written simply as X(p) = E(p)-t, where p is the
point on the sensor and ¢ is the length of the exposure (inte-
gration time).

The exposure can then be integrated over the pixel’s foot-
print (integrating away the m> term) to result in the total
energy (units: J) accumulated in each pixel’s photon well.
The measured energy is then read out by an analog-to-digital
converter (ADC), often with an analog gain factor applied
to amplify the energy before it is converted. For non-raw
images, the digital value is then mapped through a nonlinear
camera response function (CRF) to emulate the logarithmic
response of the human eye and make the final image look
better. This produces the final pixel values that are output in
the image file.

Two aspects of the pipeline limit the sensor’s dynamic
range of measurable light. First, the pixels’ photon wells are
of finite size and will saturate if too much energy is accumu-
lated, creating an upper limit for the amount of light energy
that can be measured at each pixel. Second, the minimum
amount of detectable light is limited by the sources of noise
in the imaging pipeline. The first is dark current, which is
caused by thermal generation and induces a signal even if no
photons arrive at the sensor (i.e., it is dark). Next is photon shot
noise, which is caused by the discrete nature of light and is the
variance of the number of photons arriving at the sensor dur-
ing exposure time ¢. Like many arrival processes, this count
is modeled by a Poisson random variable, the expected value
(as well as the variance) of which is based on the true irradi-
ance E(p). The spatial nonuniformity of the sensor also causes
different pixels to respond differently to the same amount of
incident photons, which is modeled by the photo-response
nonuniformity (PRNU) factor. Finally, there is readout noise
caused by thermal generation of electrons when the signal is
being read from the sensor.

Given all of these noise sources (excepting dark current),
the actual measured exposure value X(p) for well-exposed

regions can be modeled as a Gaussian random variable with
mean and variance [4]

Uiy = ga(p)E(p)-t+ ur

Ok = 8 a(p)E(p)t+ ok, (D

where g is the camera gain, a(p) is the PRNU factor for the
pixel, and ur and o% are the readout mean and variance,
respectively. The Poisson nature of the photon shot noise is
responsible for the pixel variance’s dependence on the irradi-
ance. Without loss of generality, we can think of this mea-
sured exposure X(p) at each point p in the sensor as being
mapped to a final digital pixel value Z(p) with a function f
that effectively combines the CRF with the quantization and
saturation steps: Z(p) = f(f( (p).

The challenge of HDR imaging, therefore, is to recover
the original HDR irradiance E(p) from noisy LDR images
such as Z(p). To do this, two main approaches have been
proposed: 1) specialized HDR camera systems that measure
a larger dynamic range directly and 2) capturing a stack of
differently exposed LDR images that are merged together to
produce an HDR result, as described in the following two sec-
tions, respectively.

Specialized HDR camera systems

Previous work on specialized HDR camera systems can be
divided into two main categories: 1) those that modify the
measurement properties of a single sensor to capture a larger
dynamic range and 2) those that use prisms, beamsplitters, or
mirrors in the optical path to image a number of sensors at
different exposures simultaneously.

In the first category, researchers have proposed HDR sen-
sors that measure light in alternate ways, such as measuring
the pixel saturation time [11], counting the number of times
each pixel reaches a threshold charge level [12], or incorporat-
ing a logarithmic response like that of the human eye [13].
Others, such as Nayar and Mitsunaga [14], have proposed to
fit different neutral-density filters over individual pixels in
the sensor to vary the amount of light absorbed at each pixel.
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The main advantage of this spatially varying pixel exposures
(SVE) approach is that it allows HDR imaging from a single
exposure, thus avoiding the need for alignment and motion
estimation. Later, Nayar et al. [15] proposed using a digital
micromirror device in front of the sensor for modulating the
amount of light that arrives at each pixel to acquire HDR
images. Hirakawa and Simon [16] proposed another SVE sys-
tem that exploits the different sensitivities already present in
a regular Bayer pattern, while Schoberl et al. [17] improved
this idea further, introducing a nonregular filter pattern to
avoid aliasing problems. In addition, a patch-based approach
to single-image HDR with SVE acquisition [18] uses a piece-
wise linear estimation strategy to reconstruct an irradiance
image by simultaneously estimating over- and underexposed
pixels as well as denoising the well-exposed ones. Finally,
there has been related work that uses a spatial light modulator
displaying a random mask pattern to modulate the light before
it arrives at the sensor and then uses compressed sensing or
sparse reconstruction to recover the HDR image [19].

In the second category, approaches include those that do
not use a single sensor but rather split the light onto a set of
sensors with different absorptive filters to produce simultane-
ous images with varying exposures. These exposures can then
be merged to form the final HDR result using the stack-based
approaches described in the following section. Some systems
use pyramid-shaped mirrors, refracting prisms, or beamsplit-
ters to do this [21], although each such approach suffers from
parallax errors (because each “looks” through the camera
lens from a slightly different angle) as well as wasted light
(because of the absorptive filters in front of the sensors). Tocci
et al. [20] addressed these problems with a novel beamsplitter
design that efficiently reflects the light onto three different
sensors to produce high-quality HDR images (Figure 4).

However, despite promising results, all of these special-
ized HDR systems require the manufacture of new cam-
era hardware, and so they are not widely available today.
Nevertheless, this could change as HDR imaging becomes
more mainstream.

Medium Exposure
0.075 L

Beam
4 Splitter 2 (94/6)

High Exposure

0.004.
' Low Exposure
Beam
Splitter 1 (92/8)

(a) Optical System of Tocci et al. [20]

HDR imaging using image stacks

With conventional cameras, the most practical approach for
HDR imaging is to capture a sequence of LDR images at dif-
ferent exposures and combine them into a final HDR result
[7]-[9]. Specifically, if we acquire a stack of N different
exposures Zi,..
irradiance map E using a simple weighting scheme that
takes into account the measured irradiance E:= Xi(p)/t;
from each image:

., Zn, we can merge them and estimate the

SN wip)Xip) i
SV owip)

E(p) = @

Here, the measured exposure X: can be recovered from well-
exposed pixel values using the inverse of the camera response
function: Xi(p) =f""(Zi(p)). Of course, this requires the
CRF to be known, but methods have been proposed to esti-
mate it from the image stack [9], even for highly dynamic
scenes [22].

Because poorly exposed pixels do not have a good estimate
for the irradiance map, the weight w;(p) should be adjusted
at each pixel based on how well-exposed it is. For example,
Debevec and Malik [9] proposed a simple triangle function for
this weight that gives priority to pixels in the middle of the
pixel range and reduces the influence of poorly exposed pixels:
wi(p) = min(Zi(p),255 — Zi(p)), where we assume the pixel
values range from 0 to 255. Once the stack of images has been
merged in this way, the resulting irradiance map E is output
as the final HDR result. This method is commonly implement-
ed on modern smartphones to extend their camera’s dynamic
range (i.e., “HDR mode”).

Fundamental limits on irradiance estimation performance

It is interesting to understand the fundamental limits of irradi-
ance estimation performance for stack-based algorithms such
as these. To study this, the problem of irradiance estimation
from an image stack can be posed as a parameter estimation

(b) Sample Result from Prototype

FIGURE 4. In the optical system of Tocci et al. [20], (a) two beamsplitters reflect the light so that the three sensors capture images with 92%, 7.52%, and
0.44% of the total light gathered by the camera lens (increasing the dynamic range by a factor of over 200 x), and only 0.04% of it is wasted. (b) shows
the sample HDR result captured by the camera (the three captured LDR images are on left); note that the detail in both the white fur and dark regions is
captured faithfully, even though it does not appear simultaneously in any of the input images. (Figure courtesy of [20].)
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problem from a set of noisy samples. In the case of static
scenes, N independent samples X ®»,..., XN( p) following
the random model in (1) are given per pixel, corresponding to
exposure times f1,...,fn. Assuming the camera parameters are
known from a calibration stage, the only unknown parameter in
(1) is the irradiance E(p) reaching each pixel p.

In this statistical framework, the Cramér—Rao lower bound
(CRLB) gives a lower bound on the variance of any unbiased
estimator of E(p) computed from those samples. Aguerrebere
et al. [4] introduced the CRLB for this problem and showed
that, because the bound cannot be attained, no efficient estima-
tor exists for E(p) under the considered hypotheses. Neverthe-
less, it was shown experimentally that the approximation of the
maximum-likelihood estimator (MLE) proposed by Granados
et al. [23] not only outperforms the other evaluated estima-
tors but also has nearly optimal behavior. Theoretically, the
MLE is efficient for a large number of samples (asymptotically
efficient), which is not the case in HDR imaging, where very
few samples are usually available (normally N = 2 to 4 expo-
sures). Therefore, it is remarkable that, under the considered
hypotheses, the MLE is still experimentally the best possible
estimator for the pixel-wise irradiance estimation for static
scenes. Improvements, however, may be possible by combin-
ing information from different pixel positions with similar
irradiance values, such as in recent patch-based denoising
approaches [24], or even by considering information from
saturated samples [4].

Handling dynamic scenes

The stack-based HDR capture algorithms described in the pre-
vious section work very well when the scene is static and the
camera is tripod-mounted. However, when the scenes are
dynamic or the camera moves while the different pictures are
being captured, the images in the stack will not line up proper-
ly with one another. This misalignment results in ghost-like
artifacts in the final HDR image, which are often more objec-
tionable than the limited dynamic range that is being compen-
sated for (see Figure 5). Because this is the most common
scenario in imaging, there has been almost 20 years of
research into HDR deghosting algorithms that seek to elimi-
nate these artifacts from motion. Specifically, three different

(a) Input LDR Images

(b) Result from Standard Merge

kinds of methods have been proposed to deal with motion,
each of which we discuss in the three sections that follow,
using a taxonomy similar to those in two previous publica-
tions by the first author [1], [10]. Because of space limitations,
we limit the discussion here to a couple of key algorithms in
each category.

Algorithms that align the different exposures

The first kind are algorithms that attempt to deghost the HDR
reconstruction by warping the individual images in the stack
to match a reference image and so eliminate misalignment
artifacts. Unlike the rejection methods discussed in the “Algo-
rithms That Reject Misaligned Information” and “Patched-
Based Optimization Algorithms” sections, these algorithms
can actually move content around in each image and can,
therefore, potentially handle dynamic HDR objects.

The simplest methods in this category assume the images
can be aligned with rigid transformations. For example, a com-
mon method is to compute scale-invariant feature transform
(commonly called SIFT) features in the image and use them
to estimate a homography that warps the images to match
[25]. Of course, these simple rigid-alignment algorithms can-
not handle artifacts caused by parallax due to camera transla-
tion or from significant motion in the scene, although they can
serve as a preprocess for more complex algorithms, such as
those described later in the article.

One of the first algorithms of this kind was proposed by
Bogoni [26]. This method first uses an affine motion esti-
mation step to globally align the images and then estimates
motion using optical flow to further align the images. To make
the optical flow more robust, some have proposed acquisition
schemes to make the different exposures more similar. The
Fibonacci exposure bracketing work of Gupta et al. [27], for
example, cleverly adjusts the exposure times in the sequence
so that the longer exposure times are equal to the sum of the
shorter exposure times. Because of this, optical flow can be
computed between a longer exposure and the sum of the short-
er exposures, thereby ensuring that the two images will have
similar exposure times and, therefore, comparable motion blur.

The state-of-the-art HDR alignment algorithm is perhaps
the work of Zimmer et al. [28], which aligns the images using

(c) Result from Sen et al. [1]

FIGURE 5. Ghosting artifacts can occur when stack-based HDR algorithms are applied to dynamic scenes. (a) Stack of input LDR images. Note, how
some images capture the details in the dark sweater, while others capture the detail in the bright exterior. (b) HDR results from the standard HDR merging
algorithm produces ghosting artifacts because of the motion. (c) HDR results from the patch-based optimization algorithm of Sen et al. [1]

contains detail in all regions of the image without artifacts.
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an energy-based optical flow optimization robust to changes in
exposure. Specifically, their energy function has a data term
that encourages the image to align to the reference and a reg-
ularizer that enforces smooth flow wherever the reference is
poorly exposed. However, these alignment algorithms all suf-
fer from the problem of finding good correspondences, which
is extremely difficult, in particular for highly dynamic scenes
with deformable motion (e.g., a person moving). Furthermore,
scenes with occlusion and/or parallax do not even have valid
correspondences between the images in these regions, mak-
ing it impossible to align the images in the stack correctly.
Therefore, the HDR results from alignment algorithms often
still contain objectionable ghosting artifacts for scenes with
complex motion.

Algorithms that reject misaligned information
A second set of algorithms for HDR reconstruction assume
that the camera is static (or that the images have been prereg-
istered using a rigid alignment process, such as those
described in the “Algorithms That Align the Different Expo-
sures” section) and that the scene motion is localized, mean-
ing that the majority of pixels contain no motion artifacts.
The basic goal of these methods is to iden-
tify those pixels that are affected by motion
and those that are not. The pixels that do
not contain motion artifacts can be merged

The biggest problem with
rejection algorithms is

reduce visible seams between different patches, the authors
apply Poisson blending to the final results.

In the second category are rejection algorithms without a
reference image, which must select a “‘static” subset of images
at every pixel to merge to produce HDR values. These methods
have a fundamental advantage over those that utilize a single
reference image because motion may occur in areas where the
reference might be poorly exposed. At these pixels, an HDR
value cannot be properly computed solely from the reference
image. However, rejection algorithms that do not use a refer-
ence must ensure that subsets are selected for neighboring pix-
els in a way that does not introduce artifacts.

Reinhard et al. [3] proposed one of the earliest methods
in this category. For every pixel that is deemed to be affected
by motion, the authors try to use the longest exposure that
is not saturated (effectively, a single-image subset). To deter-
mine which pixels are affected by motion, they first compute
the variance of the irradiance values at each pixel p, weighted
to exclude poorly exposed pixels. This estimated variance is
then thresholded, and the result is smeared out with a 3 X 3
kernel to reduce edge and noise effects. Adjacent regions
are then joined together to form the “ghosted” regions for
which a single image from the stack will
be used. To select which image they will
use for each region, the authors find the
biggest irradiance value in the region that

using the standard HDR merging algo- that m!}v cannot handle is not in the top 2% (deemed to be outliers).
rithms described in the “HDR Imaging dynamic HDR content They then select the longest exposure that
Using Image Stacks™ section. For the pixels hecause they do not moveé  includes this value within its valid range
that are affected by motion, however, only information hetween to fill in this ghosted region, because the
a subset of the images deemed to be static pixels but rather only longest exposure will contain least noise.
at Fhese pixels w1l.l be n@rged to suppress merge information from To f.urther s.uppress artlfécts, Remhard'et
artifacts from moving objects. _ i al. linearly interpolate this exposure with

To accomplish this, two different kinds corresponding pixels the original HDR result, using the per-pixel
of rejection methods are possible: 1) those across the image stack. variance as a blending parameter.

in which a reference image is specified by

the user and 2) those that do not use a reference image. For
algorithms in the first category, the user first selects an image
from the stack as the reference. These algorithms then simply
revert back to this reference for any pixels where motion is
detected so that the main difference between them is in how
they detect motion. For example, the method of Grosch [29]
assumes two images in the stack and predicts values in the
second image by multiplying the values in the reference by the
ratio of the exposure times, taking into account the nonlinear
camera response curves. With this approach, a pixel is deemed
to be affected by motion if the actual color is beyond a given
threshold from the predicted value. In such cases, the algo-
rithm simply reverts back to using the values in the reference
image for these pixels.

Gallo et al. [30] improved on this work by using the log-
irradiance domain to do the threshold comparisons. Further,
for robustness they compare patches instead of individual
pixels, so that a patch from an image in the stack would be
merged with the corresponding patch from the reference only
if a certain number of pixels meet the threshold constraint. To

An alternative approach is proposed by
Khan et al. [31]; here, instead of detecting and handling dif-
ferently the pixels affected by motion, the authors propose to
iteratively weight the contribution of each pixel depending on
the probability of its being static (i.e., belonging to the back-
ground of the scene). To do this, they assume that most of the
pixels are of the static background and so determine the prob-
ability of a pixel being static by measuring its similarity to the
neighborhood around it.

Finally, some recent methods cleverly use rank minimi-
zation to deghost HDR images [32], [33]. These methods are
based on the observation that if the scene is static, the different
exposure images X (p) would simply be linear scalings of one
another. Therefore, they use the different exposure images to
construct a matrix and essentially minimize its rank to solve
for the motion-free image.

The biggest problem with these and other rejection algo-
rithms is that they cannot handle dynamic HDR content
because they do not move information between pixels but rath-
er only merge information from corresponding pixels across
the image stack. Therefore, if different parts of a moving HDR
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object are well exposed in disjoint regions of the different
images, these parts cannot be brought together to produce an
acceptable result.

Patch-based optimization algorithms

Recently, Sen et al. [1] proposed a new alternative for HDR
deghosting that uses patch-based optimization, which
addresses the problems of both the rejection and alignment
methods. Specifically, a formulated equation codifies the
objective of most reference-based HDR reconstruction algo-
rithms: 1) to produce an HDR result that resembles the refer-
ence image in the parts where the reference is well exposed
and 2) to leverage well-exposed information from other imag-
es in the stack wherever the reference is poorly exposed. This
HDR synthesis equation can be written as

> ot () (f (Zeet (p)) et — E(p))?

p Epixels

+ (1 - Ofref(p))'EBDS(E|Z1,..

Energy (E) =

LZN)]. 3)

The first term states that the desired HDR image E should be
close in an L sense to the LDR reference Z..r mapped to the
linear irradiance domain by applying the inverse camera
response function f~' and dividing by the exposure time #rcr.
This is only to be done for the pixels where the reference is

properly exposed, as given by the ot term, which is a trape-
zoidal function in the pixel value domain [similar to the
weighting function in (2)] that favors intensities near the mid-
dle of the pixel value range.

In the regions where the reference image Z.t is poorly
exposed (indicated by 1 — aret), the algorithm draws informa-
tion from the other images in the stack using a bidirectional
similarity metric, given by the Egps term. This energy term
enforces that for every pixel patch in the image stack (given by
Z1,...,Zn), there must be a similar patch in the final result E,
and vice versa. The first similarity ensures that as much well-
exposed content from the image stack is included in the final
HDR result, while the second ensures that the final result does
not contain objectionable artifacts, as these artifacts would
not be found anywhere in the stack. This energy equation is
optimized with an iterative method that solves for the aligned
LDR images and the HDR image simultaneously, producing
high-quality results (Figure 6).

Patch-based optimization algorithms like this are funda-
mentally different from those discussed in the “Algorithms
that Align the Different Exposures” section, which warp the
images to match based on correspondences. As was pointed
out earlier, alignment methods fail in cases of occlusion or par-
allax (which happen commonly in dynamic scenes) because

FIGURE 6. (a) and (b) show sample HDR results (right) from the input LDR images (left) using the patch-based optimization of Sen et al. [1].
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they do not have valid correspondences in these regions and so
the images cannot be aligned in these parts. Patch-based HDR
reconstruction, on the other hand, is related to patch-based
image synthesis methods (e.g., for single-image hole filling)
because they both use a patch-based similiarity optimization
to resynthesize content in the final reconstruction without
an underlying correspondence. Because of this advantage,
these methods have proved to be the most successful HDR
deghosting algorithms proposed to date.
For example, a recent state-of-the-art

sequence, while rejecting the pixels that are still misaligned,
to avoid artifacts.

The state of the art in HDR video reconstruction is the
work of Kalantari et al. [5], which extended the patch-
based optimization work of Sen et al. [1] to produce coher-
ent HDR video streams. Specifically, they modify the HDR
image synthesis equation (3) to enforce temporal coherence
by performing a bidirectional similarity between adjacent
frames. In addition, they use optical flow
during the optimization to constrain the

report by Tursun et al. [6] testing many Pawn-naset_‘ Hn_n patch-based search, which produces a
deghosting algorithms found that the algo- reconstruction is related stream of high-quality HDR frames.
rithm of Sen et al. [1] and the later, related to patch-hased image

method of Hu et al. [34] ranked first and synthesis methods (e.g., Open problems and challenges

second over other deghosting techniques by for single-image hole Despite the tremendous progress of the
a fairly large margin. The success of patch- — computational photography community
based optimization for HDR reconstruction :ll::::gl:sl:::i:ll:lslzl:h::se d on HDR imaging over the last 20 years,

has led others to explore ways to further
improve the quality of these approaches. For
example, Aguerrebere et al. [24] focused on
reducing the noise of the estimated irradi-
ance. First, this method synthesizes a “refer-
ence” containing well-exposed, de-ghosted
information in all parts of the image using
Poisson image editing (although the meth-
od in Sen et al. [1] could also be used). Noise is then reduced
through a patch-based denoising method that finds all patches
in the image stack within a threshold to each patch in the refer-
ence, where the L distance between patches is normalized by
the variance from (1). The MLE of the patch-centers at each
pixel is then computed to significantly reduce the noise in the
final result.

HDR video

Up to now, we have focused exclusively on the HDR
acquisition of still images. However, the problem of cap-
turing HDR video sequences is of considerable interest as
well. For example, filmmaking companies incur a signifi-
cant cost to light sets, a cost that would be largely elimi-
nated by high-quality, HDR video systems. For this
reason, professional movie camera system suppliers such
as RED have been pushing the dynamic range of standard
sensors. Moreover, specialized HDR camera systems such
as that of Tocci et al. [20] have been proved capable of
capturing high-quality HDR video, although they are not
yet widely available.

For conventional digital cameras, the only way to cap-
ture HDR video is to alternate exposures through the entire
sequence. This problem was first tackled by Kang et al. [35],
who use gradient-based optical flow to compute a bidirectional
flow from the current frame to neighboring frames and unidi-
rectional flows from neighboring frames to the current frame
(four flows total). Once computed, the flows can be used to
produce four warped images by deforming each of the two
neighboring frames. The resulting images can be merged with
the reference to produce an HDR image at every frame of the

similiarity optimization to
resynthesize content in
the final reconstruction
without an underlying
correspontdence.

many challenges remain. For example,
the capture of high-quality HDR images
of highly dynamic scenes with conven-
tional digital cameras is still a challeng-
ing problem. Although state-of-the-art
deghosting algorithms like the patch-
based optimization of Sen et al. [1] can
suppress many of the ghosting artifacts
that would normally occur in these scenes, these methods
cannot recover scene content that is poorly exposed in the
reference image and is not visible in any of the other images
in the stack. Moreover, the patch-based optimization in
these algorithms is computationally expensive and can take
several minutes to compute an image. This limits the appli-
cability of these methods to long video sequences or for
real-time, on-board computation in current smart phones,
for example.

It is entirely possible that new sensor technologies, such
as Fuji Film’s recent Super CCD EXR sensor, will bypass the
problems inherent in stack-based methods by capturing a sin-
gle image with extended dynamic range. However, even these
new technologies will likely raise interesting questions, such as
how users will employ and interact with HDR images. Further-
more, as HDR imaging becomes more mainstream, we expect
that new applications for HDR imaging (such as for medical
imaging or manufacturing) will be proposed and explored.

Conclusions

In this article, we first summarized the main aspects of HDR
imaging, starting with an overview of the problem of limited
dynamic range in standard digital cameras and the physical con-
straints responsible for this limitation. We then surveyed state-
of-the-art approaches developed to tackle the HDR imaging
problem, focusing on both specialized HDR camera systems
and stack-based approaches captured with standard cameras.
For the latter, we discussed algorithms to address ghosting arti-
facts that can occur when capturing dynamic scenes. Finally, we
discussed algorithms for capturing HDR video and concluded
with a review of open problems in HDR imaging. We hope that
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this article encourages researchers from areas such as signal
processing, solid-state devices, and image processing to contin-
ue to pursue this interesting set of problems.
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SIGNAL PROCESSING FOR
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Ayush Bhandari and Ramesh Raskar

Signal Processing for Time-of-Flight Imaging Sensors

An infroduction to inverse problems in computational 3-D imaging

ime-of-flight (ToF) sensors offer a cost-effective and real-
time solution to the problem of three-dimensional (3-D)
imaging—a theme that has revolutionized our scene-
understanding capabilities and is a topic of contemporary
interest across many areas of science and engineering. The goal
of this tutorial-style article is to provide a thorough understand-
ing of ToF imaging systems from a signal processing perspec-
tive that is useful to all application areas. Starting with a
brief history of the ToF principle, we describe the mathe-
matical basics of the ToF image-formation process, for
both time- and frequency-domain, present an over-
view of important results within the topic, and dis-
cuss contemporary challenges where this emerging
area can benefit from the signal processing com-
munity. In particular, we examine case studies
where inverse problems in ToF imaging are cou-
pled with signal processing theory and methods,
such as sampling theory, system identification,
and spectral estimation, among others. Through
this exposition, we hope to establish that ToF sen-
sors are more than just depth sensors; depth infor-
mation may be used to encode other forms of
physical parameters, such as, the fluorescence lifetime
of a biosample or the diffusion coefficient of turbid/scat-
tering medium. The MATLAB scripts and ToF sensor
data used for reproducing figures in this article are available
via the author’s webpage: http://www.mit.edu/~ayush/Code.

©ISTOCKPHOTO.COM/YAKOBCHUK Introdu"ion

A brief history of computational imaging

“A picture is worth a thousand words.” Throughout the past sev-
eral centuries, this immemorial phrase has pushed the develop-
ment of photography from analog to digital, accelerated by
breakthrough advancements in sensor technology. The digital
revolution created a necessity for sophisticated signal processing
algorithms tailored for image enhancement, storage, and com-

Digital Object Identifier 10.1109/MSP2016.2582218 i , .
Date of publication: 2 September 2016 pression. Shannon’s sampling theory was the pathway for
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analog-to-digital image conversion. The classical Weiner filter
was used for image enhancement. Transform-domain coding uti-
lizing discrete cosine and wavelet transforms played a pivotal
role in JPEG compression. Over the last few decades, with the
advent of the wavelet transform and compressed sensing theo-
ry, the field of signal processing has undergone a philosophical
reformation. A field that was once heavily reliant on smoothness
assumptions now uses principles inspired by the notion of sparsi-
ty. Until the last decade or so, the fields of image sensor technolo-
gy and signal processing ran in parallel to one another with
minimal interaction or exchange of know-how. However, there
has recently been a growing trend toward the coherent codesign
of sensors and algorithms: this is the theme of the emerging area
of computational imaging or computational photography [1].

Practitioners of this computational imaging/photography
ideology have devised many solutions that were previously not
possible when individually adding functionality to the sensor
architecture or using a more sophisticated processing algorithm.
For example, consider the problem of motion deblurring that
arises in conventional imaging. Whenever an object moves dur-
ing sensor exposure, it causes pixels to smear across the frame,
resulting in a blurred image. In the context of signal processing,
this is an ill-posed problem that has been well explored within
the theme of deconvolution. The key problem is that the exposure
time defines a temporal filter, which is essentially a box filter that
annihilates any high-pass, spatial information. Consequently,
algorithmic sophistication alone is not enough. Blurring may be
avoided by a shorter exposure time, but this comes at the expense
of low signal-to-noise ratio (SNR). It is clear that neither decon-
volution nor the sensor level adaptation in itself suffice for a solu-
tion to the deblurring problem. The distinct role of computational
imaging emerges when one considers the so-called flutter-shut-
ter approach [2]. This approach involves a codesign of sensor and
algorithms: in contrast to traditional imaging methods, which
require the shutter to be fully open during the exposure time, the
flutter-shutter method flutters the shutter on and off in a binary,
pseudo-random sequence. This sequence converts the noninvert-
ible box-filter into an invertible one and, based on the choice of
pseudo-random sequence, the corresponding deconvolution fil-
ter may be devised. Beyond deblurring in consumer imaging, the
flutter-shutter approach is also useful in bioimaging [3], where
the imaging sensor may not be fast enough to capture flowing
structures, such as blood cells. Other notable examples of the
computational imaging philosophy are high-dynamic-range
imaging [4], light-field imaging [5], [6], single-pixel imaging [7],
and Fourier ptychographic microscopy [8].

For the most part, image sensor design, signal/image process-
ing, and computational imaging have largely been restricted to
two-dimensional (2-D) scenes. However, a true and richer repre-
sentation of the environment around us lives in a 3-D space. Cap-
turing 3-D information of a scene offers unparalleled benefits in
accuracy and capabilities and is surely the future in many areas.
This necessitates development of imaging modalities capable of
recording 3-D images.

A number of methods have been developed for the purpose of
3-D imaging. An overview of the main techniques is presented in

“An Overview of 3-D Imaging Techniques.” Of all the 3-D cap-
ture techniques, the ToF method has arguably attracted the most
commercial and scientific interest in the last couple of years;
there has been a surge of research toward improving both the
sensor design as well as the algorithms used for processing 3-D
images. ToF imaging is the theme of this article, and we take a
deep dive into the topic in the following section.

The time-of-flight revolution

The ToF principle exploits the idea that distance and time are
proportional quantities. As the name suggests, ToF is the round-
trip time between the source and the destination taken by a par-
ticle or a wave. Hence, knowing one entity is equivalent to
knowing the other. Nature is replete with examples that rely on
the ToF principle. Bats, dolphins, and visually impaired human
beings use the ToF principle for navigational purposes.

Chronologically, the use of sound waves superseded the use
of electromagnetic waves. Humans have used stones to esti-
mate the depth of wells for millennia. The earliest work on
using light waves for measuring ToF dates back to an experi-
ment conducted by Galileo, who was interested in estimating
the speed of light. Unfortunately, his choice of distance (the
separation between two hills) did not lead to a conclusive
result. The Danish astronomer Ole Rgmer overcame this dif-
ficulty by using planetary distances. About 200 years later, the
French physicist Hippolyte Fizeau was the first to precisely
estimate the speed of light. Through the discovery of the law
of the photoelectric effect by Albert Einstein in the 1900s and
the development of the electronic imaging sensors [charge
couple device (CCD)/complementary metal-oxide—semicon-
ductor (CMOS)], we are now at a point where the accumulated
research efforts in the area of photonics and electronics have
culminated in mass-producible optical ToF sensors.

Contrary to conventional imaging sensors such as digital
cameras that produce 2-D images I(x, y), ToF sensors capture
3-D images, I(x, y, z). The unique ToF sensor produces two
images per exposure: an amplitude image and a depth image.
The amplitude image is the standard 2-D photograph, I(x, y).
Each pixel on the depth image represents the corresponding
distance in the scene. The combination of the amplitude and
the depth image produces the 3-D image. Using our custom-
designed ToF sensor, we show the amplitude, depth, and result-
ing 3-D images in Figure 1.

ToF-based 3-D imaging allows for applications that were
previously unexplored. One of the first results demonstrated
non-line-of-sight imaging capability [10]. This result—in par-
allel to “Doc” Edgerton’s iconic Bullet Through Apple image
(see Figure 2)—led to ultrafast imaging of light packets at
an exorbitant frame rate of one trillion frames per second. A
flurry of follow-up work lead to results that allowed imaging
through scattered media [11], light-in-flight imaging [12], [13],
and 3-D imaging in extremely low light [14].

With the advent of 3-D sensing technology (most notably,
the Microsoft XBox One’s Kinect) we can now replace a room-
sized apparatus [10], moving sensors, and raster scan systems
[14] by miniaturized, cost-effective, real-time, and full-frame
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An Overview of 3-D Imaging Technigques

Triangulation

Interferometry

3-D Imaging

Time-of-Flight

FIGURE $1. Taxonomic classification of major 3-D imaging modalities.

As shown in Figure S1, optical 3-D scene capture can be

broadly categorized into the following three approaches:

1) The triangulation [9] method relies on the trigonometric
principles. The distance to an unknown point is measured
by computing the respective angles to the point from two
edges of a triangle.

2) The ToF method, as the name suggests, relies on the
time it takes for light to backscatter from an object at an

Amplitude (a.u.)  x10% Depth (M)
1 2 3 4 2.2 2.4 26 238
| T |
s
¥ 8]

Amplitude Image (50 MHz)

Depth Image (50 MHz)

Shape from Shading
Passive Triangulation
Confocal

Autofocus
Defocus

Focus

Structured Light
Laser Triangulation
Light Volume

Holographic

Multiwavelength

Speckle Based
White Light

Continuous Wave
Impulse Based
Pseudonoise/M-Sequence

unknown distance. Since time delays are linearly pro-
portional to the distance, measuring the ToF amounts to
measuring the range of the object.

3) Interferometry is similar to ToF with the main distinction
that it requires the light waves to be coherent.

Each of these approaches can be further classified based
on the application as well as the specialized principle
linked with the approach.

3-D View

FIGURE 1. Three-dimensional images captured via a ToF sensor. We show an amplitude image (or the conventional digital image), a depth image, and 3-D

images seen from multiple viewpoints.
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FIGURE 2. Harold Edgerton’s iconic Bullet Through Apple image (1964)
was one of his many early demonstrations of high-speed imaging. His
technique involved the use of stroboscopic light to capture high-speed
motion. (© 2010 MIT. Courtesy MIT Museum.)

ToF systems. Computational ToF imaging has already found a
plethora of applications in, for example, ultrafast imaging [15],
[16], non-line-of-sight imaging [17], imaging through scatter-
ing media [18], and colored ToF imaging [19]. Outside of the
computational imaging and human-computer interaction com-
munities, an important application area is health-care technol-
ogy [20] and bioimaging [21].

ToF sensors motivate a demand for forward models and
algorithms that can handle this new wave of data. A handful of
algorithms inspired by the signal processing community have
been used to tackle inverse problems in optical ToF, but signifi-
cant and numerous challenges still remain. Current efforts are
directed at establishing empirical results with a rare discussion
on the design of efficient algorithms, fundamental limits, or
performance bounds.

While optical ToF sensors are a recent phenomenon, other ToF
systems such as ultrasound, seismic, and radar technology have
been around for decades. The knowledge transfer between opti-
cal and other ToF systems is far from reality. Each ToF modality
has its own idiosyncratic constraints that stem from the physics of
the problem. However, there are commonalities that are shared by
all of these systems. By discussing specific case studies, we take
a first step toward the goal of bridging this gap.

A road map of this article

The main goal of our tutorial-style article is to introduce the audi-
ence to the rapidly emerging field of ToF imaging from a signal
processing perspective. We start this journey with a primer on the
ToF image formation model. To reconcile any confusion stem-
ming from taxonomic classification of ToF modalities—time
domain (TD-ToF), frequency domain (FD-ToF) or amplitude-
modulated continuous wave (AMCW-ToF)—we discuss a uni-
fying image formation model that is applicable to all known
optical ToF systems. Furthermore, this model is backward com-
patible with other nonoptical ToF modalities, such as terahertz,

ultrasound, and microwave. Our first milestone covers a discus-
sion on acquiring a single-depth image: how consumer-grade
ToF sensors capture 3-D images? From there, the discussion
turns to computational ToF imaging. Within the scope of compu-
tational ToF imaging, we enumerate case studies that map ToF
imaging problems to signal processing subfields such as 1) line
spectrum estimation theory, 2) sampling theory of sparse signals,
and 3) system identification. Finally, we discuss current challeng-
es and future directions in computational ToF imaging where sig-
nal processing theory and methods can contribute significantly.

3-D imaging with ToF sensors

ToF sensors are active illumination devices consisting of an
illumination unit capable of probing a scene with an ampli-
tude-modulated light that is not necessarily coherent. We call
this amplitude-modulated waveform the probing function or
p(x,y,t), where (x, y) are the spatial coordinates and 7 is the
continuous time variable. For simplicity of exposition, we will
consider per-pixel processing and simply write p(). The
probing function interacts with the scene response function
(SRF). This interaction results in the reflected signal r(t).
The reflected signal is observed at the ToF sensor, which is
characterized by its transfer function that we refer to as the
instrument response function (IRF). The IRF models the sen-
sor’s electro-optical assembly. For example, the IRF for a digi-
tal camera is the point spread function of the lens. The
interaction between the reflected signal and the ToF sensor
results in the measured signal m(7), which is converted to a
digital signal via sampling. The precise mathematical descrip-
tion of the ToF imaging pipeline is discussed in “ToF Image
Formation Model.” Based on the ToF image formation model
parameters, {p, h, ¢}, one may now define the specific
inverse problem at hand. This is also true of other wave-based
ToF modalities—radar, sonar, ultrasound, terahertz, and so
on. A distinct feature of the consumer ToF sensors is their use
of the lock-in principle [22], which implements the cross-cor-
relation operation. From a mathematical standpoint, and in the
absence of noise and distortion, this translates to the fact that,

p(t,T)=p(Tr+1). 6]

Next, we discuss how consumer ToF sensors capture 3-D
images. Depending on the choice of probing function, the
ToF imaging setup may be categorized into time-domain or
frequency-domain modes. In either case, the SRF for the case
of single-depth imaging is modeled as a shift-invariant kernel,

do

h(t,t)=T08(t—Tt—10), t0= -

@

where ¢ denotes Dirac distribution and the goal is to estimate the
amplitude and delay (or depth), {0, 70 }, respectively, at each pixel.

Time-domain 3-D imaging (TD-ToF)
TD-ToF systems probe the scene with a time-localized,
periodic signal of form p(t)=p(t+A),A>0. While
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ToF Image Formation Model

As shown in Figure S2, we next elaborate on the elements

of the ToF imaging pipeline.

1) The probing function, denoted by p(t), represents the
waveform emitted by the ToF sensor’s illumination unit.
The probing function may be a time-localized pulse or
a continuous wave. In either case, it is chosen to be a
periodic function of form p(t)= p(t+A),A > 0.

2) The scene response function (SRF), denoted by h(t, 7),
models the transfer function of the scene. For example,
for an object with reflection coefficient ' and at a depth
d meters away from the sensor, the SRF takes form
of, h(t,7)=T68 (t—t—2d/c). Here, cis the speed of
light. The SRF may also be characterized as the Green's
function of a differential equation that models some
physical phenomenon such as fluorescence emission,
diffusion or scattering.

3) The reflected function, denoted by r(t), is the result of in-
teraction between the probing signal and the SRF. The re-
flected signal is modeled as a Volterra/Fredholm integral,

r<r>:/m p(t)h(t,7)dr. (1)

Whenever the SRF is a shift-invariant kernel, i.e.,
hsi(t,7) = h(t— 1), the reflected signal is simply a convolu-

tion/filtering operation between the probing function and
the SRF, r(t)=(p=h)(t).

4) The instrument response function (IRF), denoted by ¢(t,7),
models the transfer function of the electro-optical elements
of the ToF sensor. For example, in conventional digital cam-
eras, the spatial IRF is the point spread function of the lens.
Measurements denoted by m(+) are a result of sensing
the reflected signal via the electro-optical elements of
the ToF sensor. Continuous-time measurements are mod-
eled as

3)

m(t)= [ f(x)e(t7)dr. (52)
Q2

The ToF sensor stores discrete measurements by sampling
continuousime signal m(t) and this results in the discrete
sequence m[k]= m(kT)|,_yrrcz, where T> 0 is the sam-
pling interval.

In many practical cases of interest, both the SRF and the
IRF are shiftinvariant. In that case, the measurements can
be written as a convolution product, m(t)=(p*h=g@)(t).
Whenever the IRF is a function of form ¢(t,7) = @(t+ 1),
the measurements amount to m(t)=(r® ¢)(t) where ®
denotes cross-correlation operation. “Lock-in” sensors oper-
ate on this principle.

P h »r [ p m »/—> Samples
Probing Sl Reflection IEiCIC! Continuous Digital
) Response . Response Sampler
Function } Function . Measurements Measurements
Function Function

FIGURE $2. A block diagram for the ToF imaging pipeline.

specialized scientific instruments, such as the streak tube,
may be able to produce a pulse that mimics the Dirac’s Delta
distribution & [10], this form of precision is impractical for
consumer-grade instruments. In practice, a maximum-length
sequence (MLS) [23] is an optimal choice of probing function
in regard to time-localization. In this case, given (S1) and (2),
the reflected signal reads r(t)=Top(z—1to), with delay
to = 2do/c. Due to the lock-in sensor architecture [22],
which constraints the IRF in (1), the measurements simplify
to m(t)=(r®p)(t)=(r*p)(t), where @ denotes the
cross-correlation operation and 7(z) = r(—1t). A closer look at
m reveals an underlying autocorrelation operation involving
p, that is, m(t)=To(p=*p)(t—to). Consequently, we may
write ¢ = p = p. The ToF is then estimated by solving for
fo = arg max m(t)=arg m[glxgb(t —10).

Whenever p(t) is modeled to be some parametric wave-
form, such as a Gaussian function, B-spline, or a combination
of parametric pulses, parameter estimation techniques may
be used to estimate the ToF 7o and the reflection coefficient
I"o. However, this may not be the case in practice because of
model mismatch or the physical aspects of light propagation.
In such a setting, it is effective to use the property of band-
limited approximation: approximate p, and hence ¢, with the
first few Fourier components,

L A gmaot .o~ 1 [A — Jmaot
p(t) = Z Dme w1thpm—Af0 pe dt, (3)

|m|<Mo

where @wo = 27/A is the fundamental frequency and A is the
maximum operating range of the ToF sensor. This choice is
aptly justified if one considers the fact that
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m Most electronic/optical instrumentation is approximately
bandlimited due to physical constraints [24].

m The probing function may not admit a parametric represen-
tation. Even if the probing function assumes a parametric
representation, bandlimited approximation via Fourier
series coefficients circumvents the estimation of parame-
ters of the probing function.

The utility of bandlimited approximation property is dem-

onstrated via experiments shown in Figure 3(a). Starting

with an MLS, we design a probing function. We plot
¢ =p*p together with its bandlimited approximation

Observed ¢(t)

$(t) obtained by retaining first Moy Fourier series coeffi-
cients {@m =|pm[},1j<u,. We are thus able to rewrite mea-
surements as m(t) =g —1)=Co Z|m|<Mn Pme?™"
where the complex-valued constant Co=T'e 7" is the
unknown to be estimated.

Frequency-domain 3-D imaging (FD-ToF)

ToF sensors, such as the Microsoft XBox One’s Kinect,
use a continuous wave-based probing function p(r)=
1 + pocos(wr), po < 1, where w is the modulation frequency
and po is the modulation amplitude. With the SRF defined
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FIGURE 3. Time- and frequency-domain ToF signals. (a) Bandlimited approximation of autocorrelated probing signal (¢ = p* p) in a time-domain ToF
setup. The low-pass property is evident from its Fourier spectrum. This is a result of an experiment with A = 310 ns and Mo = 30. (b) Samples of mea-
sured signal in (4) that were used to create the depth map in Figure 1. We plot 208 samples for an experiment with f= /27 = 50 MHz. With reference
to Figure 1, the foreground and background pixels map to 2.2 and 2.5 m, respectively.
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in (2), the reflected signal reads r(7) = I'p(r—to), t0 = 2do/c.
Again, the lock-in sensor acts as an electronic homodyne detec-
tor such that (1) holds, and measurements results in [25],

2
m(t) (Szz)ro<1 + L% cos(wt + ew)), 00€[0,27), (@
where 0, = wto = 2dow/c is the frequency dependent phase.
The ToF sensor records discrete measurements of form,
mix = m(kT) with T = 7/2w and uses a phase estimation algo-
rithm commonly known as the “Four Bucket Method” [22], [21]
to estimate parameters do and I'o. For a given modulation fre-
quency, this method works with four discrete measurements
{my};_, that are used to form a complex number z, € C,

Zo = (mo— ma2) + J(m3 — my) with

®

mo ml]_r

Ty |2 + phcos (wto) 2 — phsin (wro)
my ms

0
2 |2 —pbcos (wto) 2+ pdsin (wto)|

The scene parameters are then estimated by T'o = | o |/p§ and
do = cZz0/2w. We use this method to create the depth image
in Figure 1. The raw data samples corresponding to the
experiment are plotted in Figure 3(b). This completes our dis-
cussion on depth imaging with time- and frequency-domain

ToF sensors.

Key takeaways of this section

m The ToF imaging pipeline consists of a probing function,
scene response function, and an instrument response function.

m For the case of 3-D imaging, the scene response function is
the shift-invariant, time-delay operator in (2).

m In TD-ToF, the probing function is a time-localized pulse [cf.
Figure 3(a)], and the object’s distance from the sensor is
encoded as the round-trip time-delay #o = 2do/c.

m In FD-TOoF, the probing function is a sinusoidal waveform
with known modulation frequency [cf. Figure 3(b)]. The
object’s distance from the sensor is encoded as a frequency
dependent phase.

Landscape of inverse problems in ToF imaging

Having covered the mathematical basics of time- and
frequency-domain ToF imaging systems, we will now discuss
case studies where signal processing theory may be used in
combination with ToF sensors to solve inverse problems.

Optical multipath inferference and spectral estimation
Multipath interference (MPI) is a problem that naturally
occurs in communications, acoustics, and array signal pro-
cessing. Consumer-grade FD-ToF sensors are designed to
work under the premise that each point in the scene maps to a
single pixel on the sensor. Whenever this hypothesis does not
hold, the ToF sensor measurements are erroneous due to MPI.
This results in corrupted 3-D images. For example, this can
happen when imaging through a semitransparent object, such
as a glass window.

A consequence of multiple optical paths combining at a given
pixel is that the shift-invariant SRF for single depth (2) now takes
the form of a K-sparse filter,

he(t)="S Teb(i— =4k 6
K )—IZ:O kS(t—1r), k= P (6)

where K is the number of optical paths, and {T'+,di}f_, are the
scene parameters corresponding to each optical path. For sim-
plicity, we assume that po = 1 in the definition of the probing
function, p(7) =14 pocos(wt). The reflected signal in this
case reads

K=l K=1
rk(t)= D Ticos(wt—atr) = Y Ticos(wt —Oko) (7)
k=0 k=0

which indicates an addition of sinusoids with varying phases.
Let us resort to complex-valued representation and let z* denote
the complex-conjugate of z. The measurements take the form

K—=1 R
I’HK(I) — Lejwt Z l—*ke+Jam — %e“‘”h}}(a))
k=0
hi(@)

R K-1
with hk(w) = Y, Tre ", ®)
k=0

Fourier Transform

where izK(a)) is the Fourier transform of the shift-invariant
SRF in (6)—a sum of K complex exponentials or phasors.
Since the probing function is a sinusoid—an eigenfunction of a
linear system—the measurements amount to observing Fourier
transform at modulation frequency @.

Whenever K = 1—the case of single-depth 3-D imag-
ing with no MPI—the unknown constant hi(w) is directly
estimated by implementing the four-bucket method that maps
{mx (7kl2w)}i_y — z0 = hi(w). However, in the presence
of MPI, the FD-ToF sensor estimates the scalar z, = I;}(a))
rather than {T'x,d}f_,—the pixel-wise scene parameters. For
K =2, we plot the SRF in time-domain, frequency-domain,
and phasor-domain in Figure 4(a). The fact that z, = iz}(a))
is an argument of modulation frequency motivates the neces-
sity for frequency diversity [25]. Given N harmonic measure-
ments of form {Zuw, }"—g, the task of estimating 2K unknowns
{Tkdi}<=, is a classical problem in signal processing that is
studied under the theme of spectral estimation theory [26]. Due
to the pervasiveness and wide applicability of this problem, a
self-contained review of Prony’s method that seeks to estimate
{Tk,di}Z, given {zuwo }Y— is provided in “Spectral Estimation
(Prony’s Method).” This approach may be used for the correction
of MPI in ToF sensors. In Figure 4(b), we show multifrequency
data acquired using a ToF sensor with K = 3. Our demonstra-
tion, which is based on the matrix pencil method [26], shows
the constituent sinusoidal components. Other methods such as
the orthogonal matching pursuit [25], EPIRIT/MUSIC [26], or
atomic norm thresholding [34] may also be used.

While MPI suggests that interfering optical paths are a nui-
sance, it may be exploited for 3-D scanning and imaging of
translucent objects. We demonstrate multiple depth imaging
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FIGURE 4. Multipath interference in ToF sensors. (a) The scene response function for K= 2 in time-domain [cf. (6)], frequency-domain, and complex
phasor-domain. At a given modulation frequency @, the ToF sensor measures the complex number z,. However, the correct values to be estimated are
{T'«, dk}£=4. This model mismatch results in erroneous depth reconstruction. (b) Experimentally measured multifrequency data and its decomposition

into sinusoids via spectral estimation.

capability of ToF sensors in Figure 5, where up to K =3
optical paths interfere at the sensor. As seen in Figure 5, the
resulting 3-D images for various modulation frequencies
are erroneous. Although Prony’s method for spectrum
estimation is highly unstable in the presence of noise and
model mismatch, oversampling—that is, using much more than
2K measurements—is a reasonable solution to counteract per-
turbations in data. Again, we use the matrix pencil method to
estimate the multiple depth related scene parameters. With 46
multiple frequency measurements [cf. Figure 4(b)], the estima-
tion procedure shows that it is possible to reconstruct objects at
multiple depths even in presence of MPI. The recovered ampli-
tude and phase images, {T'«};_, and {#c}7_,, respectively, are
shown in Figure 5.

Transient imaging and sampling sparse signals

Understanding light propagation through physical medium has
interesting theoretical and practical consequences. For exam-
ple, a recent demonstration by Velten and coworkers [10]
showed that the information contained in multiple echoes of
light can be used for non-line-of-sight imaging. From a signal
processing perspective, the properties of light/wave propaga-
tion can be best understood as a time-dependent transfer func-
tion of the scene. The three main ingredients of time-resolved
light transport are direct reflections, inter-reflections and sub-
surface scattering:

Zf:l Ts(t— 1)
_

Interreflections

[8(t—t5)xe *u(t),

Subsurface Scattering

Tos(t—10)
—_—

Direct Reflection

where {T'r,:}f—4 and {T, #,} are the usual multipath compo-
nents, u is the absorption coefficient, and u( ¢ ) is the Heaviside
function. If it were possible to create a highly time-localized
probing function of form p ~ &, identification of scene related
parameters, {{Lx, 2}, s, 15, 4} would be a relatively easy
task. However, the time-resolution of probing functions pro-
grammed on the state-of-the-art ToF sensors is, at best, about
11 ns [cf. Figure 3(a)]. This is orders of magnitude longer than the
sophisticated apparatus used by Velten et al. [10], which attains a
pulse width of approximately 50 ps. That said, TD-ToF sensors
may still be used for imaging transient phenomenon linked with
direct and indirect inter-reflections. In fact, this problem is close-
ly tied with the problem of sampling of continuous-time sparse
signals [27].

The SRF for the transient imaging problem with direct and
indirect components of the light propagation is a continuous-time
K sparse signal,

hk (1) 2 Tos(t—10)+ ZI’;] [es(t— ).
v —_—

Direct Reflection Indirect Reflections

With the IRF defined in (1), the ToF sensor measurements are
m(t)=(r®p)(t)=(p*p*hk)(t) (cf. “ToF Image For-
mation Model.”). With the commutativity property of the
convolutions, the sampled TD-ToF measurements may be
written as m, = (¢ * hx) (t)|,_,;»n=0,....N—1, where
¢(t)=(p*p)(t). Since the probing function admits a band-
limited approximation [see (3) and Figure 3(a)], the time-reversed
TD-ToF measurements may be reinterpreted as samples of a
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FIGURE 5. Multidepth imaging with ToF sensors. The experimental setup describes a scene with up to K= 3 optical paths arising from three different
depths. With fh = wo/27 = 0.8 MHz, the ToF sensor captures raw 3-D images using the four-bucket method described in the section “Frequency-Domain
3-D Imaging (FD-ToF).” The resulting 3-D maps are erroneous. We show 3-D images for modulation frequencies 15wo—65wo in steps of 10wo. We
estimate {T's, & }2_, using the spectrum estimation method implemented via the matrix pencil algorithm. The results are consistent with the experimental
setup. For example, the letters “MI” and “T” associated with 'y and T"> correspond to their respective depths.

sparse signal that has been low-pass filtered with a calibrated
sampling kernel ¢ (7). Furthermore, the bandlimited approxi-
mation property allows us to write,

1=+Moy

Mn = (¢ * h[() (l) | fenT X zﬂ=an (1301’;11( (Qwo)eﬂlwonT’
n=0,...N—1,

where ¢¢ = p¢|*, since the sampling kernel ¢ is obtained by
autocorrelating the probing function, and hi (0ewo) is the sam-
pled Fourier transform of the SRFE. Note that the discrete Fou-
rier transform of the sampled measurements {m}nN; 5 results
in the 2Mo + 1 point-wise samples of the weighted Fourier
transform of the SRF, {qaﬂilK(Qa)O)hg‘SM“. Hence, given

sampled measurements we can deconvolve the SRF in Fourier
domain, which is a sum of K complex exponential functions.
The only requirement being that ¢¢ should not vanish in the
interval —Mo < { < M. In a noiseless setting, upon decon-
volving the SRF {iz K (Qa)o)h ¢]<M,» WE can use spectral estima-
tion [cf. “Spectral Estimation (Prony’s Method)”] to estimate
the parameters {Tk,t}r_,, provided that Mo > K. Several
approaches have been proposed in literature to stabilize the
spectral estimation method in presence of noise [26].
As before, we use the matrix pencil method for our experi-
mental demonstrations.

Figure 6 illustrates the reinterpretation of the transient imaging
problem as a sparse sampling problem. Time-domain measure-
ments are acquired for the case K =2 and K = 3, respectively,
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Spectral Estimation (Prony’s Method)

Given 2K contiguous measurements Znwo = Zf ! Tei™ot,
n € [m, 2K + m), Prony’s method aims to estimate unknowns
{T's, di}(Z4 from a system of equations that is linear in reflec-
tion coefficients I'x but nonlinear in depths # = 2dx/c. The
solution to this problem relies on an underlying annihilation
equation. Let us define a polynomial of degree K,

K K
Q(z)= H (z—e*") =253 qmz™"
k= m=0

whose roots are {e*}{_¢. Observe that filtering sequence
{qm}X _, with measurements { Zmao}o_o results in nullity,

Z qi z erl m— otk
Kil . .
— I, (z qle—/lwork>e,mwork =0.

1=0
Qleim9h)~0

qlZoo(m-1) =

Mx

(qm & meo) =

with sampling rate 7 = 70 ps. Ineach case, we recover the K-sparse

SREF, hk in the following steps:

1) Obtain the discrete Fourier transform of sampled measure-
ments /7, that is 71 .

2) Deconvolve /i with the sampling kernel ¢ to obtain
/;K(Qa)o) = ﬁ’lg/d;e, (€[—Mo, Mo], Mo = K.

3) Use Prony’s method [cf. “Spectral Estimation (Prony’s
Method)”] to estimate the sparse SRF {T'y,tx}r_, given
hi (0ewo).

We plot the sampled, time-reversed measurements nin
together with the real part of hx (0eo) in Figure 6. The resulting

Sparse Sampling

Time Domain

Given {Znwo}m=™" % in vector-matrix notation, the solu-
tion to the previous equation is achieved by solving for

m<n<m+2K,

Zm+Kywo  Zm+K-wo *** Zmwo Go
Zm+K+wo  Z(m+K)ao Zim+wo || g1 -0
Z(m+2K-1)wo Z(m+2K-2)wo *** Z(m+K-1woll Gk

Toeplitz Matrix

With filtler {qm}"=§ known, we construct Q(z), and its
roots lead to the K estimates, {t}5_o. With the depths
known, estimating {T'«}§¢ is the usual linear leastsquares
problem since T'«'s are linearly constrained in the defini-
tion of Znws.

SRF parameters {[x,t}f_,

mental setup.

Imaging transient phenomenon may be used for several
applications. For example, consider the experimental setup in
Figure 7. A diffusive, semitranslucent sheet covers a placard
that reads “Time of Flight.” A conventional digital camera is
not able to image through the diffuse/scattering object. How-
ever, in the context of a TD-ToF imaging setup, this scene has
a sparse SRF with K = 2. In fact, the case of K = 2 described
in Figure 6 uses measurements directly from the example in
Figure 7 under consideration. By applying the sparse signal

are consistent with the experi-
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FIGURE 6. Time-domain ToF can be reinterpreted as a sparse sampling problem in the case of transient imaging. The goal is to recover the sparse scene

response function given its low-pass-filtered samples with bandwidth Mo =

25. In the context of sampling theory, the low-pass kernel ¢ is an autocor-

relation of the probing function. We discuss the recovery of sparse signal for the case K= 2 and K= 3. We also show the real part of the measured and

estimated Fourier transform of the scene response function i ((eo).
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FIGURE 7. The experimental setup for K = 2, TD-ToF measurements and transient image components I'o and ;.

recovery method discussed in this section, it is possible to esti-
mate the SRF /2. We discuss the results of this experiment in
Figure 7. As can be seen, the amplitude image corresponding
to I'1 matches the experimental setup, and we are thus able to
image through a diffusive medium.

Fluorescence lifetime imaging and system identification
Fluorescence lifetime imaging (FLI) is a problem of interest
across several disciplines of science and engineering, with the
notable example of fluorescence lifetime microscopy. This
imaging modality finds applications in a number of fundamen-
tal problems including DNA sequencing, tumor detection, fluo-
rescence tomography, and high-resolution microscopy. Like the
ToF sensors, FLI can be categorized into time-domain and fre-
quency-domain modes. Time-domain FLI (TD-FLI) utilizes
an impulse-like excitation pulse that is used to probe a fluores-
cent sample. The resulting time-resolved, reflected signal is
then used to calculate lifetimes. Given a fluorescent sample
with lifetime param?ter Ao, this interaction is modeled as
m(t)=35(r)*poe au(r), where m is the measured signal,
S is the Dirac distribution, and u is the usual Heaviside func-
tion. On the other hand, in the case of frequency-domain FLI
(FD-FLI), the sample is excited with a sinusoidal probing func-
tion of form cos(wt). The phase of the reflected signal
(o< cos(wr — tan~" (wAo))) encodes the lifetime parameter Ao.
Let h(t) be a linear, shift-invariant system. Recall that

r(t)=cos(awt)*h(t)=1h(w)lcos(wt+ Zh(w)), (9)

where & is the F(?urier transform of h. More preACisely,
with h(t)= poe Aou(t), its Fourier transform is h(w)=
(poAo/1 + Jwdo), then Lh(w)=—tan"" (wAo). Consequent-
ly, the FD-FLI problem boils down to phase estimation. This
is a nonlinear problem and several methods have been pro-
posed in literature. Noting that the measurements (9) are pro-
portional to the so-called modulation depth, that is, Iiz(a)) [,
the intensity of the reflected signal may also be used for life-
time estimation due to its dependence on Ao.

In either case, time- or frequency-domain FLI, the equipment
is prohibitively expensive due to strict system constraints and
precise electro-optical components. Furthermore, measurements
must be calibrated to account for path delays attributed to sam-
ple’s placement relative to the imaging sensor. Alternatively, ToF
sensors are a consumer-grade commodity and are available at an
affordable price. In the context of ToF imaging, the SRF for FLI
is a shift-invariant function that takes form of [21],

hFLI(t)Zr05(t—t0)+poef%u(t—lo), to= %, (10)

Direct Reflection

Fluorescent Sample

where do is the distance of the sample from the sensor—a
quantity that is often calibrated in FLI setup, which we assume
to be an unknown. In parallel to the frequency-domain FLI, the
probing function in the case of FD-ToF is defined by
p(t)= 1+ pocos(wtr). With the IRF defined in (1), the mea-
surements read

2
m(t) (42) \ ilFLI(O) \ + ‘ ilFLl(U)) \%cos(a)t— LizFLI(CU)), (11)

where hrui(w) is the Fourier transform of the SRF. As
described in the section “Frequency-Domain 3-D Imaging
(FD-ToF),” the ToF sensor uses the four-bucket method
(5) to record the sampled SRF spectrum at modulation
frequency w,

Zo = p%ili:‘u(a)) where ]:lFLI(a)) = (F0+ poizlo) — ot
1+ JoAo

(12)

We show the amplitude and phase images, |zo| and £zo,

respectively in Figure 8(a) with f= w/27 =20 MHz. As
shown in [21], the reflection coefficients are dependent on the
optical frequency of light and the direct component may be
filtered (I'o = 0). Since the ToF sensor samples the Fourier
spectrum of the SRF at each modulation frequency, the task of
estimating {fo,Ao} can only be accomplished if multiple fre-
quency observations Zuw, = p(z)iz;u(na)o), n=0,...,N—1 are
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FIGURE 8. Frequency-domain ToF imaging. (a) Multifrequency measurements of a scene containing a fluorescent sample with a lifetime = = 32 ns. We show
amplitude image | zzo5 | (in dB) as well as the phase image £z (in radians) with & = 1 MHz. We also show a 3-D plot of the phase image. This shows the
effect of multipath interference. The phase at the background pixel is 4.1625 rads, which relates to a depth of 2.4842 m, while the actual depth is 2.5 m. At
this depth, the phase recorded as the sample location is 5.5822. The extra 3.3316 is attributed to the fluorescent lifetime decay phenomenon tan~"' (wAo).
(b) At the sample location, we plot phase £z« =— 2h(kh), k=1,...,40 (12) recorded by the ToF sensor. We also plot the phase estimated by our method.

available. With 7o = 0, estimation of Ao is a classical problem
in system identification [28]. The presence of nonzero fo moti-
vates development of new algorithms. In contrast to [21], where
the authors use nonlinear least squares fitting, here, we develop
a closed form solution to the problem. In view of (12), let us set
Yn = Zna)o/p(z) and w, = nwo, and we have,

yntt _ 14 Jwanko
Yn 1+ .]a)n+l)«0

g
yn+l(1 + Jw)t+1)LO) = yn(l + .]a)n/lo)e_m”t",

—Jwoto

~J@ol0 and can

which is a linear system of equations in Ao and e
be solved with any four contiguous values such that
0<n<{0+4,0€Z. We solve this linear system of equations
for {y,}'=% since the modulation frequencies in range
Jfo=2—20 MHz are highly stable. While system stability and
signal integrity is one part that affects the SNR, variation of
sample spread on the slide may also lead to weak emission. For
this purpose, we use a confidence threshold for pixel amplitudes.

We compare our system identification approach with pre-
viously used nonlinear least squares fitting [21], which uses
N = 40 samples and favorable initialization conditions to obtain

(nanoseconds) 1o 32.16 32.32 31.46
Aonnts 30.33 30.79 31.51
(meters) d 254 249 254
dasis  2.494 2,496 2.496.
For comparable distance estimates, the identification meth-
od provides a more robust estimate of lifetimes. In comparison

to NNLS fitting (based on MATLAB’S curve-fit toolbox),
our relatively modest and noniterative method is orders of
magnitude faster (~10°). We close this subsection by high-
lighting that the phase/depth images in ToF sensors may be
used for encoding interesting physical/material properties.

Key takeaways of this section

m Multipath interference (MPI) in FD-ToF mode can be rein-
terpreted as a spectrum estimation problem. To recover MPI
components, one must acquire multiple frequency measure-
ments. Our demonstrations were based on the matrix pencil
method [26] but any other method is an option. For exam-
ple, in [25], the authors use orthogonal matching pursuit.

m Transient imaging in TD-ToF mode can be recast as a sparse
sampling problem [27], where the sampling kernel ¢ is the
autocorrelation of the probing function. Whenever the probing
function admits a bandlimited approximation, one may use
spectral estimation to recover the transient image components.

m We demonstrated that fluorescence lifetime imaging can be
performed with ToF sensors. We used system identification
methods to estimate an unknown, parametric transfer func-
tion linked with lifetime imaging.

Conclusions and future directions

‘We hope that we have convinced you that ToF sensors are more
than just depth sensors! In what follows, we present our conclud-
ing remarks with hints on possible future research directions.

ToF imaging pipeline
We started with an image formation model that allows for
studying different ToF modalities under one common

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

Previous Page |“Contents™|"Zoomin“|"Zoom out™|"Front"Cover-|"Search issue“|"Next'Page “‘&rﬁags

THE WORLD'S NEWSSTAND®

THE WORLD'S NEWSSTAND®.


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

SignalProcessing

*
Previous Page|“Contents™|"Zoomin~|~Zoom out | Front" Cover-|“Search Isstue“|"Next'Page \"c‘i‘

THE WORLD'S NEWSSTAND®.

framework. Almost all ToF systems can be characterized by
the model parameters {p, h, ¢ }. Depending on the problem
at hand, the role of {p, h, ¢} and the associated algorithms
needs to be adapted. For example, the SRF discussed in con-
text of MPI appears naturally in other problems, such as
ultrasound tomography [29], single photo imaging [31] and
light detection and ranging (LiDAR) [30]. However, the
probing function and the IRF are very different for each case.
In particular, consider the case of LiDAR. The probing func-
tion is modeled as p = § and the IRF is a parametric function
of form (1) = ae'™ "% where {ax,bi}i_, take four dif-
ferent values with continuous transitions, depending whether
t€ {Ix}i=1, where I; is an instrument or sensor dependent
quantity. This gives rise to a new form of sampling kernel
¢ = ¢ [32], as opposed to ¢ = p * p (TD-ToF case). Hence,
we believe that by systematically studying the role of
{p, h, ¢} across various ToF problems—optical and nonopti-
cal—better insights may developed.

Another interesting direction may be to consider the case
when the SRF is modeled by a differential equation. For exam-
ple, in the case of fluorescence lifetime imaging, the associat-
ed differential equation is L = 9;+(1/1), and the resulting
reflected signal is the solution to ['La[r(7)]=p(t),r=0.
The SRF in this case is the Green’s function. Similar ideas
may be used to develop algorithms for imaging through scat-
tering/diffusive media where £ is some differential equation
that models diffusion. The parameters of £ encode physical
properties such as lifetime or scattering coefficient.

Probing function

Since the probing function is the only available degree-of-free-
dom in ToF imaging pipeline, it is important to understand what
mathematical principles should be used for designing probing
functions. Waveform design is a known art in radar and wireless
communications. However, such options are rarely considered in
optical ToF systems. Maximum length sequences for TD-ToF
and sinusoids for the FD-ToF are the de facto examples. On the
hand, it may not always be feasible to calibrate the probing func-
tion. In that case, it may be worthwhile to use blind deconvolu-
tion algorithms for image reconstruction.

Algorithms and fundamental limits

MPI is a significant problem in ToF imaging and a number of
papers have attempted to address this issue—both in time- and in
frequency domain. However, to date, most of the results remain
empirical and rarely discuss any details on performance guaran-
tees. In a recent work [24], we used Cramér—Rao bounds in con-
text of TD-ToF-based multiple depth imaging. For instance, for
the TD-TOF case, one may write the probing function as a Fouri-
er series with Fourier coefficients {¢.}<cz. In this case, two
optical paths, Ad apart, are resolvable provided that

Ad - ¢ 1

Ady ¢ 1 /S
T — 4z /PSNRV N’

where T = 27/@o is the fundamental time period, PSNR is
the peak-signal-to—noise—ratio, S~ = ZmEZ m*| ¢ |* and N

is the number of measurements. For parametric SRFs, we
believe that more such efforts could lead to hints on interest-
ing applications of ToF sensors and motivate new problems in
sampling theory. This could be the key to questions such as:
when can two lifetimes in fluorescence lifetime imaging
setup be super-resolved?

Modeling nonideal reflections

In our experience, the SRF of form I'v8(7 — #) [c. f. (6)] only
approximately models a reflection. In a practical setting,
Trw i (r—tx) may serve as a good starting point for modeling
reflections. Here, y is a filter that models the interaction of
the probing function with the material property or accounts
for distortion, system nonlinearities and dispersive media. In
seismic engineering, terahertz spectroscopy, and ultrasound
systems, this behavior is much more pronounced as material
properties play an important role when the probing function
undergoes a reflection.

FD-ToF

This is an interesting mode of operation since most consumer
ToF systems are based on FD-ToF, which uses phase estima-
tion. As seen in (4), if 6, > 27, the depth estimates suffer
with ambiguity or phase-wrapping problem. Previous solu-
tions use coprime frequencies [33], however, there is room for
improvement. For example, in theory, phase is a linear func-
tion of frequency, 6, = 2wd/c. This is not the case in practice
and leads to erroneous depth estimates with multiple fre-
quency measurements. Hence, a desirable phase estimation
algorithm should jointly correct for any distortions and
phase-wrapping.

Calling m(1,0) 2 To(1 + (p3/2)cos (@t + 6a)), B is esti-
mated by sampling in time-domain, that is, mx = m(kT,wo)
given a fixed modulation frequency @o. Alternatively, one
may use multifrequency sampling using mx = m(ro,kwo)
for the estimation of 6,. This gives rise to a broader ques-
tion of when can time-frequency sampling be used, that,
mox = m(lto,kwo) in context of solving inverse-problems
linked with ToF imaging. Specifically, when w = ¢ for depth
imaging, the problem boils down to parameter estimation of
chirp signals. Finally, in view of (8), phase retrieval algorithms
may be designed when only intensity measurements are avail-
able, that is, | m« [* = | m(to, kewo) [*.

Sensor design for higher modulation frequencies

Most consumer-grade ToF sensors are based on continuous
wave probing functions. Currently, such sensors work with high
fidelity up to a modulation frequency of about 80 MHz. We
believe that much of the interesting physical phenomenon may
only be observed as higher frequencies. For example, higher
modulation frequencies will certainly enhance depth resolu-
tion and MPI correction capabilities. In context of fluores-
cence lifetime imaging [21], shorter lifetimes may be
resolved with higher modulation frequencies. Similarly, sub-
surface scattering properties can be studies with streak tubes
[10]. This hints that higher modulation frequencies are the
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pathway to scattered imaging. Such examples motivate the
necessity of hardware or computational imaging solutions
that can over come the current technological limits.
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COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Ivo lhrke, John Restrepo, and Lois Mignard-Debise

Principles of Light Field Imaging

Briefly revisiting 25 years of research

ight field imaging offers powerful new capabilities through
sophisticated digital processing techniques that are tightly
merged with unconventional optical designs. This combina-
tion of imaging technology and computation necessitates a
fundamentally different view of the optical properties of imaging

systems and poses new challenges for the traditional signal and
image processing domains. In this article, we aim to provide a

comprehensive review of the considerations involved and the
difficulties encountered in working with light field data.

Digital light field imaging: An overview
As we approach the 25th anniversary of digital light
field imaging [1]-[3] and the technology begins to
enter the industrial and consumer markets, it is
a good time to reflect on the developments and
trends in what has become a vibrant interdisci-
plinary field joining optical imaging, image pro-
cessing, computer vision, and computer graphics.
The key enabling insight of light field imag-
ing is a reinterpretation of the classic photographic
imaging procedure that separates the process of
imaging a scene (i.e., scene capture) from the actual
realization of an image (i.e., image synthesis)—a
reinterpretation that offers new flexibility in terms of
postprocessing. The underlying idea is that a digital cap-
ture process enables intermediate processing far beyond
simple image processing. In fact, our modern cameras are pow-
erful computers that enable the execution of sophisticated algo-

©ISTOCKPHOTO.COM/YAKOBCHUK

rithms to produce high-quality two-dimensional (2-D) images.

Light field imaging is, however, moving beyond that level
by purposefully modifying classical optical designs to enable
the capture of high-dimensional data sets that contain rich
scene information. The 2-D images presented to the human
observer are processed versions of the higher-dimensional data
the sensor has acquired and only the computer sees in their
raw form. This partial replacement of physics by computation

enables the post-capture modification of images on a previ-
Digital Object Identifier 10.1109/MSP.2016.2582220

Date of publication: 2 September 2016 ously unimaginable scale. Most of us have seen the amazing
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features that light field cameras offer: post-capture refocus,
change of view point, three-dimensional (3-D) data extraction,
change of focal length, focusing through occluders, increasing
visibility in bad weather conditions, and improving the robust-
ness of robot navigation, to name just a few.

In optical design terms, light field imaging presents an (as of
yet unfinished) revolution. Since Gauss’s day, optical designers
have been thinking in terms of two conjugate planes, the task of
the designer being to optimize a lens system to gather the light
originating at a point on the object plane and converge it as well
as possible to a point on the image plane. The larger the bundle of
rays that can be converged accurately, the more light-efficient the
capture process becomes and the higher the achievable optical
resolution. The requirement of light-efficient capture introduces
focus into the captured images, i.e., only objects within the focal
plane appear sharp. Light field imaging does away with most of
these concepts, purposefully imaging out-of-focus regions and
inherently aiming at capturing the full 3-D content of a scene.

In terms of signal processing, we encounter a high-dimen-
sional sampling problem with nonuniform and nonlinear
sample spacing and high-dimensional spatio-directionally
varying observation/sampling kernels. The light field data,
however, have particular structures that can be exploited for
analysis and reconstruction. This results from the fact that
scene geometry and reflectance link the information con-
tained in different samples. It also distinguishes the recon-
struction problem from a classical signal processing task.

On the software side, we witness the convergence of ideas
from image processing, computer vision, and computer graphics.
In particular, the classical preprocessing tasks of demosaicking,
vignetting compensation, undistortion, and color enhancement
are all affected by sampling in four dimensions rather than in two.
Additionally, image analysis by means of computer vision tech-
niques becomes an integral part of the imaging process. Depth-
extraction and superresolution techniques enhance the data and
mitigate the inherent resolution tradeoff introduced by sampling
two additional dimensions. A careful system calibration is neces-
sary for good performance. Computer graphics ideas, finally, are
needed to synthesize the images ultimately presented to the user.

This article aims to review of the principles of light field
imaging and associated processing concepts, while simultane-
ously illuminating the remaining challenges. The presentation
roughly follows the acquisition and processing chain from opti-
cal acquisition principles to the final rendered output image.
The focus is on single-camera snapshot technologies that are
currently seeing a significant commercial interest.

Background

This section, which provides background for the rest of the arti-
cle, closely follows the development in [2]. An extended discus-
sion at an introductory level can be found, e.g., in [4]. A wider
perspective on computational cameras is given in [5] and [6].

Plenoptic function
The theoretical background for light field imaging is the ple-
noptic function [7], which is a ray-optical concept that assigns

a radiance value to rays propagating within a physical space.
It considers the usual 3-D space to be penetrated by light
that propagates in all directions. In doing so, the light can be
blocked, attenuated, or scattered.

However, instead of modeling this complexity as, e.g., com-
puter graphics is doing, the plenoptic function is an unphysical,
modelless, purely phenomenological description of the light
distribution in the space. To accommodate for all the possible
variations of light without referring to an underlying model, it
adopts a high-dimensional description: arbitrary radiance val-
ues can be assigned at every position of space, for every pos-
sible propagation direction, for every wavelength, and for every
point in time. This is usually denoted as /x(x,y,z,6,¢,A,1),
where 1[W/m?*/sr/nm/s] describes spectral radiance per unit
time, (x, y, z) is a spatial position, (6, ¢) is an incident direction,
A is the wavelength of light, and 7 is a temporal instance.

The plenoptic function is mostly of conceptual interest.
From a physical perspective, the function cannot be an arbi-
trary seven-dimensional function because, e.g., radiant flux is
delivered in quantized units, i.e., photons. Therefore, a time-
average must be assumed. Similarly, it is not possible to mea-
sure infinitely thin pencils of rays (i.e., perfect directions) or
even very detailed spatial light distributions without encoun-
tering wave effects. We may, therefore, assume that the mea-
surable function is band-limited and that we are restricted to
macroscopic settings where the structures of interest are sig-
nificantly larger than the wavelength of light.

Light fields

Light fields derive from the plenoptic function by introducing

additional constraints:

m They are considered to be static even though video light
fields have been explored [8] and are becoming increasing-
ly feasible. An integration over the exposure period
removes the temporal dimension of the plenoptic function.

m They are typically considered as being monochromatic,
even though the same reasoning is applied to the color
channels independently. An integration over the spectral
sensitivity of the camera pixels removes the spectral
dimension of the plenoptic function.

® Most importantly, the so called “free-space” assumption
introduces a correlation between spatial positions. Rays are
assumed to propagate through a vacuum without objects,
except for those contained in an “inside” region of the
space, often called a scene. Without a medium and without
occluding objects, the radiance is constant along the rays in
the “outside” region. This removes one additional dimen-
sion from the plenoptic function [2].

A light field is, therefore, a four-dimensional (4-D) function.
We may assume the presence of a boundary surface S separat-
ing the space into the inside part (i.e., the space region containing
the scene of interest) and the outside part, where the acquisition
apparatus is located. The outside is assumed to be empty space.
Then, the light field is a scalar-valued function of S X s?,
where S% is the hemisphere of directions toward the outside.
This definition of a light field is also applied to the term surface
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light field [9] if the surface S agrees with some object geometry.
In this case, the directional component of the function describes
the object reflectance convolved with the incident illumination.

Commonly, the additional assumption is made that the surface S
isconvex, e.g., by taking the convex hull of the scene. In this case, the
rays can be propagated to other surfaces in the outside region with-
out loss of information. Typically, a plane p is used as the domain
of (parts of) the light field function. The most popular parameter-
ization of the spatial and directional dimensions of the light field is
the two-plane parameterization, which is obtained by propagating
aray from surface S to the light field plane p (see Figure 1). The
parameterization then consists of the intersection position (i, v)
of the ray with the light field plane p and its intersection with an
additional parallel plane at a unit distance (i, v). The second inter-
section is usually parameterized as a difference with respect to the
(u, v) position and called (s = & — u, t = v — v). This second set
of coordinates measures the direction of the ray.

Phase space

The coordinates obtained in this way can be considered as an
abstract space, the so-called “ray phase space” or simply phase
space. A point (u, v, s, t) in this space corresponds to a ray in
the physical space. It is important to remember that the phase
space is always linked to a particular light field plane p. Chang-
ing the plane, in general, changes the phase space configura-
tion, which means that a fixed ray will be associated with a
different phase space point.

The phase space is interesting for several reasons. First, it allows
us to think more abstractly about the light field. Second, a reduc-
tion to two dimensions (u, s) is easily illustrated and generalizes
well to the full 4-D setting. Third, finite regions of the ray space,
in contrast to infinitesimal points, describe ray bundles. The phase
space is, therefore, a useful tool for visualizing ray bundles. Finally,
an extensive literature exists on phase space optics (see, e.g., [10])
with available extensions to wave optics. The phase space is also a
useful tool for comparing different camera designs [11].

The light field can now be thought of as a radiance-valued
function defined in the phase space, i.e. /(u, v, s, ), meaning
that each ray, parameterized by (u, v, s, 1), is assigned a radi-
ance value /. The task of an acquisition system is to sample and
reconstruct this function.

Light field sampling

The simplest way to sample the light field function is by plac-
ing a pinhole aperture into the light field plane p. Were the
pinhole infinitesimal, ray optics a decent model of reality, and
light considerations negligible, we would observe one column
of the light field function at a plane a unit distance from the
light field plane p. In the following, we will refer to that plane
as the sensor plane q. Associating a directional sample spac-
ing of As and shifting the pinhole by amounts of Au enable a
sampling of the function, as shown in Figure 2.

A slightly more realistic model is that the directional varia-
tion s is acquired by finite-sized pixels with a width equiva-
lent to the directional sample spacing As. This introduces a
directional sampling kernel that, in the phase space, can be

/

u

Physical Space Phase Space
(@) (b)

FIGURE 1. A basic description of light field. (a) The “inside” region con-
tains the scene of interest, while the “outside” region is empty space and
does not affect light propagation. The light field is a function assigning a
radiance value to each of the rays exiting through the boundary surface
\mathscrS . (b) A phase space illustration of the colored rays. A point

in phase space determines a set of ray parameters (u, s) and, therefore,
corresponds to a ray. The phase space is associated with the plane p.
Because the four rays indicated in the subfigure in (a) converge to a
point, the corresponding phase space points lie on a line.
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Phase Space in p
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Phase Space in p
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FIGURE 2. The finite sampling of a light field with real hardware. (a) Assum-
ing a sensor placed at the dashed plane and an infinitesimal pinhole results
in a discretization and averaging of only the directional light component. In
phase space, this constitutes a row of vertical segments. (b) A more realistic
scenario uses a finite-sized pinhole, resulting in ray bundles integrated by
the sensor’s pixels. In conjunction, pixels and pinholes define a two-aperture
model. In the phase space, the ray bundle passed by two apertures is
represented by a rhomb.

interpreted as a vertical segment, as in Figure 2(a). Of course,
the pinhole has a finite dimension Au, as well. The pinhole/
pixel combination, therefore, passes a bundle of rays, as indi-
cated in Figure 2(b). The phase space representation of the ray
bundle passing this pinhole/pixel pair is a sheared rectangle,
as shown on the right in Figure 2(b). It should be noted that
the pinhole size and the pinhole sample spacing, as well as the
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Real Sensor
Plane

-

Image of a
Pixel As

Physical Space

FIGURE 3. Light field imaging with a moving standard camera. Sensor
pixels in the sensor plane g are mapped outside the camera and inside

the world space. The camera lens and the image of the pixel constitute a
two-aperture pair, i.e., a unique phase space region. The color gradient in
the ray bundle indicates that the rays are considered to be virtual in the
camera’s image space. In reality, the rays refract and are converged onto
the indicated pixel. In the world space, the ray bundle represents those
rays integrated by the pixel. The sensor has more such pixels (not shown
in the figure). These additional pixels effectively constitute a moving
aperture in the plane of the virtual sensor position.

pixel size and the pixel spacing, may not be correlated in real
applications, with corresponding implications for aliasing or
oversampling (see the “Computational Processing” section).

Going back to the physical meaning of these phase space
regions’ respective ray bundles, we can conclude that each
pinhole/pixel combination yields a single measurement (i.e., a
single sample of the light field function) through integration
by the pixel. The phase space region, therefore, represents the
spatio-directional sampling kernel introduced by the finite size
of the pixel and the pinhole, respectively, while the center ray/
phase space point indicates the associated sampling position.

A key optical concept, the optical invariant, posits that
an ideal optical system does not change the volume of such a
phase space region (also known as étendue). As an example,
free-space transport, as a particularly simple propagation,
maintains phase space volume; it is described by a shear in the
horizontal direction of the phase space. Free-space transport to
a different plane is a necessary ingredient for computing refo-
cused 2-D images from the light field.

Light field sampling with camera arrays/moving cameras

Obviously, pinhole images are of a low quality due to blurring
by the finite pinhole area—or, depending on its size, diffrac-
tion effects—and to the low light throughput. Introducing a
lens in the light field plane p improves the situation. This mea-
sure has the side effect of moving the apparent position of the
sensor plane ¢ in front of the light field plane p if the sensor
is positioned at a farther distance than the focal length of the
lens, as shown in Figure 3. The ray bundles being integrated by

a single pixel can still be described by a two-aperture model
as before; however, at this point the model must be considered
virtual. This implies that it may intersect scene objects. It is
understood that the virtual aperture does not affect the scene
object in any way. The key point is that the refracted rays in the
image space of the lens can be ignored as a way of simplifying
the description. Only the ray bundles in the world space that
are being integrated by the pixel are considered.

With this change, the sampling of the light field remains the
same as before: instead of moving a pinhole, a moving standard
2-D camera performs the sampling task. Only the parameter-
ization of the directional component s needs to be adapted to
the camera’s intrinsic parameters. This is how pioneering work
was performed [2], [3]. Of course, this acquisition scheme can
be implemented in a hardware-parallel fashion by means of
camera arrays [8], [12].

Given a sampled light field /(u, v, s, ) and assuming full
information to be available, the slices /(s,t) = [(u = const.,
v = const.,s,t) aswellas I(u,v) = [(u,v,s = const., = const.)
correspond to views into the scene. The function I(s, f) corre-
sponds to a perspective view, while (i, v) corresponds to an
orthogonal view of the inside space. These views are often
referred to as light field subviews.

Optics for light field cameras
While camera arrays can be miniaturized as demonstrated by
Pelican Imaging Corp. [12] and differently configured cam-
era modules may be merged as proposed by LightCo. Inc. [13],
there are currently no products for end users, and building and
maintaining custom camera arrays is costly and cumbersome.
In contrast, the current generation of commercial light field
cameras by Lytro Inc. [14] and Raytrix GmbH [15] has been
built around in-camera light field imaging, i.e., light field imag-
ing through a main lens. In addition, attempts are being made to
build light field lens converters [16] or use mask-based imaging
systems [17] that can turn standard single-lens reflex cameras into
light field devices. All devices for in-camera light field imaging
aim at sampling a light field plane p inside the camera housing.
To understand the properties of the in-camera light field and
their relation to the world space, we now extend the previous
discussion of general light field imaging to the in-camera space.

In-camera light fields

In-camera light fields allow the light field to be transformed
from the world space into the image space of a main lens,
where it is acquired by means of miniature versions of the
camera arrays, outlined earlier, that are most often imple-
mented using micro-optics mounted on a single sensor. The
commercial implementations involve microlenses mounted
in different configurations in front of a standard 2-D sensor.
Each microlens with its underlying group of pixels forms an
in-camera (u, v, s,t) sampling scheme, as described in the
previous section. We may also think of these as tiny cameras,
with very few pixels, observing the in-camera light field. The
image of a single microlens on the sensor is often referred to
as a micro-image.
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Unfortunately, the in-camera light field is a distorted ver-
sion of the world coordinate light field due to refraction by the
main lens. Here, we encounter a classic misconception: map-
ping the world space into the image space of the main lens,
even by means of a simple thin-lens transformation, does not
resultin a uniformly scaled version of the world space. Instead,
the in-camera light field is a projectively distorted version of
the world-space light field (see Figure 4), which results from
the depth-dependent magnification of optical systems.

There are different ways to describe this distortion, e.g., in
terms of phase space coordinates, as suggested by Dansereau et
al. [18], corresponding to a ray-remapping scheme or by appro-
priate projection matrices. The projection matrices commonly
used in computer vision to model camera intrinsics and extrin-
sics are not directly usable because they model a projection onto
the image plane of a 2-D camera. It is, however, important that
3-D information is preserved. The closest model is the OpenGL
projection matrices used in computer graphics to transform a
Euclidean world space into a space of so-called “normalized
device coordinates.” This space is also a 3-D space, but a per-
spectively distorted one.

Inferpreting in-camera light field imaging
in the world space
Thinking about how a miniature camera array is imaging the
distorted in-camera light field is a bit difficult. It is, however,
possible to apply the inverse perspective transformation to the
light field plane and the virtual sensor plane—i.e., to the two
aperture planes characterizing a light field sampling device—
to obtain a world-space description in
terms of an equivalent camera array.
The detailed position of these two
planes depends on the configuration of
the light field camera. There are essen-
tially two choices:
m an afocal configuration of the lens-
lets [19]
m a focused configuration of the lens- !
lets [20], [15].
In the first case, the sensor plane is
positioned exactly at the focal distance
of the microlens array. In the second,

In-Camera
Light Field

Micro-

the right distance from the microlens array. Second, because a
microlens is often a one-lens system, its focal length is strongly
dependent on the wavelength of the light. The configuration
may be set for green light, but the red and blue wavelengths
are then focused at different distances. The finite pitch of the
pixels, however, makes the system tolerant to these issues.

In microlens-based light field imaging, the microlens plane
takes the role of the in-camera light field plane p. The virtual
sensor plane (i.e., the sensor plane transformed by the micro-
lens array) takes the role of the second aperture, as in Figure 3.

The inverse action of the main lens, then, is to map these
two planes into the world space. In conjunction, they define
the properties of the light field subviews such as focal plane,
depth of field, viewing direction and angle, field of view,
and—through these parameters—the sampling pattern for
the world-space light field. Optically refocusing the main
lens (i.e., changing its position with respect to the microlens
array) affects most of these properties. The precise knowl-
edge of the optical configuration is, therefore, necessary for
advanced image processing tasks such as superresolution, and
corresponding calibration schemes have been developed, as
discussed in the “Calibration and Preprocessing” section.

Optical considerations for the main lens

The main optical considerations concern the (image-side)
f-number of the main lens and the (object-side) f-number of the
microlenses, respectively. The f-number of an imaging system is
the ratio of its focal length and the diameter of its entrance pupil.
It describes the solid angle of light rays that are passed by an

World Space
Light Field

Light Field

/—\

Equivalent
Camera
Array
(Virtual)

Camera
Main Lens

there are two possibilities for creating Camera /

real or virtual imaging configurations Array. i A

of the microcameras: by positioning ! (Beal)

the sensor plane farther from or closer | g p. ; i q’ Py q.

to the microlens focal length, respec- Serjsor;"Light Virtual lightFer Vil

tively. This choice has the effect of Plané Field Sensor Plane Sensor

placing the in-camera virtual sensor Plane  Plane (World) Plane
(In-Camera) (World)

plane at different positions: namely at
infinity for an afocal configuration or
in the front or in the back of the micro-
lens plane for a focused configuration.
In practice, the first can only be
approximately achieved. First, it is dif-
ficult to mechanically set the sensor at

FIGURE 4. The main lens images its object space (right) into its image space (left), distorting it in the
process. The world-space light field is, therefore, distorted into an in-camera light field. The distor-
tion is a perspective projection, with its center at the center of the main lens’s image-space principal
plane. A micro-optics implementation of a camera array observes the distorted in-camera light field. An
equivalent camera array in world coordinates can be found by mapping the light field plane p and the
virtual sensor plane g to the world space.
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optical system. The f-number is an inverse measure: i.e., larger
f-numbers correspond to smaller solid angles. For in-camera
light field systems, the f-number of the main lens must always
be larger than that of the microlenses to ensure that light is not
leaking into a neighboring microcamera. At the same time, for
a good directional sampling, the f-number should be as small as
possible. Ideally, the main lens f-number would remain constant
throughout all operational conditions. This requirement impos-
es additional constraints, especially on zoom systems [21].

The discussion so far has involved ideal first-order optics. In
reality, however, optical systems exhibit aberrations, i.e., devi-
ations from perfect behavior. Initial investigations [22] have
shown that the phase space sampling patterns are deformed
by the main lens aberrations. In addition to the classic distinc-
tion between geometric and blurring aberrations, an interpre-
tation of the phase space distortions suggests that directional
shifts (i.e., a directional variant of the geometric distortions)
and directional blur (i.e., a mixture of subview information) are
introduced by aberrated main lenses. The effects of microlens
aberrations are relatively minor and only concern the exact
shape of the sampling kernel.

An example of the distortions introduced by an aberrated
main lens, as opposed to an ideal thin lens, is illustrated in
Figure 5. The horizontal shifts in the sampling patterns cor-
respond to geometric distortion, typically treated by radial
distortion models [18], [23]. The (slight) vertical shifts corre-
spond to a directional deformation of the light field subviews.
A known shifting pattern can be used to digitally compensate
for main lens aberrations [22] or even to exploit the effect for
improving light field sampling schemes [24] (see the “Compu-
tational Processing” section).

Phase Space in World Space
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While a satisfactory treatment of first-order light field
imaging can be achieved by trigonometric reasoning or updat-
ed matrix optics techniques, a complete theory of light field
aberrations is missing as of this writing.

Calibration and preprocessing

Calibration and preprocessing are tightly interlinked topics for
light field imaging. As outlined in the previous section, many
parameters of a light field camera change when the focus of
the main lens is changed. This concerns not only the geometric
characteristics of the views but also their radiometric proper-
ties. The preprocessing of light field images needs to be adapt-
ed to account for these changes. In addition, different hardware
architectures require adapted preprocessing procedures. We
will, therefore, cover these steps based on only one example
(here, a Lytro camera, which is an afocal lenslet-based light
field imaging system); the underlying issues, however, affect
all types of in-camera light field systems.

Color demosaicking

Using a standard Bayer color filter array to enable colored light
field imaging appears to be a straightforward choice. However,
as shown in Figure 6(a), for the case of an afocal light field
camera each micro-image encodes the (s, #) dimensions of the
light field. Different color channels, therefore, correspond to
different (s, 7) sampling patterns. The final image quality can
be improved by taking this fact into account [25].

Vignetting
The intensity fall-off toward the sides of the micro-images,
also known as vignetting, changes with the optical settings of
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FIGURE 5. The effect of lens aberrations for an /4 afocal light field system: (a) the phase space distribution of the sampling pattern in the world space,
assuming an ideal main lens (thin lens), and (b) the phase space distribution of the sampling pattern in the world space using an /4 double Gaussian
system as a main lens. The sampling pattern is significantly distorted. The highlighted phase space regions correspond to the space between the left and
the right plots. The side subview (purple) is more severely affected compared to the center subview (blue).

64 IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

THE WORLD'S NEWSSTAND®.

Previous Page | “Contents™|"Zoomin"|"Zoom out™|"Front"Cover-|"Search issue“|"Next'Page \’oa;ags

THE WORLD'S NEWSSTAND®


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

SignalProcessing

*
Previous Page|“Contents™|"Zoomin~|~Zoom out | Front" Cover-|“Search Isstue“|"Next'Page \"c‘i‘

Sinaprcsig

SEse®Nn
2 2 5 T . iﬂtrmw‘
-aeeeids

'-“!iﬁwm b
"'i—'“."‘i!“.“'liw}v ,‘_,l;’!

R I S ———————

Bayer Pattern

(a)

White Image

Subview Calibration

(©)

FIGURE 6. Light field preprocessing and calibration for a Lytro camera. (a) Using a Bayer pattern within the micro-images causes a shift of light field view
for the color channels because different colors sample different (s, t) coordinates. (b) A white image (luminance) used for vignetting compensation, (c)

A subpixel determination of the centers of the micro-images enables a calibrated (s, t)-coordinate system to be assigned to each micro-image. The (u, v)
coordinates are sampled in a hexagonal fashion by the microlenses. The orientation of this global coordinate system also determines the rotation angle of

the (s, t) system. The inset shows s and v calibration maps for the raw image.

the main lens. Commercial cameras, therefore, store signifi-
cant amounts of calibration information in the internal camera
memory. As an example, the combined vignetting of a main
lens and microlenses changes across the field of view and with
the focus and zoom settings of the main lens. Therefore, white
images have to be taken for a sufficiently dense set of parame-
ter settings. The closest white image to the parameters of a user
shot are then used for compensation. In a lab setting, it is advis-
able to take one’s own white images prior to data acquisition.

Calibration
To properly decode the four light field dimensions from the
2-D sensor image, it is necessary to carefully calibrate the
(u,v,s,t) coordinates of every pixel that has been recorded by
the sensor. With current lenslet-based architectures, to the first
order this amounts to determining the center positions of the
lenslets and the layout of the lenslet grid [Figure 6(c)]. More
accurately, the position of the central view is given by the sen-
sor intersection of the chief rays passing through the main lens
and each one of the lenslets. In addition, microlens aberrations
and angularly variable pixel responses can shift this position
[26]. In general, the responses are also wavelength dependent.
The lenslet grid is typically chosen to be hexagonal so as to
increase the sensor coverage. The spherical shape of the micro-
images and their radius are determined by the vignetting of the
main lens, which is the result of its aperture size and shape. The
tight packing of the micro-images is achieved by f-number match-
ing, as discussed in the “Optics for Light Field Cameras” section.
It should also be noted that manufacturing a homogeneous lenslet
array is difficult and so some variation may be expected. Fur-
ther, the mounting of the lenslet array directly on the sensor may
induce a variable distance between the sensor and the lenslets.
The calibration described here usually pertains to the in-cam-
era light field coordinates. When assuming thin-lens optics for
the main lens, these correspond to a linear transformation of the

light field coordinates in the object space. Calibration approach-
es to determine this mapping are described by Dansereau et al.
[18] for afocal light field cameras; the techniques, as well as the
preprocessing steps described earlier, are implemented in their
Matlab Light Field Toolbox. Bok et al. [27] present an alternative
for performing a similar calibration by directly detecting line
features of a calibration target from the raw light field images.
Johannsen et al. [23] describe the calibration scheme for focused
light field cameras. The handling of the effects of optical aberra-
tions by the main lens is usually performed using classical radial
distortion models from the computer vision literature. While
these measures improve the accuracy, they are not completely
satisfactory because the light field subviews suffer from nonra-
dial distortions [see Figure 5(b)]. Lytro provides access to cali-
bration information, including aberration modeling, through its
software development kit. Alternatively, modelless per-ray cali-
brations [28] using structured light measurements have shown
promising performance improvements. However, the need for a
principled distortion model remains.

Once a per-pixel calibration is known, the suitably pre-
processed radiance values of the light field function can be
assigned to a sample position in the phase space. In principle,
reconstructing the full light field function amounts to a sig-
nal processing task: given a set of irregular samples in the
phase space, reconstruct the light field function on that space.
In practice, additional constraints apply and are used to, e.g.,
achieve superresolution or to extract depth. A prerequisite for
superresolution is having a known shape for the phase space
sampling kernels, also called ray-spread functions. Calibra-
tion schemes for these still have to be developed.

Computational processing

The reconstruction of the 4-D light field function from its
samples can be achieved by standard interpolation schemes
[2], [29]. However, the light field function possesses additional
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Light Field Subview (u, v) = Const.

mE oo

Light Field epi (v, ) = Const.

FIGURE 7. The light field subview and EPI corresponding to the green line
in the subview. The images represent different slices of the 4-D light field
function /(u, v, s, 1). Note the linear structures of constant color in the EPI.
These structures correspond to surface points. Their slope is related to
the depth of the scene point.

structure. It is not an arbitrary 4-D function, but its structure
is determined by the geometry and radiometry of the scene.

As an example, if the sampled part of the light field plane p.,
is small with respect to the distance to an object point within the
inside region, then the solid angle of the system aperture with
respect to the surface point is small. If the surface is roughly Lam-
bertian, the reflectance does not vary significantly within this
solid angle and can be assumed constant. This restriction often
applies in practice, and the mixed positional—directional slices
of the light field function, e.g., I(u,v = const.,s,t = const.),
show a clear linear structure, as shown in Figure 7. These imag-
es are also known as epipolar plane images (EPIs) with refer-
ence to the epipolar lines of multiple-view computer vision. In
the case of non-Lambertian surfaces, the linear structures carry
reflectance information that is convolved with the illumination.

Assuming the constancy of the light field function along these
linear structures to be a valid approximation and considering the
4-D case instead of our 2-D illustrations (i.e., planar structures
instead of linear ones corresponding to geometric scene points),
we see that the intrinsic dimensionality of the light field is only
2-D in the Lambertian case. In practice, it is necessary to have
a knowledge of scene depth to exploit this fact. On the other
side, the constraint serves as a basis for depth estimation. This
observation is the basis for merging the steps of reconstructing
the light field function (signal processing), depth reconstruc-
tion (computer vision), and superresolution (image processing).
More general constraints are known. As an example, Levin et al.
[30] proposed a 3-D constraint in the Fourier domain that works
without depth estimation.

Intuitively, the linear structure implies that the surface point
corresponding to a sloped line can be brought into focus, which
in the phase space is a shear in the horizontal direction (see also
Figure 1). Focus is achieved when the sloped line becomes verti-
cal. In this case, there is only angular information from the sur-
face point, which implies that its reflectance (convolved with the
incident illumination) is being acquired. The amount of shear
necessary to achieve this focusing is indicative of the depth of
the scene point with respect to the light field plane p.. The
slope of the linear structures is, therefore, an indicator for depth.

Depth estimation

In light of the previous discussion, depth estimation is a first
step toward superresolution. It amounts to associating a slope
with every phase space sample [11]. There are several ways to
estimate depth in light fields. The standard way is to extract
light field subviews and to perform some form of multiview ste-
reo estimation. Popular techniques such as variational methods
[31], [16] or graph-cut techniques [32] have been explored. The
literature on the topic is too large to review here, and we recom-
mend consulting the “References” for further discussions.

The main differences between multiview stereo on images
from regular multicamera arrays and for light field cameras
are the sampling patterns in the phase space. Whereas the
sample positions and sampling kernels of multicamera arrays
are typically sparse in the phase space, for light field cameras
the respective sampling patterns and kernels usually tile it.
Therefore, there is a difference in the aliasing properties of
these systems. Aliased acquisition implies the need to solve
the matching or correspondence problem of computer vision,
a notoriously hard problem. In addition, the phase space slope
vectors are only estimated indirectly through (possibly incon-
sistent) disparity assignments in each of the subviews.

The dense sampling patterns of light field cameras allow for
alternative treatments. As an example, recent work has explored
the possibility of directly estimating the linear structures in the
EPI images [33] based on structure tensor estimation. This tech-
nique involves directly assigning the slope vectors to each point in
the phase space. However, it does not model occlusion boundar-
ies (i.e., T-junctions in the phase space) and, therefore, does not
perform well at object boundaries. Recent work is addressing this
issue through estimating aperture splits [34] or exploiting sym-
metries in the focal stack data corresponding to the light field [35].

Superresolution

The knowledge of the slope function can be used to compute
superresolved light fields [36], [33] by filling the phase space
with lines that have the slope and the radiance associated to a
phase space sample (see Figure 8). If the samples are jittered
along the slope of the line, a geometric type of superresolution
results. This effect is used in computer graphics rendering to
inexpensively predict samples of high-dimensional integra-
tion for rendering depth-of-field effects [36]. As the samples
are perfectly Dirac and the exact depth is a byproduct of the
rendering pipeline, this fact is relatively simple to exploit, as
compared to the corresponding tasks in light field imaging.
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FIGURE 8. Depth estimation and superresolution. (a) Assigning a depth value to phase space samples in all subviews assigns a slope field to the light
field. This can, e.g., be achieved by matching samples between subviews as in stereo or multiview stereo matching. (b) Propagating the radiance
values of the samples along the slope field generates a superresolved light field and, therefore, superresolved subviews. Because the samples

represent a convolution with the sampling kernel, a deconvolution step following the line propagation improves the result. The line propagation needs
to consider occlusion (T-junctions).
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FIGURE 9. Light field image synthesis. (a) A raw image from the optical light field converter of Manakov et al. [16], (b) a depth map for the center view,
computed with multiview stereo techniques, (c) and (d) a back and front focus using extrapolated light fields to synthesize an /0.7 aperture (physical
aperture f/1.4), and (e) a synthesized stereo view with user-selectable baseline.

In working with real data, the depth needs to be estimat- step of deconvolving the resulting function [37]. For micro-
ed as described earlier. Because the samples are affected by scopic light field applications, a wave optics perspective is
the sampling kernel (i.e., the phase space regions associated necessary [38], [39], and the deconvolution consequently
with a sample), true superresolution needs the additional includes wave effects.
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A note on dliasing

It is commonly stated in the literature that an aliased acquisition is
required for superresolution [37]. In light of the previous discus-
sion, we may make this statement more precise by stating that 1) a
Lambertian scene model is implied for geometric superresolution,
2) the samples should be jittered along the slope corresponding to a
scene point’s depth, and 3) smaller phase space kernels associated
with the samples will be beneficial as long as there is still overlap
between them when propagated along the lines to construct the
superresolved subview. In conclusion, light field cameras may be
more suitable for implementing superresolution schemes than mul-
ticamera arrays due to their denser sampling of the phase space.

Image synthesis

Once the light field function is reconstructed, novel 2-D views
can be synthesized from the data. The simplest visualization is to
extract the light field subviews, i.e., images of constant (i, v) or (s,
1) coordinates, depending on the sampling pattern of the specific
hardware implementation. It should be noted that both choices, in
general, yield perspective views. This is because in-camera ortho-
graphic views [as synthesized by fixing the (s, ) coordinates] map
to a world-space center of projection in the focal plane of the main
lens. The subviews correspond to the geometry of the world-space
light field plane p. and the world-space virtual sensor plane g
and, therefore, show a parallax between views. Interpolated sub-
view synthesis has been shown to benefit from depth information
[40]: available depth information, even if coarse, enables aliasing-
free view synthesis with fewer subviews.

The goal of light field image synthesis, however, is the creation
of images that appear as if they were taken by a lens system not
physically in place (see Figure 9). The example most commonly
shown is synthetic refocusing [29]. The technique, in its basic
form, consists of performing a free-space transport of the world-
space light field plane to the desired focus plane. After performing
this operation, an integral over the directional axis of the light field,
i.e., along the vertical dimension in our phase space diagrams,
yields a 2-D view focused at the selected plane. Choosing only
a subrange of the angular domain lets the user select an arbitrary
aperture setting, down to the physical depth-of-field present in the
light field subviews, that is determined by the sizes of the two (vir-
tual) apertures involved in the image formation. If spatio-direction-
al superresolution techniques (as described in the “Computational
Processing” section) are employed, this limit may be surpassed.

Computing the 4-D integral allows for general settings: even
curved focal planes are possible by selecting the proper phase
space subregions to be integrated. However, it can be compu-
tationally expensive. If the desired synthetic focal plane is par-
allel to the world-space light field plane p, and the angular
integration domain is not restricted, Fourier techniques can yield
significant speedups [14]. If hardware-accelerated rendering is
available, techniques based on texture-mapped depth maps can
be efficient alternatives [16].

Conclusions
With almost a quarter century of practical feasibility, light field
imaging is alive and well, gaining popularity and progressing

into the market with several actors pushing for prime time.
There are still sufficiently many scientific challenges to keep
researchers occupied for some time to come. In particular,
the bar of resolution loss must still be lowered in the hope
of increased consumer acceptance. The megapixel race has
slowed down, and pixel sizes are approaching their physical
limits. This implies larger sensors and, thus, increased expense
for additional resolution increases that would benefit light field
technology. Improved algorithmic solutions are, therefore, of
fundamental importance.

The next big step will be light field video, pushing optical
flow toward scene flow and associated projected applications,
such as automatic focus pulling, foreground/background seg-
mentation, space-time filtering, etc. In terms of applications, we
are seeing 4-D light field ideas penetrating in both the small
and the large. In the small, we are seeing the emergence of light
field microscopy [41], although we need improved aberration
models and, eventually, expanded wave-optical treatments [39].
In the large, sensor networks will become increasingly impor-
tant. More complex scenes—such as translucent objects [42] or,
more generally, non-Lambertian scenes [43]—are made possi-
ble. Crossover to other fields, such as physics, are also appearing
[44]. These are surely exciting times as we head into the second
quarter century of light field technology.
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SIGNAL PROCESSING FOR
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Kristin J. Dana

Capturing Computational Appearance

More than meets the eye

urface reflectance and texture provides a unique signature
for applications such as recognition and rendering. Intu-
ition tells us that a camera captures appearance. However,
a traditional camera captures intensity dependent on the
environment lighting, camera position, and the surface geome-
try. Imaging for computational appearance recovers reflectance
that is intrinsic to an object or scene and useful for recognition
and other applications. Reflectance can be captured in a
lab-based setting with a gonioreflectometer or domes of
lights and cameras. Recent methods in computational
imaging provide appearance-capture that is compre-
hensive, efficient, compact, or optimal depending
on the task at hand. In this article, we review meth-
ods for capturing and modeling computational
appearance. The impact of these appearance rep-
resentations is significant with applications areas
such as e-commerce, digital architecture, human-
computer interaction, intelligent vehicles, robot-
ics, and inspection.

Introduction
A camera captures appearance by providing a pho-
tographic image to emulate and store the visual
experience. Appearance of objects, scenes, and people
can be captured for human viewing and sharing. The
traditional camera is analogous to the human eye, and the
field of computer vision has developed methods for calibrated
cameras that act as directional light sensors to record the dis-
tribution of light intensity reflected from the scene. Computa-
tional imaging takes computer vision a step further by
redesigning the camera to capture scene information beyond
what the human eye captures in a single view. The form and
function of cameras are malleable, and creative research is
taking the camera to new designs by measuring computation-
al appearance to provide a unique signature for automated
recognition and other tasks.
Dl Object tontiior 10.110MSP 20162550179 Capturing appearance is essentially light sampling with
Date of publication: 2 September 2016 numerous inherent parameters and sampling choices. These
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parameters include viewing angle, illumination angle, spatial
scale, spectral range, and polarization [39], [62]. The sampled
light may be emitted from a point, patch, object, or global
scene. The plethora of variations for appearance specifications
leads to the basic question: What is the relevant definition of
appearance? The parameters are sometimes determined by the
capabilities of the imaging device, but the needs of the end-use
application also drives appearance capture. Just as computa-
tional imaging refers to the computation inherent in the imag-
ing process, we introduce the term computational appearance
to indicate how the working definition of appearance depends
on the computation in the subsequent algorithms and applica-
tions. Figure 1 illustrates computational appearance as depen-
dent on both the constraints of the imaging device and the
needs of the application algorithm.

For example, appearance is often used for recognition in
computer vision. Reflected intensity from an object or scene
is dependent on environment lighting, camera view, and sur-
face geometry. The human visual system handles this variation
and maps the set of possible appearances to a unique object
representation for recognition. The representation of an object
within the human visual system is invariant to environment
lighting and camera pose. For instance, a friend is recogniz-
able at morning or at midday; recognition persists when the
illumination direction has changed. Similarly, recognition is
not interrupted when an observer moves and the viewpoint
changes. This geometric and photometric invariance is a pri-
mary goal in computer vision and invariant representations
of appearance provide a mechanism to recognize objects
and scenes. A strategy to develop these representations is to
observe the scene under variations in scene illumination and
camera pose (camera position and orientations). These com-
prehensive measurements are the input to modeling algorithms
which provide a computational appearance descriptor as illus-
trated in Figure 2. For automated recognition, the appearance
descriptors form a training set can be used to build a machine-
learning classifier so that a class label is provided as the output.
For computer graphics rendering, computational appearance is
used to render the complex appearance including effects such
as gloss, sheen, texture and translucency. An important ques-
tion is how best to measure appearance,
i.e., how to sample the space of illumi-
nation and camera pose, to have a suf-
ficiently detailed descriptor.

Consider the surfaces depicted in
Figures 3 and 4. Figure 3 shows two
surface snapshots that fail to convey
appearance in a meaningful manner;
i.e., an observer cannot identify the sur-
face from either photo. Figure 4 depicts
material folds that reveal how the sur-
face reflects light over variations in
the incident illumination and viewing
direction. In this manner, the materials
satin and velvet are easily discerned by

essssssoscacag . Algorithm
. Roboticor ' and
1 Dome Imaging; ,  Computational Application
«— Appearance <« o
' Computational ! B )
! Imaging : Global Local Rendering
. | (Scene) (Surface) Steganography
Diagnosis
Change Detection
3-D Modeling
Multi- ~ Multi- © Multi- .
Polarized
angle scale spectral

FIGURE 1. Capturing appearance with imaging. Appearance comprises
reflectance captured from the global scene or from a local surface patch;
it may be multiangle, multiscale, multispectral, and include polarization
information. Domes of lights and cameras or robotic manipulators can

be used for appearance capture. Alternatively, computational imaging
provides appearance using specialized devices that are typically faster and
more portable. Imaging provides appearance to the end-use algorithm or
application. The bidirectional arrow indicates that the computation within
the end-use algorithm may determine the specifications of computational
appearance and therefore affect the imaging process.

the color nor the shape are of interest in this recognition. Instead,
it is the specific way these surfaces reflect light that provide their
identifying signature. Though the geometry of objects is not typi-
cally controllable, illumination and camera pose can be manipu-
lated in a strategic manner to capture comprehensive reflectance
for object and surface modeling. Figure 5 shows representative
cubes of different materials; neither the color nor geometry are
key in describing the object properties; the unique reflectance
properties of cube discriminate or render the materials.

Beyond basic object recognition, example applications for
computational appearance are numerous and include e-com-
merce, art archiving, robotic navigation, architecture, and bio-
medical applications such as dermatology. For e-commerce,
conveying material appearance is an important component of
the online presentation of consumer goods such as shoes, cloth-
ing, furniture, linens, and home decor. Color and geometry are
typically understood as important in digital models, but mate-
rials enhance the digital presentation and convey subtle visual

Appearance

Descriptor Dictionary of

Appearance
Descriptors

eflectance

Class
Label

Dimensionality

FIGURE 2. In an automated recognition pipeline, reflectance is measured and then represented by a
lower-dimensional invariant appearance descriptor. A dictionary of such descriptors obtained from a
training set is used to recognize the object using machine learning. The recognition result is a class

a human observer. Notice that neither label identifying the object, surface, or scene.
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(a) (b)

FIGURE 3. What are these? (a) and (b) show a simple snapshot of a
material, but this material is not recognizable from the photo.

(b)

FIGURE 4. The materials [(a) satin and (b) velvet] are easily recognizable in
these images because the reflectance from multiple angles is observable in
the folds.

FIGURE 5. Cubes of different material composition (cork, foam, aluminum,
acrylic, maple wood, granite, bakelite resin, and silicone); Architect’s Cubes
Museum of Modern Art, New York. (Photo courtesy of Kristin J. Dana.)

features. For art and archeological archiving, appearance can
be integrated in three-dimensional (3-D) models so that fine
detail such as artist brushstrokes or the translucency of a mar-
ble statue can be captured for realism. In robotics, navigation
and gripping parameters depend on surface material proper-
ties. For example, robotic control variables will be different in
mud than on marble, so the ground terrain material label can

FIGURE 6. The BRDF (bidirectional reflectance distribution function)
(65, ¢1, 61, ¢y) is the ratio of radiance from a surface point in the direction
6y, ¢ due to incident irradiance from direction 6;, ¢;.

guide mobile robot navigation. In architectural applications,
creating models of existing infrastructure using photography
has become an important modern tool. Adding composition
details creates a compendious scene description with surface
labeling of material composition of built structures such as
brick, limestone, stucco, wood, stone, marble, slate, granite,
and copper.

Reflectance: Functions and fields

According to a geometric representation of light rays, a surface
point is illuminated by an incident ray oriented by polar angle
0; and azimuth angle ¢; as shown in Figure 6. The reflected
light is oriented along the direction 6,, ¢,. In a mirrored sur-
face model, the incident light ray reflects at the air-surface
boundary in a direction that is rotated 180° about the surface
normal. For nonmirrored surfaces, a typical modelling
approach is to divide reflectance into specular (mirror-like) and
diffuse components. In these reflectance models, the specular
component of the light intensity is maximal when the viewer is
at the mirror reflection direction, but then falls off according to
a parametric model as the viewer direction moves away from
the peak direction. For example, in the computer graphics
Phong reflection model [7], the intensity falls off as cos"a,
where o is the angle between the mirror reflection direction
and the observer direction and 7 is a parameter. A diffuse com-
ponent of the reflection specified by the Lambertian model is
independent of observer direction and is proportional to cos 6;,
where 6; is the angle the incident light ray makes with the sur-
face normal. The advantage of analytical models of reflectance
is the low number of parameters that can be used to describe
appearance. The disadvantage is the lack of descriptive power
of such models. For real-world surfaces, a portion of the light is
transmitted into the surface, scatters within the surface, is
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absorbed for specific wavelength, and then exits the surface at
a range of angles with energy in wavelengths consistent with
what we perceive as the object’s color. The process is complex
and difficult to model precisely. The diffuse and specular com-
ponents of reflection are insufficient to model the rich visual
experience of real-world scenes including frosty snow, weath-
ered copper, translucent marble, glossy paints, iridescent shells,
crushed velvet, woven burlap, aged asphalt, and metallic-flake
pigments. By measuring appearance directly, data-driven
reflectance models can be used to build representations that are
tuned to specific appearance classes.

The intensity of light reflected from a surface point when
illuminated at angle 6;, ¢; and viewed from angle 6,, ¢, is
described by the bidirectional reflectance distribution function
(BRDF) expressed as f(0;, ¢i, 6+, ) as illustrated in Figure 6.
The BRDF is defined as the ratio of the radiance exiting a
surface point to the irradiance incident on the surface point
[44]. The units of the BRDF are inverse steradians (sr”!), where
the steridian is the unit of solid angle. To parse these units,
consider that input light (irradiance) is the power per unit area
and has units of watts per meter squared (watts/m?). The total
output light intensity from a unit area of the surface has units
of watts/m? but it radiates in a hemisphere of possible direc-
tions, so the output light in a particular direction has units of
watts/m? per steridian. Each direction is represented by a solid
angle so that the integration over all directions represents the
entire 3-D space. Therefore the ratio of output light radiance
to input light irradiance as expressed by the BRDF has units
st™'. To denote dependence on both viewing and illumination
angles, the BRDF is expressed as f(6i, ¢i, 6+, ¢»). Real-world
surfaces typically do not have a uniform BRDF due to both
surface markings and surface texture.

The bidirectional texture function (BTF) extends the BRDF
to characterize surface reflectance that varies spatially. The early
concept of BTF was introduced with the Columbia—Utrecht
Texture and Reflectance (CURET) database [11], [12] and has
been used for numerous texture modeling and recognition stud-
ies. The BTF expressed as f(x, y, 6i, ¢i, 6y, ¢») has dependence
on spatial parameters x, y and angular parameters. The BRDF
assumes a point-wise light transport relationship, incident light
at a point in a single direction results in exitant light at the same
point from multiple directions. However, because of subsurface
scattering, light incident on a point exits over a surface patch.
The BTF can model these effects by capturing patch-wise
reflection as shown in Figure 7. Light incident at a patch at a
particular direction results in reflected light from the patch over
a hemispherical range of directions. BTF modeling typically
assumes that incident light is uniform over the patch. In addition
to subsurface scattering, the BTF representation is useful for
capturing reflection from fine-scale geometry of textured sur-
faces such as bumps, wrinkles, and roughness. The fine-scale
shadowing, occlusions, shading, and foreshortening that affect
the pixel intensities of the recorded images become part of the
appearance model implicitly without knowledge of the surface
fine-scale geometric variation. The reflectance at each point
contains the nonlinearities of the shadowing and occlusions

of fine-scale geometry. For example, surface point at x, y may
be shadowed as the illumination direction changes from 6; to
6; + & for some small angle &, causing an abrupt change in the
BTF to near zero reflectance. The BTF model can also be used to
texture-map a 3-D object represented by a polygonal mesh. The
3-D mesh is texture-mapped, not with a single image, but with
a BTF. Traditional texture mapping maps each 3-D vertex into a
two-dimensional (2-D) texture image parameterized by texture
coordinates u, v. The sampled BTF is a collection of images, so
that a 3-D object vertex is mapped to f(u, v, 0i, ¢i, 6+, $») where
the illumination and viewing direction are defined with respect
to the mesh facet. BRDF/BTF measurements are spatially local
in their description, concentrating on describing the appearance
of a surface point or patch. Such a description is ideal for sur-
faces that exhibit spatial invariance where the appearance of the
patch is representative of the general appearance as in studies of
textured surfaces.

While BRDF is a pointwise reflectance measurement and
BTF is a patch-based reflectance measurement, the reflectance
of an entire scene can also be captured globally. Light fields and
reflectance fields describe the global reflectance of the entire
scene or entire object. Light fields are defined as radiance as
a function of position and direction [22], [32] and are four-
dimensional (4-D) since they describe a spatial position with
two variables and ray orientation with two angles (polar angle
and azimuth angle). An eight-dimensional (8-D) reflectance
field [15] describes both the incident 4-D light field as well as
the 4-D exitant light field. Reflectance fields are analogous to
BRDF’s since both representations are bidirectional, describ-
ing the direction of incident light and exitant light. However,
reflectance fields describe the input/output light over the glob-
al scene instead of a local point. Conceptually, light fields and
reflectance fields construct a closed surface such as a sphere
(or cube), surrounding the scene. The point on the closed sur-
face can be parameterized by two variables that depict the
spatial position. With the assumption of a convex scene, a ray
emanating from each scene point can be constructed that inter-
sects the closed surface. For each point on the closed surface,

BRDF

FIGURE 7. The BRDF describes light reflected from a surface point in a
hemisphere of possible directions, due to light incident to a surface

point at a particular angle. However, light incident at a point may be
interreflected and may be partially transmitted and scattered resulting in
light exiting the surface at multiple points. The BTF describes light exiting
a surface patch due to light incident on the patch at a specified angle ac-
counting for interreflections and subsurface scattering.
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two variables (polar angle and azimuth angle) denote the illu-
mination emanating from this point. Plenoptic functions are
similarly defined as radiance as a function of position and exi-
tant angle. Plenoptic functions [1] are five-dimensional (5-D)
since the point can vary in 3-D space, f(x,y, z, 6, ¢) and no
convexity of the scene is assumed. A common parameteriza-
tion of the light rays in a light field uses two planes. Each ray
emanating from the scene can be described by its 2-D intersec-
tion on two planes. Early light field rigs used a set of cameras
on a plane where each camera captures many pixels (positions
of the scene). Commercially available light field cameras such
as Lytro use arrays of microlenses to accomplish the same
effect [32], [41]. These cameras enable refocusing by recording
each surface point from slightly different viewing directions in
a large image format (approximately 15 MB per image). The
light field camera is not designed for capturing BRDF and the
angular range of local viewing directions per scene point is
relatively small.

The BTF captures a spatially varying BRDF as discussed in
[8]. A related concept is svBRDF which also represents a spa-
tially varying BRDF. The BTF and svBRDF are both parame-
terized by a six-dimensional (6-D) function (two dimensions for
spatial coordinates and four dimensions for illumination and
viewing parameters). The svBRDF [31] is defined to represent
an object where no texture is present, therefore the notion of a
patch of interest is not relevant. The standard taxonomy usage
is BTF for textured objects and svBRDF where the variations
are not due to texture. The notion of local planarity is often
not used in svBRDF so that curved objects without local 2-D
planar embedding can be described. The BTF is used where the
local variation in the patch represents the object’s appearance.
For example, a BTF can be used to represent tree bark, animal
fur, leather, foliage, and roughness; where the appearance of a
patch has the same texture as the object. The svBRDF is more
often used in situations where there is no characteristic varia-
tion over the object. That is, svBRDF typically describes the
variation of reflectance over an object, and BTF characterizes
the reflectance variation over a patch to capture the texture over
the object. Additionally, BTF representations account for local
cast shadows and occlusions within the patch-based measure-
ment allowing for nonconvex, nonsmooth fine-scale surface
geometry, while svBRDF treats each point independently.

The BSSRDF [27] is another representation that is more gen-
eral than the BRDF. This representation is especially useful for

Table 1. A comparison of the BRDF, BTF, plenoptic function,
light field, and reflectance field.

Degrees of

Freedom Bidirectional?  Local/Global
BRDF 4 Y L
BTF 6 Y L
Plenoptic function 5 N G
Light field 4 N G
Reflectance field 8 Y G

surfaces that have translucency such as marble and human skin
where the incident light at the surface is scattered within the vol-
ume. BSSRDF differs from the BRDF in that the latter implicitly
assumes all incident light is reflected from the incident surface
point. While BTF measurements account for subsurface scatter-
ing in translucent surfaces by illuminating and imaging a surface
patch, BSSRDF measurements are typically done by illuminat-
ing a surface point and then measuring the light reflected from
an area or patch.

Table 1 summarizes several of these reflectance represen-
tations. The 8-D reflectance field representation considers
globally incident light and exitant light, the 4-D light field rep-
resentation considers exitant light, the 5-D plenoptic function
considers exitant light from a 3-D surface point, the 6-D BTF
represents incident light at a surface patch and exitant light at
this patch, and the 4-D BRDF represents incident and exitant
light at a point.

Notice that incident illumination is accounted for in dif-
ferent ways among BRDF/BTF, light fields, and reflectance
fields. For BRDF and BTF the measured values are a ratio of
radiance to irradiance. The incident and exitant illumination
is specified by their respective angular directions. Light fields
are a measure of radiance and do not explicitly account for
incident illumination. Eight-dimensional reflectance fields
[15] are bidirectional in the sense that they take into account
incident illumination and exitant radiance. In BRDF/BTF
measurements, there is typically an implied assumption that
incident illumination has uniform intensity and the measured
intensity can be normalized by the uniform incident intensity
to obtain the desired ratio. When measuring reflectance rep-
resentations, incident light must either be known (as in con-
trolled active lighting) or measured (as in silvered spheres for
capturing environment light).

The relationship between incident light to exitant light from
the global scene can also be written as a light transport equation
[26], [29]. When this relation is written as a matrix function, relat-
ing a plane parameterized incident light and reflected light, we
obtain the following light transport equation:

Low = TLin (1)

where Li, is the vectorized 4-D input light field (or 2-D for a
fixed illumination direction), Lou is the vectorized 4-D light
field (or 2-D for a fixed camera position), and 7 is the transport
matrix capturing the aggregate scene properties that relates
input light to output light.

Instead of volumetric light measurement (3-D position and
3-D direction) for both incident and reflected illumination, the
notion of reflection from a surface or scene allows a natural
dimensionality reduction. For reflectance fields and light field,
this reduction is done by considering light through a closed
surface. For BTFs, the measurements consider light incident
on and reflected from a local surface patch. Additionally,
although light is an electromagnetic field that is vector-valued
and depends on wavelength, further inherent dimensionality
reduction is accomplished by considering intensity measur-
able by the camera’s sensitivity functions. In this manner, the
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camera acts as a light probe to measure radiance after a photo-
metric calibration stage to relate measured image pixel values
to scene intensity.

Capturing appearance

Capturing appearance densely—Robots and domes

Traditionally BRDF was measured with large devices called
gonioreflectometers with a computer controlled light source and
a photometer moved on a hemispherical gantry. Since radiometri-
cally calibrated cameras can also measure light, BRDF methods
using images from cameras calibrated to relate pixel values to
radiometrically calibrated intensity replaced the traditional
gonioreflectometer [11], [34], [36]. Reflectance is measured using
multiple images of a surface taken with a camera moved with a

robotic arm or multiple cameras fixed at different positions (e.g.,
vertices of a geodesic dome). Illumination direction is controlled
using a moving light source or a light dome [55]. BRDFs are
also captured using objects of known geometry such as uni-
formly painted spheres imaged with a camera and a point
source moving along a circular arc [36]. Human face and skin
images taken from multiple viewing directions and under mul-
tiple illumination conditions have been used to obtain reflec-
tance fields for successful recognition and rendering [10], [15],
[63]. A comprehensive survey of BRDF/BTF capture devices
is provided in [23]. Examples of reflectance measurement
devices for computational appearance are depicted in Figure 8.

Both robotics-based measurements and dome-based mea-
surements approach the measurement problem by densely sam-
pling the hemisphere with as many samples as possible with

Beam splitter

- S 44
FTransIation Stage .
Cu;to Glégs 50 mm

|S |

lide Lens* Mirror

Op-tics

& ot
Mobile Phone Camera

FIGURE 8. A sampling of devices to capture computational appearance. (a) From left: [2], [19], and [25]. (b) From left: [38], [53], [14], and [35]. (c) From left: [56],
[3], [50], and [18]. All the devices shown measure the scene or surface as a function of viewing and illumination direction. ([2] © 2013 Association for Computing
Machinery, Inc. Reprinted by permission. [25] ©2010 Association for Computing Machinery, Inc. Reprinted by permission. [38] ©2011 Association for Computing
Machinery, Inc. Reprinted by permission. [53] ©2013 Association for Computing Machinery, Inc. Reprinted by permission. [3] ©2015 Association for Computing
Machinery, Inc. Reprinted by permission. [50] ©2011 Association for Computing Machinery, Inc. Reprinted by permission.)
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the given device. Lab-based approaches to reflectance measure-
ment can be cumbersome, time-consuming, and nonportable.
Dense angular sampling to capture the hemisphere of possible
viewing directions 6,, ¢, for each illumination direction 0, ¢;
leads to extremely large BRDF measurement sets. However,
with coarse sampling of the angular space important features of
the reflectance function may be lost. Current trends in appear-
ance capture improve on the initial dome and robotic based
measurements to provide appearance capture that is fast, por-
table, sparse, and low dimensional.

Capturing appearance quickly—Novel cameras

Mirror-based cameras take advantage of a mirror’s ability to
redirect light rays in a manner that is dependent on the mirror
geometry. In particular, parabolic mirrors have the property of
focusing parallel light to a single point. The texture camera [14]
is a device that uses a concave off-axis parabolic mirror to
replace the angular movements required in a gonioreflectome-
ter. Parallel light incident on the mirror surface is focused to a
point; a planar aperture placed in the incident light field that
selects a single light ray effectively chooses an angle of illumi-
nation. Motion of the planar aperture in a plane provides angu-
lar indexing of the incident light rays without the need for
hemispherical motions. Since planar motion of an aperture is
easier to accomplish than hemispherical motion, this design
is very convenient. In a dual manner, reflected light from the
surface is redirected by the parabolic mirror to a set of paral-
lel rays. Placing a camera with a telecentric lens in the path
of this set of parallel light rays provides an unusual image. It
is the image of a single surface point, but from multiple view-
ing directions. In this manner, the camera records a multiv-
iew image of a surface point where each pixel records a
different angle. While the basic operational principles can be
discussed with ray optics, diffraction effects and limits on
measurable angular range have also been evaluated [14]. By

FIGURE 9. Samples of the BRDF (multiple viewing directions) that show
the iridescence of a peacock feather that is not observable in a single view
photo. Notice the abrupt changes in color and intensity as the viewing
direction changes. We see this iridescence when we tilt our heads or the
feather when viewing in person [65].

scanning illumination directions and surface points, the device
can measure a surface BTF and is used as a texture camera.
This approach has recently been used as a reflectance sensor to
collect reflectance disks as shown in Figure 9.

Point-and-shoot reflectance capture provides an opportu-
nity to use BRDF (or a sampling of BRDF) in mobile applica-
tions. Reflectance disks are instantaneous snapshots of point
reflectance obtained with small concave parabolic mirrors.
The reflectance disks of multiple surface points for an irides-
cent sample are shown in Figure 9. Notice the reflectance disks
capture the large change in surface reflectance with view-
ing angle (observable by color and intensity changes in the
reflectance disks). Recent work [65] shows these reflectance
disks are convenient to estimate angular gradients that can be
effective in recognizing material classes. One-shot reflectance
capture with portable devices is an important goal for acquir-
ing data from scenes in a convenient way, to build data-driven
models. Two shot reflectance capture (flash and no-flash) [3]
enables BTF capture with a simple lightweight mobile device.

Another mirror-based camera is a multiview radial imaging
system that obtains a dense sampling of viewing directions using
a conical curved mirror placed in the light path of the camera
[30]. This device also samples multiple viewpoints with a single
snapshot. The system can be used to measure BRDF and recov-
er both the geometry and the texture map of 3-D objects.

In addition to novel mirror-based cameras, lenses have been
redesigned for the purpose of capturing reflectance or appear-
ance. For example, using a pair of condenser lenses [17] also
leads to a fast and compact reflectance sensor capable of measur-
ing a BRDF with a solid angle near 90°. Another novel approach
is BRDF measurement without any camera that is accomplished
with a device consisting of a dome of light-emitting diode lights
used as both the illuminants and photodiodes [6].

Light-field capture devices include lens array methods [32],
[41], and methods that use masks instead of lenses for multiangle
capture such as dappled photography [59]. This approach uses
attenuation masks placed between the lens and sensor to capture
weighted sums of the rays. Then the rays are reconstructructed
via a decoding process. This concept of capturing weighted
sums of rays from multiple angles is also referred to as multi-
plexing and has been used to capture light fields using illumina-
tion multiplexing [54] and polarization multiplexing [9].

Capturing appearance remotely

While mirror-based systems for reflectance have the advantage
of using a single viewpoint to capture reflectance over multiple
angles, the approach has the disadvantage of requiring an up-
close observation where the distance from camera to surface is
small. An issue with measuring a BRDF from a distance is
that the need for hemispherical variation of the light source or
viewing direction prevents large ranges of angular reflectance
measurements. Several methods exist for one-shot reflectance
capture, but they are limited either in the range of angles or by
requiring close-up reflectance capture. Time-of-flight imaging
has been used to get dense reflectance measurements from a
distance [38]. This method takes advantage of ultra-fast
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imaging in time-of-flight cameras. Different angles of exiting
illumination from a surface that correspond to different path
lengths are imaged at different times by the camera. The mea-
surement of reflectance as a function of time can be mapped to
different points on the surface. High-quality reconstructions of
BRDFs have been demonstrated with this approach.

Capturing appearance optimally

Full appearance, even for a single surface point, is a very
high-dimensional signal, especially when illumination and
viewing directions are densely sampled. If

practical importance because the scene reflectance from indi-
vidual illuminants cannot typically be captured with an illumi-
nation array. That is, the reflection from a single illumination
source cannot be isolated. However, an array of cameras can
be used without an intereference problem and therefore dual
photography can achieve the effect of multi-illuminant capture
with camera arrays.

Appearance capture can also be cast as a compressive sens-
ing problem, and sparse methods in signal processing have
been used to efficiently measure 8-D reflectance fields. Sym-

metric photography [20] uses data sparsity

every surface point is captured by densely Beyond hasic object of reflectance fields to make the process

sampling the hemisphere of possible illu- — of measuring the entire 8-D function man-

mination directions and viewing directions, reco_g IIII_IOII, example ageable. The method can be used to obtain
applications for

this angular sampling gives a terabyte or
more of image data at the same spatial res-
olution as a one megabyte traditional
image. Representing high-dimensional
appearance compactly is a major challenge
to enable efficient capture, matching, and
discrimination. Unlike standard methods
of signal compression after capture, the
goal of capturing appearance optimally
is to avoid sampling the full appearance
signal to achieve fast and efficient appearance capture.
An important question that arises in measuring reflection
is: Which illumination and viewing directions matter most?
Are there optimal sampling strategies that can be used to sub-
sample the measurement space in a meaningful way? This
question has been addressed by empirical studies on compre-
hensive data sets. Recent work [45] uses the MERL BRDF
database [42] to determine which samples are most useful by
computing the accuracy of the reconstructed the BRDFs using
principal components analysis. After determining which sam-
ples are optimal, capturing only those measurements increases
acquisition speed and decreases required storage requirements.
Efficient capture of the BRDF with few samples is accom-
plished by an isotropic approximation of the BRDF represent-
ed as a 2-D bivariate function [4]. For many approaches, the
reparameterization of the BRDF as described in [52] provides
a compact representation and reduces the number of basis
coefficients. Lab-based BRDF-slice measurements with light-
domes are used to capture a sampling of the BRDF for mate-
rial classification [19], [56]. Basis illumination [21] is another
approach to compress appearance at capture time. This method
illuminates the scene with spherical basis functions of illumi-
nation. By expressing signals as linear combinations of basis
measurements, BRDF acquisition with basis illumination
requires significantly less time than dense angular sampling.
Another framework for efficient appearance capture uses
the Helmoltz reciprocity principle ,which states that reflec-
tance will be the same when the input and output light intensity
is reversed. Dual photography [57] uses Helmholtz reciprocity
to capture with a camera, illuminate with a light source, but
then computes the image that results from switching the posi-
tions of camera and light source. This property has significant

computational appearance
are numerous and include
e-commerce, art archiving,
robotic navigation,
architecture, and
hiomedical applications
such as dermatology.

virtual views of the scene by assuming the
light transport matrix is symmetric; there-
fore transport coefficient 7} need not be
measured but can be estimated as the mea-
sured Tjj. Compressive dual photography
[58] uses compressive sensing and the prop-
erties of Ll-norm optimization to achieve
a sparse result and exploits the compress-
ibility of the signal in a transform domain
to speed acquisition. Sparse sampling com-
bined strategically with dense sampling is the approach of
manifold bootstrapping [17]. This method samples spatially at
a low angular density and samples sparse key points at a high
angular density using a handheld device and 1020 minute
scanning sessions.

Reflectance hashing [65] is another method for managing
high-dimensional appearance. In this method, surface reflec-
tance is obtained using an off-axis concave parabolic mir-
ror. These one-shot reflectance measurements are converted
to binary codes in an optimization that preserves discrimi-
native characteristics for recognizing material classes. The
approach is supervised so that training reflectance data with
associated material class labels must be known. The binary
codes are optimized to reduce the error cost function over
the training set so that the Hamming distance is close to the
Euclidian distance that would be used in a nearest neighbor
classification. The result is a compact binary code to repre-
sent the high-dimensional reflectance function and fast rec-
ognition is supported because the Hamming distance is very
efficient to compute.

Appearance applications beyond

recognition and rendering

While recognition and rendering are the traditional applica-
tions for computational appearance, there is a large set of
novel applications for computational appearance in diverse
application domains.

Computational appearance in dermatology

For biomedical applications, quantitative dermatology can
use computational appearance captured using variations of
illumination and camera pose to assess change. In standard
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FIGURE 10. Basal cell carcinoma as seen under a set of illumination angles
angle varies, yet the structural change in appearance is significant [10].

dermatology, the visual impression of the clinical dermatolo-
gist is the main tool of initial diagnosis. A typical question in
evaluating subtle change may be: Has a mole changed by 3%
over the course of a year? A clinical practitioner may have dif-
ficulty in making such a precise quantitative assessment based
on observation. Figure 10 illustrates an example of the depen-
dence of skin appearance on viewing and illumination
direction [9]. This image set shows basal
cell carcinoma where each image depicts
the same skin region captured under dif-
ferent illumination directions. Notice that
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An interesting paradigm is
machine learning affecting

. Each panel depicts the same patient at the same time. Only the illumination

primal-dual coding [47] uses liquid crystal displays (LCDs)
for modulation, structured light transport uses DMDs and,
therefor, the projection masks and pixel masks are binary.

Estimating geometry, reflectance, and illumination

In general, an image depends on object geometry (shape),
reflectance, and illumination. If two are known, the other
can be measured directly. Alternatively,
when more than one of the elements are
unknown, auxilliary information can be
used for estimation. Just as binocular stereo

the appearance changes significantly appearance capture, can be used to determine geometry of a

across the image set, revealing unique sur- driving what aspects of scene, photometric stereo uses multiple

face structures. For example, the raised appearance are most light sources to determine local surface

translucent border is only visible in a sub- shape in terms of local surface normals.
JOreer 18 Oty VISID relevant for the task be n terms ©

set of the illumination directions. These at hand Implicit in traditional methods of photo-

images are multiangle reflectance mea-
surements that capture skin appearance
and provides a digital representation to store, share, and
compare appearance in a computationally meaningful way.

Separating reflectance components

Light in a scene originates not only from the primary source
but also from light scattering due to translucency and from
interreflections within the scene. Fast separation of direct and
indirect reflectance [40] uses high-frequency binary illumina-
tion patterns projected on the scene to recover reflection of
the light source separately from reflection due to scattering
and interreflections. This method creates two components of
appearance that can be used for scene analysis such as detect-
ing shadowed areas and areas obscured by translucent objects.
Primal-dual coding [47] also projects illumination patterns
onto the scene and modulates the light capturing elements so
that there is control over which light paths (between projector
and camera) contribute to the image and how much they are
modulated. By controlling the relative modulations of the
direct and indirect light components, this method creates a
tuned image that can rebalance the different scene appearance
components. Structured light transport [46] creates a live
video stream of indirect reflection using a high-speed imag-
ing system comprising a digital micromirror device (DMD)
projector and DMD mask. The method projects a pattern and
places a modulating pixel mask at the camera. Where

metric stereo is a Lambertian reflectance
model. Lambertian reflectance provides a
simple expression for reflectance as a function of the incident
illumination direction and the surface normal. Measured
reflectance for known illumination directions can be used to
create a set of equations to estimate the surface normal. More
recent methods remove the restriction that the reflectance
must be Lambertian and consider unknown reflectance. More
generally, recent research considers what can be simultane-
ously estimated about reflectance, illumination, and shape.
When surface shape and lighting direction are known, the
reflectance can be directly measured according to the refer-
ence coordinate frame defined by the local surface normal. In
this case, an image of the surface provides the reflectance and
the angles 6, ¢, 0y, ¢, are known with respect to the given
surface normals (known shape) of the object. Recent work in
reflectance and illumination recovery [33] addresses the prob-
lem of estimating object reflectance and scene illumination
from a single image when the object geometry is known. Algo-
rithms in this area can also predict both the surface reflectance
and the surface geometry simultaneously when the illumina-
tion is known [49]. Joint reflectance and shape can be estimat-
ed [48] when the illumination is known but uncontrolled as
in measured natural illumination. Estimation of a homogenous
BRDF from a single image of a known shape in unknown real-
world illumination can be accomplished by utilizing natural
image statistics [51]. In the case of known shape and unknown
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illumination, the motion a rotating object can also enable
recovery of the object BRDF. [16]. For most of these estima-
tion methods, results are evaluated by comparing renderings
to ground truth. That is, the fidelity of the representation when
compared to ground truth is the performance metric.

Hiding information within appearance

When considering appearance as measured by reflectance,
novel opportunities arise to hide information in the angular
space of reflected light. In this context, the high dimensionali-
ty of the local appearance is an advantage. Using changes of
refractive index, [13] presents a unique method to create
transparent watermarks that are hidden to the human eye but
can be detected by a multiview camera. By encoding a water-
mark with different refractive indices, the minimum reflected
intensity as defined by the Brewster angle occurs at a differ-
ent angle for different spatial regions of the watermark. This
subtle effect cannot be visualized unless multiple angles are
viewed simultaneously as done with a curved mirror-based
reflectance capture device. Another approach to hiding infor-
mation using reflectance angular space is Bokode [37], where
a single image can capture a hidden message embedded as a
spatial pattern and a lenslet. The key idea is that refocusing
the image from the captured reflectance reveals the message.
Photographic steganography [64] refers to hiding information
in electronically displayed images that can be decoded with a
camera receiver either using intensity [5], [61], [64], high-fre-
quency modulation [28], [43], or color [60].

Conclusions

Measuring apparatus for appearance has evolved past ordinary
cameras to devices for more general light capture. Specialized
cameras, devices, and algorithms can more fully capture pat-
terns of light from a scene. Dense sampling of reflectance with
robotic devices and light/camera domes has evolved to compu-
tational imaging procedures for faster capture in a more com-
pact device and a more compact representation. A large
majority of the appearance capture methods make improve-
ments that are generically useful (e.g., faster, more compact,
more complete). An open research topic for future trends is tun-
ing computational appearance for a particular task, creating a
feedback from application/algorithm to capture method. For
example, the image signal processors within a camera that han-
dle demosaicing, denoising, and other image processing tasks
have been optimized in an end-to-end manner [24] to optimize
image quality. There are many more possibilities in the concept
of combining optimization and appearance capture. Consider
machine-learning methods such as deep learning and convolu-
tional neural networks that can use appearance measurements
as input. An interesting paradigm is machine learning affecting
appearance capture, driving what aspects of appearance are
most relevant for the task at hand. Since the computational
camera is a tunable device, the question of how to tune it leads
to new cost functions that balance algorithm requirements,
hardware constraints, physical and optical constraints, and
application goals. Future trends for appearance capture are not

replicating what the eye would see, but rather tuning the sam-
pling of light to meet what an algorithm requires.
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Enhanced Compressive Imaging Using Model-Based Acquisition

Smarter sampling by incorporating domain knowledge

ompressive imaging (CI) is a subset of computational
photography where a scene is captured via a series of
optical, transform-based modulations before being
recorded at the detector. However, unlike previous trans-
form imagers, compressive sensors take advantage of the inher-
ent sparsity in the image and use specialized algorithms to
reconstruct a high-resolution image with far lower than 100%
of the total measurements. Initial CI systems exploited the
properties of random matrices used in other areas of
compressive sensing (CS); however, in the case of
imaging, there are immense benefits to be derived by
designing measurement matrices that optimize spe-
cific objectives and enable novel capabilities. In
this article, we survey recent results on measure-
ment matrix designs that provide the ability of
real-time previews, signature-selective imaging,
and reconstruction-free inference.

Compressive imaging

The last decade has seen rapid advancements in
computational imaging, especially in the context
of high-dimensional acquisition in resource-con-
strained regimes. At the forefront of these advances
is the idea of CI [2], the optical embodiment of CS,
which enables one to sense images, videos, and other
visual signals compressively, i.e., sensing a signal from far
fewer number of measurements than its dimensionality. Thus,
one benefit of such a system is that the measurement process
simultaneously compresses as it acquires the image. More
importantly, such a design allows far cheaper imaging outside
the visible spectrum, such as the infrared wavelengths. While
silicon-based imagers cost less than US$100 for tens of mega-
pixels, infrared imaging systems that are not silicon based are
thousands of dollars, even for far less than a megapixel reso-
lution, and tens of thousands of dollars for a megapixel or
more. One can use the same imaging system and mathemat-
D S S, ics to also exp.loit spa.rsity in time and tan a visible video
Date of publication: 2 September 2016 camera system into a high-speed one [28]. Finally, CI systems
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can perform image-sensing tasks with far less overhead in
processing, transmission, and data storage than the current
camera-based counterparts. While the examples in this article
focus on images and videos, the use of such CI systems for
depth and hyperspectral acquisition can further leverage such
benefits and are also being explored by many researchers.

Specifically, CI (and, more generally, CS) aims to sense a
signal x € RY from an underdetermined linear system, i.e.,
measurements of the form

y=0x+e, )
where ® € RY*N with M < N, and e is the measurement
noise. For an arbitrary signal in R", this is impossible since
the map ®:R" — R is many to one and noninvertible. CS
handles this by restricting the signal x to belong to a distin-
guished class, e.g., signals that are sparse. The main results of
CS state that when the measurement matrix ® has a special
structure and x is K-sparse (or having K or fewer nonzero
entries), then we can robustly recover x, provided that M is
sufficiently large. These basic results have been extended
beyond real-space sparse imaging to include signals that are
sparse in a transform domain, have sparse gradients [26], low-
rank matrices [10], and low-dimensional manifolds [5].

A classic example of CI in practice is the single pixel camera
(SPC), which consists of an optical modulator and a single pho-
todetector that obtains coded linear or compressive measure-
ments of the scene. A schematic and further description of the
SPC is highlighted in “Signal Pixel Camera Basics.” The com-
pressive measurements y; € R taken by an SPC at the sam-
ple instants = 1,...,7 can be modeled as y, = (¢, x;)+ e,
where T is the total number of acquired samples, ¢, € RY*!
is the measurement vector, e¢; € R represents measurement
noise, and x, € R¥*! is the scene (or frame) at sample instant
t. We assume that the two-dimensional (2-D) scene consists of
n X n spatial pixels that, when vectorized, results in the vector
x; of dimension N = n’. We also use the notation Yi:w to rep-
resent the vector consisting of a window of W = T successive
compressive measurements (samples), i.e.,

yi (p1,X1)+ el

Yuw= C =
yw

: . ?2)
(pw, xw)+ew

If we further assume that the scene is static (as is the case
when we are sensing an image), then X1 = X2 = - = Xw = X
and we obtain the imaging model in (1).

The theoretical results of CI rely heavily on the properties
of random matrices, i.e., matrices whose entries are sampled
from certain distributions. A central result states that, when a
matrix ® € R™*V satisfies the so-called restricted isometry
property (RIP) on all K-sparse signals, then it is possible to
stably recover all K-sparse signals from linear measurements
as in (1). Specifically, the measurement operator @ is said to
satisfy the RIP with constant § > 0 if, for every K-sparse sig-
nals X1, X2, the following relations hold:
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The quantity § encapsulates the deviation from perfect isometry
and is called the isometry constant. Random matrices provide a
simple and elegant method to construct measurement operators
that satisfy the RIP. When the entries of @ are sampled inde-
pendent and identically distributed (i.i.d.) from sub-Gaussian
distributions, then @ satisfies the RIP with overwhelming prob-
ability provided M = O(Klog(N/K)) [4]. Similarly, measure-
ment operators @ obtained via randomly subsampling the rows
of certain orthonormal matrices satisfy the RIP with over-
whelming probability [11]. Both designs for enabling measure-
ment matrices with the RIP are universal, i.e., they are
independent of the application.

Many of the early CI systems used random constructions
for measurement matrices. However, despite their conceptual
simplicity, random projections suffer from certain shortcom-
ings that make them impractical. Their theoretical guaran-
tees are probabilistic, i.e., there is a nonzero chance that the
obtained embedding does not satisfy a (near) isometry, and
asymptotic, i.e., the guarantees hold only when the problem
dimensions are sufficiently high. Further, by virtue of uni-
versality, random matrices are independent of both the data
under consideration as well as the eventual inference task that
we seek to perform. As a consequence, the use of random
projections precludes us from leveraging special geometric
structure that might be present in the data or the inference
task. From a practical standpoint, large random matrices are
also extremely cumbersome, requiring storage and process-
ing requirements that become prohibitive when sensing high-
dimensional signals.

In this article, we survey recent trends in the construction
of deterministic matrices for CI and highlight key areas where
the use of specifically designed measurement matrices provide
significant improvements over random constructions. We dis-
cuss the following three applications.

m Structured CI using signature-preserving matrices:
Careful design of measurement operators can enable us to
sense certain structures effectively. We present a new inter-
pretation/construction of Hadamard codes using signature-
blocks that arranges patterns into groups that share a
certain local signature or sequency. The codes can aid in
analyzing the scene without having to computationally
reconstruct an image, e.g., assessing the signal-to-noise
ratio (SNR) of different blocks, and determining which sig-
natures (i.e., features) are most prominent. This new
approach to constructing acquisition patterns benefits in
both faster recovery and enhanced image quality as well as
in object recognition and tracking tasks. Further, the block
structure also permits low-resolution previews of different
signature-filtered versions of the observed scene.

m Motion predictive video CS using dual-scale sensing
(DSS) matrices: We show that measurement matrices
can be endowed to sense the scene at multiple spatial
scales, simultaneously. This enables real-time recovery of
the video, albeit at a lower spatial resolution, and can
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Single Pixel Camera Basics

While Cl has also been employed with large focal plane
imaging arrays, the most exireme realization of Cl is the
SPC. This combines an optical modulator displaying a time
sequence of patterns where the image forms on an interme-
diate image plane. A series of patterns displayed on this
modulator convolves with the image and directs a portion of
this light towards a single optical sensor while discarding the
rest. This provides a set of image measurements that are
recorded for later reconstruction into the original image as
shown in Figure S1(a). While many choices of optical modu-
lators exist, the digital micromirror array devices from Texas
Instruments provide a large number of broad-spectrum mod-
ulators that toggle between patterns up fo a rate of 30 kHz.
Such an optfical system can encode the image in many
possible ways, as illustrated in Figure S1(b). One of the
most intuitive ways is when one simply scans a single ON
mirror one at a fime in a rasterencoding manner. The first
drawback in this case is that each measurement collects

Single Pixel Camera

Scene

Single
Photodetector

Random
Pattern on
DMD Array

very little light. Second, anything lower than 100% of the
measurements results in only a partial image of the scene.
Another approach is to use a transform-based acquisition
and thus results in roughly half the total scene light being
acquired with each measurement. Given the binary modula-
tion nature of the digital micromirror device (DMD), the
Hadamard transform appears ideal. However, with less
than 100% of the measurements, this case still reconstructs
only part of the information contained in the image. Finally,
if one employs random measurements as suggested by
[11], then only a small fraction of the total measurements
are needed fo reconstruct nearly the full image. Many of the
initial Cl systems employed permuted-Hadamard measure-
ments as a means of generating pseudo-random acquisition
sequences. However, as this article discusses, prior informa-
tion and/or assumptions regarding the scene to be imaged
can result in large improvements in acquisition and process-
ing for various tasks.

Reconstructions from Different Measurement Schemes

Raster Scan, Mirror by Mirror

(N =
l---
(b)

Hadamard Transform

e Imaging

s

(d)

FIGURE S1. (a) A schematic representation of the SPC where the image is focused on an optical modulator and encoded by a series of patterns
before being relayed and focused onto a single detector element. (b)—(d) Three examples of inner products of possible encoding patterns and their
convolution with the scene being imaged: (b) a raster scan, (c) Hadamard basis, and (d) random basis. Each example also shows the reconstruc-

tion obtained from using only 25% of the total measurements.

provide a digital viewfinder for compressive cameras.
This low-resolution preview can be exploited to build sig-
nal-specific models. An example of this is to estimate
scene motion by computing optical flow between frames

of the preview. Motion flow provides extremely precise
relationships between the frames of a video that can sub-
sequently be exploited to recover the video at high spatial
and temporal resolutions.
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m Reconstruction-free inference: The eventual goal in
many applications is often not just reconstruction of an
image but an inference problem pertaining to detection,
tracking, recognition, and/or classification. While infer-
ence can be performed postreconstruction on the output of
a reconstruction procedure, there are important benefits to
be gained by performing them directly on the compressive
domain. First, many inference tasks are inherently simpler
than reconstruction; hence, there is hope that we can per-
form them with fewer measurements. Second, CS recon-
struction is intrinsically tied to the signal models used for
the unknown signal and these signal models prioritize fea-
tures that deal with visual perception,
which often is not the most relevant for

on the columns. Extending this to higher dimensions is
straightforward. Recently, Kronecker product-based CS has
been explored in the context of multidimensional signals [13].
Arguably though, the Kronecker product’s most crucial role is
in enabling fast implementations of important mathematical
functions, such as the discrete Fourier transform, the Haar
wavelet, and the Hadamard transform. We are particularly
interested in the Kronecker product-based constructions of
Hadamard matrices, which have had a long history in imaging
and optics [16].

A Hadamard matrix is an orthogonal matrix with entries
restricted to just {£1}. Power-of-two Hadamard matrices are
often thought of as a square-wave version
of the discrete cosine transform (DCT) and

. . The Kronecker product o s
the subsequent processing tasks. Third, ) are attractive since they have an associated
reconstruction algorithms associated Is used throughout fast transform. However, Hadamard matri-
with CS have high computational com- mathematical sciences ces of sizes other than powers of two exist
plexity; hence, avoiding a reconstruction in countless applications as well, and they can also have fast trans-
step in the overall processing pipeline such as signal/image forms. The rows of Hadamard matrices are

can be beneficial. To highlight these ben-
eficial aspects of compressive inference
and the critical role that measurement
operator design plays in it, we will
review techniques that let us solve high-
level computer vision problems (e.g., object, face, and
activity recognition) by foregoing reconstruction in favor
of inference.

In many ways, the examples that we discuss fall under the
broad category of model-based CS [3], where signal models
beyond simple sparsity are used to obtain recovery guarantees
with fewer measurements. A key distinction is that the results
of model-based CS rely on random matrix constructions, while
we seek alternative methods that are domain- and task-specific.

Structured compressive imaging

In this section, we present a method of generating measure-
ment matrices that are endowed with unique local signatures.
These waveforms can be used to make measurements of a
scene of interest with applications in imaging and detection/
classification. We introduce a generalized Kronecker product
that generates a matrix with blocks of rows where, within
each block, the rows all share the same local signature (i.e., a
specific spatial pattern). The individual rows can be used as
patterns, e.g., on a spatial light modulator (SLM) in an optical
system that observes a scene.

The Kronecker product

The Kronecker product is used throughout mathematical sci-
ences in countless applications such as signal/image process-
ing, control theory, quantum computing, etc. Part of its
utility comes from the ability to tensor together low-dimen-
sional ideas into larger systems [33]. The Kronecker product
has long been used whenever operators are separable. A clas-
sical example is when an image is represented as a matrix
and the transformed image can be separated into two func-
tions, one that operates on the rows and another that operates

processing, control
theory, quantum
computing, etc.

usually described in terms of their sequen-
cy, which is similar to the notion of the fre-
quency of a sinusoid. Sequency is simply
the number of +1 transitions contained in a
Hadamard waveform.

The local signature-based measurement matrix design pre-
sented here is a simple generalization of the standard Kroneck-
er product. The typical Kronecker product of matrices A and
B is defined [33] as A ® B:= [a;B], where ajjis the (i, j)th ele-
ment of matrix A.From the definition, we see that commuting
the factors A and B in general yields A ® B # B®A. Note
that the elements of the left-hand factor provide the weights for
the copies of the right-hand factor. Qualitatively, we can think
of the left-hand factor A as the modulator and the right-hand
factor B as that which is modulated. In this sense, the rows of
B provide the local patterns that ultimately generate the global
patterns in the rows of A ® B. These shorter, local patterns can
be thought of as signatures.

The signature row-block Kronecker product

Suppose matrices A and B, respectively, have K and L rows,
ie, A =[a]X¢,B=[b]"(. The signature row-block (SRB)
Kronecker product is defined as

Bo
, Bi:=AQ®b;=
Br-1

ao®b;
A®srp{B}:= 4

ag-1®b;

Here, B; is the jth SRB, which consists of the K rows of A
that modulate just signature b;. The signature rows of matrix
B analyze/synthesize the local patches of pixels in the image,
and the rows of matrix A simply multiplex these into the larg-
er, global measurement patterns. Hence, it is matrix B that is
directly tied to the model-based acquisition strategy. For
example, in CS applications, matrix B could be a dictionary
previously trained by a principal component analysis to have
maximal incoherence with respect to the sparsity basis of an
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FIGURE 1. (a) 8 x 8 signature tiles (2-D sequency patterns) corresponding to the 64 SRBs that partition the Hadamard domain. (b) A 768 x 1024 ground
truth scene. (c) Four low-resolution 96 x 128 signature previews from the four lowest-sequency blocks [marked in red in (a)], which all have 100%

complete sampling. (Figure courtesy of www.dpreview.com.)

observed scene, or it could be a standard unitary matrix such
as the DCT.

The SRB Kronecker product (4) can easily be obtained from
either of the typical Kronecker products A®B or B®A.
That is, there exist permutation matrices P and Q such that
AQ®srp{B} =P(A®B)=(B®A)Q. This is significant
because, if observations of a scene with the rows of an SRB
Kronecker product matrix are collected, the typical Kronecker
product and its inverse can be used (and their fast implementa-
tions, if they exist) for global processing of the whole image.
Yet, at the same time, the SRB structure lets us group measure-
ments according to the local signatures, which has value since
it is the local information that contains details such as edges,
textures, or anomalies within a signal/scene of interest. This
enables properties such as the ability to view the data either
within the context of particular SRBs or within the context of
the larger transform space, analyze or solve an imaging/infer-
ence problem as L separate smaller problems or as one large
problem, assess the SNR of a particular SRB’s coefficients and/
or determine optimal bit allocation, quickly generate downs-
ampled previews of the scene filtered through each signature,
and subsample within certain SRBs, e.g., in CI applications.
The last two items are examined in the next section.

Using signature row-block Kronecker products for Cl

It is easy to extend the SRB Kronecker product (4) to 2-D
imaging applications. In this case, the SRB structure natural-
ly endows the measurement space with a convenient 2-D par-
titioning now based on local signature tiles, instead of the
one-dimensional signature rows discussed previously. For
computational imaging, the rows of a Hadamard matrix can
be reshaped into the 2-D spatial modulating waveforms used,
e.g., on the digital micromirror device (DMD) used in the
SPC. In this application, each element of a given row is
mapped to one mirror of the DMD, and the *1 values deter-
mines whether it is in an ON or OFF state. Hadamard matri-
ces have been used extensively as sensing matrices in CI since
they have been shown to be incoherent to sparse signals. Fur-
ther, the fast implementation of many Hadamard transforms

means that the reconstruction algorithms can quickly con-
verge to a solution. Many CI applications also apply a scram-
bling operation to the Hadamard matrix, e.g., randomly
permuting the columns. This breaks up the structure and
results in pseudorandom binary patterns that can be beneficial
in certain situations. However, this is different than the
approach taken here.

At the same time, Hadamard patterns can be used in a more
traditional transform coding/decoding manner. Power-of-two
Hadamard transforms have good energy compaction proper-
ties, similar to the DCT. We can utilize this fact in conjunc-
tion with the partitioned block structure provided by the SRB
Kronecker product. Now, with A as a Hadamard matrix, each
individual SRB B, in (4) is an orthogonal basis for a subspace
encoded or filtered by the signature b;. Further, with B also
as a Hadamard matrix, the set of SRBs {8;} are orthogonal to
each other. With B specifically as a power-of-four Hadamard
matrix Hg, for some n, the signatures will span all possible
sequencies when observing 2" X 2" patches of pixels, which
is similar to the range of spatial frequencies in the 2-D DCT.
For example, if matrix B is a Walsh-Hadamard matrix Hes in
(4), the measurement space is divided into 64 SRBs associated
with the 2-D signature 8 X 8 tiles shown in Figure 1. Each of
these signature tiles correspond to one row of He4 that has been
reshaped to 2-D.

The SRB structure of the deterministic sensing matrix
A ®sre{B} lends itself to selective and model-based sam-
pling strategies. We are free to choose which SRBs we want
to sample from, and we can choose to sample them partial-
ly or completely. This leads to a partial-complete sensing
approach [20] that is essentially a block-structured version
of variable density sampling. Note that SRBs that are com-
pletely sampled at 100% can be easily and quickly demodu-
lated by removing the multiplexing effect of matrix A (more
details can be found in [19]). This provides a low-resolution
preview of the scene filtered through the signature tile asso-
ciated with a particular SRB. To see this, consider the scene
with N =768 X 1024 = 12-2'® pixels shown Figure 1. If we
want to construct an SRB Kronecker matrix with B = Hes
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in (4), then we must choose A = H 122" so that A ® sgg{B}
is N X N. Suppose that we completely sample the four lowest
sequency blocks associated with the signature tiles outlined in
the red-dashed line in Figure 1. The low-resolution previews of
the scene filtered through these signature tiles can be seen in
Figure 1. These signature previews reveal that the buildings in
the observed city skyline have strong vertical and horizontal
components. In general, any a priori information will dictate
which SRBs to focus on.

Returning to the goal of CI, we selected modes from each
of the 64 SRBs of the 2-D Hadamard domain such that the
total number of measurements M was 15% of N, as shown
in Figure 2(a). Besides the four completely sampled SRBs,
the other 60 SRBs were partially sampled at random with
a canonical variable density described in [21]. Most natu-
ral scenes have their energy focused in the lower sequency
modes, so we sampled more densely in these SRBs. Note
that the measurements had additive white Gaussian noise
with an SNR of 30 dB. We used these measurements in
conjunction with a reconstruction algorithm that mini-
mized the total variation (TV) that resulted in the recov-
ered image seen in Figure 2(b). Compared to the ground
truth in Figure 1, good detail can be seen even though only
15% of the possible Hadamard modes were used to observe

Cl Using Signature Row Block Sampling

(d)

FIGURE 2. (a) The 2-D Hadamard domain partitioned by 64 SRBs (the 8 x 8 sequency patterns unique
to each block are shown in Figure 1). The white dots indicate which Hadamard modes were used to
observe the ground truth in Figure 1. The number of white dots equals M, the number of samples,
such that M/N = 15%. (b) The resulting reconstructed image using TV minimization with insets shown
in (c). Note how, in spite of the high compression, certain signatures like horizontal and vertical stripes
are well preserved. (d) The 2-D Hadamard domain uniformly sampled at random as is done in typical
CS. (e) The resulting reconstructed image using the same TV minimization with insets shown in (f).
The quality is slightly degraded and took more than six times as long to converge. (Figure courtesy

of www.dpreview.com.)

the scene. Furthermore, the algorithm converged in just
13 iterations. This approach has some similarity to hybrid
sampling methods that gather low-frequency measure-
ments, followed by higher-frequency detail measurements.
A somewhat related strategy is to assemble a union of bases
consisting of chirp or Reed—Muller sequences as the sens-
ing matrix [27].

Next, we examine how our structured SRB sensing matrix
compares with a typical CI sensing matrix. We used the same
2-D Hadamard domain, but the sensing modes were chosen
uniformly at random, again such that M/N = 15% as seen in
Figure 2(d). Note that sensing in this manner usually results in
extremely poor reconstructions. We ameliorated this by scram-
bling each of the Hadamard patterns before sensing so that they
appeared as binary noise. (In this sense, the comparison with the
SRB method is not exact but is the most fair.) As before, white
Gaussian noise was added to the measurements such that the
SNR was 30 dB. However, now the TV-minimization algorithm
required 88 iterations to converge to the solution in Figure 2(e).
Compared to Figure 2(b), we see that the SRB technique pro-
duces a slightly sharper image and does so in more than six-fold
fewer iterations, which is a significant improvement. In addition,
the SRB technique, by providing low-resolution signature pre-
views, demonstrates how intelligent sampling of the transform
domain can offer simultaneous supple-
mentary information.

Although the Hadamard coefficients
with the highest energy tend to be con-
centrated in the lowest-sequency blocks,
this is not always the case. Further, a
canonical variable density strategy is not
always ideal. It is possible to use the SRB
structure to find out which are the best

blocks to sense as well as what the ideal
subsampling density is for each block
[21]. By simply subsampling just a few
Hadamard modes (e.g., much less than
1%) from each SRB, we can assemble
a sufficient statistic that can guide us to
the blocks with the most energy, which
should have the best SNR. Hence, we
can adapt to an observed scene by doing
a fast initial query of the transform mea-
surement domain and thereby get the
most bang for the buck.

Overall, we see that the SRB Kro-
necker product provides a structure that
enables flexible sensing strategies. By
properly designing the matrix and choos-
ing which SRBs to use, important local
information can be gleaned from the
global measurements of an observed
scene. The previous example shows how
it can be used for imaging in a CS man-
ner as well as in providing low-resolution
signature previews. However, the SRB
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structure can also be used for detection and classification applica-
tions. Hadamard matrices were chosen in our examples because
they possess several attractive properties, i.e., they are well suited
for the binary nature of the DMD, they have fast transforms, they
have good energy compaction for most natural images, and they
are incoherent with respect to popular sparsity bases used in CI.
Hadamard matrices used in conjunction with the SRB Kronecker
product structure can provide powerful model-based measure-
ment matrices.

Spatial-temporal resolution tradeoffs

and motion predictive video compressive sensing

In this section, a case study for video CS is presented using the
SPC with a specially designed measurement matrix that pro-
vides the ability to tradeoff spatial and temporal resolutions.
Recall that the SPC uses a single photodetector to obtain com-
pressive measurements of a scene. However, this use of a sin-
gle photodetector is, in general, not sufficient for acquiring
complex scenes at high resolution. Hence, it is common to
assume that the scenes to be acquired are static and acquire
multiple measurements over time. This approach, however,
fails for time-variant scenes since each measurement acquires
information of a (slightly) different scene. Figure 3 illustrates
the effect of the violation of the static scene assumption. Put
simply, grouping too few measurements for reconstruction
results in poor spatial resolution, and grouping too many mea-
surements results in severe temporal aliasing artifacts.

Characterizing spatial-temporal tradeoffs

We first study the effect of downsampling on the measurement
process and make two assumptions. First, the time-varying
scene can be approximated as static, i.e., x; = b+ Ax, where
b is the static component, and Ax; = x;— b is the error at

SPC
Measurements
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sample instant ¢ caused by the static-scene assumption. Sec-
ond, we decompose the static image b into a low-resolution
component, Ubz, where b, = Db € R and the high-fre-
quency residual b—Ub,, where D and U are a pair of
downsampling and upsamplign operators. Now the measure-
ment equations in (2) can be written as

yiw =P®Ubr+b—-Uby) +zi.w+erw

=®Ub,+P(A—-UD)b+zi.w+erw. (@)
The term zi.w accounts for the motion blur terms in Ax;.
Inspection of (5) reveals three sources of error in the CS mea-
surements of the low-resolution static scene ®Ub,.: 1) the
spatial-approximation error @ (I—UD)b caused by down-
sampling, 2) the temporal-approximation error zi.w caused
by assuming the scene remains static for W samples, and 3)
the measurement error e;.w. Note that when W = Ny, the
matrix U has at least as many rows as columns, and, hence,
we can get an estimate of b, = (®U) y1.w.

bz =(®U)'yi.w = b+ (PU) (@(I—- UD)b + er.w +z1.w),

(6)
where ()" denotes the pseudoinverse. The window length W
controls a tradeoff between the spatial-approximation error
@ (I —UD)b and the error z;.w induced by assuming a static
scene b, and the least squares estimator matrix (®U)
(potentially) amplifies all three error sources.

Dual-scale sensing matrices

The choice of the sensing matrix ¢ and the upsampling oper-
ator U are critical to arrive at a high-quality estimate of the
low-resolution image b.. Indeed, if the effective matrix ®U
is ill-conditioned, then application of the pseudoinverse

Measurements || Measurements

FIGURE 3. SPC and the static scene assumption. An SPC acquires a single measurement per time instant. If the scene were static, one can aggregate
multiple measurements over time to recover the image of the scene via sparse signal recovery; for dynamic scenes, however, this approach fails. Shown
above are reconstructs of a scene comprising of a pendulum with the letter R swinging from right to left. We show reconstructed images using different
numbers of aggregated (or grouped) measurements. Aggregating only a small number of measurements results in poor image quality. Aggregating a large
number of measurements violates the static scene assumption and results in dramatic temporal aliasing artifacts. (Figure adapted from [31].)
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(®U)" amplifies all three sources of errors in (6), eventually
resulting in a poor estimate. For virtually all sensing matrices
® commonly used in CS, such as i.i.d. (sub)Gaussian matri-
ces, right multiplying them with an upsampling operator U
often results in an ill-conditioned matrix or even a rank-defi-
cient matrix. This is a consequence of the smallest singular
value of square random matrices approaching zero when the
size of the matrix is large [34].

A novel class of sensing matrices, referred to as DSS matri-
ces, achieve good CS recovery performance and have mini-
mum noise enhancement when computing
a low-resolution preview bL according to

estimate of the scene motion. The motion estimate can then
be used to recover the video at its full resolution. In addition,
the use of fast DSS matrices can be beneficial in various other
ways, including as a digital viewfinder.

Motion flow-based video CS

State-of-the-art video compression methods rely on estimat-
ing the motion in the scene, compress a few reference frames,
and use the motion vectors that relate the remaining parts of a
scene to these reference frames. While this approach is possi-
ble in the context of video compression, i.e.,
where the algorithm has prior access to the

(6). These matrices will satisfy the RIP to Hada_mam matrices have entire video, it is significantly more difficult
enable CS and remain well-conditioned fast inverse transforms in the context of CS.

when right multiplied by a given up-sam- that can significantly A general strategy to enable the use
pling operator U. One approach to the speed up the recovery of motion flow-based video CS is to use a
design of DSS matrices ® (see Figure 4) of the low-resolution two-step approach [28]. In the first step, an
relies on upsampling low-resolution Had- preview frames. initial estimate of the video is generated by

amard matrices. A simple way is to start

with a WX W Hadamard matrix H and

to write the CS matrix as ® = HD + F, where F € R"" isa
+1 matrix such that FU = 0, i.e., each block of F should sum
to zero. A powerful example of such a construction is the so-
called sum-to-one transform [15], where a Hadamard matrix
is carefully designed to satisfy the dual scale property across
any pairs of scales.

Preview mode

The use of Hadamard matrices for the low-resolution part in
the proposed DSS matrices has an additional benefit. Had-
amard matrices have fast inverse transforms that can signifi-
cantly speed up the recovery of the low-resolution preview
frames. Such a fast DSS matrix has the key capability of gen-
erating a high-quality preview of the scene (see Figure 4) with
very low computational complexity. This is beneficial for
video CS as it allows one to easily and quickly extract an

High-Frequency

Dot

Spdlbe ratiern

recovering each frame individually using

sparse wavelet or gradient priors. The initial
estimate is used to derive motion flow between consecutive
frames, which enables a powerful description in terms of relat-
ing similar intensities at pixels across frames. In the second
step, the video is re-estimated with the aid of enforcing the
extracted motion-flow constraints in addition to the measure-
ment constraints. The success of this two-step strategy criti-
cally depends on the ability to obtain reliable motion estimates,
which, in turn, depends on obtaining robust initial estimates.
Further, since we are upsampling the motion estimates, this
approach only works for scenes where the moving objects
occupy a few pixels in the low-resolution preview. We can
obtain such robust initial estimates by using the DSS matrices.
Figure 5 illustrates the outline of a video CS algorithm [31]
that uses the DSS matrices to enable robust previews, compute
motion flow using the previews, and exploit the motion flow to
sense videos at high compressions.

Windmill

Row of the

Row of the /l\
+*

Hadamard Matrix ] UPsampling (NN) {3e)

Process of Generating Rows of DSS Matrices

DSS Matrix

Previews of Three Scenes

FIGURE 4. Generating DSS patterns and previews. DSS matrices are generated such that downsampling each row produces a row of a low-resolution
Hadamard matrix. Also shown are previews generated for three different scenes with real data. (Figure adapted from [31].)
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FIGURE 5. An outline of the CS multiscale video (CS-MUVI) recovery framework. Given a total number of T measurements, we group them into over-
lapping windows of size W, resulting in a total of £ frames. For each frame, we first compute a low-resolution initial estimate using a window of W/
neighboring measurements. We then compute the optical flow between upsampled preview frames (the optical flow is color coded as in [24]). Finally, we
recover F high-resolution video frames by enforcing a sparse gradient prior along with the measurement constraints as well as the brightness constancy
constraints generated from the optical-flow estimates. (Figure adapted from [31].)

Reconstruction-free inference

In this section, we discuss high-level inference problems that
can be solved directly in the compressive domain without the
need for reconstruction of the imagery. The primary example
we consider is that of action recognition, which is one of the
long standing research areas in computer vision with wide-
spread applications in video surveillance and human-computer
interaction. In many applications of action recognition, one is
faced with resource constraints such as limited power supply,
limited storage, and limited computational capabilities, all of
which make CI a great solution. To this end, we focus specifi-
cally on action recognition from videos and review the results
that demonstrate that it is indeed possible to perform action
recognition at extremely higher compression ratios without
reconstructing the video in the first place.

The central idea that allows for detection/recognition prob-
lems to be solved directly in the compressed domain is the
Johnson-Lindenstrauss (JL) lemma and its application to com-
pressive convolutional filtering (also referred to as smashed
filtering). Specifically, the JL lemma states that the correlation

between any two signals is nearly preserved even when the
data is compressed to a much lower-dimensional space. This
property allows one to evaluate the response of a signal to a
given convolutional kernel directly in the compressed domain.
This is extremely useful in practice since correlational features
have traditionally been used extensively in computer-vision
problems such as automatic target recognition, face recogni-
tion [35], palm-print identification [18], and even activity rec-
ognition [29]. Davenport et al. [25] introduced the concept of
smashed filters that provides a way to extract such correlation-
al features in the compressed domain.

We first show that approximate correlational features can
be extracted directly from CS measurements even in very
challenging activity videos. Using this in conjunction with the
widely used correlational filters approach to recognition tasks
in computer vision, one can develop a spatiotemporal smashed
filtering approach to action recognition that results in robust
performance at extremely high compression ratios.

The overall algorithmic pipeline for directly extracting
correlational features from compressed video is illustrated in
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Figure 6. We start with pretrained space-time filters for each spe-
cific action. We chose to train maximum average correlation height
(MACH) filters for each action class [29]. The JL lemma then pro-
vides a way to evaluate the filter response for a given video direct-
ly in the compressed domain, thereby avoiding reconstructing the
frames of the test video. To reduce computational complexity, the
three-dimensional (3-D) response volume is calculated in the fre-
quency domain via 3-D fast Fourier transform. For a given test
video, we obtain N4 correlation volumes. For each correlation
volume, we adapt three level volumetric max pooling to obtain a
73-dimensional feature vector [30]. In addition, we also compute
peak-to-sidelobe ratio for each of these 73 max-pooled values.
This framework can be used in any reconstruction-free applica-
tion from compressive cameras that can be implemented using
3-D correlation filtering. The action localization in each frame is
determined by a bounding box centred at location (/™) in that
frame, where /™ is determined by the peak response (i.e., the
response corresponding to the classified action) in that frame
and the size of the filter corresponding to the classified action. To
determine the size of the bounding box for a particular frame, the
response values inside a large rectangle of the size of the filter and
centered at /™ in that frame are normalized so that they sum up
to unity. Treating this normalized rectangle as a 2-D probability
density function, we determine the bounding box to be the largest
rectangle centered at /™, whose sum is less than a value A. For
our experiments, we use A equal to 0.7.

Experimental results

We present sample results obtained on Weizmann [7] and the
University of Central Florida (UCF) sports [29] data sets. More
extensive results can be found in [22]. For all of our experi-
ments, we use a measurement matrix ¢, whose entries are
drawn from 1i.i.d. standard Gaussian distribution, to compress

Compressively Sensed Actions/Scene

Random Lens
Pattern

Scene
and Action

3-D MACH Filter

Compressive
—» Measurements
“Single Z(t)
Pixel”

Bank of Space-Time Action Filters for Different Viewpoints

the frames of the test videos. We note that it is possible to use
more esoteric measurement matrices to improve either recon-
struction and/or recognition performance. For example, vari-
ants of wavelet bases are better suited for reconstruction and
task-driven measurement operators are better suited for infer-
ence. In this section, we use the random Gaussian matrix to
level the playing field for reconstruction and inference.

Results on Weizmann data set

The Weizmann data set contains ten different actions, each per-
formed by nine subjects, thus making a total of 90 videos. For
evaluation, we used the leave-one-out approach, where the filters
were trained using actions performed by eight actors and tested
on the remaining one. The results shown in Figure 7 indicate that
our method clearly outperforms the reconstruct-then-recognize
using the improved dense trajectories (IDT) method, a state-of-
the-art recognition algorithm. At compression ratios of 100 and
above, recognition rates are very stable for the compressive rec-
ognition framework, while reconstruct-then-recognize fails com-
pletely. The recognition rates are stable even at high compression
ratios and are comparable to the recognition accuracy for the
Oracle MACH (OM) method [1]. The average time taken by
both methods to process a video of 144 X 180 X 50 size are
shown in parentheses in Figure 7. Recon+IDT takes about 20-35
minutes to process one video, with the frame-wise reconstruc-
tion of the video being the dominating component. In contrast,
compressive inference takes only a few seconds. The sample
spatial localization results are shown in Figure 7(a) in a few
frames for various actions of the data set.

Results on UCF sports data set
The UCF sports action data set [29] contains a total of 150
videos across nine different actions. It is a challenging data

- Smashed Correlation

in Space+Time

A

Feature Vector Formation Vai
Nonlinear Operations Max-Pooling,
Peak-Sidelobe Ratio, etc.)

Action Classification Via Statistical
Methods (e.g., SVMs)

FIGURE 6. Compressive inference via smashed filters. (a) Every frame of the scene is compressively sensed by optically correlating random patterns with
the frame to obtain CS measurements. (b) An overview of our approach to action recognition from a compressively sensed test video. First, MACH [29]
filters for different actions are synthesized offline from training examples and then compressed to obtain smashed filters. Next, the CS measurements of
the test video are correlated with these smashed filters to obtain correlation volumes that are analyzed to determine the action in the test video. (Figure

adapted from [22].)

IEEE SIGNAL PROCESSING MAGAZINE | September 2016 |

THE WORLD'S NEWSSTAND®.

Previous Page |“Contents™|"Zoomin"|"Zoom out™|"Front"Cover-|"Search issue“|"Next'Page \’oa;ags

THE WORLD'S NEWSSTAND®


http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

*
Previous Page|“Contents™|“Zoomin~|“Zoom out | Front" Cover-|“Search Issue“|"Next'Page \"(‘i‘

SeE z
ompressive Recognitio Recognize (ID

Recognition Recognition

Rate Run Time Rate Run Time

81.11% 3.22 seconds 100% 3.
81.11% 3.22 seconds 5.56% 1,520 seconds
81.11% 3.07 seconds 10% 1,700 seconds
76.66% 3.1 seconds 10% 1,800 seconds
78.99% 3.08 seconds 7.77% 2,000 seconds

FIGURE 7. (a) The spatial localization of actions without reconstruction at a compression ratio of 100 for different actions in the Weizmann data set. (b)

The table compares recognition rates and runtimes for direct recognition in the compressive domain versus reconstruct-then-recognize. Direct recognition

outperforms the reconstruct-then-recognize with IDT method and achieves a recognition rate that is comparable to the recognition rate of 81.11% in the

case of OM [1], [29] and is much faster. (Figure adapted from [22].)

set with scale and viewpoint variations. For testing, we use
leave-one-out cross validation. At the compression ratios of
100 and 300, the recognition rates are 70.67% and 68%,
respectively. The rates obtained are comparable to those
obtained in the OM setup [29] (i.e., 69.2%). Considering the
difficulty of the data set, these results are very encouraging.
Sample results of the spatial localization and confusion
matrix for recognition are shown in Figure 8.

Run
Side

Riding

Action Swing  Kicking Horse

Golf swing

Skateboarding Swing

Learning tuned measurement aperators for fask-specific inference

While the results presented previously indicate that effec-
tive recognition of actions is feasible from compressive
imagers without the need for reconstruction, the results
suggest that one can potentially achieve better results with
a task-specific design of measurement matrices. As already
indicated at the beginning of the experiments section, task-
specific design can be achieved in a number of ways using

Driving Lifting

Kicking

Riding
Horse

Run Side

Skateboarding

Swing

Walk

Driving

Lifting

FIGURE 8. (a) The reconstruction-free spatial localization of the subject for OM (shown as a yellow box) and spatiotemporal smashed filter (STSF) (shown

as a green box) at a compression ratio of 100 for some correctly classified instances of various actions in the UCF sports data set. (b) The confusion
matrix for UCF sports database at a compression factor of 100. The recognition rate for this scenario is 70.67%, which is comparable to OM [29] (69.2%).

(Figure adapted from [22].)
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Can We Learn Good Measurement Matrices?

The criterion of near isometry is geared toward enabling
reconstruction that is not necessarily conducive to infer-
ence. As an example, consider classification of two classes
using a nearest-neighbor (NN) classifier. The near-isometry
property underlying RIP ensures that distances are approxi-
mately preserved, and, therefore, NNs are approximately
preserved. Yet, the preservation of distance is not neces-
sary for NN classification. Indeed it is sufficient if the mea-
surement operator does not perturb the class membership
of the NN of a point. Intuitively, this is a significantly sim-
pler constraint to satisfy, and we can hope to achieve it
with far fewer measurements.

Domain-specific design of measurement operators
Can we learn measurement operators that can be tuned to
the specifics of an application or data domain and, fur-

ther, incorporate task-specific constraints? Specifically,
given a collection of data {x1,x2, ...,xa € R}, we pose the
problem of learning a measurement matrix ® € R**N that
satisfies the RIP on this data set, i.e., we seek a matrix
® € RN that satisfies

(xi—x;) T®TD (x; — x;)

Vi j, (1-9) <
i —x; [P

<(1+6). (S1)

Unfortunately, solving for a matrix @ with the fewest rows
that satisfy (S1) is a nonconvex problem. In particular,
while this is a hard optimization problem over ®, by using
a lifting operation, we can pose this as an optimization
problem over the gram matrix P = ®'®. Note that the RIP
constraints that are nonlinear in ® can be written as

-~ q' : ‘a- o
-~ 4 - % =
. A=W ! : e |0 |k 02 o 0.35 - Random
| 015 & 03} ~|-=- PCA
NuMax
” = v - R 101 §025 T
3 I ;afi.:'- et el o 10.05 § 0.2 [4- =
| 10 =0.15 |-A-N\ gy Do o
' —0.05 & 0.1
v B | e - o ok DR
ASS | A | Fms 0 | God) | e 01 2005}
-0.15 L e fs aa]
| \ 0.2 5 10 15 20 25 30
Two-Class Measurement Measurement Number of Measurements
Data Set Patterns Learned by PCA  Patterns Learned by NuMax Reconstruction Performance

FIGURE $2. Learning measurement operators using NuMax. We compare the performance of NuMax, principal component analysis (PCA) and
random projection on a two-class problem. NuMax outperforms the other methods due to is reliance on both the domain (i.e., the data set) and
its preservation of neighborhoods via the RIP. (Images used courtesy of [23].)

several criterion, from preservation of the fidelity of
extracted features or promotion of class separability.
Exploring these ideas could form the basis for impactful
future work in this area.

Open problems

The earliest results in CS were broad in their scope and uni-
versal in their applicability to all sparse signals. Yet, this
implicit simplicity created a significant mismatch to real-
world signals that are often enriched with structures that are
more complex than sparsity. Efficient sensing and inference
with such signals requires a fundamental rethinking of all
aspects of CS, including the prime role played by measurement
matrices. While this article highlights this important aspect
using three case studies, there are many important open prob-
lems that need to be addressed to truly harness the potential of
nonrandom matrix constructions.

The need for deferministic matrix constructions

that rival the performance of random mafrices

There has been some limited work on matrix constructions that
satisfy the RIP [12] (see “Can We Learn Good Measurement
Matrices?”). However, these require M~K? measurements that
are significantly worse than random constructions, and they fur-
ther involve polynomials functions that are not amenable to imag-
ing where there are physical constraints that allow only matrices
where entries need to be nonnegative and satisfy energy-preserva-
tion constraints. Further, SLMs that are typically used in CI often
constrain the measurement matrix to be binary valued. A theory of
measurement design that is deterministic while respecting the
physical laws of imaging would spur many novel applications.

Going beyond the RIP as the metric of choice
As noted in many earlier works including [12], the RIP is only a
sufficient condition for signal recovery and it is well known as a
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expressions that are linear in P. In [17], it is shown that a
measurement matrix satisfying the RIP can be obtained by
solving a semidefinite program given as

(NuMax) min || P|-, s.t
PerNXN

xi = x) "Pxi = x,)

P=0,(1—8) <4 o=+l
i—Xj

There are two key properties underlying this optimization
problem. First, the objective of the optimization in NuMax
is | P|+, and the nuclear norm of the matrix P is the convex
relaxation of the rank objective and is known to be low-
rank promoting [14]. Second, the constraints specify that
the square root of P be near isometric on the data set. As
a consequence, the optimization problem solves for a low-
rank symmetric matrix P=®'® so that ® satisfies the RIP
on the data set. The key advantage here is that we are
learning a measurement matrix that is tailored to the partic-
ular data set of interest. Hence, the solution provided by
NuMax typically provides significant improvements over
random projections in its ability to enable inference at far
fewer measurements (see Figure S2), especially as the
noise increases.

Task-specific design of measurement operators

Consider the example of NN classification (NNClass).
Suppose that we have a data set of labeled points from
multiple classes. We can define two sets of difference vec-
tors: 1) intraclass-difference vectors vij=x;—x; when
the points x; and x; belong to the same class and 2)

weak condition [6]. Hence, a criterion that better predicts the
phase transition associated with compressive recovery problems
would be an invaluable tool for evaluating the efficacy of deter-
ministic matrix constructions. It is worth mentioning that sever-
al frameworks have been proposed with the aim of providing a
better characterization of performance using metrics other than
the RIP, typically using ideas in coherence [8], [9] and spectral
norm [32]. The tradeoff here is that the guarantees are probabi-
listic on the signal space as opposed to universal.

Local features versus global measurements

The inference problems in computer vision often use part-based
modeling where local features are constructed to represent an
image and its constituents. This approach is extremely robust to
changes in background and occlusion, which is critical in
machine vision. Inference from compressive measurements, on
the other hand, rely on global linear measurements from which

interclass-difference vectors Wmn = Xm —X» when the points
xm and x, belong to difference classes. Intuitively, intra-
class differences should not expand under measurement
operator, and interclass differences should not shrink.
This intuitive idea can be formulated into the following
optimization problem:

(NuMax—Class)  min || P

«, s.t

Tpy.. T
on,v”,—PV"scl <1, ¥mPWmn > &) 5 7
Vijvi[ WmnWmn

The main difference between NuMax and NuMax-NNClass
is that the latter no longer seeks near-isometric embeddings.
Instead, we seek a measurement matrix that shrinks the dis-
tances between points from the same class, which is
enabled by the constraint v[Pv;/vivj < Ci, and increases
the distances between points from different classes, which is
enabled by the constraint Wi PWmn/WhaWmn = Ca. There are
two key advantages to this modified optimization. First, note
that the constraints in NuMax-NNClass are a subset of
those in NuMax, which is easily seen if we set Ci=1-6
and C2=1+36. Hence, the feasibility set of NuMax-Class
is larger, and we can hope for a lower nuclear-norm solu-
tion (and, hence, a lowerrank solution). Second, given that
we are shrinking intraclass distances preferentially and
expanding interclass distances, we can promote the
NNClass rate directly because there is a greater likelihood
that the NN belongs to the same class in the embedded
space, resulting in improved classification compared to the
pseudorandom measurements.

the extraction of local features is extremely hard, if not impossi-
ble. Hence, a framework for local feature extraction from com-
pressive measurements would enable us to apply the vast
literature in machine vision to compressive inference.
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Computational Snapshot Multispectral Cameras

Toward dynamic capture of the spectral world

ultispectral cameras collect image data with a greater
number of spectral channels than traditional trichro-
matic sensors, thus providing spectral information at a
higher level of detail. Such data are useful in various
fields, such as remote sensing, materials science, biophotonics,
and environmental monitoring. The massive scale of multi-
spectral data—at high resolutions in the spectral, spatial, and
temporal dimensions—has long presented a major chal-
lenge in spectrometer design. With recent developments
in sampling theory, this problem has become more
manageable through use of undersampling and con-
strained reconstruction techniques. This article
presents an overview of these state-of-the-art
multispectral acquisition systems, with a particu-
lar focus on snapshot multispectral capture, from
a signal processing perspective. We propose that
undersampling-based multispectral cameras can
be understood and compared by examining the
efficiency of their sampling schemes, which we
formulate as the spectral sensing coherence infor-
mation between their sensing matrices and spec-
trum-specific bases learned from a large-scale
multispectral image database. We analyze existing
snapshot multispectral cameras in this manner, and
additionally discuss their optical performance in terms of
light throughput and system complexity.

Introduction

The spectrum of a point in a scene is represented by the dis-
tribution of its electromagnetic radiation over a range of
wavelengths. In conventional digital imaging devices, spectra
are measured using three-channel red, green, blue (RGB) sen-
sors, which are designed to coincide with the tristimulus color
measurements in the human visual system. However, a triple
representation fails to capture the intricate details of natural
scene spectra, which arise from the diversity and complexity
T — of illumination and reflectance spectra in the real world.
Date of publication: 2 September 2016 Since various material and object properties can be inferred
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from detailed spectra, acquisition systems for precise spectral
measurements can be effective tools for scientific research
and engineering applications. For instance, spectral data can
greatly facilitate cancer detection and diagnosis, since certain
types of cancer cells have spectral characteristics that differ
from those of normal cells [1]. Spectral data can also yield a
rich set of features for image analysis. To take advantage of
this, spectral capture technology has become widely used in
military security, environmental monitoring, biological sci-
ences, medical diagnostics, scientific observation, and many
other fields [1]-[7].

Studies in spectrum acquisition have been conducted for
decades. Early spectrometers acquire only a single beam of
light at a time, which significantly lim-
its their utility for measuring full scenes.
Later work focused on efficient, high reso-
lution capture of both the spectral and spa-
tial dimensions. Recently, breakthroughs
in temporal resolution have been achieved,
which enable simultaneous acquisition of
dynamic scenes in the spatial, temporal
and spectral dimensions [8]—[10].

Traditional sampling methods [11]-[17],
which are based on the Nyquist—Shannon
sampling theorem, measure the signal at a
certain constant sampling rate on each of
the three dimensions. Each sample contains the signal infor-
mation at a single sampling location, time and wavelength.
Sampling multispectral images in all three spatiospectral
dimensions requires measurement at a massive scale, and thus
making full-sampling schemes, such as those based on scan-
ning or interferometry, impractical in this scenario. That is
because scanning a scene on either the spatial dimension or
the spectral dimension entails a major sacrifice in the temporal
sampling rate. As a result, a full-sampling approach can only
be applied in practice on static or slow-moving scenes.

Capitalizing on recent advances in compressive sens-
ing theory, several techniques have been developed based
on undersampling and constrained reconstruction, such as
computed tomography imaging spectrometry (CTIS) [18]
and coded aperture snapshot imaging (CASSI). Within
the CASSI paradigm, there are single dispersive CASSI
[19], dual dispersive CASSI [20], [21], its dual-coded three-
dimensional (3-D) version called the dual-coded snapshot
imager (DCSI) [22], the colored 3-D version called the
colored coded aperture spectral camera imager (CCASSI)
[23]-[25], [47], prism-mask video imaging spectrometry
(PMVIS) [26], [27], and single pixel camera spectrometry
(SPCS) [28]. The aforementioned systems are all snapshot
multispectral cameras, which means that the spectral data
are measured in a single exposure (shot) on the camera sen-
sor. There are also other systems that capture multispectral
data at video rates, but with more than one measurement
per frame, by taking advantage of a rapidly varying optical
element such as a spatial light modulator (SLM) or digital
micromirror device (DMD), or by adding another camera

Since various material
and ohject properties can
he inferred from detailed
spectra, acquisition
systems for precise
spectral measurements
can he effective tools for
scientific research and
engineering applications.

into the optical path [30]-[32], [48]. These methods all cap-
ture fewer measurements than full-sampling schemes and
reconstruct spectra from incomplete data with the aid of
regularized reconstruction theory (e.g., utilizing knowledge
of signal sparsity in some basis).

A diagram of several coded-aperture-based undersam-
pling snapshot schemes is shown in Figure 1. For better visu-
alization, the target 3-D spectral data cube (x, y, A1) is shown
using a two-dimensional (2-D) matrix representing both the
spatial (x) domain and the spectral (1) domain. Such a high-
dimensional spectral data cube is not possible to capture in
a single exposure using prevalent camera sensors. This has
motivated the aforementioned undersampling systems that
first capture a low-dimensional projection
of the original high-dimensional spectral
data. The projection process can be rep-
resented as a sensing matrix that projects
the spectral and spatial information into a
low-dimensional measurement, which is
then computationally decoded. To multi-
plex the spectral and spatial information
in a solvable manner, as shown in Figure 1,
the coded aperture-based undersampling
schemes usually manipulate the original
data matrix in two ways: shearing and
spatial modulation. These two transforms
effectively reorganize the entries of the data matrix and are
operable in practice (shearing by a prism or diffraction grat-
ing, and spatial modulation by an occlusion mask, spatial light
modulator, or digital micromirror device).

Depending on their optical configurations and exploiting
statistical properties of the spectrum data, the aforementioned
methods employ different sampling strategies, which result in
different sensing performance. In fact, the sampling scheme
of a multispectral acquisition system has a significant effect
on the reconstruction quality of spectra. On the other hand,
in spectrometer design, sampling is also determined by the
spectrometer optics and practical issues (e.g., calibration).
With the optical design flexibility that is possible through the
combination of optical elements (e.g., gratings and prisms) and
computational elements (e.g., spatial light modulators or digital
micromirror devices), we posit that the effectiveness and effi-
ciency of the sampling scheme should become the principal
factor in the design of spectrometers.

Our intent in this article is to present a comprehensive dis-
cussion and analysis of existing coded aperture-based multi-
spectral snapshot systems, and link them to different sampling
schemes from the signal processing perspective. For each of
these coded aperture-based undersampling schemes, efficien-
cy is examined based on the spectral sensing coherence infor-
mation between its sensing matrix and sparse spectral bases
constructed from a multispectral image data set. In addition,
the optical properties of the spectrometers, i.e., light through-
put, noise tolerance, feasibility, and complexity, are discussed
as well. We hope that these analyses and discussions not only
provide readers with fresh insight on multispectral imaging,
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FIGURE 1. Sensing matrices of existing sampling schemes for multispectral acquisition. The spectral and spatial data matrix is high dimensional,
and current camera sensors can capture only a low-dimensional projection of the spectral data. The projection process can be regarded as a sensing
matrix for the high-dimensional spectral data cube, and state-of-the-art computational multispectral imaging methods can be summarized as different

sensing matrices.

but also serve as guidance for designing new multispectral
cameras and conducting further study of existing methods.

Full-sampling systems

While mostly focusing on undersampling techniques for multi-
spectral capture, we also paint a fuller picture of multispectral
imaging by first reviewing systems designed for full-sampling
schemes. Conventional multispectral image acquisition sys-
tems are generally based on the Nyquist—-Shannon sampling
theorem, and thus they sample the signal at twice its maximal
frequency. Therefore, due to the considerable amount of data, a
sacrifice in either spatial or temporal resolution is needed for
these cameras. Such a sacrifice may make full-sampling
schemes less practical, thus motivating systems based on com-
pressive measurements.

In spite of the low latency of capture, full-sampling meth-
ods for multispectral image acquisition have become widely
used in practice. We introduce the basic principles and analyze
the performance of full-sampling multispectral acquisition

systems in this section, including three conventional multi-
spectral cameras: filter-based spectrometers, scanning spec-
trometers, and interferometry-based methods.

Filter-based spectrometers record a sequence of images
using a different color filter with each imaging exposure,
which effectively samples a set of full spatial resolution images
over the spectral range at the expense of temporal resolution.
These spectrometers can be easily implemented using a rotat-
ing wheel of gel filters, or electronically tunable filters that are
typically based on birefringent liquid crystal plates. The mea-
surement scheme of filter-based spectrometers can be viewed
as spectral sampling over the temporal domain, with the spa-
tial resolution fully preserved. In such a system, it is important
for the color filters to be fabricated with an antireflective coat-
ing, to minimize reductions in light throughput.

Instead of varying the filters temporally, scanning spectrom-
eters sweep a spectral sensing device over the scene, sacrificing
temporal resolution to gain spatial resolution. Typically, scan-
ning is performed in a whiskbroom or a pushbroom manner.
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The whiskbroom design captures the spec-
trum of a single spatial location at each time
instant, and thus requires substantial time to
obtain an entire 3-D data cube. Rather than

with a typical 60 spectral bands and only
one mega-pixel of spatial resolution is close

In spite of the low latency
of capture, full-sampling
methods for multispectral
image acquisition have

to two gigabytes. Measuring this amount of
data even with short exposure times is infea-

SignalProcessing

a pinhole aperture, the pushbroom design
employs a slit aperture aligned with one
of the two spatial dimensions (either x or
y), and the spectrometer is translated along
the other direction, providing much lower
latency than the whiskbroom design. With a scanning-based
sensor, the exposure time can be lengthened to increase sig-
nal intensity. However, scanning spectrometers involve more
mechanical and calibration complexity in practice.

Interferometry techniques (also known as Fourier trans-
form spectral imaging), which are based on the principle of
interference, project several subimages onto the image sen-
sor, each corresponding to a different color channel. Though
a Fourier transform is required to reconstruct multispectral
images from raw measurements, interferometry spectrom-
eters are considered to be full-sampling systems because the
number of measurements is equal to the number of pixels
in the final reconstructed image. These methods sacrifice
spatial resolution but avoid spatial discrepancies by directly
measuring the spectra of scene points. For such systems,
their complexity (with multiple imaging lenses) and precision
requirements (on the order of nanometers) make them diffi-
cult to build and calibrate.

in practice.

Undersampling systems

While many methods have been used to construct spectral
imagers, this article specifically compares coded aperture-
based undersampling designs. The multispectral image infor-
mation of a dynamic scene spans three domains—spatial,
spectral and temporal—presenting an immense amount of
data. Just a single second of uncompressed multispectral video
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FIGURE 2. Spectral data measurement in the CTIS system.
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hecome widely used

sible with full-sampling schemes. In captur-
ing multispectral information at video rates,
significant undersampling is thus required.
Several coded-aperture-based systems have
been proposed for multispectral snapshot
imaging or video capture. In limiting ourselves to such systems,
it is helpful to explain why they are of particular interest to
compressive spectral imaging. All spectral imagers take mea-
surements of the form

gi= [ fG.)hi(x.2)dxdh, (1)
where f(x,A) is the unknown spectral image and £:(x,7A) is the
instrument function for the ith measurement. Such measure-
ments may be point-wise, as in pushbroom systems for which
hi=8(x—xi,A—Ai) (8() is the Dirac delta function), or multi-
plexed, as in coded aperture or tomographic systems. Point-wise
measurements, however, lack forward model coherence proper-
ties consistent with compressive measurement. For compressive
measurement one would like to measure weighted groups of
unrelated pixels. Representing the spectral data cube as a 2-D
space-wavelength structure, CTIS-style systems integrate along
lines through the data cube as illustrated in Figure 2.

In the ideal case, one might instead integrate groups of pix-
els randomly selected from the data cube. Fully random strate-
gies have been implemented for 2-D imaging using single pixel
cameras [50]. For tomographic imagers, such as spectral cam-
eras, however, no simple physical mechanism exists for inte-
grating random and independent voxel groups.

The most common form of spectral imager is, of course, the
RGB camera, which uses color filter arrays to periodically iso-
late different color planes. The ideal spectral imager might be
similar to an RGB camera but with more diverse and complex
spectral filters. Several groups have indeed proposed or imple-
mented spectral imagers using filter arrays [51], [52]. Complex
spectral filters are constructed from interference devices. Pix-
elated interference filters with complex spectral structure are,
however, both expensive and difficult to fabricate. In using
coded apertures, we find physical advantages in the use of spa-
tial modulation to measure spectral information analogous to
the use of spatial delay lines to measure time. Femtosecond
pulses are commonly measured using piezoelectric positioning
systems with nanometer scale-resolution [53]. Native femto-
second time measurement devices do not exist. Similarly, it is
much easier to use a coded aperture with micron scale features
to encode a pixelated spectral filter with 10—100 features than
to create a similarly complex interference filter. To understand
the basic resolution of a coded aperture system, we return to
the 2-D data cube discussed previously. As illustrated in Fig-
ure 3, we consider a coded aperture with code feature size
A. A spectral imaging system observes the unknown scene
modulated by this code with the spectral planes dispersed by a
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grating or prism at the rate (dx/dA). A sim- The coded aperture- in the original papers [19]-[27], but rather
le single disperser coded aperture system i so that their light paths are equivalent. For
p g P P Yy hased undersampling
integrates along the wavelength dimension systems employ different DD-CASSI, the original implementation in
on detection, basically taking tomographic i, _ [20] has two dispersers to realize the dis-
sampling strategies

projections along this dimension. Due to
the coded aperture, however, features along
this dimension are modulated to improve
the coherence of the forward model rela-

according to their optical
configurations and exploit
statistical properties

persion and pixel-wise focusing (i.e., all the
spectra of a single point passed through the
mask focus on a single pixel), but its dia-
gram in Figure 4 has only one disperser

tive to simple tomographic projections. The of multispectral data (grating) to achieve the same focusing
rate f’f modulatlon is easily de.termlned by which leads to different by just tuning the locatl(?n of the spatial
considering the number of independent - i modulator (mask) and the image sensor. By
code features observed at each detection _SGIISIIIQ periormance representing systems with different kinds
point. A given code feature is shifted spa- in terms of spectral of modulation (i.e., point-wise coding and

tially by I'(dx/dA), where T is the sepa-
ration between the shortest and longest
wavelength observed. Therefore, integrating
along a single wavelength channel, the number of independent
wavelength coding elements observed is N = (I'dx/Ad2). The
spectral resolution is I'/N = A dA/dx. For a grating of period
L imaged with a lens of focal length F,(dA/dx) = (L/F). With
L =3 microns and F =3 cm, for example, a code feature
of size 10 microns yields a spectral resolution of 10 nm, cor-
responding to 30—40 spectral features over the visible range.
Better spectral resolution can be obtained with faster gratings
or longer focal lengths, but a multiplexing level of 30-40 is
already fairly aggressive for snapshot imaging. Multiform
integration methods will likely be necessary for more heavily
multiplexed systems.

We see, therefore, that coded apertures present a simple and
straightforward mechanism for complex spectral filter imple-
mentation. In addition, depending on the implementation, they
have reasonably local kernels that allow spatially separable
data cube estimation.

Even within the family of coded aperture spectral imag-
ers, numerous design choices may be considered for code
implementation, dispersive elements, and sensing. Since we
cannot comprehensively consider all design choices, here
we focus on comparing the coherence of the forward model
for several model systems based upon compressive coded
aperture designs proposed and demonstrated over the past
decade. We specifically do not consider implications of static
codes implemented on slides versus dynamic codes imple-
mented using spatial light modulators. While spatial light
modulators suffer scatter and numerical aperture limitations
not found with static codes, we hope that the reader will find
our comparisons without detailed physical implementations
sufficiently compelling to postpone full consideration of
practical issues.

The coded aperture-based undersampling systems employ
different sampling strategies according to their optical con-
figurations and exploit statistical properties of multispectral
data, which leads to different sensing performance in terms of
spectral reconstruction quality. Figure 4 displays diagrams of
four undersampling multispectral cameras. It is worth noting
that to facilitate comparison, the diagrams of the systems are
drawn not according to the physical configurations proposed

reconstruction guality.

sheared coding) and imaging (pixel-wise
focusing and dispersed imaging) using sim-
ilar optical paths in Figure 4, the intrinsic
differences between the four systems are revealed. As shown
in Figure 4, the PM VIS, SD-CASSI, and DD-CASSI systems
only use a single mask to modulate the input light. The main
difference between them is the placement of the mask. Both
PMVIS and SD-CASSI place the mask on the imaging plane,
leading to point-wise coding (i.e., all the spectra of a single
point are either passed through or blocked by the mask), while
the DD-CASSI places the mask in front of the image plane,
which leads to a spectrally sheared coding (i.e., the 3-D code
is generated by stacking the same 2-D code with different
offsets). In contrast, the sensor of DD-CASSI is put on the
image plane to achieve pixel-wise focusing, while PM VIS and
SD-CASSI place the sensor behind the imaging plane, which
leads to dispersed imaging (i.e., spectra of a single point dis-
persed to a set of pixels). As for 3-D-CASSI, two masks are
utilized to achieve both the spatial and spectral modulation
simultaneously, and the sensor is put on the focus plane to
ensure pixel-wise focusing.

Prism-mask video imaging spectrometry

PMVIS [26], [27] straightforwardly acquires the spectra of
scene points with the aid of a prism and utilizes a mask with
uniformly distributed holes that prevent overlaps of the

FIGURE 3. A diagram of the relationship between the spectral resolution
and the code feature size.
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dispersed spectra on the sensor, as shown in Figure 4(a). The
spectral values of the sample points are measured directly
without any spectral modulation, and there exists a known
correspondence between spectral bands and sensor plane
locations. Each of the measurements represents a certain
spectral intensity value of its corresponding scene point. As
shown in Figure 5(a), this system sacrifices spatial resolution
to achieve high spectral resolution. Cao et al. [27], [28]
extended this idea with a hybrid PMVIS scheme in which a
high spatial resolution RGB image is simultaneously acquired
with each multispectral snapshot. Through a spatial interpola-
tion within the spectral frame that is guided by the high reso-

lution RGB image, a final result is computed with high
resolution in both the spatial and spectral dimensions.

Relay
Lens
Disperser—=

Single dispersive coded aperture snapshot imager

According to compressive sensing theory [54], if a signal has
a low-dimensional representation (e.g., it can be represented
as a sparse combination of orthonormal bases, like wavelets),

then it can be reconstructed from a small set of measure-
ments. With an appropriate sampling scheme, the samples
needed to reconstruct a signal can be fewer than those speci-
fied by the Nyquist—Shannon limit. Based on this concept,
various undersampling systems have been developed to
reconstruct entire spectra from fewer measurements.
Wagadarikar et al. proposed the CASSI system using a single
disperser [19], which we will refer to as SD-CASSI. The spec-
tral data cube is modulated by a coded mask and dispersion, as

3-D-CASSI.

shown in Figure 4(b). Light rays of different wavelengths are
modulated by an aperture code and then are offset differently by
a dispersive element, which results in a coded and sheared 3-D

cube as illustrated in Figure 4 before projection onto the CCD
sensor. The imager captures a 2-D projection of the coded and
sheared cube as shown in Figure 4. After the undersampling and
spectrally multiplexed capture, the complete data cube is recon-
structed based on the prior that spatial-spectral information is
sparse in the wavelet domain.

The CASSI system implements measurement matrices of a

specific structure, i.e., a replicated and slanted 2-D code along
the spectral dimension, illustrated as the SD-CASSI projection
in Figure 5(b). The mathematical formulation of the 3-D code
can be expressed as

C(x,y,A) = Cop(x — As - A,y) = reshape (TC), ?2)

where (x,y) and A are the spatial and spectral indices, Cop is a
randomly generated 2-D spatial coding pattern, As is the offset
of each channel caused by dispersion, C is the column vector

form of the unsheared modulation code, T is the shearing opera-

tion matrix, and reshape( -)isthe reshape function to transform
the column vector to the original 3-D data cube.
The image is modulated before the dispersive element, and

ectral Plane ™}

Image Plane

FIGURE 4. Diagrams of four undersampling multispectral cameras: (a) PMVIS, (b) SD-CASSI, (c¢) DD-CASSI, and (d)

5 24 then the disperser shears the modulated image. Thus the mea-
[5) D
o : surements can be modeled as
M=®S = vector(Zreshape(Tdiag(C)S)), 3)
2
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where M is the column vector form of the measured values,
® is the sensing matrix, S is the column vector form of the
spectral data cube, diag() is the diagonal operator to trans-
form a vector to a same order square matrix
with the elements of the input on the diago-
nal, reshape() is the reshaping operator

DD-CASSI has exactly the

in Figure 4(b) but with less calibration difficulty than the
dual-disperser CASSI. Although these two systems adopt a
similar code, they employ different sampling and recon-
struction methods. A recursive offset code
is applied by Gehm et al. [20] to achieve
fast block-wise processing, while a ran-

to transform the column vector to the 3-D same coding space as the dom and nonuniform code as well as a

data cube, and vector() is the vectorizing SD-CASSI system, but the dictionary-based reconstruction algorithm

operator for transforming the 2-D matrix modulated 3-D spectral are employed by Lin et al. [21] to obtain

to a column vector. Mathematically, the data cube is not sheared high-quality performance.

operation vector Xareshape can be regard- (i.e., it is sheared hack DD-CASSI has exactly the same cod-

ed as a down-sampling operator, and each - ing space as the SD-CASSI system, but
after modulation).

element of the output M is the summation
of a set of certain elements of the input
vector Tdiag(C)S. In other words, the combined operator
vector Xareshape can be represented by a single short matrix.
Then, the sensing matrix of SD-CASSI can be represented by
® = XTdiag(C), “4)
where X denotes the short matrix form of the combined sum-
mation operator vector Zareshape. According to (4), the imag-
ing procedure represented by the summation matrix X just
follows the shearing operation T, which implies dispersed
imaging, i.e., the spectra of a single point is dispersed to a set
of pixels. The coding matrix diag(C) manipulates the original
spectral data cube directly, which corresponds to point-wise
coding (i.e., all the spectra of a single point are either passed
through or blocked by the mask).

Dual dispersive coded aperture snapshot imager

Since the basic CASSI system forms a sheared 3-D spectral
data cube, the observed snapshot is blurred by dispersion. To
overcome this effect, Gehm et al. [20] proposed a dual-dis-
perser architecture (DD-CASSI) in which two dispersers are
symmetrically placed on the two sides of the coded aperture
to produce an unsheared spectral cube with replicated slant-
ed code. Lin et al. [21] proposed a single disperser (grating)
system called spatial-spectral encoded compressive spectral
imager (SSCSI) to realize the same function as shown

PMVIS SD-CASSI
(Uniform) (2-D Random)

() (b)

the modulated 3-D spectral data cube is
not sheared (i.e., it is sheared back after
modulation), as shown in Figure 5(c). Thus, the measurement
matrix becomes
® = XT"diag(C)T = Xdiag(TC). 6)
According to (5), the transpose T” is the inverse shearing
matrix, which is used to unshear the sheared cube. As for the
second term on the right of (5), the diagonal coding matrix
diag(TC) modulates the original spectral data cube, which
implies spectrally sheared coding (i.e.,the 3-D code is generated
by stacking the same 2-D code with different offsets). In this
case, the shearing matrix T only shears the 3-D code, and the
spectral data is not affected. Meanwhile, the summation matrix
Y. integrates the coded data cube along the spectral dimension,
which represents the pixel-wise focusing, i.e., all the passed
spectra of a single point are focused on a single pixel.

Spatial-spectral coded compressive spectral imager
The feasible codes for both the basic CASSI and the nonspatial-
ly modulated imager are limited by their physical modulation
capabilities. Theoretically, 3-D-CASSI, which encodes the spa-
tial-spectral data cube randomly, can achieve more feasible
codes and higher performance, as shown in Figure 4(b). Howev-
er, the physical implementation of 3-D-CASSI is not trivial.

To approximate the 3-D modulation in spatial-spectral data
cube, two coded aperture-based systems, i.e., the color-coded

DD-CASSI 3-D-CASSI
(2-D Random) (3-D Random)

(c) (d)

FIGURE 5. An illustration of voxel sensing schemes of four types of undersampling multispectral cameras. The sampling schemes of the (a) PMVIS,

(b) SD-CASS!, () DD-CASSI, and (d) 3-D-CASS! systems.
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(a) (b)

(©)

(d)

FIGURE 6. Measurement snapshots of the (a) PMVIS, (b) SD-CASSI, (c) DD-CASSI, and (d) 3-D-CASSI systems.

aperture spectral camera imager (also known
as CCASSI) and DCSI are proposed. Cor-
rea et al. [23], [47], Arguello et al. [24], and
Rueda et al. [25] utilize the RGB colored
sensor as a spatial-spectral modulator to
achieve the specific dual coded (in spatial
and spectral dimensions) compressive spec-
tral imager (CCASSI). By combing the sep-
arable codes of all the spectral channels, the
CCASSI can achieve more complex modu-
lation than SD-CASSI and DD-CASSI.
Similarly, Lin et al. [22] proposed a system
that consists of two controllable modula-
tors (e.g., digital mirror devices) on both the
spectral and spatial plane, and introduce the
dynamic modulation, i.e., changing the codes of the spectral
and spatial planes during the exposure time, to enable more
flexible modulation. Mathematically, the composited 3-D spec-
tral code Cccassi(x, y, A) of CCASSI and Cpcsi (x, y, A) of
DCSI can be represented by the sum of a set of separable codes:

Cceasst(x, y, ) = CP (x, y)CP™ (1),

2

¢ €{channel set}

CDCSI (x’ Y, 2,) — Zcfpatial ()C, y)cfpectral (/1), (6)

where (x, y) and A are the spatial and spectral indices, ¢ and ¢
index the spectral channels and time slices respectively, C;™"™
and C{P™ are the spatial and spectral codes of the CASSI
system for channel ¢, and C{"™ and CP*"™ are the spatial
and spectral codes of the DCSI system at time 7. Since both the
spectral data cube and the coding pattern are not sheared in
this system, the measurement matrix is

® = Xdiag(C). @)
The ideal 3-D-CASSI can in principle produce any 3-D code, as
shown in Figure 5(d). Both CCASSI and DCSI are the approxi-
mate implementations of the ideal 3-D-CASSI. According to
(7), there is no shearing matrix in the sensing matrix, which
implies pixel-wise focus and nonrestricted coding [as in (6)]
on both the spatial and spectral dimensions. Thus, 3-D-CASSI

For the four types of
undersampling systems,
we examine their sampling
efficiency hased on

the spectral sensing
coherence information of
their sensing matrices,
and then evaluate their
reconstruction accuracy
on a diverse multispectral
datahase containing
images of various scenes.

provides a larger feasible code space than
the SD-CASSI and DD-CASSI systems.
All of the coded aperture-based systems
capture images with the CCD sensor placed
on the image plane. The sensing step cor-
responds to integrating the 3-D spectral data
cube along the spectral dimension, yield-
ing snapshots that are blurred from disper-
sion (SD-CASSI) or not (DD-CASSI and
3-D-CASSI) with modulated patterns. For
the PMVIS system, the mask is placed on the
image plane to obtain uniform sampling, and
the sensor is located beyond the image plane
by a certain distance to ensure that the dis-
persive spectral bands of the sampling points
fill the sensor without overlapping one another. Figure 6 exhib-
its snapshot measurements on the sensor for the four systems.

Sensing matrix and spectral sensing coherence

To compare the multispectral sensing ability of these unders-
ampling systems, we analyze their sampling efficiency. Con-
sider the following theorem [2], [34], [35].

For a given signal f& R", suppose that its coefficient
sequence x in the orthonormal basis ¥ is S-parse, i.e., the
coefficient sequence x has S nonzero elements. Then with m
randomly selected measurements in the ® (sensing matrix)
domain, the signal f can be exactly reconstructed through L1
minimization with overwhelming probability if

m=> ¢y’ (®,¥) S logn, (8)
where 4(®, %) = V/n | max n\ {@x v ;| is the coherence between
the sensing matrix @ z;na_sparse domain bases ¥, and ¢ is a
known positive constant.

According to this theorem, a smaller coherence u(®,¥)
indicates that fewer measurements are needed for complete recon-
struction, and therefore the sensing system has higher sampling
efficiency. In general, a randomly generated measurement matrix
would be effective for most signals. However, for a specific task
like multispectral imaging where signals exhibit commonalities
that allow representation with a sparse basis or dictionary, the mea-
surement matrix ® can be designed to achieve better performance.
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In this article, we measure the quality of a sensing matrix
as its spectral sensing coherence information with sparse
domain bases: ), (®,¥) &L |I— W' T ®Y|r, where I is the
identity matrix. Minimization of J,, (®,¥) imposes the con-
dition that the Gram matrix ¥"®” ®¥ be as close as pos-
sible to the identity matrix, which provides a good sensing
matrix as well.

Evaluation of undersampling systems

For the four types of undersampling systems, we examine
their sampling efficiency based on the spectral sensing coher-
ence information of their sensing matrices, and then evaluate
their reconstruction accuracy on a diverse multispectral data-
base containing images of various scenes—including indoor
scenes, outdoor scenes, various materials and different illu-
minations—from four online data sets [40]—[43]. A few exam-
ple images are shown in Figure 7.

Computation of spectral sensing coherence information
and image reconstruction

The spectral sensing coherence information is computed
with respect to a domain basis in which the signals can be

sparsely represented. From the multispectral image data-
base, we learn two kinds of bases ¥ in which multispectral
images have a sparse representation. The first is from princi-
pal components analysis (PCA) [45], which is applied to
derive an orthonormal bases. The second is from the K-SVD
algorithm [39], which is used to obtain an overcomplete dic-
tionary. The bases represent the specific structural charac-
teristics of the multispectral images and video frames, and
thus are suitable for computing spectral sensing coherence
information J,(®,¥) and analyzing the sampling efficien-
cy of the undersampling schemes for multispectral acquisi-
tion systems.

In computing the PCA bases and the overcomplete diction-
ary, we use 100,000 multispectral patches of size 10 X 10 X 29
pixels (horizontal X vertical X spectral) that are randomly
sampled from the database. The size of each basis element is
thus 10 X 10 X 29 as well. Since the PCA bases are orthonor-
mal and complete, it has a size of exactly 2,900. For K-SVD,
6,200 atoms are learned as a sparse representation of the natu-
ral multispectral images.

We also synthetically test the reconstruction accuracy of
the four undersampling multispectral imaging systems on the

420 nm 450 nm 480 nm 510 nm

540 nm

570 nm 600 nm 630 Nnm 660 nm 690 nm

FIGURE 7. Six example images from the multispectral database, including indoor and outdoor scenes, various materials, and different illumination. Ten of
the 29 spectral channels (from 420 nm to 700 nm, at 10 nm intervals) are shown. The corresponding RGB images are displayed in the top row.
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FIGURE 8. PSNR comparison for image reconstruction with the four types
of undersampling systems on a set of 50 multispectral images. Crosses
of different colors mark the average PSNR for the different methods. The
PNSR value for each individual multispectral image is also plotted, as blue
dots, to illustrate the statistical distribution of the reconstruction accuracy.
Except for PMVIS in which linear interpolation is used for reconstruction,
we use the ADMM [46] to compute the reconstruction results.

database images. The inputs of the four systems are generated
by sampling the multispectral images according to the corre-
sponding sensing matrices described in the section “Unders-
ampling Systems.” Image reconstruction is performed using a
widely employed algorithm—the alternating direction method
of multipliers (ADMM) [46]—except for PM VIS which simply
employs linear interpolation (as it cannot be solved by ADMM
directly because of its special sampling scheme). ADMM is
widely used in image reconstruction and has shown superior
performance. It is worth noting that the choice of the algorithm
may affect the reconstruction accuracy, but the ranking of the
results does not change.

In testing PMVIS, we use an image down-sampling rate
of 0.3%, as is the case in the prototype camera [27]. Theoreti-
cally, in PMVIS systems, a minimal down-sampling rate of
1/Q (where Q is the number of spectral channels) is needed
to prevent overlaps between the spectra of different samples.
The current prototypes are not well calibrated, so the down-
sampling rate may potentially be improved in the future.

(b)

Table 1. The spectral sensing coherence information hetween the

sensing matrices of different systems and the learned bases.

SD-CASSI DD-CASSI 3-D-CASSI PMVIS
K-SVD 0.7920 0.7787 0.7737 0.8148
PCA 0.7048 0.6432 0.6663 0.7251

Table 1 presents the spectral sensing coherence informa-
tion values computed between the sensing matrices of the
four types of the undersampling systems and the three kinds
of bases. Note that since hybrid PMVIS [30], [31] and hybrid
CASSI [32] each obtain two snapshots, they are omitted in this
analysis for an even comparison. Multiple snapshot systems
are discussed in the section “Evaluation of Undersampling
Systems.” For the coded aperture-based systems, binary codes
randomly generated by the Bernoulli distribution, with the
same probability p(x = 1) = 0.5, are applied.

Specifically, the codes of SD-CASSI and DD-CASSI are
derived by shifting and stacking the randomly generated 2-D
patterns. As for 3-D-CASSI, the code is generated directly in
3-D space. Both the K-SVD and PCA bases are learned from
the database.

The 3-D-CASSI system has the most complex modulation
and achieves the best spectral sensing coherence informa-
tion on the overcomplete dictionary learned by the K-SVD
algorithm. However, for the PCA bases, DD-CASSI provides
the best spectral sensing coherence information. For both of
the bases, the coherences of DD-CASSI and 3-D-CASSI are
very close, which indicates comparable quality of their sens-
ing matrices. It is shown in Figure 7 that DD-CASSI and
3-D-CASSI also perform comparably on hyperspectral image
reconstruction accuracy, which is consistent with the theorem
discussed in the section “Understampling Systems.”

Aside from DD-CASSI and 3-D-CASSI, the coherence val-
ues of the other systems have a consistent ranking on both the
PCA and K-SVD bases, which suggests that the relative qual-
ity of sensing matrices is not greatly affected by the bases, if
they represent the sparse structure of the data well. This is also
indicated by the reconstruction results in Figure 8.

The reconstruction performance of the four undersampling
systems is displayed for the 610-nm channel of an example
image in Figure 9. The result of PMVIS exhibits blocking

(© (d)

FIGURE 9. A comparison of reconstructed results for the four undersampling systems. All of the results are shown at the 610-nm channel. (a) PMVIS
PSNR = 16.6845 db, (b) SD-CASSI PSNR = 18.0859 db, (c) DD-CASSI PSNR = 29.8178 db, and (d) 3-D-CASSI PSNR = 32.5659 db.
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artifacts due to its low sampling rate in the
spatial domain. The results for the other
three coded aperture systems are of much
higher quality. 3-D-CASSI produces par-
ticularly good results in this example.

It is worth noting that the random code
may not be optimal for specific data such as
multispectral images, which exhibit certain
characteristics and strong redundancy. In
regard to this, the feasible space of coding
patterns for the coded aperture-based sys-
tems is constrained by the light paths of the
systems. With a larger feasible domain, there is greater potential
for a system to achieve higher performance. Since 3-D-CASSI,
whose coding space completely encompasses those of the other
three systems, does not exhibit much superiority over the other
systems in our experiments, we believe that a random code is far
from optimal in the multispectral imaging scenario.

light paths.

Analysis of light throughput and system complexity
Besides the sensing matrix, the light throughput and calibra-
tion error also affect the reconstruction accuracy. For discus-
sion of these factors and practical system complexity, we list
the light throughput and the number of optical elements in
Table 2. For the PMVIS system, its light throughput is deter-
mined by its down-sampling rate, which is the reciprocal of
the number of spectral channels Q. For the typical multi-
spectral imaging scenario, with 30 or more spectral chan-
nels, the light throughput loss of PMVIS is relatively large.
Both SD-CASSI and DD-CASSI have a light throughput of
0.5, while that of 3-D-CASSI is 0.25 because of its two mod-
ulators. With regard to system complexity and calibration
difficulty, PMVIS and SD-CASSI are relatively simple and
easy to calibrate because of their smaller number of optical
elements and simpler light paths. Particularly, PMVIS is
much more robust to calibration errors (e.g., slight shifts or
rotations of the coded aperture) because its reconstruction
algorithm is based on simple interpolation, which makes the
system highly practical. The number of optical elements also
has a strong influence on calibration and light throughput,
and thus it affects the signal-to-noise ratio of the captured
multispectral images. Although PMVIS and SD-CASSI have
lower reconstruction accuracy on synthetic data as shown in
Figure 8, this gap is narrowed by taking their practical bene-
fits into consideration.

As shown in Figure 10, it is clear that when the sensing noise
increases, the performance gap between DD-CASSI/3-D-CASSI

Table 2. Typical parameters for the four types of undersampling systems.

SD-CASSI  DD-CASSI ~ 3-D-CASSI  PMVIS
Light throughput 0.5 0.5 0.25 =
Number of opfical
elements 6 9 8 6

With regard to system
complexity and calibration
difficulty, PMVIS and
SD-CASSI are relatively
simple and easy to
calibrate hecause of their
smaller number of optical
elements and simpler

and SD-CASSI/PMVIS decreases rapidly.
The reconstruction results of all the systems
are degraded with the increase of sensing
noise. However, with greater system com-
plexity there is more degradation in perfor-
mance. Considering the high complexity of
DD-CASSI and 3-D-CASSI, which leads to
lower light throughput and larger calibra-
tion errors, the advantages of the complex
coded aperture systems may be counter-
acted by the effect of sensing noise. Thus,
further investigation is needed for reducing
the light path complexity of coded aperture-based spectral
imaging systems and improving the noisy tolerance of the
reconstruction algorithms.

Video-rate multispectral cameras
with multiple snapshots
We have focused on multispectral video imagers with single
snapshot measurements thus far, but there exist other sys-
tems [2], [30]-[32], [48] that acquire two or more snapshot
measurements to recover the spectral information with high-
er accuracy while still at video rates. These systems can be
also used for multispectral capture of dynamic scenes.
Multiple snapshots have been acquired in two ways. One
is by adding extra cameras into the optical path. Figure 11
shows one design for such an implementation, where the
incoming light rays are first directed along two separate
paths by a beam splitter, essentially making two copies of the
light rays, each with a lower light intensity. One of the paths
enters the optical configuration of an undersampling system
(e.g., PMVIS or CASSI), while the other light path may lead
to an RGB or grayscale camera to record a high spatial res-
olution image of the scene. This hybrid camera design has
been implemented based on PMVIS [30], [31] and CASSI

& 28 , ,
o) -\ — PMVIS
o ——-
< SD-CASSI |
%) --- DD-CASSI
= —=— 3-D-CASSI
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FIGURE 10. Noise tolerance curves of the four kinds of spectral imaging
systems. (The image intensity is normalized to 0~1.)
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FIGURE 11. A hybrid camera design for multiple snapshot measurements.

[32], [48]. We also conducted spectral reconstruction experi-
ments using this hybrid design by adding another full spatial
resolution image as part of the input (RGB for PMVIS, and
gray scale for CASSI). As for the PMVIS system, two kinds
of reconstruction algorithms, i.e., a simple
bilateral propagation-based method [30] and

Table 3. PSNR comparison of three multisnapshot systems.

Hybrid PMVIS
(+ Extra Camera)

Simple Complex  SD-CASSI Hybrid CASSI
Systems Algorithm  Algorithm  (Measure Twice) ~ (+ Exira Camera)
PSNR (DB) 25.86 33.19 28.04 32.10

CASSI system in [2]. As a result, in practice, by adding an
extra sensor or using an ultrafast coded aperture, greater accu-
racy in multispectral acquisition can be obtained with some
increase in system cost.

Advanced theory in reconstruction from

undersampled signals

The use of random projections in compressed measurements
was originally motivated by the idea that many signals of
interest may be represented sparsely in an orthonormal basis,
such as the wavelet transform. However, sparsity represents
only one class of signal model, and other models may lead to
other forms of compressive measurement that may perform
better than random projections. For example, it has been
demonstrated that many signals of interest may be repre-
sented in terms of a union of low-dimensional linear sub-
spaces [35], [37], [44], [48]. From a statistical or signal
processing perspective, such a model may be represented as
a Gaussian mixture model (GMM), in
which the covariance matrix of each

a more complex learning-based method [49], “_mh the al“lall_ﬂes n mixture component is low rank [36]—
are applied. signal processing theory [38]. Recent theory has shown that good

The results in Table 3, which are derived by and algorithms and measurement matrices correspond to
averaging the results on the aforementioned the increasing demand projections that are aligned with the
spectral image database, show that the recon- for high-resolution signal space [36], [37]. There is already
struction accuracy is increased by about 8 dB multispectral images/ evidence to demonstrate that such a sig-

and 5 dB on average for PMVIS and CASS]I,
respectively. This tremendous gain in signal
recovery demonstrates the effectiveness of a

videos, undersampling
schemes for multispectral

nal model, which may be learned based
on the data [38], is well suited to the
multispectral data of interest. This

hybrid camera design that includes an addi- image acquisition model will greatly facilitate the mea-

tional basic sensor. In addition, the complex have hecome a hot surement design of novel multispectral

learning-based algorithm achieves about 8§ dB topic in computational video cameras.

improvement over the simple bilateral propa- photography and With the advances in signal process-
ation method for the PM VIS system, which ; . ing theory and algorithms and the in-

s Y signal processing. g leony ane 98

shows the great potential of improving exist-
ing reconstruction algorithms.

The other method for acquiring extra snapshot measure-
ments is to use high-frequency optical elements and sensors
that allow multiple snapshots to be captured for each mul-
tispectral video frame. Spatial light modulators or digital
micro-mirror devices operating at 120 Hz or above can be
used for this purpose in conjunction with high-speed camera
sensors, all of which have become increasingly affordable in
recent years. Systems based on this design have been success-
fully built for multiple snapshot multispectral video capture
[2], [29]. Significant gains in reconstruction accuracy (about
5 dB) have been reported in comparison to the single snapshot

creasing demand for high-resolution
multispectral images/videos, unders-
ampling schemes for multispectral image acquisition have
become a hot topic in computational photography and sig-
nal processing. A number of undersampling-based acquisi-
tion systems have been proposed, but there had been little
analysis of their relative effectiveness. In this article, we
have examined existing multispectral video systems based
on their sampling efficiency and optical performance, from
a signal processing perspective. We introduced the spectral
sensing coherence information of the sensing matrix and
bases learned from multispectral data as a metric for com-
paring the sampling efficiency of different systems. From
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these analyses, readers may be inspired to design or develop
better sampling schemes for multispectral sensing.
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SIGNAL PROCESSING FOR
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Vishal M. Patel, Joseph N. Mait,
Dennis W. Prather, and Abigail S. Hedden

Computational Millimeter Wave Imaging

Problems, progress, and prospects

maging using millimeter waves (mmWs) has many advan-
tages and applications in the defense, security, and aviation
markets. All terrestrial bodies emit mmW radiation, and
these wavelengths are able to penetrate smoke, blowing

dust or sand, fog/clouds/marine layers, and even clothing.
However, there are many obstacles to imaging in this spec-
trum that have to be overcome before mmW imaging sys-
tems can be successfully realized for surveillance and
defense applications. Recent developments in compu-
tational imaging have the potential to significantly
improve capabilities of mmW imaging systems.
Our article provides an overview of computation-
al imaging and its implication to mmW imaging
in various operation modes. We discuss the mer-
its and drawbacks of available computational
mmW imaging approaches and identify avenues

of research in this rapidly evolving field.

Introduction

In the past several years, interest in imaging at milli-
meter wavelengths has been driven primarily by their
ability to penetrate poor weather and other obstacles
such as clothes and polymers [1], [2]. Within the electro-
magnetic spectrum, mmWs are historically defined in the
30-300 GHz range with corresponding wavelengths between
10 and 1 mm, respectively. Radiation at these frequencies is non-
ionizing and is, therefore, considered safe for human exposure.

©ISTOCKPHOTO.COM/YAKOBCHUK

Applications of this technology include the detection of con-
cealed weapons, explosives, and contraband (see Figure 1). Fur-
thermore, unlike visible and infrared systems, passive mmW
imaging systems are not significantly hindered by atmospheric
obscurants, such as cloud cover, fog, smoke, rain and dust storms
and may reduce or even eliminate the impact of low-visibility
atmospheric conditions [3]. Figure 2 shows atmospheric attenua-
tion of naturally emitted black-body radiation through 1 km of
fog, illustrating how low-loss bands within the mmW region
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FIGURE 1. Applications of mmW imaging. (a) Imaging through clothing. (b) Imaging through fog. (c) Imaging through tarps and building materials.
(d) Imaging IRAM through canvas.

Unfortunately, mmW imaging combines the worst of
Frequency (GHz) . . . L. . . .
= . . . radio-frequency imaging and visible imaging. Consider that
mcL7> Usen? sen? olor 9men D 10 measuring phase at radio frequencies and measuring intensity
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& are made. This requires methods beyond conventional imag-
Wavelength (mm) . . . .
ing and leads us naturally to consider computational imag-
FIGURE 2. Low-loss bands within the mmW region allow passive imaging ing techniques. In computational imaging, the burden of
in adverse weather conditions [4]. image formation is shared across two domains, the optical
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FIGURE 3. A schematic representation of an imaging system.

measurement and the digital postprocessing domains. The
opportunities for computational imaging depend upon the
architecture of the system [4]—[13]. In this article, we review
work that we have done for conventional imagers and for pupil,
or Fourier plane, imagers.

Foundations of computational imaging

Figure 3 is a schematic representation of a generic imaging
system. To the left of the entrance pupil is a natural scene
consisting of self-luminous objects or objects illuminated pas-
sively, i.e., we do not have active control over the scene illu-
mination. The electromagnetic field incident upon the
entrance pupil exists in three spatial dimensions (x, y, z) and
one temporal dimension ¢ and exhibits intrinsic physical prop-
erties of wavelength A and polarization p. The amplitude of
the field is represented by a(x,y, z,1, A, p).

All elements to the right of the entrance pupil are under
a designer’s control and together define the imaging system.
The imager’s front end contains elements that manipulate the
incident wave front. The front-end electromagnetic processing
is represented by linear, continuous integral transforms based
on physical models.

After manipulation by the front end, the transformed wave
front impinges on a detector or transducer of some kind.
Transduction is a nonlinear physical process in terms of field
amplitude. It is the irradiance of the field that is transduced,
f=lal?. Also, discrete sampling is implicit in transduction.
The continuous values (x,y,z,t, A, p) over which fis defined
are now discrete.

A matrix representation can be used to provide a mathemat-
ical description of the processes up to and including measure-
ment [14], [15]

g =Hf +n, (1)
where g is the measurement, f is a sampled representation of
the scene irradiance in the object domain, H is the system
transfer or measurement matrix, and n is noise introduced in

Measurement

Parameter
Estimation

Labeling and
Classification

Qutput

Qutput Qutput

the measurement process. The propagation of f from the
object domain to the imager is included in H. Thus, H con-
sists of both natural and engineered components.

A parameter estimator T is applied in postdetection either
to estimate f or some property or parameter of f denoted Qf,
1.e., either

f=Tg,
= THf + Tn, 2)
or
Qf = Tg,
= THf + Tn. 3)

In contrast to the measurement matrix H, which operates lin-
early on f, T can be linear or nonlinear.

The last block in Figure 3 represents additional processing
beyond estimation, namely, labeling or classification. That is,
based upon the properties estimated, elements within the scene
are discriminated from one another and assigned to a partic-
ular, discrete class of objects. Depending on the application,
classification may not be necessary. We combine classification
processing with estimation into a single transformation T.

It is important to note the special case of T = I, where I is
the identity matrix. This is called a direct measurement, where
the measurements correspond directly to the parameters of
interest. For example, conventional imaging is a case of direct
measurement of scene irradiance values in object space. The
goal in designing a conventional imaging system is to produce
a response that is as close as possible to a d-function over all
expected operating conditions.

Another classic example of direct measurement is optical
matched filtering, e.g., [16]. A matched filter is designed to
detect an object o in the object scene. Its ideal performance is
such that, wherever o is present in the scene f, the measurement
produces a large response at its location. Locations where o is
not present produce a small response. Thus, T outputs the loca-
tion of 0 and, by virtue of its design, allows the classification of
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points in the scene f into two regions, those that likely contain
o and those that don’t.

These examples represent extremes in which all process-
ing is performed in the physical domain. The vast expanse of
work in optical design speaks to the difficulty in realizing the
former, and the short-lived history of optical pattern recogni-
tion in the 1960s and 1970s underscores problems with the lat-
ter. Thus, the application space of current interest is the one in
which the processing burden is shared.

We delineate computational imaging into three broad appli-
cations: enhancing cameras, enhancing images (also known as
computational photography), and enhanc-
ing human cognition. Reference to cameras

also demonstrated promise in overcoming important SWaP-
related issues. This is particularly important at millimeter
wavelengths where high image resolution is typically
achieved with large apertures and lens-based systems that
scale volumetrically and can present challenges from a porta-
bility perspective.

Extended depth-of-field imaging

Most mmW imaging systems have a narrow DoF, the dis-
tance over which an object is considered in focus. Consider
the application of concealed weapon detection by imaging
through clothing using mmW imagers. If
individuals are moving toward an imager

in the first application emphasizes the con- The gﬂa! m ﬂl‘:Sl!]lll_ll!] a through a corridor, the weapons will be
ventional notion of a camera as a device that conventional imaging visible only for the brief moment when
produces a recognizable representation of a system is to produce a they were in the DoF. This is one reason

scene. An enhanced camera uses computa-
tion to improve some aspect of the camera,
for example, reduce its physical depth while
maintaining optical performance [17], [18],
increase its spatial resolution [19], or expand
its dynamic range [20]. Others have consid-
ered computation as a hybrid element to reduce or overcome
aberrations [21], [22].

Computation has also been used to filter or accentuate
information within a scene. For example, combining unique
optics with postdetection processing allows one to extend an
imager’s depth of field (DoF) [23]. Other examples include
modulating a shutter during an exposure to reduce motion blur
[24]. Computation in combination with new sensing modalities
allows humans to “see” polarimetric information [25], spectral
information [26], and three-dimensional information [27] in a
manner similar to how they “see” through a human body using
magnetic resonance.

With regard to enhancing cognition, some within the imag-
ing community [28], [29] seek to extract information from
scenes directly using physical means and postdetection pro-
cessing but in a manner different from pure imaging process-
ing, i.e., image detection followed by image processing, and
from pure optical matched filtering. Such task-specific imag-
ers require automatic feedback, dynamic elements, and adap-
tive processing to realize [29].

Computational mmW imaging approaches

Many mmW imaging systems have practical considerations
that limit or preclude their use from surveillance and defense-
related applications. In this section, we highlight several
examples of computational mmW imaging methods that have
been used to enhance imaging capabilities and to address
some of these considerations, like size-weight-and-power
(SWaP), imaging speed, and limited DoF. These are important
considerations for many potential applications, like stand-off
imaging and surveillance of moving targets where high angu-
lar resolution, high image frame rates, and an extended DoF
are keys to mission success. Computational imagers, like the
distributed aperture imaging system discussed below, have

response that is as close
as possihie to a d-function
over all expected
operating conditions.

individuals are scanned in portals. How-
ever, extensions to scanning over a vol-
ume could provide scanning without
creating bottlenecks, for example, in a
public marketplace where security is
important but a visible display of security
might be counterproductive. Computational imaging meth-
ods [23], [30], [31] can be used to extend the DoF of mmW
imaging systems. One such method was developed in [5] to
extend the DoF of a passive mmW imaging system to allow
for operation over a volume. In what follows, we review this
computational imaging method for extending the DoF of a
passive mmW imager.

In [5], a 94-GHz Stokes-vector radiometer was used to
form images by raster scanning the system’s single beam.
One can model the 94-GHz imaging system as a linear,
spatially incoherent, quasi-monochromatic system. The in-
tensity of the detected image can be represented as a con-
volution between the intensity of the image predicted by the
geometrical optics with the system point spread function
(PSF) [32]. Under these conditions, (1) is a valid representa-
tion with H the incoherent PSF. H accounts for wave propa-
gation through the aperture and is related to the magnitude
square of the inverse Fourier transform of the system pupil
function P(u, v).

Displacement of an object from the nominal object plane of
the imaging system introduces a phase error in the pupil function
that increases the width of a point response and produces an out-
of-focus image. For a 94-GHz imager with an aperture diameter
D =24 in and object distance d, = 180 in, DoF = 17.4 in,
which ranges from 175.2 to 192.6 in (see Figure 4).

The DoF of this imager was extended using a cubic phase
element in conjunction with postdetection processing. The
cubic phase element P(u, v) is

P(u,v) = exp[jO(u,v)] rect( “

u L)
Wu ’ WV ’
where

6 (u,v) = (7y)

() (]
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and rect is the rectangular function. The phase function is
separable in the u# and v spatial frequencies and has spatial
extent W, and W, along the respective axis. The constant y
represents the strength of the cubic phase. Figure 5 shows the
cubic phase element mounted on the antenna.

Figure 6 shows the measured PSFs for conventional imag-
ing and imaging with a cubic phase. The width of the in-focus
PSF at 180 in is approximately 2 mm, which is consistent with
a 1 mm pixel width. Note that the response of the cubic phase
system is relatively unchanged, whereas the response of the
conventional system changes considerably. A postdetection
signal processing step is necessary to produce a well-defined
sharp response [23], [30], [31].

If we assume (3) represents a linear postdetection process,
we can implement T as a Wiener filter in Fourier space,

H (u,v)
K_zqsw(u,v) ’
(i>L(u,v)

T(u,v) = (®)]

|H (u,v) 12+

where H(u, v) is the optical transfer function associated with
the cubic phase element, the parameter K is a measure of the
signal-to-noise ratio, and the functions éDL and fi)N are the
expected power spectra of the object and noise, respectively.
The optical transfer function is usually estimated from the
experimentally measured point responses. One can view the
estimated i,(x,y) as a diffraction limited response.

The extended object used in the experiments is represented
in Figure 7(a). Images of an extended object for conven-
tional imaging system at 113, 146, and 180 in are shown in
Figure 8(a)—(c), respectively. Each image is represented by
41 x 51 measurements or pixels. The object size within the
image is a function of optical magnification. Note that the
conventional imaging system produces images with signifi-
cant blurring. In contrast, even without signal processing,
the images produced with cubic phase element retain more
discernible characteristics of the object than the images
from the conventional system, as shown in Figure 8(d)—(f).
Figure 8(g)—(i) shows that postprocessing compensates for
the effect of the cubic phase element and retains frequency

1.0
0.5
e 0.0 .
QY
‘é —0.5 |
S 1.0
-1.5

—2qL= ‘
100 120 140 160 180 200 220 240 260 280
d, (in)

FIGURE 4. The maximum relative pupil phase error as a function of object
distance. The shaded region indicates a conventional depth of field.
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FIGURE 5. The cubic phase element. (a) Side view and (b) front view of
the cubic phase element mounted on the antenna. (c) The detail of the
fabricated cubic phase element.

(a) (b) (c)
(d) (e) (

FIGURE 6. The measured PSFs for conventional imaging and imaging
with a cubic phase. PSFs for conventional system at (a) 113 in, (b) 146.5
in, and (c) 180 in. (d)—(f) PSFs for a system with cubic phase at the same
distances for (a)—(c).

12”7

FIGURE 7. (a) A representation of the extended object used to compare
conventional and cubic-phase imaging. (b) A schematic of object illumina-
tion [5].
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content that is otherwise lost in a conventional system. The
wider bandwidth, in addition to the noise suppressing char-
acteristics of the Weiner filter, produces images that appear
sharper than those produced by a conventional imaging sys-
tem. Therefore, one can extend the region over which the sys-
tem generates diffraction limited images. In fact, [5] showed
that the DoF of a conventional 94-GHz imaging system can be
extended from 17.4 in to more than 68 in.

Distributed-aperture mmW imaging
Recently, a pupil plane, distributed aperture mmW imager was
developed by the University of Delaware and Phase Sensitive
Innovations [4] shown in Figure 9. As opposed to a continuous
aperture over which radiation is collected to form an image, dis-
tributed aperture systems sample the inci-
dent radiation within subapertures. This is

subaperture and cross-correlating all the recorded, complex
information. Typically, systems distribute a local oscilla-
tor to downconvert the captured field data to a lower inter-
mediate frequency, where it can be digitally recorded and
processed. Although well-suited for imaging at microwave
frequencies, the power, size, and space requirements for dis-
tributing the local oscillator, the intermediate frequency pro-
cessing, and construction of the correlation engines present
significant design challenges at mmW frequencies, which
increase cost.

Martin et al. [4] showed that these challenges can be over-
come by upconverting to optical frequencies and taking advan-
tage of existing optical technology for processing and imaging.
Electro-optic modulators were used to modulate received mil-
limeter-wave radiation onto the sidebands on
an optical carrier [33]. Optical upconversion

typically done when a continuous aperture is Ontical upconversion allows the use of lightweight, flexible fiber
prohibitive due to scale, e.g., for radio teles- allows the use of an optics to route optical energy before and
copy. This approach was particularly taken optical lens to perform after mmW encoding, which eliminates the
for mmWs due to the lack of detection tech- the necessary correlation need for cables to distribute a local oscillator.
nology, such as inexpensive silicon-based required for image Even more significant, optical upcon-
detector arrays used for detecting visible formation. version allows the use of an optical lens to

radiation. This approach offers important

SWAP-related benefits compared with more

traditional architectures like compound antenna systems and

lens-based imagers, since the overall upconversion system size

scales in two dimension (2-D) versus three-dimension (3-D).
Image formation in a distributed array requires record-

ing both magnitude and phase of the incident field at each

(a) (b) (©)

(h) ()

FIGURE 8. Images from a conventional imaging system at (a) 113 in, (b)
146 in, and (c) 180 in. (d)—(f) Images from a system with cubic phase at
the same object distances as for (a)—(c). (g)—(f) Processed images from a
system with cubic phase at the same object distances as for (a)—(c) [9].

perform the necessary correlation required

for image formation. Digital reconstruction
requires discrete spatial Fourier transforms and correlations, the
number of which increases quadratically with the number of
subapertures. The phase transformation of a lens combined with
propagation over a distance physically generates the correlations
necessary for image formation.

(d)

FIGURE 9. A 35-GHz, 30-channel distributed aperture imaging system with
(a) hexagonal and (b) nonredundant distributed apertures and distributed
aperture geometries for (c) hexagonal and (d) nonredundant apertures.
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Therefore, the system proposed in [4] samples discretely the
complex wave-amplitude of a mmW signal and converts the
mmW signal to an optical one using electro-optical modula-
tors while preserving the spatial distribution of samples using
an optical fiber array. The output of the fiber array is spatially
Fourier transformed using a lens, and the resulting optical
image is captured using an optical detector array or charge-
coupled device. One of the important features of this imager is
that the imager volume does not scale with the aperture diam-
eter, as the scale of the image-forming elements is fixed.

Another significant feature of this imager is its ability to
control the relative phase of each receiving element in the
distributed aperture, which provides electronic control of the
imager’s PSF. It allows multidomain sensing by simultaneous
and independent manipulation of both the
Fourier and image planes of the system.

such as reducing noise. Figure 11 illustrates the real-time
nature of the imager where a person behind a plywood is
imaged at a video rate.

Compressive mmW imagers

Compressive sensing (CS) is an important tool that has shown
promise in overcoming some of the common limitations
associated with mmW imaging. For example, a wide field of
regard and high image frame rates are desired for many appli-
cations, like stand-off imaging of moving targets. Because
large-format arrays present cost challenges due to technologi-
cal hurdles like availability of cost-effective and powerful
source technology and sensitive, low-cost detectors, many
current systems use a single element or a small array in com-
bination with a compound antenna system
to scan a larger scene and build up an

This is a unique capability that permits the GIJI!lnresswe sensing Is image (e.g., [35]-[38]). These architectures
change of the imager’s PSF on-the-fly and an important tool that can present challenges to achieving the
enables rapid sparse sampling of desired has shown promise in video frame rates required for some imag-
target by electronically steering the beam in overcoming some of ing applications [38]. As highlighted in this
a manner similar to a phased array antenna. the common limitations section, mmW CS techniques have shown
Analysis of the imager as an incoherent associated with promise in overcoming issues like high
imaging system highlights the link between - - frame-rate challenges by potentially reduc-
mmW imaging.

element phase and PSF [7]. Mait et al. [7]
showed that, by modifying the aperture
phases of the hexagonal and nonredundant distributed aper-
ture systems, a low-resolution analog image processing can be
performed. The simplest approach could be to take the differ-
ence between two images of the same object captured using
two different pupil functions,

Jy) = fr06y) —f~(x.), (©6)

where o(x, y) is the input object and
f+(X’Y):0(x,)’)**h+(x’Y)a (7)
J-(.y) = o00xy) ** h-(x,y). ®)

For example, one can construct a one-dimensional band-
pass filter by manipulating the phase functions. To understand
this heuristically, one can model the corresponding PSFs as
O-functions

h+(x,y) = 8(x,y), &)
By = 386 —x0y) 6+l (10)

to approximate the composite transfer function H(u, v) as
H(u,v) = H+(u,v)— H-(u,v) = 1 —cos Laxou), (11)

which filters low spatial frequencies and passes frequencies
centered at u = 1/xo. Such filtering can be useful for edge
detection (see Figure 10). Furthermore, [34] showed that
phase can also be used to do more complex signal processing

ing the overall number of scene measure-
ments needed to reconstruct an image.
CS can be viewed as a special case of computational imag-
ing in which partial or low-dimensional measurements are
obtained by designing a specific sensing modality. In this case,
the measurement matrix H in (1) has more columns than rows,
and a nonlinear recovery algorithm is used to reconstruct the

(© (d)

FIGURE 10. Edge detection performed using a nonredundant distributed
aperture. (a) Aperture phase and (b) corresponding image of an extended
object assuming zero aperture phase. (c) and (d) Same as in (a) and (b)
except with circular phase across the aperture. White represents 0-phase,
and black represents 27z-phase. Intermediate grey colors represent
phases between 0 and 27. (e) The difference between (b) and (d) [7].
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FIGURE 11. Real-time video snapshots seeing through 1/4-in plywood.

scene [39], [40]. A number of CS methods have been devel-
oped to reduce the acquisition time of mmW imagers [8]—
[11], [41]. For instance, [10] proposed a compressive passive
mmW imaging method in which randomly encoded masks are
employed at the focal plane of the imager
to acquire incoherent measurements of
the imaged scene. A Bayesian reconstruc-
tion algorithm was developed to estimate
the original image from these compressive

We expect that derivation
of the performance hounds
for various computational

matrix-based masks. This method has the advantage of a large
number of masks, which can be represented by a single sens-
ing mask. The image acquisition time of this system showed
to be only limited to the speed of the THz detector.

A mmW imaging modality with extend-
ed DoF with reduced spatial sampling was
developed in [8] and [9]. This method essen-
tially uses a cubic phase element at the pupil
of the imager while collecting partial mea-

measurements. This system shows can sig- mmW imaging methods surements. The image is then recovered by
nificantly reduce the number of required will produce stronger using a nonlinear reconstruction algorithm.
measurements for passive mmW imaging. guidance to developing Using this system, a greater than four-fold
This method was later extended in [42] d d W increase in DoF can be achieved with a
by constructing a single unified and com- more advanced mm reduction in sampling requirements by a

y g g _ _ o pling req y
pact mask such that no mechanical mask imaging modalities, factor of at least two.

exchange is necessary for collecting com-
pressive measurements.

Another method based on CS for tera-
hertz (THz) imaging was proposed in [11].
This method uses a single pixel detector in
combination with a series of random masks
to enable high-speed image acquisition. This system showed
to be capable of producing 32 x 32 images of complex objects
with only 300 (approximately 30%) measurements. Rath-
er than using random masks, [43] proposes using Toeplitz

which will have a wider
spectrum of applications
in surveillance, defense,
and aviation problems.

In a recent work [44], active matamate-
rials were introduced as real-time tunable,
spectrally sensitive spatial masks for single
pixel THz imaging. This method requires
no moving parts and can yield improved
signal-to-noise ratios over standard raster-
scanning techniques for THz imaging. Furthermore, it was
demonstrated that the use of this technique in the CS frame-
work can allow one to acquire high-frame-rate and high-fidel-
ity images.
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Discussion and concluding remarks
This article presented a review of recent developments in
mmW imaging based on computational imaging methods for
security and surveillance applications. We believe that recent
advances in computational imaging have brought substantial
opportunities to mmW imaging. We hope that the survey
helped guide the interested reader through the extensive liter-
ature. It does not cover all the literature on mmW and compu-
tational imaging, so we have chosen to focus on a subset of
work that reflects some of the most recent progress.

A number of challenges and issues commonly confront
mmW imaging technology. Computational imaging methods
may prove useful in addressing some of these challenges. The
following are several examples:

m Affordability. The technology readiness level of mmW
devices is immature compared to optical and infrared
arrays. The lack of readily available and affordable sources
and detection technology has resulted in comparatively
small arrays (kilopixels or fewer) and a tradeoff between
the number of achievable image pixels and the desire to
rapidly image wide fields of regard with high angular reso-
Iution. MmW compressed sensing has shown promising
results in reducing the overall number of scene observations
needed to reconstruct an image. Perhaps these techniques or
other computational imaging methods could help curb the
cost of mmW systems by requiring fewer detector elements
to realize an imaging capability that is more comparable to
what could be achieved with a larger-format array.

® SWaP. Many mmW imaging systems are not viable for
deployment across a broad variety of platforms that
would benefit from their use. Compound antenna systems
and lens-based imagers, for example, scale volumetrical-
ly. To achieve a high resolution and a wide field of view,
larger apertures and mechanical scanners, which have
important implications for SWaP, are usually used. These
solutions do not tend to be man-portable, for example.
Additionally, for broad applicability, one also wants plat-
form-agnostic solutions that do not require specific
aspects of the platform to form images, like platform
motion, for example. Computational imagers may offer
some key advantages, like the distributed aperture mmW
imaging technology discussed in the "Computational
mmW imaging approaches,” which scales in 2-D versus
3-D, for example.

m Surveillance of moving targets. Imaging of moving targets
with high resolution and high frame rates can be challeng-
ing with existing systems. At lower frequency, SAR offers
excellent atmospheric penetration properties but relatively
slow frame rates. MmW imagers can be limited by the
speed of mechanical scanners, and electronic beam-scan-
ning technology is immature and costly at millimeter
wavelengths. Given challenges like these, perhaps compu-
tational imaging techniques could be applied to help com-
pensate for image blur with existing systems.
Computational mmW imaging promises to be an active area

of research. However, little is known about the quantitative

performance advantage of computational imaging methods for
mmW imaging. We expect that derivation of the performance
bounds for various computational mmW imaging methods
will produce stronger guidance to developing more advanced
mmW imaging modalities, which will have a wider spectrum
of applications in surveillance, defense, and aviation problems.
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SIGNAL PROCESSING FOR
COMPUTATIONAL PHOTOGRAPHY AND DISPLAYS

Gordon Wetzstein and Douglas Lanman

Factored Displays

Improving resolution, dynamic range, color reproduction,
and light field characteristics with advanced signal processing

oday, direct-view displays constitute the primary means
by which humans visually interact with computers.
These displays come in many forms: mobile phones, lap-
tops, workstations, digital projectors, and digital sig-
nage; while ubiquitous, our two-dimensional (2-D) displays
still pale in comparison to the three-dimensional (3-D) physi-
cal world. Gabriel Lippmann, a Nobel Prize-winning physi-
cist and an early photographic innovator, lamented on the
similar limitations of photography:
Can we request that Photography renders the
full variety offered by the direct observation
of objects? Is it possible to create a photo-
graphic print in such a manner that it rep-
resents the exterior world framed, in
appearance, between the boundaries of
the print, as if those boundaries were that
of a window opened on reality? It
appears that yes, we can request from
Photography infinitely more than from the
human hand.

—Qabriel Lippmann,
Epreuves réversibles donnant la
sensation du relief, 1908

Introduction

Lippmann’s goal of creating a faultless window into a record-
ed reality is the visual equivalent of Alan Turing’s epony-
mous imitation game. To this end, Lippmann himself
introduced the notion of integral imaging: a photographic
process by which parallax views are recorded and depicted
using microlens arrays placed in close proximity to film.
Today, Lippmann’s invention continues to be one of the pre-
dominant technologies underlying glasses-free 3-D displays.
However, displays must advance on many other axes to
Dl e Tdemtin 10.1109/MSP 20162569621 achieve Lippmann’s window, particularly in terms of resolu-
Date of publication: 2 September 2016 tion, dynamic range, and color fidelity.
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Is this a case where we simply must wait for the incremen-
tal progression of display technology to carry us to the conclu-
sion of the visual Turing test? Mobile phones certainly make a
case that such Moore’s law progression will occur, with mobile
display pixel pitches routinely satisfying 20/20 visual acuity at
typical viewing distances. However, emerging display technolo-
gies, particularly glasses-free 3-D displays and head-mounted
displays (HMDs), will require at least an order of magnitude finer
pixel pitches to satisfy human visual acuity. Looking beyond this
immediate issue of resolution, the dynamic range of current-
generation displays are far from the 1,000,000:1 contrast ratio
resolved by the human eye.

Is there another path to constructing Lippmann’s window
without simply waiting for enough brute force to be applied? We
believe so. In this article we review recent progress in factored
displays comprising multiple spatial light modulators (SLMs),
such as liquid crystal displays (LCDs), digital micromirror devic-
es (DMDs), and liquid crystal on silicon (LCoS) panels. Unlike
prior tiled display architectures, factored displays utilize mul-
tiple SLMs in a cascaded configuration, such that light from one
modulator illuminates the next in the series. Existing multiview
displays, including the parallax barrier light field display intro-
duced by Frederic Ives in 1903 [1], can be viewed as an early
precursor to factored displays. However, rather than using heu-
ristic procedures to decompose target imagery into multilayer
attenuation patterns, emerging factored displays apply principled
optimization algorithms to well-defined visual objective functions.
As will be emphasized throughout this article, such optimization
typically reduces to solving a nonnegative matrix factorization
(NMF) or nonnegative tensor factorization (NTF) problem. This
unifying problem arises from the cascaded nature of the construc-
tion of factored displays: light transmitted through one pixel on
one SLM layer is attenuated (i.e., multiplied) by the amplitude of
a pixel on a subsequent layer. Additionally, temporal multiplexing
can be applied when the pixel states can be altered at a more rapid
refresh rate than the critical flicker fusion threshold of the human
visual system. A unified image formation model for all factored
displays is therefore given by the following equation:

I _ LS5 T g ’
w3 T2 (@ Gy

minin)lize
{ff:} m=1n=1

F
subjectto 0 <f¥ <1 6

where M is number of time-multiplexed images that the visual
system perceptually averages, N is the number of attenuating
display layers, [(x,y,u,v) is the target light field—a generic
representation that encodes any 2-D, 3-D, or four-dimensional
(4-D) image content—and ¢"™:R* — R? is a mapping func-
tion from the 4-D light field ray space to the 2-D pixel coordi-
nate on SLM layer n. The task of the factorization routine is
then to factor /(x,y,u,v) into the best set of temporally varying,
nonnegative pixel states £\ that can be addressed by the
electro-optical display. Figure 1 illustrates this image forma-
tion model and shows a prototype display for a three-layer
LCD display.

Superresolution displays

The development of high-resolution displays is of central impor-
tance to the display industry. Leading mobile displays recently
transitioned from pixel densities of less than 50 pixels/cm
(ppcm) and now approach 150 ppcm. Similarly, the consumer
electronics industry now offers “4K ultra-high definition
(UHD)” displays, having a horizontal resolution approaching
4,000 pixels, as the successor to high-definition television
(HDTYV). Furthermore, 8K UHD standards already exist for
enhanced digital cinema. Achieving such high-resolution dis-
plays currently hinges on advances that enable spatial light mod-
ulators with increased pixel counts.

Beyond these larger market trends, several emerging display
technologies necessitate even greater resolutions than 4K/8K
UHD standards will provide. For example, wide-field-of-view
HMDs, such as the Oculus Rift, incorporate high-pixel-densi-
ty mobile displays. Such displays already approach or exceed
20/20 visual acuity when viewed at the distance of a phone or
tablet computer; however, they appear pixelated when viewed
through magnifying HMD optics, which dramatically expand
the field of view. Similarly, glasses-free 3-D displays, includ-
ing parallax barrier [1] and integral imaging [2] designs,
require at least an order of magnitude higher resolution than
today’s displays.

Factored displays may have a role in addressing the demand
for such high resolution displays. Rather than directly fabricat-
ing finer pixel pitches, factored multilayer LCDs have been
shown to reliably quadruple spatial resolution—effectively
repurposing multilayer light field displays for the distinct task
of superresolution display. In recent work, Heide et al. [3] intro-
duced cascaded displays: stacking two or more spatial light
modulators (SLMs) on top of one another, without spacing,
subject to a lateral offset of half a pixel or less along each axis.
As shown in Figure 2, lateral offsets are necessary so that each
pixel on one layer modulates multiple pixels on another; in this
manner, the intensity of each subpixel fragment—defined by
the geometric intersection of a pixel on one display layer with
one on another layer—can be controlled, thereby increasing the
effective display resolution. The target light field in this case is
a view-independent 2-D image, i.e., [(x,y,u,v) = i(x,y). The
key insight is that cascaded displays may operate as factored
displays: utilizing fewer independently addressable pixels than
apparent in the displayed image. This outcome is achieved by
decomposing target imagery into multilayer, multiframe attenu-
ation patterns (see Figure 1). Similar methods may be adopted
to increase the temporal resolution of stacks of two or more
SLMs, refreshed in staggered intervals. As such, factored dis-
plays with offset pixel layers may be applied for spatiotemporal
superresolution, in addition to their more common use as light
field displays.

Cascaded displays achieve thin form factors without moving
parts. Most significantly, such displays offer an operation mode
that eliminates the need for temporal multiplexing of factorized
imagery, which is typical of most factored light field displays;
as a result, videos can be presented without the appearance of
artifacts characteristic of prior methods or the requirement for
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FIGURE 1. (a) Factored light field prototype and (b) image formation. The prototype uses three stacked layers of LCDs that are rear-illuminated by a single
backlight. In this particular case, there are separations between the LCDs to allow for light field synthesis, but the same prototype with the inter-layer
spacing reduced allows for superresolution image generation. Each emitted light ray /(x,y, u,v) (here illustrated in 1-D) at some time m is defined as the

product of all pixel states along its optical path.

high-refresh-rate SLMs. As will be discussed in the section
“Light Field Displays,” related methods for achieving super-
resolution displays have also been demonstrated in factored
projectors by [4].

Factored spectral displays

Factored displays have the potential to rapidly accelerate reso-
lution enhancement using unconventional, stacked display set-
ups driven by factored image synthesis. It is widely anticipated,
however, that a higher resolution alone will not significantly
enhance user experiences unless the dynamic range (contrast)

and color gamut of the displays are also improved. High-
dynamic-range (HDR) display can be achieved via dual modu-
lation [5] and improved with factored displays (see the section
“High-Dynamic-Range Displays”). One of the most signifi-
cant remaining challenges in display design is that of improv-
ing the color gamut while maintaining high light throughput
and a sufficient bit depth to encode high-quality images.
Whereas conventional display design strategies determine the
tradeoffs between color fidelity, brightness, resolution, bit
depth, and other characteristics of a device before it is fabricat-
ed, factored spectral displays advocate for a fundamentally
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FIGURE 2. (a) Creation of subpixel fragments by cascaded displays. A cascaded display is constructed by layering a shifted pair of conventional displays.
The overlap of offset pixel layers creates an array of subpixel fragments (green). (b) Image reconstruction using a single-layer LCD and a cascaded dual-
layer LCD. Factorization results are shown on the far right of (b). (Motorsport image courtesy Aurelien Vialatte.)

different strategy: adaptive color display. Through the codesign
of display optics, electronics and factored image processing [6]
have demonstrated how optimal tradeoffs can be made dynami-
cally in a content adaptive and user centric manner. For exam-
ple, the spectral power distributions observed in many natural
images often do not contain all perceivable colors at once—
adapting the display gamut to a specific target image or video
clip allows for an optimal tradeoff between brightness and color
fidelity to be made. Further, some wide gamut footage may be
impossible to be displayed accurately, as it may contain a wide
range of colors distributed over the entire perceivable visible
color spectrum. In such cases, the perceptually closest approxi-
mation of the target should be presented. Human color vision,
however, is a complex and nonlinear process; finding a percep-
tually optimal solution for the color reproduction problem is
therefore challenging. Figure 3 demonstrates the concept of
adaptive color reproduction for a hyperspectral target image

processed for a three- and a four-primary display with fixed and
adaptive gamuts.

Factored spectral displays employ a perceptually driven
factorization algorithm that decomposes a target wide-gamut
image into the best set of adaptive primaries and corresponding
pixel values. The classical problems of primary selection and
gamut mapping are thus solved simultaneously and are robustly
optimized in a perceptually uniform color space: CIELAB. One
of the main benefits of factored spectral displays is its flex-
ibility. Several different display modes are supported by the
same device—without mechanically moving parts—simply by
switching the software driver. One could imagine a mode that
supports very bright monochrome images, for example, text
or technical slides, whereas another display mode would sup-
port extremely high color fidelity at a lower peak brightness
using factorization algorithm; optimal tradeoffs between bright-
ness and color fidelity are dynamically made by the software.
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When presenting legacy sRGB content,

the device is operated in a conventional
three primary mode without any adjust-
ments. Therefore, the display hardware
is flexible enough to support existing
content without any tradeoffs while also
supporting emerging color spaces.
Trends in the display industry are
clear: higher resolutions and wider color
gamuts will become commonplace in
the near future. Increasing resolution
will be provided by advanced nano-
fabrication technology and potentially
driven by factored image generation
algorithms. Factored spectral displays,
on the other hand, provide a viable
solution for adaptive, wide color gamut
display that could be seamlessly integrat-
ed into cinematic projection systems,
home theaters, and office projectors.

Light field displays

Here we discuss emerging light field %
display technology and a number of
unconventional applications. The physi-
cal world contains light rays of diverse
intensities and colors running in various
directions. The light field is a function
that describes the amount and color of
light flowing in every direction through
every point in space. A binocular view-
er moving through the light field per-
ceives various depth cues. Binocular
cues are created because the two eyes
receive different light rays. Motion par-
allax cues are created because the eyes
receive different rays as the viewer’s
head moves. Accommodation (focus)
cues are created because different parts
of the viewer’s pupil receive different light rays. Light field dis-
plays are intended to recreate those cues with sufficient accura-
cy to enable a high-fidelity 3-D viewing experience.

A light field display emits a 4-D distribution of light rays,
which varies over the two spatial dimensions of a display sur-
face but also over the horizontal and vertical viewing angle of
each pixel. The display primitives of conventional displays are
2-D pixels (picture elements), those of volumetric or multiplane
displays are 3-D voxels (volume elements), and those of 4-D
light field displays are light rays, each carrying radiance at some
location into a specific direction. Figure 4 illustrates the common
two-plane parameterization of a light field: a plane x is located
on the physical display screen and another plane u coincides with
the pupils of the viewer. To pass our Turing test for displays, i.e.,
to create a sufficiently persuasive 3-D experience, a 4-D light
field display would have to provide appropriate stereoscopic,
motion parallax, and focus cues. No such display exists today,

External, Fiber-Coupled ®
& P Light Engine ™

Optimized 3-D Gamut

(b)

FIGURE 3. Adaptive color display with factored spectral projector. The device uses a custom light engine with
(a) six LEDs. The total addressable gamut of the display spans most of the CIE xy space, but the refresh rate
of the digital micromirror device (DMD) only allows for up to four primaries to be used for any projected im-
age. Factored image synthesis allows for the content-specific optimal color gamut spanned by four primaries
to be computed while simultaneously solving (b) the gamut mapping problem.

but different tradeoffs can be made to create reasonable approxi-
mations of natural light fields.

Over a century ago, Frederic Ives conceived of parallax bar-
riers [1]. A barrier mask consisting of an array of pinholes or
slits would be mounted at a slight offset in front of a display
such that a viewer would perceive only a subset of the display
pixels from any given perspective. The display would render
an image that contains the corresponding, interlaced perspec-
tives of the light field. Soon after, Gabriel Lippmann built the
first light field camera and display using integral imaging [2].
Instead of pinhole arrays, he mounted microlens arrays on
photographic plates, exposed and developed these plates with
the lens arrays in place, such that they could be viewed as a
light field or glasses-free 3-D image after the fact. The main
drawback of parallax barriers and integral imaging is the spa-
tioangular resolution tradeoff: adding more light field viewing
zones comes at the cost of reduced spatial display resolution.
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FIGURE 4. The light field of (a) a natural scene is a collection of rays that are parameterized by their coordinates of intersection with (b) two planes x and
u. All rays on a horizontal scanline [left (a)] observed in the centers of the viewer’s two pupils are shown in (c) (stereo display) and all rays on the same
scanline across the viewer’s pupils are shown on the upper right (natural light field). The two eyes observe the scene from different vantage points so the
left- and right-eye rays differ. Conventional stereoscopic displays do not provide parallax across either pupil and therefore do not support focus cues. The
natural light field does provide parallax across each pupil and thereby provides focus cues.

Additionally, parallax barriers are usually dim because most
of the emitted light is blocked. To overcome these limitations,
many alternative technologies have emerged over the last cen-
tury to deliver high-resolution, glasses-free 3-D experiences.
Yet, none of these can deliver experiences that yet pass our Tur-
ing test for displays.

With an ever-increasing demand on image resolution,
one of the major bottlenecks in the light field display pipe-
line is computation. Consider the example of a high-qual-
ity, light field display with 100 X 100 views, each having
high-definition (HD) resolution, streamed at 60 Hz. More
than one trillion light rays have to be rendered per second

requiring more than 100 Terabytes of floating point RGB
ray data to be stored and processed. Further, with conven-
tional integral imaging or parallax barriers, one would need
a display panel that has a resolution 10,000 times higher
than available HD panels. To relax requirements on display
hardware, compressive light field displays and related signal
processing algorithms [7] have recently been introduced as
a modern version of Ives’ vision. These displays exploit two
simple properties: 1) light fields of natural imagery are high-
ly redundant, high-dimensional visual signals; and 2) the
human visual system has limitations that can be exploited
for visual signal compression.
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FIGURE 5. A compressive light-field prototype. The prototype uses three stacked layers of liquid crystal displays that are rear-illuminated by a single back-
light. A light-field factorization algorithm computes time-multiplexed patterns for all LCD layers that are displayed at a speed exceeding the critical flicker
fusion threshold of the human visual system. Perceptually, these patterns fuse into a consistent, high-resolution light field that supports stereo cues and

parallax without the need for glasses.

In particular, multiplexing methods (e.g., temporal, spa-
tial, polarization, etc.) can be adopted to optimize the tradeoff
between spatial and angular resolution, brightness, etc. in a con-
tent-adaptive manner. For example, the refresh rate of modern
displays often exceeds the critical flicker fusion (CFF) threshold
of human vision. A parallax barrier display implemented with
fast LCD panels would allow for the optimal layout of time-mul-
tiplexed pinholes to be determined for each target light field. Fur-
ther relaxing the requirement that the barrier mask is constrained
to showing only pinholes leads to the concept of content-adap-
tive parallax barriers that optimize the time-multiplexed patterns
for both display and barrier mask [8]. Such a content-adaptive
optimization not only allows adaptive tradeoffs between spatial
and angular resolution to be made, but it also allows for display
brightness to be optimized with respect to pinhole-based bar-
riers. The light field I(x,y) generated by a time-multiplexed,
content-adaptive parallax barrier with two LCDs is given by (1).
The corresponding inverse problem is usually formulated as a
numerical optimization problem, which can be efficiently solved
with NMF approaches.

Compressive light field displays generalize the idea of
content-adaptive parallax barriers to a variety of display archi-
tectures, including multiple stacked layers of LCDs (Figures 1
and 5), a thin “sandwich” of two LCDs enclosing a microlens
array or, in general, any combination of stacked, programma-
ble light modulators and refractive optical elements [9]. Similar
to parallax barriers, cascading LCDs usually have a multipli-
cative effect on the incident light that can selectively attenuate

light in some directions [8]-[12]. The aforementioned outlined
of light field factorization generalizes to all of these display
architectures. Their nonlinear, multiplicative image formation
is fundamentally different from the linear, additive image for-
mation provided by multifocal plane displays, volumetric dis-
plays, and many other time-multiplexed displays. In general, a
nonlinear image formation has the potential to provide more
degrees of freedom for the image generation algorithm than an
additive, linear image formation [9], [11], [13].

With a factorization framework for generalized parallax
barriers in hand, applications to a variety of displays other than
television-type systems can be explored. For example, light
field projection systems supporting parallax and stereo cues
have emerged over the last decade [14], [15]. These types of
display systems are most suitable for collaborative experienc-
es and provide impressive image quality over large depths of
field. Unfortunately, dozens of projectors have to be employed,
making multiprojector light field displays expensive, difficult
to calibrate, power hungry, and bulky. The compressive light
field methodology has been shown to also apply to projection
systems [4]. In this case, the goal is to “compress” the number
of required devices, thereby improving power efficiency, form
factor, and cost of the system. Hirsch et al. demonstrated that
this is possible by generating a light field inside a single pro-
jection device, via content-adaptive parallax barriers, and then
optically amplifying the limited field of view of the emitted
light field using a screen comprising an array of microscopic
Keplerian telescopes: one in each screen pixel.
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With the re-emergence of near-eye displays for virtual real-
ity (VR) and augmented reality (AR), focus cues have recently
attracted a lot of attention in these applications. Most existing
near-eye displays naturally provide stereoscopic cues because
either two separate microdisplays provide an image for each eye
or a single screen is optically split with two lenses. The design
principles of near-eye displays available
today are very similar to the stereoscopes
widely used in Victorian times [16]. In this
context, light field displays offer the possi-
bility of providing focus cues. The authors of
[17] were the first to demonstrate an integral-
imaging-type near-eye display that allowed
for a wide accommodation range of the
observer with the common caveat of reduced
display resolution. (The range was wide enough that correction
of refractive errors was supported, allowing the user’s prescrip-
tion eyewear to be removed and digitally correctly by altering
the imagery depicted by the near-eye light field display.) More
recently, [13] investigated compressive light-field synthesis via
two stacked LCDs. This is shown in Figure 6. The device design
is inspired by common stereoscopes but it employs two LCD
panels spaced at about 1 cm in the display housing. Using light
field factorization algorithms similar to those employed by the
content-adaptive parallax barriers described previously, a 4-D
light-field is emitted independently to each eye, providing paral-
lax over the eye box.

Vision-correcting light field displays

Perhaps one of the most unconventional applications of light
field displays is correction of visual aberrations for a human
observer [12], [17], [18]. Instead of correcting vision with eye-
glasses or contact lenses, the same can potentially be done
directly in the screen, allowing for myopia, hyperopia, astigma-
tism, and even higher-order aberrations to be corrected. For
such an application, the light field display presents a distorted
light field to the eyes of the viewer such that their natural aber-
rations optically undistort the light rays, resulting in the desired
image (Figure 7). This idea is somewhat similar to wavefront
correction with adaptive optics. Implemented with light field
displays, the requirement on the angular resolution (density of
emitted viewing zones) is similar to those for light field displays
supporting focus cues: multiple different viewing zones have to
be displayed into the same pupil. Assuming that the prescription
of a viewer is known and that their pupil location and diameter
can be tracked by a camera, light field displays attempting
vision-correction constrain the light field synthesis to the pupil
locations. For example, simple implementations using parallax
barriers were shown by [12] and, using integral imaging, by
[18] and [17]. As shown by Huang et al., the pupils are tracked
and the light field is dynamically rendered and predistorted for
the viewer such that only viewing zones that actually enter the
pupil are considered. Using a 4-D light field display for vision
correction, as opposed to a conventional 2-D display, has the
advantage that the additional degrees of freedom affo