# ELC 4351: Digital Signal Processing

Liang Dong

Electrical and Computer Engineering Baylor University

liang\_dong@baylor.edu

October 6, 2016

## Frequency Analysis of Signals

- Frequency-Domain and Time-Domain Signal Properties
  - Frequency-Domain and Time-Domain Signal Properties

- Properties of the Fourier Transform for Discrete-Time Signals
  - Symmetry Properties of the Fourier Transform
  - Fourier Transform Theorems and Properties

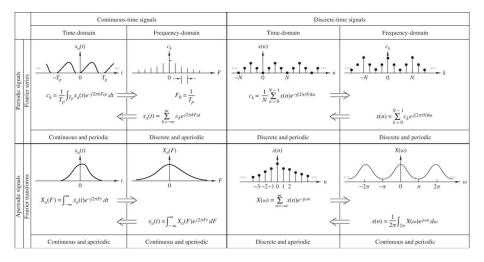
## Frequency-Domain and Time-Domain Signal Properties

#### Frequency Analysis Tools

| The Fourier series    | for continuous-time periodic signals  |
|-----------------------|---------------------------------------|
| The Fourier transform | for continuous-time aperiodic signals |
| The Fourier series    | for discrete-time periodic signals    |
| The Fourier transform | for discrete-time aperiodic signals   |

Continuous-time signals have aperiodic spectra
Discrete-time signals have periodic spectra
Periodic signals have discrete spectra
Aperiodic finite energy signals have continuous spectra

# The Fourier Series for Continuous-Time Periodic Signals



Periodicity with period  $\alpha$  in one domain implies discretization with spacing  $1/\alpha$  in the other domain, and *vice versa*.

#### Notation

$$X(\omega) \triangleq F\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$
$$x(n) \triangleq F^{-1}\{X(\omega)\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n}d\omega$$

Fourier transform pair:  $x(n) \longleftrightarrow^F X(\omega)$ 

where,  $X(\omega)$  is periodic with period  $2\pi$ .

If signal is complex, it can be expressed in rectangular form

$$x(n) = x_R(n) + jx_I(n)$$
  
 $X(\omega) = X_R(\omega) + jX_I(\omega)$ 



When a signal satisfies some symmetry properties in the time domain, these properties impose some symmetry conditions on its Fourier transform.

Using the rectangular form and  $e^{j\omega} = \cos \omega + j \sin \omega$ , we have

$$X_{R}(\omega) = \sum_{n=-\infty}^{\infty} [x_{R}(n)\cos\omega n + x_{I}(n)\sin\omega n]$$

$$X_{I}(\omega) = -\sum_{n=-\infty}^{\infty} [x_{R}(n)\sin\omega n - x_{I}(n)\cos\omega n]$$

and

$$x_{R}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [X_{R}(\omega) \cos \omega n - X_{I}(\omega) \sin \omega n] d\omega$$

$$x_{I}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [X_{R}(\omega) \sin \omega n + X_{I}(\omega) \cos \omega n] d\omega$$

Real signals.  $x_R(n) = x(n)$  and  $x_I(n) = 0$ .

$$X_{R}(\omega) = \sum_{n=-\infty}^{\infty} x(n) \cos \omega n$$

$$X_{I}(\omega) = -\sum_{n=-\infty}^{\infty} x(n) \sin \omega n$$

It follows that

$$X_R(-\omega) = X_R(\omega)$$
  
 $X_I(-\omega) = -X_I(\omega)$ 

 $\Longrightarrow X^*(\omega) = X(-\omega)$ . The spectrum of a real signal has *Hermitian symmetry*.



Real signals. 
$$x_R(n) = x(n)$$
 and  $x_I(n) = 0$ .

$$X_R(-\omega) = X_R(\omega)$$
 (even)  
 $X_I(-\omega) = -X_I(\omega)$  (odd)

$$|X(-\omega)| = |X(\omega)|$$
 (even)  
 $\angle X(-\omega) = -\angle X(\omega)$  (odd)

Real and even signals.  $x_R(n) = x(n)$ ,  $x_I(n) = 0$  and x(-n) = x(n).

$$X_R(\omega) = x(0) + 2\sum_{n=1}^{\infty} x(n)\cos\omega n$$
 (even)  
 $X_I(\omega) = 0$ 

It has real-valued spectrum, which is even function of the frequency  $\omega$ .

Real and odd signals.  $x_R(n) = x(n)$ ,  $x_I(n) = 0$  and x(-n) = -x(n).

$$X_R(\omega) = 0$$
  
 $X_I(\omega) = -2\sum_{n=1}^{\infty} x(n) \sin \omega n$  (odd)

It has imaginary-valued spectrum, which is odd function of the frequency  $\omega$ .

Purely imaginary signals.  $x_R(n) = 0$  and  $jx_I(n) = x(n)$ .

$$X_R(\omega) = \sum_{n=-\infty}^{\infty} x_I(n) \sin \omega n$$
 (odd)

$$X_I(\omega) = \sum_{n=-\infty}^{\infty} x_I(n) \cos \omega n$$
 (even)

Purely imaginary and odd signals.  $x_R(n) = 0$ ,  $jx_I(n) = x(n)$  and  $x_I(-n) = -x_I(n)$ .

$$X_R(\omega) = 2\sum_{n=1}^{\infty} x_I(n) \sin \omega n$$
 (odd)  
 $X_I(\omega) = 0$ 

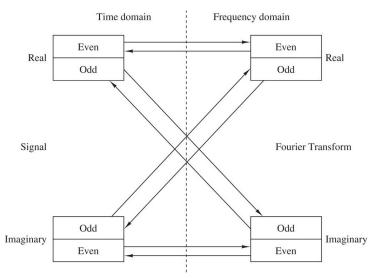
It has real-valued spectrum, which is odd function of the frequency  $\omega$ .

Purely imaginary and even signals.  $x_R(n) = 0$ ,  $jx_I(n) = x(n)$  and  $x_I(-n) = x_I(n)$ .

$$X_R(\omega) = 0$$
  
 $X_I(\omega) = x_I(0) + 2\sum_{n=1}^{\infty} x_I(n) \cos \omega n$  (even)

It has imaginary-valued spectrum, which is even function of the frequency  $\omega$ .

#### Summary of symmetry properties for the Fourier Transform



#### Linearity.

If 
$$x_1(n) \longleftrightarrow X_1(\omega)$$
 and  $x_2(n) \longleftrightarrow X_2(\omega)$ ,  
then  $\alpha_1 x_1(n) + \alpha_2 x_2(n) \longleftrightarrow \alpha_1 X_1(\omega) + \alpha_2 X_2(\omega)$ .

Time shifting.

If 
$$x(n) \longleftrightarrow X(\omega)$$
,  
then  $x(n-k) \longleftrightarrow e^{-j\omega k}X(\omega)$ .

Time reversal.

If 
$$x(n) \longleftrightarrow X(\omega)$$
, then  $x(-n) \longleftrightarrow X(-\omega)$ .

Convolution theorem.

If 
$$x_1(n) \longleftrightarrow X_1(\omega)$$
 and  $x_2(n) \longleftrightarrow X_2(\omega)$ ,  
then  $x(n) = x_1(n) \otimes x_2(n) \longleftrightarrow X(\omega) = X_1(\omega)X_2(\omega)$ .

Correlation theorem.

If 
$$x_1(n) \longleftrightarrow X_1(\omega)$$
 and  $x_2(n) \longleftrightarrow X_2(\omega)$ , then  $r_{x_1x_2}(I) \longleftrightarrow S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$ .

The Wiener-Khintchine theorem.

If 
$$x(n)$$
 is a real signal, then  $r_{xx}(I) \longleftrightarrow S_{xx}(\omega)$ .

Notice that neither the autocorrelation nor the energy spectral density has any phase information.

Frequency shifting.

If 
$$x(n) \longleftrightarrow X(\omega)$$
,  
then  $e^{j\omega_0 n} x(n) \longleftrightarrow X(\omega - \omega_0)$ .

The modulation theorem.

If 
$$x(n) \longleftrightarrow X(\omega)$$
,  
then  $x(n) \cos \omega_0 n \longleftrightarrow \frac{1}{2} [X(\omega + \omega_0) + X(\omega - \omega_0)].$ 

Parseval's theorem.

If 
$$x_1(n) \longleftrightarrow X_1(\omega)$$
 and  $x_2(n) \longleftrightarrow X_2(\omega)$ , then

$$\sum_{n=-\infty}^{\infty} x_1(n)x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\omega)X_2^*(\omega)d\omega.$$

Windowing theorem.

If 
$$x_1(n) \longleftrightarrow X_1(\omega)$$
 and  $x_2(n) \longleftrightarrow X_2(\omega)$ , then

$$x_1(n)x_2(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda)X_2(\omega - \lambda)d\lambda.$$

Differentiation in the frequency domain.

If 
$$x(n) \longleftrightarrow X(\omega)$$
, then

$$nx(n) \longleftrightarrow j\frac{dX(\omega)}{d\omega}.$$