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z-Transform Part 2

The z-Transform and Its Application to the Analysis of LTI

Systems

Rational z-Transform



Rational z-Transforms

X (z) is a rational function, that is, a ratio of two polynomials in
271 (or 2).
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Rational z-Transforms

X (z) is a rational function, that is, a ratio of two polynomials B(z)
and A(z). The polynomials can be expressed in factored forms.
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Poles and Zeros

The zeros of a z-transform X (z) are the values of z for which

X(z)=0.
The poles of a z-transform X (z) are the values of z for which
X(z) = o0,
M
X(2) = b_OZN—M Hf\,zl(z — %)
a0 [T5=1(z — o)
X (z) has M finite zeros at z = 21, 29, ..., 2, N finite poles at

z=1p1,p2,...,PN, and |N — M| zeros (if N > M) or poles (if
N < M) at the origin.

Poles and zeros may also occur at z = oo.

X (2) has exactly the same number of poles and zeros.

Poles and Zeros

If a polynomial has real coefficients, its roots are either real or
occur in complex-conjugate pairs. That is because e.g.,
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Poles and Zeros

For example,

z_l — z_2
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X(2)

which has one zero at z = 1 and two poles at p; = 0.9¢/™/4 and
P2 = 0.9¢—97/4,
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Some Common
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Poles Locations and Time-Domain Behavior for Causal

SIEGELR

If a real signal has a z-transform with one pole, this pole has to be
real. The only such signal is the real exponential
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Poles Locations and Time-Domain Behavior for Causal

SIEGELR

A causal real signal with a double real pole has the form
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Poles Locations and Time-Domain Behavior for Causal

SIEGELR

The case of a causal signal with a pair of complex-conjugate poles.
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Poles Locations and Time-Domain Behavior for Causal

SIEGELR

The case of a causal signal with a double pair of poles on the unit
circle.
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Poles Locations and Time-Domain Behavior for Causal

Signals

The impulse response h(n) of a causal LTI system is a causal
signal.

If a pole of a system is outside the unit circle, the impulse response
of the system becomes unbounded and, consequently, the system is
unstable.

System Function of a LTI System

LTI systems:

y(n) = h(n)®x(n)
Y(z) = H(2)X(2)

If we know the input z(n) and observe the output y(n) of the
system, we can determine the unit sample response (impulse
response) by first solving for H(z) from

Y(z2)
X (2)

H(z) =

and then evaluating the inverse z-transform of H(z).

H (z) is called the system function.



System Function of a LTI System

When the LTI system is described by a linear constant-coefficient
difference equation
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The system function can be calculate:
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System Function of a LTI System

An LTI system described by a constant-coefficient difference
equation has a rational system function H(z).
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System Function of a LTI System

(1) All-zero system: If a, =0 for 1 <k < N,

M | M
H(z) = Zbkz_k = Z b2+
k=0 k=0
The system has M nontrivial zeros and M trivial poles (at z = 0).

An all-zero system is an FIR system and can be called a moving
average (MA) system.

System Function of a LTI System

(2) All-pole system: If by =0 for 1 < k < M,
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where ag = 1. The system has N nontrivial poles and N trivial
zeros (at z = 0),

H(z)

An all-pole system is an |IR system and can be called an
auto-regressive (AR) system.



System Function of a LTI System

(3) Pole-zero system:

In general, the system function contains N poles and M zeros.
(Poles and zeros at z = 0 and z = oo are implied but are not
counted explicitly.)

Due to the presence of poles, a pole-zero system is an IIR system.
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