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Filter Design Approach

Approach 1:
Design Analog Apply Freguency—Band Apply Fllte.}r Desired IIR
. — Transformation — | Transformation .
Lowpass Filter Filter
s —s s =z
Approach 2:
Design Analog Apply FlltC.I‘ Apply Frequoncy—Band Desired 1IR
. — | Transformation |— Transformation .
Lowpass Filter Filter
s—z z—z

Here, IIR filter design is treated as magnitude-only design.

For filter design that considers both the magnitude and phase
responses, advanced optimization tools are required.



Magnitude-Squared Response of LPF
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Figure: Analog lowpass filter.

LPF Specifications

The LPF specifications on the magnitude-squared response is
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where € is the passband ripple parameter, (2, is the passband
cutoff frequency in rad/sec, A is the stopband attenuation
parameter, and ) is the stopband cutoff frequency in rad/sec.

Therefore, |H,(j2)|? satisfies
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LPF Specifications

The parameters € and A are related to parameters R, and A,
of the dB scale as
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The ripples, 01 and 09, of the absolute scale are related to €
and A by
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Properties of Magnitude-Squared Response

For the s-domain system function H,(s), we have

Ho(j)* = Ha(jQ)H; (i)
H,(j) Ho(—3592)
= Hau(s)Ha(—5)|s=j

The poles and zeros of the magnitude-squared response are
distributed in a mirror-image symmetry with respect to the 52
axis.

For real filters, poles and zeros occur in complex conjugate
pairs.



Properties of Magnitude-Squared Response
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Figure: The pole-zero pattern of H,(s)H,(—s).

Choose left-half poles for H,(s) == Causal and Stable filter.

Choose left-half or on-jQ-axis zeros for H,(s) =
Minimum-phase filter.

Prototype Analog Filters

Butterworth Lowpass Filter
Its magnitude response is flat in both passband and stopband.

The magnitude-squared response of the Nth-order lowpass

filter is 1
. <Q%)2N

where Q. is the cutoff frequency in rad/sec.
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Butterworth Lowpass Filter
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At Q =0, |[H,(jO)]? =1 for all N.

At Q = Q., |Hu(9:)|* = 0.5 for all N. 3dB attenuation at
Q..

|H,(5Q)|? is a monotonically decreasing function of .
|H,(5Q)|? approaches an ideal LPF as N — oo.

Butterworth Lowpass Filter

The squared system function is

H,(s)H,(—s) = |H,(jQ)? =
()Ha(—s) = [Ha(j) \H )
(59)*

S2N-|-(ch)2N

The poles are

pr = (—1)2N (j ) = Quelak RN+




Butterworth Lowpass Filter

A stable and causal filter H,(s) can be specified by selecting

poles in the left half-plane

H,(s)
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Butterworth Lowpass Filter

At Q = Q,, —10log;y |Ha(5Q)]? = R,

—101log;g

At Q = Qg, —10log; |Ha(5Q)? = Ay

—10 10g10

1

1+(8—ﬁ)2N i
1

i 8_z)zN = As

Solving these two equations for N and 2., we have



Butterworth Lowpass Filter

We have

N = {logmmofw —1)(104:/10 — 1”
B 210g10(QP/QS)

To satisfy the specification exactly at €2,

_ Qp
o 21\\’/10Rp/10 1

Or, to satisfy the specification exactly at €2,

C
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Chebyshev Lowpass Filter

The magnitude-squared response of the Chebyshev-|
(equiripple response in the passband) filter is

1
1+ e2T% (Q%)
where N is the filter order, € is the passband ripple factor
(related to Ry), and Ty is the Nth-order Chebyshev
polynomial given by
cos(Ncos™H(x)), 0<z<1
cosh(cosh™(z)), 1<z < oo

|Ho(5Q)|* =

x=Q/Q

|Ha(jQ)12




Elliptic Lowpass Filter

Equiripple behavior in the passband and in the stopband.
Achieve minimum order N for the given specifications.

The magnitide-squared response of elliptic filter is
1
1+ e2U% (Q%)

|Ho(jQ)* =

where N is the orer, € is the passband ripple (related to R),),
and Un(-) is the Nth-order Jacobian elliptic function.

IHa(J Q)PP |Ha(jQ)I2

Analog-to-Digital Filter Transformation

Impulse Invariance Transformation
h(n) = hq(nT)

Parameter T is chosen so that the shape of h,(t) is
“preserved” by the samples.

The analog and digital frequencies are related by

w=OT or ¥ =%

2 = €J¥ on the unit circle and s = j) on the imaginary axis,
we have (transforming from the s-plane to the z-plane)

z=eT



Impulse Invariance Transformation
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Many-to-one mapping: z = e** =e
o < 0 maps into |z| < 1 (inside of the unit circle).

The system functions are related through the
frequency-domain aliasing formula

H(z):% S H, (s—j%rk)

k=—o0

Impulse Invariance Transformation Example

Many-to-one mapping z = e*7.

Design analog filter H,(s). Using partial fraction expansion,
expand H,(s) into

Ry,
— Pk

N
Hi(s) =Y -
k=1

Transform analog poles {p;} into digital poles {eP*T} to
obtain the digital filter

N Ry
'E{(Z) - EE: 1 _ epquz——l
k=1




Impulse Invariance Transformation Example

Example: Transform

s+ 1

Ho(s) = 51—
(5) s2+5s5+6

into a digital filter H(z) in which "= 0.1.

Solution: Expand H,(s) using partial fraction expansion

2 1
s+3 s+2

Hy(s) =

The poles are at p;y = —3 and p2 = —2. With T'= 0.1 we find
digital poles ePrl” — ¢0-1Pk - Therefore,

H(2) 2 1 1 —0.8966z"1
Z pr— —_— p—
1—e3Tz=1 1 —e2Tz=1 1 —-155952"1 +0.606522

Bilinear Transformation

Bilinear Transformation

21—;7,—1:> 1+ sT/2
= — = —————
T1+ 271 1—sT/2

S
where T' is a parameter.

We have
+ +1=0
5ttt 58—z

which is bilinear in s and z.



Bilinear Transformation
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One-to-one mapping: z =

c<0=|z| <1 o=0= 2=

: 1+5Q7/2 :
eIV = lJ_r;QT%. Solving for w we have

QT 2
w=2tan ! (—) or )= —tan (ﬂ)
2 T 2

Bilinear Transformation Example

One-to-one mapping s = %i;j
Example: Transform
s+1
Hy,(s) = ———
a() s2+5s+6

into a digital filter H(z) in which T'=1.

Solution: We obtain
21—2"1 1— 271
1 1+ 2
2l-z 1

T1+z1
1421
1-2-1)2 1-2-1
(21+§—1) + 5 (21+§—1) ‘|’6
342271 —272  015+0.1271 —0.05272
20 + 4271 1+0.2271




