ELC 4350: Principles of Communication

Digital Modulation Techniques

Prof. Liang Dong

SCHOOL OF ENGINEERING \& COMPUTER SCIENCE
Department of Electrical \& Computer Engineering

Communication System Architecture

Figure: Typical Communication System.

Digital Modulation and Demodulation

Figure: Digital Modulation and Demodulation.

Modulation

- Modulation: Converting digital data to analog waveform suitable for transmission over the communication medium.
- The message information is represented by the varying components of a (sinusoidal) carrier waveform:

$$
c(t)=\underbrace{A_{c}}_{\text {amplitude }} \cos (2 \pi \underbrace{f_{c}}_{\text {frequency }} t+\underbrace{\phi_{c}}_{\text {phase }})
$$

- Basic techniques:

1. Amplitude Modulation (AM) \longrightarrow Amplitude Shift Keying (ASK)
2. Frequency Modulation (FM) \longrightarrow Frequency Shift Keying (FSK)
3. Phase Modulation (PM) \longrightarrow Phase Shift Keying (PSK)

Digital Modulation

(a)

> Input binary sequence
(b)

(c) ACMCOMAMOMOCMO
(d) WAOCODAODONAAO.
Figure: (a) Binary data. (b) ASK. (c) PSK. (d) FSK.
\Rightarrow ASK: Change amplitude with each symbol - Susceptible to interference
PSK: Change phase with each symbol - Robust against interference

- FSK: Change frequency with each symbol - Larger bandwidth needed

Binary Amplitude Shift Keying (BASK)

- A binary data stream $b(t)$ of the On-Off signaling variety

$$
b(t)=\left\{\begin{array}{cc}
\sqrt{E_{b}} & , \text { for binary symbol } 1 \\
0 & , \text { for binary symbol } 0
\end{array}\right.
$$

$>$ The BASK signal is (with $\phi_{c}=0$)

$$
s(t)=\left\{\begin{array}{cl}
\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) & , \text { for symbol } 1 \\
0 & , \text { for symbol } 0
\end{array}\right.
$$

where T_{b} is the bit duration.

- If the two binary symbols are equal-probable, $E_{\text {avg }}=E_{b} / 2$.

Binary Phase Shift Keying (BPSK)

- The BPSK signal is

$$
s(t)= \begin{cases}\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) & \text { for symbol } 1 \\ \sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t+\pi\right)=-\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) & , \text { for symbol } 0\end{cases}
$$

The average transmitted power is constant.

Binary Phase Shift Keying (BPSK)

Figure: (a) BPSK modulator. (b) Coherent detector for BPSK.

- Efficient utilization of channel bandwidth
- The QPSK signal is

$$
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left[2 \pi f_{c} t+(2 i-1) \frac{\pi}{4}\right], \quad i=1,2,3,4
$$

where E_{s} is the energy per symbol and T_{s} is the symbol duration.

Each symbol s_{i} corresponds to one dibit from the Gray encoded set of dibits: $10,00,01,11$.
$T_{s}=2 T_{b}$.

Quadrature Phase Shift Keying (QPSK)

Using trigonometric identity, we have

$$
\begin{aligned}
s_{i}(t)= & \sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left[(2 i-1) \frac{\pi}{4}\right] \cos \left(2 \pi f_{c} t\right) \\
& -\sqrt{\frac{2 E_{s}}{T_{s}}} \sin \left[(2 i-1) \frac{\pi}{4}\right] \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

In the in-phase part

$$
\sqrt{E_{s}} \cos \left[(2 i-1) \frac{\pi}{4}\right]=\left\{\begin{array}{cc}
\sqrt{E_{s} / 2} & \text { for } i=1,4 \\
-\sqrt{E_{s} / 2} & \text { for } i=2,3
\end{array}\right.
$$

Quadrature Phase Shift Keying (QPSK)

Using trigonometric identity, we have

$$
\begin{aligned}
s_{i}(t)= & \sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left[(2 i-1) \frac{\pi}{4}\right] \cos \left(2 \pi f_{c} t\right) \\
& -\sqrt{\frac{2 E_{s}}{T_{s}}} \sin \left[(2 i-1) \frac{\pi}{4}\right] \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

In the quadrature part

$$
-\sqrt{E_{s}} \sin \left[(2 i-1) \frac{\pi}{4}\right]=\left\{\begin{array}{cl}
-\sqrt{E_{s} / 2} & \text { for } i=1,2 \\
\sqrt{E_{s} / 2} & \text { for } i=3,4
\end{array}\right.
$$

Quadrature Phase Shift Keying (QPSK)

	Amplitudes of constituent binary waves		
Index i	Phase of QPSK signal (radians)	Binary wave 1 $a_{1}(t)$	Binary wave 2 $a_{2}(t)$
1	$\pi / 4$	Input dibit $0 \leq t \leq T$	
2	$3 \pi / 4$	$+\sqrt{E / 2}$	$-\sqrt{E / 2}$
3	$5 \pi / 4$	$-\sqrt{E / 2}$	$-\sqrt{E / 2}$
4	$7 \pi / 4$	$-\sqrt{E / 2}$	$+\sqrt{E / 2}$

Coherent QPSK Receiver

Offset QPSK (OQPSK)

$$
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T_{s}}} I(t) \cos \left(2 \pi f_{c} t\right)-\sqrt{\frac{2 E_{s}}{T_{s}}} Q\left(t-T_{b}\right) \sin \left(2 \pi f_{c} t\right)
$$

Offset QPSK (OQPSK)

Offset QPSK (OQPSK)

- Left: In QPSK, the carrier phase undergoes jumps of $0^{\circ}, \pm 90^{\circ}, \pm 180^{\circ}$ every $2 T_{b}$ seconds.
- Right: In OQPSK, the carrier phase undergoes jumps of $0^{\circ}, \pm 90^{\circ}$ every T_{b} seconds.
- In OQPSK, amplitude fluctuation due to nonlinear filtering is smaller.

Binary Frequency Shift Keying (BFSK)

- The BFSK signal is

$$
s_{i}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{i} t\right), \quad i=1,2
$$

Sunde's BFSK when $\left|f_{1}-f_{2}\right|=1 / T_{b}$. This modulated signal is a continuous-phase signal.

Minimum-Shift Keying (MSK)

- The frequency excursion is one half the bit rate

$$
\Delta f=f_{1}-f_{2}=\frac{1}{2 T_{b}}
$$

- We have

$$
\begin{array}{ll}
f_{1}=f_{c}+\Delta f / 2, & \text { for symbol } 1 \\
f_{2}=f_{c}-\Delta f / 2, & \text { for symbol } 0
\end{array}
$$

The MSK signal as the angle-modulated signal

$$
s(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left[2 \pi f_{c} t+\theta(t)\right]
$$

Minimum-Shift Keying (MSK)

- The MSK signal as the angle-modulated signal

$$
s(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left[2 \pi f_{c} t+\theta(t)\right]
$$

The phase $\theta(t)$ of the MSK signal

$$
\theta(t)=\left\{\begin{aligned}
2 \pi \frac{\Delta f}{2} t & =\frac{\pi t}{2 T_{b}} & & , \text { for symbol } 1 \\
-2 \pi \frac{\Delta f}{2} t & =-\frac{\pi t}{2 T_{b}} & , & \text { for symbol } 0
\end{aligned}\right.
$$

At $t=T_{b}, \theta=\pi / 2$ for symbol 1 and $\theta=-\pi / 2$ for symbol 0 .
\Rightarrow In MSK, Δf is the minimum frequency spacing between symbols 0 and 1 that makes their FSK signals to be coherently orthogonal.

A block of m bits to produce one symbol, with $M=2^{m}$.

- Symbol duration $T_{s}=m T_{b}$, and the bandwidth required is proportional to $1 / T_{s}=1 /\left(m T_{b}\right)$.
- Bandwidth conservation - A reduction in transmission bandwidth by a factor $m=\log _{2} M$ over binary keying.

M-ary Phase Shift Keying

- M-ary PSK signal is a phase-modulated signal

$$
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left(2 \pi f_{c} t+\frac{2 \pi}{M} i\right), \quad i=0,1, \ldots, M-1
$$

Using trigonometric identity, we have

$$
\begin{aligned}
s_{i}(t)= & \underbrace{\left[\sqrt{E_{s}} \cos \left(\frac{2 \pi}{M} i\right)\right]}_{\text {li: in-phase }}\left[\sqrt{\frac{2}{T_{s}}} \cos \left(2 \pi f_{c} t\right)\right] \\
& \underbrace{-\left[\sqrt{E_{s}} \sin \left(\frac{2 \pi}{M} i\right)\right]}_{\text {Qi: quadrature }}\left[\sqrt{\frac{2}{T_{s}}} \sin \left(2 \pi f_{c} t\right)\right]
\end{aligned}
$$

The envelope of the signal is constant: $I_{i}^{2}+Q_{i}^{2}=E_{s}$

M-ary Phase Shift Keying

2D signal-space diagram with the horizontal and vertical axes representing the orthonormal functions

$$
\phi_{1}(t)=\sqrt{\frac{2}{T_{s}}} \cos \left(2 \pi f_{c} t\right), \quad \phi_{2}(t)=\sqrt{\frac{2}{T_{s}}} \sin \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{s}
$$

Gray-encoded 8-PSK:

M-ary Quadrature Amplitude Modulation (M-ary QAM)

The M-ary QAM is a hybrid form of ASK and PSK.

$$
\begin{gathered}
s_{i}(t)=\sqrt{\frac{2 E_{0}}{T_{s}}} a_{i} \cos \left(2 \pi f_{c} t\right)-\sqrt{\frac{2 E_{0}}{T_{s}}} b_{i} \sin \left(2 \pi f_{c} t\right) \\
i=0,1, \ldots, M-1
\end{gathered}
$$

where a_{i} in the in-phase component and b_{i} in the quadrature component are independent. E_{0} is the lowest symbol energy.

Figure: Signal constellation of Gray-encoded 16-QAM.

M-ary Frequency Shift Keying

The M-ary FSK signal is

$$
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left[\frac{\pi}{T_{s}}(n+i) t\right], \quad i=0,1, \ldots, M-1
$$

If $\Delta f=1 /\left(2 T_{s}\right)$, the signals are orthogonal. That is

$$
\int_{0}^{T_{s}} s_{i}(t) s_{j}(t) d t=\left\{\begin{array}{cl}
E_{s} & , \text { for } i=j \\
0 & , \text { for } i \neq j
\end{array}\right.
$$

Therefore, a complete set of orthonormal functions:

$$
\phi_{i}(t)=\frac{1}{\sqrt{E_{s}}} s_{i}(t), \quad i=0,1, \ldots M-1
$$

M-ary Frequency Shift Keying

- M-dimensional signal space

Figure: Signal constellation of 3-FSK.

Coherent Detection for Binary Phase-Shift Keying (BPSK)

- BPSK signals

$$
\begin{aligned}
& s_{1}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{b} \\
& s_{2}(t)=-\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{b}
\end{aligned}
$$

- With basis function

$$
\phi_{1}(t)=\sqrt{\frac{2}{T_{b}}} \cos \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{b}
$$

BPSK signals become

$$
\begin{aligned}
& s_{1}(t)=\sqrt{E_{b}} \phi_{1}(t), \quad 0 \leq t \leq T_{b} \\
& s_{2}(t)=-\sqrt{E_{b}} \phi_{1}(t), \quad 0 \leq t \leq T_{b}
\end{aligned}
$$

Coherent Detection for BPSK

- A (one-dimensional) signal constellation consists of two message points

$$
\begin{aligned}
& s_{1}=\int_{0}^{T_{b}} s_{1}(t) \phi_{1}(t) d t=+\sqrt{E_{b}} \\
& s_{2}=\int_{0}^{T_{b}} s_{2}(t) \phi_{1}(t) d t=-\sqrt{E_{b}}
\end{aligned}
$$

Coherent Detection for BPSK

Figure: (a) Signal constellation of BPSK. (b) The transmitted waveforms.

Coherent Detection for BPSK

Figure: Coherent BPSK Receiver.

BPSK system operating on an AWGN channel,

$$
x(t)=s_{i}(t)+w(t), \quad 0 \leq t \leq T_{b}, i=1,2
$$

where $w(t)$ is the sample function of a white Gaussian noise process of zero mean and power spectral density $N_{0} / 2$.

$$
x_{1}=\int_{0}^{T_{b}} x(t) \phi_{1}(t) d t
$$

Coherent Detection for BPSK

The conditional pdf of random variable X_{1}, given that symbol 0 (signal s_{2}) was transmitted, is

$$
\begin{aligned}
f_{X_{1}}\left(x_{1} \mid 0\right) & =\frac{1}{\sqrt{\pi N_{0}}} \exp \left[-\frac{1}{N_{0}}\left(x_{1}-s_{2}\right)^{2}\right] \\
& =\frac{1}{\sqrt{\pi N_{0}}} \exp \left[-\frac{1}{N_{0}}\left(x_{1}+\sqrt{E_{b}}\right)^{2}\right]
\end{aligned}
$$

Therefore, the error probability of receiver deciding in favor of symbol 1 but symbol 0 was actually transmitted is

$$
\begin{aligned}
p_{10} & =\int_{0}^{\infty} f_{X_{1}}\left(x_{1} \mid 0\right) d x_{1} \\
& =\frac{1}{\sqrt{\pi N_{0}}} \int_{0}^{\infty} \exp \left[-\frac{1}{N_{0}}\left(x_{1}+\sqrt{E_{b}}\right)^{2}\right] d x_{1}
\end{aligned}
$$

Coherent Detection for BPSK

- The error probability of receiver deciding in favor of symbol 1 but symbol 0 was actually transmitted is

$$
\begin{aligned}
p_{10} & =\frac{1}{\sqrt{\pi N_{0}}} \int_{0}^{\infty} \exp \left[-\frac{1}{N_{0}}\left(x_{1}+\sqrt{E_{b}}\right)^{2}\right] d x_{1} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\sqrt{2 E_{b} / N 0}}^{\infty} \exp \left[-\frac{z^{2}}{2}\right] d z
\end{aligned}
$$

where $z=\sqrt{\frac{2}{N_{0}}}\left(x_{1}+\sqrt{E_{b}}\right)$.

- Using the Q-function of Gaussian distribution, we have

$$
p_{10}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Coherent Detection for BPSK

- The error probability of receiver deciding in favor of symbol 1 but symbol 0 was actually transmitted is

$$
p_{10}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Similarly, the error probability of receiver deciding in favor of symbol 0 but symbol 1 was actually transmitted is

$$
p_{01}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Therefore, the average probability of symbol error for BPSK (equivalently BER) is

$$
P_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Coherent Detection for Quadri Phase-Shift Keying (QPSK)

QPSK signals

$$
\begin{gathered}
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left(2 \pi f_{c} t+(2 i-1) \frac{\pi}{4}\right), \quad 0 \leq t \leq T_{s}, i=1,2,3,4 \\
s_{i}(t)= \\
=\sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left((2 i-1) \frac{\pi}{4}\right) \cos \left(2 \pi f_{c} t\right) \\
\\
-\sqrt{\frac{2 E_{s}}{T_{s}}} \sin \left((2 i-1) \frac{\pi}{4}\right) \sin \left(2 \pi f_{c} t\right)
\end{gathered}
$$

Coherent Detection for QPSK

- With orthonormal basis function

$$
\begin{aligned}
\phi_{1}(t) & =\sqrt{\frac{2}{T_{s}}} \cos \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{s} \\
\phi_{2}(t) & =\sqrt{\frac{2}{T_{s}}} \sin \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{s}
\end{aligned}
$$

- There are four message points, defined by the two-dimensional signal vector

$$
\mathbf{s}_{i}=\left[\begin{array}{c}
\sqrt{E_{s}} \cos \left((2 i-1) \frac{\pi}{4}\right) \\
-\sqrt{E_{s}} \sin \left((2 i-1) \frac{\pi}{4}\right)
\end{array}\right], \quad i=1,2,3,4
$$

- QPSK has two-dimensional signal constellation and four message points.

Coherent Detection for QPSK

Figure: Signal constellation of QPSK.

Coherent Detection for QPSK

Figure: Coherent QPSK receiver.

Coherent Detection for QPSK

- QPSK system operating on an AWGN channel, the received signal is

$$
x(t)=s_{i}(t)+w(t), \quad 0 \leq t \leq T_{s}, i=1,2,3,4
$$

where $w(t)$ is the sample function of a white Gaussian noise process of zero mean and power spectral density $N_{0} / 2$.

- In-phase channel

$$
x_{1}=\int_{0}^{T_{s}} x(t) \phi_{1}(t) d t=\sqrt{E_{s}} \cos \left((2 i-1) \frac{\pi}{4}\right)+w_{1}= \pm \sqrt{\frac{E_{s}}{2}}+w_{1}
$$

- Quadrature channel

$$
x_{2}=\int_{0}^{T_{s}} x(t) \phi_{2}(t) d t=\sqrt{E_{s}} \sin \left((2 i-1) \frac{\pi}{4}\right)+w_{2}=\mp \sqrt{\frac{E_{s}}{2}}+w_{2}
$$

Coherent Detection for QPSK

Similar to BPSK, we can find the probability of bit error in each of the in-phase and quadrature paths of QPSK receiver is

$$
P^{\prime}=Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right), \quad E_{s}=2 E_{b}
$$

- In-phase and quadrature components are independent. The average probability of a correct detection is

$$
\begin{aligned}
P_{c} & =\left(1-P^{\prime}\right)^{2}=\left[1-Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)\right]^{2} \\
& =1-2 Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)+Q^{2}\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)
\end{aligned}
$$

Coherent Detection for QPSK

The average probability of symbol error for QPSK is

$$
\begin{aligned}
P_{e} & =1-P_{c} \\
& =2 Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)
\end{aligned}
$$

\Rightarrow When $E_{s} / N_{0} \gg 1, P_{e} \approx 2 Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$.

- With Gray encoding, the bit-error-rate (BER) of QPSK is

$$
\mathrm{BER}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

For the same E_{b} / N_{0}, QPSK can transmit information at twice the bit rate of BPSK for the same channel bandwidth with the same BER.

Coherent Detection for M-ary PSK

- M-ary PSK signal

$$
s_{i}(t)=\sqrt{\frac{2 E_{s}}{T_{s}}} \cos \left[2 \pi f_{c} t+(i-1) \frac{2 \pi}{M}\right], \quad i=1,2, \ldots, M
$$

Figure: Signal constellation of octaphase-shift keying.

Coherent Detection for 8PSK

Figure: Signal constellation of octaphase-shift keying.

The Euclidean distances:

$$
d_{12}=d_{18}=2 \sqrt{E_{s}} \sin \left(\frac{\pi}{M}\right)
$$

The average probability of symbol error for coherent M-ary PSK:

$$
P_{e} \approx 2 Q\left(\sqrt{\frac{2 E_{s}}{N_{0}}} \sin \left(\frac{\pi}{M}\right)\right)
$$

Coherent Detection for M-ary Quadrature Amplitude

 Modulation

Figure: Signal constellation of 16-QAM.

The probability of symbol error of L-PAM $(L=\sqrt{M})$

$$
P_{e}^{\prime}=2\left(1-\frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{2 E_{0}}{N_{0}}}\right)
$$

The probability of symbol error for M-ary QAM

$$
P_{e}=1-\left(1-P_{e}^{\prime}\right)^{2} \approx 2 P_{e}^{\prime}
$$

$$
P_{e} \approx 4\left(1-\frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{2 E_{0}}{N_{0}}}\right)
$$

where $\sqrt{E_{0}}=d_{\min } / 2$.

Figure: Performance comparison of different PSK and FSK signaling over AWGN channel.

