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Baseband Communication Blockdiagram

Figure: (a) Block Diagram of Baseband Communication Systems. (b)
Simplified Block Diagram.



Baseband Modulation / Baseband Line Coding

▶ The baseband signal

y(t) =
∞∑

k=−∞
akp(t − kTb)

where {ak} are symbols, Tb

is bit duration (or symbol
duration), and p(t) is the
overall pulse.

Baseband Modulation / Baseband Line Coding

▶ The baseband transmitted signal

s(t) =
∞∑

k=−∞
akg(t − kTb)

where g(t) is the pulse shaping filter at the transmitter.

▶ The baseband received signal

x(t) = s(t) ⊗ h(t)

where h(t) is the channel impulse response.

▶ The output of receive-filter

y(t) = x(t) ⊗ q(t)

where q(t) is the impulse response of receive-filter.



Baseband Pulse Shaping

▶ Overall pulse shape - Transmitter filter, Linear
Communication Channel, Receiver filter

p(t) = g(t) ⊗ h(t) ⊗ q(t)

▶ Fourier transform of the pulse

P (f) = G(f)H(f)Q(f)

The transmit-pulse G(f) and the receive-filter Q(f) can
conserve the communication bandwidth.

Intersymbol Interference (ISI)

▶ The receive-filter output y(t) is sampled synchronously with
the transmitter

y(iTb) =
∞∑

k=−∞
akp[(i − k)Tb]

▶ Discrete convolution sum: yi =
∑∞

k=−∞ akpi−k

▶ Assume that p(0) =
√

E, where E is the transmitted signal
energy per symbol.

▶ Therefore

yi =
√

Eai +
∞∑

k=−∞,k ̸=i

akpi−k︸ ︷︷ ︸
intersymbol interference (ISI)



Nyquist Criterion for Zero ISI

▶ The Nyquist’s criterion for zero ISI

pi = p(iTb) =
{ √

E , i = 0
0 , i ̸= 0

▶ The optimum pulse shape is the sinc function

popt(t) =
√

E sinc(2B0t) =
√

E sin(2πB0t)
2πB0t

where B0 = 1
2Tb

= Rb
2 . (Nyquist bandwidth – minimum

transmission bandwidth for zero ISI.)

▶ The Fourier transform of the optimum pulse is

Popt(f) =
{ √

E
2B0

, −B0 < f < B0
0 , otherwise

Optimum Pulse Shaping Filter

Figure: (a) Optimum pulse shape sinc function p(t). (b) Optimum filter
“brick-wall” P (f).

Time pulse function p(t) decreases as 1/|t|. — Slow rate of decay.



Raised-Cosine Pulse Spectrum

▶ Flat portion, 0 ≤ |f | ≤ f1

▶ Roll-off portion,
f1 < |f | < 2B0 − f1

(a) Raised-cosine pulse spectrum P (f). (b) Raise-cosine pulse p(t).

Raised-Cosine Pulse

▶ Raised-cosine pulse spectrum

P (f) =


√

E
2B0

, 0 ≤ |f | < f1√
E

4B0

{
1 + cos

[
π(|f |−f1)
2(B0−f1)

]}
, f1 ≤ |f | < 2B0 − f1

0 , 2B0 − f1 ≤ |f |

where the roll-off factor α = 1 − f1/B0.

▶ Raised-cosine pulse (inverse Fourier transform of the
raised-cosine pulse spectrum)

p(t) =
√

E sinc(2B0t)
( cos(2παB0t)

1 − 16α2B2
0t2

)



Transmission Bandwidth Requirement

▶ The transmission bandwidth required by using the
raised-cosine pulse spectrum is

BT = 2B0 − f1 = B0(1 + α)

▶ Excess bandwidth

BT = B0 + αB0︸︷︷︸
excess bandwdith

Raised-Cosine Pulse Spectrum Properties

▶ The roll-off portion of the spectrum P (f) is odd symmetry
about the midpoints f = ±B0.

▶ The infinite sum of replicas of the raised-cosine pulse
spectrum spaced by 2B0 is a constant

∞∑
m=−∞

P (f − 2mB0) =
√

E

2B0



Root Raised-Cosine Pulse Spectrum

▶ The combination of transmit-filter and channel is a root
raised-cosine

G(f)H(f) =
√

P (f)

▶ The receive-filter is a root raised-cosine

Q(f) =
√

P (f)

▶ Therefore
G(f)H(f)Q(f) = P (f)

Baseband Transmission of M -ary PAM

▶ Baud rate is symbol rate. 1 baud is equal to log2 M bits per
second.

▶ Ts is symbol duration, and Tb is bit duration.

Ts = Tb log2 M

▶ To maintain the same received SNR, the transmitted power of
a M -ary PAM system must be increased by a factor of
M2/ log2 M , compared to a binary PAM system.



The Eye Diagram

▶ Synchronized superposition of many successive symbol
intervals of the distorted waveform appearing at the output of
the receive-filter.

Figure: (a) Binary data sequence waveform. (b) Eye pattern formed
by superposition.

Reading an Eye Diagram

Figure: Interpretation of the eye diagram for a baseband binary PAM
system.



Eye Diagram Example

Figure: Eye diagram of received signal with no noise. (a) M = 2. (b)
M = 4.

Eye Diagram Example

Figure: Eye diagram of received signal with noise. (a) M = 2. (b)
M = 4.



Timing Recovery

Figure: Transfer function h combines the effects of the transmitter pulse
shaping, the channel, and the receiver filter. Receiver samples at
kT/M + τ .

Timing Recovery

▶ The sampled output

x

(
kT

M
+ τ

)
=

∞∑
i=−∞

s[i]h(t − iT ) + w(t) ⊗ gR(t)

∣∣∣∣∣∣
t=kT/M+τ

x[k] = x

(
kT

M
+ τ

)
=

∞∑
i=−∞

s[i]h
(

kT

M
+ τ − iT

)
+ v(t)



Decision-Directed Timing Recovery

▶ Timing recovery by minimizing the cluster variance

JCV (τ) = avg{(Q(x[k]) − x[k])2}

where Q() is to map to the nearest symbol value
(quantization).

▶ Iteratively solving for τ that minimizes JCV (τ).
Update equation:

τ [k + 1] = τ [k] − µ′ dJCV (τ)
dτ

∣∣∣∣
τ=τ [k]

This is the Gradient Decent method, where µ′ is the step size.

Decision-Directed Timing Recovery

▶ The approximation of the derivative is (approximation because
we swap the order of the derivative and the average)

dJCV (τ)
dτ

≈ avg
{

d(Q(x[k]) − x[k])2

dτ

}

= −2avg
{

(Q(x[k]) − x[k])dx[k]
dτ

}

▶ Numerically approximating dx[k]/dτ as

dx[k]
dτ

= dx(kT/M + τ)
dτ

≈ x(kT/M + τ + δ) − x(kT/M + τ − δ)
2δ

which is valid for small δ.



Decision-Directed Timing Recovery

▶ The update equation becomes

τ [k + 1] = τ [k] + µ · avg {(Q(x[k]) − x[k])

·
[
x

(
kT

M
+ τ [k] + δ

)
− x

(
kT

M
+ τ [k] − δ

)]}
where µ = µ′/δ.

▶ x(kT/M + τ [k] + δ) and x(kT/M + τ [k] − δ) can be
interpolated from the neighborhood of x(kT/M + τ [k]).

▶ If the τ [k] values are too noisy, the step size µ can be
decreased.

Decision-Directed Timing Recovery

▶ Using Stochastic Gradient Decent method, we simplify the
update equation as

τ [k + 1] = τ [k] + µ ·��HHavg {(Q(x[k]) − x[k])

·
[
x

(
kT

M
+ τ [k] + δ

)
− x

(
kT

M
+ τ [k] − δ

)]}



Decision-Directed Timing Recovery

Figure: Timing recovery that minimizes the cluster variance. Digital
interpolations and resamplers.

Matched Filter

▶ The transmit-filter gT (t) and the receive-filter gR(t) are
matched filters.

▶ Correlating the received signal with exact the signal shape of
the transmit-filter. This is equivalent to convolving the
received signal with a conjugate time-reversed version of the
transmit-filter.

gR(t) = g∗
T (−t)

▶ The matched filter is the optimal linear filter for maximizing
the signal-to-noise ratio (SNR) in the presence of additive
random noise.



Matched Filter – Derivation

▶ The output y of a linear filter g with the input signal x is

y[n] =
∞∑

k=−∞
g[n − k]x[k], or y(t) =

∫
τ

g(t − τ)x(τ)dτ

▶ Using signal vector representation, we check a particular
output

y = y[0] =
∞∑

k=−∞
g[−k]x[k] =

∞∑
k=−∞

h∗[k]x[k] = hHx

Matched Filter – Derivation

▶ Signal x includes the desirable signal s and additive random
noise w

x = s + w

▶ The filter output is

y = hHx = hHs︸︷︷︸
signal component

+ hHw︸ ︷︷ ︸
noise component

▶ The SNR is

SNR = |hHs|2

E{|hHw|2}
= |hHs|2

E{(hHw)(hHw)H}
= |hHs|2

hHE{wwH}h



Matched Filter – Derivation
▶ The covariance matrix of noise is Hermitian symmetry

Rw = E{wwH}, RH
w = Rw

▶ The SNR is

SNR = |hHs|2

hHRwh

= |(R1/2
w h)H(R−1/2

w s)|2

(R1/2
w h)H(R1/2

w h)

≤

[
(R1/2

w h)H(R1/2
w h)

] [
(R−1/2

w s)H(R−1/2
w s)

]
(R1/2

w h)H(R1/2
w h)

= sHR−1
w s

The inequality is the Cauchy-Schwarz inequality:
|aHb|2 ≤ (aHa)(bHb). It is equal only when b = ρa, ρ real
number.

Matched Filter – Derivation

▶ Therefore, the maximum SNR is achieved when

R
1/2
w h = ρR

−1/2
w s

▶ We have the optimal linear filter as

h = ρR−1
w s

▶ Finally, the (optimal) linear filter g[k] = h∗[−k] is the
complex-conjugate time-reversal of the desired signal s.



Linear Equalization

Figure: Adjustable Transversal Equalizer. (a) Delay line whose taps are
uniformly spaced with symbol duration T . (b) (2N+1) Adjustable
weights {w} (with structural symmetry).

Zero-Forcing Equalization

Figure: Channel Equalization. (a) First subsystem represents the
combined action of the transmit-filter and the communication channel.
(b) Second subsystem accounts for pulse shaping combined with
distortion equalization in the receiver.



Zero-Forcing Equalization

▶ Impulse response of the equalizer

heq(t) =
N∑

k=−N

wkδ(t − kT )

▶ Overall impulse response of the cascade filters

p(t) = c(t) ⊗ heq(t)

= c(t) ⊗
N∑

k=−N

wkδ(t − kT )

=
N∑

k=−N

wkc(t) ⊗ δ(t − kT )

=
N∑

k=−N

wkc(t − kT )

Zero-Forcing Equalization

▶ Discrete convolution sum

p(iT ) =
N∑

k=−N

wkc((i − k)T )

pi =
N∑

k=−N

wkci−k

▶ Nyquist criterion to eliminate ISI

pi =
{ √

E , i = 0
0 , i ̸= 0 −→ i = ±1, ±2, . . . , ±N



Zero-Forcing Equalization

▶ We obtain a system of (2N+1) simultaneous equations:

N∑
k=−N

wkci−k =
{ √

E , i = 0
0 , i = ±1, ±2, . . . , ±N

▶ In matrix form:

c0 · · · c−N+1 c−N · · · c−2N
...

...
...

...
...

...
cN−1 · · · c0 c−1 · · · c−N−1
cN · · · c1 c0 · · · c−N
...

...
...

...
...

...
c2N · · · cN+1 cN · · · c0


︸ ︷︷ ︸

Toeplitz matrix C



w−N
...

w−1
w0
...

wN


︸ ︷︷ ︸

w

=



0
...
0√
E
...
0


︸ ︷︷ ︸

b

Zero-Forcing Equalization

▶ We have
C = wb

▶ Therefore, the weights of the zero-forcing equalizer (linear
filter tapped delay line) are

w = C−1b

▶ The set of coefficient {ck}N
k=−N can be obtained by sending

pseudo-noise (PN) sequence as pilot signals to the receiver.

▶ The PN sequence is known a priori to the receiver.



Minimum Mean Square Error Equalization

▶ The baseband discrete-time received signal is

r(iT ) =
N∑

k=0
cks((i − k)T ) + n(iT )

ri =
N∑

k=0
cksi−k + ni

where {ck} are complex-valued channel taps, N is the channel
length, {si} are the complex-valued symbols, and ni is the
complex-valued AWGN with E[|ni|2] = σ2

n.

Minimum Mean Squared Error Equalization

▶ The linear equalization is given by

yi =
M∑

k=0
w∗

kri−k = wHri

where {wk} are complex-valued equalizer weights, M is the
equalizer order, w = [w0, w1, . . . , wM ]T and
ri = [ri, ri−1, . . . , ri−M ]T .

▶ The received signal vector ri is

ri = Csi + ni

where si = [si, si−1, . . . , si−L]T , ni = [ni, ni−1, . . . , ni−M ]T ,
L = N + M , and the channel matrix C · · ·



Minimum Mean Squared Error Equalization

▶ The received signal vector ri is

ri = Csi + ni

· · · and C is a dimension (M + 1) × (L + 1) Teoplitz matrix

C =


c0 c1 · · · cM 0 · · · 0

0 c0
. . . cM−1 cM

. . . ...
... . . . . . . ...

... . . . ...
0 · · · 0 c0 c1 · · · cM

 = [c0c1 · · · cL]

Minimum Mean Squared Error Equalization

▶ The equalizer output yi is the estimate of the transmitted
symbol si−τ , where 0 ≤ τ ≤ L is the equalizer’s decision delay.

▶ The Mean-Squared Error is

MSE(w) = E[|si−τ − yi|2]
= E[(si−τ − yi)(s∗

i−τ − y∗
i )]

= E[si−τ s∗
i−τ ]︸ ︷︷ ︸

σ2
s

−E[s∗
i−τ yi] − E[si−τ y∗

i ] + E[yiy
∗
i ]

E[s∗
i−τ yi] = E[s∗

i−τ wH(Csi + ni)] = σ2
swHcτ

E[si−τ y∗
i ] = σ2

swT c∗
τ

E[yiy
∗
i ] = σ2

swHCCHw+σ2
nwHw = σ2

swH

(
CCH + σ2

n

σ2
s

IM+1

)
w



Minimum Mean Squared Error Estimation

▶ The optimal MMSE solution is w0 that minimizes the MSE

w0 = arg min
w

MSE(w)

= arg min
w

σ2
s

(
1 − wHcτ − wT c∗

τ + wH

(
CCH + σ2

n

σ2
s

I
)

w
)

▶ The MMSE solution is obtained by setting the gradient vector
of MSE to zero

∇wMSE(w) = 0

Minimum Mean Squared Error Estimation

▶ The gradient vector of MSE is

∇wMSE(w) = −cτ +
(

CCH + σ2
n

σ2
s

I
)

w

▶ Therefore,

−cτ +
(

CCH + σ2
n

σ2
s

I
)

w0 = 0

▶ The MMSE equalizer weights are

w0 =
(

CCH + σ2
n

σ2
s

I
)−1

cτ


